Index: third_party/sqlite/sqlite-src-3080704/ext/rtree/rtree.c |
diff --git a/third_party/sqlite/sqlite-src-3080704/ext/rtree/rtree.c b/third_party/sqlite/sqlite-src-3080704/ext/rtree/rtree.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..8150538d452d1b31ebc91b54b5fcb3e6dad8f3aa |
--- /dev/null |
+++ b/third_party/sqlite/sqlite-src-3080704/ext/rtree/rtree.c |
@@ -0,0 +1,3468 @@ |
+/* |
+** 2001 September 15 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+************************************************************************* |
+** This file contains code for implementations of the r-tree and r*-tree |
+** algorithms packaged as an SQLite virtual table module. |
+*/ |
+ |
+/* |
+** Database Format of R-Tree Tables |
+** -------------------------------- |
+** |
+** The data structure for a single virtual r-tree table is stored in three |
+** native SQLite tables declared as follows. In each case, the '%' character |
+** in the table name is replaced with the user-supplied name of the r-tree |
+** table. |
+** |
+** CREATE TABLE %_node(nodeno INTEGER PRIMARY KEY, data BLOB) |
+** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER) |
+** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER) |
+** |
+** The data for each node of the r-tree structure is stored in the %_node |
+** table. For each node that is not the root node of the r-tree, there is |
+** an entry in the %_parent table associating the node with its parent. |
+** And for each row of data in the table, there is an entry in the %_rowid |
+** table that maps from the entries rowid to the id of the node that it |
+** is stored on. |
+** |
+** The root node of an r-tree always exists, even if the r-tree table is |
+** empty. The nodeno of the root node is always 1. All other nodes in the |
+** table must be the same size as the root node. The content of each node |
+** is formatted as follows: |
+** |
+** 1. If the node is the root node (node 1), then the first 2 bytes |
+** of the node contain the tree depth as a big-endian integer. |
+** For non-root nodes, the first 2 bytes are left unused. |
+** |
+** 2. The next 2 bytes contain the number of entries currently |
+** stored in the node. |
+** |
+** 3. The remainder of the node contains the node entries. Each entry |
+** consists of a single 8-byte integer followed by an even number |
+** of 4-byte coordinates. For leaf nodes the integer is the rowid |
+** of a record. For internal nodes it is the node number of a |
+** child page. |
+*/ |
+ |
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RTREE) |
+ |
+#ifndef SQLITE_CORE |
+ #include "sqlite3ext.h" |
+ SQLITE_EXTENSION_INIT1 |
+#else |
+ #include "sqlite3.h" |
+#endif |
+ |
+#include <string.h> |
+#include <assert.h> |
+#include <stdio.h> |
+ |
+#ifndef SQLITE_AMALGAMATION |
+#include "sqlite3rtree.h" |
+typedef sqlite3_int64 i64; |
+typedef unsigned char u8; |
+typedef unsigned short u16; |
+typedef unsigned int u32; |
+#endif |
+ |
+/* The following macro is used to suppress compiler warnings. |
+*/ |
+#ifndef UNUSED_PARAMETER |
+# define UNUSED_PARAMETER(x) (void)(x) |
+#endif |
+ |
+typedef struct Rtree Rtree; |
+typedef struct RtreeCursor RtreeCursor; |
+typedef struct RtreeNode RtreeNode; |
+typedef struct RtreeCell RtreeCell; |
+typedef struct RtreeConstraint RtreeConstraint; |
+typedef struct RtreeMatchArg RtreeMatchArg; |
+typedef struct RtreeGeomCallback RtreeGeomCallback; |
+typedef union RtreeCoord RtreeCoord; |
+typedef struct RtreeSearchPoint RtreeSearchPoint; |
+ |
+/* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */ |
+#define RTREE_MAX_DIMENSIONS 5 |
+ |
+/* Size of hash table Rtree.aHash. This hash table is not expected to |
+** ever contain very many entries, so a fixed number of buckets is |
+** used. |
+*/ |
+#define HASHSIZE 97 |
+ |
+/* The xBestIndex method of this virtual table requires an estimate of |
+** the number of rows in the virtual table to calculate the costs of |
+** various strategies. If possible, this estimate is loaded from the |
+** sqlite_stat1 table (with RTREE_MIN_ROWEST as a hard-coded minimum). |
+** Otherwise, if no sqlite_stat1 entry is available, use |
+** RTREE_DEFAULT_ROWEST. |
+*/ |
+#define RTREE_DEFAULT_ROWEST 1048576 |
+#define RTREE_MIN_ROWEST 100 |
+ |
+/* |
+** An rtree virtual-table object. |
+*/ |
+struct Rtree { |
+ sqlite3_vtab base; /* Base class. Must be first */ |
+ sqlite3 *db; /* Host database connection */ |
+ int iNodeSize; /* Size in bytes of each node in the node table */ |
+ u8 nDim; /* Number of dimensions */ |
+ u8 eCoordType; /* RTREE_COORD_REAL32 or RTREE_COORD_INT32 */ |
+ u8 nBytesPerCell; /* Bytes consumed per cell */ |
+ int iDepth; /* Current depth of the r-tree structure */ |
+ char *zDb; /* Name of database containing r-tree table */ |
+ char *zName; /* Name of r-tree table */ |
+ int nBusy; /* Current number of users of this structure */ |
+ i64 nRowEst; /* Estimated number of rows in this table */ |
+ |
+ /* List of nodes removed during a CondenseTree operation. List is |
+ ** linked together via the pointer normally used for hash chains - |
+ ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree |
+ ** headed by the node (leaf nodes have RtreeNode.iNode==0). |
+ */ |
+ RtreeNode *pDeleted; |
+ int iReinsertHeight; /* Height of sub-trees Reinsert() has run on */ |
+ |
+ /* Statements to read/write/delete a record from xxx_node */ |
+ sqlite3_stmt *pReadNode; |
+ sqlite3_stmt *pWriteNode; |
+ sqlite3_stmt *pDeleteNode; |
+ |
+ /* Statements to read/write/delete a record from xxx_rowid */ |
+ sqlite3_stmt *pReadRowid; |
+ sqlite3_stmt *pWriteRowid; |
+ sqlite3_stmt *pDeleteRowid; |
+ |
+ /* Statements to read/write/delete a record from xxx_parent */ |
+ sqlite3_stmt *pReadParent; |
+ sqlite3_stmt *pWriteParent; |
+ sqlite3_stmt *pDeleteParent; |
+ |
+ RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */ |
+}; |
+ |
+/* Possible values for Rtree.eCoordType: */ |
+#define RTREE_COORD_REAL32 0 |
+#define RTREE_COORD_INT32 1 |
+ |
+/* |
+** If SQLITE_RTREE_INT_ONLY is defined, then this virtual table will |
+** only deal with integer coordinates. No floating point operations |
+** will be done. |
+*/ |
+#ifdef SQLITE_RTREE_INT_ONLY |
+ typedef sqlite3_int64 RtreeDValue; /* High accuracy coordinate */ |
+ typedef int RtreeValue; /* Low accuracy coordinate */ |
+# define RTREE_ZERO 0 |
+#else |
+ typedef double RtreeDValue; /* High accuracy coordinate */ |
+ typedef float RtreeValue; /* Low accuracy coordinate */ |
+# define RTREE_ZERO 0.0 |
+#endif |
+ |
+/* |
+** When doing a search of an r-tree, instances of the following structure |
+** record intermediate results from the tree walk. |
+** |
+** The id is always a node-id. For iLevel>=1 the id is the node-id of |
+** the node that the RtreeSearchPoint represents. When iLevel==0, however, |
+** the id is of the parent node and the cell that RtreeSearchPoint |
+** represents is the iCell-th entry in the parent node. |
+*/ |
+struct RtreeSearchPoint { |
+ RtreeDValue rScore; /* The score for this node. Smallest goes first. */ |
+ sqlite3_int64 id; /* Node ID */ |
+ u8 iLevel; /* 0=entries. 1=leaf node. 2+ for higher */ |
+ u8 eWithin; /* PARTLY_WITHIN or FULLY_WITHIN */ |
+ u8 iCell; /* Cell index within the node */ |
+}; |
+ |
+/* |
+** The minimum number of cells allowed for a node is a third of the |
+** maximum. In Gutman's notation: |
+** |
+** m = M/3 |
+** |
+** If an R*-tree "Reinsert" operation is required, the same number of |
+** cells are removed from the overfull node and reinserted into the tree. |
+*/ |
+#define RTREE_MINCELLS(p) ((((p)->iNodeSize-4)/(p)->nBytesPerCell)/3) |
+#define RTREE_REINSERT(p) RTREE_MINCELLS(p) |
+#define RTREE_MAXCELLS 51 |
+ |
+/* |
+** The smallest possible node-size is (512-64)==448 bytes. And the largest |
+** supported cell size is 48 bytes (8 byte rowid + ten 4 byte coordinates). |
+** Therefore all non-root nodes must contain at least 3 entries. Since |
+** 2^40 is greater than 2^64, an r-tree structure always has a depth of |
+** 40 or less. |
+*/ |
+#define RTREE_MAX_DEPTH 40 |
+ |
+ |
+/* |
+** Number of entries in the cursor RtreeNode cache. The first entry is |
+** used to cache the RtreeNode for RtreeCursor.sPoint. The remaining |
+** entries cache the RtreeNode for the first elements of the priority queue. |
+*/ |
+#define RTREE_CACHE_SZ 5 |
+ |
+/* |
+** An rtree cursor object. |
+*/ |
+struct RtreeCursor { |
+ sqlite3_vtab_cursor base; /* Base class. Must be first */ |
+ u8 atEOF; /* True if at end of search */ |
+ u8 bPoint; /* True if sPoint is valid */ |
+ int iStrategy; /* Copy of idxNum search parameter */ |
+ int nConstraint; /* Number of entries in aConstraint */ |
+ RtreeConstraint *aConstraint; /* Search constraints. */ |
+ int nPointAlloc; /* Number of slots allocated for aPoint[] */ |
+ int nPoint; /* Number of slots used in aPoint[] */ |
+ int mxLevel; /* iLevel value for root of the tree */ |
+ RtreeSearchPoint *aPoint; /* Priority queue for search points */ |
+ RtreeSearchPoint sPoint; /* Cached next search point */ |
+ RtreeNode *aNode[RTREE_CACHE_SZ]; /* Rtree node cache */ |
+ u32 anQueue[RTREE_MAX_DEPTH+1]; /* Number of queued entries by iLevel */ |
+}; |
+ |
+/* Return the Rtree of a RtreeCursor */ |
+#define RTREE_OF_CURSOR(X) ((Rtree*)((X)->base.pVtab)) |
+ |
+/* |
+** A coordinate can be either a floating point number or a integer. All |
+** coordinates within a single R-Tree are always of the same time. |
+*/ |
+union RtreeCoord { |
+ RtreeValue f; /* Floating point value */ |
+ int i; /* Integer value */ |
+ u32 u; /* Unsigned for byte-order conversions */ |
+}; |
+ |
+/* |
+** The argument is an RtreeCoord. Return the value stored within the RtreeCoord |
+** formatted as a RtreeDValue (double or int64). This macro assumes that local |
+** variable pRtree points to the Rtree structure associated with the |
+** RtreeCoord. |
+*/ |
+#ifdef SQLITE_RTREE_INT_ONLY |
+# define DCOORD(coord) ((RtreeDValue)coord.i) |
+#else |
+# define DCOORD(coord) ( \ |
+ (pRtree->eCoordType==RTREE_COORD_REAL32) ? \ |
+ ((double)coord.f) : \ |
+ ((double)coord.i) \ |
+ ) |
+#endif |
+ |
+/* |
+** A search constraint. |
+*/ |
+struct RtreeConstraint { |
+ int iCoord; /* Index of constrained coordinate */ |
+ int op; /* Constraining operation */ |
+ union { |
+ RtreeDValue rValue; /* Constraint value. */ |
+ int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*); |
+ int (*xQueryFunc)(sqlite3_rtree_query_info*); |
+ } u; |
+ sqlite3_rtree_query_info *pInfo; /* xGeom and xQueryFunc argument */ |
+}; |
+ |
+/* Possible values for RtreeConstraint.op */ |
+#define RTREE_EQ 0x41 /* A */ |
+#define RTREE_LE 0x42 /* B */ |
+#define RTREE_LT 0x43 /* C */ |
+#define RTREE_GE 0x44 /* D */ |
+#define RTREE_GT 0x45 /* E */ |
+#define RTREE_MATCH 0x46 /* F: Old-style sqlite3_rtree_geometry_callback() */ |
+#define RTREE_QUERY 0x47 /* G: New-style sqlite3_rtree_query_callback() */ |
+ |
+ |
+/* |
+** An rtree structure node. |
+*/ |
+struct RtreeNode { |
+ RtreeNode *pParent; /* Parent node */ |
+ i64 iNode; /* The node number */ |
+ int nRef; /* Number of references to this node */ |
+ int isDirty; /* True if the node needs to be written to disk */ |
+ u8 *zData; /* Content of the node, as should be on disk */ |
+ RtreeNode *pNext; /* Next node in this hash collision chain */ |
+}; |
+ |
+/* Return the number of cells in a node */ |
+#define NCELL(pNode) readInt16(&(pNode)->zData[2]) |
+ |
+/* |
+** A single cell from a node, deserialized |
+*/ |
+struct RtreeCell { |
+ i64 iRowid; /* Node or entry ID */ |
+ RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2]; /* Bounding box coordinates */ |
+}; |
+ |
+ |
+/* |
+** This object becomes the sqlite3_user_data() for the SQL functions |
+** that are created by sqlite3_rtree_geometry_callback() and |
+** sqlite3_rtree_query_callback() and which appear on the right of MATCH |
+** operators in order to constrain a search. |
+** |
+** xGeom and xQueryFunc are the callback functions. Exactly one of |
+** xGeom and xQueryFunc fields is non-NULL, depending on whether the |
+** SQL function was created using sqlite3_rtree_geometry_callback() or |
+** sqlite3_rtree_query_callback(). |
+** |
+** This object is deleted automatically by the destructor mechanism in |
+** sqlite3_create_function_v2(). |
+*/ |
+struct RtreeGeomCallback { |
+ int (*xGeom)(sqlite3_rtree_geometry*, int, RtreeDValue*, int*); |
+ int (*xQueryFunc)(sqlite3_rtree_query_info*); |
+ void (*xDestructor)(void*); |
+ void *pContext; |
+}; |
+ |
+ |
+/* |
+** Value for the first field of every RtreeMatchArg object. The MATCH |
+** operator tests that the first field of a blob operand matches this |
+** value to avoid operating on invalid blobs (which could cause a segfault). |
+*/ |
+#define RTREE_GEOMETRY_MAGIC 0x891245AB |
+ |
+/* |
+** An instance of this structure (in the form of a BLOB) is returned by |
+** the SQL functions that sqlite3_rtree_geometry_callback() and |
+** sqlite3_rtree_query_callback() create, and is read as the right-hand |
+** operand to the MATCH operator of an R-Tree. |
+*/ |
+struct RtreeMatchArg { |
+ u32 magic; /* Always RTREE_GEOMETRY_MAGIC */ |
+ RtreeGeomCallback cb; /* Info about the callback functions */ |
+ int nParam; /* Number of parameters to the SQL function */ |
+ RtreeDValue aParam[1]; /* Values for parameters to the SQL function */ |
+}; |
+ |
+#ifndef MAX |
+# define MAX(x,y) ((x) < (y) ? (y) : (x)) |
+#endif |
+#ifndef MIN |
+# define MIN(x,y) ((x) > (y) ? (y) : (x)) |
+#endif |
+ |
+/* |
+** Functions to deserialize a 16 bit integer, 32 bit real number and |
+** 64 bit integer. The deserialized value is returned. |
+*/ |
+static int readInt16(u8 *p){ |
+ return (p[0]<<8) + p[1]; |
+} |
+static void readCoord(u8 *p, RtreeCoord *pCoord){ |
+ u32 i = ( |
+ (((u32)p[0]) << 24) + |
+ (((u32)p[1]) << 16) + |
+ (((u32)p[2]) << 8) + |
+ (((u32)p[3]) << 0) |
+ ); |
+ *(u32 *)pCoord = i; |
+} |
+static i64 readInt64(u8 *p){ |
+ return ( |
+ (((i64)p[0]) << 56) + |
+ (((i64)p[1]) << 48) + |
+ (((i64)p[2]) << 40) + |
+ (((i64)p[3]) << 32) + |
+ (((i64)p[4]) << 24) + |
+ (((i64)p[5]) << 16) + |
+ (((i64)p[6]) << 8) + |
+ (((i64)p[7]) << 0) |
+ ); |
+} |
+ |
+/* |
+** Functions to serialize a 16 bit integer, 32 bit real number and |
+** 64 bit integer. The value returned is the number of bytes written |
+** to the argument buffer (always 2, 4 and 8 respectively). |
+*/ |
+static int writeInt16(u8 *p, int i){ |
+ p[0] = (i>> 8)&0xFF; |
+ p[1] = (i>> 0)&0xFF; |
+ return 2; |
+} |
+static int writeCoord(u8 *p, RtreeCoord *pCoord){ |
+ u32 i; |
+ assert( sizeof(RtreeCoord)==4 ); |
+ assert( sizeof(u32)==4 ); |
+ i = *(u32 *)pCoord; |
+ p[0] = (i>>24)&0xFF; |
+ p[1] = (i>>16)&0xFF; |
+ p[2] = (i>> 8)&0xFF; |
+ p[3] = (i>> 0)&0xFF; |
+ return 4; |
+} |
+static int writeInt64(u8 *p, i64 i){ |
+ p[0] = (i>>56)&0xFF; |
+ p[1] = (i>>48)&0xFF; |
+ p[2] = (i>>40)&0xFF; |
+ p[3] = (i>>32)&0xFF; |
+ p[4] = (i>>24)&0xFF; |
+ p[5] = (i>>16)&0xFF; |
+ p[6] = (i>> 8)&0xFF; |
+ p[7] = (i>> 0)&0xFF; |
+ return 8; |
+} |
+ |
+/* |
+** Increment the reference count of node p. |
+*/ |
+static void nodeReference(RtreeNode *p){ |
+ if( p ){ |
+ p->nRef++; |
+ } |
+} |
+ |
+/* |
+** Clear the content of node p (set all bytes to 0x00). |
+*/ |
+static void nodeZero(Rtree *pRtree, RtreeNode *p){ |
+ memset(&p->zData[2], 0, pRtree->iNodeSize-2); |
+ p->isDirty = 1; |
+} |
+ |
+/* |
+** Given a node number iNode, return the corresponding key to use |
+** in the Rtree.aHash table. |
+*/ |
+static int nodeHash(i64 iNode){ |
+ return iNode % HASHSIZE; |
+} |
+ |
+/* |
+** Search the node hash table for node iNode. If found, return a pointer |
+** to it. Otherwise, return 0. |
+*/ |
+static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){ |
+ RtreeNode *p; |
+ for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext); |
+ return p; |
+} |
+ |
+/* |
+** Add node pNode to the node hash table. |
+*/ |
+static void nodeHashInsert(Rtree *pRtree, RtreeNode *pNode){ |
+ int iHash; |
+ assert( pNode->pNext==0 ); |
+ iHash = nodeHash(pNode->iNode); |
+ pNode->pNext = pRtree->aHash[iHash]; |
+ pRtree->aHash[iHash] = pNode; |
+} |
+ |
+/* |
+** Remove node pNode from the node hash table. |
+*/ |
+static void nodeHashDelete(Rtree *pRtree, RtreeNode *pNode){ |
+ RtreeNode **pp; |
+ if( pNode->iNode!=0 ){ |
+ pp = &pRtree->aHash[nodeHash(pNode->iNode)]; |
+ for( ; (*pp)!=pNode; pp = &(*pp)->pNext){ assert(*pp); } |
+ *pp = pNode->pNext; |
+ pNode->pNext = 0; |
+ } |
+} |
+ |
+/* |
+** Allocate and return new r-tree node. Initially, (RtreeNode.iNode==0), |
+** indicating that node has not yet been assigned a node number. It is |
+** assigned a node number when nodeWrite() is called to write the |
+** node contents out to the database. |
+*/ |
+static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent){ |
+ RtreeNode *pNode; |
+ pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize); |
+ if( pNode ){ |
+ memset(pNode, 0, sizeof(RtreeNode) + pRtree->iNodeSize); |
+ pNode->zData = (u8 *)&pNode[1]; |
+ pNode->nRef = 1; |
+ pNode->pParent = pParent; |
+ pNode->isDirty = 1; |
+ nodeReference(pParent); |
+ } |
+ return pNode; |
+} |
+ |
+/* |
+** Obtain a reference to an r-tree node. |
+*/ |
+static int nodeAcquire( |
+ Rtree *pRtree, /* R-tree structure */ |
+ i64 iNode, /* Node number to load */ |
+ RtreeNode *pParent, /* Either the parent node or NULL */ |
+ RtreeNode **ppNode /* OUT: Acquired node */ |
+){ |
+ int rc; |
+ int rc2 = SQLITE_OK; |
+ RtreeNode *pNode; |
+ |
+ /* Check if the requested node is already in the hash table. If so, |
+ ** increase its reference count and return it. |
+ */ |
+ if( (pNode = nodeHashLookup(pRtree, iNode)) ){ |
+ assert( !pParent || !pNode->pParent || pNode->pParent==pParent ); |
+ if( pParent && !pNode->pParent ){ |
+ nodeReference(pParent); |
+ pNode->pParent = pParent; |
+ } |
+ pNode->nRef++; |
+ *ppNode = pNode; |
+ return SQLITE_OK; |
+ } |
+ |
+ sqlite3_bind_int64(pRtree->pReadNode, 1, iNode); |
+ rc = sqlite3_step(pRtree->pReadNode); |
+ if( rc==SQLITE_ROW ){ |
+ const u8 *zBlob = sqlite3_column_blob(pRtree->pReadNode, 0); |
+ if( pRtree->iNodeSize==sqlite3_column_bytes(pRtree->pReadNode, 0) ){ |
+ pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode)+pRtree->iNodeSize); |
+ if( !pNode ){ |
+ rc2 = SQLITE_NOMEM; |
+ }else{ |
+ pNode->pParent = pParent; |
+ pNode->zData = (u8 *)&pNode[1]; |
+ pNode->nRef = 1; |
+ pNode->iNode = iNode; |
+ pNode->isDirty = 0; |
+ pNode->pNext = 0; |
+ memcpy(pNode->zData, zBlob, pRtree->iNodeSize); |
+ nodeReference(pParent); |
+ } |
+ } |
+ } |
+ rc = sqlite3_reset(pRtree->pReadNode); |
+ if( rc==SQLITE_OK ) rc = rc2; |
+ |
+ /* If the root node was just loaded, set pRtree->iDepth to the height |
+ ** of the r-tree structure. A height of zero means all data is stored on |
+ ** the root node. A height of one means the children of the root node |
+ ** are the leaves, and so on. If the depth as specified on the root node |
+ ** is greater than RTREE_MAX_DEPTH, the r-tree structure must be corrupt. |
+ */ |
+ if( pNode && iNode==1 ){ |
+ pRtree->iDepth = readInt16(pNode->zData); |
+ if( pRtree->iDepth>RTREE_MAX_DEPTH ){ |
+ rc = SQLITE_CORRUPT_VTAB; |
+ } |
+ } |
+ |
+ /* If no error has occurred so far, check if the "number of entries" |
+ ** field on the node is too large. If so, set the return code to |
+ ** SQLITE_CORRUPT_VTAB. |
+ */ |
+ if( pNode && rc==SQLITE_OK ){ |
+ if( NCELL(pNode)>((pRtree->iNodeSize-4)/pRtree->nBytesPerCell) ){ |
+ rc = SQLITE_CORRUPT_VTAB; |
+ } |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ if( pNode!=0 ){ |
+ nodeHashInsert(pRtree, pNode); |
+ }else{ |
+ rc = SQLITE_CORRUPT_VTAB; |
+ } |
+ *ppNode = pNode; |
+ }else{ |
+ sqlite3_free(pNode); |
+ *ppNode = 0; |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** Overwrite cell iCell of node pNode with the contents of pCell. |
+*/ |
+static void nodeOverwriteCell( |
+ Rtree *pRtree, /* The overall R-Tree */ |
+ RtreeNode *pNode, /* The node into which the cell is to be written */ |
+ RtreeCell *pCell, /* The cell to write */ |
+ int iCell /* Index into pNode into which pCell is written */ |
+){ |
+ int ii; |
+ u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; |
+ p += writeInt64(p, pCell->iRowid); |
+ for(ii=0; ii<(pRtree->nDim*2); ii++){ |
+ p += writeCoord(p, &pCell->aCoord[ii]); |
+ } |
+ pNode->isDirty = 1; |
+} |
+ |
+/* |
+** Remove the cell with index iCell from node pNode. |
+*/ |
+static void nodeDeleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell){ |
+ u8 *pDst = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; |
+ u8 *pSrc = &pDst[pRtree->nBytesPerCell]; |
+ int nByte = (NCELL(pNode) - iCell - 1) * pRtree->nBytesPerCell; |
+ memmove(pDst, pSrc, nByte); |
+ writeInt16(&pNode->zData[2], NCELL(pNode)-1); |
+ pNode->isDirty = 1; |
+} |
+ |
+/* |
+** Insert the contents of cell pCell into node pNode. If the insert |
+** is successful, return SQLITE_OK. |
+** |
+** If there is not enough free space in pNode, return SQLITE_FULL. |
+*/ |
+static int nodeInsertCell( |
+ Rtree *pRtree, /* The overall R-Tree */ |
+ RtreeNode *pNode, /* Write new cell into this node */ |
+ RtreeCell *pCell /* The cell to be inserted */ |
+){ |
+ int nCell; /* Current number of cells in pNode */ |
+ int nMaxCell; /* Maximum number of cells for pNode */ |
+ |
+ nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell; |
+ nCell = NCELL(pNode); |
+ |
+ assert( nCell<=nMaxCell ); |
+ if( nCell<nMaxCell ){ |
+ nodeOverwriteCell(pRtree, pNode, pCell, nCell); |
+ writeInt16(&pNode->zData[2], nCell+1); |
+ pNode->isDirty = 1; |
+ } |
+ |
+ return (nCell==nMaxCell); |
+} |
+ |
+/* |
+** If the node is dirty, write it out to the database. |
+*/ |
+static int nodeWrite(Rtree *pRtree, RtreeNode *pNode){ |
+ int rc = SQLITE_OK; |
+ if( pNode->isDirty ){ |
+ sqlite3_stmt *p = pRtree->pWriteNode; |
+ if( pNode->iNode ){ |
+ sqlite3_bind_int64(p, 1, pNode->iNode); |
+ }else{ |
+ sqlite3_bind_null(p, 1); |
+ } |
+ sqlite3_bind_blob(p, 2, pNode->zData, pRtree->iNodeSize, SQLITE_STATIC); |
+ sqlite3_step(p); |
+ pNode->isDirty = 0; |
+ rc = sqlite3_reset(p); |
+ if( pNode->iNode==0 && rc==SQLITE_OK ){ |
+ pNode->iNode = sqlite3_last_insert_rowid(pRtree->db); |
+ nodeHashInsert(pRtree, pNode); |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Release a reference to a node. If the node is dirty and the reference |
+** count drops to zero, the node data is written to the database. |
+*/ |
+static int nodeRelease(Rtree *pRtree, RtreeNode *pNode){ |
+ int rc = SQLITE_OK; |
+ if( pNode ){ |
+ assert( pNode->nRef>0 ); |
+ pNode->nRef--; |
+ if( pNode->nRef==0 ){ |
+ if( pNode->iNode==1 ){ |
+ pRtree->iDepth = -1; |
+ } |
+ if( pNode->pParent ){ |
+ rc = nodeRelease(pRtree, pNode->pParent); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ rc = nodeWrite(pRtree, pNode); |
+ } |
+ nodeHashDelete(pRtree, pNode); |
+ sqlite3_free(pNode); |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Return the 64-bit integer value associated with cell iCell of |
+** node pNode. If pNode is a leaf node, this is a rowid. If it is |
+** an internal node, then the 64-bit integer is a child page number. |
+*/ |
+static i64 nodeGetRowid( |
+ Rtree *pRtree, /* The overall R-Tree */ |
+ RtreeNode *pNode, /* The node from which to extract the ID */ |
+ int iCell /* The cell index from which to extract the ID */ |
+){ |
+ assert( iCell<NCELL(pNode) ); |
+ return readInt64(&pNode->zData[4 + pRtree->nBytesPerCell*iCell]); |
+} |
+ |
+/* |
+** Return coordinate iCoord from cell iCell in node pNode. |
+*/ |
+static void nodeGetCoord( |
+ Rtree *pRtree, /* The overall R-Tree */ |
+ RtreeNode *pNode, /* The node from which to extract a coordinate */ |
+ int iCell, /* The index of the cell within the node */ |
+ int iCoord, /* Which coordinate to extract */ |
+ RtreeCoord *pCoord /* OUT: Space to write result to */ |
+){ |
+ readCoord(&pNode->zData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord], pCoord); |
+} |
+ |
+/* |
+** Deserialize cell iCell of node pNode. Populate the structure pointed |
+** to by pCell with the results. |
+*/ |
+static void nodeGetCell( |
+ Rtree *pRtree, /* The overall R-Tree */ |
+ RtreeNode *pNode, /* The node containing the cell to be read */ |
+ int iCell, /* Index of the cell within the node */ |
+ RtreeCell *pCell /* OUT: Write the cell contents here */ |
+){ |
+ u8 *pData; |
+ u8 *pEnd; |
+ RtreeCoord *pCoord; |
+ pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell); |
+ pData = pNode->zData + (12 + pRtree->nBytesPerCell*iCell); |
+ pEnd = pData + pRtree->nDim*8; |
+ pCoord = pCell->aCoord; |
+ for(; pData<pEnd; pData+=4, pCoord++){ |
+ readCoord(pData, pCoord); |
+ } |
+} |
+ |
+ |
+/* Forward declaration for the function that does the work of |
+** the virtual table module xCreate() and xConnect() methods. |
+*/ |
+static int rtreeInit( |
+ sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char **, int |
+); |
+ |
+/* |
+** Rtree virtual table module xCreate method. |
+*/ |
+static int rtreeCreate( |
+ sqlite3 *db, |
+ void *pAux, |
+ int argc, const char *const*argv, |
+ sqlite3_vtab **ppVtab, |
+ char **pzErr |
+){ |
+ return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 1); |
+} |
+ |
+/* |
+** Rtree virtual table module xConnect method. |
+*/ |
+static int rtreeConnect( |
+ sqlite3 *db, |
+ void *pAux, |
+ int argc, const char *const*argv, |
+ sqlite3_vtab **ppVtab, |
+ char **pzErr |
+){ |
+ return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 0); |
+} |
+ |
+/* |
+** Increment the r-tree reference count. |
+*/ |
+static void rtreeReference(Rtree *pRtree){ |
+ pRtree->nBusy++; |
+} |
+ |
+/* |
+** Decrement the r-tree reference count. When the reference count reaches |
+** zero the structure is deleted. |
+*/ |
+static void rtreeRelease(Rtree *pRtree){ |
+ pRtree->nBusy--; |
+ if( pRtree->nBusy==0 ){ |
+ sqlite3_finalize(pRtree->pReadNode); |
+ sqlite3_finalize(pRtree->pWriteNode); |
+ sqlite3_finalize(pRtree->pDeleteNode); |
+ sqlite3_finalize(pRtree->pReadRowid); |
+ sqlite3_finalize(pRtree->pWriteRowid); |
+ sqlite3_finalize(pRtree->pDeleteRowid); |
+ sqlite3_finalize(pRtree->pReadParent); |
+ sqlite3_finalize(pRtree->pWriteParent); |
+ sqlite3_finalize(pRtree->pDeleteParent); |
+ sqlite3_free(pRtree); |
+ } |
+} |
+ |
+/* |
+** Rtree virtual table module xDisconnect method. |
+*/ |
+static int rtreeDisconnect(sqlite3_vtab *pVtab){ |
+ rtreeRelease((Rtree *)pVtab); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Rtree virtual table module xDestroy method. |
+*/ |
+static int rtreeDestroy(sqlite3_vtab *pVtab){ |
+ Rtree *pRtree = (Rtree *)pVtab; |
+ int rc; |
+ char *zCreate = sqlite3_mprintf( |
+ "DROP TABLE '%q'.'%q_node';" |
+ "DROP TABLE '%q'.'%q_rowid';" |
+ "DROP TABLE '%q'.'%q_parent';", |
+ pRtree->zDb, pRtree->zName, |
+ pRtree->zDb, pRtree->zName, |
+ pRtree->zDb, pRtree->zName |
+ ); |
+ if( !zCreate ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ rc = sqlite3_exec(pRtree->db, zCreate, 0, 0, 0); |
+ sqlite3_free(zCreate); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ rtreeRelease(pRtree); |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** Rtree virtual table module xOpen method. |
+*/ |
+static int rtreeOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ |
+ int rc = SQLITE_NOMEM; |
+ RtreeCursor *pCsr; |
+ |
+ pCsr = (RtreeCursor *)sqlite3_malloc(sizeof(RtreeCursor)); |
+ if( pCsr ){ |
+ memset(pCsr, 0, sizeof(RtreeCursor)); |
+ pCsr->base.pVtab = pVTab; |
+ rc = SQLITE_OK; |
+ } |
+ *ppCursor = (sqlite3_vtab_cursor *)pCsr; |
+ |
+ return rc; |
+} |
+ |
+ |
+/* |
+** Free the RtreeCursor.aConstraint[] array and its contents. |
+*/ |
+static void freeCursorConstraints(RtreeCursor *pCsr){ |
+ if( pCsr->aConstraint ){ |
+ int i; /* Used to iterate through constraint array */ |
+ for(i=0; i<pCsr->nConstraint; i++){ |
+ sqlite3_rtree_query_info *pInfo = pCsr->aConstraint[i].pInfo; |
+ if( pInfo ){ |
+ if( pInfo->xDelUser ) pInfo->xDelUser(pInfo->pUser); |
+ sqlite3_free(pInfo); |
+ } |
+ } |
+ sqlite3_free(pCsr->aConstraint); |
+ pCsr->aConstraint = 0; |
+ } |
+} |
+ |
+/* |
+** Rtree virtual table module xClose method. |
+*/ |
+static int rtreeClose(sqlite3_vtab_cursor *cur){ |
+ Rtree *pRtree = (Rtree *)(cur->pVtab); |
+ int ii; |
+ RtreeCursor *pCsr = (RtreeCursor *)cur; |
+ freeCursorConstraints(pCsr); |
+ sqlite3_free(pCsr->aPoint); |
+ for(ii=0; ii<RTREE_CACHE_SZ; ii++) nodeRelease(pRtree, pCsr->aNode[ii]); |
+ sqlite3_free(pCsr); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Rtree virtual table module xEof method. |
+** |
+** Return non-zero if the cursor does not currently point to a valid |
+** record (i.e if the scan has finished), or zero otherwise. |
+*/ |
+static int rtreeEof(sqlite3_vtab_cursor *cur){ |
+ RtreeCursor *pCsr = (RtreeCursor *)cur; |
+ return pCsr->atEOF; |
+} |
+ |
+/* |
+** Convert raw bits from the on-disk RTree record into a coordinate value. |
+** The on-disk format is big-endian and needs to be converted for little- |
+** endian platforms. The on-disk record stores integer coordinates if |
+** eInt is true and it stores 32-bit floating point records if eInt is |
+** false. a[] is the four bytes of the on-disk record to be decoded. |
+** Store the results in "r". |
+** |
+** There are three versions of this macro, one each for little-endian and |
+** big-endian processors and a third generic implementation. The endian- |
+** specific implementations are much faster and are preferred if the |
+** processor endianness is known at compile-time. The SQLITE_BYTEORDER |
+** macro is part of sqliteInt.h and hence the endian-specific |
+** implementation will only be used if this module is compiled as part |
+** of the amalgamation. |
+*/ |
+#if defined(SQLITE_BYTEORDER) && SQLITE_BYTEORDER==1234 |
+#define RTREE_DECODE_COORD(eInt, a, r) { \ |
+ RtreeCoord c; /* Coordinate decoded */ \ |
+ memcpy(&c.u,a,4); \ |
+ c.u = ((c.u>>24)&0xff)|((c.u>>8)&0xff00)| \ |
+ ((c.u&0xff)<<24)|((c.u&0xff00)<<8); \ |
+ r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ |
+} |
+#elif defined(SQLITE_BYTEORDER) && SQLITE_BYTEORDER==4321 |
+#define RTREE_DECODE_COORD(eInt, a, r) { \ |
+ RtreeCoord c; /* Coordinate decoded */ \ |
+ memcpy(&c.u,a,4); \ |
+ r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ |
+} |
+#else |
+#define RTREE_DECODE_COORD(eInt, a, r) { \ |
+ RtreeCoord c; /* Coordinate decoded */ \ |
+ c.u = ((u32)a[0]<<24) + ((u32)a[1]<<16) \ |
+ +((u32)a[2]<<8) + a[3]; \ |
+ r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ |
+} |
+#endif |
+ |
+/* |
+** Check the RTree node or entry given by pCellData and p against the MATCH |
+** constraint pConstraint. |
+*/ |
+static int rtreeCallbackConstraint( |
+ RtreeConstraint *pConstraint, /* The constraint to test */ |
+ int eInt, /* True if RTree holding integer coordinates */ |
+ u8 *pCellData, /* Raw cell content */ |
+ RtreeSearchPoint *pSearch, /* Container of this cell */ |
+ sqlite3_rtree_dbl *prScore, /* OUT: score for the cell */ |
+ int *peWithin /* OUT: visibility of the cell */ |
+){ |
+ int i; /* Loop counter */ |
+ sqlite3_rtree_query_info *pInfo = pConstraint->pInfo; /* Callback info */ |
+ int nCoord = pInfo->nCoord; /* No. of coordinates */ |
+ int rc; /* Callback return code */ |
+ sqlite3_rtree_dbl aCoord[RTREE_MAX_DIMENSIONS*2]; /* Decoded coordinates */ |
+ |
+ assert( pConstraint->op==RTREE_MATCH || pConstraint->op==RTREE_QUERY ); |
+ assert( nCoord==2 || nCoord==4 || nCoord==6 || nCoord==8 || nCoord==10 ); |
+ |
+ if( pConstraint->op==RTREE_QUERY && pSearch->iLevel==1 ){ |
+ pInfo->iRowid = readInt64(pCellData); |
+ } |
+ pCellData += 8; |
+ for(i=0; i<nCoord; i++, pCellData += 4){ |
+ RTREE_DECODE_COORD(eInt, pCellData, aCoord[i]); |
+ } |
+ if( pConstraint->op==RTREE_MATCH ){ |
+ rc = pConstraint->u.xGeom((sqlite3_rtree_geometry*)pInfo, |
+ nCoord, aCoord, &i); |
+ if( i==0 ) *peWithin = NOT_WITHIN; |
+ *prScore = RTREE_ZERO; |
+ }else{ |
+ pInfo->aCoord = aCoord; |
+ pInfo->iLevel = pSearch->iLevel - 1; |
+ pInfo->rScore = pInfo->rParentScore = pSearch->rScore; |
+ pInfo->eWithin = pInfo->eParentWithin = pSearch->eWithin; |
+ rc = pConstraint->u.xQueryFunc(pInfo); |
+ if( pInfo->eWithin<*peWithin ) *peWithin = pInfo->eWithin; |
+ if( pInfo->rScore<*prScore || *prScore<RTREE_ZERO ){ |
+ *prScore = pInfo->rScore; |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Check the internal RTree node given by pCellData against constraint p. |
+** If this constraint cannot be satisfied by any child within the node, |
+** set *peWithin to NOT_WITHIN. |
+*/ |
+static void rtreeNonleafConstraint( |
+ RtreeConstraint *p, /* The constraint to test */ |
+ int eInt, /* True if RTree holds integer coordinates */ |
+ u8 *pCellData, /* Raw cell content as appears on disk */ |
+ int *peWithin /* Adjust downward, as appropriate */ |
+){ |
+ sqlite3_rtree_dbl val; /* Coordinate value convert to a double */ |
+ |
+ /* p->iCoord might point to either a lower or upper bound coordinate |
+ ** in a coordinate pair. But make pCellData point to the lower bound. |
+ */ |
+ pCellData += 8 + 4*(p->iCoord&0xfe); |
+ |
+ assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE |
+ || p->op==RTREE_GT || p->op==RTREE_EQ ); |
+ switch( p->op ){ |
+ case RTREE_LE: |
+ case RTREE_LT: |
+ case RTREE_EQ: |
+ RTREE_DECODE_COORD(eInt, pCellData, val); |
+ /* val now holds the lower bound of the coordinate pair */ |
+ if( p->u.rValue>=val ) return; |
+ if( p->op!=RTREE_EQ ) break; /* RTREE_LE and RTREE_LT end here */ |
+ /* Fall through for the RTREE_EQ case */ |
+ |
+ default: /* RTREE_GT or RTREE_GE, or fallthrough of RTREE_EQ */ |
+ pCellData += 4; |
+ RTREE_DECODE_COORD(eInt, pCellData, val); |
+ /* val now holds the upper bound of the coordinate pair */ |
+ if( p->u.rValue<=val ) return; |
+ } |
+ *peWithin = NOT_WITHIN; |
+} |
+ |
+/* |
+** Check the leaf RTree cell given by pCellData against constraint p. |
+** If this constraint is not satisfied, set *peWithin to NOT_WITHIN. |
+** If the constraint is satisfied, leave *peWithin unchanged. |
+** |
+** The constraint is of the form: xN op $val |
+** |
+** The op is given by p->op. The xN is p->iCoord-th coordinate in |
+** pCellData. $val is given by p->u.rValue. |
+*/ |
+static void rtreeLeafConstraint( |
+ RtreeConstraint *p, /* The constraint to test */ |
+ int eInt, /* True if RTree holds integer coordinates */ |
+ u8 *pCellData, /* Raw cell content as appears on disk */ |
+ int *peWithin /* Adjust downward, as appropriate */ |
+){ |
+ RtreeDValue xN; /* Coordinate value converted to a double */ |
+ |
+ assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE |
+ || p->op==RTREE_GT || p->op==RTREE_EQ ); |
+ pCellData += 8 + p->iCoord*4; |
+ RTREE_DECODE_COORD(eInt, pCellData, xN); |
+ switch( p->op ){ |
+ case RTREE_LE: if( xN <= p->u.rValue ) return; break; |
+ case RTREE_LT: if( xN < p->u.rValue ) return; break; |
+ case RTREE_GE: if( xN >= p->u.rValue ) return; break; |
+ case RTREE_GT: if( xN > p->u.rValue ) return; break; |
+ default: if( xN == p->u.rValue ) return; break; |
+ } |
+ *peWithin = NOT_WITHIN; |
+} |
+ |
+/* |
+** One of the cells in node pNode is guaranteed to have a 64-bit |
+** integer value equal to iRowid. Return the index of this cell. |
+*/ |
+static int nodeRowidIndex( |
+ Rtree *pRtree, |
+ RtreeNode *pNode, |
+ i64 iRowid, |
+ int *piIndex |
+){ |
+ int ii; |
+ int nCell = NCELL(pNode); |
+ assert( nCell<200 ); |
+ for(ii=0; ii<nCell; ii++){ |
+ if( nodeGetRowid(pRtree, pNode, ii)==iRowid ){ |
+ *piIndex = ii; |
+ return SQLITE_OK; |
+ } |
+ } |
+ return SQLITE_CORRUPT_VTAB; |
+} |
+ |
+/* |
+** Return the index of the cell containing a pointer to node pNode |
+** in its parent. If pNode is the root node, return -1. |
+*/ |
+static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode, int *piIndex){ |
+ RtreeNode *pParent = pNode->pParent; |
+ if( pParent ){ |
+ return nodeRowidIndex(pRtree, pParent, pNode->iNode, piIndex); |
+ } |
+ *piIndex = -1; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Compare two search points. Return negative, zero, or positive if the first |
+** is less than, equal to, or greater than the second. |
+** |
+** The rScore is the primary key. Smaller rScore values come first. |
+** If the rScore is a tie, then use iLevel as the tie breaker with smaller |
+** iLevel values coming first. In this way, if rScore is the same for all |
+** SearchPoints, then iLevel becomes the deciding factor and the result |
+** is a depth-first search, which is the desired default behavior. |
+*/ |
+static int rtreeSearchPointCompare( |
+ const RtreeSearchPoint *pA, |
+ const RtreeSearchPoint *pB |
+){ |
+ if( pA->rScore<pB->rScore ) return -1; |
+ if( pA->rScore>pB->rScore ) return +1; |
+ if( pA->iLevel<pB->iLevel ) return -1; |
+ if( pA->iLevel>pB->iLevel ) return +1; |
+ return 0; |
+} |
+ |
+/* |
+** Interchange to search points in a cursor. |
+*/ |
+static void rtreeSearchPointSwap(RtreeCursor *p, int i, int j){ |
+ RtreeSearchPoint t = p->aPoint[i]; |
+ assert( i<j ); |
+ p->aPoint[i] = p->aPoint[j]; |
+ p->aPoint[j] = t; |
+ i++; j++; |
+ if( i<RTREE_CACHE_SZ ){ |
+ if( j>=RTREE_CACHE_SZ ){ |
+ nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]); |
+ p->aNode[i] = 0; |
+ }else{ |
+ RtreeNode *pTemp = p->aNode[i]; |
+ p->aNode[i] = p->aNode[j]; |
+ p->aNode[j] = pTemp; |
+ } |
+ } |
+} |
+ |
+/* |
+** Return the search point with the lowest current score. |
+*/ |
+static RtreeSearchPoint *rtreeSearchPointFirst(RtreeCursor *pCur){ |
+ return pCur->bPoint ? &pCur->sPoint : pCur->nPoint ? pCur->aPoint : 0; |
+} |
+ |
+/* |
+** Get the RtreeNode for the search point with the lowest score. |
+*/ |
+static RtreeNode *rtreeNodeOfFirstSearchPoint(RtreeCursor *pCur, int *pRC){ |
+ sqlite3_int64 id; |
+ int ii = 1 - pCur->bPoint; |
+ assert( ii==0 || ii==1 ); |
+ assert( pCur->bPoint || pCur->nPoint ); |
+ if( pCur->aNode[ii]==0 ){ |
+ assert( pRC!=0 ); |
+ id = ii ? pCur->aPoint[0].id : pCur->sPoint.id; |
+ *pRC = nodeAcquire(RTREE_OF_CURSOR(pCur), id, 0, &pCur->aNode[ii]); |
+ } |
+ return pCur->aNode[ii]; |
+} |
+ |
+/* |
+** Push a new element onto the priority queue |
+*/ |
+static RtreeSearchPoint *rtreeEnqueue( |
+ RtreeCursor *pCur, /* The cursor */ |
+ RtreeDValue rScore, /* Score for the new search point */ |
+ u8 iLevel /* Level for the new search point */ |
+){ |
+ int i, j; |
+ RtreeSearchPoint *pNew; |
+ if( pCur->nPoint>=pCur->nPointAlloc ){ |
+ int nNew = pCur->nPointAlloc*2 + 8; |
+ pNew = sqlite3_realloc(pCur->aPoint, nNew*sizeof(pCur->aPoint[0])); |
+ if( pNew==0 ) return 0; |
+ pCur->aPoint = pNew; |
+ pCur->nPointAlloc = nNew; |
+ } |
+ i = pCur->nPoint++; |
+ pNew = pCur->aPoint + i; |
+ pNew->rScore = rScore; |
+ pNew->iLevel = iLevel; |
+ assert( iLevel>=0 && iLevel<=RTREE_MAX_DEPTH ); |
+ while( i>0 ){ |
+ RtreeSearchPoint *pParent; |
+ j = (i-1)/2; |
+ pParent = pCur->aPoint + j; |
+ if( rtreeSearchPointCompare(pNew, pParent)>=0 ) break; |
+ rtreeSearchPointSwap(pCur, j, i); |
+ i = j; |
+ pNew = pParent; |
+ } |
+ return pNew; |
+} |
+ |
+/* |
+** Allocate a new RtreeSearchPoint and return a pointer to it. Return |
+** NULL if malloc fails. |
+*/ |
+static RtreeSearchPoint *rtreeSearchPointNew( |
+ RtreeCursor *pCur, /* The cursor */ |
+ RtreeDValue rScore, /* Score for the new search point */ |
+ u8 iLevel /* Level for the new search point */ |
+){ |
+ RtreeSearchPoint *pNew, *pFirst; |
+ pFirst = rtreeSearchPointFirst(pCur); |
+ pCur->anQueue[iLevel]++; |
+ if( pFirst==0 |
+ || pFirst->rScore>rScore |
+ || (pFirst->rScore==rScore && pFirst->iLevel>iLevel) |
+ ){ |
+ if( pCur->bPoint ){ |
+ int ii; |
+ pNew = rtreeEnqueue(pCur, rScore, iLevel); |
+ if( pNew==0 ) return 0; |
+ ii = (int)(pNew - pCur->aPoint) + 1; |
+ if( ii<RTREE_CACHE_SZ ){ |
+ assert( pCur->aNode[ii]==0 ); |
+ pCur->aNode[ii] = pCur->aNode[0]; |
+ }else{ |
+ nodeRelease(RTREE_OF_CURSOR(pCur), pCur->aNode[0]); |
+ } |
+ pCur->aNode[0] = 0; |
+ *pNew = pCur->sPoint; |
+ } |
+ pCur->sPoint.rScore = rScore; |
+ pCur->sPoint.iLevel = iLevel; |
+ pCur->bPoint = 1; |
+ return &pCur->sPoint; |
+ }else{ |
+ return rtreeEnqueue(pCur, rScore, iLevel); |
+ } |
+} |
+ |
+#if 0 |
+/* Tracing routines for the RtreeSearchPoint queue */ |
+static void tracePoint(RtreeSearchPoint *p, int idx, RtreeCursor *pCur){ |
+ if( idx<0 ){ printf(" s"); }else{ printf("%2d", idx); } |
+ printf(" %d.%05lld.%02d %g %d", |
+ p->iLevel, p->id, p->iCell, p->rScore, p->eWithin |
+ ); |
+ idx++; |
+ if( idx<RTREE_CACHE_SZ ){ |
+ printf(" %p\n", pCur->aNode[idx]); |
+ }else{ |
+ printf("\n"); |
+ } |
+} |
+static void traceQueue(RtreeCursor *pCur, const char *zPrefix){ |
+ int ii; |
+ printf("=== %9s ", zPrefix); |
+ if( pCur->bPoint ){ |
+ tracePoint(&pCur->sPoint, -1, pCur); |
+ } |
+ for(ii=0; ii<pCur->nPoint; ii++){ |
+ if( ii>0 || pCur->bPoint ) printf(" "); |
+ tracePoint(&pCur->aPoint[ii], ii, pCur); |
+ } |
+} |
+# define RTREE_QUEUE_TRACE(A,B) traceQueue(A,B) |
+#else |
+# define RTREE_QUEUE_TRACE(A,B) /* no-op */ |
+#endif |
+ |
+/* Remove the search point with the lowest current score. |
+*/ |
+static void rtreeSearchPointPop(RtreeCursor *p){ |
+ int i, j, k, n; |
+ i = 1 - p->bPoint; |
+ assert( i==0 || i==1 ); |
+ if( p->aNode[i] ){ |
+ nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]); |
+ p->aNode[i] = 0; |
+ } |
+ if( p->bPoint ){ |
+ p->anQueue[p->sPoint.iLevel]--; |
+ p->bPoint = 0; |
+ }else if( p->nPoint ){ |
+ p->anQueue[p->aPoint[0].iLevel]--; |
+ n = --p->nPoint; |
+ p->aPoint[0] = p->aPoint[n]; |
+ if( n<RTREE_CACHE_SZ-1 ){ |
+ p->aNode[1] = p->aNode[n+1]; |
+ p->aNode[n+1] = 0; |
+ } |
+ i = 0; |
+ while( (j = i*2+1)<n ){ |
+ k = j+1; |
+ if( k<n && rtreeSearchPointCompare(&p->aPoint[k], &p->aPoint[j])<0 ){ |
+ if( rtreeSearchPointCompare(&p->aPoint[k], &p->aPoint[i])<0 ){ |
+ rtreeSearchPointSwap(p, i, k); |
+ i = k; |
+ }else{ |
+ break; |
+ } |
+ }else{ |
+ if( rtreeSearchPointCompare(&p->aPoint[j], &p->aPoint[i])<0 ){ |
+ rtreeSearchPointSwap(p, i, j); |
+ i = j; |
+ }else{ |
+ break; |
+ } |
+ } |
+ } |
+ } |
+} |
+ |
+ |
+/* |
+** Continue the search on cursor pCur until the front of the queue |
+** contains an entry suitable for returning as a result-set row, |
+** or until the RtreeSearchPoint queue is empty, indicating that the |
+** query has completed. |
+*/ |
+static int rtreeStepToLeaf(RtreeCursor *pCur){ |
+ RtreeSearchPoint *p; |
+ Rtree *pRtree = RTREE_OF_CURSOR(pCur); |
+ RtreeNode *pNode; |
+ int eWithin; |
+ int rc = SQLITE_OK; |
+ int nCell; |
+ int nConstraint = pCur->nConstraint; |
+ int ii; |
+ int eInt; |
+ RtreeSearchPoint x; |
+ |
+ eInt = pRtree->eCoordType==RTREE_COORD_INT32; |
+ while( (p = rtreeSearchPointFirst(pCur))!=0 && p->iLevel>0 ){ |
+ pNode = rtreeNodeOfFirstSearchPoint(pCur, &rc); |
+ if( rc ) return rc; |
+ nCell = NCELL(pNode); |
+ assert( nCell<200 ); |
+ while( p->iCell<nCell ){ |
+ sqlite3_rtree_dbl rScore = (sqlite3_rtree_dbl)-1; |
+ u8 *pCellData = pNode->zData + (4+pRtree->nBytesPerCell*p->iCell); |
+ eWithin = FULLY_WITHIN; |
+ for(ii=0; ii<nConstraint; ii++){ |
+ RtreeConstraint *pConstraint = pCur->aConstraint + ii; |
+ if( pConstraint->op>=RTREE_MATCH ){ |
+ rc = rtreeCallbackConstraint(pConstraint, eInt, pCellData, p, |
+ &rScore, &eWithin); |
+ if( rc ) return rc; |
+ }else if( p->iLevel==1 ){ |
+ rtreeLeafConstraint(pConstraint, eInt, pCellData, &eWithin); |
+ }else{ |
+ rtreeNonleafConstraint(pConstraint, eInt, pCellData, &eWithin); |
+ } |
+ if( eWithin==NOT_WITHIN ) break; |
+ } |
+ p->iCell++; |
+ if( eWithin==NOT_WITHIN ) continue; |
+ x.iLevel = p->iLevel - 1; |
+ if( x.iLevel ){ |
+ x.id = readInt64(pCellData); |
+ x.iCell = 0; |
+ }else{ |
+ x.id = p->id; |
+ x.iCell = p->iCell - 1; |
+ } |
+ if( p->iCell>=nCell ){ |
+ RTREE_QUEUE_TRACE(pCur, "POP-S:"); |
+ rtreeSearchPointPop(pCur); |
+ } |
+ if( rScore<RTREE_ZERO ) rScore = RTREE_ZERO; |
+ p = rtreeSearchPointNew(pCur, rScore, x.iLevel); |
+ if( p==0 ) return SQLITE_NOMEM; |
+ p->eWithin = eWithin; |
+ p->id = x.id; |
+ p->iCell = x.iCell; |
+ RTREE_QUEUE_TRACE(pCur, "PUSH-S:"); |
+ break; |
+ } |
+ if( p->iCell>=nCell ){ |
+ RTREE_QUEUE_TRACE(pCur, "POP-Se:"); |
+ rtreeSearchPointPop(pCur); |
+ } |
+ } |
+ pCur->atEOF = p==0; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Rtree virtual table module xNext method. |
+*/ |
+static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){ |
+ RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; |
+ int rc = SQLITE_OK; |
+ |
+ /* Move to the next entry that matches the configured constraints. */ |
+ RTREE_QUEUE_TRACE(pCsr, "POP-Nx:"); |
+ rtreeSearchPointPop(pCsr); |
+ rc = rtreeStepToLeaf(pCsr); |
+ return rc; |
+} |
+ |
+/* |
+** Rtree virtual table module xRowid method. |
+*/ |
+static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){ |
+ RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; |
+ RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr); |
+ int rc = SQLITE_OK; |
+ RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc); |
+ if( rc==SQLITE_OK && p ){ |
+ *pRowid = nodeGetRowid(RTREE_OF_CURSOR(pCsr), pNode, p->iCell); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Rtree virtual table module xColumn method. |
+*/ |
+static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ |
+ Rtree *pRtree = (Rtree *)cur->pVtab; |
+ RtreeCursor *pCsr = (RtreeCursor *)cur; |
+ RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr); |
+ RtreeCoord c; |
+ int rc = SQLITE_OK; |
+ RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc); |
+ |
+ if( rc ) return rc; |
+ if( p==0 ) return SQLITE_OK; |
+ if( i==0 ){ |
+ sqlite3_result_int64(ctx, nodeGetRowid(pRtree, pNode, p->iCell)); |
+ }else{ |
+ if( rc ) return rc; |
+ nodeGetCoord(pRtree, pNode, p->iCell, i-1, &c); |
+#ifndef SQLITE_RTREE_INT_ONLY |
+ if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ |
+ sqlite3_result_double(ctx, c.f); |
+ }else |
+#endif |
+ { |
+ assert( pRtree->eCoordType==RTREE_COORD_INT32 ); |
+ sqlite3_result_int(ctx, c.i); |
+ } |
+ } |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Use nodeAcquire() to obtain the leaf node containing the record with |
+** rowid iRowid. If successful, set *ppLeaf to point to the node and |
+** return SQLITE_OK. If there is no such record in the table, set |
+** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf |
+** to zero and return an SQLite error code. |
+*/ |
+static int findLeafNode( |
+ Rtree *pRtree, /* RTree to search */ |
+ i64 iRowid, /* The rowid searching for */ |
+ RtreeNode **ppLeaf, /* Write the node here */ |
+ sqlite3_int64 *piNode /* Write the node-id here */ |
+){ |
+ int rc; |
+ *ppLeaf = 0; |
+ sqlite3_bind_int64(pRtree->pReadRowid, 1, iRowid); |
+ if( sqlite3_step(pRtree->pReadRowid)==SQLITE_ROW ){ |
+ i64 iNode = sqlite3_column_int64(pRtree->pReadRowid, 0); |
+ if( piNode ) *piNode = iNode; |
+ rc = nodeAcquire(pRtree, iNode, 0, ppLeaf); |
+ sqlite3_reset(pRtree->pReadRowid); |
+ }else{ |
+ rc = sqlite3_reset(pRtree->pReadRowid); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** This function is called to configure the RtreeConstraint object passed |
+** as the second argument for a MATCH constraint. The value passed as the |
+** first argument to this function is the right-hand operand to the MATCH |
+** operator. |
+*/ |
+static int deserializeGeometry(sqlite3_value *pValue, RtreeConstraint *pCons){ |
+ RtreeMatchArg *pBlob; /* BLOB returned by geometry function */ |
+ sqlite3_rtree_query_info *pInfo; /* Callback information */ |
+ int nBlob; /* Size of the geometry function blob */ |
+ int nExpected; /* Expected size of the BLOB */ |
+ |
+ /* Check that value is actually a blob. */ |
+ if( sqlite3_value_type(pValue)!=SQLITE_BLOB ) return SQLITE_ERROR; |
+ |
+ /* Check that the blob is roughly the right size. */ |
+ nBlob = sqlite3_value_bytes(pValue); |
+ if( nBlob<(int)sizeof(RtreeMatchArg) |
+ || ((nBlob-sizeof(RtreeMatchArg))%sizeof(RtreeDValue))!=0 |
+ ){ |
+ return SQLITE_ERROR; |
+ } |
+ |
+ pInfo = (sqlite3_rtree_query_info*)sqlite3_malloc( sizeof(*pInfo)+nBlob ); |
+ if( !pInfo ) return SQLITE_NOMEM; |
+ memset(pInfo, 0, sizeof(*pInfo)); |
+ pBlob = (RtreeMatchArg*)&pInfo[1]; |
+ |
+ memcpy(pBlob, sqlite3_value_blob(pValue), nBlob); |
+ nExpected = (int)(sizeof(RtreeMatchArg) + |
+ (pBlob->nParam-1)*sizeof(RtreeDValue)); |
+ if( pBlob->magic!=RTREE_GEOMETRY_MAGIC || nBlob!=nExpected ){ |
+ sqlite3_free(pInfo); |
+ return SQLITE_ERROR; |
+ } |
+ pInfo->pContext = pBlob->cb.pContext; |
+ pInfo->nParam = pBlob->nParam; |
+ pInfo->aParam = pBlob->aParam; |
+ |
+ if( pBlob->cb.xGeom ){ |
+ pCons->u.xGeom = pBlob->cb.xGeom; |
+ }else{ |
+ pCons->op = RTREE_QUERY; |
+ pCons->u.xQueryFunc = pBlob->cb.xQueryFunc; |
+ } |
+ pCons->pInfo = pInfo; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Rtree virtual table module xFilter method. |
+*/ |
+static int rtreeFilter( |
+ sqlite3_vtab_cursor *pVtabCursor, |
+ int idxNum, const char *idxStr, |
+ int argc, sqlite3_value **argv |
+){ |
+ Rtree *pRtree = (Rtree *)pVtabCursor->pVtab; |
+ RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; |
+ RtreeNode *pRoot = 0; |
+ int ii; |
+ int rc = SQLITE_OK; |
+ int iCell = 0; |
+ |
+ rtreeReference(pRtree); |
+ |
+ /* Reset the cursor to the same state as rtreeOpen() leaves it in. */ |
+ freeCursorConstraints(pCsr); |
+ sqlite3_free(pCsr->aPoint); |
+ memset(pCsr, 0, sizeof(RtreeCursor)); |
+ pCsr->base.pVtab = (sqlite3_vtab*)pRtree; |
+ |
+ pCsr->iStrategy = idxNum; |
+ if( idxNum==1 ){ |
+ /* Special case - lookup by rowid. */ |
+ RtreeNode *pLeaf; /* Leaf on which the required cell resides */ |
+ RtreeSearchPoint *p; /* Search point for the the leaf */ |
+ i64 iRowid = sqlite3_value_int64(argv[0]); |
+ i64 iNode = 0; |
+ rc = findLeafNode(pRtree, iRowid, &pLeaf, &iNode); |
+ if( rc==SQLITE_OK && pLeaf!=0 ){ |
+ p = rtreeSearchPointNew(pCsr, RTREE_ZERO, 0); |
+ assert( p!=0 ); /* Always returns pCsr->sPoint */ |
+ pCsr->aNode[0] = pLeaf; |
+ p->id = iNode; |
+ p->eWithin = PARTLY_WITHIN; |
+ rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &iCell); |
+ p->iCell = iCell; |
+ RTREE_QUEUE_TRACE(pCsr, "PUSH-F1:"); |
+ }else{ |
+ pCsr->atEOF = 1; |
+ } |
+ }else{ |
+ /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array |
+ ** with the configured constraints. |
+ */ |
+ rc = nodeAcquire(pRtree, 1, 0, &pRoot); |
+ if( rc==SQLITE_OK && argc>0 ){ |
+ pCsr->aConstraint = sqlite3_malloc(sizeof(RtreeConstraint)*argc); |
+ pCsr->nConstraint = argc; |
+ if( !pCsr->aConstraint ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*argc); |
+ memset(pCsr->anQueue, 0, sizeof(u32)*(pRtree->iDepth + 1)); |
+ assert( (idxStr==0 && argc==0) |
+ || (idxStr && (int)strlen(idxStr)==argc*2) ); |
+ for(ii=0; ii<argc; ii++){ |
+ RtreeConstraint *p = &pCsr->aConstraint[ii]; |
+ p->op = idxStr[ii*2]; |
+ p->iCoord = idxStr[ii*2+1]-'0'; |
+ if( p->op>=RTREE_MATCH ){ |
+ /* A MATCH operator. The right-hand-side must be a blob that |
+ ** can be cast into an RtreeMatchArg object. One created using |
+ ** an sqlite3_rtree_geometry_callback() SQL user function. |
+ */ |
+ rc = deserializeGeometry(argv[ii], p); |
+ if( rc!=SQLITE_OK ){ |
+ break; |
+ } |
+ p->pInfo->nCoord = pRtree->nDim*2; |
+ p->pInfo->anQueue = pCsr->anQueue; |
+ p->pInfo->mxLevel = pRtree->iDepth + 1; |
+ }else{ |
+#ifdef SQLITE_RTREE_INT_ONLY |
+ p->u.rValue = sqlite3_value_int64(argv[ii]); |
+#else |
+ p->u.rValue = sqlite3_value_double(argv[ii]); |
+#endif |
+ } |
+ } |
+ } |
+ } |
+ if( rc==SQLITE_OK ){ |
+ RtreeSearchPoint *pNew; |
+ pNew = rtreeSearchPointNew(pCsr, RTREE_ZERO, pRtree->iDepth+1); |
+ if( pNew==0 ) return SQLITE_NOMEM; |
+ pNew->id = 1; |
+ pNew->iCell = 0; |
+ pNew->eWithin = PARTLY_WITHIN; |
+ assert( pCsr->bPoint==1 ); |
+ pCsr->aNode[0] = pRoot; |
+ pRoot = 0; |
+ RTREE_QUEUE_TRACE(pCsr, "PUSH-Fm:"); |
+ rc = rtreeStepToLeaf(pCsr); |
+ } |
+ } |
+ |
+ nodeRelease(pRtree, pRoot); |
+ rtreeRelease(pRtree); |
+ return rc; |
+} |
+ |
+/* |
+** Set the pIdxInfo->estimatedRows variable to nRow. Unless this |
+** extension is currently being used by a version of SQLite too old to |
+** support estimatedRows. In that case this function is a no-op. |
+*/ |
+static void setEstimatedRows(sqlite3_index_info *pIdxInfo, i64 nRow){ |
+#if SQLITE_VERSION_NUMBER>=3008002 |
+ if( sqlite3_libversion_number()>=3008002 ){ |
+ pIdxInfo->estimatedRows = nRow; |
+ } |
+#endif |
+} |
+ |
+/* |
+** Rtree virtual table module xBestIndex method. There are three |
+** table scan strategies to choose from (in order from most to |
+** least desirable): |
+** |
+** idxNum idxStr Strategy |
+** ------------------------------------------------ |
+** 1 Unused Direct lookup by rowid. |
+** 2 See below R-tree query or full-table scan. |
+** ------------------------------------------------ |
+** |
+** If strategy 1 is used, then idxStr is not meaningful. If strategy |
+** 2 is used, idxStr is formatted to contain 2 bytes for each |
+** constraint used. The first two bytes of idxStr correspond to |
+** the constraint in sqlite3_index_info.aConstraintUsage[] with |
+** (argvIndex==1) etc. |
+** |
+** The first of each pair of bytes in idxStr identifies the constraint |
+** operator as follows: |
+** |
+** Operator Byte Value |
+** ---------------------- |
+** = 0x41 ('A') |
+** <= 0x42 ('B') |
+** < 0x43 ('C') |
+** >= 0x44 ('D') |
+** > 0x45 ('E') |
+** MATCH 0x46 ('F') |
+** ---------------------- |
+** |
+** The second of each pair of bytes identifies the coordinate column |
+** to which the constraint applies. The leftmost coordinate column |
+** is 'a', the second from the left 'b' etc. |
+*/ |
+static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ |
+ Rtree *pRtree = (Rtree*)tab; |
+ int rc = SQLITE_OK; |
+ int ii; |
+ i64 nRow; /* Estimated rows returned by this scan */ |
+ |
+ int iIdx = 0; |
+ char zIdxStr[RTREE_MAX_DIMENSIONS*8+1]; |
+ memset(zIdxStr, 0, sizeof(zIdxStr)); |
+ |
+ assert( pIdxInfo->idxStr==0 ); |
+ for(ii=0; ii<pIdxInfo->nConstraint && iIdx<(int)(sizeof(zIdxStr)-1); ii++){ |
+ struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii]; |
+ |
+ if( p->usable && p->iColumn==0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ ){ |
+ /* We have an equality constraint on the rowid. Use strategy 1. */ |
+ int jj; |
+ for(jj=0; jj<ii; jj++){ |
+ pIdxInfo->aConstraintUsage[jj].argvIndex = 0; |
+ pIdxInfo->aConstraintUsage[jj].omit = 0; |
+ } |
+ pIdxInfo->idxNum = 1; |
+ pIdxInfo->aConstraintUsage[ii].argvIndex = 1; |
+ pIdxInfo->aConstraintUsage[jj].omit = 1; |
+ |
+ /* This strategy involves a two rowid lookups on an B-Tree structures |
+ ** and then a linear search of an R-Tree node. This should be |
+ ** considered almost as quick as a direct rowid lookup (for which |
+ ** sqlite uses an internal cost of 0.0). It is expected to return |
+ ** a single row. |
+ */ |
+ pIdxInfo->estimatedCost = 30.0; |
+ setEstimatedRows(pIdxInfo, 1); |
+ return SQLITE_OK; |
+ } |
+ |
+ if( p->usable && (p->iColumn>0 || p->op==SQLITE_INDEX_CONSTRAINT_MATCH) ){ |
+ u8 op; |
+ switch( p->op ){ |
+ case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; break; |
+ case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; break; |
+ case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break; |
+ case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; break; |
+ case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break; |
+ default: |
+ assert( p->op==SQLITE_INDEX_CONSTRAINT_MATCH ); |
+ op = RTREE_MATCH; |
+ break; |
+ } |
+ zIdxStr[iIdx++] = op; |
+ zIdxStr[iIdx++] = p->iColumn - 1 + '0'; |
+ pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2); |
+ pIdxInfo->aConstraintUsage[ii].omit = 1; |
+ } |
+ } |
+ |
+ pIdxInfo->idxNum = 2; |
+ pIdxInfo->needToFreeIdxStr = 1; |
+ if( iIdx>0 && 0==(pIdxInfo->idxStr = sqlite3_mprintf("%s", zIdxStr)) ){ |
+ return SQLITE_NOMEM; |
+ } |
+ |
+ nRow = pRtree->nRowEst / (iIdx + 1); |
+ pIdxInfo->estimatedCost = (double)6.0 * (double)nRow; |
+ setEstimatedRows(pIdxInfo, nRow); |
+ |
+ return rc; |
+} |
+ |
+/* |
+** Return the N-dimensional volumn of the cell stored in *p. |
+*/ |
+static RtreeDValue cellArea(Rtree *pRtree, RtreeCell *p){ |
+ RtreeDValue area = (RtreeDValue)1; |
+ int ii; |
+ for(ii=0; ii<(pRtree->nDim*2); ii+=2){ |
+ area = (area * (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii]))); |
+ } |
+ return area; |
+} |
+ |
+/* |
+** Return the margin length of cell p. The margin length is the sum |
+** of the objects size in each dimension. |
+*/ |
+static RtreeDValue cellMargin(Rtree *pRtree, RtreeCell *p){ |
+ RtreeDValue margin = (RtreeDValue)0; |
+ int ii; |
+ for(ii=0; ii<(pRtree->nDim*2); ii+=2){ |
+ margin += (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii])); |
+ } |
+ return margin; |
+} |
+ |
+/* |
+** Store the union of cells p1 and p2 in p1. |
+*/ |
+static void cellUnion(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){ |
+ int ii; |
+ if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ |
+ for(ii=0; ii<(pRtree->nDim*2); ii+=2){ |
+ p1->aCoord[ii].f = MIN(p1->aCoord[ii].f, p2->aCoord[ii].f); |
+ p1->aCoord[ii+1].f = MAX(p1->aCoord[ii+1].f, p2->aCoord[ii+1].f); |
+ } |
+ }else{ |
+ for(ii=0; ii<(pRtree->nDim*2); ii+=2){ |
+ p1->aCoord[ii].i = MIN(p1->aCoord[ii].i, p2->aCoord[ii].i); |
+ p1->aCoord[ii+1].i = MAX(p1->aCoord[ii+1].i, p2->aCoord[ii+1].i); |
+ } |
+ } |
+} |
+ |
+/* |
+** Return true if the area covered by p2 is a subset of the area covered |
+** by p1. False otherwise. |
+*/ |
+static int cellContains(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){ |
+ int ii; |
+ int isInt = (pRtree->eCoordType==RTREE_COORD_INT32); |
+ for(ii=0; ii<(pRtree->nDim*2); ii+=2){ |
+ RtreeCoord *a1 = &p1->aCoord[ii]; |
+ RtreeCoord *a2 = &p2->aCoord[ii]; |
+ if( (!isInt && (a2[0].f<a1[0].f || a2[1].f>a1[1].f)) |
+ || ( isInt && (a2[0].i<a1[0].i || a2[1].i>a1[1].i)) |
+ ){ |
+ return 0; |
+ } |
+ } |
+ return 1; |
+} |
+ |
+/* |
+** Return the amount cell p would grow by if it were unioned with pCell. |
+*/ |
+static RtreeDValue cellGrowth(Rtree *pRtree, RtreeCell *p, RtreeCell *pCell){ |
+ RtreeDValue area; |
+ RtreeCell cell; |
+ memcpy(&cell, p, sizeof(RtreeCell)); |
+ area = cellArea(pRtree, &cell); |
+ cellUnion(pRtree, &cell, pCell); |
+ return (cellArea(pRtree, &cell)-area); |
+} |
+ |
+static RtreeDValue cellOverlap( |
+ Rtree *pRtree, |
+ RtreeCell *p, |
+ RtreeCell *aCell, |
+ int nCell |
+){ |
+ int ii; |
+ RtreeDValue overlap = RTREE_ZERO; |
+ for(ii=0; ii<nCell; ii++){ |
+ int jj; |
+ RtreeDValue o = (RtreeDValue)1; |
+ for(jj=0; jj<(pRtree->nDim*2); jj+=2){ |
+ RtreeDValue x1, x2; |
+ x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj])); |
+ x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1])); |
+ if( x2<x1 ){ |
+ o = (RtreeDValue)0; |
+ break; |
+ }else{ |
+ o = o * (x2-x1); |
+ } |
+ } |
+ overlap += o; |
+ } |
+ return overlap; |
+} |
+ |
+ |
+/* |
+** This function implements the ChooseLeaf algorithm from Gutman[84]. |
+** ChooseSubTree in r*tree terminology. |
+*/ |
+static int ChooseLeaf( |
+ Rtree *pRtree, /* Rtree table */ |
+ RtreeCell *pCell, /* Cell to insert into rtree */ |
+ int iHeight, /* Height of sub-tree rooted at pCell */ |
+ RtreeNode **ppLeaf /* OUT: Selected leaf page */ |
+){ |
+ int rc; |
+ int ii; |
+ RtreeNode *pNode; |
+ rc = nodeAcquire(pRtree, 1, 0, &pNode); |
+ |
+ for(ii=0; rc==SQLITE_OK && ii<(pRtree->iDepth-iHeight); ii++){ |
+ int iCell; |
+ sqlite3_int64 iBest = 0; |
+ |
+ RtreeDValue fMinGrowth = RTREE_ZERO; |
+ RtreeDValue fMinArea = RTREE_ZERO; |
+ |
+ int nCell = NCELL(pNode); |
+ RtreeCell cell; |
+ RtreeNode *pChild; |
+ |
+ RtreeCell *aCell = 0; |
+ |
+ /* Select the child node which will be enlarged the least if pCell |
+ ** is inserted into it. Resolve ties by choosing the entry with |
+ ** the smallest area. |
+ */ |
+ for(iCell=0; iCell<nCell; iCell++){ |
+ int bBest = 0; |
+ RtreeDValue growth; |
+ RtreeDValue area; |
+ nodeGetCell(pRtree, pNode, iCell, &cell); |
+ growth = cellGrowth(pRtree, &cell, pCell); |
+ area = cellArea(pRtree, &cell); |
+ if( iCell==0||growth<fMinGrowth||(growth==fMinGrowth && area<fMinArea) ){ |
+ bBest = 1; |
+ } |
+ if( bBest ){ |
+ fMinGrowth = growth; |
+ fMinArea = area; |
+ iBest = cell.iRowid; |
+ } |
+ } |
+ |
+ sqlite3_free(aCell); |
+ rc = nodeAcquire(pRtree, iBest, pNode, &pChild); |
+ nodeRelease(pRtree, pNode); |
+ pNode = pChild; |
+ } |
+ |
+ *ppLeaf = pNode; |
+ return rc; |
+} |
+ |
+/* |
+** A cell with the same content as pCell has just been inserted into |
+** the node pNode. This function updates the bounding box cells in |
+** all ancestor elements. |
+*/ |
+static int AdjustTree( |
+ Rtree *pRtree, /* Rtree table */ |
+ RtreeNode *pNode, /* Adjust ancestry of this node. */ |
+ RtreeCell *pCell /* This cell was just inserted */ |
+){ |
+ RtreeNode *p = pNode; |
+ while( p->pParent ){ |
+ RtreeNode *pParent = p->pParent; |
+ RtreeCell cell; |
+ int iCell; |
+ |
+ if( nodeParentIndex(pRtree, p, &iCell) ){ |
+ return SQLITE_CORRUPT_VTAB; |
+ } |
+ |
+ nodeGetCell(pRtree, pParent, iCell, &cell); |
+ if( !cellContains(pRtree, &cell, pCell) ){ |
+ cellUnion(pRtree, &cell, pCell); |
+ nodeOverwriteCell(pRtree, pParent, &cell, iCell); |
+ } |
+ |
+ p = pParent; |
+ } |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Write mapping (iRowid->iNode) to the <rtree>_rowid table. |
+*/ |
+static int rowidWrite(Rtree *pRtree, sqlite3_int64 iRowid, sqlite3_int64 iNode){ |
+ sqlite3_bind_int64(pRtree->pWriteRowid, 1, iRowid); |
+ sqlite3_bind_int64(pRtree->pWriteRowid, 2, iNode); |
+ sqlite3_step(pRtree->pWriteRowid); |
+ return sqlite3_reset(pRtree->pWriteRowid); |
+} |
+ |
+/* |
+** Write mapping (iNode->iPar) to the <rtree>_parent table. |
+*/ |
+static int parentWrite(Rtree *pRtree, sqlite3_int64 iNode, sqlite3_int64 iPar){ |
+ sqlite3_bind_int64(pRtree->pWriteParent, 1, iNode); |
+ sqlite3_bind_int64(pRtree->pWriteParent, 2, iPar); |
+ sqlite3_step(pRtree->pWriteParent); |
+ return sqlite3_reset(pRtree->pWriteParent); |
+} |
+ |
+static int rtreeInsertCell(Rtree *, RtreeNode *, RtreeCell *, int); |
+ |
+ |
+/* |
+** Arguments aIdx, aDistance and aSpare all point to arrays of size |
+** nIdx. The aIdx array contains the set of integers from 0 to |
+** (nIdx-1) in no particular order. This function sorts the values |
+** in aIdx according to the indexed values in aDistance. For |
+** example, assuming the inputs: |
+** |
+** aIdx = { 0, 1, 2, 3 } |
+** aDistance = { 5.0, 2.0, 7.0, 6.0 } |
+** |
+** this function sets the aIdx array to contain: |
+** |
+** aIdx = { 0, 1, 2, 3 } |
+** |
+** The aSpare array is used as temporary working space by the |
+** sorting algorithm. |
+*/ |
+static void SortByDistance( |
+ int *aIdx, |
+ int nIdx, |
+ RtreeDValue *aDistance, |
+ int *aSpare |
+){ |
+ if( nIdx>1 ){ |
+ int iLeft = 0; |
+ int iRight = 0; |
+ |
+ int nLeft = nIdx/2; |
+ int nRight = nIdx-nLeft; |
+ int *aLeft = aIdx; |
+ int *aRight = &aIdx[nLeft]; |
+ |
+ SortByDistance(aLeft, nLeft, aDistance, aSpare); |
+ SortByDistance(aRight, nRight, aDistance, aSpare); |
+ |
+ memcpy(aSpare, aLeft, sizeof(int)*nLeft); |
+ aLeft = aSpare; |
+ |
+ while( iLeft<nLeft || iRight<nRight ){ |
+ if( iLeft==nLeft ){ |
+ aIdx[iLeft+iRight] = aRight[iRight]; |
+ iRight++; |
+ }else if( iRight==nRight ){ |
+ aIdx[iLeft+iRight] = aLeft[iLeft]; |
+ iLeft++; |
+ }else{ |
+ RtreeDValue fLeft = aDistance[aLeft[iLeft]]; |
+ RtreeDValue fRight = aDistance[aRight[iRight]]; |
+ if( fLeft<fRight ){ |
+ aIdx[iLeft+iRight] = aLeft[iLeft]; |
+ iLeft++; |
+ }else{ |
+ aIdx[iLeft+iRight] = aRight[iRight]; |
+ iRight++; |
+ } |
+ } |
+ } |
+ |
+#if 0 |
+ /* Check that the sort worked */ |
+ { |
+ int jj; |
+ for(jj=1; jj<nIdx; jj++){ |
+ RtreeDValue left = aDistance[aIdx[jj-1]]; |
+ RtreeDValue right = aDistance[aIdx[jj]]; |
+ assert( left<=right ); |
+ } |
+ } |
+#endif |
+ } |
+} |
+ |
+/* |
+** Arguments aIdx, aCell and aSpare all point to arrays of size |
+** nIdx. The aIdx array contains the set of integers from 0 to |
+** (nIdx-1) in no particular order. This function sorts the values |
+** in aIdx according to dimension iDim of the cells in aCell. The |
+** minimum value of dimension iDim is considered first, the |
+** maximum used to break ties. |
+** |
+** The aSpare array is used as temporary working space by the |
+** sorting algorithm. |
+*/ |
+static void SortByDimension( |
+ Rtree *pRtree, |
+ int *aIdx, |
+ int nIdx, |
+ int iDim, |
+ RtreeCell *aCell, |
+ int *aSpare |
+){ |
+ if( nIdx>1 ){ |
+ |
+ int iLeft = 0; |
+ int iRight = 0; |
+ |
+ int nLeft = nIdx/2; |
+ int nRight = nIdx-nLeft; |
+ int *aLeft = aIdx; |
+ int *aRight = &aIdx[nLeft]; |
+ |
+ SortByDimension(pRtree, aLeft, nLeft, iDim, aCell, aSpare); |
+ SortByDimension(pRtree, aRight, nRight, iDim, aCell, aSpare); |
+ |
+ memcpy(aSpare, aLeft, sizeof(int)*nLeft); |
+ aLeft = aSpare; |
+ while( iLeft<nLeft || iRight<nRight ){ |
+ RtreeDValue xleft1 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2]); |
+ RtreeDValue xleft2 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2+1]); |
+ RtreeDValue xright1 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2]); |
+ RtreeDValue xright2 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2+1]); |
+ if( (iLeft!=nLeft) && ((iRight==nRight) |
+ || (xleft1<xright1) |
+ || (xleft1==xright1 && xleft2<xright2) |
+ )){ |
+ aIdx[iLeft+iRight] = aLeft[iLeft]; |
+ iLeft++; |
+ }else{ |
+ aIdx[iLeft+iRight] = aRight[iRight]; |
+ iRight++; |
+ } |
+ } |
+ |
+#if 0 |
+ /* Check that the sort worked */ |
+ { |
+ int jj; |
+ for(jj=1; jj<nIdx; jj++){ |
+ RtreeDValue xleft1 = aCell[aIdx[jj-1]].aCoord[iDim*2]; |
+ RtreeDValue xleft2 = aCell[aIdx[jj-1]].aCoord[iDim*2+1]; |
+ RtreeDValue xright1 = aCell[aIdx[jj]].aCoord[iDim*2]; |
+ RtreeDValue xright2 = aCell[aIdx[jj]].aCoord[iDim*2+1]; |
+ assert( xleft1<=xright1 && (xleft1<xright1 || xleft2<=xright2) ); |
+ } |
+ } |
+#endif |
+ } |
+} |
+ |
+/* |
+** Implementation of the R*-tree variant of SplitNode from Beckman[1990]. |
+*/ |
+static int splitNodeStartree( |
+ Rtree *pRtree, |
+ RtreeCell *aCell, |
+ int nCell, |
+ RtreeNode *pLeft, |
+ RtreeNode *pRight, |
+ RtreeCell *pBboxLeft, |
+ RtreeCell *pBboxRight |
+){ |
+ int **aaSorted; |
+ int *aSpare; |
+ int ii; |
+ |
+ int iBestDim = 0; |
+ int iBestSplit = 0; |
+ RtreeDValue fBestMargin = RTREE_ZERO; |
+ |
+ int nByte = (pRtree->nDim+1)*(sizeof(int*)+nCell*sizeof(int)); |
+ |
+ aaSorted = (int **)sqlite3_malloc(nByte); |
+ if( !aaSorted ){ |
+ return SQLITE_NOMEM; |
+ } |
+ |
+ aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell]; |
+ memset(aaSorted, 0, nByte); |
+ for(ii=0; ii<pRtree->nDim; ii++){ |
+ int jj; |
+ aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell]; |
+ for(jj=0; jj<nCell; jj++){ |
+ aaSorted[ii][jj] = jj; |
+ } |
+ SortByDimension(pRtree, aaSorted[ii], nCell, ii, aCell, aSpare); |
+ } |
+ |
+ for(ii=0; ii<pRtree->nDim; ii++){ |
+ RtreeDValue margin = RTREE_ZERO; |
+ RtreeDValue fBestOverlap = RTREE_ZERO; |
+ RtreeDValue fBestArea = RTREE_ZERO; |
+ int iBestLeft = 0; |
+ int nLeft; |
+ |
+ for( |
+ nLeft=RTREE_MINCELLS(pRtree); |
+ nLeft<=(nCell-RTREE_MINCELLS(pRtree)); |
+ nLeft++ |
+ ){ |
+ RtreeCell left; |
+ RtreeCell right; |
+ int kk; |
+ RtreeDValue overlap; |
+ RtreeDValue area; |
+ |
+ memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell)); |
+ memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell)); |
+ for(kk=1; kk<(nCell-1); kk++){ |
+ if( kk<nLeft ){ |
+ cellUnion(pRtree, &left, &aCell[aaSorted[ii][kk]]); |
+ }else{ |
+ cellUnion(pRtree, &right, &aCell[aaSorted[ii][kk]]); |
+ } |
+ } |
+ margin += cellMargin(pRtree, &left); |
+ margin += cellMargin(pRtree, &right); |
+ overlap = cellOverlap(pRtree, &left, &right, 1); |
+ area = cellArea(pRtree, &left) + cellArea(pRtree, &right); |
+ if( (nLeft==RTREE_MINCELLS(pRtree)) |
+ || (overlap<fBestOverlap) |
+ || (overlap==fBestOverlap && area<fBestArea) |
+ ){ |
+ iBestLeft = nLeft; |
+ fBestOverlap = overlap; |
+ fBestArea = area; |
+ } |
+ } |
+ |
+ if( ii==0 || margin<fBestMargin ){ |
+ iBestDim = ii; |
+ fBestMargin = margin; |
+ iBestSplit = iBestLeft; |
+ } |
+ } |
+ |
+ memcpy(pBboxLeft, &aCell[aaSorted[iBestDim][0]], sizeof(RtreeCell)); |
+ memcpy(pBboxRight, &aCell[aaSorted[iBestDim][iBestSplit]], sizeof(RtreeCell)); |
+ for(ii=0; ii<nCell; ii++){ |
+ RtreeNode *pTarget = (ii<iBestSplit)?pLeft:pRight; |
+ RtreeCell *pBbox = (ii<iBestSplit)?pBboxLeft:pBboxRight; |
+ RtreeCell *pCell = &aCell[aaSorted[iBestDim][ii]]; |
+ nodeInsertCell(pRtree, pTarget, pCell); |
+ cellUnion(pRtree, pBbox, pCell); |
+ } |
+ |
+ sqlite3_free(aaSorted); |
+ return SQLITE_OK; |
+} |
+ |
+ |
+static int updateMapping( |
+ Rtree *pRtree, |
+ i64 iRowid, |
+ RtreeNode *pNode, |
+ int iHeight |
+){ |
+ int (*xSetMapping)(Rtree *, sqlite3_int64, sqlite3_int64); |
+ xSetMapping = ((iHeight==0)?rowidWrite:parentWrite); |
+ if( iHeight>0 ){ |
+ RtreeNode *pChild = nodeHashLookup(pRtree, iRowid); |
+ if( pChild ){ |
+ nodeRelease(pRtree, pChild->pParent); |
+ nodeReference(pNode); |
+ pChild->pParent = pNode; |
+ } |
+ } |
+ return xSetMapping(pRtree, iRowid, pNode->iNode); |
+} |
+ |
+static int SplitNode( |
+ Rtree *pRtree, |
+ RtreeNode *pNode, |
+ RtreeCell *pCell, |
+ int iHeight |
+){ |
+ int i; |
+ int newCellIsRight = 0; |
+ |
+ int rc = SQLITE_OK; |
+ int nCell = NCELL(pNode); |
+ RtreeCell *aCell; |
+ int *aiUsed; |
+ |
+ RtreeNode *pLeft = 0; |
+ RtreeNode *pRight = 0; |
+ |
+ RtreeCell leftbbox; |
+ RtreeCell rightbbox; |
+ |
+ /* Allocate an array and populate it with a copy of pCell and |
+ ** all cells from node pLeft. Then zero the original node. |
+ */ |
+ aCell = sqlite3_malloc((sizeof(RtreeCell)+sizeof(int))*(nCell+1)); |
+ if( !aCell ){ |
+ rc = SQLITE_NOMEM; |
+ goto splitnode_out; |
+ } |
+ aiUsed = (int *)&aCell[nCell+1]; |
+ memset(aiUsed, 0, sizeof(int)*(nCell+1)); |
+ for(i=0; i<nCell; i++){ |
+ nodeGetCell(pRtree, pNode, i, &aCell[i]); |
+ } |
+ nodeZero(pRtree, pNode); |
+ memcpy(&aCell[nCell], pCell, sizeof(RtreeCell)); |
+ nCell++; |
+ |
+ if( pNode->iNode==1 ){ |
+ pRight = nodeNew(pRtree, pNode); |
+ pLeft = nodeNew(pRtree, pNode); |
+ pRtree->iDepth++; |
+ pNode->isDirty = 1; |
+ writeInt16(pNode->zData, pRtree->iDepth); |
+ }else{ |
+ pLeft = pNode; |
+ pRight = nodeNew(pRtree, pLeft->pParent); |
+ nodeReference(pLeft); |
+ } |
+ |
+ if( !pLeft || !pRight ){ |
+ rc = SQLITE_NOMEM; |
+ goto splitnode_out; |
+ } |
+ |
+ memset(pLeft->zData, 0, pRtree->iNodeSize); |
+ memset(pRight->zData, 0, pRtree->iNodeSize); |
+ |
+ rc = splitNodeStartree(pRtree, aCell, nCell, pLeft, pRight, |
+ &leftbbox, &rightbbox); |
+ if( rc!=SQLITE_OK ){ |
+ goto splitnode_out; |
+ } |
+ |
+ /* Ensure both child nodes have node numbers assigned to them by calling |
+ ** nodeWrite(). Node pRight always needs a node number, as it was created |
+ ** by nodeNew() above. But node pLeft sometimes already has a node number. |
+ ** In this case avoid the all to nodeWrite(). |
+ */ |
+ if( SQLITE_OK!=(rc = nodeWrite(pRtree, pRight)) |
+ || (0==pLeft->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pLeft))) |
+ ){ |
+ goto splitnode_out; |
+ } |
+ |
+ rightbbox.iRowid = pRight->iNode; |
+ leftbbox.iRowid = pLeft->iNode; |
+ |
+ if( pNode->iNode==1 ){ |
+ rc = rtreeInsertCell(pRtree, pLeft->pParent, &leftbbox, iHeight+1); |
+ if( rc!=SQLITE_OK ){ |
+ goto splitnode_out; |
+ } |
+ }else{ |
+ RtreeNode *pParent = pLeft->pParent; |
+ int iCell; |
+ rc = nodeParentIndex(pRtree, pLeft, &iCell); |
+ if( rc==SQLITE_OK ){ |
+ nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell); |
+ rc = AdjustTree(pRtree, pParent, &leftbbox); |
+ } |
+ if( rc!=SQLITE_OK ){ |
+ goto splitnode_out; |
+ } |
+ } |
+ if( (rc = rtreeInsertCell(pRtree, pRight->pParent, &rightbbox, iHeight+1)) ){ |
+ goto splitnode_out; |
+ } |
+ |
+ for(i=0; i<NCELL(pRight); i++){ |
+ i64 iRowid = nodeGetRowid(pRtree, pRight, i); |
+ rc = updateMapping(pRtree, iRowid, pRight, iHeight); |
+ if( iRowid==pCell->iRowid ){ |
+ newCellIsRight = 1; |
+ } |
+ if( rc!=SQLITE_OK ){ |
+ goto splitnode_out; |
+ } |
+ } |
+ if( pNode->iNode==1 ){ |
+ for(i=0; i<NCELL(pLeft); i++){ |
+ i64 iRowid = nodeGetRowid(pRtree, pLeft, i); |
+ rc = updateMapping(pRtree, iRowid, pLeft, iHeight); |
+ if( rc!=SQLITE_OK ){ |
+ goto splitnode_out; |
+ } |
+ } |
+ }else if( newCellIsRight==0 ){ |
+ rc = updateMapping(pRtree, pCell->iRowid, pLeft, iHeight); |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ rc = nodeRelease(pRtree, pRight); |
+ pRight = 0; |
+ } |
+ if( rc==SQLITE_OK ){ |
+ rc = nodeRelease(pRtree, pLeft); |
+ pLeft = 0; |
+ } |
+ |
+splitnode_out: |
+ nodeRelease(pRtree, pRight); |
+ nodeRelease(pRtree, pLeft); |
+ sqlite3_free(aCell); |
+ return rc; |
+} |
+ |
+/* |
+** If node pLeaf is not the root of the r-tree and its pParent pointer is |
+** still NULL, load all ancestor nodes of pLeaf into memory and populate |
+** the pLeaf->pParent chain all the way up to the root node. |
+** |
+** This operation is required when a row is deleted (or updated - an update |
+** is implemented as a delete followed by an insert). SQLite provides the |
+** rowid of the row to delete, which can be used to find the leaf on which |
+** the entry resides (argument pLeaf). Once the leaf is located, this |
+** function is called to determine its ancestry. |
+*/ |
+static int fixLeafParent(Rtree *pRtree, RtreeNode *pLeaf){ |
+ int rc = SQLITE_OK; |
+ RtreeNode *pChild = pLeaf; |
+ while( rc==SQLITE_OK && pChild->iNode!=1 && pChild->pParent==0 ){ |
+ int rc2 = SQLITE_OK; /* sqlite3_reset() return code */ |
+ sqlite3_bind_int64(pRtree->pReadParent, 1, pChild->iNode); |
+ rc = sqlite3_step(pRtree->pReadParent); |
+ if( rc==SQLITE_ROW ){ |
+ RtreeNode *pTest; /* Used to test for reference loops */ |
+ i64 iNode; /* Node number of parent node */ |
+ |
+ /* Before setting pChild->pParent, test that we are not creating a |
+ ** loop of references (as we would if, say, pChild==pParent). We don't |
+ ** want to do this as it leads to a memory leak when trying to delete |
+ ** the referenced counted node structures. |
+ */ |
+ iNode = sqlite3_column_int64(pRtree->pReadParent, 0); |
+ for(pTest=pLeaf; pTest && pTest->iNode!=iNode; pTest=pTest->pParent); |
+ if( !pTest ){ |
+ rc2 = nodeAcquire(pRtree, iNode, 0, &pChild->pParent); |
+ } |
+ } |
+ rc = sqlite3_reset(pRtree->pReadParent); |
+ if( rc==SQLITE_OK ) rc = rc2; |
+ if( rc==SQLITE_OK && !pChild->pParent ) rc = SQLITE_CORRUPT_VTAB; |
+ pChild = pChild->pParent; |
+ } |
+ return rc; |
+} |
+ |
+static int deleteCell(Rtree *, RtreeNode *, int, int); |
+ |
+static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){ |
+ int rc; |
+ int rc2; |
+ RtreeNode *pParent = 0; |
+ int iCell; |
+ |
+ assert( pNode->nRef==1 ); |
+ |
+ /* Remove the entry in the parent cell. */ |
+ rc = nodeParentIndex(pRtree, pNode, &iCell); |
+ if( rc==SQLITE_OK ){ |
+ pParent = pNode->pParent; |
+ pNode->pParent = 0; |
+ rc = deleteCell(pRtree, pParent, iCell, iHeight+1); |
+ } |
+ rc2 = nodeRelease(pRtree, pParent); |
+ if( rc==SQLITE_OK ){ |
+ rc = rc2; |
+ } |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ |
+ /* Remove the xxx_node entry. */ |
+ sqlite3_bind_int64(pRtree->pDeleteNode, 1, pNode->iNode); |
+ sqlite3_step(pRtree->pDeleteNode); |
+ if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteNode)) ){ |
+ return rc; |
+ } |
+ |
+ /* Remove the xxx_parent entry. */ |
+ sqlite3_bind_int64(pRtree->pDeleteParent, 1, pNode->iNode); |
+ sqlite3_step(pRtree->pDeleteParent); |
+ if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteParent)) ){ |
+ return rc; |
+ } |
+ |
+ /* Remove the node from the in-memory hash table and link it into |
+ ** the Rtree.pDeleted list. Its contents will be re-inserted later on. |
+ */ |
+ nodeHashDelete(pRtree, pNode); |
+ pNode->iNode = iHeight; |
+ pNode->pNext = pRtree->pDeleted; |
+ pNode->nRef++; |
+ pRtree->pDeleted = pNode; |
+ |
+ return SQLITE_OK; |
+} |
+ |
+static int fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){ |
+ RtreeNode *pParent = pNode->pParent; |
+ int rc = SQLITE_OK; |
+ if( pParent ){ |
+ int ii; |
+ int nCell = NCELL(pNode); |
+ RtreeCell box; /* Bounding box for pNode */ |
+ nodeGetCell(pRtree, pNode, 0, &box); |
+ for(ii=1; ii<nCell; ii++){ |
+ RtreeCell cell; |
+ nodeGetCell(pRtree, pNode, ii, &cell); |
+ cellUnion(pRtree, &box, &cell); |
+ } |
+ box.iRowid = pNode->iNode; |
+ rc = nodeParentIndex(pRtree, pNode, &ii); |
+ if( rc==SQLITE_OK ){ |
+ nodeOverwriteCell(pRtree, pParent, &box, ii); |
+ rc = fixBoundingBox(pRtree, pParent); |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Delete the cell at index iCell of node pNode. After removing the |
+** cell, adjust the r-tree data structure if required. |
+*/ |
+static int deleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell, int iHeight){ |
+ RtreeNode *pParent; |
+ int rc; |
+ |
+ if( SQLITE_OK!=(rc = fixLeafParent(pRtree, pNode)) ){ |
+ return rc; |
+ } |
+ |
+ /* Remove the cell from the node. This call just moves bytes around |
+ ** the in-memory node image, so it cannot fail. |
+ */ |
+ nodeDeleteCell(pRtree, pNode, iCell); |
+ |
+ /* If the node is not the tree root and now has less than the minimum |
+ ** number of cells, remove it from the tree. Otherwise, update the |
+ ** cell in the parent node so that it tightly contains the updated |
+ ** node. |
+ */ |
+ pParent = pNode->pParent; |
+ assert( pParent || pNode->iNode==1 ); |
+ if( pParent ){ |
+ if( NCELL(pNode)<RTREE_MINCELLS(pRtree) ){ |
+ rc = removeNode(pRtree, pNode, iHeight); |
+ }else{ |
+ rc = fixBoundingBox(pRtree, pNode); |
+ } |
+ } |
+ |
+ return rc; |
+} |
+ |
+static int Reinsert( |
+ Rtree *pRtree, |
+ RtreeNode *pNode, |
+ RtreeCell *pCell, |
+ int iHeight |
+){ |
+ int *aOrder; |
+ int *aSpare; |
+ RtreeCell *aCell; |
+ RtreeDValue *aDistance; |
+ int nCell; |
+ RtreeDValue aCenterCoord[RTREE_MAX_DIMENSIONS]; |
+ int iDim; |
+ int ii; |
+ int rc = SQLITE_OK; |
+ int n; |
+ |
+ memset(aCenterCoord, 0, sizeof(RtreeDValue)*RTREE_MAX_DIMENSIONS); |
+ |
+ nCell = NCELL(pNode)+1; |
+ n = (nCell+1)&(~1); |
+ |
+ /* Allocate the buffers used by this operation. The allocation is |
+ ** relinquished before this function returns. |
+ */ |
+ aCell = (RtreeCell *)sqlite3_malloc(n * ( |
+ sizeof(RtreeCell) + /* aCell array */ |
+ sizeof(int) + /* aOrder array */ |
+ sizeof(int) + /* aSpare array */ |
+ sizeof(RtreeDValue) /* aDistance array */ |
+ )); |
+ if( !aCell ){ |
+ return SQLITE_NOMEM; |
+ } |
+ aOrder = (int *)&aCell[n]; |
+ aSpare = (int *)&aOrder[n]; |
+ aDistance = (RtreeDValue *)&aSpare[n]; |
+ |
+ for(ii=0; ii<nCell; ii++){ |
+ if( ii==(nCell-1) ){ |
+ memcpy(&aCell[ii], pCell, sizeof(RtreeCell)); |
+ }else{ |
+ nodeGetCell(pRtree, pNode, ii, &aCell[ii]); |
+ } |
+ aOrder[ii] = ii; |
+ for(iDim=0; iDim<pRtree->nDim; iDim++){ |
+ aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2]); |
+ aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2+1]); |
+ } |
+ } |
+ for(iDim=0; iDim<pRtree->nDim; iDim++){ |
+ aCenterCoord[iDim] = (aCenterCoord[iDim]/(nCell*(RtreeDValue)2)); |
+ } |
+ |
+ for(ii=0; ii<nCell; ii++){ |
+ aDistance[ii] = RTREE_ZERO; |
+ for(iDim=0; iDim<pRtree->nDim; iDim++){ |
+ RtreeDValue coord = (DCOORD(aCell[ii].aCoord[iDim*2+1]) - |
+ DCOORD(aCell[ii].aCoord[iDim*2])); |
+ aDistance[ii] += (coord-aCenterCoord[iDim])*(coord-aCenterCoord[iDim]); |
+ } |
+ } |
+ |
+ SortByDistance(aOrder, nCell, aDistance, aSpare); |
+ nodeZero(pRtree, pNode); |
+ |
+ for(ii=0; rc==SQLITE_OK && ii<(nCell-(RTREE_MINCELLS(pRtree)+1)); ii++){ |
+ RtreeCell *p = &aCell[aOrder[ii]]; |
+ nodeInsertCell(pRtree, pNode, p); |
+ if( p->iRowid==pCell->iRowid ){ |
+ if( iHeight==0 ){ |
+ rc = rowidWrite(pRtree, p->iRowid, pNode->iNode); |
+ }else{ |
+ rc = parentWrite(pRtree, p->iRowid, pNode->iNode); |
+ } |
+ } |
+ } |
+ if( rc==SQLITE_OK ){ |
+ rc = fixBoundingBox(pRtree, pNode); |
+ } |
+ for(; rc==SQLITE_OK && ii<nCell; ii++){ |
+ /* Find a node to store this cell in. pNode->iNode currently contains |
+ ** the height of the sub-tree headed by the cell. |
+ */ |
+ RtreeNode *pInsert; |
+ RtreeCell *p = &aCell[aOrder[ii]]; |
+ rc = ChooseLeaf(pRtree, p, iHeight, &pInsert); |
+ if( rc==SQLITE_OK ){ |
+ int rc2; |
+ rc = rtreeInsertCell(pRtree, pInsert, p, iHeight); |
+ rc2 = nodeRelease(pRtree, pInsert); |
+ if( rc==SQLITE_OK ){ |
+ rc = rc2; |
+ } |
+ } |
+ } |
+ |
+ sqlite3_free(aCell); |
+ return rc; |
+} |
+ |
+/* |
+** Insert cell pCell into node pNode. Node pNode is the head of a |
+** subtree iHeight high (leaf nodes have iHeight==0). |
+*/ |
+static int rtreeInsertCell( |
+ Rtree *pRtree, |
+ RtreeNode *pNode, |
+ RtreeCell *pCell, |
+ int iHeight |
+){ |
+ int rc = SQLITE_OK; |
+ if( iHeight>0 ){ |
+ RtreeNode *pChild = nodeHashLookup(pRtree, pCell->iRowid); |
+ if( pChild ){ |
+ nodeRelease(pRtree, pChild->pParent); |
+ nodeReference(pNode); |
+ pChild->pParent = pNode; |
+ } |
+ } |
+ if( nodeInsertCell(pRtree, pNode, pCell) ){ |
+ if( iHeight<=pRtree->iReinsertHeight || pNode->iNode==1){ |
+ rc = SplitNode(pRtree, pNode, pCell, iHeight); |
+ }else{ |
+ pRtree->iReinsertHeight = iHeight; |
+ rc = Reinsert(pRtree, pNode, pCell, iHeight); |
+ } |
+ }else{ |
+ rc = AdjustTree(pRtree, pNode, pCell); |
+ if( rc==SQLITE_OK ){ |
+ if( iHeight==0 ){ |
+ rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode); |
+ }else{ |
+ rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode); |
+ } |
+ } |
+ } |
+ return rc; |
+} |
+ |
+static int reinsertNodeContent(Rtree *pRtree, RtreeNode *pNode){ |
+ int ii; |
+ int rc = SQLITE_OK; |
+ int nCell = NCELL(pNode); |
+ |
+ for(ii=0; rc==SQLITE_OK && ii<nCell; ii++){ |
+ RtreeNode *pInsert; |
+ RtreeCell cell; |
+ nodeGetCell(pRtree, pNode, ii, &cell); |
+ |
+ /* Find a node to store this cell in. pNode->iNode currently contains |
+ ** the height of the sub-tree headed by the cell. |
+ */ |
+ rc = ChooseLeaf(pRtree, &cell, (int)pNode->iNode, &pInsert); |
+ if( rc==SQLITE_OK ){ |
+ int rc2; |
+ rc = rtreeInsertCell(pRtree, pInsert, &cell, (int)pNode->iNode); |
+ rc2 = nodeRelease(pRtree, pInsert); |
+ if( rc==SQLITE_OK ){ |
+ rc = rc2; |
+ } |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Select a currently unused rowid for a new r-tree record. |
+*/ |
+static int newRowid(Rtree *pRtree, i64 *piRowid){ |
+ int rc; |
+ sqlite3_bind_null(pRtree->pWriteRowid, 1); |
+ sqlite3_bind_null(pRtree->pWriteRowid, 2); |
+ sqlite3_step(pRtree->pWriteRowid); |
+ rc = sqlite3_reset(pRtree->pWriteRowid); |
+ *piRowid = sqlite3_last_insert_rowid(pRtree->db); |
+ return rc; |
+} |
+ |
+/* |
+** Remove the entry with rowid=iDelete from the r-tree structure. |
+*/ |
+static int rtreeDeleteRowid(Rtree *pRtree, sqlite3_int64 iDelete){ |
+ int rc; /* Return code */ |
+ RtreeNode *pLeaf = 0; /* Leaf node containing record iDelete */ |
+ int iCell; /* Index of iDelete cell in pLeaf */ |
+ RtreeNode *pRoot; /* Root node of rtree structure */ |
+ |
+ |
+ /* Obtain a reference to the root node to initialize Rtree.iDepth */ |
+ rc = nodeAcquire(pRtree, 1, 0, &pRoot); |
+ |
+ /* Obtain a reference to the leaf node that contains the entry |
+ ** about to be deleted. |
+ */ |
+ if( rc==SQLITE_OK ){ |
+ rc = findLeafNode(pRtree, iDelete, &pLeaf, 0); |
+ } |
+ |
+ /* Delete the cell in question from the leaf node. */ |
+ if( rc==SQLITE_OK ){ |
+ int rc2; |
+ rc = nodeRowidIndex(pRtree, pLeaf, iDelete, &iCell); |
+ if( rc==SQLITE_OK ){ |
+ rc = deleteCell(pRtree, pLeaf, iCell, 0); |
+ } |
+ rc2 = nodeRelease(pRtree, pLeaf); |
+ if( rc==SQLITE_OK ){ |
+ rc = rc2; |
+ } |
+ } |
+ |
+ /* Delete the corresponding entry in the <rtree>_rowid table. */ |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int64(pRtree->pDeleteRowid, 1, iDelete); |
+ sqlite3_step(pRtree->pDeleteRowid); |
+ rc = sqlite3_reset(pRtree->pDeleteRowid); |
+ } |
+ |
+ /* Check if the root node now has exactly one child. If so, remove |
+ ** it, schedule the contents of the child for reinsertion and |
+ ** reduce the tree height by one. |
+ ** |
+ ** This is equivalent to copying the contents of the child into |
+ ** the root node (the operation that Gutman's paper says to perform |
+ ** in this scenario). |
+ */ |
+ if( rc==SQLITE_OK && pRtree->iDepth>0 && NCELL(pRoot)==1 ){ |
+ int rc2; |
+ RtreeNode *pChild; |
+ i64 iChild = nodeGetRowid(pRtree, pRoot, 0); |
+ rc = nodeAcquire(pRtree, iChild, pRoot, &pChild); |
+ if( rc==SQLITE_OK ){ |
+ rc = removeNode(pRtree, pChild, pRtree->iDepth-1); |
+ } |
+ rc2 = nodeRelease(pRtree, pChild); |
+ if( rc==SQLITE_OK ) rc = rc2; |
+ if( rc==SQLITE_OK ){ |
+ pRtree->iDepth--; |
+ writeInt16(pRoot->zData, pRtree->iDepth); |
+ pRoot->isDirty = 1; |
+ } |
+ } |
+ |
+ /* Re-insert the contents of any underfull nodes removed from the tree. */ |
+ for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){ |
+ if( rc==SQLITE_OK ){ |
+ rc = reinsertNodeContent(pRtree, pLeaf); |
+ } |
+ pRtree->pDeleted = pLeaf->pNext; |
+ sqlite3_free(pLeaf); |
+ } |
+ |
+ /* Release the reference to the root node. */ |
+ if( rc==SQLITE_OK ){ |
+ rc = nodeRelease(pRtree, pRoot); |
+ }else{ |
+ nodeRelease(pRtree, pRoot); |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** Rounding constants for float->double conversion. |
+*/ |
+#define RNDTOWARDS (1.0 - 1.0/8388608.0) /* Round towards zero */ |
+#define RNDAWAY (1.0 + 1.0/8388608.0) /* Round away from zero */ |
+ |
+#if !defined(SQLITE_RTREE_INT_ONLY) |
+/* |
+** Convert an sqlite3_value into an RtreeValue (presumably a float) |
+** while taking care to round toward negative or positive, respectively. |
+*/ |
+static RtreeValue rtreeValueDown(sqlite3_value *v){ |
+ double d = sqlite3_value_double(v); |
+ float f = (float)d; |
+ if( f>d ){ |
+ f = (float)(d*(d<0 ? RNDAWAY : RNDTOWARDS)); |
+ } |
+ return f; |
+} |
+static RtreeValue rtreeValueUp(sqlite3_value *v){ |
+ double d = sqlite3_value_double(v); |
+ float f = (float)d; |
+ if( f<d ){ |
+ f = (float)(d*(d<0 ? RNDTOWARDS : RNDAWAY)); |
+ } |
+ return f; |
+} |
+#endif /* !defined(SQLITE_RTREE_INT_ONLY) */ |
+ |
+ |
+/* |
+** The xUpdate method for rtree module virtual tables. |
+*/ |
+static int rtreeUpdate( |
+ sqlite3_vtab *pVtab, |
+ int nData, |
+ sqlite3_value **azData, |
+ sqlite_int64 *pRowid |
+){ |
+ Rtree *pRtree = (Rtree *)pVtab; |
+ int rc = SQLITE_OK; |
+ RtreeCell cell; /* New cell to insert if nData>1 */ |
+ int bHaveRowid = 0; /* Set to 1 after new rowid is determined */ |
+ |
+ rtreeReference(pRtree); |
+ assert(nData>=1); |
+ |
+ /* Constraint handling. A write operation on an r-tree table may return |
+ ** SQLITE_CONSTRAINT for two reasons: |
+ ** |
+ ** 1. A duplicate rowid value, or |
+ ** 2. The supplied data violates the "x2>=x1" constraint. |
+ ** |
+ ** In the first case, if the conflict-handling mode is REPLACE, then |
+ ** the conflicting row can be removed before proceeding. In the second |
+ ** case, SQLITE_CONSTRAINT must be returned regardless of the |
+ ** conflict-handling mode specified by the user. |
+ */ |
+ if( nData>1 ){ |
+ int ii; |
+ |
+ /* Populate the cell.aCoord[] array. The first coordinate is azData[3]. */ |
+ assert( nData==(pRtree->nDim*2 + 3) ); |
+#ifndef SQLITE_RTREE_INT_ONLY |
+ if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ |
+ for(ii=0; ii<(pRtree->nDim*2); ii+=2){ |
+ cell.aCoord[ii].f = rtreeValueDown(azData[ii+3]); |
+ cell.aCoord[ii+1].f = rtreeValueUp(azData[ii+4]); |
+ if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){ |
+ rc = SQLITE_CONSTRAINT; |
+ goto constraint; |
+ } |
+ } |
+ }else |
+#endif |
+ { |
+ for(ii=0; ii<(pRtree->nDim*2); ii+=2){ |
+ cell.aCoord[ii].i = sqlite3_value_int(azData[ii+3]); |
+ cell.aCoord[ii+1].i = sqlite3_value_int(azData[ii+4]); |
+ if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){ |
+ rc = SQLITE_CONSTRAINT; |
+ goto constraint; |
+ } |
+ } |
+ } |
+ |
+ /* If a rowid value was supplied, check if it is already present in |
+ ** the table. If so, the constraint has failed. */ |
+ if( sqlite3_value_type(azData[2])!=SQLITE_NULL ){ |
+ cell.iRowid = sqlite3_value_int64(azData[2]); |
+ if( sqlite3_value_type(azData[0])==SQLITE_NULL |
+ || sqlite3_value_int64(azData[0])!=cell.iRowid |
+ ){ |
+ int steprc; |
+ sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid); |
+ steprc = sqlite3_step(pRtree->pReadRowid); |
+ rc = sqlite3_reset(pRtree->pReadRowid); |
+ if( SQLITE_ROW==steprc ){ |
+ if( sqlite3_vtab_on_conflict(pRtree->db)==SQLITE_REPLACE ){ |
+ rc = rtreeDeleteRowid(pRtree, cell.iRowid); |
+ }else{ |
+ rc = SQLITE_CONSTRAINT; |
+ goto constraint; |
+ } |
+ } |
+ } |
+ bHaveRowid = 1; |
+ } |
+ } |
+ |
+ /* If azData[0] is not an SQL NULL value, it is the rowid of a |
+ ** record to delete from the r-tree table. The following block does |
+ ** just that. |
+ */ |
+ if( sqlite3_value_type(azData[0])!=SQLITE_NULL ){ |
+ rc = rtreeDeleteRowid(pRtree, sqlite3_value_int64(azData[0])); |
+ } |
+ |
+ /* If the azData[] array contains more than one element, elements |
+ ** (azData[2]..azData[argc-1]) contain a new record to insert into |
+ ** the r-tree structure. |
+ */ |
+ if( rc==SQLITE_OK && nData>1 ){ |
+ /* Insert the new record into the r-tree */ |
+ RtreeNode *pLeaf = 0; |
+ |
+ /* Figure out the rowid of the new row. */ |
+ if( bHaveRowid==0 ){ |
+ rc = newRowid(pRtree, &cell.iRowid); |
+ } |
+ *pRowid = cell.iRowid; |
+ |
+ if( rc==SQLITE_OK ){ |
+ rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ int rc2; |
+ pRtree->iReinsertHeight = -1; |
+ rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0); |
+ rc2 = nodeRelease(pRtree, pLeaf); |
+ if( rc==SQLITE_OK ){ |
+ rc = rc2; |
+ } |
+ } |
+ } |
+ |
+constraint: |
+ rtreeRelease(pRtree); |
+ return rc; |
+} |
+ |
+/* |
+** The xRename method for rtree module virtual tables. |
+*/ |
+static int rtreeRename(sqlite3_vtab *pVtab, const char *zNewName){ |
+ Rtree *pRtree = (Rtree *)pVtab; |
+ int rc = SQLITE_NOMEM; |
+ char *zSql = sqlite3_mprintf( |
+ "ALTER TABLE %Q.'%q_node' RENAME TO \"%w_node\";" |
+ "ALTER TABLE %Q.'%q_parent' RENAME TO \"%w_parent\";" |
+ "ALTER TABLE %Q.'%q_rowid' RENAME TO \"%w_rowid\";" |
+ , pRtree->zDb, pRtree->zName, zNewName |
+ , pRtree->zDb, pRtree->zName, zNewName |
+ , pRtree->zDb, pRtree->zName, zNewName |
+ ); |
+ if( zSql ){ |
+ rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0); |
+ sqlite3_free(zSql); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** This function populates the pRtree->nRowEst variable with an estimate |
+** of the number of rows in the virtual table. If possible, this is based |
+** on sqlite_stat1 data. Otherwise, use RTREE_DEFAULT_ROWEST. |
+*/ |
+static int rtreeQueryStat1(sqlite3 *db, Rtree *pRtree){ |
+ const char *zFmt = "SELECT stat FROM %Q.sqlite_stat1 WHERE tbl = '%q_rowid'"; |
+ char *zSql; |
+ sqlite3_stmt *p; |
+ int rc; |
+ i64 nRow = 0; |
+ |
+ zSql = sqlite3_mprintf(zFmt, pRtree->zDb, pRtree->zName); |
+ if( zSql==0 ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ rc = sqlite3_prepare_v2(db, zSql, -1, &p, 0); |
+ if( rc==SQLITE_OK ){ |
+ if( sqlite3_step(p)==SQLITE_ROW ) nRow = sqlite3_column_int64(p, 0); |
+ rc = sqlite3_finalize(p); |
+ }else if( rc!=SQLITE_NOMEM ){ |
+ rc = SQLITE_OK; |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ if( nRow==0 ){ |
+ pRtree->nRowEst = RTREE_DEFAULT_ROWEST; |
+ }else{ |
+ pRtree->nRowEst = MAX(nRow, RTREE_MIN_ROWEST); |
+ } |
+ } |
+ sqlite3_free(zSql); |
+ } |
+ |
+ return rc; |
+} |
+ |
+static sqlite3_module rtreeModule = { |
+ 0, /* iVersion */ |
+ rtreeCreate, /* xCreate - create a table */ |
+ rtreeConnect, /* xConnect - connect to an existing table */ |
+ rtreeBestIndex, /* xBestIndex - Determine search strategy */ |
+ rtreeDisconnect, /* xDisconnect - Disconnect from a table */ |
+ rtreeDestroy, /* xDestroy - Drop a table */ |
+ rtreeOpen, /* xOpen - open a cursor */ |
+ rtreeClose, /* xClose - close a cursor */ |
+ rtreeFilter, /* xFilter - configure scan constraints */ |
+ rtreeNext, /* xNext - advance a cursor */ |
+ rtreeEof, /* xEof */ |
+ rtreeColumn, /* xColumn - read data */ |
+ rtreeRowid, /* xRowid - read data */ |
+ rtreeUpdate, /* xUpdate - write data */ |
+ 0, /* xBegin - begin transaction */ |
+ 0, /* xSync - sync transaction */ |
+ 0, /* xCommit - commit transaction */ |
+ 0, /* xRollback - rollback transaction */ |
+ 0, /* xFindFunction - function overloading */ |
+ rtreeRename, /* xRename - rename the table */ |
+ 0, /* xSavepoint */ |
+ 0, /* xRelease */ |
+ 0 /* xRollbackTo */ |
+}; |
+ |
+static int rtreeSqlInit( |
+ Rtree *pRtree, |
+ sqlite3 *db, |
+ const char *zDb, |
+ const char *zPrefix, |
+ int isCreate |
+){ |
+ int rc = SQLITE_OK; |
+ |
+ #define N_STATEMENT 9 |
+ static const char *azSql[N_STATEMENT] = { |
+ /* Read and write the xxx_node table */ |
+ "SELECT data FROM '%q'.'%q_node' WHERE nodeno = :1", |
+ "INSERT OR REPLACE INTO '%q'.'%q_node' VALUES(:1, :2)", |
+ "DELETE FROM '%q'.'%q_node' WHERE nodeno = :1", |
+ |
+ /* Read and write the xxx_rowid table */ |
+ "SELECT nodeno FROM '%q'.'%q_rowid' WHERE rowid = :1", |
+ "INSERT OR REPLACE INTO '%q'.'%q_rowid' VALUES(:1, :2)", |
+ "DELETE FROM '%q'.'%q_rowid' WHERE rowid = :1", |
+ |
+ /* Read and write the xxx_parent table */ |
+ "SELECT parentnode FROM '%q'.'%q_parent' WHERE nodeno = :1", |
+ "INSERT OR REPLACE INTO '%q'.'%q_parent' VALUES(:1, :2)", |
+ "DELETE FROM '%q'.'%q_parent' WHERE nodeno = :1" |
+ }; |
+ sqlite3_stmt **appStmt[N_STATEMENT]; |
+ int i; |
+ |
+ pRtree->db = db; |
+ |
+ if( isCreate ){ |
+ char *zCreate = sqlite3_mprintf( |
+"CREATE TABLE \"%w\".\"%w_node\"(nodeno INTEGER PRIMARY KEY, data BLOB);" |
+"CREATE TABLE \"%w\".\"%w_rowid\"(rowid INTEGER PRIMARY KEY, nodeno INTEGER);" |
+"CREATE TABLE \"%w\".\"%w_parent\"(nodeno INTEGER PRIMARY KEY," |
+ " parentnode INTEGER);" |
+"INSERT INTO '%q'.'%q_node' VALUES(1, zeroblob(%d))", |
+ zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, pRtree->iNodeSize |
+ ); |
+ if( !zCreate ){ |
+ return SQLITE_NOMEM; |
+ } |
+ rc = sqlite3_exec(db, zCreate, 0, 0, 0); |
+ sqlite3_free(zCreate); |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ } |
+ |
+ appStmt[0] = &pRtree->pReadNode; |
+ appStmt[1] = &pRtree->pWriteNode; |
+ appStmt[2] = &pRtree->pDeleteNode; |
+ appStmt[3] = &pRtree->pReadRowid; |
+ appStmt[4] = &pRtree->pWriteRowid; |
+ appStmt[5] = &pRtree->pDeleteRowid; |
+ appStmt[6] = &pRtree->pReadParent; |
+ appStmt[7] = &pRtree->pWriteParent; |
+ appStmt[8] = &pRtree->pDeleteParent; |
+ |
+ rc = rtreeQueryStat1(db, pRtree); |
+ for(i=0; i<N_STATEMENT && rc==SQLITE_OK; i++){ |
+ char *zSql = sqlite3_mprintf(azSql[i], zDb, zPrefix); |
+ if( zSql ){ |
+ rc = sqlite3_prepare_v2(db, zSql, -1, appStmt[i], 0); |
+ }else{ |
+ rc = SQLITE_NOMEM; |
+ } |
+ sqlite3_free(zSql); |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** The second argument to this function contains the text of an SQL statement |
+** that returns a single integer value. The statement is compiled and executed |
+** using database connection db. If successful, the integer value returned |
+** is written to *piVal and SQLITE_OK returned. Otherwise, an SQLite error |
+** code is returned and the value of *piVal after returning is not defined. |
+*/ |
+static int getIntFromStmt(sqlite3 *db, const char *zSql, int *piVal){ |
+ int rc = SQLITE_NOMEM; |
+ if( zSql ){ |
+ sqlite3_stmt *pStmt = 0; |
+ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); |
+ if( rc==SQLITE_OK ){ |
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){ |
+ *piVal = sqlite3_column_int(pStmt, 0); |
+ } |
+ rc = sqlite3_finalize(pStmt); |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** This function is called from within the xConnect() or xCreate() method to |
+** determine the node-size used by the rtree table being created or connected |
+** to. If successful, pRtree->iNodeSize is populated and SQLITE_OK returned. |
+** Otherwise, an SQLite error code is returned. |
+** |
+** If this function is being called as part of an xConnect(), then the rtree |
+** table already exists. In this case the node-size is determined by inspecting |
+** the root node of the tree. |
+** |
+** Otherwise, for an xCreate(), use 64 bytes less than the database page-size. |
+** This ensures that each node is stored on a single database page. If the |
+** database page-size is so large that more than RTREE_MAXCELLS entries |
+** would fit in a single node, use a smaller node-size. |
+*/ |
+static int getNodeSize( |
+ sqlite3 *db, /* Database handle */ |
+ Rtree *pRtree, /* Rtree handle */ |
+ int isCreate, /* True for xCreate, false for xConnect */ |
+ char **pzErr /* OUT: Error message, if any */ |
+){ |
+ int rc; |
+ char *zSql; |
+ if( isCreate ){ |
+ int iPageSize = 0; |
+ zSql = sqlite3_mprintf("PRAGMA %Q.page_size", pRtree->zDb); |
+ rc = getIntFromStmt(db, zSql, &iPageSize); |
+ if( rc==SQLITE_OK ){ |
+ pRtree->iNodeSize = iPageSize-64; |
+ if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){ |
+ pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS; |
+ } |
+ }else{ |
+ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); |
+ } |
+ }else{ |
+ zSql = sqlite3_mprintf( |
+ "SELECT length(data) FROM '%q'.'%q_node' WHERE nodeno = 1", |
+ pRtree->zDb, pRtree->zName |
+ ); |
+ rc = getIntFromStmt(db, zSql, &pRtree->iNodeSize); |
+ if( rc!=SQLITE_OK ){ |
+ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); |
+ } |
+ } |
+ |
+ sqlite3_free(zSql); |
+ return rc; |
+} |
+ |
+/* |
+** This function is the implementation of both the xConnect and xCreate |
+** methods of the r-tree virtual table. |
+** |
+** argv[0] -> module name |
+** argv[1] -> database name |
+** argv[2] -> table name |
+** argv[...] -> column names... |
+*/ |
+static int rtreeInit( |
+ sqlite3 *db, /* Database connection */ |
+ void *pAux, /* One of the RTREE_COORD_* constants */ |
+ int argc, const char *const*argv, /* Parameters to CREATE TABLE statement */ |
+ sqlite3_vtab **ppVtab, /* OUT: New virtual table */ |
+ char **pzErr, /* OUT: Error message, if any */ |
+ int isCreate /* True for xCreate, false for xConnect */ |
+){ |
+ int rc = SQLITE_OK; |
+ Rtree *pRtree; |
+ int nDb; /* Length of string argv[1] */ |
+ int nName; /* Length of string argv[2] */ |
+ int eCoordType = (pAux ? RTREE_COORD_INT32 : RTREE_COORD_REAL32); |
+ |
+ const char *aErrMsg[] = { |
+ 0, /* 0 */ |
+ "Wrong number of columns for an rtree table", /* 1 */ |
+ "Too few columns for an rtree table", /* 2 */ |
+ "Too many columns for an rtree table" /* 3 */ |
+ }; |
+ |
+ int iErr = (argc<6) ? 2 : argc>(RTREE_MAX_DIMENSIONS*2+4) ? 3 : argc%2; |
+ if( aErrMsg[iErr] ){ |
+ *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]); |
+ return SQLITE_ERROR; |
+ } |
+ |
+ sqlite3_vtab_config(db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1); |
+ |
+ /* Allocate the sqlite3_vtab structure */ |
+ nDb = (int)strlen(argv[1]); |
+ nName = (int)strlen(argv[2]); |
+ pRtree = (Rtree *)sqlite3_malloc(sizeof(Rtree)+nDb+nName+2); |
+ if( !pRtree ){ |
+ return SQLITE_NOMEM; |
+ } |
+ memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2); |
+ pRtree->nBusy = 1; |
+ pRtree->base.pModule = &rtreeModule; |
+ pRtree->zDb = (char *)&pRtree[1]; |
+ pRtree->zName = &pRtree->zDb[nDb+1]; |
+ pRtree->nDim = (argc-4)/2; |
+ pRtree->nBytesPerCell = 8 + pRtree->nDim*4*2; |
+ pRtree->eCoordType = eCoordType; |
+ memcpy(pRtree->zDb, argv[1], nDb); |
+ memcpy(pRtree->zName, argv[2], nName); |
+ |
+ /* Figure out the node size to use. */ |
+ rc = getNodeSize(db, pRtree, isCreate, pzErr); |
+ |
+ /* Create/Connect to the underlying relational database schema. If |
+ ** that is successful, call sqlite3_declare_vtab() to configure |
+ ** the r-tree table schema. |
+ */ |
+ if( rc==SQLITE_OK ){ |
+ if( (rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate)) ){ |
+ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); |
+ }else{ |
+ char *zSql = sqlite3_mprintf("CREATE TABLE x(%s", argv[3]); |
+ char *zTmp; |
+ int ii; |
+ for(ii=4; zSql && ii<argc; ii++){ |
+ zTmp = zSql; |
+ zSql = sqlite3_mprintf("%s, %s", zTmp, argv[ii]); |
+ sqlite3_free(zTmp); |
+ } |
+ if( zSql ){ |
+ zTmp = zSql; |
+ zSql = sqlite3_mprintf("%s);", zTmp); |
+ sqlite3_free(zTmp); |
+ } |
+ if( !zSql ){ |
+ rc = SQLITE_NOMEM; |
+ }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){ |
+ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); |
+ } |
+ sqlite3_free(zSql); |
+ } |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ *ppVtab = (sqlite3_vtab *)pRtree; |
+ }else{ |
+ assert( *ppVtab==0 ); |
+ assert( pRtree->nBusy==1 ); |
+ rtreeRelease(pRtree); |
+ } |
+ return rc; |
+} |
+ |
+ |
+/* |
+** Implementation of a scalar function that decodes r-tree nodes to |
+** human readable strings. This can be used for debugging and analysis. |
+** |
+** The scalar function takes two arguments: (1) the number of dimensions |
+** to the rtree (between 1 and 5, inclusive) and (2) a blob of data containing |
+** an r-tree node. For a two-dimensional r-tree structure called "rt", to |
+** deserialize all nodes, a statement like: |
+** |
+** SELECT rtreenode(2, data) FROM rt_node; |
+** |
+** The human readable string takes the form of a Tcl list with one |
+** entry for each cell in the r-tree node. Each entry is itself a |
+** list, containing the 8-byte rowid/pageno followed by the |
+** <num-dimension>*2 coordinates. |
+*/ |
+static void rtreenode(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){ |
+ char *zText = 0; |
+ RtreeNode node; |
+ Rtree tree; |
+ int ii; |
+ |
+ UNUSED_PARAMETER(nArg); |
+ memset(&node, 0, sizeof(RtreeNode)); |
+ memset(&tree, 0, sizeof(Rtree)); |
+ tree.nDim = sqlite3_value_int(apArg[0]); |
+ tree.nBytesPerCell = 8 + 8 * tree.nDim; |
+ node.zData = (u8 *)sqlite3_value_blob(apArg[1]); |
+ |
+ for(ii=0; ii<NCELL(&node); ii++){ |
+ char zCell[512]; |
+ int nCell = 0; |
+ RtreeCell cell; |
+ int jj; |
+ |
+ nodeGetCell(&tree, &node, ii, &cell); |
+ sqlite3_snprintf(512-nCell,&zCell[nCell],"%lld", cell.iRowid); |
+ nCell = (int)strlen(zCell); |
+ for(jj=0; jj<tree.nDim*2; jj++){ |
+#ifndef SQLITE_RTREE_INT_ONLY |
+ sqlite3_snprintf(512-nCell,&zCell[nCell], " %g", |
+ (double)cell.aCoord[jj].f); |
+#else |
+ sqlite3_snprintf(512-nCell,&zCell[nCell], " %d", |
+ cell.aCoord[jj].i); |
+#endif |
+ nCell = (int)strlen(zCell); |
+ } |
+ |
+ if( zText ){ |
+ char *zTextNew = sqlite3_mprintf("%s {%s}", zText, zCell); |
+ sqlite3_free(zText); |
+ zText = zTextNew; |
+ }else{ |
+ zText = sqlite3_mprintf("{%s}", zCell); |
+ } |
+ } |
+ |
+ sqlite3_result_text(ctx, zText, -1, sqlite3_free); |
+} |
+ |
+/* This routine implements an SQL function that returns the "depth" parameter |
+** from the front of a blob that is an r-tree node. For example: |
+** |
+** SELECT rtreedepth(data) FROM rt_node WHERE nodeno=1; |
+** |
+** The depth value is 0 for all nodes other than the root node, and the root |
+** node always has nodeno=1, so the example above is the primary use for this |
+** routine. This routine is intended for testing and analysis only. |
+*/ |
+static void rtreedepth(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){ |
+ UNUSED_PARAMETER(nArg); |
+ if( sqlite3_value_type(apArg[0])!=SQLITE_BLOB |
+ || sqlite3_value_bytes(apArg[0])<2 |
+ ){ |
+ sqlite3_result_error(ctx, "Invalid argument to rtreedepth()", -1); |
+ }else{ |
+ u8 *zBlob = (u8 *)sqlite3_value_blob(apArg[0]); |
+ sqlite3_result_int(ctx, readInt16(zBlob)); |
+ } |
+} |
+ |
+/* |
+** Register the r-tree module with database handle db. This creates the |
+** virtual table module "rtree" and the debugging/analysis scalar |
+** function "rtreenode". |
+*/ |
+int sqlite3RtreeInit(sqlite3 *db){ |
+ const int utf8 = SQLITE_UTF8; |
+ int rc; |
+ |
+ rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0); |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0); |
+ } |
+ if( rc==SQLITE_OK ){ |
+#ifdef SQLITE_RTREE_INT_ONLY |
+ void *c = (void *)RTREE_COORD_INT32; |
+#else |
+ void *c = (void *)RTREE_COORD_REAL32; |
+#endif |
+ rc = sqlite3_create_module_v2(db, "rtree", &rtreeModule, c, 0); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ void *c = (void *)RTREE_COORD_INT32; |
+ rc = sqlite3_create_module_v2(db, "rtree_i32", &rtreeModule, c, 0); |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** This routine deletes the RtreeGeomCallback object that was attached |
+** one of the SQL functions create by sqlite3_rtree_geometry_callback() |
+** or sqlite3_rtree_query_callback(). In other words, this routine is the |
+** destructor for an RtreeGeomCallback objecct. This routine is called when |
+** the corresponding SQL function is deleted. |
+*/ |
+static void rtreeFreeCallback(void *p){ |
+ RtreeGeomCallback *pInfo = (RtreeGeomCallback*)p; |
+ if( pInfo->xDestructor ) pInfo->xDestructor(pInfo->pContext); |
+ sqlite3_free(p); |
+} |
+ |
+/* |
+** Each call to sqlite3_rtree_geometry_callback() or |
+** sqlite3_rtree_query_callback() creates an ordinary SQLite |
+** scalar function that is implemented by this routine. |
+** |
+** All this function does is construct an RtreeMatchArg object that |
+** contains the geometry-checking callback routines and a list of |
+** parameters to this function, then return that RtreeMatchArg object |
+** as a BLOB. |
+** |
+** The R-Tree MATCH operator will read the returned BLOB, deserialize |
+** the RtreeMatchArg object, and use the RtreeMatchArg object to figure |
+** out which elements of the R-Tree should be returned by the query. |
+*/ |
+static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){ |
+ RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx); |
+ RtreeMatchArg *pBlob; |
+ int nBlob; |
+ |
+ nBlob = sizeof(RtreeMatchArg) + (nArg-1)*sizeof(RtreeDValue); |
+ pBlob = (RtreeMatchArg *)sqlite3_malloc(nBlob); |
+ if( !pBlob ){ |
+ sqlite3_result_error_nomem(ctx); |
+ }else{ |
+ int i; |
+ pBlob->magic = RTREE_GEOMETRY_MAGIC; |
+ pBlob->cb = pGeomCtx[0]; |
+ pBlob->nParam = nArg; |
+ for(i=0; i<nArg; i++){ |
+#ifdef SQLITE_RTREE_INT_ONLY |
+ pBlob->aParam[i] = sqlite3_value_int64(aArg[i]); |
+#else |
+ pBlob->aParam[i] = sqlite3_value_double(aArg[i]); |
+#endif |
+ } |
+ sqlite3_result_blob(ctx, pBlob, nBlob, sqlite3_free); |
+ } |
+} |
+ |
+/* |
+** Register a new geometry function for use with the r-tree MATCH operator. |
+*/ |
+int sqlite3_rtree_geometry_callback( |
+ sqlite3 *db, /* Register SQL function on this connection */ |
+ const char *zGeom, /* Name of the new SQL function */ |
+ int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*), /* Callback */ |
+ void *pContext /* Extra data associated with the callback */ |
+){ |
+ RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */ |
+ |
+ /* Allocate and populate the context object. */ |
+ pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback)); |
+ if( !pGeomCtx ) return SQLITE_NOMEM; |
+ pGeomCtx->xGeom = xGeom; |
+ pGeomCtx->xQueryFunc = 0; |
+ pGeomCtx->xDestructor = 0; |
+ pGeomCtx->pContext = pContext; |
+ return sqlite3_create_function_v2(db, zGeom, -1, SQLITE_ANY, |
+ (void *)pGeomCtx, geomCallback, 0, 0, rtreeFreeCallback |
+ ); |
+} |
+ |
+/* |
+** Register a new 2nd-generation geometry function for use with the |
+** r-tree MATCH operator. |
+*/ |
+int sqlite3_rtree_query_callback( |
+ sqlite3 *db, /* Register SQL function on this connection */ |
+ const char *zQueryFunc, /* Name of new SQL function */ |
+ int (*xQueryFunc)(sqlite3_rtree_query_info*), /* Callback */ |
+ void *pContext, /* Extra data passed into the callback */ |
+ void (*xDestructor)(void*) /* Destructor for the extra data */ |
+){ |
+ RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */ |
+ |
+ /* Allocate and populate the context object. */ |
+ pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback)); |
+ if( !pGeomCtx ) return SQLITE_NOMEM; |
+ pGeomCtx->xGeom = 0; |
+ pGeomCtx->xQueryFunc = xQueryFunc; |
+ pGeomCtx->xDestructor = xDestructor; |
+ pGeomCtx->pContext = pContext; |
+ return sqlite3_create_function_v2(db, zQueryFunc, -1, SQLITE_ANY, |
+ (void *)pGeomCtx, geomCallback, 0, 0, rtreeFreeCallback |
+ ); |
+} |
+ |
+#if !SQLITE_CORE |
+#ifdef _WIN32 |
+__declspec(dllexport) |
+#endif |
+int sqlite3_rtree_init( |
+ sqlite3 *db, |
+ char **pzErrMsg, |
+ const sqlite3_api_routines *pApi |
+){ |
+ SQLITE_EXTENSION_INIT2(pApi) |
+ return sqlite3RtreeInit(db); |
+} |
+#endif |
+ |
+#endif |