Index: third_party/sqlite/sqlite-src-3070603/src/where.c |
diff --git a/third_party/sqlite/sqlite-src-3070603/src/where.c b/third_party/sqlite/sqlite-src-3070603/src/where.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..cf30d94d671bb81ef361cb6ac5b7a1aae392f395 |
--- /dev/null |
+++ b/third_party/sqlite/sqlite-src-3070603/src/where.c |
@@ -0,0 +1,4985 @@ |
+/* |
+** 2001 September 15 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+************************************************************************* |
+** This module contains C code that generates VDBE code used to process |
+** the WHERE clause of SQL statements. This module is responsible for |
+** generating the code that loops through a table looking for applicable |
+** rows. Indices are selected and used to speed the search when doing |
+** so is applicable. Because this module is responsible for selecting |
+** indices, you might also think of this module as the "query optimizer". |
+*/ |
+#include "sqliteInt.h" |
+ |
+ |
+/* |
+** Trace output macros |
+*/ |
+#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) |
+int sqlite3WhereTrace = 0; |
+#endif |
+#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) |
+# define WHERETRACE(X) if(sqlite3WhereTrace) sqlite3DebugPrintf X |
+#else |
+# define WHERETRACE(X) |
+#endif |
+ |
+/* Forward reference |
+*/ |
+typedef struct WhereClause WhereClause; |
+typedef struct WhereMaskSet WhereMaskSet; |
+typedef struct WhereOrInfo WhereOrInfo; |
+typedef struct WhereAndInfo WhereAndInfo; |
+typedef struct WhereCost WhereCost; |
+ |
+/* |
+** The query generator uses an array of instances of this structure to |
+** help it analyze the subexpressions of the WHERE clause. Each WHERE |
+** clause subexpression is separated from the others by AND operators, |
+** usually, or sometimes subexpressions separated by OR. |
+** |
+** All WhereTerms are collected into a single WhereClause structure. |
+** The following identity holds: |
+** |
+** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm |
+** |
+** When a term is of the form: |
+** |
+** X <op> <expr> |
+** |
+** where X is a column name and <op> is one of certain operators, |
+** then WhereTerm.leftCursor and WhereTerm.u.leftColumn record the |
+** cursor number and column number for X. WhereTerm.eOperator records |
+** the <op> using a bitmask encoding defined by WO_xxx below. The |
+** use of a bitmask encoding for the operator allows us to search |
+** quickly for terms that match any of several different operators. |
+** |
+** A WhereTerm might also be two or more subterms connected by OR: |
+** |
+** (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR .... |
+** |
+** In this second case, wtFlag as the TERM_ORINFO set and eOperator==WO_OR |
+** and the WhereTerm.u.pOrInfo field points to auxiliary information that |
+** is collected about the |
+** |
+** If a term in the WHERE clause does not match either of the two previous |
+** categories, then eOperator==0. The WhereTerm.pExpr field is still set |
+** to the original subexpression content and wtFlags is set up appropriately |
+** but no other fields in the WhereTerm object are meaningful. |
+** |
+** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers, |
+** but they do so indirectly. A single WhereMaskSet structure translates |
+** cursor number into bits and the translated bit is stored in the prereq |
+** fields. The translation is used in order to maximize the number of |
+** bits that will fit in a Bitmask. The VDBE cursor numbers might be |
+** spread out over the non-negative integers. For example, the cursor |
+** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The WhereMaskSet |
+** translates these sparse cursor numbers into consecutive integers |
+** beginning with 0 in order to make the best possible use of the available |
+** bits in the Bitmask. So, in the example above, the cursor numbers |
+** would be mapped into integers 0 through 7. |
+** |
+** The number of terms in a join is limited by the number of bits |
+** in prereqRight and prereqAll. The default is 64 bits, hence SQLite |
+** is only able to process joins with 64 or fewer tables. |
+*/ |
+typedef struct WhereTerm WhereTerm; |
+struct WhereTerm { |
+ Expr *pExpr; /* Pointer to the subexpression that is this term */ |
+ int iParent; /* Disable pWC->a[iParent] when this term disabled */ |
+ int leftCursor; /* Cursor number of X in "X <op> <expr>" */ |
+ union { |
+ int leftColumn; /* Column number of X in "X <op> <expr>" */ |
+ WhereOrInfo *pOrInfo; /* Extra information if eOperator==WO_OR */ |
+ WhereAndInfo *pAndInfo; /* Extra information if eOperator==WO_AND */ |
+ } u; |
+ u16 eOperator; /* A WO_xx value describing <op> */ |
+ u8 wtFlags; /* TERM_xxx bit flags. See below */ |
+ u8 nChild; /* Number of children that must disable us */ |
+ WhereClause *pWC; /* The clause this term is part of */ |
+ Bitmask prereqRight; /* Bitmask of tables used by pExpr->pRight */ |
+ Bitmask prereqAll; /* Bitmask of tables referenced by pExpr */ |
+}; |
+ |
+/* |
+** Allowed values of WhereTerm.wtFlags |
+*/ |
+#define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(db, pExpr) */ |
+#define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */ |
+#define TERM_CODED 0x04 /* This term is already coded */ |
+#define TERM_COPIED 0x08 /* Has a child */ |
+#define TERM_ORINFO 0x10 /* Need to free the WhereTerm.u.pOrInfo object */ |
+#define TERM_ANDINFO 0x20 /* Need to free the WhereTerm.u.pAndInfo obj */ |
+#define TERM_OR_OK 0x40 /* Used during OR-clause processing */ |
+#ifdef SQLITE_ENABLE_STAT2 |
+# define TERM_VNULL 0x80 /* Manufactured x>NULL or x<=NULL term */ |
+#else |
+# define TERM_VNULL 0x00 /* Disabled if not using stat2 */ |
+#endif |
+ |
+/* |
+** An instance of the following structure holds all information about a |
+** WHERE clause. Mostly this is a container for one or more WhereTerms. |
+*/ |
+struct WhereClause { |
+ Parse *pParse; /* The parser context */ |
+ WhereMaskSet *pMaskSet; /* Mapping of table cursor numbers to bitmasks */ |
+ Bitmask vmask; /* Bitmask identifying virtual table cursors */ |
+ u8 op; /* Split operator. TK_AND or TK_OR */ |
+ int nTerm; /* Number of terms */ |
+ int nSlot; /* Number of entries in a[] */ |
+ WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */ |
+#if defined(SQLITE_SMALL_STACK) |
+ WhereTerm aStatic[1]; /* Initial static space for a[] */ |
+#else |
+ WhereTerm aStatic[8]; /* Initial static space for a[] */ |
+#endif |
+}; |
+ |
+/* |
+** A WhereTerm with eOperator==WO_OR has its u.pOrInfo pointer set to |
+** a dynamically allocated instance of the following structure. |
+*/ |
+struct WhereOrInfo { |
+ WhereClause wc; /* Decomposition into subterms */ |
+ Bitmask indexable; /* Bitmask of all indexable tables in the clause */ |
+}; |
+ |
+/* |
+** A WhereTerm with eOperator==WO_AND has its u.pAndInfo pointer set to |
+** a dynamically allocated instance of the following structure. |
+*/ |
+struct WhereAndInfo { |
+ WhereClause wc; /* The subexpression broken out */ |
+}; |
+ |
+/* |
+** An instance of the following structure keeps track of a mapping |
+** between VDBE cursor numbers and bits of the bitmasks in WhereTerm. |
+** |
+** The VDBE cursor numbers are small integers contained in |
+** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE |
+** clause, the cursor numbers might not begin with 0 and they might |
+** contain gaps in the numbering sequence. But we want to make maximum |
+** use of the bits in our bitmasks. This structure provides a mapping |
+** from the sparse cursor numbers into consecutive integers beginning |
+** with 0. |
+** |
+** If WhereMaskSet.ix[A]==B it means that The A-th bit of a Bitmask |
+** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A. |
+** |
+** For example, if the WHERE clause expression used these VDBE |
+** cursors: 4, 5, 8, 29, 57, 73. Then the WhereMaskSet structure |
+** would map those cursor numbers into bits 0 through 5. |
+** |
+** Note that the mapping is not necessarily ordered. In the example |
+** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0, |
+** 57->5, 73->4. Or one of 719 other combinations might be used. It |
+** does not really matter. What is important is that sparse cursor |
+** numbers all get mapped into bit numbers that begin with 0 and contain |
+** no gaps. |
+*/ |
+struct WhereMaskSet { |
+ int n; /* Number of assigned cursor values */ |
+ int ix[BMS]; /* Cursor assigned to each bit */ |
+}; |
+ |
+/* |
+** A WhereCost object records a lookup strategy and the estimated |
+** cost of pursuing that strategy. |
+*/ |
+struct WhereCost { |
+ WherePlan plan; /* The lookup strategy */ |
+ double rCost; /* Overall cost of pursuing this search strategy */ |
+ Bitmask used; /* Bitmask of cursors used by this plan */ |
+}; |
+ |
+/* |
+** Bitmasks for the operators that indices are able to exploit. An |
+** OR-ed combination of these values can be used when searching for |
+** terms in the where clause. |
+*/ |
+#define WO_IN 0x001 |
+#define WO_EQ 0x002 |
+#define WO_LT (WO_EQ<<(TK_LT-TK_EQ)) |
+#define WO_LE (WO_EQ<<(TK_LE-TK_EQ)) |
+#define WO_GT (WO_EQ<<(TK_GT-TK_EQ)) |
+#define WO_GE (WO_EQ<<(TK_GE-TK_EQ)) |
+#define WO_MATCH 0x040 |
+#define WO_ISNULL 0x080 |
+#define WO_OR 0x100 /* Two or more OR-connected terms */ |
+#define WO_AND 0x200 /* Two or more AND-connected terms */ |
+#define WO_NOOP 0x800 /* This term does not restrict search space */ |
+ |
+#define WO_ALL 0xfff /* Mask of all possible WO_* values */ |
+#define WO_SINGLE 0x0ff /* Mask of all non-compound WO_* values */ |
+ |
+/* |
+** Value for wsFlags returned by bestIndex() and stored in |
+** WhereLevel.wsFlags. These flags determine which search |
+** strategies are appropriate. |
+** |
+** The least significant 12 bits is reserved as a mask for WO_ values above. |
+** The WhereLevel.wsFlags field is usually set to WO_IN|WO_EQ|WO_ISNULL. |
+** But if the table is the right table of a left join, WhereLevel.wsFlags |
+** is set to WO_IN|WO_EQ. The WhereLevel.wsFlags field can then be used as |
+** the "op" parameter to findTerm when we are resolving equality constraints. |
+** ISNULL constraints will then not be used on the right table of a left |
+** join. Tickets #2177 and #2189. |
+*/ |
+#define WHERE_ROWID_EQ 0x00001000 /* rowid=EXPR or rowid IN (...) */ |
+#define WHERE_ROWID_RANGE 0x00002000 /* rowid<EXPR and/or rowid>EXPR */ |
+#define WHERE_COLUMN_EQ 0x00010000 /* x=EXPR or x IN (...) or x IS NULL */ |
+#define WHERE_COLUMN_RANGE 0x00020000 /* x<EXPR and/or x>EXPR */ |
+#define WHERE_COLUMN_IN 0x00040000 /* x IN (...) */ |
+#define WHERE_COLUMN_NULL 0x00080000 /* x IS NULL */ |
+#define WHERE_INDEXED 0x000f0000 /* Anything that uses an index */ |
+#define WHERE_NOT_FULLSCAN 0x100f3000 /* Does not do a full table scan */ |
+#define WHERE_IN_ABLE 0x000f1000 /* Able to support an IN operator */ |
+#define WHERE_TOP_LIMIT 0x00100000 /* x<EXPR or x<=EXPR constraint */ |
+#define WHERE_BTM_LIMIT 0x00200000 /* x>EXPR or x>=EXPR constraint */ |
+#define WHERE_BOTH_LIMIT 0x00300000 /* Both x>EXPR and x<EXPR */ |
+#define WHERE_IDX_ONLY 0x00800000 /* Use index only - omit table */ |
+#define WHERE_ORDERBY 0x01000000 /* Output will appear in correct order */ |
+#define WHERE_REVERSE 0x02000000 /* Scan in reverse order */ |
+#define WHERE_UNIQUE 0x04000000 /* Selects no more than one row */ |
+#define WHERE_VIRTUALTABLE 0x08000000 /* Use virtual-table processing */ |
+#define WHERE_MULTI_OR 0x10000000 /* OR using multiple indices */ |
+#define WHERE_TEMP_INDEX 0x20000000 /* Uses an ephemeral index */ |
+ |
+/* |
+** Initialize a preallocated WhereClause structure. |
+*/ |
+static void whereClauseInit( |
+ WhereClause *pWC, /* The WhereClause to be initialized */ |
+ Parse *pParse, /* The parsing context */ |
+ WhereMaskSet *pMaskSet /* Mapping from table cursor numbers to bitmasks */ |
+){ |
+ pWC->pParse = pParse; |
+ pWC->pMaskSet = pMaskSet; |
+ pWC->nTerm = 0; |
+ pWC->nSlot = ArraySize(pWC->aStatic); |
+ pWC->a = pWC->aStatic; |
+ pWC->vmask = 0; |
+} |
+ |
+/* Forward reference */ |
+static void whereClauseClear(WhereClause*); |
+ |
+/* |
+** Deallocate all memory associated with a WhereOrInfo object. |
+*/ |
+static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){ |
+ whereClauseClear(&p->wc); |
+ sqlite3DbFree(db, p); |
+} |
+ |
+/* |
+** Deallocate all memory associated with a WhereAndInfo object. |
+*/ |
+static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){ |
+ whereClauseClear(&p->wc); |
+ sqlite3DbFree(db, p); |
+} |
+ |
+/* |
+** Deallocate a WhereClause structure. The WhereClause structure |
+** itself is not freed. This routine is the inverse of whereClauseInit(). |
+*/ |
+static void whereClauseClear(WhereClause *pWC){ |
+ int i; |
+ WhereTerm *a; |
+ sqlite3 *db = pWC->pParse->db; |
+ for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ |
+ if( a->wtFlags & TERM_DYNAMIC ){ |
+ sqlite3ExprDelete(db, a->pExpr); |
+ } |
+ if( a->wtFlags & TERM_ORINFO ){ |
+ whereOrInfoDelete(db, a->u.pOrInfo); |
+ }else if( a->wtFlags & TERM_ANDINFO ){ |
+ whereAndInfoDelete(db, a->u.pAndInfo); |
+ } |
+ } |
+ if( pWC->a!=pWC->aStatic ){ |
+ sqlite3DbFree(db, pWC->a); |
+ } |
+} |
+ |
+/* |
+** Add a single new WhereTerm entry to the WhereClause object pWC. |
+** The new WhereTerm object is constructed from Expr p and with wtFlags. |
+** The index in pWC->a[] of the new WhereTerm is returned on success. |
+** 0 is returned if the new WhereTerm could not be added due to a memory |
+** allocation error. The memory allocation failure will be recorded in |
+** the db->mallocFailed flag so that higher-level functions can detect it. |
+** |
+** This routine will increase the size of the pWC->a[] array as necessary. |
+** |
+** If the wtFlags argument includes TERM_DYNAMIC, then responsibility |
+** for freeing the expression p is assumed by the WhereClause object pWC. |
+** This is true even if this routine fails to allocate a new WhereTerm. |
+** |
+** WARNING: This routine might reallocate the space used to store |
+** WhereTerms. All pointers to WhereTerms should be invalidated after |
+** calling this routine. Such pointers may be reinitialized by referencing |
+** the pWC->a[] array. |
+*/ |
+static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){ |
+ WhereTerm *pTerm; |
+ int idx; |
+ testcase( wtFlags & TERM_VIRTUAL ); /* EV: R-00211-15100 */ |
+ if( pWC->nTerm>=pWC->nSlot ){ |
+ WhereTerm *pOld = pWC->a; |
+ sqlite3 *db = pWC->pParse->db; |
+ pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); |
+ if( pWC->a==0 ){ |
+ if( wtFlags & TERM_DYNAMIC ){ |
+ sqlite3ExprDelete(db, p); |
+ } |
+ pWC->a = pOld; |
+ return 0; |
+ } |
+ memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); |
+ if( pOld!=pWC->aStatic ){ |
+ sqlite3DbFree(db, pOld); |
+ } |
+ pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); |
+ } |
+ pTerm = &pWC->a[idx = pWC->nTerm++]; |
+ pTerm->pExpr = p; |
+ pTerm->wtFlags = wtFlags; |
+ pTerm->pWC = pWC; |
+ pTerm->iParent = -1; |
+ return idx; |
+} |
+ |
+/* |
+** This routine identifies subexpressions in the WHERE clause where |
+** each subexpression is separated by the AND operator or some other |
+** operator specified in the op parameter. The WhereClause structure |
+** is filled with pointers to subexpressions. For example: |
+** |
+** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) |
+** \________/ \_______________/ \________________/ |
+** slot[0] slot[1] slot[2] |
+** |
+** The original WHERE clause in pExpr is unaltered. All this routine |
+** does is make slot[] entries point to substructure within pExpr. |
+** |
+** In the previous sentence and in the diagram, "slot[]" refers to |
+** the WhereClause.a[] array. The slot[] array grows as needed to contain |
+** all terms of the WHERE clause. |
+*/ |
+static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){ |
+ pWC->op = (u8)op; |
+ if( pExpr==0 ) return; |
+ if( pExpr->op!=op ){ |
+ whereClauseInsert(pWC, pExpr, 0); |
+ }else{ |
+ whereSplit(pWC, pExpr->pLeft, op); |
+ whereSplit(pWC, pExpr->pRight, op); |
+ } |
+} |
+ |
+/* |
+** Initialize an expression mask set (a WhereMaskSet object) |
+*/ |
+#define initMaskSet(P) memset(P, 0, sizeof(*P)) |
+ |
+/* |
+** Return the bitmask for the given cursor number. Return 0 if |
+** iCursor is not in the set. |
+*/ |
+static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){ |
+ int i; |
+ assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); |
+ for(i=0; i<pMaskSet->n; i++){ |
+ if( pMaskSet->ix[i]==iCursor ){ |
+ return ((Bitmask)1)<<i; |
+ } |
+ } |
+ return 0; |
+} |
+ |
+/* |
+** Create a new mask for cursor iCursor. |
+** |
+** There is one cursor per table in the FROM clause. The number of |
+** tables in the FROM clause is limited by a test early in the |
+** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] |
+** array will never overflow. |
+*/ |
+static void createMask(WhereMaskSet *pMaskSet, int iCursor){ |
+ assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); |
+ pMaskSet->ix[pMaskSet->n++] = iCursor; |
+} |
+ |
+/* |
+** This routine walks (recursively) an expression tree and generates |
+** a bitmask indicating which tables are used in that expression |
+** tree. |
+** |
+** In order for this routine to work, the calling function must have |
+** previously invoked sqlite3ResolveExprNames() on the expression. See |
+** the header comment on that routine for additional information. |
+** The sqlite3ResolveExprNames() routines looks for column names and |
+** sets their opcodes to TK_COLUMN and their Expr.iTable fields to |
+** the VDBE cursor number of the table. This routine just has to |
+** translate the cursor numbers into bitmask values and OR all |
+** the bitmasks together. |
+*/ |
+static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*); |
+static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*); |
+static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){ |
+ Bitmask mask = 0; |
+ if( p==0 ) return 0; |
+ if( p->op==TK_COLUMN ){ |
+ mask = getMask(pMaskSet, p->iTable); |
+ return mask; |
+ } |
+ mask = exprTableUsage(pMaskSet, p->pRight); |
+ mask |= exprTableUsage(pMaskSet, p->pLeft); |
+ if( ExprHasProperty(p, EP_xIsSelect) ){ |
+ mask |= exprSelectTableUsage(pMaskSet, p->x.pSelect); |
+ }else{ |
+ mask |= exprListTableUsage(pMaskSet, p->x.pList); |
+ } |
+ return mask; |
+} |
+static Bitmask exprListTableUsage(WhereMaskSet *pMaskSet, ExprList *pList){ |
+ int i; |
+ Bitmask mask = 0; |
+ if( pList ){ |
+ for(i=0; i<pList->nExpr; i++){ |
+ mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr); |
+ } |
+ } |
+ return mask; |
+} |
+static Bitmask exprSelectTableUsage(WhereMaskSet *pMaskSet, Select *pS){ |
+ Bitmask mask = 0; |
+ while( pS ){ |
+ mask |= exprListTableUsage(pMaskSet, pS->pEList); |
+ mask |= exprListTableUsage(pMaskSet, pS->pGroupBy); |
+ mask |= exprListTableUsage(pMaskSet, pS->pOrderBy); |
+ mask |= exprTableUsage(pMaskSet, pS->pWhere); |
+ mask |= exprTableUsage(pMaskSet, pS->pHaving); |
+ pS = pS->pPrior; |
+ } |
+ return mask; |
+} |
+ |
+/* |
+** Return TRUE if the given operator is one of the operators that is |
+** allowed for an indexable WHERE clause term. The allowed operators are |
+** "=", "<", ">", "<=", ">=", and "IN". |
+** |
+** IMPLEMENTATION-OF: R-59926-26393 To be usable by an index a term must be |
+** of one of the following forms: column = expression column > expression |
+** column >= expression column < expression column <= expression |
+** expression = column expression > column expression >= column |
+** expression < column expression <= column column IN |
+** (expression-list) column IN (subquery) column IS NULL |
+*/ |
+static int allowedOp(int op){ |
+ assert( TK_GT>TK_EQ && TK_GT<TK_GE ); |
+ assert( TK_LT>TK_EQ && TK_LT<TK_GE ); |
+ assert( TK_LE>TK_EQ && TK_LE<TK_GE ); |
+ assert( TK_GE==TK_EQ+4 ); |
+ return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL; |
+} |
+ |
+/* |
+** Swap two objects of type TYPE. |
+*/ |
+#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} |
+ |
+/* |
+** Commute a comparison operator. Expressions of the form "X op Y" |
+** are converted into "Y op X". |
+** |
+** If a collation sequence is associated with either the left or right |
+** side of the comparison, it remains associated with the same side after |
+** the commutation. So "Y collate NOCASE op X" becomes |
+** "X collate NOCASE op Y". This is because any collation sequence on |
+** the left hand side of a comparison overrides any collation sequence |
+** attached to the right. For the same reason the EP_ExpCollate flag |
+** is not commuted. |
+*/ |
+static void exprCommute(Parse *pParse, Expr *pExpr){ |
+ u16 expRight = (pExpr->pRight->flags & EP_ExpCollate); |
+ u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate); |
+ assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); |
+ pExpr->pRight->pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight); |
+ pExpr->pLeft->pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); |
+ SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl); |
+ pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft; |
+ pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight; |
+ SWAP(Expr*,pExpr->pRight,pExpr->pLeft); |
+ if( pExpr->op>=TK_GT ){ |
+ assert( TK_LT==TK_GT+2 ); |
+ assert( TK_GE==TK_LE+2 ); |
+ assert( TK_GT>TK_EQ ); |
+ assert( TK_GT<TK_LE ); |
+ assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); |
+ pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; |
+ } |
+} |
+ |
+/* |
+** Translate from TK_xx operator to WO_xx bitmask. |
+*/ |
+static u16 operatorMask(int op){ |
+ u16 c; |
+ assert( allowedOp(op) ); |
+ if( op==TK_IN ){ |
+ c = WO_IN; |
+ }else if( op==TK_ISNULL ){ |
+ c = WO_ISNULL; |
+ }else{ |
+ assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff ); |
+ c = (u16)(WO_EQ<<(op-TK_EQ)); |
+ } |
+ assert( op!=TK_ISNULL || c==WO_ISNULL ); |
+ assert( op!=TK_IN || c==WO_IN ); |
+ assert( op!=TK_EQ || c==WO_EQ ); |
+ assert( op!=TK_LT || c==WO_LT ); |
+ assert( op!=TK_LE || c==WO_LE ); |
+ assert( op!=TK_GT || c==WO_GT ); |
+ assert( op!=TK_GE || c==WO_GE ); |
+ return c; |
+} |
+ |
+/* |
+** Search for a term in the WHERE clause that is of the form "X <op> <expr>" |
+** where X is a reference to the iColumn of table iCur and <op> is one of |
+** the WO_xx operator codes specified by the op parameter. |
+** Return a pointer to the term. Return 0 if not found. |
+*/ |
+static WhereTerm *findTerm( |
+ WhereClause *pWC, /* The WHERE clause to be searched */ |
+ int iCur, /* Cursor number of LHS */ |
+ int iColumn, /* Column number of LHS */ |
+ Bitmask notReady, /* RHS must not overlap with this mask */ |
+ u32 op, /* Mask of WO_xx values describing operator */ |
+ Index *pIdx /* Must be compatible with this index, if not NULL */ |
+){ |
+ WhereTerm *pTerm; |
+ int k; |
+ assert( iCur>=0 ); |
+ op &= WO_ALL; |
+ for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){ |
+ if( pTerm->leftCursor==iCur |
+ && (pTerm->prereqRight & notReady)==0 |
+ && pTerm->u.leftColumn==iColumn |
+ && (pTerm->eOperator & op)!=0 |
+ ){ |
+ if( pIdx && pTerm->eOperator!=WO_ISNULL ){ |
+ Expr *pX = pTerm->pExpr; |
+ CollSeq *pColl; |
+ char idxaff; |
+ int j; |
+ Parse *pParse = pWC->pParse; |
+ |
+ idxaff = pIdx->pTable->aCol[iColumn].affinity; |
+ if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue; |
+ |
+ /* Figure out the collation sequence required from an index for |
+ ** it to be useful for optimising expression pX. Store this |
+ ** value in variable pColl. |
+ */ |
+ assert(pX->pLeft); |
+ pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); |
+ assert(pColl || pParse->nErr); |
+ |
+ for(j=0; pIdx->aiColumn[j]!=iColumn; j++){ |
+ if( NEVER(j>=pIdx->nColumn) ) return 0; |
+ } |
+ if( pColl && sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue; |
+ } |
+ return pTerm; |
+ } |
+ } |
+ return 0; |
+} |
+ |
+/* Forward reference */ |
+static void exprAnalyze(SrcList*, WhereClause*, int); |
+ |
+/* |
+** Call exprAnalyze on all terms in a WHERE clause. |
+** |
+** |
+*/ |
+static void exprAnalyzeAll( |
+ SrcList *pTabList, /* the FROM clause */ |
+ WhereClause *pWC /* the WHERE clause to be analyzed */ |
+){ |
+ int i; |
+ for(i=pWC->nTerm-1; i>=0; i--){ |
+ exprAnalyze(pTabList, pWC, i); |
+ } |
+} |
+ |
+#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION |
+/* |
+** Check to see if the given expression is a LIKE or GLOB operator that |
+** can be optimized using inequality constraints. Return TRUE if it is |
+** so and false if not. |
+** |
+** In order for the operator to be optimizible, the RHS must be a string |
+** literal that does not begin with a wildcard. |
+*/ |
+static int isLikeOrGlob( |
+ Parse *pParse, /* Parsing and code generating context */ |
+ Expr *pExpr, /* Test this expression */ |
+ Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */ |
+ int *pisComplete, /* True if the only wildcard is % in the last character */ |
+ int *pnoCase /* True if uppercase is equivalent to lowercase */ |
+){ |
+ const char *z = 0; /* String on RHS of LIKE operator */ |
+ Expr *pRight, *pLeft; /* Right and left size of LIKE operator */ |
+ ExprList *pList; /* List of operands to the LIKE operator */ |
+ int c; /* One character in z[] */ |
+ int cnt; /* Number of non-wildcard prefix characters */ |
+ char wc[3]; /* Wildcard characters */ |
+ sqlite3 *db = pParse->db; /* Database connection */ |
+ sqlite3_value *pVal = 0; |
+ int op; /* Opcode of pRight */ |
+ |
+ if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){ |
+ return 0; |
+ } |
+#ifdef SQLITE_EBCDIC |
+ if( *pnoCase ) return 0; |
+#endif |
+ pList = pExpr->x.pList; |
+ pLeft = pList->a[1].pExpr; |
+ if( pLeft->op!=TK_COLUMN || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT ){ |
+ /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must |
+ ** be the name of an indexed column with TEXT affinity. */ |
+ return 0; |
+ } |
+ assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */ |
+ |
+ pRight = pList->a[0].pExpr; |
+ op = pRight->op; |
+ if( op==TK_REGISTER ){ |
+ op = pRight->op2; |
+ } |
+ if( op==TK_VARIABLE ){ |
+ Vdbe *pReprepare = pParse->pReprepare; |
+ int iCol = pRight->iColumn; |
+ pVal = sqlite3VdbeGetValue(pReprepare, iCol, SQLITE_AFF_NONE); |
+ if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){ |
+ z = (char *)sqlite3_value_text(pVal); |
+ } |
+ sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); /* IMP: R-23257-02778 */ |
+ assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER ); |
+ }else if( op==TK_STRING ){ |
+ z = pRight->u.zToken; |
+ } |
+ if( z ){ |
+ cnt = 0; |
+ while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ |
+ cnt++; |
+ } |
+ if( cnt!=0 && 255!=(u8)z[cnt-1] ){ |
+ Expr *pPrefix; |
+ *pisComplete = c==wc[0] && z[cnt+1]==0; |
+ pPrefix = sqlite3Expr(db, TK_STRING, z); |
+ if( pPrefix ) pPrefix->u.zToken[cnt] = 0; |
+ *ppPrefix = pPrefix; |
+ if( op==TK_VARIABLE ){ |
+ Vdbe *v = pParse->pVdbe; |
+ sqlite3VdbeSetVarmask(v, pRight->iColumn); /* IMP: R-23257-02778 */ |
+ if( *pisComplete && pRight->u.zToken[1] ){ |
+ /* If the rhs of the LIKE expression is a variable, and the current |
+ ** value of the variable means there is no need to invoke the LIKE |
+ ** function, then no OP_Variable will be added to the program. |
+ ** This causes problems for the sqlite3_bind_parameter_name() |
+ ** API. To workaround them, add a dummy OP_Variable here. |
+ */ |
+ int r1 = sqlite3GetTempReg(pParse); |
+ sqlite3ExprCodeTarget(pParse, pRight, r1); |
+ sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0); |
+ sqlite3ReleaseTempReg(pParse, r1); |
+ } |
+ } |
+ }else{ |
+ z = 0; |
+ } |
+ } |
+ |
+ sqlite3ValueFree(pVal); |
+ return (z!=0); |
+} |
+#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ |
+ |
+ |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+/* |
+** Check to see if the given expression is of the form |
+** |
+** column MATCH expr |
+** |
+** If it is then return TRUE. If not, return FALSE. |
+*/ |
+static int isMatchOfColumn( |
+ Expr *pExpr /* Test this expression */ |
+){ |
+ ExprList *pList; |
+ |
+ if( pExpr->op!=TK_FUNCTION ){ |
+ return 0; |
+ } |
+ if( sqlite3StrICmp(pExpr->u.zToken,"match")!=0 ){ |
+ return 0; |
+ } |
+ pList = pExpr->x.pList; |
+ if( pList->nExpr!=2 ){ |
+ return 0; |
+ } |
+ if( pList->a[1].pExpr->op != TK_COLUMN ){ |
+ return 0; |
+ } |
+ return 1; |
+} |
+#endif /* SQLITE_OMIT_VIRTUALTABLE */ |
+ |
+/* |
+** If the pBase expression originated in the ON or USING clause of |
+** a join, then transfer the appropriate markings over to derived. |
+*/ |
+static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ |
+ pDerived->flags |= pBase->flags & EP_FromJoin; |
+ pDerived->iRightJoinTable = pBase->iRightJoinTable; |
+} |
+ |
+#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) |
+/* |
+** Analyze a term that consists of two or more OR-connected |
+** subterms. So in: |
+** |
+** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) |
+** ^^^^^^^^^^^^^^^^^^^^ |
+** |
+** This routine analyzes terms such as the middle term in the above example. |
+** A WhereOrTerm object is computed and attached to the term under |
+** analysis, regardless of the outcome of the analysis. Hence: |
+** |
+** WhereTerm.wtFlags |= TERM_ORINFO |
+** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object |
+** |
+** The term being analyzed must have two or more of OR-connected subterms. |
+** A single subterm might be a set of AND-connected sub-subterms. |
+** Examples of terms under analysis: |
+** |
+** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5 |
+** (B) x=expr1 OR expr2=x OR x=expr3 |
+** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15) |
+** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*') |
+** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6) |
+** |
+** CASE 1: |
+** |
+** If all subterms are of the form T.C=expr for some single column of C |
+** a single table T (as shown in example B above) then create a new virtual |
+** term that is an equivalent IN expression. In other words, if the term |
+** being analyzed is: |
+** |
+** x = expr1 OR expr2 = x OR x = expr3 |
+** |
+** then create a new virtual term like this: |
+** |
+** x IN (expr1,expr2,expr3) |
+** |
+** CASE 2: |
+** |
+** If all subterms are indexable by a single table T, then set |
+** |
+** WhereTerm.eOperator = WO_OR |
+** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T |
+** |
+** A subterm is "indexable" if it is of the form |
+** "T.C <op> <expr>" where C is any column of table T and |
+** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN". |
+** A subterm is also indexable if it is an AND of two or more |
+** subsubterms at least one of which is indexable. Indexable AND |
+** subterms have their eOperator set to WO_AND and they have |
+** u.pAndInfo set to a dynamically allocated WhereAndTerm object. |
+** |
+** From another point of view, "indexable" means that the subterm could |
+** potentially be used with an index if an appropriate index exists. |
+** This analysis does not consider whether or not the index exists; that |
+** is something the bestIndex() routine will determine. This analysis |
+** only looks at whether subterms appropriate for indexing exist. |
+** |
+** All examples A through E above all satisfy case 2. But if a term |
+** also statisfies case 1 (such as B) we know that the optimizer will |
+** always prefer case 1, so in that case we pretend that case 2 is not |
+** satisfied. |
+** |
+** It might be the case that multiple tables are indexable. For example, |
+** (E) above is indexable on tables P, Q, and R. |
+** |
+** Terms that satisfy case 2 are candidates for lookup by using |
+** separate indices to find rowids for each subterm and composing |
+** the union of all rowids using a RowSet object. This is similar |
+** to "bitmap indices" in other database engines. |
+** |
+** OTHERWISE: |
+** |
+** If neither case 1 nor case 2 apply, then leave the eOperator set to |
+** zero. This term is not useful for search. |
+*/ |
+static void exprAnalyzeOrTerm( |
+ SrcList *pSrc, /* the FROM clause */ |
+ WhereClause *pWC, /* the complete WHERE clause */ |
+ int idxTerm /* Index of the OR-term to be analyzed */ |
+){ |
+ Parse *pParse = pWC->pParse; /* Parser context */ |
+ sqlite3 *db = pParse->db; /* Database connection */ |
+ WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */ |
+ Expr *pExpr = pTerm->pExpr; /* The expression of the term */ |
+ WhereMaskSet *pMaskSet = pWC->pMaskSet; /* Table use masks */ |
+ int i; /* Loop counters */ |
+ WhereClause *pOrWc; /* Breakup of pTerm into subterms */ |
+ WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */ |
+ WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */ |
+ Bitmask chngToIN; /* Tables that might satisfy case 1 */ |
+ Bitmask indexable; /* Tables that are indexable, satisfying case 2 */ |
+ |
+ /* |
+ ** Break the OR clause into its separate subterms. The subterms are |
+ ** stored in a WhereClause structure containing within the WhereOrInfo |
+ ** object that is attached to the original OR clause term. |
+ */ |
+ assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 ); |
+ assert( pExpr->op==TK_OR ); |
+ pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo)); |
+ if( pOrInfo==0 ) return; |
+ pTerm->wtFlags |= TERM_ORINFO; |
+ pOrWc = &pOrInfo->wc; |
+ whereClauseInit(pOrWc, pWC->pParse, pMaskSet); |
+ whereSplit(pOrWc, pExpr, TK_OR); |
+ exprAnalyzeAll(pSrc, pOrWc); |
+ if( db->mallocFailed ) return; |
+ assert( pOrWc->nTerm>=2 ); |
+ |
+ /* |
+ ** Compute the set of tables that might satisfy cases 1 or 2. |
+ */ |
+ indexable = ~(Bitmask)0; |
+ chngToIN = ~(pWC->vmask); |
+ for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ |
+ if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ |
+ WhereAndInfo *pAndInfo; |
+ assert( pOrTerm->eOperator==0 ); |
+ assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 ); |
+ chngToIN = 0; |
+ pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo)); |
+ if( pAndInfo ){ |
+ WhereClause *pAndWC; |
+ WhereTerm *pAndTerm; |
+ int j; |
+ Bitmask b = 0; |
+ pOrTerm->u.pAndInfo = pAndInfo; |
+ pOrTerm->wtFlags |= TERM_ANDINFO; |
+ pOrTerm->eOperator = WO_AND; |
+ pAndWC = &pAndInfo->wc; |
+ whereClauseInit(pAndWC, pWC->pParse, pMaskSet); |
+ whereSplit(pAndWC, pOrTerm->pExpr, TK_AND); |
+ exprAnalyzeAll(pSrc, pAndWC); |
+ testcase( db->mallocFailed ); |
+ if( !db->mallocFailed ){ |
+ for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){ |
+ assert( pAndTerm->pExpr ); |
+ if( allowedOp(pAndTerm->pExpr->op) ){ |
+ b |= getMask(pMaskSet, pAndTerm->leftCursor); |
+ } |
+ } |
+ } |
+ indexable &= b; |
+ } |
+ }else if( pOrTerm->wtFlags & TERM_COPIED ){ |
+ /* Skip this term for now. We revisit it when we process the |
+ ** corresponding TERM_VIRTUAL term */ |
+ }else{ |
+ Bitmask b; |
+ b = getMask(pMaskSet, pOrTerm->leftCursor); |
+ if( pOrTerm->wtFlags & TERM_VIRTUAL ){ |
+ WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; |
+ b |= getMask(pMaskSet, pOther->leftCursor); |
+ } |
+ indexable &= b; |
+ if( pOrTerm->eOperator!=WO_EQ ){ |
+ chngToIN = 0; |
+ }else{ |
+ chngToIN &= b; |
+ } |
+ } |
+ } |
+ |
+ /* |
+ ** Record the set of tables that satisfy case 2. The set might be |
+ ** empty. |
+ */ |
+ pOrInfo->indexable = indexable; |
+ pTerm->eOperator = indexable==0 ? 0 : WO_OR; |
+ |
+ /* |
+ ** chngToIN holds a set of tables that *might* satisfy case 1. But |
+ ** we have to do some additional checking to see if case 1 really |
+ ** is satisfied. |
+ ** |
+ ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means |
+ ** that there is no possibility of transforming the OR clause into an |
+ ** IN operator because one or more terms in the OR clause contain |
+ ** something other than == on a column in the single table. The 1-bit |
+ ** case means that every term of the OR clause is of the form |
+ ** "table.column=expr" for some single table. The one bit that is set |
+ ** will correspond to the common table. We still need to check to make |
+ ** sure the same column is used on all terms. The 2-bit case is when |
+ ** the all terms are of the form "table1.column=table2.column". It |
+ ** might be possible to form an IN operator with either table1.column |
+ ** or table2.column as the LHS if either is common to every term of |
+ ** the OR clause. |
+ ** |
+ ** Note that terms of the form "table.column1=table.column2" (the |
+ ** same table on both sizes of the ==) cannot be optimized. |
+ */ |
+ if( chngToIN ){ |
+ int okToChngToIN = 0; /* True if the conversion to IN is valid */ |
+ int iColumn = -1; /* Column index on lhs of IN operator */ |
+ int iCursor = -1; /* Table cursor common to all terms */ |
+ int j = 0; /* Loop counter */ |
+ |
+ /* Search for a table and column that appears on one side or the |
+ ** other of the == operator in every subterm. That table and column |
+ ** will be recorded in iCursor and iColumn. There might not be any |
+ ** such table and column. Set okToChngToIN if an appropriate table |
+ ** and column is found but leave okToChngToIN false if not found. |
+ */ |
+ for(j=0; j<2 && !okToChngToIN; j++){ |
+ pOrTerm = pOrWc->a; |
+ for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){ |
+ assert( pOrTerm->eOperator==WO_EQ ); |
+ pOrTerm->wtFlags &= ~TERM_OR_OK; |
+ if( pOrTerm->leftCursor==iCursor ){ |
+ /* This is the 2-bit case and we are on the second iteration and |
+ ** current term is from the first iteration. So skip this term. */ |
+ assert( j==1 ); |
+ continue; |
+ } |
+ if( (chngToIN & getMask(pMaskSet, pOrTerm->leftCursor))==0 ){ |
+ /* This term must be of the form t1.a==t2.b where t2 is in the |
+ ** chngToIN set but t1 is not. This term will be either preceeded |
+ ** or follwed by an inverted copy (t2.b==t1.a). Skip this term |
+ ** and use its inversion. */ |
+ testcase( pOrTerm->wtFlags & TERM_COPIED ); |
+ testcase( pOrTerm->wtFlags & TERM_VIRTUAL ); |
+ assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) ); |
+ continue; |
+ } |
+ iColumn = pOrTerm->u.leftColumn; |
+ iCursor = pOrTerm->leftCursor; |
+ break; |
+ } |
+ if( i<0 ){ |
+ /* No candidate table+column was found. This can only occur |
+ ** on the second iteration */ |
+ assert( j==1 ); |
+ assert( (chngToIN&(chngToIN-1))==0 ); |
+ assert( chngToIN==getMask(pMaskSet, iCursor) ); |
+ break; |
+ } |
+ testcase( j==1 ); |
+ |
+ /* We have found a candidate table and column. Check to see if that |
+ ** table and column is common to every term in the OR clause */ |
+ okToChngToIN = 1; |
+ for(; i>=0 && okToChngToIN; i--, pOrTerm++){ |
+ assert( pOrTerm->eOperator==WO_EQ ); |
+ if( pOrTerm->leftCursor!=iCursor ){ |
+ pOrTerm->wtFlags &= ~TERM_OR_OK; |
+ }else if( pOrTerm->u.leftColumn!=iColumn ){ |
+ okToChngToIN = 0; |
+ }else{ |
+ int affLeft, affRight; |
+ /* If the right-hand side is also a column, then the affinities |
+ ** of both right and left sides must be such that no type |
+ ** conversions are required on the right. (Ticket #2249) |
+ */ |
+ affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); |
+ affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); |
+ if( affRight!=0 && affRight!=affLeft ){ |
+ okToChngToIN = 0; |
+ }else{ |
+ pOrTerm->wtFlags |= TERM_OR_OK; |
+ } |
+ } |
+ } |
+ } |
+ |
+ /* At this point, okToChngToIN is true if original pTerm satisfies |
+ ** case 1. In that case, construct a new virtual term that is |
+ ** pTerm converted into an IN operator. |
+ ** |
+ ** EV: R-00211-15100 |
+ */ |
+ if( okToChngToIN ){ |
+ Expr *pDup; /* A transient duplicate expression */ |
+ ExprList *pList = 0; /* The RHS of the IN operator */ |
+ Expr *pLeft = 0; /* The LHS of the IN operator */ |
+ Expr *pNew; /* The complete IN operator */ |
+ |
+ for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ |
+ if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue; |
+ assert( pOrTerm->eOperator==WO_EQ ); |
+ assert( pOrTerm->leftCursor==iCursor ); |
+ assert( pOrTerm->u.leftColumn==iColumn ); |
+ pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); |
+ pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup); |
+ pLeft = pOrTerm->pExpr->pLeft; |
+ } |
+ assert( pLeft!=0 ); |
+ pDup = sqlite3ExprDup(db, pLeft, 0); |
+ pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0); |
+ if( pNew ){ |
+ int idxNew; |
+ transferJoinMarkings(pNew, pExpr); |
+ assert( !ExprHasProperty(pNew, EP_xIsSelect) ); |
+ pNew->x.pList = pList; |
+ idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); |
+ testcase( idxNew==0 ); |
+ exprAnalyze(pSrc, pWC, idxNew); |
+ pTerm = &pWC->a[idxTerm]; |
+ pWC->a[idxNew].iParent = idxTerm; |
+ pTerm->nChild = 1; |
+ }else{ |
+ sqlite3ExprListDelete(db, pList); |
+ } |
+ pTerm->eOperator = WO_NOOP; /* case 1 trumps case 2 */ |
+ } |
+ } |
+} |
+#endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ |
+ |
+ |
+/* |
+** The input to this routine is an WhereTerm structure with only the |
+** "pExpr" field filled in. The job of this routine is to analyze the |
+** subexpression and populate all the other fields of the WhereTerm |
+** structure. |
+** |
+** If the expression is of the form "<expr> <op> X" it gets commuted |
+** to the standard form of "X <op> <expr>". |
+** |
+** If the expression is of the form "X <op> Y" where both X and Y are |
+** columns, then the original expression is unchanged and a new virtual |
+** term of the form "Y <op> X" is added to the WHERE clause and |
+** analyzed separately. The original term is marked with TERM_COPIED |
+** and the new term is marked with TERM_DYNAMIC (because it's pExpr |
+** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it |
+** is a commuted copy of a prior term.) The original term has nChild=1 |
+** and the copy has idxParent set to the index of the original term. |
+*/ |
+static void exprAnalyze( |
+ SrcList *pSrc, /* the FROM clause */ |
+ WhereClause *pWC, /* the WHERE clause */ |
+ int idxTerm /* Index of the term to be analyzed */ |
+){ |
+ WhereTerm *pTerm; /* The term to be analyzed */ |
+ WhereMaskSet *pMaskSet; /* Set of table index masks */ |
+ Expr *pExpr; /* The expression to be analyzed */ |
+ Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */ |
+ Bitmask prereqAll; /* Prerequesites of pExpr */ |
+ Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */ |
+ Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */ |
+ int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */ |
+ int noCase = 0; /* LIKE/GLOB distinguishes case */ |
+ int op; /* Top-level operator. pExpr->op */ |
+ Parse *pParse = pWC->pParse; /* Parsing context */ |
+ sqlite3 *db = pParse->db; /* Database connection */ |
+ |
+ if( db->mallocFailed ){ |
+ return; |
+ } |
+ pTerm = &pWC->a[idxTerm]; |
+ pMaskSet = pWC->pMaskSet; |
+ pExpr = pTerm->pExpr; |
+ prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); |
+ op = pExpr->op; |
+ if( op==TK_IN ){ |
+ assert( pExpr->pRight==0 ); |
+ if( ExprHasProperty(pExpr, EP_xIsSelect) ){ |
+ pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect); |
+ }else{ |
+ pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->x.pList); |
+ } |
+ }else if( op==TK_ISNULL ){ |
+ pTerm->prereqRight = 0; |
+ }else{ |
+ pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); |
+ } |
+ prereqAll = exprTableUsage(pMaskSet, pExpr); |
+ if( ExprHasProperty(pExpr, EP_FromJoin) ){ |
+ Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable); |
+ prereqAll |= x; |
+ extraRight = x-1; /* ON clause terms may not be used with an index |
+ ** on left table of a LEFT JOIN. Ticket #3015 */ |
+ } |
+ pTerm->prereqAll = prereqAll; |
+ pTerm->leftCursor = -1; |
+ pTerm->iParent = -1; |
+ pTerm->eOperator = 0; |
+ if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){ |
+ Expr *pLeft = pExpr->pLeft; |
+ Expr *pRight = pExpr->pRight; |
+ if( pLeft->op==TK_COLUMN ){ |
+ pTerm->leftCursor = pLeft->iTable; |
+ pTerm->u.leftColumn = pLeft->iColumn; |
+ pTerm->eOperator = operatorMask(op); |
+ } |
+ if( pRight && pRight->op==TK_COLUMN ){ |
+ WhereTerm *pNew; |
+ Expr *pDup; |
+ if( pTerm->leftCursor>=0 ){ |
+ int idxNew; |
+ pDup = sqlite3ExprDup(db, pExpr, 0); |
+ if( db->mallocFailed ){ |
+ sqlite3ExprDelete(db, pDup); |
+ return; |
+ } |
+ idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); |
+ if( idxNew==0 ) return; |
+ pNew = &pWC->a[idxNew]; |
+ pNew->iParent = idxTerm; |
+ pTerm = &pWC->a[idxTerm]; |
+ pTerm->nChild = 1; |
+ pTerm->wtFlags |= TERM_COPIED; |
+ }else{ |
+ pDup = pExpr; |
+ pNew = pTerm; |
+ } |
+ exprCommute(pParse, pDup); |
+ pLeft = pDup->pLeft; |
+ pNew->leftCursor = pLeft->iTable; |
+ pNew->u.leftColumn = pLeft->iColumn; |
+ testcase( (prereqLeft | extraRight) != prereqLeft ); |
+ pNew->prereqRight = prereqLeft | extraRight; |
+ pNew->prereqAll = prereqAll; |
+ pNew->eOperator = operatorMask(pDup->op); |
+ } |
+ } |
+ |
+#ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION |
+ /* If a term is the BETWEEN operator, create two new virtual terms |
+ ** that define the range that the BETWEEN implements. For example: |
+ ** |
+ ** a BETWEEN b AND c |
+ ** |
+ ** is converted into: |
+ ** |
+ ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c) |
+ ** |
+ ** The two new terms are added onto the end of the WhereClause object. |
+ ** The new terms are "dynamic" and are children of the original BETWEEN |
+ ** term. That means that if the BETWEEN term is coded, the children are |
+ ** skipped. Or, if the children are satisfied by an index, the original |
+ ** BETWEEN term is skipped. |
+ */ |
+ else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){ |
+ ExprList *pList = pExpr->x.pList; |
+ int i; |
+ static const u8 ops[] = {TK_GE, TK_LE}; |
+ assert( pList!=0 ); |
+ assert( pList->nExpr==2 ); |
+ for(i=0; i<2; i++){ |
+ Expr *pNewExpr; |
+ int idxNew; |
+ pNewExpr = sqlite3PExpr(pParse, ops[i], |
+ sqlite3ExprDup(db, pExpr->pLeft, 0), |
+ sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0); |
+ idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); |
+ testcase( idxNew==0 ); |
+ exprAnalyze(pSrc, pWC, idxNew); |
+ pTerm = &pWC->a[idxTerm]; |
+ pWC->a[idxNew].iParent = idxTerm; |
+ } |
+ pTerm->nChild = 2; |
+ } |
+#endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ |
+ |
+#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) |
+ /* Analyze a term that is composed of two or more subterms connected by |
+ ** an OR operator. |
+ */ |
+ else if( pExpr->op==TK_OR ){ |
+ assert( pWC->op==TK_AND ); |
+ exprAnalyzeOrTerm(pSrc, pWC, idxTerm); |
+ pTerm = &pWC->a[idxTerm]; |
+ } |
+#endif /* SQLITE_OMIT_OR_OPTIMIZATION */ |
+ |
+#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION |
+ /* Add constraints to reduce the search space on a LIKE or GLOB |
+ ** operator. |
+ ** |
+ ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints |
+ ** |
+ ** x>='abc' AND x<'abd' AND x LIKE 'abc%' |
+ ** |
+ ** The last character of the prefix "abc" is incremented to form the |
+ ** termination condition "abd". |
+ */ |
+ if( pWC->op==TK_AND |
+ && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase) |
+ ){ |
+ Expr *pLeft; /* LHS of LIKE/GLOB operator */ |
+ Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */ |
+ Expr *pNewExpr1; |
+ Expr *pNewExpr2; |
+ int idxNew1; |
+ int idxNew2; |
+ CollSeq *pColl; /* Collating sequence to use */ |
+ |
+ pLeft = pExpr->x.pList->a[1].pExpr; |
+ pStr2 = sqlite3ExprDup(db, pStr1, 0); |
+ if( !db->mallocFailed ){ |
+ u8 c, *pC; /* Last character before the first wildcard */ |
+ pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1]; |
+ c = *pC; |
+ if( noCase ){ |
+ /* The point is to increment the last character before the first |
+ ** wildcard. But if we increment '@', that will push it into the |
+ ** alphabetic range where case conversions will mess up the |
+ ** inequality. To avoid this, make sure to also run the full |
+ ** LIKE on all candidate expressions by clearing the isComplete flag |
+ */ |
+ if( c=='A'-1 ) isComplete = 0; /* EV: R-64339-08207 */ |
+ |
+ |
+ c = sqlite3UpperToLower[c]; |
+ } |
+ *pC = c + 1; |
+ } |
+ pColl = sqlite3FindCollSeq(db, SQLITE_UTF8, noCase ? "NOCASE" : "BINARY",0); |
+ pNewExpr1 = sqlite3PExpr(pParse, TK_GE, |
+ sqlite3ExprSetColl(sqlite3ExprDup(db,pLeft,0), pColl), |
+ pStr1, 0); |
+ idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC); |
+ testcase( idxNew1==0 ); |
+ exprAnalyze(pSrc, pWC, idxNew1); |
+ pNewExpr2 = sqlite3PExpr(pParse, TK_LT, |
+ sqlite3ExprSetColl(sqlite3ExprDup(db,pLeft,0), pColl), |
+ pStr2, 0); |
+ idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC); |
+ testcase( idxNew2==0 ); |
+ exprAnalyze(pSrc, pWC, idxNew2); |
+ pTerm = &pWC->a[idxTerm]; |
+ if( isComplete ){ |
+ pWC->a[idxNew1].iParent = idxTerm; |
+ pWC->a[idxNew2].iParent = idxTerm; |
+ pTerm->nChild = 2; |
+ } |
+ } |
+#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ |
+ |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ /* Add a WO_MATCH auxiliary term to the constraint set if the |
+ ** current expression is of the form: column MATCH expr. |
+ ** This information is used by the xBestIndex methods of |
+ ** virtual tables. The native query optimizer does not attempt |
+ ** to do anything with MATCH functions. |
+ */ |
+ if( isMatchOfColumn(pExpr) ){ |
+ int idxNew; |
+ Expr *pRight, *pLeft; |
+ WhereTerm *pNewTerm; |
+ Bitmask prereqColumn, prereqExpr; |
+ |
+ pRight = pExpr->x.pList->a[0].pExpr; |
+ pLeft = pExpr->x.pList->a[1].pExpr; |
+ prereqExpr = exprTableUsage(pMaskSet, pRight); |
+ prereqColumn = exprTableUsage(pMaskSet, pLeft); |
+ if( (prereqExpr & prereqColumn)==0 ){ |
+ Expr *pNewExpr; |
+ pNewExpr = sqlite3PExpr(pParse, TK_MATCH, |
+ 0, sqlite3ExprDup(db, pRight, 0), 0); |
+ idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); |
+ testcase( idxNew==0 ); |
+ pNewTerm = &pWC->a[idxNew]; |
+ pNewTerm->prereqRight = prereqExpr; |
+ pNewTerm->leftCursor = pLeft->iTable; |
+ pNewTerm->u.leftColumn = pLeft->iColumn; |
+ pNewTerm->eOperator = WO_MATCH; |
+ pNewTerm->iParent = idxTerm; |
+ pTerm = &pWC->a[idxTerm]; |
+ pTerm->nChild = 1; |
+ pTerm->wtFlags |= TERM_COPIED; |
+ pNewTerm->prereqAll = pTerm->prereqAll; |
+ } |
+ } |
+#endif /* SQLITE_OMIT_VIRTUALTABLE */ |
+ |
+#ifdef SQLITE_ENABLE_STAT2 |
+ /* When sqlite_stat2 histogram data is available an operator of the |
+ ** form "x IS NOT NULL" can sometimes be evaluated more efficiently |
+ ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a |
+ ** virtual term of that form. |
+ ** |
+ ** Note that the virtual term must be tagged with TERM_VNULL. This |
+ ** TERM_VNULL tag will suppress the not-null check at the beginning |
+ ** of the loop. Without the TERM_VNULL flag, the not-null check at |
+ ** the start of the loop will prevent any results from being returned. |
+ */ |
+ if( pExpr->op==TK_NOTNULL |
+ && pExpr->pLeft->op==TK_COLUMN |
+ && pExpr->pLeft->iColumn>=0 |
+ ){ |
+ Expr *pNewExpr; |
+ Expr *pLeft = pExpr->pLeft; |
+ int idxNew; |
+ WhereTerm *pNewTerm; |
+ |
+ pNewExpr = sqlite3PExpr(pParse, TK_GT, |
+ sqlite3ExprDup(db, pLeft, 0), |
+ sqlite3PExpr(pParse, TK_NULL, 0, 0, 0), 0); |
+ |
+ idxNew = whereClauseInsert(pWC, pNewExpr, |
+ TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL); |
+ if( idxNew ){ |
+ pNewTerm = &pWC->a[idxNew]; |
+ pNewTerm->prereqRight = 0; |
+ pNewTerm->leftCursor = pLeft->iTable; |
+ pNewTerm->u.leftColumn = pLeft->iColumn; |
+ pNewTerm->eOperator = WO_GT; |
+ pNewTerm->iParent = idxTerm; |
+ pTerm = &pWC->a[idxTerm]; |
+ pTerm->nChild = 1; |
+ pTerm->wtFlags |= TERM_COPIED; |
+ pNewTerm->prereqAll = pTerm->prereqAll; |
+ } |
+ } |
+#endif /* SQLITE_ENABLE_STAT2 */ |
+ |
+ /* Prevent ON clause terms of a LEFT JOIN from being used to drive |
+ ** an index for tables to the left of the join. |
+ */ |
+ pTerm->prereqRight |= extraRight; |
+} |
+ |
+/* |
+** Return TRUE if any of the expressions in pList->a[iFirst...] contain |
+** a reference to any table other than the iBase table. |
+*/ |
+static int referencesOtherTables( |
+ ExprList *pList, /* Search expressions in ths list */ |
+ WhereMaskSet *pMaskSet, /* Mapping from tables to bitmaps */ |
+ int iFirst, /* Be searching with the iFirst-th expression */ |
+ int iBase /* Ignore references to this table */ |
+){ |
+ Bitmask allowed = ~getMask(pMaskSet, iBase); |
+ while( iFirst<pList->nExpr ){ |
+ if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){ |
+ return 1; |
+ } |
+ } |
+ return 0; |
+} |
+ |
+ |
+/* |
+** This routine decides if pIdx can be used to satisfy the ORDER BY |
+** clause. If it can, it returns 1. If pIdx cannot satisfy the |
+** ORDER BY clause, this routine returns 0. |
+** |
+** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the |
+** left-most table in the FROM clause of that same SELECT statement and |
+** the table has a cursor number of "base". pIdx is an index on pTab. |
+** |
+** nEqCol is the number of columns of pIdx that are used as equality |
+** constraints. Any of these columns may be missing from the ORDER BY |
+** clause and the match can still be a success. |
+** |
+** All terms of the ORDER BY that match against the index must be either |
+** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE |
+** index do not need to satisfy this constraint.) The *pbRev value is |
+** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if |
+** the ORDER BY clause is all ASC. |
+*/ |
+static int isSortingIndex( |
+ Parse *pParse, /* Parsing context */ |
+ WhereMaskSet *pMaskSet, /* Mapping from table cursor numbers to bitmaps */ |
+ Index *pIdx, /* The index we are testing */ |
+ int base, /* Cursor number for the table to be sorted */ |
+ ExprList *pOrderBy, /* The ORDER BY clause */ |
+ int nEqCol, /* Number of index columns with == constraints */ |
+ int wsFlags, /* Index usages flags */ |
+ int *pbRev /* Set to 1 if ORDER BY is DESC */ |
+){ |
+ int i, j; /* Loop counters */ |
+ int sortOrder = 0; /* XOR of index and ORDER BY sort direction */ |
+ int nTerm; /* Number of ORDER BY terms */ |
+ struct ExprList_item *pTerm; /* A term of the ORDER BY clause */ |
+ sqlite3 *db = pParse->db; |
+ |
+ assert( pOrderBy!=0 ); |
+ nTerm = pOrderBy->nExpr; |
+ assert( nTerm>0 ); |
+ |
+ /* Argument pIdx must either point to a 'real' named index structure, |
+ ** or an index structure allocated on the stack by bestBtreeIndex() to |
+ ** represent the rowid index that is part of every table. */ |
+ assert( pIdx->zName || (pIdx->nColumn==1 && pIdx->aiColumn[0]==-1) ); |
+ |
+ /* Match terms of the ORDER BY clause against columns of |
+ ** the index. |
+ ** |
+ ** Note that indices have pIdx->nColumn regular columns plus |
+ ** one additional column containing the rowid. The rowid column |
+ ** of the index is also allowed to match against the ORDER BY |
+ ** clause. |
+ */ |
+ for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){ |
+ Expr *pExpr; /* The expression of the ORDER BY pTerm */ |
+ CollSeq *pColl; /* The collating sequence of pExpr */ |
+ int termSortOrder; /* Sort order for this term */ |
+ int iColumn; /* The i-th column of the index. -1 for rowid */ |
+ int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */ |
+ const char *zColl; /* Name of the collating sequence for i-th index term */ |
+ |
+ pExpr = pTerm->pExpr; |
+ if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){ |
+ /* Can not use an index sort on anything that is not a column in the |
+ ** left-most table of the FROM clause */ |
+ break; |
+ } |
+ pColl = sqlite3ExprCollSeq(pParse, pExpr); |
+ if( !pColl ){ |
+ pColl = db->pDfltColl; |
+ } |
+ if( pIdx->zName && i<pIdx->nColumn ){ |
+ iColumn = pIdx->aiColumn[i]; |
+ if( iColumn==pIdx->pTable->iPKey ){ |
+ iColumn = -1; |
+ } |
+ iSortOrder = pIdx->aSortOrder[i]; |
+ zColl = pIdx->azColl[i]; |
+ }else{ |
+ iColumn = -1; |
+ iSortOrder = 0; |
+ zColl = pColl->zName; |
+ } |
+ if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){ |
+ /* Term j of the ORDER BY clause does not match column i of the index */ |
+ if( i<nEqCol ){ |
+ /* If an index column that is constrained by == fails to match an |
+ ** ORDER BY term, that is OK. Just ignore that column of the index |
+ */ |
+ continue; |
+ }else if( i==pIdx->nColumn ){ |
+ /* Index column i is the rowid. All other terms match. */ |
+ break; |
+ }else{ |
+ /* If an index column fails to match and is not constrained by == |
+ ** then the index cannot satisfy the ORDER BY constraint. |
+ */ |
+ return 0; |
+ } |
+ } |
+ assert( pIdx->aSortOrder!=0 || iColumn==-1 ); |
+ assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 ); |
+ assert( iSortOrder==0 || iSortOrder==1 ); |
+ termSortOrder = iSortOrder ^ pTerm->sortOrder; |
+ if( i>nEqCol ){ |
+ if( termSortOrder!=sortOrder ){ |
+ /* Indices can only be used if all ORDER BY terms past the |
+ ** equality constraints are all either DESC or ASC. */ |
+ return 0; |
+ } |
+ }else{ |
+ sortOrder = termSortOrder; |
+ } |
+ j++; |
+ pTerm++; |
+ if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ |
+ /* If the indexed column is the primary key and everything matches |
+ ** so far and none of the ORDER BY terms to the right reference other |
+ ** tables in the join, then we are assured that the index can be used |
+ ** to sort because the primary key is unique and so none of the other |
+ ** columns will make any difference |
+ */ |
+ j = nTerm; |
+ } |
+ } |
+ |
+ *pbRev = sortOrder!=0; |
+ if( j>=nTerm ){ |
+ /* All terms of the ORDER BY clause are covered by this index so |
+ ** this index can be used for sorting. */ |
+ return 1; |
+ } |
+ if( pIdx->onError!=OE_None && i==pIdx->nColumn |
+ && (wsFlags & WHERE_COLUMN_NULL)==0 |
+ && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ |
+ /* All terms of this index match some prefix of the ORDER BY clause |
+ ** and the index is UNIQUE and no terms on the tail of the ORDER BY |
+ ** clause reference other tables in a join. If this is all true then |
+ ** the order by clause is superfluous. Not that if the matching |
+ ** condition is IS NULL then the result is not necessarily unique |
+ ** even on a UNIQUE index, so disallow those cases. */ |
+ return 1; |
+ } |
+ return 0; |
+} |
+ |
+/* |
+** Prepare a crude estimate of the logarithm of the input value. |
+** The results need not be exact. This is only used for estimating |
+** the total cost of performing operations with O(logN) or O(NlogN) |
+** complexity. Because N is just a guess, it is no great tragedy if |
+** logN is a little off. |
+*/ |
+static double estLog(double N){ |
+ double logN = 1; |
+ double x = 10; |
+ while( N>x ){ |
+ logN += 1; |
+ x *= 10; |
+ } |
+ return logN; |
+} |
+ |
+/* |
+** Two routines for printing the content of an sqlite3_index_info |
+** structure. Used for testing and debugging only. If neither |
+** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines |
+** are no-ops. |
+*/ |
+#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG) |
+static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ |
+ int i; |
+ if( !sqlite3WhereTrace ) return; |
+ for(i=0; i<p->nConstraint; i++){ |
+ sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", |
+ i, |
+ p->aConstraint[i].iColumn, |
+ p->aConstraint[i].iTermOffset, |
+ p->aConstraint[i].op, |
+ p->aConstraint[i].usable); |
+ } |
+ for(i=0; i<p->nOrderBy; i++){ |
+ sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", |
+ i, |
+ p->aOrderBy[i].iColumn, |
+ p->aOrderBy[i].desc); |
+ } |
+} |
+static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ |
+ int i; |
+ if( !sqlite3WhereTrace ) return; |
+ for(i=0; i<p->nConstraint; i++){ |
+ sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", |
+ i, |
+ p->aConstraintUsage[i].argvIndex, |
+ p->aConstraintUsage[i].omit); |
+ } |
+ sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); |
+ sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); |
+ sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); |
+ sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); |
+} |
+#else |
+#define TRACE_IDX_INPUTS(A) |
+#define TRACE_IDX_OUTPUTS(A) |
+#endif |
+ |
+/* |
+** Required because bestIndex() is called by bestOrClauseIndex() |
+*/ |
+static void bestIndex( |
+ Parse*, WhereClause*, struct SrcList_item*, |
+ Bitmask, Bitmask, ExprList*, WhereCost*); |
+ |
+/* |
+** This routine attempts to find an scanning strategy that can be used |
+** to optimize an 'OR' expression that is part of a WHERE clause. |
+** |
+** The table associated with FROM clause term pSrc may be either a |
+** regular B-Tree table or a virtual table. |
+*/ |
+static void bestOrClauseIndex( |
+ Parse *pParse, /* The parsing context */ |
+ WhereClause *pWC, /* The WHERE clause */ |
+ struct SrcList_item *pSrc, /* The FROM clause term to search */ |
+ Bitmask notReady, /* Mask of cursors not available for indexing */ |
+ Bitmask notValid, /* Cursors not available for any purpose */ |
+ ExprList *pOrderBy, /* The ORDER BY clause */ |
+ WhereCost *pCost /* Lowest cost query plan */ |
+){ |
+#ifndef SQLITE_OMIT_OR_OPTIMIZATION |
+ const int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ |
+ const Bitmask maskSrc = getMask(pWC->pMaskSet, iCur); /* Bitmask for pSrc */ |
+ WhereTerm * const pWCEnd = &pWC->a[pWC->nTerm]; /* End of pWC->a[] */ |
+ WhereTerm *pTerm; /* A single term of the WHERE clause */ |
+ |
+ /* No OR-clause optimization allowed if the INDEXED BY or NOT INDEXED clauses |
+ ** are used */ |
+ if( pSrc->notIndexed || pSrc->pIndex!=0 ){ |
+ return; |
+ } |
+ |
+ /* Search the WHERE clause terms for a usable WO_OR term. */ |
+ for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ |
+ if( pTerm->eOperator==WO_OR |
+ && ((pTerm->prereqAll & ~maskSrc) & notReady)==0 |
+ && (pTerm->u.pOrInfo->indexable & maskSrc)!=0 |
+ ){ |
+ WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; |
+ WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; |
+ WhereTerm *pOrTerm; |
+ int flags = WHERE_MULTI_OR; |
+ double rTotal = 0; |
+ double nRow = 0; |
+ Bitmask used = 0; |
+ |
+ for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ |
+ WhereCost sTermCost; |
+ WHERETRACE(("... Multi-index OR testing for term %d of %d....\n", |
+ (pOrTerm - pOrWC->a), (pTerm - pWC->a) |
+ )); |
+ if( pOrTerm->eOperator==WO_AND ){ |
+ WhereClause *pAndWC = &pOrTerm->u.pAndInfo->wc; |
+ bestIndex(pParse, pAndWC, pSrc, notReady, notValid, 0, &sTermCost); |
+ }else if( pOrTerm->leftCursor==iCur ){ |
+ WhereClause tempWC; |
+ tempWC.pParse = pWC->pParse; |
+ tempWC.pMaskSet = pWC->pMaskSet; |
+ tempWC.op = TK_AND; |
+ tempWC.a = pOrTerm; |
+ tempWC.nTerm = 1; |
+ bestIndex(pParse, &tempWC, pSrc, notReady, notValid, 0, &sTermCost); |
+ }else{ |
+ continue; |
+ } |
+ rTotal += sTermCost.rCost; |
+ nRow += sTermCost.plan.nRow; |
+ used |= sTermCost.used; |
+ if( rTotal>=pCost->rCost ) break; |
+ } |
+ |
+ /* If there is an ORDER BY clause, increase the scan cost to account |
+ ** for the cost of the sort. */ |
+ if( pOrderBy!=0 ){ |
+ WHERETRACE(("... sorting increases OR cost %.9g to %.9g\n", |
+ rTotal, rTotal+nRow*estLog(nRow))); |
+ rTotal += nRow*estLog(nRow); |
+ } |
+ |
+ /* If the cost of scanning using this OR term for optimization is |
+ ** less than the current cost stored in pCost, replace the contents |
+ ** of pCost. */ |
+ WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal, nRow)); |
+ if( rTotal<pCost->rCost ){ |
+ pCost->rCost = rTotal; |
+ pCost->used = used; |
+ pCost->plan.nRow = nRow; |
+ pCost->plan.wsFlags = flags; |
+ pCost->plan.u.pTerm = pTerm; |
+ } |
+ } |
+ } |
+#endif /* SQLITE_OMIT_OR_OPTIMIZATION */ |
+} |
+ |
+#ifndef SQLITE_OMIT_AUTOMATIC_INDEX |
+/* |
+** Return TRUE if the WHERE clause term pTerm is of a form where it |
+** could be used with an index to access pSrc, assuming an appropriate |
+** index existed. |
+*/ |
+static int termCanDriveIndex( |
+ WhereTerm *pTerm, /* WHERE clause term to check */ |
+ struct SrcList_item *pSrc, /* Table we are trying to access */ |
+ Bitmask notReady /* Tables in outer loops of the join */ |
+){ |
+ char aff; |
+ if( pTerm->leftCursor!=pSrc->iCursor ) return 0; |
+ if( pTerm->eOperator!=WO_EQ ) return 0; |
+ if( (pTerm->prereqRight & notReady)!=0 ) return 0; |
+ aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity; |
+ if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; |
+ return 1; |
+} |
+#endif |
+ |
+#ifndef SQLITE_OMIT_AUTOMATIC_INDEX |
+/* |
+** If the query plan for pSrc specified in pCost is a full table scan |
+** and indexing is allows (if there is no NOT INDEXED clause) and it |
+** possible to construct a transient index that would perform better |
+** than a full table scan even when the cost of constructing the index |
+** is taken into account, then alter the query plan to use the |
+** transient index. |
+*/ |
+static void bestAutomaticIndex( |
+ Parse *pParse, /* The parsing context */ |
+ WhereClause *pWC, /* The WHERE clause */ |
+ struct SrcList_item *pSrc, /* The FROM clause term to search */ |
+ Bitmask notReady, /* Mask of cursors that are not available */ |
+ WhereCost *pCost /* Lowest cost query plan */ |
+){ |
+ double nTableRow; /* Rows in the input table */ |
+ double logN; /* log(nTableRow) */ |
+ double costTempIdx; /* per-query cost of the transient index */ |
+ WhereTerm *pTerm; /* A single term of the WHERE clause */ |
+ WhereTerm *pWCEnd; /* End of pWC->a[] */ |
+ Table *pTable; /* Table tht might be indexed */ |
+ |
+ if( (pParse->db->flags & SQLITE_AutoIndex)==0 ){ |
+ /* Automatic indices are disabled at run-time */ |
+ return; |
+ } |
+ if( (pCost->plan.wsFlags & WHERE_NOT_FULLSCAN)!=0 ){ |
+ /* We already have some kind of index in use for this query. */ |
+ return; |
+ } |
+ if( pSrc->notIndexed ){ |
+ /* The NOT INDEXED clause appears in the SQL. */ |
+ return; |
+ } |
+ |
+ assert( pParse->nQueryLoop >= (double)1 ); |
+ pTable = pSrc->pTab; |
+ nTableRow = pTable->nRowEst; |
+ logN = estLog(nTableRow); |
+ costTempIdx = 2*logN*(nTableRow/pParse->nQueryLoop + 1); |
+ if( costTempIdx>=pCost->rCost ){ |
+ /* The cost of creating the transient table would be greater than |
+ ** doing the full table scan */ |
+ return; |
+ } |
+ |
+ /* Search for any equality comparison term */ |
+ pWCEnd = &pWC->a[pWC->nTerm]; |
+ for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ |
+ if( termCanDriveIndex(pTerm, pSrc, notReady) ){ |
+ WHERETRACE(("auto-index reduces cost from %.1f to %.1f\n", |
+ pCost->rCost, costTempIdx)); |
+ pCost->rCost = costTempIdx; |
+ pCost->plan.nRow = logN + 1; |
+ pCost->plan.wsFlags = WHERE_TEMP_INDEX; |
+ pCost->used = pTerm->prereqRight; |
+ break; |
+ } |
+ } |
+} |
+#else |
+# define bestAutomaticIndex(A,B,C,D,E) /* no-op */ |
+#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ |
+ |
+ |
+#ifndef SQLITE_OMIT_AUTOMATIC_INDEX |
+/* |
+** Generate code to construct the Index object for an automatic index |
+** and to set up the WhereLevel object pLevel so that the code generator |
+** makes use of the automatic index. |
+*/ |
+static void constructAutomaticIndex( |
+ Parse *pParse, /* The parsing context */ |
+ WhereClause *pWC, /* The WHERE clause */ |
+ struct SrcList_item *pSrc, /* The FROM clause term to get the next index */ |
+ Bitmask notReady, /* Mask of cursors that are not available */ |
+ WhereLevel *pLevel /* Write new index here */ |
+){ |
+ int nColumn; /* Number of columns in the constructed index */ |
+ WhereTerm *pTerm; /* A single term of the WHERE clause */ |
+ WhereTerm *pWCEnd; /* End of pWC->a[] */ |
+ int nByte; /* Byte of memory needed for pIdx */ |
+ Index *pIdx; /* Object describing the transient index */ |
+ Vdbe *v; /* Prepared statement under construction */ |
+ int regIsInit; /* Register set by initialization */ |
+ int addrInit; /* Address of the initialization bypass jump */ |
+ Table *pTable; /* The table being indexed */ |
+ KeyInfo *pKeyinfo; /* Key information for the index */ |
+ int addrTop; /* Top of the index fill loop */ |
+ int regRecord; /* Register holding an index record */ |
+ int n; /* Column counter */ |
+ int i; /* Loop counter */ |
+ int mxBitCol; /* Maximum column in pSrc->colUsed */ |
+ CollSeq *pColl; /* Collating sequence to on a column */ |
+ Bitmask idxCols; /* Bitmap of columns used for indexing */ |
+ Bitmask extraCols; /* Bitmap of additional columns */ |
+ |
+ /* Generate code to skip over the creation and initialization of the |
+ ** transient index on 2nd and subsequent iterations of the loop. */ |
+ v = pParse->pVdbe; |
+ assert( v!=0 ); |
+ regIsInit = ++pParse->nMem; |
+ addrInit = sqlite3VdbeAddOp1(v, OP_If, regIsInit); |
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, regIsInit); |
+ |
+ /* Count the number of columns that will be added to the index |
+ ** and used to match WHERE clause constraints */ |
+ nColumn = 0; |
+ pTable = pSrc->pTab; |
+ pWCEnd = &pWC->a[pWC->nTerm]; |
+ idxCols = 0; |
+ for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ |
+ if( termCanDriveIndex(pTerm, pSrc, notReady) ){ |
+ int iCol = pTerm->u.leftColumn; |
+ Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol; |
+ testcase( iCol==BMS ); |
+ testcase( iCol==BMS-1 ); |
+ if( (idxCols & cMask)==0 ){ |
+ nColumn++; |
+ idxCols |= cMask; |
+ } |
+ } |
+ } |
+ assert( nColumn>0 ); |
+ pLevel->plan.nEq = nColumn; |
+ |
+ /* Count the number of additional columns needed to create a |
+ ** covering index. A "covering index" is an index that contains all |
+ ** columns that are needed by the query. With a covering index, the |
+ ** original table never needs to be accessed. Automatic indices must |
+ ** be a covering index because the index will not be updated if the |
+ ** original table changes and the index and table cannot both be used |
+ ** if they go out of sync. |
+ */ |
+ extraCols = pSrc->colUsed & (~idxCols | (((Bitmask)1)<<(BMS-1))); |
+ mxBitCol = (pTable->nCol >= BMS-1) ? BMS-1 : pTable->nCol; |
+ testcase( pTable->nCol==BMS-1 ); |
+ testcase( pTable->nCol==BMS-2 ); |
+ for(i=0; i<mxBitCol; i++){ |
+ if( extraCols & (((Bitmask)1)<<i) ) nColumn++; |
+ } |
+ if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){ |
+ nColumn += pTable->nCol - BMS + 1; |
+ } |
+ pLevel->plan.wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WO_EQ; |
+ |
+ /* Construct the Index object to describe this index */ |
+ nByte = sizeof(Index); |
+ nByte += nColumn*sizeof(int); /* Index.aiColumn */ |
+ nByte += nColumn*sizeof(char*); /* Index.azColl */ |
+ nByte += nColumn; /* Index.aSortOrder */ |
+ pIdx = sqlite3DbMallocZero(pParse->db, nByte); |
+ if( pIdx==0 ) return; |
+ pLevel->plan.u.pIdx = pIdx; |
+ pIdx->azColl = (char**)&pIdx[1]; |
+ pIdx->aiColumn = (int*)&pIdx->azColl[nColumn]; |
+ pIdx->aSortOrder = (u8*)&pIdx->aiColumn[nColumn]; |
+ pIdx->zName = "auto-index"; |
+ pIdx->nColumn = nColumn; |
+ pIdx->pTable = pTable; |
+ n = 0; |
+ idxCols = 0; |
+ for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ |
+ if( termCanDriveIndex(pTerm, pSrc, notReady) ){ |
+ int iCol = pTerm->u.leftColumn; |
+ Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol; |
+ if( (idxCols & cMask)==0 ){ |
+ Expr *pX = pTerm->pExpr; |
+ idxCols |= cMask; |
+ pIdx->aiColumn[n] = pTerm->u.leftColumn; |
+ pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); |
+ pIdx->azColl[n] = ALWAYS(pColl) ? pColl->zName : "BINARY"; |
+ n++; |
+ } |
+ } |
+ } |
+ assert( (u32)n==pLevel->plan.nEq ); |
+ |
+ /* Add additional columns needed to make the automatic index into |
+ ** a covering index */ |
+ for(i=0; i<mxBitCol; i++){ |
+ if( extraCols & (((Bitmask)1)<<i) ){ |
+ pIdx->aiColumn[n] = i; |
+ pIdx->azColl[n] = "BINARY"; |
+ n++; |
+ } |
+ } |
+ if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){ |
+ for(i=BMS-1; i<pTable->nCol; i++){ |
+ pIdx->aiColumn[n] = i; |
+ pIdx->azColl[n] = "BINARY"; |
+ n++; |
+ } |
+ } |
+ assert( n==nColumn ); |
+ |
+ /* Create the automatic index */ |
+ pKeyinfo = sqlite3IndexKeyinfo(pParse, pIdx); |
+ assert( pLevel->iIdxCur>=0 ); |
+ sqlite3VdbeAddOp4(v, OP_OpenAutoindex, pLevel->iIdxCur, nColumn+1, 0, |
+ (char*)pKeyinfo, P4_KEYINFO_HANDOFF); |
+ VdbeComment((v, "for %s", pTable->zName)); |
+ |
+ /* Fill the automatic index with content */ |
+ addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); |
+ regRecord = sqlite3GetTempReg(pParse); |
+ sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 1); |
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); |
+ sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); |
+ sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); |
+ sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); |
+ sqlite3VdbeJumpHere(v, addrTop); |
+ sqlite3ReleaseTempReg(pParse, regRecord); |
+ |
+ /* Jump here when skipping the initialization */ |
+ sqlite3VdbeJumpHere(v, addrInit); |
+} |
+#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ |
+ |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+/* |
+** Allocate and populate an sqlite3_index_info structure. It is the |
+** responsibility of the caller to eventually release the structure |
+** by passing the pointer returned by this function to sqlite3_free(). |
+*/ |
+static sqlite3_index_info *allocateIndexInfo( |
+ Parse *pParse, |
+ WhereClause *pWC, |
+ struct SrcList_item *pSrc, |
+ ExprList *pOrderBy |
+){ |
+ int i, j; |
+ int nTerm; |
+ struct sqlite3_index_constraint *pIdxCons; |
+ struct sqlite3_index_orderby *pIdxOrderBy; |
+ struct sqlite3_index_constraint_usage *pUsage; |
+ WhereTerm *pTerm; |
+ int nOrderBy; |
+ sqlite3_index_info *pIdxInfo; |
+ |
+ WHERETRACE(("Recomputing index info for %s...\n", pSrc->pTab->zName)); |
+ |
+ /* Count the number of possible WHERE clause constraints referring |
+ ** to this virtual table */ |
+ for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ |
+ if( pTerm->leftCursor != pSrc->iCursor ) continue; |
+ assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 ); |
+ testcase( pTerm->eOperator==WO_IN ); |
+ testcase( pTerm->eOperator==WO_ISNULL ); |
+ if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue; |
+ nTerm++; |
+ } |
+ |
+ /* If the ORDER BY clause contains only columns in the current |
+ ** virtual table then allocate space for the aOrderBy part of |
+ ** the sqlite3_index_info structure. |
+ */ |
+ nOrderBy = 0; |
+ if( pOrderBy ){ |
+ for(i=0; i<pOrderBy->nExpr; i++){ |
+ Expr *pExpr = pOrderBy->a[i].pExpr; |
+ if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; |
+ } |
+ if( i==pOrderBy->nExpr ){ |
+ nOrderBy = pOrderBy->nExpr; |
+ } |
+ } |
+ |
+ /* Allocate the sqlite3_index_info structure |
+ */ |
+ pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) |
+ + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm |
+ + sizeof(*pIdxOrderBy)*nOrderBy ); |
+ if( pIdxInfo==0 ){ |
+ sqlite3ErrorMsg(pParse, "out of memory"); |
+ /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ |
+ return 0; |
+ } |
+ |
+ /* Initialize the structure. The sqlite3_index_info structure contains |
+ ** many fields that are declared "const" to prevent xBestIndex from |
+ ** changing them. We have to do some funky casting in order to |
+ ** initialize those fields. |
+ */ |
+ pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; |
+ pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; |
+ pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; |
+ *(int*)&pIdxInfo->nConstraint = nTerm; |
+ *(int*)&pIdxInfo->nOrderBy = nOrderBy; |
+ *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; |
+ *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; |
+ *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = |
+ pUsage; |
+ |
+ for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ |
+ if( pTerm->leftCursor != pSrc->iCursor ) continue; |
+ assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 ); |
+ testcase( pTerm->eOperator==WO_IN ); |
+ testcase( pTerm->eOperator==WO_ISNULL ); |
+ if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue; |
+ pIdxCons[j].iColumn = pTerm->u.leftColumn; |
+ pIdxCons[j].iTermOffset = i; |
+ pIdxCons[j].op = (u8)pTerm->eOperator; |
+ /* The direct assignment in the previous line is possible only because |
+ ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The |
+ ** following asserts verify this fact. */ |
+ assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); |
+ assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); |
+ assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); |
+ assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); |
+ assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); |
+ assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); |
+ assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); |
+ j++; |
+ } |
+ for(i=0; i<nOrderBy; i++){ |
+ Expr *pExpr = pOrderBy->a[i].pExpr; |
+ pIdxOrderBy[i].iColumn = pExpr->iColumn; |
+ pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; |
+ } |
+ |
+ return pIdxInfo; |
+} |
+ |
+/* |
+** The table object reference passed as the second argument to this function |
+** must represent a virtual table. This function invokes the xBestIndex() |
+** method of the virtual table with the sqlite3_index_info pointer passed |
+** as the argument. |
+** |
+** If an error occurs, pParse is populated with an error message and a |
+** non-zero value is returned. Otherwise, 0 is returned and the output |
+** part of the sqlite3_index_info structure is left populated. |
+** |
+** Whether or not an error is returned, it is the responsibility of the |
+** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates |
+** that this is required. |
+*/ |
+static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ |
+ sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; |
+ int i; |
+ int rc; |
+ |
+ WHERETRACE(("xBestIndex for %s\n", pTab->zName)); |
+ TRACE_IDX_INPUTS(p); |
+ rc = pVtab->pModule->xBestIndex(pVtab, p); |
+ TRACE_IDX_OUTPUTS(p); |
+ |
+ if( rc!=SQLITE_OK ){ |
+ if( rc==SQLITE_NOMEM ){ |
+ pParse->db->mallocFailed = 1; |
+ }else if( !pVtab->zErrMsg ){ |
+ sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); |
+ }else{ |
+ sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); |
+ } |
+ } |
+ sqlite3_free(pVtab->zErrMsg); |
+ pVtab->zErrMsg = 0; |
+ |
+ for(i=0; i<p->nConstraint; i++){ |
+ if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){ |
+ sqlite3ErrorMsg(pParse, |
+ "table %s: xBestIndex returned an invalid plan", pTab->zName); |
+ } |
+ } |
+ |
+ return pParse->nErr; |
+} |
+ |
+ |
+/* |
+** Compute the best index for a virtual table. |
+** |
+** The best index is computed by the xBestIndex method of the virtual |
+** table module. This routine is really just a wrapper that sets up |
+** the sqlite3_index_info structure that is used to communicate with |
+** xBestIndex. |
+** |
+** In a join, this routine might be called multiple times for the |
+** same virtual table. The sqlite3_index_info structure is created |
+** and initialized on the first invocation and reused on all subsequent |
+** invocations. The sqlite3_index_info structure is also used when |
+** code is generated to access the virtual table. The whereInfoDelete() |
+** routine takes care of freeing the sqlite3_index_info structure after |
+** everybody has finished with it. |
+*/ |
+static void bestVirtualIndex( |
+ Parse *pParse, /* The parsing context */ |
+ WhereClause *pWC, /* The WHERE clause */ |
+ struct SrcList_item *pSrc, /* The FROM clause term to search */ |
+ Bitmask notReady, /* Mask of cursors not available for index */ |
+ Bitmask notValid, /* Cursors not valid for any purpose */ |
+ ExprList *pOrderBy, /* The order by clause */ |
+ WhereCost *pCost, /* Lowest cost query plan */ |
+ sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */ |
+){ |
+ Table *pTab = pSrc->pTab; |
+ sqlite3_index_info *pIdxInfo; |
+ struct sqlite3_index_constraint *pIdxCons; |
+ struct sqlite3_index_constraint_usage *pUsage; |
+ WhereTerm *pTerm; |
+ int i, j; |
+ int nOrderBy; |
+ double rCost; |
+ |
+ /* Make sure wsFlags is initialized to some sane value. Otherwise, if the |
+ ** malloc in allocateIndexInfo() fails and this function returns leaving |
+ ** wsFlags in an uninitialized state, the caller may behave unpredictably. |
+ */ |
+ memset(pCost, 0, sizeof(*pCost)); |
+ pCost->plan.wsFlags = WHERE_VIRTUALTABLE; |
+ |
+ /* If the sqlite3_index_info structure has not been previously |
+ ** allocated and initialized, then allocate and initialize it now. |
+ */ |
+ pIdxInfo = *ppIdxInfo; |
+ if( pIdxInfo==0 ){ |
+ *ppIdxInfo = pIdxInfo = allocateIndexInfo(pParse, pWC, pSrc, pOrderBy); |
+ } |
+ if( pIdxInfo==0 ){ |
+ return; |
+ } |
+ |
+ /* At this point, the sqlite3_index_info structure that pIdxInfo points |
+ ** to will have been initialized, either during the current invocation or |
+ ** during some prior invocation. Now we just have to customize the |
+ ** details of pIdxInfo for the current invocation and pass it to |
+ ** xBestIndex. |
+ */ |
+ |
+ /* The module name must be defined. Also, by this point there must |
+ ** be a pointer to an sqlite3_vtab structure. Otherwise |
+ ** sqlite3ViewGetColumnNames() would have picked up the error. |
+ */ |
+ assert( pTab->azModuleArg && pTab->azModuleArg[0] ); |
+ assert( sqlite3GetVTable(pParse->db, pTab) ); |
+ |
+ /* Set the aConstraint[].usable fields and initialize all |
+ ** output variables to zero. |
+ ** |
+ ** aConstraint[].usable is true for constraints where the right-hand |
+ ** side contains only references to tables to the left of the current |
+ ** table. In other words, if the constraint is of the form: |
+ ** |
+ ** column = expr |
+ ** |
+ ** and we are evaluating a join, then the constraint on column is |
+ ** only valid if all tables referenced in expr occur to the left |
+ ** of the table containing column. |
+ ** |
+ ** The aConstraints[] array contains entries for all constraints |
+ ** on the current table. That way we only have to compute it once |
+ ** even though we might try to pick the best index multiple times. |
+ ** For each attempt at picking an index, the order of tables in the |
+ ** join might be different so we have to recompute the usable flag |
+ ** each time. |
+ */ |
+ pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; |
+ pUsage = pIdxInfo->aConstraintUsage; |
+ for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ |
+ j = pIdxCons->iTermOffset; |
+ pTerm = &pWC->a[j]; |
+ pIdxCons->usable = (pTerm->prereqRight¬Ready) ? 0 : 1; |
+ } |
+ memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); |
+ if( pIdxInfo->needToFreeIdxStr ){ |
+ sqlite3_free(pIdxInfo->idxStr); |
+ } |
+ pIdxInfo->idxStr = 0; |
+ pIdxInfo->idxNum = 0; |
+ pIdxInfo->needToFreeIdxStr = 0; |
+ pIdxInfo->orderByConsumed = 0; |
+ /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */ |
+ pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2); |
+ nOrderBy = pIdxInfo->nOrderBy; |
+ if( !pOrderBy ){ |
+ pIdxInfo->nOrderBy = 0; |
+ } |
+ |
+ if( vtabBestIndex(pParse, pTab, pIdxInfo) ){ |
+ return; |
+ } |
+ |
+ pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; |
+ for(i=0; i<pIdxInfo->nConstraint; i++){ |
+ if( pUsage[i].argvIndex>0 ){ |
+ pCost->used |= pWC->a[pIdxCons[i].iTermOffset].prereqRight; |
+ } |
+ } |
+ |
+ /* If there is an ORDER BY clause, and the selected virtual table index |
+ ** does not satisfy it, increase the cost of the scan accordingly. This |
+ ** matches the processing for non-virtual tables in bestBtreeIndex(). |
+ */ |
+ rCost = pIdxInfo->estimatedCost; |
+ if( pOrderBy && pIdxInfo->orderByConsumed==0 ){ |
+ rCost += estLog(rCost)*rCost; |
+ } |
+ |
+ /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the |
+ ** inital value of lowestCost in this loop. If it is, then the |
+ ** (cost<lowestCost) test below will never be true. |
+ ** |
+ ** Use "(double)2" instead of "2.0" in case OMIT_FLOATING_POINT |
+ ** is defined. |
+ */ |
+ if( (SQLITE_BIG_DBL/((double)2))<rCost ){ |
+ pCost->rCost = (SQLITE_BIG_DBL/((double)2)); |
+ }else{ |
+ pCost->rCost = rCost; |
+ } |
+ pCost->plan.u.pVtabIdx = pIdxInfo; |
+ if( pIdxInfo->orderByConsumed ){ |
+ pCost->plan.wsFlags |= WHERE_ORDERBY; |
+ } |
+ pCost->plan.nEq = 0; |
+ pIdxInfo->nOrderBy = nOrderBy; |
+ |
+ /* Try to find a more efficient access pattern by using multiple indexes |
+ ** to optimize an OR expression within the WHERE clause. |
+ */ |
+ bestOrClauseIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost); |
+} |
+#endif /* SQLITE_OMIT_VIRTUALTABLE */ |
+ |
+/* |
+** Argument pIdx is a pointer to an index structure that has an array of |
+** SQLITE_INDEX_SAMPLES evenly spaced samples of the first indexed column |
+** stored in Index.aSample. These samples divide the domain of values stored |
+** the index into (SQLITE_INDEX_SAMPLES+1) regions. |
+** Region 0 contains all values less than the first sample value. Region |
+** 1 contains values between the first and second samples. Region 2 contains |
+** values between samples 2 and 3. And so on. Region SQLITE_INDEX_SAMPLES |
+** contains values larger than the last sample. |
+** |
+** If the index contains many duplicates of a single value, then it is |
+** possible that two or more adjacent samples can hold the same value. |
+** When that is the case, the smallest possible region code is returned |
+** when roundUp is false and the largest possible region code is returned |
+** when roundUp is true. |
+** |
+** If successful, this function determines which of the regions value |
+** pVal lies in, sets *piRegion to the region index (a value between 0 |
+** and SQLITE_INDEX_SAMPLES+1, inclusive) and returns SQLITE_OK. |
+** Or, if an OOM occurs while converting text values between encodings, |
+** SQLITE_NOMEM is returned and *piRegion is undefined. |
+*/ |
+#ifdef SQLITE_ENABLE_STAT2 |
+static int whereRangeRegion( |
+ Parse *pParse, /* Database connection */ |
+ Index *pIdx, /* Index to consider domain of */ |
+ sqlite3_value *pVal, /* Value to consider */ |
+ int roundUp, /* Return largest valid region if true */ |
+ int *piRegion /* OUT: Region of domain in which value lies */ |
+){ |
+ assert( roundUp==0 || roundUp==1 ); |
+ if( ALWAYS(pVal) ){ |
+ IndexSample *aSample = pIdx->aSample; |
+ int i = 0; |
+ int eType = sqlite3_value_type(pVal); |
+ |
+ if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ |
+ double r = sqlite3_value_double(pVal); |
+ for(i=0; i<SQLITE_INDEX_SAMPLES; i++){ |
+ if( aSample[i].eType==SQLITE_NULL ) continue; |
+ if( aSample[i].eType>=SQLITE_TEXT ) break; |
+ if( roundUp ){ |
+ if( aSample[i].u.r>r ) break; |
+ }else{ |
+ if( aSample[i].u.r>=r ) break; |
+ } |
+ } |
+ }else if( eType==SQLITE_NULL ){ |
+ i = 0; |
+ if( roundUp ){ |
+ while( i<SQLITE_INDEX_SAMPLES && aSample[i].eType==SQLITE_NULL ) i++; |
+ } |
+ }else{ |
+ sqlite3 *db = pParse->db; |
+ CollSeq *pColl; |
+ const u8 *z; |
+ int n; |
+ |
+ /* pVal comes from sqlite3ValueFromExpr() so the type cannot be NULL */ |
+ assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB ); |
+ |
+ if( eType==SQLITE_BLOB ){ |
+ z = (const u8 *)sqlite3_value_blob(pVal); |
+ pColl = db->pDfltColl; |
+ assert( pColl->enc==SQLITE_UTF8 ); |
+ }else{ |
+ pColl = sqlite3GetCollSeq(db, SQLITE_UTF8, 0, *pIdx->azColl); |
+ if( pColl==0 ){ |
+ sqlite3ErrorMsg(pParse, "no such collation sequence: %s", |
+ *pIdx->azColl); |
+ return SQLITE_ERROR; |
+ } |
+ z = (const u8 *)sqlite3ValueText(pVal, pColl->enc); |
+ if( !z ){ |
+ return SQLITE_NOMEM; |
+ } |
+ assert( z && pColl && pColl->xCmp ); |
+ } |
+ n = sqlite3ValueBytes(pVal, pColl->enc); |
+ |
+ for(i=0; i<SQLITE_INDEX_SAMPLES; i++){ |
+ int c; |
+ int eSampletype = aSample[i].eType; |
+ if( eSampletype==SQLITE_NULL || eSampletype<eType ) continue; |
+ if( (eSampletype!=eType) ) break; |
+#ifndef SQLITE_OMIT_UTF16 |
+ if( pColl->enc!=SQLITE_UTF8 ){ |
+ int nSample; |
+ char *zSample = sqlite3Utf8to16( |
+ db, pColl->enc, aSample[i].u.z, aSample[i].nByte, &nSample |
+ ); |
+ if( !zSample ){ |
+ assert( db->mallocFailed ); |
+ return SQLITE_NOMEM; |
+ } |
+ c = pColl->xCmp(pColl->pUser, nSample, zSample, n, z); |
+ sqlite3DbFree(db, zSample); |
+ }else |
+#endif |
+ { |
+ c = pColl->xCmp(pColl->pUser, aSample[i].nByte, aSample[i].u.z, n, z); |
+ } |
+ if( c-roundUp>=0 ) break; |
+ } |
+ } |
+ |
+ assert( i>=0 && i<=SQLITE_INDEX_SAMPLES ); |
+ *piRegion = i; |
+ } |
+ return SQLITE_OK; |
+} |
+#endif /* #ifdef SQLITE_ENABLE_STAT2 */ |
+ |
+/* |
+** If expression pExpr represents a literal value, set *pp to point to |
+** an sqlite3_value structure containing the same value, with affinity |
+** aff applied to it, before returning. It is the responsibility of the |
+** caller to eventually release this structure by passing it to |
+** sqlite3ValueFree(). |
+** |
+** If the current parse is a recompile (sqlite3Reprepare()) and pExpr |
+** is an SQL variable that currently has a non-NULL value bound to it, |
+** create an sqlite3_value structure containing this value, again with |
+** affinity aff applied to it, instead. |
+** |
+** If neither of the above apply, set *pp to NULL. |
+** |
+** If an error occurs, return an error code. Otherwise, SQLITE_OK. |
+*/ |
+#ifdef SQLITE_ENABLE_STAT2 |
+static int valueFromExpr( |
+ Parse *pParse, |
+ Expr *pExpr, |
+ u8 aff, |
+ sqlite3_value **pp |
+){ |
+ if( pExpr->op==TK_VARIABLE |
+ || (pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE) |
+ ){ |
+ int iVar = pExpr->iColumn; |
+ sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); /* IMP: R-23257-02778 */ |
+ *pp = sqlite3VdbeGetValue(pParse->pReprepare, iVar, aff); |
+ return SQLITE_OK; |
+ } |
+ return sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, aff, pp); |
+} |
+#endif |
+ |
+/* |
+** This function is used to estimate the number of rows that will be visited |
+** by scanning an index for a range of values. The range may have an upper |
+** bound, a lower bound, or both. The WHERE clause terms that set the upper |
+** and lower bounds are represented by pLower and pUpper respectively. For |
+** example, assuming that index p is on t1(a): |
+** |
+** ... FROM t1 WHERE a > ? AND a < ? ... |
+** |_____| |_____| |
+** | | |
+** pLower pUpper |
+** |
+** If either of the upper or lower bound is not present, then NULL is passed in |
+** place of the corresponding WhereTerm. |
+** |
+** The nEq parameter is passed the index of the index column subject to the |
+** range constraint. Or, equivalently, the number of equality constraints |
+** optimized by the proposed index scan. For example, assuming index p is |
+** on t1(a, b), and the SQL query is: |
+** |
+** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... |
+** |
+** then nEq should be passed the value 1 (as the range restricted column, |
+** b, is the second left-most column of the index). Or, if the query is: |
+** |
+** ... FROM t1 WHERE a > ? AND a < ? ... |
+** |
+** then nEq should be passed 0. |
+** |
+** The returned value is an integer between 1 and 100, inclusive. A return |
+** value of 1 indicates that the proposed range scan is expected to visit |
+** approximately 1/100th (1%) of the rows selected by the nEq equality |
+** constraints (if any). A return value of 100 indicates that it is expected |
+** that the range scan will visit every row (100%) selected by the equality |
+** constraints. |
+** |
+** In the absence of sqlite_stat2 ANALYZE data, each range inequality |
+** reduces the search space by 3/4ths. Hence a single constraint (x>?) |
+** results in a return of 25 and a range constraint (x>? AND x<?) results |
+** in a return of 6. |
+*/ |
+static int whereRangeScanEst( |
+ Parse *pParse, /* Parsing & code generating context */ |
+ Index *p, /* The index containing the range-compared column; "x" */ |
+ int nEq, /* index into p->aCol[] of the range-compared column */ |
+ WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ |
+ WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ |
+ int *piEst /* OUT: Return value */ |
+){ |
+ int rc = SQLITE_OK; |
+ |
+#ifdef SQLITE_ENABLE_STAT2 |
+ |
+ if( nEq==0 && p->aSample ){ |
+ sqlite3_value *pLowerVal = 0; |
+ sqlite3_value *pUpperVal = 0; |
+ int iEst; |
+ int iLower = 0; |
+ int iUpper = SQLITE_INDEX_SAMPLES; |
+ int roundUpUpper = 0; |
+ int roundUpLower = 0; |
+ u8 aff = p->pTable->aCol[p->aiColumn[0]].affinity; |
+ |
+ if( pLower ){ |
+ Expr *pExpr = pLower->pExpr->pRight; |
+ rc = valueFromExpr(pParse, pExpr, aff, &pLowerVal); |
+ assert( pLower->eOperator==WO_GT || pLower->eOperator==WO_GE ); |
+ roundUpLower = (pLower->eOperator==WO_GT) ?1:0; |
+ } |
+ if( rc==SQLITE_OK && pUpper ){ |
+ Expr *pExpr = pUpper->pExpr->pRight; |
+ rc = valueFromExpr(pParse, pExpr, aff, &pUpperVal); |
+ assert( pUpper->eOperator==WO_LT || pUpper->eOperator==WO_LE ); |
+ roundUpUpper = (pUpper->eOperator==WO_LE) ?1:0; |
+ } |
+ |
+ if( rc!=SQLITE_OK || (pLowerVal==0 && pUpperVal==0) ){ |
+ sqlite3ValueFree(pLowerVal); |
+ sqlite3ValueFree(pUpperVal); |
+ goto range_est_fallback; |
+ }else if( pLowerVal==0 ){ |
+ rc = whereRangeRegion(pParse, p, pUpperVal, roundUpUpper, &iUpper); |
+ if( pLower ) iLower = iUpper/2; |
+ }else if( pUpperVal==0 ){ |
+ rc = whereRangeRegion(pParse, p, pLowerVal, roundUpLower, &iLower); |
+ if( pUpper ) iUpper = (iLower + SQLITE_INDEX_SAMPLES + 1)/2; |
+ }else{ |
+ rc = whereRangeRegion(pParse, p, pUpperVal, roundUpUpper, &iUpper); |
+ if( rc==SQLITE_OK ){ |
+ rc = whereRangeRegion(pParse, p, pLowerVal, roundUpLower, &iLower); |
+ } |
+ } |
+ WHERETRACE(("range scan regions: %d..%d\n", iLower, iUpper)); |
+ |
+ iEst = iUpper - iLower; |
+ testcase( iEst==SQLITE_INDEX_SAMPLES ); |
+ assert( iEst<=SQLITE_INDEX_SAMPLES ); |
+ if( iEst<1 ){ |
+ *piEst = 50/SQLITE_INDEX_SAMPLES; |
+ }else{ |
+ *piEst = (iEst*100)/SQLITE_INDEX_SAMPLES; |
+ } |
+ sqlite3ValueFree(pLowerVal); |
+ sqlite3ValueFree(pUpperVal); |
+ return rc; |
+ } |
+range_est_fallback: |
+#else |
+ UNUSED_PARAMETER(pParse); |
+ UNUSED_PARAMETER(p); |
+ UNUSED_PARAMETER(nEq); |
+#endif |
+ assert( pLower || pUpper ); |
+ *piEst = 100; |
+ if( pLower && (pLower->wtFlags & TERM_VNULL)==0 ) *piEst /= 4; |
+ if( pUpper ) *piEst /= 4; |
+ return rc; |
+} |
+ |
+#ifdef SQLITE_ENABLE_STAT2 |
+/* |
+** Estimate the number of rows that will be returned based on |
+** an equality constraint x=VALUE and where that VALUE occurs in |
+** the histogram data. This only works when x is the left-most |
+** column of an index and sqlite_stat2 histogram data is available |
+** for that index. When pExpr==NULL that means the constraint is |
+** "x IS NULL" instead of "x=VALUE". |
+** |
+** Write the estimated row count into *pnRow and return SQLITE_OK. |
+** If unable to make an estimate, leave *pnRow unchanged and return |
+** non-zero. |
+** |
+** This routine can fail if it is unable to load a collating sequence |
+** required for string comparison, or if unable to allocate memory |
+** for a UTF conversion required for comparison. The error is stored |
+** in the pParse structure. |
+*/ |
+static int whereEqualScanEst( |
+ Parse *pParse, /* Parsing & code generating context */ |
+ Index *p, /* The index whose left-most column is pTerm */ |
+ Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ |
+ double *pnRow /* Write the revised row estimate here */ |
+){ |
+ sqlite3_value *pRhs = 0; /* VALUE on right-hand side of pTerm */ |
+ int iLower, iUpper; /* Range of histogram regions containing pRhs */ |
+ u8 aff; /* Column affinity */ |
+ int rc; /* Subfunction return code */ |
+ double nRowEst; /* New estimate of the number of rows */ |
+ |
+ assert( p->aSample!=0 ); |
+ aff = p->pTable->aCol[p->aiColumn[0]].affinity; |
+ if( pExpr ){ |
+ rc = valueFromExpr(pParse, pExpr, aff, &pRhs); |
+ if( rc ) goto whereEqualScanEst_cancel; |
+ }else{ |
+ pRhs = sqlite3ValueNew(pParse->db); |
+ } |
+ if( pRhs==0 ) return SQLITE_NOTFOUND; |
+ rc = whereRangeRegion(pParse, p, pRhs, 0, &iLower); |
+ if( rc ) goto whereEqualScanEst_cancel; |
+ rc = whereRangeRegion(pParse, p, pRhs, 1, &iUpper); |
+ if( rc ) goto whereEqualScanEst_cancel; |
+ WHERETRACE(("equality scan regions: %d..%d\n", iLower, iUpper)); |
+ if( iLower>=iUpper ){ |
+ nRowEst = p->aiRowEst[0]/(SQLITE_INDEX_SAMPLES*2); |
+ if( nRowEst<*pnRow ) *pnRow = nRowEst; |
+ }else{ |
+ nRowEst = (iUpper-iLower)*p->aiRowEst[0]/SQLITE_INDEX_SAMPLES; |
+ *pnRow = nRowEst; |
+ } |
+ |
+whereEqualScanEst_cancel: |
+ sqlite3ValueFree(pRhs); |
+ return rc; |
+} |
+#endif /* defined(SQLITE_ENABLE_STAT2) */ |
+ |
+#ifdef SQLITE_ENABLE_STAT2 |
+/* |
+** Estimate the number of rows that will be returned based on |
+** an IN constraint where the right-hand side of the IN operator |
+** is a list of values. Example: |
+** |
+** WHERE x IN (1,2,3,4) |
+** |
+** Write the estimated row count into *pnRow and return SQLITE_OK. |
+** If unable to make an estimate, leave *pnRow unchanged and return |
+** non-zero. |
+** |
+** This routine can fail if it is unable to load a collating sequence |
+** required for string comparison, or if unable to allocate memory |
+** for a UTF conversion required for comparison. The error is stored |
+** in the pParse structure. |
+*/ |
+static int whereInScanEst( |
+ Parse *pParse, /* Parsing & code generating context */ |
+ Index *p, /* The index whose left-most column is pTerm */ |
+ ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ |
+ double *pnRow /* Write the revised row estimate here */ |
+){ |
+ sqlite3_value *pVal = 0; /* One value from list */ |
+ int iLower, iUpper; /* Range of histogram regions containing pRhs */ |
+ u8 aff; /* Column affinity */ |
+ int rc = SQLITE_OK; /* Subfunction return code */ |
+ double nRowEst; /* New estimate of the number of rows */ |
+ int nSpan = 0; /* Number of histogram regions spanned */ |
+ int nSingle = 0; /* Histogram regions hit by a single value */ |
+ int nNotFound = 0; /* Count of values that are not constants */ |
+ int i; /* Loop counter */ |
+ u8 aSpan[SQLITE_INDEX_SAMPLES+1]; /* Histogram regions that are spanned */ |
+ u8 aSingle[SQLITE_INDEX_SAMPLES+1]; /* Histogram regions hit once */ |
+ |
+ assert( p->aSample!=0 ); |
+ aff = p->pTable->aCol[p->aiColumn[0]].affinity; |
+ memset(aSpan, 0, sizeof(aSpan)); |
+ memset(aSingle, 0, sizeof(aSingle)); |
+ for(i=0; i<pList->nExpr; i++){ |
+ sqlite3ValueFree(pVal); |
+ rc = valueFromExpr(pParse, pList->a[i].pExpr, aff, &pVal); |
+ if( rc ) break; |
+ if( pVal==0 || sqlite3_value_type(pVal)==SQLITE_NULL ){ |
+ nNotFound++; |
+ continue; |
+ } |
+ rc = whereRangeRegion(pParse, p, pVal, 0, &iLower); |
+ if( rc ) break; |
+ rc = whereRangeRegion(pParse, p, pVal, 1, &iUpper); |
+ if( rc ) break; |
+ if( iLower>=iUpper ){ |
+ aSingle[iLower] = 1; |
+ }else{ |
+ assert( iLower>=0 && iUpper<=SQLITE_INDEX_SAMPLES ); |
+ while( iLower<iUpper ) aSpan[iLower++] = 1; |
+ } |
+ } |
+ if( rc==SQLITE_OK ){ |
+ for(i=nSpan=0; i<=SQLITE_INDEX_SAMPLES; i++){ |
+ if( aSpan[i] ){ |
+ nSpan++; |
+ }else if( aSingle[i] ){ |
+ nSingle++; |
+ } |
+ } |
+ nRowEst = (nSpan*2+nSingle)*p->aiRowEst[0]/(2*SQLITE_INDEX_SAMPLES) |
+ + nNotFound*p->aiRowEst[1]; |
+ if( nRowEst > p->aiRowEst[0] ) nRowEst = p->aiRowEst[0]; |
+ *pnRow = nRowEst; |
+ WHERETRACE(("IN row estimate: nSpan=%d, nSingle=%d, nNotFound=%d, est=%g\n", |
+ nSpan, nSingle, nNotFound, nRowEst)); |
+ } |
+ sqlite3ValueFree(pVal); |
+ return rc; |
+} |
+#endif /* defined(SQLITE_ENABLE_STAT2) */ |
+ |
+ |
+/* |
+** Find the best query plan for accessing a particular table. Write the |
+** best query plan and its cost into the WhereCost object supplied as the |
+** last parameter. |
+** |
+** The lowest cost plan wins. The cost is an estimate of the amount of |
+** CPU and disk I/O needed to process the requested result. |
+** Factors that influence cost include: |
+** |
+** * The estimated number of rows that will be retrieved. (The |
+** fewer the better.) |
+** |
+** * Whether or not sorting must occur. |
+** |
+** * Whether or not there must be separate lookups in the |
+** index and in the main table. |
+** |
+** If there was an INDEXED BY clause (pSrc->pIndex) attached to the table in |
+** the SQL statement, then this function only considers plans using the |
+** named index. If no such plan is found, then the returned cost is |
+** SQLITE_BIG_DBL. If a plan is found that uses the named index, |
+** then the cost is calculated in the usual way. |
+** |
+** If a NOT INDEXED clause (pSrc->notIndexed!=0) was attached to the table |
+** in the SELECT statement, then no indexes are considered. However, the |
+** selected plan may still take advantage of the built-in rowid primary key |
+** index. |
+*/ |
+static void bestBtreeIndex( |
+ Parse *pParse, /* The parsing context */ |
+ WhereClause *pWC, /* The WHERE clause */ |
+ struct SrcList_item *pSrc, /* The FROM clause term to search */ |
+ Bitmask notReady, /* Mask of cursors not available for indexing */ |
+ Bitmask notValid, /* Cursors not available for any purpose */ |
+ ExprList *pOrderBy, /* The ORDER BY clause */ |
+ WhereCost *pCost /* Lowest cost query plan */ |
+){ |
+ int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ |
+ Index *pProbe; /* An index we are evaluating */ |
+ Index *pIdx; /* Copy of pProbe, or zero for IPK index */ |
+ int eqTermMask; /* Current mask of valid equality operators */ |
+ int idxEqTermMask; /* Index mask of valid equality operators */ |
+ Index sPk; /* A fake index object for the primary key */ |
+ unsigned int aiRowEstPk[2]; /* The aiRowEst[] value for the sPk index */ |
+ int aiColumnPk = -1; /* The aColumn[] value for the sPk index */ |
+ int wsFlagMask; /* Allowed flags in pCost->plan.wsFlag */ |
+ |
+ /* Initialize the cost to a worst-case value */ |
+ memset(pCost, 0, sizeof(*pCost)); |
+ pCost->rCost = SQLITE_BIG_DBL; |
+ |
+ /* If the pSrc table is the right table of a LEFT JOIN then we may not |
+ ** use an index to satisfy IS NULL constraints on that table. This is |
+ ** because columns might end up being NULL if the table does not match - |
+ ** a circumstance which the index cannot help us discover. Ticket #2177. |
+ */ |
+ if( pSrc->jointype & JT_LEFT ){ |
+ idxEqTermMask = WO_EQ|WO_IN; |
+ }else{ |
+ idxEqTermMask = WO_EQ|WO_IN|WO_ISNULL; |
+ } |
+ |
+ if( pSrc->pIndex ){ |
+ /* An INDEXED BY clause specifies a particular index to use */ |
+ pIdx = pProbe = pSrc->pIndex; |
+ wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE); |
+ eqTermMask = idxEqTermMask; |
+ }else{ |
+ /* There is no INDEXED BY clause. Create a fake Index object in local |
+ ** variable sPk to represent the rowid primary key index. Make this |
+ ** fake index the first in a chain of Index objects with all of the real |
+ ** indices to follow */ |
+ Index *pFirst; /* First of real indices on the table */ |
+ memset(&sPk, 0, sizeof(Index)); |
+ sPk.nColumn = 1; |
+ sPk.aiColumn = &aiColumnPk; |
+ sPk.aiRowEst = aiRowEstPk; |
+ sPk.onError = OE_Replace; |
+ sPk.pTable = pSrc->pTab; |
+ aiRowEstPk[0] = pSrc->pTab->nRowEst; |
+ aiRowEstPk[1] = 1; |
+ pFirst = pSrc->pTab->pIndex; |
+ if( pSrc->notIndexed==0 ){ |
+ /* The real indices of the table are only considered if the |
+ ** NOT INDEXED qualifier is omitted from the FROM clause */ |
+ sPk.pNext = pFirst; |
+ } |
+ pProbe = &sPk; |
+ wsFlagMask = ~( |
+ WHERE_COLUMN_IN|WHERE_COLUMN_EQ|WHERE_COLUMN_NULL|WHERE_COLUMN_RANGE |
+ ); |
+ eqTermMask = WO_EQ|WO_IN; |
+ pIdx = 0; |
+ } |
+ |
+ /* Loop over all indices looking for the best one to use |
+ */ |
+ for(; pProbe; pIdx=pProbe=pProbe->pNext){ |
+ const unsigned int * const aiRowEst = pProbe->aiRowEst; |
+ double cost; /* Cost of using pProbe */ |
+ double nRow; /* Estimated number of rows in result set */ |
+ double log10N; /* base-10 logarithm of nRow (inexact) */ |
+ int rev; /* True to scan in reverse order */ |
+ int wsFlags = 0; |
+ Bitmask used = 0; |
+ |
+ /* The following variables are populated based on the properties of |
+ ** index being evaluated. They are then used to determine the expected |
+ ** cost and number of rows returned. |
+ ** |
+ ** nEq: |
+ ** Number of equality terms that can be implemented using the index. |
+ ** In other words, the number of initial fields in the index that |
+ ** are used in == or IN or NOT NULL constraints of the WHERE clause. |
+ ** |
+ ** nInMul: |
+ ** The "in-multiplier". This is an estimate of how many seek operations |
+ ** SQLite must perform on the index in question. For example, if the |
+ ** WHERE clause is: |
+ ** |
+ ** WHERE a IN (1, 2, 3) AND b IN (4, 5, 6) |
+ ** |
+ ** SQLite must perform 9 lookups on an index on (a, b), so nInMul is |
+ ** set to 9. Given the same schema and either of the following WHERE |
+ ** clauses: |
+ ** |
+ ** WHERE a = 1 |
+ ** WHERE a >= 2 |
+ ** |
+ ** nInMul is set to 1. |
+ ** |
+ ** If there exists a WHERE term of the form "x IN (SELECT ...)", then |
+ ** the sub-select is assumed to return 25 rows for the purposes of |
+ ** determining nInMul. |
+ ** |
+ ** bInEst: |
+ ** Set to true if there was at least one "x IN (SELECT ...)" term used |
+ ** in determining the value of nInMul. Note that the RHS of the |
+ ** IN operator must be a SELECT, not a value list, for this variable |
+ ** to be true. |
+ ** |
+ ** estBound: |
+ ** An estimate on the amount of the table that must be searched. A |
+ ** value of 100 means the entire table is searched. Range constraints |
+ ** might reduce this to a value less than 100 to indicate that only |
+ ** a fraction of the table needs searching. In the absence of |
+ ** sqlite_stat2 ANALYZE data, a single inequality reduces the search |
+ ** space to 1/4rd its original size. So an x>? constraint reduces |
+ ** estBound to 25. Two constraints (x>? AND x<?) reduce estBound to 6. |
+ ** |
+ ** bSort: |
+ ** Boolean. True if there is an ORDER BY clause that will require an |
+ ** external sort (i.e. scanning the index being evaluated will not |
+ ** correctly order records). |
+ ** |
+ ** bLookup: |
+ ** Boolean. True if a table lookup is required for each index entry |
+ ** visited. In other words, true if this is not a covering index. |
+ ** This is always false for the rowid primary key index of a table. |
+ ** For other indexes, it is true unless all the columns of the table |
+ ** used by the SELECT statement are present in the index (such an |
+ ** index is sometimes described as a covering index). |
+ ** For example, given the index on (a, b), the second of the following |
+ ** two queries requires table b-tree lookups in order to find the value |
+ ** of column c, but the first does not because columns a and b are |
+ ** both available in the index. |
+ ** |
+ ** SELECT a, b FROM tbl WHERE a = 1; |
+ ** SELECT a, b, c FROM tbl WHERE a = 1; |
+ */ |
+ int nEq; /* Number of == or IN terms matching index */ |
+ int bInEst = 0; /* True if "x IN (SELECT...)" seen */ |
+ int nInMul = 1; /* Number of distinct equalities to lookup */ |
+ int estBound = 100; /* Estimated reduction in search space */ |
+ int nBound = 0; /* Number of range constraints seen */ |
+ int bSort = 0; /* True if external sort required */ |
+ int bLookup = 0; /* True if not a covering index */ |
+ WhereTerm *pTerm; /* A single term of the WHERE clause */ |
+#ifdef SQLITE_ENABLE_STAT2 |
+ WhereTerm *pFirstTerm = 0; /* First term matching the index */ |
+#endif |
+ |
+ /* Determine the values of nEq and nInMul */ |
+ for(nEq=0; nEq<pProbe->nColumn; nEq++){ |
+ int j = pProbe->aiColumn[nEq]; |
+ pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pIdx); |
+ if( pTerm==0 ) break; |
+ wsFlags |= (WHERE_COLUMN_EQ|WHERE_ROWID_EQ); |
+ if( pTerm->eOperator & WO_IN ){ |
+ Expr *pExpr = pTerm->pExpr; |
+ wsFlags |= WHERE_COLUMN_IN; |
+ if( ExprHasProperty(pExpr, EP_xIsSelect) ){ |
+ /* "x IN (SELECT ...)": Assume the SELECT returns 25 rows */ |
+ nInMul *= 25; |
+ bInEst = 1; |
+ }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ |
+ /* "x IN (value, value, ...)" */ |
+ nInMul *= pExpr->x.pList->nExpr; |
+ } |
+ }else if( pTerm->eOperator & WO_ISNULL ){ |
+ wsFlags |= WHERE_COLUMN_NULL; |
+ } |
+#ifdef SQLITE_ENABLE_STAT2 |
+ if( nEq==0 && pProbe->aSample ) pFirstTerm = pTerm; |
+#endif |
+ used |= pTerm->prereqRight; |
+ } |
+ |
+ /* Determine the value of estBound. */ |
+ if( nEq<pProbe->nColumn && pProbe->bUnordered==0 ){ |
+ int j = pProbe->aiColumn[nEq]; |
+ if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){ |
+ WhereTerm *pTop = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pIdx); |
+ WhereTerm *pBtm = findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pIdx); |
+ whereRangeScanEst(pParse, pProbe, nEq, pBtm, pTop, &estBound); |
+ if( pTop ){ |
+ nBound = 1; |
+ wsFlags |= WHERE_TOP_LIMIT; |
+ used |= pTop->prereqRight; |
+ } |
+ if( pBtm ){ |
+ nBound++; |
+ wsFlags |= WHERE_BTM_LIMIT; |
+ used |= pBtm->prereqRight; |
+ } |
+ wsFlags |= (WHERE_COLUMN_RANGE|WHERE_ROWID_RANGE); |
+ } |
+ }else if( pProbe->onError!=OE_None ){ |
+ testcase( wsFlags & WHERE_COLUMN_IN ); |
+ testcase( wsFlags & WHERE_COLUMN_NULL ); |
+ if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){ |
+ wsFlags |= WHERE_UNIQUE; |
+ } |
+ } |
+ |
+ /* If there is an ORDER BY clause and the index being considered will |
+ ** naturally scan rows in the required order, set the appropriate flags |
+ ** in wsFlags. Otherwise, if there is an ORDER BY clause but the index |
+ ** will scan rows in a different order, set the bSort variable. */ |
+ if( pOrderBy ){ |
+ if( (wsFlags & WHERE_COLUMN_IN)==0 |
+ && pProbe->bUnordered==0 |
+ && isSortingIndex(pParse, pWC->pMaskSet, pProbe, iCur, pOrderBy, |
+ nEq, wsFlags, &rev) |
+ ){ |
+ wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_ORDERBY; |
+ wsFlags |= (rev ? WHERE_REVERSE : 0); |
+ }else{ |
+ bSort = 1; |
+ } |
+ } |
+ |
+ /* If currently calculating the cost of using an index (not the IPK |
+ ** index), determine if all required column data may be obtained without |
+ ** using the main table (i.e. if the index is a covering |
+ ** index for this query). If it is, set the WHERE_IDX_ONLY flag in |
+ ** wsFlags. Otherwise, set the bLookup variable to true. */ |
+ if( pIdx && wsFlags ){ |
+ Bitmask m = pSrc->colUsed; |
+ int j; |
+ for(j=0; j<pIdx->nColumn; j++){ |
+ int x = pIdx->aiColumn[j]; |
+ if( x<BMS-1 ){ |
+ m &= ~(((Bitmask)1)<<x); |
+ } |
+ } |
+ if( m==0 ){ |
+ wsFlags |= WHERE_IDX_ONLY; |
+ }else{ |
+ bLookup = 1; |
+ } |
+ } |
+ |
+ /* |
+ ** Estimate the number of rows of output. For an "x IN (SELECT...)" |
+ ** constraint, do not let the estimate exceed half the rows in the table. |
+ */ |
+ nRow = (double)(aiRowEst[nEq] * nInMul); |
+ if( bInEst && nRow*2>aiRowEst[0] ){ |
+ nRow = aiRowEst[0]/2; |
+ nInMul = (int)(nRow / aiRowEst[nEq]); |
+ } |
+ |
+#ifdef SQLITE_ENABLE_STAT2 |
+ /* If the constraint is of the form x=VALUE and histogram |
+ ** data is available for column x, then it might be possible |
+ ** to get a better estimate on the number of rows based on |
+ ** VALUE and how common that value is according to the histogram. |
+ */ |
+ if( nRow>(double)1 && nEq==1 && pFirstTerm!=0 ){ |
+ if( pFirstTerm->eOperator & (WO_EQ|WO_ISNULL) ){ |
+ testcase( pFirstTerm->eOperator==WO_EQ ); |
+ testcase( pFirstTerm->eOperator==WO_ISNULL ); |
+ whereEqualScanEst(pParse, pProbe, pFirstTerm->pExpr->pRight, &nRow); |
+ }else if( pFirstTerm->eOperator==WO_IN && bInEst==0 ){ |
+ whereInScanEst(pParse, pProbe, pFirstTerm->pExpr->x.pList, &nRow); |
+ } |
+ } |
+#endif /* SQLITE_ENABLE_STAT2 */ |
+ |
+ /* Adjust the number of output rows and downward to reflect rows |
+ ** that are excluded by range constraints. |
+ */ |
+ nRow = (nRow * (double)estBound) / (double)100; |
+ if( nRow<1 ) nRow = 1; |
+ |
+ /* Experiments run on real SQLite databases show that the time needed |
+ ** to do a binary search to locate a row in a table or index is roughly |
+ ** log10(N) times the time to move from one row to the next row within |
+ ** a table or index. The actual times can vary, with the size of |
+ ** records being an important factor. Both moves and searches are |
+ ** slower with larger records, presumably because fewer records fit |
+ ** on one page and hence more pages have to be fetched. |
+ ** |
+ ** The ANALYZE command and the sqlite_stat1 and sqlite_stat2 tables do |
+ ** not give us data on the relative sizes of table and index records. |
+ ** So this computation assumes table records are about twice as big |
+ ** as index records |
+ */ |
+ if( (wsFlags & WHERE_NOT_FULLSCAN)==0 ){ |
+ /* The cost of a full table scan is a number of move operations equal |
+ ** to the number of rows in the table. |
+ ** |
+ ** We add an additional 4x penalty to full table scans. This causes |
+ ** the cost function to err on the side of choosing an index over |
+ ** choosing a full scan. This 4x full-scan penalty is an arguable |
+ ** decision and one which we expect to revisit in the future. But |
+ ** it seems to be working well enough at the moment. |
+ */ |
+ cost = aiRowEst[0]*4; |
+ }else{ |
+ log10N = estLog(aiRowEst[0]); |
+ cost = nRow; |
+ if( pIdx ){ |
+ if( bLookup ){ |
+ /* For an index lookup followed by a table lookup: |
+ ** nInMul index searches to find the start of each index range |
+ ** + nRow steps through the index |
+ ** + nRow table searches to lookup the table entry using the rowid |
+ */ |
+ cost += (nInMul + nRow)*log10N; |
+ }else{ |
+ /* For a covering index: |
+ ** nInMul index searches to find the initial entry |
+ ** + nRow steps through the index |
+ */ |
+ cost += nInMul*log10N; |
+ } |
+ }else{ |
+ /* For a rowid primary key lookup: |
+ ** nInMult table searches to find the initial entry for each range |
+ ** + nRow steps through the table |
+ */ |
+ cost += nInMul*log10N; |
+ } |
+ } |
+ |
+ /* Add in the estimated cost of sorting the result. Actual experimental |
+ ** measurements of sorting performance in SQLite show that sorting time |
+ ** adds C*N*log10(N) to the cost, where N is the number of rows to be |
+ ** sorted and C is a factor between 1.95 and 4.3. We will split the |
+ ** difference and select C of 3.0. |
+ */ |
+ if( bSort ){ |
+ cost += nRow*estLog(nRow)*3; |
+ } |
+ |
+ /**** Cost of using this index has now been computed ****/ |
+ |
+ /* If there are additional constraints on this table that cannot |
+ ** be used with the current index, but which might lower the number |
+ ** of output rows, adjust the nRow value accordingly. This only |
+ ** matters if the current index is the least costly, so do not bother |
+ ** with this step if we already know this index will not be chosen. |
+ ** Also, never reduce the output row count below 2 using this step. |
+ ** |
+ ** It is critical that the notValid mask be used here instead of |
+ ** the notReady mask. When computing an "optimal" index, the notReady |
+ ** mask will only have one bit set - the bit for the current table. |
+ ** The notValid mask, on the other hand, always has all bits set for |
+ ** tables that are not in outer loops. If notReady is used here instead |
+ ** of notValid, then a optimal index that depends on inner joins loops |
+ ** might be selected even when there exists an optimal index that has |
+ ** no such dependency. |
+ */ |
+ if( nRow>2 && cost<=pCost->rCost ){ |
+ int k; /* Loop counter */ |
+ int nSkipEq = nEq; /* Number of == constraints to skip */ |
+ int nSkipRange = nBound; /* Number of < constraints to skip */ |
+ Bitmask thisTab; /* Bitmap for pSrc */ |
+ |
+ thisTab = getMask(pWC->pMaskSet, iCur); |
+ for(pTerm=pWC->a, k=pWC->nTerm; nRow>2 && k; k--, pTerm++){ |
+ if( pTerm->wtFlags & TERM_VIRTUAL ) continue; |
+ if( (pTerm->prereqAll & notValid)!=thisTab ) continue; |
+ if( pTerm->eOperator & (WO_EQ|WO_IN|WO_ISNULL) ){ |
+ if( nSkipEq ){ |
+ /* Ignore the first nEq equality matches since the index |
+ ** has already accounted for these */ |
+ nSkipEq--; |
+ }else{ |
+ /* Assume each additional equality match reduces the result |
+ ** set size by a factor of 10 */ |
+ nRow /= 10; |
+ } |
+ }else if( pTerm->eOperator & (WO_LT|WO_LE|WO_GT|WO_GE) ){ |
+ if( nSkipRange ){ |
+ /* Ignore the first nSkipRange range constraints since the index |
+ ** has already accounted for these */ |
+ nSkipRange--; |
+ }else{ |
+ /* Assume each additional range constraint reduces the result |
+ ** set size by a factor of 3. Indexed range constraints reduce |
+ ** the search space by a larger factor: 4. We make indexed range |
+ ** more selective intentionally because of the subjective |
+ ** observation that indexed range constraints really are more |
+ ** selective in practice, on average. */ |
+ nRow /= 3; |
+ } |
+ }else if( pTerm->eOperator!=WO_NOOP ){ |
+ /* Any other expression lowers the output row count by half */ |
+ nRow /= 2; |
+ } |
+ } |
+ if( nRow<2 ) nRow = 2; |
+ } |
+ |
+ |
+ WHERETRACE(( |
+ "%s(%s): nEq=%d nInMul=%d estBound=%d bSort=%d bLookup=%d wsFlags=0x%x\n" |
+ " notReady=0x%llx log10N=%.1f nRow=%.1f cost=%.1f used=0x%llx\n", |
+ pSrc->pTab->zName, (pIdx ? pIdx->zName : "ipk"), |
+ nEq, nInMul, estBound, bSort, bLookup, wsFlags, |
+ notReady, log10N, nRow, cost, used |
+ )); |
+ |
+ /* If this index is the best we have seen so far, then record this |
+ ** index and its cost in the pCost structure. |
+ */ |
+ if( (!pIdx || wsFlags) |
+ && (cost<pCost->rCost || (cost<=pCost->rCost && nRow<pCost->plan.nRow)) |
+ ){ |
+ pCost->rCost = cost; |
+ pCost->used = used; |
+ pCost->plan.nRow = nRow; |
+ pCost->plan.wsFlags = (wsFlags&wsFlagMask); |
+ pCost->plan.nEq = nEq; |
+ pCost->plan.u.pIdx = pIdx; |
+ } |
+ |
+ /* If there was an INDEXED BY clause, then only that one index is |
+ ** considered. */ |
+ if( pSrc->pIndex ) break; |
+ |
+ /* Reset masks for the next index in the loop */ |
+ wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE); |
+ eqTermMask = idxEqTermMask; |
+ } |
+ |
+ /* If there is no ORDER BY clause and the SQLITE_ReverseOrder flag |
+ ** is set, then reverse the order that the index will be scanned |
+ ** in. This is used for application testing, to help find cases |
+ ** where application behaviour depends on the (undefined) order that |
+ ** SQLite outputs rows in in the absence of an ORDER BY clause. */ |
+ if( !pOrderBy && pParse->db->flags & SQLITE_ReverseOrder ){ |
+ pCost->plan.wsFlags |= WHERE_REVERSE; |
+ } |
+ |
+ assert( pOrderBy || (pCost->plan.wsFlags&WHERE_ORDERBY)==0 ); |
+ assert( pCost->plan.u.pIdx==0 || (pCost->plan.wsFlags&WHERE_ROWID_EQ)==0 ); |
+ assert( pSrc->pIndex==0 |
+ || pCost->plan.u.pIdx==0 |
+ || pCost->plan.u.pIdx==pSrc->pIndex |
+ ); |
+ |
+ WHERETRACE(("best index is: %s\n", |
+ ((pCost->plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ? "none" : |
+ pCost->plan.u.pIdx ? pCost->plan.u.pIdx->zName : "ipk") |
+ )); |
+ |
+ bestOrClauseIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost); |
+ bestAutomaticIndex(pParse, pWC, pSrc, notReady, pCost); |
+ pCost->plan.wsFlags |= eqTermMask; |
+} |
+ |
+/* |
+** Find the query plan for accessing table pSrc->pTab. Write the |
+** best query plan and its cost into the WhereCost object supplied |
+** as the last parameter. This function may calculate the cost of |
+** both real and virtual table scans. |
+*/ |
+static void bestIndex( |
+ Parse *pParse, /* The parsing context */ |
+ WhereClause *pWC, /* The WHERE clause */ |
+ struct SrcList_item *pSrc, /* The FROM clause term to search */ |
+ Bitmask notReady, /* Mask of cursors not available for indexing */ |
+ Bitmask notValid, /* Cursors not available for any purpose */ |
+ ExprList *pOrderBy, /* The ORDER BY clause */ |
+ WhereCost *pCost /* Lowest cost query plan */ |
+){ |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ if( IsVirtual(pSrc->pTab) ){ |
+ sqlite3_index_info *p = 0; |
+ bestVirtualIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost,&p); |
+ if( p->needToFreeIdxStr ){ |
+ sqlite3_free(p->idxStr); |
+ } |
+ sqlite3DbFree(pParse->db, p); |
+ }else |
+#endif |
+ { |
+ bestBtreeIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost); |
+ } |
+} |
+ |
+/* |
+** Disable a term in the WHERE clause. Except, do not disable the term |
+** if it controls a LEFT OUTER JOIN and it did not originate in the ON |
+** or USING clause of that join. |
+** |
+** Consider the term t2.z='ok' in the following queries: |
+** |
+** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' |
+** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' |
+** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' |
+** |
+** The t2.z='ok' is disabled in the in (2) because it originates |
+** in the ON clause. The term is disabled in (3) because it is not part |
+** of a LEFT OUTER JOIN. In (1), the term is not disabled. |
+** |
+** IMPLEMENTATION-OF: R-24597-58655 No tests are done for terms that are |
+** completely satisfied by indices. |
+** |
+** Disabling a term causes that term to not be tested in the inner loop |
+** of the join. Disabling is an optimization. When terms are satisfied |
+** by indices, we disable them to prevent redundant tests in the inner |
+** loop. We would get the correct results if nothing were ever disabled, |
+** but joins might run a little slower. The trick is to disable as much |
+** as we can without disabling too much. If we disabled in (1), we'd get |
+** the wrong answer. See ticket #813. |
+*/ |
+static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ |
+ if( pTerm |
+ && (pTerm->wtFlags & TERM_CODED)==0 |
+ && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) |
+ ){ |
+ pTerm->wtFlags |= TERM_CODED; |
+ if( pTerm->iParent>=0 ){ |
+ WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent]; |
+ if( (--pOther->nChild)==0 ){ |
+ disableTerm(pLevel, pOther); |
+ } |
+ } |
+ } |
+} |
+ |
+/* |
+** Code an OP_Affinity opcode to apply the column affinity string zAff |
+** to the n registers starting at base. |
+** |
+** As an optimization, SQLITE_AFF_NONE entries (which are no-ops) at the |
+** beginning and end of zAff are ignored. If all entries in zAff are |
+** SQLITE_AFF_NONE, then no code gets generated. |
+** |
+** This routine makes its own copy of zAff so that the caller is free |
+** to modify zAff after this routine returns. |
+*/ |
+static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ |
+ Vdbe *v = pParse->pVdbe; |
+ if( zAff==0 ){ |
+ assert( pParse->db->mallocFailed ); |
+ return; |
+ } |
+ assert( v!=0 ); |
+ |
+ /* Adjust base and n to skip over SQLITE_AFF_NONE entries at the beginning |
+ ** and end of the affinity string. |
+ */ |
+ while( n>0 && zAff[0]==SQLITE_AFF_NONE ){ |
+ n--; |
+ base++; |
+ zAff++; |
+ } |
+ while( n>1 && zAff[n-1]==SQLITE_AFF_NONE ){ |
+ n--; |
+ } |
+ |
+ /* Code the OP_Affinity opcode if there is anything left to do. */ |
+ if( n>0 ){ |
+ sqlite3VdbeAddOp2(v, OP_Affinity, base, n); |
+ sqlite3VdbeChangeP4(v, -1, zAff, n); |
+ sqlite3ExprCacheAffinityChange(pParse, base, n); |
+ } |
+} |
+ |
+ |
+/* |
+** Generate code for a single equality term of the WHERE clause. An equality |
+** term can be either X=expr or X IN (...). pTerm is the term to be |
+** coded. |
+** |
+** The current value for the constraint is left in register iReg. |
+** |
+** For a constraint of the form X=expr, the expression is evaluated and its |
+** result is left on the stack. For constraints of the form X IN (...) |
+** this routine sets up a loop that will iterate over all values of X. |
+*/ |
+static int codeEqualityTerm( |
+ Parse *pParse, /* The parsing context */ |
+ WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ |
+ WhereLevel *pLevel, /* When level of the FROM clause we are working on */ |
+ int iTarget /* Attempt to leave results in this register */ |
+){ |
+ Expr *pX = pTerm->pExpr; |
+ Vdbe *v = pParse->pVdbe; |
+ int iReg; /* Register holding results */ |
+ |
+ assert( iTarget>0 ); |
+ if( pX->op==TK_EQ ){ |
+ iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); |
+ }else if( pX->op==TK_ISNULL ){ |
+ iReg = iTarget; |
+ sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); |
+#ifndef SQLITE_OMIT_SUBQUERY |
+ }else{ |
+ int eType; |
+ int iTab; |
+ struct InLoop *pIn; |
+ |
+ assert( pX->op==TK_IN ); |
+ iReg = iTarget; |
+ eType = sqlite3FindInIndex(pParse, pX, 0); |
+ iTab = pX->iTable; |
+ sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); |
+ assert( pLevel->plan.wsFlags & WHERE_IN_ABLE ); |
+ if( pLevel->u.in.nIn==0 ){ |
+ pLevel->addrNxt = sqlite3VdbeMakeLabel(v); |
+ } |
+ pLevel->u.in.nIn++; |
+ pLevel->u.in.aInLoop = |
+ sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, |
+ sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); |
+ pIn = pLevel->u.in.aInLoop; |
+ if( pIn ){ |
+ pIn += pLevel->u.in.nIn - 1; |
+ pIn->iCur = iTab; |
+ if( eType==IN_INDEX_ROWID ){ |
+ pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg); |
+ }else{ |
+ pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg); |
+ } |
+ sqlite3VdbeAddOp1(v, OP_IsNull, iReg); |
+ }else{ |
+ pLevel->u.in.nIn = 0; |
+ } |
+#endif |
+ } |
+ disableTerm(pLevel, pTerm); |
+ return iReg; |
+} |
+ |
+/* |
+** Generate code that will evaluate all == and IN constraints for an |
+** index. |
+** |
+** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). |
+** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 |
+** The index has as many as three equality constraints, but in this |
+** example, the third "c" value is an inequality. So only two |
+** constraints are coded. This routine will generate code to evaluate |
+** a==5 and b IN (1,2,3). The current values for a and b will be stored |
+** in consecutive registers and the index of the first register is returned. |
+** |
+** In the example above nEq==2. But this subroutine works for any value |
+** of nEq including 0. If nEq==0, this routine is nearly a no-op. |
+** The only thing it does is allocate the pLevel->iMem memory cell and |
+** compute the affinity string. |
+** |
+** This routine always allocates at least one memory cell and returns |
+** the index of that memory cell. The code that |
+** calls this routine will use that memory cell to store the termination |
+** key value of the loop. If one or more IN operators appear, then |
+** this routine allocates an additional nEq memory cells for internal |
+** use. |
+** |
+** Before returning, *pzAff is set to point to a buffer containing a |
+** copy of the column affinity string of the index allocated using |
+** sqlite3DbMalloc(). Except, entries in the copy of the string associated |
+** with equality constraints that use NONE affinity are set to |
+** SQLITE_AFF_NONE. This is to deal with SQL such as the following: |
+** |
+** CREATE TABLE t1(a TEXT PRIMARY KEY, b); |
+** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; |
+** |
+** In the example above, the index on t1(a) has TEXT affinity. But since |
+** the right hand side of the equality constraint (t2.b) has NONE affinity, |
+** no conversion should be attempted before using a t2.b value as part of |
+** a key to search the index. Hence the first byte in the returned affinity |
+** string in this example would be set to SQLITE_AFF_NONE. |
+*/ |
+static int codeAllEqualityTerms( |
+ Parse *pParse, /* Parsing context */ |
+ WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ |
+ WhereClause *pWC, /* The WHERE clause */ |
+ Bitmask notReady, /* Which parts of FROM have not yet been coded */ |
+ int nExtraReg, /* Number of extra registers to allocate */ |
+ char **pzAff /* OUT: Set to point to affinity string */ |
+){ |
+ int nEq = pLevel->plan.nEq; /* The number of == or IN constraints to code */ |
+ Vdbe *v = pParse->pVdbe; /* The vm under construction */ |
+ Index *pIdx; /* The index being used for this loop */ |
+ int iCur = pLevel->iTabCur; /* The cursor of the table */ |
+ WhereTerm *pTerm; /* A single constraint term */ |
+ int j; /* Loop counter */ |
+ int regBase; /* Base register */ |
+ int nReg; /* Number of registers to allocate */ |
+ char *zAff; /* Affinity string to return */ |
+ |
+ /* This module is only called on query plans that use an index. */ |
+ assert( pLevel->plan.wsFlags & WHERE_INDEXED ); |
+ pIdx = pLevel->plan.u.pIdx; |
+ |
+ /* Figure out how many memory cells we will need then allocate them. |
+ */ |
+ regBase = pParse->nMem + 1; |
+ nReg = pLevel->plan.nEq + nExtraReg; |
+ pParse->nMem += nReg; |
+ |
+ zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx)); |
+ if( !zAff ){ |
+ pParse->db->mallocFailed = 1; |
+ } |
+ |
+ /* Evaluate the equality constraints |
+ */ |
+ assert( pIdx->nColumn>=nEq ); |
+ for(j=0; j<nEq; j++){ |
+ int r1; |
+ int k = pIdx->aiColumn[j]; |
+ pTerm = findTerm(pWC, iCur, k, notReady, pLevel->plan.wsFlags, pIdx); |
+ if( NEVER(pTerm==0) ) break; |
+ /* The following true for indices with redundant columns. |
+ ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ |
+ testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); |
+ testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ |
+ r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j); |
+ if( r1!=regBase+j ){ |
+ if( nReg==1 ){ |
+ sqlite3ReleaseTempReg(pParse, regBase); |
+ regBase = r1; |
+ }else{ |
+ sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); |
+ } |
+ } |
+ testcase( pTerm->eOperator & WO_ISNULL ); |
+ testcase( pTerm->eOperator & WO_IN ); |
+ if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ |
+ Expr *pRight = pTerm->pExpr->pRight; |
+ sqlite3ExprCodeIsNullJump(v, pRight, regBase+j, pLevel->addrBrk); |
+ if( zAff ){ |
+ if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_NONE ){ |
+ zAff[j] = SQLITE_AFF_NONE; |
+ } |
+ if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ |
+ zAff[j] = SQLITE_AFF_NONE; |
+ } |
+ } |
+ } |
+ } |
+ *pzAff = zAff; |
+ return regBase; |
+} |
+ |
+#ifndef SQLITE_OMIT_EXPLAIN |
+/* |
+** This routine is a helper for explainIndexRange() below |
+** |
+** pStr holds the text of an expression that we are building up one term |
+** at a time. This routine adds a new term to the end of the expression. |
+** Terms are separated by AND so add the "AND" text for second and subsequent |
+** terms only. |
+*/ |
+static void explainAppendTerm( |
+ StrAccum *pStr, /* The text expression being built */ |
+ int iTerm, /* Index of this term. First is zero */ |
+ const char *zColumn, /* Name of the column */ |
+ const char *zOp /* Name of the operator */ |
+){ |
+ if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5); |
+ sqlite3StrAccumAppend(pStr, zColumn, -1); |
+ sqlite3StrAccumAppend(pStr, zOp, 1); |
+ sqlite3StrAccumAppend(pStr, "?", 1); |
+} |
+ |
+/* |
+** Argument pLevel describes a strategy for scanning table pTab. This |
+** function returns a pointer to a string buffer containing a description |
+** of the subset of table rows scanned by the strategy in the form of an |
+** SQL expression. Or, if all rows are scanned, NULL is returned. |
+** |
+** For example, if the query: |
+** |
+** SELECT * FROM t1 WHERE a=1 AND b>2; |
+** |
+** is run and there is an index on (a, b), then this function returns a |
+** string similar to: |
+** |
+** "a=? AND b>?" |
+** |
+** The returned pointer points to memory obtained from sqlite3DbMalloc(). |
+** It is the responsibility of the caller to free the buffer when it is |
+** no longer required. |
+*/ |
+static char *explainIndexRange(sqlite3 *db, WhereLevel *pLevel, Table *pTab){ |
+ WherePlan *pPlan = &pLevel->plan; |
+ Index *pIndex = pPlan->u.pIdx; |
+ int nEq = pPlan->nEq; |
+ int i, j; |
+ Column *aCol = pTab->aCol; |
+ int *aiColumn = pIndex->aiColumn; |
+ StrAccum txt; |
+ |
+ if( nEq==0 && (pPlan->wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ){ |
+ return 0; |
+ } |
+ sqlite3StrAccumInit(&txt, 0, 0, SQLITE_MAX_LENGTH); |
+ txt.db = db; |
+ sqlite3StrAccumAppend(&txt, " (", 2); |
+ for(i=0; i<nEq; i++){ |
+ explainAppendTerm(&txt, i, aCol[aiColumn[i]].zName, "="); |
+ } |
+ |
+ j = i; |
+ if( pPlan->wsFlags&WHERE_BTM_LIMIT ){ |
+ explainAppendTerm(&txt, i++, aCol[aiColumn[j]].zName, ">"); |
+ } |
+ if( pPlan->wsFlags&WHERE_TOP_LIMIT ){ |
+ explainAppendTerm(&txt, i, aCol[aiColumn[j]].zName, "<"); |
+ } |
+ sqlite3StrAccumAppend(&txt, ")", 1); |
+ return sqlite3StrAccumFinish(&txt); |
+} |
+ |
+/* |
+** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN |
+** command. If the query being compiled is an EXPLAIN QUERY PLAN, a single |
+** record is added to the output to describe the table scan strategy in |
+** pLevel. |
+*/ |
+static void explainOneScan( |
+ Parse *pParse, /* Parse context */ |
+ SrcList *pTabList, /* Table list this loop refers to */ |
+ WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ |
+ int iLevel, /* Value for "level" column of output */ |
+ int iFrom, /* Value for "from" column of output */ |
+ u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ |
+){ |
+ if( pParse->explain==2 ){ |
+ u32 flags = pLevel->plan.wsFlags; |
+ struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; |
+ Vdbe *v = pParse->pVdbe; /* VM being constructed */ |
+ sqlite3 *db = pParse->db; /* Database handle */ |
+ char *zMsg; /* Text to add to EQP output */ |
+ sqlite3_int64 nRow; /* Expected number of rows visited by scan */ |
+ int iId = pParse->iSelectId; /* Select id (left-most output column) */ |
+ int isSearch; /* True for a SEARCH. False for SCAN. */ |
+ |
+ if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return; |
+ |
+ isSearch = (pLevel->plan.nEq>0) |
+ || (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 |
+ || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); |
+ |
+ zMsg = sqlite3MPrintf(db, "%s", isSearch?"SEARCH":"SCAN"); |
+ if( pItem->pSelect ){ |
+ zMsg = sqlite3MAppendf(db, zMsg, "%s SUBQUERY %d", zMsg,pItem->iSelectId); |
+ }else{ |
+ zMsg = sqlite3MAppendf(db, zMsg, "%s TABLE %s", zMsg, pItem->zName); |
+ } |
+ |
+ if( pItem->zAlias ){ |
+ zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias); |
+ } |
+ if( (flags & WHERE_INDEXED)!=0 ){ |
+ char *zWhere = explainIndexRange(db, pLevel, pItem->pTab); |
+ zMsg = sqlite3MAppendf(db, zMsg, "%s USING %s%sINDEX%s%s%s", zMsg, |
+ ((flags & WHERE_TEMP_INDEX)?"AUTOMATIC ":""), |
+ ((flags & WHERE_IDX_ONLY)?"COVERING ":""), |
+ ((flags & WHERE_TEMP_INDEX)?"":" "), |
+ ((flags & WHERE_TEMP_INDEX)?"": pLevel->plan.u.pIdx->zName), |
+ zWhere |
+ ); |
+ sqlite3DbFree(db, zWhere); |
+ }else if( flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ |
+ zMsg = sqlite3MAppendf(db, zMsg, "%s USING INTEGER PRIMARY KEY", zMsg); |
+ |
+ if( flags&WHERE_ROWID_EQ ){ |
+ zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid=?)", zMsg); |
+ }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ |
+ zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>? AND rowid<?)", zMsg); |
+ }else if( flags&WHERE_BTM_LIMIT ){ |
+ zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>?)", zMsg); |
+ }else if( flags&WHERE_TOP_LIMIT ){ |
+ zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid<?)", zMsg); |
+ } |
+ } |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ |
+ sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx; |
+ zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg, |
+ pVtabIdx->idxNum, pVtabIdx->idxStr); |
+ } |
+#endif |
+ if( wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) ){ |
+ testcase( wctrlFlags & WHERE_ORDERBY_MIN ); |
+ nRow = 1; |
+ }else{ |
+ nRow = (sqlite3_int64)pLevel->plan.nRow; |
+ } |
+ zMsg = sqlite3MAppendf(db, zMsg, "%s (~%lld rows)", zMsg, nRow); |
+ sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg, P4_DYNAMIC); |
+ } |
+} |
+#else |
+# define explainOneScan(u,v,w,x,y,z) |
+#endif /* SQLITE_OMIT_EXPLAIN */ |
+ |
+ |
+/* |
+** Generate code for the start of the iLevel-th loop in the WHERE clause |
+** implementation described by pWInfo. |
+*/ |
+static Bitmask codeOneLoopStart( |
+ WhereInfo *pWInfo, /* Complete information about the WHERE clause */ |
+ int iLevel, /* Which level of pWInfo->a[] should be coded */ |
+ u16 wctrlFlags, /* One of the WHERE_* flags defined in sqliteInt.h */ |
+ Bitmask notReady /* Which tables are currently available */ |
+){ |
+ int j, k; /* Loop counters */ |
+ int iCur; /* The VDBE cursor for the table */ |
+ int addrNxt; /* Where to jump to continue with the next IN case */ |
+ int omitTable; /* True if we use the index only */ |
+ int bRev; /* True if we need to scan in reverse order */ |
+ WhereLevel *pLevel; /* The where level to be coded */ |
+ WhereClause *pWC; /* Decomposition of the entire WHERE clause */ |
+ WhereTerm *pTerm; /* A WHERE clause term */ |
+ Parse *pParse; /* Parsing context */ |
+ Vdbe *v; /* The prepared stmt under constructions */ |
+ struct SrcList_item *pTabItem; /* FROM clause term being coded */ |
+ int addrBrk; /* Jump here to break out of the loop */ |
+ int addrCont; /* Jump here to continue with next cycle */ |
+ int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ |
+ int iReleaseReg = 0; /* Temp register to free before returning */ |
+ |
+ pParse = pWInfo->pParse; |
+ v = pParse->pVdbe; |
+ pWC = pWInfo->pWC; |
+ pLevel = &pWInfo->a[iLevel]; |
+ pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; |
+ iCur = pTabItem->iCursor; |
+ bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0; |
+ omitTable = (pLevel->plan.wsFlags & WHERE_IDX_ONLY)!=0 |
+ && (wctrlFlags & WHERE_FORCE_TABLE)==0; |
+ |
+ /* Create labels for the "break" and "continue" instructions |
+ ** for the current loop. Jump to addrBrk to break out of a loop. |
+ ** Jump to cont to go immediately to the next iteration of the |
+ ** loop. |
+ ** |
+ ** When there is an IN operator, we also have a "addrNxt" label that |
+ ** means to continue with the next IN value combination. When |
+ ** there are no IN operators in the constraints, the "addrNxt" label |
+ ** is the same as "addrBrk". |
+ */ |
+ addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v); |
+ addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v); |
+ |
+ /* If this is the right table of a LEFT OUTER JOIN, allocate and |
+ ** initialize a memory cell that records if this table matches any |
+ ** row of the left table of the join. |
+ */ |
+ if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){ |
+ pLevel->iLeftJoin = ++pParse->nMem; |
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); |
+ VdbeComment((v, "init LEFT JOIN no-match flag")); |
+ } |
+ |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){ |
+ /* Case 0: The table is a virtual-table. Use the VFilter and VNext |
+ ** to access the data. |
+ */ |
+ int iReg; /* P3 Value for OP_VFilter */ |
+ sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx; |
+ int nConstraint = pVtabIdx->nConstraint; |
+ struct sqlite3_index_constraint_usage *aUsage = |
+ pVtabIdx->aConstraintUsage; |
+ const struct sqlite3_index_constraint *aConstraint = |
+ pVtabIdx->aConstraint; |
+ |
+ sqlite3ExprCachePush(pParse); |
+ iReg = sqlite3GetTempRange(pParse, nConstraint+2); |
+ for(j=1; j<=nConstraint; j++){ |
+ for(k=0; k<nConstraint; k++){ |
+ if( aUsage[k].argvIndex==j ){ |
+ int iTerm = aConstraint[k].iTermOffset; |
+ sqlite3ExprCode(pParse, pWC->a[iTerm].pExpr->pRight, iReg+j+1); |
+ break; |
+ } |
+ } |
+ if( k==nConstraint ) break; |
+ } |
+ sqlite3VdbeAddOp2(v, OP_Integer, pVtabIdx->idxNum, iReg); |
+ sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1); |
+ sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrBrk, iReg, pVtabIdx->idxStr, |
+ pVtabIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC); |
+ pVtabIdx->needToFreeIdxStr = 0; |
+ for(j=0; j<nConstraint; j++){ |
+ if( aUsage[j].omit ){ |
+ int iTerm = aConstraint[j].iTermOffset; |
+ disableTerm(pLevel, &pWC->a[iTerm]); |
+ } |
+ } |
+ pLevel->op = OP_VNext; |
+ pLevel->p1 = iCur; |
+ pLevel->p2 = sqlite3VdbeCurrentAddr(v); |
+ sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); |
+ sqlite3ExprCachePop(pParse, 1); |
+ }else |
+#endif /* SQLITE_OMIT_VIRTUALTABLE */ |
+ |
+ if( pLevel->plan.wsFlags & WHERE_ROWID_EQ ){ |
+ /* Case 1: We can directly reference a single row using an |
+ ** equality comparison against the ROWID field. Or |
+ ** we reference multiple rows using a "rowid IN (...)" |
+ ** construct. |
+ */ |
+ iReleaseReg = sqlite3GetTempReg(pParse); |
+ pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0); |
+ assert( pTerm!=0 ); |
+ assert( pTerm->pExpr!=0 ); |
+ assert( pTerm->leftCursor==iCur ); |
+ assert( omitTable==0 ); |
+ testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ |
+ iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, iReleaseReg); |
+ addrNxt = pLevel->addrNxt; |
+ sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); |
+ sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg); |
+ sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); |
+ VdbeComment((v, "pk")); |
+ pLevel->op = OP_Noop; |
+ }else if( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ){ |
+ /* Case 2: We have an inequality comparison against the ROWID field. |
+ */ |
+ int testOp = OP_Noop; |
+ int start; |
+ int memEndValue = 0; |
+ WhereTerm *pStart, *pEnd; |
+ |
+ assert( omitTable==0 ); |
+ pStart = findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0); |
+ pEnd = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0); |
+ if( bRev ){ |
+ pTerm = pStart; |
+ pStart = pEnd; |
+ pEnd = pTerm; |
+ } |
+ if( pStart ){ |
+ Expr *pX; /* The expression that defines the start bound */ |
+ int r1, rTemp; /* Registers for holding the start boundary */ |
+ |
+ /* The following constant maps TK_xx codes into corresponding |
+ ** seek opcodes. It depends on a particular ordering of TK_xx |
+ */ |
+ const u8 aMoveOp[] = { |
+ /* TK_GT */ OP_SeekGt, |
+ /* TK_LE */ OP_SeekLe, |
+ /* TK_LT */ OP_SeekLt, |
+ /* TK_GE */ OP_SeekGe |
+ }; |
+ assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ |
+ assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ |
+ assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ |
+ |
+ testcase( pStart->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ |
+ pX = pStart->pExpr; |
+ assert( pX!=0 ); |
+ assert( pStart->leftCursor==iCur ); |
+ r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); |
+ sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1); |
+ VdbeComment((v, "pk")); |
+ sqlite3ExprCacheAffinityChange(pParse, r1, 1); |
+ sqlite3ReleaseTempReg(pParse, rTemp); |
+ disableTerm(pLevel, pStart); |
+ }else{ |
+ sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk); |
+ } |
+ if( pEnd ){ |
+ Expr *pX; |
+ pX = pEnd->pExpr; |
+ assert( pX!=0 ); |
+ assert( pEnd->leftCursor==iCur ); |
+ testcase( pEnd->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ |
+ memEndValue = ++pParse->nMem; |
+ sqlite3ExprCode(pParse, pX->pRight, memEndValue); |
+ if( pX->op==TK_LT || pX->op==TK_GT ){ |
+ testOp = bRev ? OP_Le : OP_Ge; |
+ }else{ |
+ testOp = bRev ? OP_Lt : OP_Gt; |
+ } |
+ disableTerm(pLevel, pEnd); |
+ } |
+ start = sqlite3VdbeCurrentAddr(v); |
+ pLevel->op = bRev ? OP_Prev : OP_Next; |
+ pLevel->p1 = iCur; |
+ pLevel->p2 = start; |
+ if( pStart==0 && pEnd==0 ){ |
+ pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; |
+ }else{ |
+ assert( pLevel->p5==0 ); |
+ } |
+ if( testOp!=OP_Noop ){ |
+ iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse); |
+ sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); |
+ sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); |
+ sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); |
+ sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); |
+ } |
+ }else if( pLevel->plan.wsFlags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){ |
+ /* Case 3: A scan using an index. |
+ ** |
+ ** The WHERE clause may contain zero or more equality |
+ ** terms ("==" or "IN" operators) that refer to the N |
+ ** left-most columns of the index. It may also contain |
+ ** inequality constraints (>, <, >= or <=) on the indexed |
+ ** column that immediately follows the N equalities. Only |
+ ** the right-most column can be an inequality - the rest must |
+ ** use the "==" and "IN" operators. For example, if the |
+ ** index is on (x,y,z), then the following clauses are all |
+ ** optimized: |
+ ** |
+ ** x=5 |
+ ** x=5 AND y=10 |
+ ** x=5 AND y<10 |
+ ** x=5 AND y>5 AND y<10 |
+ ** x=5 AND y=5 AND z<=10 |
+ ** |
+ ** The z<10 term of the following cannot be used, only |
+ ** the x=5 term: |
+ ** |
+ ** x=5 AND z<10 |
+ ** |
+ ** N may be zero if there are inequality constraints. |
+ ** If there are no inequality constraints, then N is at |
+ ** least one. |
+ ** |
+ ** This case is also used when there are no WHERE clause |
+ ** constraints but an index is selected anyway, in order |
+ ** to force the output order to conform to an ORDER BY. |
+ */ |
+ static const u8 aStartOp[] = { |
+ 0, |
+ 0, |
+ OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ |
+ OP_Last, /* 3: (!start_constraints && startEq && bRev) */ |
+ OP_SeekGt, /* 4: (start_constraints && !startEq && !bRev) */ |
+ OP_SeekLt, /* 5: (start_constraints && !startEq && bRev) */ |
+ OP_SeekGe, /* 6: (start_constraints && startEq && !bRev) */ |
+ OP_SeekLe /* 7: (start_constraints && startEq && bRev) */ |
+ }; |
+ static const u8 aEndOp[] = { |
+ OP_Noop, /* 0: (!end_constraints) */ |
+ OP_IdxGE, /* 1: (end_constraints && !bRev) */ |
+ OP_IdxLT /* 2: (end_constraints && bRev) */ |
+ }; |
+ int nEq = pLevel->plan.nEq; /* Number of == or IN terms */ |
+ int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */ |
+ int regBase; /* Base register holding constraint values */ |
+ int r1; /* Temp register */ |
+ WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ |
+ WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ |
+ int startEq; /* True if range start uses ==, >= or <= */ |
+ int endEq; /* True if range end uses ==, >= or <= */ |
+ int start_constraints; /* Start of range is constrained */ |
+ int nConstraint; /* Number of constraint terms */ |
+ Index *pIdx; /* The index we will be using */ |
+ int iIdxCur; /* The VDBE cursor for the index */ |
+ int nExtraReg = 0; /* Number of extra registers needed */ |
+ int op; /* Instruction opcode */ |
+ char *zStartAff; /* Affinity for start of range constraint */ |
+ char *zEndAff; /* Affinity for end of range constraint */ |
+ |
+ pIdx = pLevel->plan.u.pIdx; |
+ iIdxCur = pLevel->iIdxCur; |
+ k = pIdx->aiColumn[nEq]; /* Column for inequality constraints */ |
+ |
+ /* If this loop satisfies a sort order (pOrderBy) request that |
+ ** was passed to this function to implement a "SELECT min(x) ..." |
+ ** query, then the caller will only allow the loop to run for |
+ ** a single iteration. This means that the first row returned |
+ ** should not have a NULL value stored in 'x'. If column 'x' is |
+ ** the first one after the nEq equality constraints in the index, |
+ ** this requires some special handling. |
+ */ |
+ if( (wctrlFlags&WHERE_ORDERBY_MIN)!=0 |
+ && (pLevel->plan.wsFlags&WHERE_ORDERBY) |
+ && (pIdx->nColumn>nEq) |
+ ){ |
+ /* assert( pOrderBy->nExpr==1 ); */ |
+ /* assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); */ |
+ isMinQuery = 1; |
+ nExtraReg = 1; |
+ } |
+ |
+ /* Find any inequality constraint terms for the start and end |
+ ** of the range. |
+ */ |
+ if( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ){ |
+ pRangeEnd = findTerm(pWC, iCur, k, notReady, (WO_LT|WO_LE), pIdx); |
+ nExtraReg = 1; |
+ } |
+ if( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ){ |
+ pRangeStart = findTerm(pWC, iCur, k, notReady, (WO_GT|WO_GE), pIdx); |
+ nExtraReg = 1; |
+ } |
+ |
+ /* Generate code to evaluate all constraint terms using == or IN |
+ ** and store the values of those terms in an array of registers |
+ ** starting at regBase. |
+ */ |
+ regBase = codeAllEqualityTerms( |
+ pParse, pLevel, pWC, notReady, nExtraReg, &zStartAff |
+ ); |
+ zEndAff = sqlite3DbStrDup(pParse->db, zStartAff); |
+ addrNxt = pLevel->addrNxt; |
+ |
+ /* If we are doing a reverse order scan on an ascending index, or |
+ ** a forward order scan on a descending index, interchange the |
+ ** start and end terms (pRangeStart and pRangeEnd). |
+ */ |
+ if( nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC) ){ |
+ SWAP(WhereTerm *, pRangeEnd, pRangeStart); |
+ } |
+ |
+ testcase( pRangeStart && pRangeStart->eOperator & WO_LE ); |
+ testcase( pRangeStart && pRangeStart->eOperator & WO_GE ); |
+ testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE ); |
+ testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE ); |
+ startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); |
+ endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); |
+ start_constraints = pRangeStart || nEq>0; |
+ |
+ /* Seek the index cursor to the start of the range. */ |
+ nConstraint = nEq; |
+ if( pRangeStart ){ |
+ Expr *pRight = pRangeStart->pExpr->pRight; |
+ sqlite3ExprCode(pParse, pRight, regBase+nEq); |
+ if( (pRangeStart->wtFlags & TERM_VNULL)==0 ){ |
+ sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt); |
+ } |
+ if( zStartAff ){ |
+ if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_NONE){ |
+ /* Since the comparison is to be performed with no conversions |
+ ** applied to the operands, set the affinity to apply to pRight to |
+ ** SQLITE_AFF_NONE. */ |
+ zStartAff[nEq] = SQLITE_AFF_NONE; |
+ } |
+ if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){ |
+ zStartAff[nEq] = SQLITE_AFF_NONE; |
+ } |
+ } |
+ nConstraint++; |
+ testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ |
+ }else if( isMinQuery ){ |
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); |
+ nConstraint++; |
+ startEq = 0; |
+ start_constraints = 1; |
+ } |
+ codeApplyAffinity(pParse, regBase, nConstraint, zStartAff); |
+ op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; |
+ assert( op!=0 ); |
+ testcase( op==OP_Rewind ); |
+ testcase( op==OP_Last ); |
+ testcase( op==OP_SeekGt ); |
+ testcase( op==OP_SeekGe ); |
+ testcase( op==OP_SeekLe ); |
+ testcase( op==OP_SeekLt ); |
+ sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); |
+ |
+ /* Load the value for the inequality constraint at the end of the |
+ ** range (if any). |
+ */ |
+ nConstraint = nEq; |
+ if( pRangeEnd ){ |
+ Expr *pRight = pRangeEnd->pExpr->pRight; |
+ sqlite3ExprCacheRemove(pParse, regBase+nEq, 1); |
+ sqlite3ExprCode(pParse, pRight, regBase+nEq); |
+ if( (pRangeEnd->wtFlags & TERM_VNULL)==0 ){ |
+ sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt); |
+ } |
+ if( zEndAff ){ |
+ if( sqlite3CompareAffinity(pRight, zEndAff[nEq])==SQLITE_AFF_NONE){ |
+ /* Since the comparison is to be performed with no conversions |
+ ** applied to the operands, set the affinity to apply to pRight to |
+ ** SQLITE_AFF_NONE. */ |
+ zEndAff[nEq] = SQLITE_AFF_NONE; |
+ } |
+ if( sqlite3ExprNeedsNoAffinityChange(pRight, zEndAff[nEq]) ){ |
+ zEndAff[nEq] = SQLITE_AFF_NONE; |
+ } |
+ } |
+ codeApplyAffinity(pParse, regBase, nEq+1, zEndAff); |
+ nConstraint++; |
+ testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ |
+ } |
+ sqlite3DbFree(pParse->db, zStartAff); |
+ sqlite3DbFree(pParse->db, zEndAff); |
+ |
+ /* Top of the loop body */ |
+ pLevel->p2 = sqlite3VdbeCurrentAddr(v); |
+ |
+ /* Check if the index cursor is past the end of the range. */ |
+ op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)]; |
+ testcase( op==OP_Noop ); |
+ testcase( op==OP_IdxGE ); |
+ testcase( op==OP_IdxLT ); |
+ if( op!=OP_Noop ){ |
+ sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); |
+ sqlite3VdbeChangeP5(v, endEq!=bRev ?1:0); |
+ } |
+ |
+ /* If there are inequality constraints, check that the value |
+ ** of the table column that the inequality contrains is not NULL. |
+ ** If it is, jump to the next iteration of the loop. |
+ */ |
+ r1 = sqlite3GetTempReg(pParse); |
+ testcase( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ); |
+ testcase( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ); |
+ if( (pLevel->plan.wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 ){ |
+ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1); |
+ sqlite3VdbeAddOp2(v, OP_IsNull, r1, addrCont); |
+ } |
+ sqlite3ReleaseTempReg(pParse, r1); |
+ |
+ /* Seek the table cursor, if required */ |
+ disableTerm(pLevel, pRangeStart); |
+ disableTerm(pLevel, pRangeEnd); |
+ if( !omitTable ){ |
+ iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse); |
+ sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg); |
+ sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); |
+ sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */ |
+ } |
+ |
+ /* Record the instruction used to terminate the loop. Disable |
+ ** WHERE clause terms made redundant by the index range scan. |
+ */ |
+ if( pLevel->plan.wsFlags & WHERE_UNIQUE ){ |
+ pLevel->op = OP_Noop; |
+ }else if( bRev ){ |
+ pLevel->op = OP_Prev; |
+ }else{ |
+ pLevel->op = OP_Next; |
+ } |
+ pLevel->p1 = iIdxCur; |
+ }else |
+ |
+#ifndef SQLITE_OMIT_OR_OPTIMIZATION |
+ if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){ |
+ /* Case 4: Two or more separately indexed terms connected by OR |
+ ** |
+ ** Example: |
+ ** |
+ ** CREATE TABLE t1(a,b,c,d); |
+ ** CREATE INDEX i1 ON t1(a); |
+ ** CREATE INDEX i2 ON t1(b); |
+ ** CREATE INDEX i3 ON t1(c); |
+ ** |
+ ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) |
+ ** |
+ ** In the example, there are three indexed terms connected by OR. |
+ ** The top of the loop looks like this: |
+ ** |
+ ** Null 1 # Zero the rowset in reg 1 |
+ ** |
+ ** Then, for each indexed term, the following. The arguments to |
+ ** RowSetTest are such that the rowid of the current row is inserted |
+ ** into the RowSet. If it is already present, control skips the |
+ ** Gosub opcode and jumps straight to the code generated by WhereEnd(). |
+ ** |
+ ** sqlite3WhereBegin(<term>) |
+ ** RowSetTest # Insert rowid into rowset |
+ ** Gosub 2 A |
+ ** sqlite3WhereEnd() |
+ ** |
+ ** Following the above, code to terminate the loop. Label A, the target |
+ ** of the Gosub above, jumps to the instruction right after the Goto. |
+ ** |
+ ** Null 1 # Zero the rowset in reg 1 |
+ ** Goto B # The loop is finished. |
+ ** |
+ ** A: <loop body> # Return data, whatever. |
+ ** |
+ ** Return 2 # Jump back to the Gosub |
+ ** |
+ ** B: <after the loop> |
+ ** |
+ */ |
+ WhereClause *pOrWc; /* The OR-clause broken out into subterms */ |
+ SrcList *pOrTab; /* Shortened table list or OR-clause generation */ |
+ |
+ int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ |
+ int regRowset = 0; /* Register for RowSet object */ |
+ int regRowid = 0; /* Register holding rowid */ |
+ int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */ |
+ int iRetInit; /* Address of regReturn init */ |
+ int untestedTerms = 0; /* Some terms not completely tested */ |
+ int ii; |
+ |
+ pTerm = pLevel->plan.u.pTerm; |
+ assert( pTerm!=0 ); |
+ assert( pTerm->eOperator==WO_OR ); |
+ assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); |
+ pOrWc = &pTerm->u.pOrInfo->wc; |
+ pLevel->op = OP_Return; |
+ pLevel->p1 = regReturn; |
+ |
+ /* Set up a new SrcList ni pOrTab containing the table being scanned |
+ ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. |
+ ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). |
+ */ |
+ if( pWInfo->nLevel>1 ){ |
+ int nNotReady; /* The number of notReady tables */ |
+ struct SrcList_item *origSrc; /* Original list of tables */ |
+ nNotReady = pWInfo->nLevel - iLevel - 1; |
+ pOrTab = sqlite3StackAllocRaw(pParse->db, |
+ sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); |
+ if( pOrTab==0 ) return notReady; |
+ pOrTab->nAlloc = (i16)(nNotReady + 1); |
+ pOrTab->nSrc = pOrTab->nAlloc; |
+ memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); |
+ origSrc = pWInfo->pTabList->a; |
+ for(k=1; k<=nNotReady; k++){ |
+ memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); |
+ } |
+ }else{ |
+ pOrTab = pWInfo->pTabList; |
+ } |
+ |
+ /* Initialize the rowset register to contain NULL. An SQL NULL is |
+ ** equivalent to an empty rowset. |
+ ** |
+ ** Also initialize regReturn to contain the address of the instruction |
+ ** immediately following the OP_Return at the bottom of the loop. This |
+ ** is required in a few obscure LEFT JOIN cases where control jumps |
+ ** over the top of the loop into the body of it. In this case the |
+ ** correct response for the end-of-loop code (the OP_Return) is to |
+ ** fall through to the next instruction, just as an OP_Next does if |
+ ** called on an uninitialized cursor. |
+ */ |
+ if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ |
+ regRowset = ++pParse->nMem; |
+ regRowid = ++pParse->nMem; |
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); |
+ } |
+ iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); |
+ |
+ for(ii=0; ii<pOrWc->nTerm; ii++){ |
+ WhereTerm *pOrTerm = &pOrWc->a[ii]; |
+ if( pOrTerm->leftCursor==iCur || pOrTerm->eOperator==WO_AND ){ |
+ WhereInfo *pSubWInfo; /* Info for single OR-term scan */ |
+ /* Loop through table entries that match term pOrTerm. */ |
+ pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrTerm->pExpr, 0, |
+ WHERE_OMIT_OPEN | WHERE_OMIT_CLOSE | |
+ WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY); |
+ if( pSubWInfo ){ |
+ explainOneScan( |
+ pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0 |
+ ); |
+ if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ |
+ int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); |
+ int r; |
+ r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur, |
+ regRowid); |
+ sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, |
+ sqlite3VdbeCurrentAddr(v)+2, r, iSet); |
+ } |
+ sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); |
+ |
+ /* The pSubWInfo->untestedTerms flag means that this OR term |
+ ** contained one or more AND term from a notReady table. The |
+ ** terms from the notReady table could not be tested and will |
+ ** need to be tested later. |
+ */ |
+ if( pSubWInfo->untestedTerms ) untestedTerms = 1; |
+ |
+ /* Finish the loop through table entries that match term pOrTerm. */ |
+ sqlite3WhereEnd(pSubWInfo); |
+ } |
+ } |
+ } |
+ sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk); |
+ sqlite3VdbeResolveLabel(v, iLoopBody); |
+ |
+ if( pWInfo->nLevel>1 ) sqlite3StackFree(pParse->db, pOrTab); |
+ if( !untestedTerms ) disableTerm(pLevel, pTerm); |
+ }else |
+#endif /* SQLITE_OMIT_OR_OPTIMIZATION */ |
+ |
+ { |
+ /* Case 5: There is no usable index. We must do a complete |
+ ** scan of the entire table. |
+ */ |
+ static const u8 aStep[] = { OP_Next, OP_Prev }; |
+ static const u8 aStart[] = { OP_Rewind, OP_Last }; |
+ assert( bRev==0 || bRev==1 ); |
+ assert( omitTable==0 ); |
+ pLevel->op = aStep[bRev]; |
+ pLevel->p1 = iCur; |
+ pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); |
+ pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; |
+ } |
+ notReady &= ~getMask(pWC->pMaskSet, iCur); |
+ |
+ /* Insert code to test every subexpression that can be completely |
+ ** computed using the current set of tables. |
+ ** |
+ ** IMPLEMENTATION-OF: R-49525-50935 Terms that cannot be satisfied through |
+ ** the use of indices become tests that are evaluated against each row of |
+ ** the relevant input tables. |
+ */ |
+ for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ |
+ Expr *pE; |
+ testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* IMP: R-30575-11662 */ |
+ testcase( pTerm->wtFlags & TERM_CODED ); |
+ if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; |
+ if( (pTerm->prereqAll & notReady)!=0 ){ |
+ testcase( pWInfo->untestedTerms==0 |
+ && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ); |
+ pWInfo->untestedTerms = 1; |
+ continue; |
+ } |
+ pE = pTerm->pExpr; |
+ assert( pE!=0 ); |
+ if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ |
+ continue; |
+ } |
+ sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); |
+ pTerm->wtFlags |= TERM_CODED; |
+ } |
+ |
+ /* For a LEFT OUTER JOIN, generate code that will record the fact that |
+ ** at least one row of the right table has matched the left table. |
+ */ |
+ if( pLevel->iLeftJoin ){ |
+ pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); |
+ sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); |
+ VdbeComment((v, "record LEFT JOIN hit")); |
+ sqlite3ExprCacheClear(pParse); |
+ for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ |
+ testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* IMP: R-30575-11662 */ |
+ testcase( pTerm->wtFlags & TERM_CODED ); |
+ if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; |
+ if( (pTerm->prereqAll & notReady)!=0 ){ |
+ assert( pWInfo->untestedTerms ); |
+ continue; |
+ } |
+ assert( pTerm->pExpr ); |
+ sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); |
+ pTerm->wtFlags |= TERM_CODED; |
+ } |
+ } |
+ sqlite3ReleaseTempReg(pParse, iReleaseReg); |
+ |
+ return notReady; |
+} |
+ |
+#if defined(SQLITE_TEST) |
+/* |
+** The following variable holds a text description of query plan generated |
+** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin |
+** overwrites the previous. This information is used for testing and |
+** analysis only. |
+*/ |
+char sqlite3_query_plan[BMS*2*40]; /* Text of the join */ |
+static int nQPlan = 0; /* Next free slow in _query_plan[] */ |
+ |
+#endif /* SQLITE_TEST */ |
+ |
+ |
+/* |
+** Free a WhereInfo structure |
+*/ |
+static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ |
+ if( ALWAYS(pWInfo) ){ |
+ int i; |
+ for(i=0; i<pWInfo->nLevel; i++){ |
+ sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo; |
+ if( pInfo ){ |
+ /* assert( pInfo->needToFreeIdxStr==0 || db->mallocFailed ); */ |
+ if( pInfo->needToFreeIdxStr ){ |
+ sqlite3_free(pInfo->idxStr); |
+ } |
+ sqlite3DbFree(db, pInfo); |
+ } |
+ if( pWInfo->a[i].plan.wsFlags & WHERE_TEMP_INDEX ){ |
+ Index *pIdx = pWInfo->a[i].plan.u.pIdx; |
+ if( pIdx ){ |
+ sqlite3DbFree(db, pIdx->zColAff); |
+ sqlite3DbFree(db, pIdx); |
+ } |
+ } |
+ } |
+ whereClauseClear(pWInfo->pWC); |
+ sqlite3DbFree(db, pWInfo); |
+ } |
+} |
+ |
+ |
+/* |
+** Generate the beginning of the loop used for WHERE clause processing. |
+** The return value is a pointer to an opaque structure that contains |
+** information needed to terminate the loop. Later, the calling routine |
+** should invoke sqlite3WhereEnd() with the return value of this function |
+** in order to complete the WHERE clause processing. |
+** |
+** If an error occurs, this routine returns NULL. |
+** |
+** The basic idea is to do a nested loop, one loop for each table in |
+** the FROM clause of a select. (INSERT and UPDATE statements are the |
+** same as a SELECT with only a single table in the FROM clause.) For |
+** example, if the SQL is this: |
+** |
+** SELECT * FROM t1, t2, t3 WHERE ...; |
+** |
+** Then the code generated is conceptually like the following: |
+** |
+** foreach row1 in t1 do \ Code generated |
+** foreach row2 in t2 do |-- by sqlite3WhereBegin() |
+** foreach row3 in t3 do / |
+** ... |
+** end \ Code generated |
+** end |-- by sqlite3WhereEnd() |
+** end / |
+** |
+** Note that the loops might not be nested in the order in which they |
+** appear in the FROM clause if a different order is better able to make |
+** use of indices. Note also that when the IN operator appears in |
+** the WHERE clause, it might result in additional nested loops for |
+** scanning through all values on the right-hand side of the IN. |
+** |
+** There are Btree cursors associated with each table. t1 uses cursor |
+** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. |
+** And so forth. This routine generates code to open those VDBE cursors |
+** and sqlite3WhereEnd() generates the code to close them. |
+** |
+** The code that sqlite3WhereBegin() generates leaves the cursors named |
+** in pTabList pointing at their appropriate entries. The [...] code |
+** can use OP_Column and OP_Rowid opcodes on these cursors to extract |
+** data from the various tables of the loop. |
+** |
+** If the WHERE clause is empty, the foreach loops must each scan their |
+** entire tables. Thus a three-way join is an O(N^3) operation. But if |
+** the tables have indices and there are terms in the WHERE clause that |
+** refer to those indices, a complete table scan can be avoided and the |
+** code will run much faster. Most of the work of this routine is checking |
+** to see if there are indices that can be used to speed up the loop. |
+** |
+** Terms of the WHERE clause are also used to limit which rows actually |
+** make it to the "..." in the middle of the loop. After each "foreach", |
+** terms of the WHERE clause that use only terms in that loop and outer |
+** loops are evaluated and if false a jump is made around all subsequent |
+** inner loops (or around the "..." if the test occurs within the inner- |
+** most loop) |
+** |
+** OUTER JOINS |
+** |
+** An outer join of tables t1 and t2 is conceptally coded as follows: |
+** |
+** foreach row1 in t1 do |
+** flag = 0 |
+** foreach row2 in t2 do |
+** start: |
+** ... |
+** flag = 1 |
+** end |
+** if flag==0 then |
+** move the row2 cursor to a null row |
+** goto start |
+** fi |
+** end |
+** |
+** ORDER BY CLAUSE PROCESSING |
+** |
+** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement, |
+** if there is one. If there is no ORDER BY clause or if this routine |
+** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL. |
+** |
+** If an index can be used so that the natural output order of the table |
+** scan is correct for the ORDER BY clause, then that index is used and |
+** *ppOrderBy is set to NULL. This is an optimization that prevents an |
+** unnecessary sort of the result set if an index appropriate for the |
+** ORDER BY clause already exists. |
+** |
+** If the where clause loops cannot be arranged to provide the correct |
+** output order, then the *ppOrderBy is unchanged. |
+*/ |
+WhereInfo *sqlite3WhereBegin( |
+ Parse *pParse, /* The parser context */ |
+ SrcList *pTabList, /* A list of all tables to be scanned */ |
+ Expr *pWhere, /* The WHERE clause */ |
+ ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */ |
+ u16 wctrlFlags /* One of the WHERE_* flags defined in sqliteInt.h */ |
+){ |
+ int i; /* Loop counter */ |
+ int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ |
+ int nTabList; /* Number of elements in pTabList */ |
+ WhereInfo *pWInfo; /* Will become the return value of this function */ |
+ Vdbe *v = pParse->pVdbe; /* The virtual database engine */ |
+ Bitmask notReady; /* Cursors that are not yet positioned */ |
+ WhereMaskSet *pMaskSet; /* The expression mask set */ |
+ WhereClause *pWC; /* Decomposition of the WHERE clause */ |
+ struct SrcList_item *pTabItem; /* A single entry from pTabList */ |
+ WhereLevel *pLevel; /* A single level in the pWInfo list */ |
+ int iFrom; /* First unused FROM clause element */ |
+ int andFlags; /* AND-ed combination of all pWC->a[].wtFlags */ |
+ sqlite3 *db; /* Database connection */ |
+ |
+ /* The number of tables in the FROM clause is limited by the number of |
+ ** bits in a Bitmask |
+ */ |
+ testcase( pTabList->nSrc==BMS ); |
+ if( pTabList->nSrc>BMS ){ |
+ sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); |
+ return 0; |
+ } |
+ |
+ /* This function normally generates a nested loop for all tables in |
+ ** pTabList. But if the WHERE_ONETABLE_ONLY flag is set, then we should |
+ ** only generate code for the first table in pTabList and assume that |
+ ** any cursors associated with subsequent tables are uninitialized. |
+ */ |
+ nTabList = (wctrlFlags & WHERE_ONETABLE_ONLY) ? 1 : pTabList->nSrc; |
+ |
+ /* Allocate and initialize the WhereInfo structure that will become the |
+ ** return value. A single allocation is used to store the WhereInfo |
+ ** struct, the contents of WhereInfo.a[], the WhereClause structure |
+ ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte |
+ ** field (type Bitmask) it must be aligned on an 8-byte boundary on |
+ ** some architectures. Hence the ROUND8() below. |
+ */ |
+ db = pParse->db; |
+ nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); |
+ pWInfo = sqlite3DbMallocZero(db, |
+ nByteWInfo + |
+ sizeof(WhereClause) + |
+ sizeof(WhereMaskSet) |
+ ); |
+ if( db->mallocFailed ){ |
+ sqlite3DbFree(db, pWInfo); |
+ pWInfo = 0; |
+ goto whereBeginError; |
+ } |
+ pWInfo->nLevel = nTabList; |
+ pWInfo->pParse = pParse; |
+ pWInfo->pTabList = pTabList; |
+ pWInfo->iBreak = sqlite3VdbeMakeLabel(v); |
+ pWInfo->pWC = pWC = (WhereClause *)&((u8 *)pWInfo)[nByteWInfo]; |
+ pWInfo->wctrlFlags = wctrlFlags; |
+ pWInfo->savedNQueryLoop = pParse->nQueryLoop; |
+ pMaskSet = (WhereMaskSet*)&pWC[1]; |
+ |
+ /* Split the WHERE clause into separate subexpressions where each |
+ ** subexpression is separated by an AND operator. |
+ */ |
+ initMaskSet(pMaskSet); |
+ whereClauseInit(pWC, pParse, pMaskSet); |
+ sqlite3ExprCodeConstants(pParse, pWhere); |
+ whereSplit(pWC, pWhere, TK_AND); /* IMP: R-15842-53296 */ |
+ |
+ /* Special case: a WHERE clause that is constant. Evaluate the |
+ ** expression and either jump over all of the code or fall thru. |
+ */ |
+ if( pWhere && (nTabList==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){ |
+ sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL); |
+ pWhere = 0; |
+ } |
+ |
+ /* Assign a bit from the bitmask to every term in the FROM clause. |
+ ** |
+ ** When assigning bitmask values to FROM clause cursors, it must be |
+ ** the case that if X is the bitmask for the N-th FROM clause term then |
+ ** the bitmask for all FROM clause terms to the left of the N-th term |
+ ** is (X-1). An expression from the ON clause of a LEFT JOIN can use |
+ ** its Expr.iRightJoinTable value to find the bitmask of the right table |
+ ** of the join. Subtracting one from the right table bitmask gives a |
+ ** bitmask for all tables to the left of the join. Knowing the bitmask |
+ ** for all tables to the left of a left join is important. Ticket #3015. |
+ ** |
+ ** Configure the WhereClause.vmask variable so that bits that correspond |
+ ** to virtual table cursors are set. This is used to selectively disable |
+ ** the OR-to-IN transformation in exprAnalyzeOrTerm(). It is not helpful |
+ ** with virtual tables. |
+ ** |
+ ** Note that bitmasks are created for all pTabList->nSrc tables in |
+ ** pTabList, not just the first nTabList tables. nTabList is normally |
+ ** equal to pTabList->nSrc but might be shortened to 1 if the |
+ ** WHERE_ONETABLE_ONLY flag is set. |
+ */ |
+ assert( pWC->vmask==0 && pMaskSet->n==0 ); |
+ for(i=0; i<pTabList->nSrc; i++){ |
+ createMask(pMaskSet, pTabList->a[i].iCursor); |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ if( ALWAYS(pTabList->a[i].pTab) && IsVirtual(pTabList->a[i].pTab) ){ |
+ pWC->vmask |= ((Bitmask)1 << i); |
+ } |
+#endif |
+ } |
+#ifndef NDEBUG |
+ { |
+ Bitmask toTheLeft = 0; |
+ for(i=0; i<pTabList->nSrc; i++){ |
+ Bitmask m = getMask(pMaskSet, pTabList->a[i].iCursor); |
+ assert( (m-1)==toTheLeft ); |
+ toTheLeft |= m; |
+ } |
+ } |
+#endif |
+ |
+ /* Analyze all of the subexpressions. Note that exprAnalyze() might |
+ ** add new virtual terms onto the end of the WHERE clause. We do not |
+ ** want to analyze these virtual terms, so start analyzing at the end |
+ ** and work forward so that the added virtual terms are never processed. |
+ */ |
+ exprAnalyzeAll(pTabList, pWC); |
+ if( db->mallocFailed ){ |
+ goto whereBeginError; |
+ } |
+ |
+ /* Chose the best index to use for each table in the FROM clause. |
+ ** |
+ ** This loop fills in the following fields: |
+ ** |
+ ** pWInfo->a[].pIdx The index to use for this level of the loop. |
+ ** pWInfo->a[].wsFlags WHERE_xxx flags associated with pIdx |
+ ** pWInfo->a[].nEq The number of == and IN constraints |
+ ** pWInfo->a[].iFrom Which term of the FROM clause is being coded |
+ ** pWInfo->a[].iTabCur The VDBE cursor for the database table |
+ ** pWInfo->a[].iIdxCur The VDBE cursor for the index |
+ ** pWInfo->a[].pTerm When wsFlags==WO_OR, the OR-clause term |
+ ** |
+ ** This loop also figures out the nesting order of tables in the FROM |
+ ** clause. |
+ */ |
+ notReady = ~(Bitmask)0; |
+ andFlags = ~0; |
+ WHERETRACE(("*** Optimizer Start ***\n")); |
+ for(i=iFrom=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){ |
+ WhereCost bestPlan; /* Most efficient plan seen so far */ |
+ Index *pIdx; /* Index for FROM table at pTabItem */ |
+ int j; /* For looping over FROM tables */ |
+ int bestJ = -1; /* The value of j */ |
+ Bitmask m; /* Bitmask value for j or bestJ */ |
+ int isOptimal; /* Iterator for optimal/non-optimal search */ |
+ int nUnconstrained; /* Number tables without INDEXED BY */ |
+ Bitmask notIndexed; /* Mask of tables that cannot use an index */ |
+ |
+ memset(&bestPlan, 0, sizeof(bestPlan)); |
+ bestPlan.rCost = SQLITE_BIG_DBL; |
+ WHERETRACE(("*** Begin search for loop %d ***\n", i)); |
+ |
+ /* Loop through the remaining entries in the FROM clause to find the |
+ ** next nested loop. The loop tests all FROM clause entries |
+ ** either once or twice. |
+ ** |
+ ** The first test is always performed if there are two or more entries |
+ ** remaining and never performed if there is only one FROM clause entry |
+ ** to choose from. The first test looks for an "optimal" scan. In |
+ ** this context an optimal scan is one that uses the same strategy |
+ ** for the given FROM clause entry as would be selected if the entry |
+ ** were used as the innermost nested loop. In other words, a table |
+ ** is chosen such that the cost of running that table cannot be reduced |
+ ** by waiting for other tables to run first. This "optimal" test works |
+ ** by first assuming that the FROM clause is on the inner loop and finding |
+ ** its query plan, then checking to see if that query plan uses any |
+ ** other FROM clause terms that are notReady. If no notReady terms are |
+ ** used then the "optimal" query plan works. |
+ ** |
+ ** Note that the WhereCost.nRow parameter for an optimal scan might |
+ ** not be as small as it would be if the table really were the innermost |
+ ** join. The nRow value can be reduced by WHERE clause constraints |
+ ** that do not use indices. But this nRow reduction only happens if the |
+ ** table really is the innermost join. |
+ ** |
+ ** The second loop iteration is only performed if no optimal scan |
+ ** strategies were found by the first iteration. This second iteration |
+ ** is used to search for the lowest cost scan overall. |
+ ** |
+ ** Previous versions of SQLite performed only the second iteration - |
+ ** the next outermost loop was always that with the lowest overall |
+ ** cost. However, this meant that SQLite could select the wrong plan |
+ ** for scripts such as the following: |
+ ** |
+ ** CREATE TABLE t1(a, b); |
+ ** CREATE TABLE t2(c, d); |
+ ** SELECT * FROM t2, t1 WHERE t2.rowid = t1.a; |
+ ** |
+ ** The best strategy is to iterate through table t1 first. However it |
+ ** is not possible to determine this with a simple greedy algorithm. |
+ ** Since the cost of a linear scan through table t2 is the same |
+ ** as the cost of a linear scan through table t1, a simple greedy |
+ ** algorithm may choose to use t2 for the outer loop, which is a much |
+ ** costlier approach. |
+ */ |
+ nUnconstrained = 0; |
+ notIndexed = 0; |
+ for(isOptimal=(iFrom<nTabList-1); isOptimal>=0 && bestJ<0; isOptimal--){ |
+ Bitmask mask; /* Mask of tables not yet ready */ |
+ for(j=iFrom, pTabItem=&pTabList->a[j]; j<nTabList; j++, pTabItem++){ |
+ int doNotReorder; /* True if this table should not be reordered */ |
+ WhereCost sCost; /* Cost information from best[Virtual]Index() */ |
+ ExprList *pOrderBy; /* ORDER BY clause for index to optimize */ |
+ |
+ doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0; |
+ if( j!=iFrom && doNotReorder ) break; |
+ m = getMask(pMaskSet, pTabItem->iCursor); |
+ if( (m & notReady)==0 ){ |
+ if( j==iFrom ) iFrom++; |
+ continue; |
+ } |
+ mask = (isOptimal ? m : notReady); |
+ pOrderBy = ((i==0 && ppOrderBy )?*ppOrderBy:0); |
+ if( pTabItem->pIndex==0 ) nUnconstrained++; |
+ |
+ WHERETRACE(("=== trying table %d with isOptimal=%d ===\n", |
+ j, isOptimal)); |
+ assert( pTabItem->pTab ); |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ if( IsVirtual(pTabItem->pTab) ){ |
+ sqlite3_index_info **pp = &pWInfo->a[j].pIdxInfo; |
+ bestVirtualIndex(pParse, pWC, pTabItem, mask, notReady, pOrderBy, |
+ &sCost, pp); |
+ }else |
+#endif |
+ { |
+ bestBtreeIndex(pParse, pWC, pTabItem, mask, notReady, pOrderBy, |
+ &sCost); |
+ } |
+ assert( isOptimal || (sCost.used¬Ready)==0 ); |
+ |
+ /* If an INDEXED BY clause is present, then the plan must use that |
+ ** index if it uses any index at all */ |
+ assert( pTabItem->pIndex==0 |
+ || (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 |
+ || sCost.plan.u.pIdx==pTabItem->pIndex ); |
+ |
+ if( isOptimal && (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ){ |
+ notIndexed |= m; |
+ } |
+ |
+ /* Conditions under which this table becomes the best so far: |
+ ** |
+ ** (1) The table must not depend on other tables that have not |
+ ** yet run. |
+ ** |
+ ** (2) A full-table-scan plan cannot supercede indexed plan unless |
+ ** the full-table-scan is an "optimal" plan as defined above. |
+ ** |
+ ** (3) All tables have an INDEXED BY clause or this table lacks an |
+ ** INDEXED BY clause or this table uses the specific |
+ ** index specified by its INDEXED BY clause. This rule ensures |
+ ** that a best-so-far is always selected even if an impossible |
+ ** combination of INDEXED BY clauses are given. The error |
+ ** will be detected and relayed back to the application later. |
+ ** The NEVER() comes about because rule (2) above prevents |
+ ** An indexable full-table-scan from reaching rule (3). |
+ ** |
+ ** (4) The plan cost must be lower than prior plans or else the |
+ ** cost must be the same and the number of rows must be lower. |
+ */ |
+ if( (sCost.used¬Ready)==0 /* (1) */ |
+ && (bestJ<0 || (notIndexed&m)!=0 /* (2) */ |
+ || (bestPlan.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 |
+ || (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0) |
+ && (nUnconstrained==0 || pTabItem->pIndex==0 /* (3) */ |
+ || NEVER((sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0)) |
+ && (bestJ<0 || sCost.rCost<bestPlan.rCost /* (4) */ |
+ || (sCost.rCost<=bestPlan.rCost |
+ && sCost.plan.nRow<bestPlan.plan.nRow)) |
+ ){ |
+ WHERETRACE(("=== table %d is best so far" |
+ " with cost=%g and nRow=%g\n", |
+ j, sCost.rCost, sCost.plan.nRow)); |
+ bestPlan = sCost; |
+ bestJ = j; |
+ } |
+ if( doNotReorder ) break; |
+ } |
+ } |
+ assert( bestJ>=0 ); |
+ assert( notReady & getMask(pMaskSet, pTabList->a[bestJ].iCursor) ); |
+ WHERETRACE(("*** Optimizer selects table %d for loop %d" |
+ " with cost=%g and nRow=%g\n", |
+ bestJ, pLevel-pWInfo->a, bestPlan.rCost, bestPlan.plan.nRow)); |
+ if( (bestPlan.plan.wsFlags & WHERE_ORDERBY)!=0 ){ |
+ *ppOrderBy = 0; |
+ } |
+ andFlags &= bestPlan.plan.wsFlags; |
+ pLevel->plan = bestPlan.plan; |
+ testcase( bestPlan.plan.wsFlags & WHERE_INDEXED ); |
+ testcase( bestPlan.plan.wsFlags & WHERE_TEMP_INDEX ); |
+ if( bestPlan.plan.wsFlags & (WHERE_INDEXED|WHERE_TEMP_INDEX) ){ |
+ pLevel->iIdxCur = pParse->nTab++; |
+ }else{ |
+ pLevel->iIdxCur = -1; |
+ } |
+ notReady &= ~getMask(pMaskSet, pTabList->a[bestJ].iCursor); |
+ pLevel->iFrom = (u8)bestJ; |
+ if( bestPlan.plan.nRow>=(double)1 ){ |
+ pParse->nQueryLoop *= bestPlan.plan.nRow; |
+ } |
+ |
+ /* Check that if the table scanned by this loop iteration had an |
+ ** INDEXED BY clause attached to it, that the named index is being |
+ ** used for the scan. If not, then query compilation has failed. |
+ ** Return an error. |
+ */ |
+ pIdx = pTabList->a[bestJ].pIndex; |
+ if( pIdx ){ |
+ if( (bestPlan.plan.wsFlags & WHERE_INDEXED)==0 ){ |
+ sqlite3ErrorMsg(pParse, "cannot use index: %s", pIdx->zName); |
+ goto whereBeginError; |
+ }else{ |
+ /* If an INDEXED BY clause is used, the bestIndex() function is |
+ ** guaranteed to find the index specified in the INDEXED BY clause |
+ ** if it find an index at all. */ |
+ assert( bestPlan.plan.u.pIdx==pIdx ); |
+ } |
+ } |
+ } |
+ WHERETRACE(("*** Optimizer Finished ***\n")); |
+ if( pParse->nErr || db->mallocFailed ){ |
+ goto whereBeginError; |
+ } |
+ |
+ /* If the total query only selects a single row, then the ORDER BY |
+ ** clause is irrelevant. |
+ */ |
+ if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){ |
+ *ppOrderBy = 0; |
+ } |
+ |
+ /* If the caller is an UPDATE or DELETE statement that is requesting |
+ ** to use a one-pass algorithm, determine if this is appropriate. |
+ ** The one-pass algorithm only works if the WHERE clause constraints |
+ ** the statement to update a single row. |
+ */ |
+ assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); |
+ if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){ |
+ pWInfo->okOnePass = 1; |
+ pWInfo->a[0].plan.wsFlags &= ~WHERE_IDX_ONLY; |
+ } |
+ |
+ /* Open all tables in the pTabList and any indices selected for |
+ ** searching those tables. |
+ */ |
+ sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */ |
+ notReady = ~(Bitmask)0; |
+ pWInfo->nRowOut = (double)1; |
+ for(i=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){ |
+ Table *pTab; /* Table to open */ |
+ int iDb; /* Index of database containing table/index */ |
+ |
+ pTabItem = &pTabList->a[pLevel->iFrom]; |
+ pTab = pTabItem->pTab; |
+ pLevel->iTabCur = pTabItem->iCursor; |
+ pWInfo->nRowOut *= pLevel->plan.nRow; |
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
+ if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){ |
+ /* Do nothing */ |
+ }else |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){ |
+ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); |
+ int iCur = pTabItem->iCursor; |
+ sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); |
+ }else |
+#endif |
+ if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 |
+ && (wctrlFlags & WHERE_OMIT_OPEN)==0 ){ |
+ int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead; |
+ sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); |
+ testcase( pTab->nCol==BMS-1 ); |
+ testcase( pTab->nCol==BMS ); |
+ if( !pWInfo->okOnePass && pTab->nCol<BMS ){ |
+ Bitmask b = pTabItem->colUsed; |
+ int n = 0; |
+ for(; b; b=b>>1, n++){} |
+ sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, |
+ SQLITE_INT_TO_PTR(n), P4_INT32); |
+ assert( n<=pTab->nCol ); |
+ } |
+ }else{ |
+ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); |
+ } |
+#ifndef SQLITE_OMIT_AUTOMATIC_INDEX |
+ if( (pLevel->plan.wsFlags & WHERE_TEMP_INDEX)!=0 ){ |
+ constructAutomaticIndex(pParse, pWC, pTabItem, notReady, pLevel); |
+ }else |
+#endif |
+ if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){ |
+ Index *pIx = pLevel->plan.u.pIdx; |
+ KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx); |
+ int iIdxCur = pLevel->iIdxCur; |
+ assert( pIx->pSchema==pTab->pSchema ); |
+ assert( iIdxCur>=0 ); |
+ sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb, |
+ (char*)pKey, P4_KEYINFO_HANDOFF); |
+ VdbeComment((v, "%s", pIx->zName)); |
+ } |
+ sqlite3CodeVerifySchema(pParse, iDb); |
+ notReady &= ~getMask(pWC->pMaskSet, pTabItem->iCursor); |
+ } |
+ pWInfo->iTop = sqlite3VdbeCurrentAddr(v); |
+ if( db->mallocFailed ) goto whereBeginError; |
+ |
+ /* Generate the code to do the search. Each iteration of the for |
+ ** loop below generates code for a single nested loop of the VM |
+ ** program. |
+ */ |
+ notReady = ~(Bitmask)0; |
+ for(i=0; i<nTabList; i++){ |
+ pLevel = &pWInfo->a[i]; |
+ explainOneScan(pParse, pTabList, pLevel, i, pLevel->iFrom, wctrlFlags); |
+ notReady = codeOneLoopStart(pWInfo, i, wctrlFlags, notReady); |
+ pWInfo->iContinue = pLevel->addrCont; |
+ } |
+ |
+#ifdef SQLITE_TEST /* For testing and debugging use only */ |
+ /* Record in the query plan information about the current table |
+ ** and the index used to access it (if any). If the table itself |
+ ** is not used, its name is just '{}'. If no index is used |
+ ** the index is listed as "{}". If the primary key is used the |
+ ** index name is '*'. |
+ */ |
+ for(i=0; i<nTabList; i++){ |
+ char *z; |
+ int n; |
+ pLevel = &pWInfo->a[i]; |
+ pTabItem = &pTabList->a[pLevel->iFrom]; |
+ z = pTabItem->zAlias; |
+ if( z==0 ) z = pTabItem->pTab->zName; |
+ n = sqlite3Strlen30(z); |
+ if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){ |
+ if( pLevel->plan.wsFlags & WHERE_IDX_ONLY ){ |
+ memcpy(&sqlite3_query_plan[nQPlan], "{}", 2); |
+ nQPlan += 2; |
+ }else{ |
+ memcpy(&sqlite3_query_plan[nQPlan], z, n); |
+ nQPlan += n; |
+ } |
+ sqlite3_query_plan[nQPlan++] = ' '; |
+ } |
+ testcase( pLevel->plan.wsFlags & WHERE_ROWID_EQ ); |
+ testcase( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ); |
+ if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ |
+ memcpy(&sqlite3_query_plan[nQPlan], "* ", 2); |
+ nQPlan += 2; |
+ }else if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){ |
+ n = sqlite3Strlen30(pLevel->plan.u.pIdx->zName); |
+ if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){ |
+ memcpy(&sqlite3_query_plan[nQPlan], pLevel->plan.u.pIdx->zName, n); |
+ nQPlan += n; |
+ sqlite3_query_plan[nQPlan++] = ' '; |
+ } |
+ }else{ |
+ memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3); |
+ nQPlan += 3; |
+ } |
+ } |
+ while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){ |
+ sqlite3_query_plan[--nQPlan] = 0; |
+ } |
+ sqlite3_query_plan[nQPlan] = 0; |
+ nQPlan = 0; |
+#endif /* SQLITE_TEST // Testing and debugging use only */ |
+ |
+ /* Record the continuation address in the WhereInfo structure. Then |
+ ** clean up and return. |
+ */ |
+ return pWInfo; |
+ |
+ /* Jump here if malloc fails */ |
+whereBeginError: |
+ if( pWInfo ){ |
+ pParse->nQueryLoop = pWInfo->savedNQueryLoop; |
+ whereInfoFree(db, pWInfo); |
+ } |
+ return 0; |
+} |
+ |
+/* |
+** Generate the end of the WHERE loop. See comments on |
+** sqlite3WhereBegin() for additional information. |
+*/ |
+void sqlite3WhereEnd(WhereInfo *pWInfo){ |
+ Parse *pParse = pWInfo->pParse; |
+ Vdbe *v = pParse->pVdbe; |
+ int i; |
+ WhereLevel *pLevel; |
+ SrcList *pTabList = pWInfo->pTabList; |
+ sqlite3 *db = pParse->db; |
+ |
+ /* Generate loop termination code. |
+ */ |
+ sqlite3ExprCacheClear(pParse); |
+ for(i=pWInfo->nLevel-1; i>=0; i--){ |
+ pLevel = &pWInfo->a[i]; |
+ sqlite3VdbeResolveLabel(v, pLevel->addrCont); |
+ if( pLevel->op!=OP_Noop ){ |
+ sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2); |
+ sqlite3VdbeChangeP5(v, pLevel->p5); |
+ } |
+ if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ |
+ struct InLoop *pIn; |
+ int j; |
+ sqlite3VdbeResolveLabel(v, pLevel->addrNxt); |
+ for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ |
+ sqlite3VdbeJumpHere(v, pIn->addrInTop+1); |
+ sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->addrInTop); |
+ sqlite3VdbeJumpHere(v, pIn->addrInTop-1); |
+ } |
+ sqlite3DbFree(db, pLevel->u.in.aInLoop); |
+ } |
+ sqlite3VdbeResolveLabel(v, pLevel->addrBrk); |
+ if( pLevel->iLeftJoin ){ |
+ int addr; |
+ addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); |
+ assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 |
+ || (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ); |
+ if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 ){ |
+ sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); |
+ } |
+ if( pLevel->iIdxCur>=0 ){ |
+ sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); |
+ } |
+ if( pLevel->op==OP_Return ){ |
+ sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); |
+ }else{ |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst); |
+ } |
+ sqlite3VdbeJumpHere(v, addr); |
+ } |
+ } |
+ |
+ /* The "break" point is here, just past the end of the outer loop. |
+ ** Set it. |
+ */ |
+ sqlite3VdbeResolveLabel(v, pWInfo->iBreak); |
+ |
+ /* Close all of the cursors that were opened by sqlite3WhereBegin. |
+ */ |
+ assert( pWInfo->nLevel==1 || pWInfo->nLevel==pTabList->nSrc ); |
+ for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ |
+ struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; |
+ Table *pTab = pTabItem->pTab; |
+ assert( pTab!=0 ); |
+ if( (pTab->tabFlags & TF_Ephemeral)==0 |
+ && pTab->pSelect==0 |
+ && (pWInfo->wctrlFlags & WHERE_OMIT_CLOSE)==0 |
+ ){ |
+ int ws = pLevel->plan.wsFlags; |
+ if( !pWInfo->okOnePass && (ws & WHERE_IDX_ONLY)==0 ){ |
+ sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); |
+ } |
+ if( (ws & WHERE_INDEXED)!=0 && (ws & WHERE_TEMP_INDEX)==0 ){ |
+ sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur); |
+ } |
+ } |
+ |
+ /* If this scan uses an index, make code substitutions to read data |
+ ** from the index in preference to the table. Sometimes, this means |
+ ** the table need never be read from. This is a performance boost, |
+ ** as the vdbe level waits until the table is read before actually |
+ ** seeking the table cursor to the record corresponding to the current |
+ ** position in the index. |
+ ** |
+ ** Calls to the code generator in between sqlite3WhereBegin and |
+ ** sqlite3WhereEnd will have created code that references the table |
+ ** directly. This loop scans all that code looking for opcodes |
+ ** that reference the table and converts them into opcodes that |
+ ** reference the index. |
+ */ |
+ if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 && !db->mallocFailed){ |
+ int k, j, last; |
+ VdbeOp *pOp; |
+ Index *pIdx = pLevel->plan.u.pIdx; |
+ |
+ assert( pIdx!=0 ); |
+ pOp = sqlite3VdbeGetOp(v, pWInfo->iTop); |
+ last = sqlite3VdbeCurrentAddr(v); |
+ for(k=pWInfo->iTop; k<last; k++, pOp++){ |
+ if( pOp->p1!=pLevel->iTabCur ) continue; |
+ if( pOp->opcode==OP_Column ){ |
+ for(j=0; j<pIdx->nColumn; j++){ |
+ if( pOp->p2==pIdx->aiColumn[j] ){ |
+ pOp->p2 = j; |
+ pOp->p1 = pLevel->iIdxCur; |
+ break; |
+ } |
+ } |
+ assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 |
+ || j<pIdx->nColumn ); |
+ }else if( pOp->opcode==OP_Rowid ){ |
+ pOp->p1 = pLevel->iIdxCur; |
+ pOp->opcode = OP_IdxRowid; |
+ } |
+ } |
+ } |
+ } |
+ |
+ /* Final cleanup |
+ */ |
+ pParse->nQueryLoop = pWInfo->savedNQueryLoop; |
+ whereInfoFree(db, pWInfo); |
+ return; |
+} |