Index: third_party/sqlite/sqlite-src-3080704/src/os_unix.c |
diff --git a/third_party/sqlite/sqlite-src-3080704/src/os_unix.c b/third_party/sqlite/sqlite-src-3080704/src/os_unix.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..a9344ee830988bc4b43818e17a0c5495353b508c |
--- /dev/null |
+++ b/third_party/sqlite/sqlite-src-3080704/src/os_unix.c |
@@ -0,0 +1,7532 @@ |
+/* |
+** 2004 May 22 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+****************************************************************************** |
+** |
+** This file contains the VFS implementation for unix-like operating systems |
+** include Linux, MacOSX, *BSD, QNX, VxWorks, AIX, HPUX, and others. |
+** |
+** There are actually several different VFS implementations in this file. |
+** The differences are in the way that file locking is done. The default |
+** implementation uses Posix Advisory Locks. Alternative implementations |
+** use flock(), dot-files, various proprietary locking schemas, or simply |
+** skip locking all together. |
+** |
+** This source file is organized into divisions where the logic for various |
+** subfunctions is contained within the appropriate division. PLEASE |
+** KEEP THE STRUCTURE OF THIS FILE INTACT. New code should be placed |
+** in the correct division and should be clearly labeled. |
+** |
+** The layout of divisions is as follows: |
+** |
+** * General-purpose declarations and utility functions. |
+** * Unique file ID logic used by VxWorks. |
+** * Various locking primitive implementations (all except proxy locking): |
+** + for Posix Advisory Locks |
+** + for no-op locks |
+** + for dot-file locks |
+** + for flock() locking |
+** + for named semaphore locks (VxWorks only) |
+** + for AFP filesystem locks (MacOSX only) |
+** * sqlite3_file methods not associated with locking. |
+** * Definitions of sqlite3_io_methods objects for all locking |
+** methods plus "finder" functions for each locking method. |
+** * sqlite3_vfs method implementations. |
+** * Locking primitives for the proxy uber-locking-method. (MacOSX only) |
+** * Definitions of sqlite3_vfs objects for all locking methods |
+** plus implementations of sqlite3_os_init() and sqlite3_os_end(). |
+*/ |
+#include "sqliteInt.h" |
+#if SQLITE_OS_UNIX /* This file is used on unix only */ |
+ |
+/* |
+** There are various methods for file locking used for concurrency |
+** control: |
+** |
+** 1. POSIX locking (the default), |
+** 2. No locking, |
+** 3. Dot-file locking, |
+** 4. flock() locking, |
+** 5. AFP locking (OSX only), |
+** 6. Named POSIX semaphores (VXWorks only), |
+** 7. proxy locking. (OSX only) |
+** |
+** Styles 4, 5, and 7 are only available of SQLITE_ENABLE_LOCKING_STYLE |
+** is defined to 1. The SQLITE_ENABLE_LOCKING_STYLE also enables automatic |
+** selection of the appropriate locking style based on the filesystem |
+** where the database is located. |
+*/ |
+#if !defined(SQLITE_ENABLE_LOCKING_STYLE) |
+# if defined(__APPLE__) |
+# define SQLITE_ENABLE_LOCKING_STYLE 1 |
+# else |
+# define SQLITE_ENABLE_LOCKING_STYLE 0 |
+# endif |
+#endif |
+ |
+/* |
+** Define the OS_VXWORKS pre-processor macro to 1 if building on |
+** vxworks, or 0 otherwise. |
+*/ |
+#ifndef OS_VXWORKS |
+# if defined(__RTP__) || defined(_WRS_KERNEL) |
+# define OS_VXWORKS 1 |
+# else |
+# define OS_VXWORKS 0 |
+# endif |
+#endif |
+ |
+/* |
+** standard include files. |
+*/ |
+#include <sys/types.h> |
+#include <sys/stat.h> |
+#include <fcntl.h> |
+#include <unistd.h> |
+#include <time.h> |
+#include <sys/time.h> |
+#include <errno.h> |
+#if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 |
+# include <sys/mman.h> |
+#endif |
+ |
+#if SQLITE_ENABLE_LOCKING_STYLE || OS_VXWORKS |
+# include <sys/ioctl.h> |
+# if OS_VXWORKS |
+# include <semaphore.h> |
+# include <limits.h> |
+# else |
+# include <sys/file.h> |
+# include <sys/param.h> |
+# endif |
+#endif /* SQLITE_ENABLE_LOCKING_STYLE */ |
+ |
+#if defined(__APPLE__) || (SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS) |
+# include <sys/mount.h> |
+#endif |
+ |
+#ifdef HAVE_UTIME |
+# include <utime.h> |
+#endif |
+ |
+/* |
+** Allowed values of unixFile.fsFlags |
+*/ |
+#define SQLITE_FSFLAGS_IS_MSDOS 0x1 |
+ |
+/* |
+** If we are to be thread-safe, include the pthreads header and define |
+** the SQLITE_UNIX_THREADS macro. |
+*/ |
+#if SQLITE_THREADSAFE |
+# include <pthread.h> |
+# define SQLITE_UNIX_THREADS 1 |
+#endif |
+ |
+/* |
+** Default permissions when creating a new file |
+*/ |
+#ifndef SQLITE_DEFAULT_FILE_PERMISSIONS |
+# define SQLITE_DEFAULT_FILE_PERMISSIONS 0644 |
+#endif |
+ |
+/* |
+** Default permissions when creating auto proxy dir |
+*/ |
+#ifndef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS |
+# define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755 |
+#endif |
+ |
+/* |
+** Maximum supported path-length. |
+*/ |
+#define MAX_PATHNAME 512 |
+ |
+/* |
+** Only set the lastErrno if the error code is a real error and not |
+** a normal expected return code of SQLITE_BUSY or SQLITE_OK |
+*/ |
+#define IS_LOCK_ERROR(x) ((x != SQLITE_OK) && (x != SQLITE_BUSY)) |
+ |
+/* Forward references */ |
+typedef struct unixShm unixShm; /* Connection shared memory */ |
+typedef struct unixShmNode unixShmNode; /* Shared memory instance */ |
+typedef struct unixInodeInfo unixInodeInfo; /* An i-node */ |
+typedef struct UnixUnusedFd UnixUnusedFd; /* An unused file descriptor */ |
+ |
+/* |
+** Sometimes, after a file handle is closed by SQLite, the file descriptor |
+** cannot be closed immediately. In these cases, instances of the following |
+** structure are used to store the file descriptor while waiting for an |
+** opportunity to either close or reuse it. |
+*/ |
+struct UnixUnusedFd { |
+ int fd; /* File descriptor to close */ |
+ int flags; /* Flags this file descriptor was opened with */ |
+ UnixUnusedFd *pNext; /* Next unused file descriptor on same file */ |
+}; |
+ |
+/* |
+** The unixFile structure is subclass of sqlite3_file specific to the unix |
+** VFS implementations. |
+*/ |
+typedef struct unixFile unixFile; |
+struct unixFile { |
+ sqlite3_io_methods const *pMethod; /* Always the first entry */ |
+ sqlite3_vfs *pVfs; /* The VFS that created this unixFile */ |
+ unixInodeInfo *pInode; /* Info about locks on this inode */ |
+ int h; /* The file descriptor */ |
+ unsigned char eFileLock; /* The type of lock held on this fd */ |
+ unsigned short int ctrlFlags; /* Behavioral bits. UNIXFILE_* flags */ |
+ int lastErrno; /* The unix errno from last I/O error */ |
+ void *lockingContext; /* Locking style specific state */ |
+ UnixUnusedFd *pUnused; /* Pre-allocated UnixUnusedFd */ |
+ const char *zPath; /* Name of the file */ |
+ unixShm *pShm; /* Shared memory segment information */ |
+ int szChunk; /* Configured by FCNTL_CHUNK_SIZE */ |
+#if SQLITE_MAX_MMAP_SIZE>0 |
+ int nFetchOut; /* Number of outstanding xFetch refs */ |
+ sqlite3_int64 mmapSize; /* Usable size of mapping at pMapRegion */ |
+ sqlite3_int64 mmapSizeActual; /* Actual size of mapping at pMapRegion */ |
+ sqlite3_int64 mmapSizeMax; /* Configured FCNTL_MMAP_SIZE value */ |
+ void *pMapRegion; /* Memory mapped region */ |
+#endif |
+#ifdef __QNXNTO__ |
+ int sectorSize; /* Device sector size */ |
+ int deviceCharacteristics; /* Precomputed device characteristics */ |
+#endif |
+#if SQLITE_ENABLE_LOCKING_STYLE |
+ int openFlags; /* The flags specified at open() */ |
+#endif |
+#if SQLITE_ENABLE_LOCKING_STYLE || defined(__APPLE__) |
+ unsigned fsFlags; /* cached details from statfs() */ |
+#endif |
+#if OS_VXWORKS |
+ struct vxworksFileId *pId; /* Unique file ID */ |
+#endif |
+#ifdef SQLITE_DEBUG |
+ /* The next group of variables are used to track whether or not the |
+ ** transaction counter in bytes 24-27 of database files are updated |
+ ** whenever any part of the database changes. An assertion fault will |
+ ** occur if a file is updated without also updating the transaction |
+ ** counter. This test is made to avoid new problems similar to the |
+ ** one described by ticket #3584. |
+ */ |
+ unsigned char transCntrChng; /* True if the transaction counter changed */ |
+ unsigned char dbUpdate; /* True if any part of database file changed */ |
+ unsigned char inNormalWrite; /* True if in a normal write operation */ |
+ |
+#endif |
+ |
+#ifdef SQLITE_TEST |
+ /* In test mode, increase the size of this structure a bit so that |
+ ** it is larger than the struct CrashFile defined in test6.c. |
+ */ |
+ char aPadding[32]; |
+#endif |
+}; |
+ |
+/* This variable holds the process id (pid) from when the xRandomness() |
+** method was called. If xOpen() is called from a different process id, |
+** indicating that a fork() has occurred, the PRNG will be reset. |
+*/ |
+static int randomnessPid = 0; |
+ |
+/* |
+** Allowed values for the unixFile.ctrlFlags bitmask: |
+*/ |
+#define UNIXFILE_EXCL 0x01 /* Connections from one process only */ |
+#define UNIXFILE_RDONLY 0x02 /* Connection is read only */ |
+#define UNIXFILE_PERSIST_WAL 0x04 /* Persistent WAL mode */ |
+#ifndef SQLITE_DISABLE_DIRSYNC |
+# define UNIXFILE_DIRSYNC 0x08 /* Directory sync needed */ |
+#else |
+# define UNIXFILE_DIRSYNC 0x00 |
+#endif |
+#define UNIXFILE_PSOW 0x10 /* SQLITE_IOCAP_POWERSAFE_OVERWRITE */ |
+#define UNIXFILE_DELETE 0x20 /* Delete on close */ |
+#define UNIXFILE_URI 0x40 /* Filename might have query parameters */ |
+#define UNIXFILE_NOLOCK 0x80 /* Do no file locking */ |
+#define UNIXFILE_WARNED 0x0100 /* verifyDbFile() warnings have been issued */ |
+ |
+/* |
+** Include code that is common to all os_*.c files |
+*/ |
+#include "os_common.h" |
+ |
+/* |
+** Define various macros that are missing from some systems. |
+*/ |
+#ifndef O_LARGEFILE |
+# define O_LARGEFILE 0 |
+#endif |
+#ifdef SQLITE_DISABLE_LFS |
+# undef O_LARGEFILE |
+# define O_LARGEFILE 0 |
+#endif |
+#ifndef O_NOFOLLOW |
+# define O_NOFOLLOW 0 |
+#endif |
+#ifndef O_BINARY |
+# define O_BINARY 0 |
+#endif |
+ |
+/* |
+** The threadid macro resolves to the thread-id or to 0. Used for |
+** testing and debugging only. |
+*/ |
+#if SQLITE_THREADSAFE |
+#define threadid pthread_self() |
+#else |
+#define threadid 0 |
+#endif |
+ |
+/* |
+** HAVE_MREMAP defaults to true on Linux and false everywhere else. |
+*/ |
+#if !defined(HAVE_MREMAP) |
+# if defined(__linux__) && defined(_GNU_SOURCE) |
+# define HAVE_MREMAP 1 |
+# else |
+# define HAVE_MREMAP 0 |
+# endif |
+#endif |
+ |
+/* |
+** Explicitly call the 64-bit version of lseek() on Android. Otherwise, lseek() |
+** is the 32-bit version, even if _FILE_OFFSET_BITS=64 is defined. |
+*/ |
+#ifdef __ANDROID__ |
+# define lseek lseek64 |
+#endif |
+ |
+/* |
+** Different Unix systems declare open() in different ways. Same use |
+** open(const char*,int,mode_t). Others use open(const char*,int,...). |
+** The difference is important when using a pointer to the function. |
+** |
+** The safest way to deal with the problem is to always use this wrapper |
+** which always has the same well-defined interface. |
+*/ |
+static int posixOpen(const char *zFile, int flags, int mode){ |
+ return open(zFile, flags, mode); |
+} |
+ |
+/* |
+** On some systems, calls to fchown() will trigger a message in a security |
+** log if they come from non-root processes. So avoid calling fchown() if |
+** we are not running as root. |
+*/ |
+static int posixFchown(int fd, uid_t uid, gid_t gid){ |
+#if OS_VXWORKS |
+ return 0; |
+#else |
+ return geteuid() ? 0 : fchown(fd,uid,gid); |
+#endif |
+} |
+ |
+/* Forward reference */ |
+static int openDirectory(const char*, int*); |
+static int unixGetpagesize(void); |
+ |
+/* |
+** Many system calls are accessed through pointer-to-functions so that |
+** they may be overridden at runtime to facilitate fault injection during |
+** testing and sandboxing. The following array holds the names and pointers |
+** to all overrideable system calls. |
+*/ |
+static struct unix_syscall { |
+ const char *zName; /* Name of the system call */ |
+ sqlite3_syscall_ptr pCurrent; /* Current value of the system call */ |
+ sqlite3_syscall_ptr pDefault; /* Default value */ |
+} aSyscall[] = { |
+ { "open", (sqlite3_syscall_ptr)posixOpen, 0 }, |
+#define osOpen ((int(*)(const char*,int,int))aSyscall[0].pCurrent) |
+ |
+ { "close", (sqlite3_syscall_ptr)close, 0 }, |
+#define osClose ((int(*)(int))aSyscall[1].pCurrent) |
+ |
+ { "access", (sqlite3_syscall_ptr)access, 0 }, |
+#define osAccess ((int(*)(const char*,int))aSyscall[2].pCurrent) |
+ |
+ { "getcwd", (sqlite3_syscall_ptr)getcwd, 0 }, |
+#define osGetcwd ((char*(*)(char*,size_t))aSyscall[3].pCurrent) |
+ |
+ { "stat", (sqlite3_syscall_ptr)stat, 0 }, |
+#define osStat ((int(*)(const char*,struct stat*))aSyscall[4].pCurrent) |
+ |
+/* |
+** The DJGPP compiler environment looks mostly like Unix, but it |
+** lacks the fcntl() system call. So redefine fcntl() to be something |
+** that always succeeds. This means that locking does not occur under |
+** DJGPP. But it is DOS - what did you expect? |
+*/ |
+#ifdef __DJGPP__ |
+ { "fstat", 0, 0 }, |
+#define osFstat(a,b,c) 0 |
+#else |
+ { "fstat", (sqlite3_syscall_ptr)fstat, 0 }, |
+#define osFstat ((int(*)(int,struct stat*))aSyscall[5].pCurrent) |
+#endif |
+ |
+ { "ftruncate", (sqlite3_syscall_ptr)ftruncate, 0 }, |
+#define osFtruncate ((int(*)(int,off_t))aSyscall[6].pCurrent) |
+ |
+ { "fcntl", (sqlite3_syscall_ptr)fcntl, 0 }, |
+#define osFcntl ((int(*)(int,int,...))aSyscall[7].pCurrent) |
+ |
+ { "read", (sqlite3_syscall_ptr)read, 0 }, |
+#define osRead ((ssize_t(*)(int,void*,size_t))aSyscall[8].pCurrent) |
+ |
+#if defined(USE_PREAD) || (SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS) |
+ { "pread", (sqlite3_syscall_ptr)pread, 0 }, |
+#else |
+ { "pread", (sqlite3_syscall_ptr)0, 0 }, |
+#endif |
+#define osPread ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[9].pCurrent) |
+ |
+#if defined(USE_PREAD64) |
+ { "pread64", (sqlite3_syscall_ptr)pread64, 0 }, |
+#else |
+ { "pread64", (sqlite3_syscall_ptr)0, 0 }, |
+#endif |
+#define osPread64 ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[10].pCurrent) |
+ |
+ { "write", (sqlite3_syscall_ptr)write, 0 }, |
+#define osWrite ((ssize_t(*)(int,const void*,size_t))aSyscall[11].pCurrent) |
+ |
+#if defined(USE_PREAD) || (SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS) |
+ { "pwrite", (sqlite3_syscall_ptr)pwrite, 0 }, |
+#else |
+ { "pwrite", (sqlite3_syscall_ptr)0, 0 }, |
+#endif |
+#define osPwrite ((ssize_t(*)(int,const void*,size_t,off_t))\ |
+ aSyscall[12].pCurrent) |
+ |
+#if defined(USE_PREAD64) |
+ { "pwrite64", (sqlite3_syscall_ptr)pwrite64, 0 }, |
+#else |
+ { "pwrite64", (sqlite3_syscall_ptr)0, 0 }, |
+#endif |
+#define osPwrite64 ((ssize_t(*)(int,const void*,size_t,off_t))\ |
+ aSyscall[13].pCurrent) |
+ |
+ { "fchmod", (sqlite3_syscall_ptr)fchmod, 0 }, |
+#define osFchmod ((int(*)(int,mode_t))aSyscall[14].pCurrent) |
+ |
+#if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE |
+ { "fallocate", (sqlite3_syscall_ptr)posix_fallocate, 0 }, |
+#else |
+ { "fallocate", (sqlite3_syscall_ptr)0, 0 }, |
+#endif |
+#define osFallocate ((int(*)(int,off_t,off_t))aSyscall[15].pCurrent) |
+ |
+ { "unlink", (sqlite3_syscall_ptr)unlink, 0 }, |
+#define osUnlink ((int(*)(const char*))aSyscall[16].pCurrent) |
+ |
+ { "openDirectory", (sqlite3_syscall_ptr)openDirectory, 0 }, |
+#define osOpenDirectory ((int(*)(const char*,int*))aSyscall[17].pCurrent) |
+ |
+ { "mkdir", (sqlite3_syscall_ptr)mkdir, 0 }, |
+#define osMkdir ((int(*)(const char*,mode_t))aSyscall[18].pCurrent) |
+ |
+ { "rmdir", (sqlite3_syscall_ptr)rmdir, 0 }, |
+#define osRmdir ((int(*)(const char*))aSyscall[19].pCurrent) |
+ |
+ { "fchown", (sqlite3_syscall_ptr)posixFchown, 0 }, |
+#define osFchown ((int(*)(int,uid_t,gid_t))aSyscall[20].pCurrent) |
+ |
+#if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 |
+ { "mmap", (sqlite3_syscall_ptr)mmap, 0 }, |
+#define osMmap ((void*(*)(void*,size_t,int,int,int,off_t))aSyscall[21].pCurrent) |
+ |
+ { "munmap", (sqlite3_syscall_ptr)munmap, 0 }, |
+#define osMunmap ((void*(*)(void*,size_t))aSyscall[22].pCurrent) |
+ |
+#if HAVE_MREMAP |
+ { "mremap", (sqlite3_syscall_ptr)mremap, 0 }, |
+#else |
+ { "mremap", (sqlite3_syscall_ptr)0, 0 }, |
+#endif |
+#define osMremap ((void*(*)(void*,size_t,size_t,int,...))aSyscall[23].pCurrent) |
+ { "getpagesize", (sqlite3_syscall_ptr)unixGetpagesize, 0 }, |
+#define osGetpagesize ((int(*)(void))aSyscall[24].pCurrent) |
+ |
+#endif |
+ |
+}; /* End of the overrideable system calls */ |
+ |
+/* |
+** This is the xSetSystemCall() method of sqlite3_vfs for all of the |
+** "unix" VFSes. Return SQLITE_OK opon successfully updating the |
+** system call pointer, or SQLITE_NOTFOUND if there is no configurable |
+** system call named zName. |
+*/ |
+static int unixSetSystemCall( |
+ sqlite3_vfs *pNotUsed, /* The VFS pointer. Not used */ |
+ const char *zName, /* Name of system call to override */ |
+ sqlite3_syscall_ptr pNewFunc /* Pointer to new system call value */ |
+){ |
+ unsigned int i; |
+ int rc = SQLITE_NOTFOUND; |
+ |
+ UNUSED_PARAMETER(pNotUsed); |
+ if( zName==0 ){ |
+ /* If no zName is given, restore all system calls to their default |
+ ** settings and return NULL |
+ */ |
+ rc = SQLITE_OK; |
+ for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){ |
+ if( aSyscall[i].pDefault ){ |
+ aSyscall[i].pCurrent = aSyscall[i].pDefault; |
+ } |
+ } |
+ }else{ |
+ /* If zName is specified, operate on only the one system call |
+ ** specified. |
+ */ |
+ for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){ |
+ if( strcmp(zName, aSyscall[i].zName)==0 ){ |
+ if( aSyscall[i].pDefault==0 ){ |
+ aSyscall[i].pDefault = aSyscall[i].pCurrent; |
+ } |
+ rc = SQLITE_OK; |
+ if( pNewFunc==0 ) pNewFunc = aSyscall[i].pDefault; |
+ aSyscall[i].pCurrent = pNewFunc; |
+ break; |
+ } |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Return the value of a system call. Return NULL if zName is not a |
+** recognized system call name. NULL is also returned if the system call |
+** is currently undefined. |
+*/ |
+static sqlite3_syscall_ptr unixGetSystemCall( |
+ sqlite3_vfs *pNotUsed, |
+ const char *zName |
+){ |
+ unsigned int i; |
+ |
+ UNUSED_PARAMETER(pNotUsed); |
+ for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){ |
+ if( strcmp(zName, aSyscall[i].zName)==0 ) return aSyscall[i].pCurrent; |
+ } |
+ return 0; |
+} |
+ |
+/* |
+** Return the name of the first system call after zName. If zName==NULL |
+** then return the name of the first system call. Return NULL if zName |
+** is the last system call or if zName is not the name of a valid |
+** system call. |
+*/ |
+static const char *unixNextSystemCall(sqlite3_vfs *p, const char *zName){ |
+ int i = -1; |
+ |
+ UNUSED_PARAMETER(p); |
+ if( zName ){ |
+ for(i=0; i<ArraySize(aSyscall)-1; i++){ |
+ if( strcmp(zName, aSyscall[i].zName)==0 ) break; |
+ } |
+ } |
+ for(i++; i<ArraySize(aSyscall); i++){ |
+ if( aSyscall[i].pCurrent!=0 ) return aSyscall[i].zName; |
+ } |
+ return 0; |
+} |
+ |
+/* |
+** Do not accept any file descriptor less than this value, in order to avoid |
+** opening database file using file descriptors that are commonly used for |
+** standard input, output, and error. |
+*/ |
+#ifndef SQLITE_MINIMUM_FILE_DESCRIPTOR |
+# define SQLITE_MINIMUM_FILE_DESCRIPTOR 3 |
+#endif |
+ |
+/* |
+** Invoke open(). Do so multiple times, until it either succeeds or |
+** fails for some reason other than EINTR. |
+** |
+** If the file creation mode "m" is 0 then set it to the default for |
+** SQLite. The default is SQLITE_DEFAULT_FILE_PERMISSIONS (normally |
+** 0644) as modified by the system umask. If m is not 0, then |
+** make the file creation mode be exactly m ignoring the umask. |
+** |
+** The m parameter will be non-zero only when creating -wal, -journal, |
+** and -shm files. We want those files to have *exactly* the same |
+** permissions as their original database, unadulterated by the umask. |
+** In that way, if a database file is -rw-rw-rw or -rw-rw-r-, and a |
+** transaction crashes and leaves behind hot journals, then any |
+** process that is able to write to the database will also be able to |
+** recover the hot journals. |
+*/ |
+static int robust_open(const char *z, int f, mode_t m){ |
+ int fd; |
+ mode_t m2 = m ? m : SQLITE_DEFAULT_FILE_PERMISSIONS; |
+ while(1){ |
+#if defined(O_CLOEXEC) |
+ fd = osOpen(z,f|O_CLOEXEC,m2); |
+#else |
+ fd = osOpen(z,f,m2); |
+#endif |
+ if( fd<0 ){ |
+ if( errno==EINTR ) continue; |
+ break; |
+ } |
+ if( fd>=SQLITE_MINIMUM_FILE_DESCRIPTOR ) break; |
+ osClose(fd); |
+ sqlite3_log(SQLITE_WARNING, |
+ "attempt to open \"%s\" as file descriptor %d", z, fd); |
+ fd = -1; |
+ if( osOpen("/dev/null", f, m)<0 ) break; |
+ } |
+ if( fd>=0 ){ |
+ if( m!=0 ){ |
+ struct stat statbuf; |
+ if( osFstat(fd, &statbuf)==0 |
+ && statbuf.st_size==0 |
+ && (statbuf.st_mode&0777)!=m |
+ ){ |
+ osFchmod(fd, m); |
+ } |
+ } |
+#if defined(FD_CLOEXEC) && (!defined(O_CLOEXEC) || O_CLOEXEC==0) |
+ osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC); |
+#endif |
+ } |
+ return fd; |
+} |
+ |
+/* |
+** Helper functions to obtain and relinquish the global mutex. The |
+** global mutex is used to protect the unixInodeInfo and |
+** vxworksFileId objects used by this file, all of which may be |
+** shared by multiple threads. |
+** |
+** Function unixMutexHeld() is used to assert() that the global mutex |
+** is held when required. This function is only used as part of assert() |
+** statements. e.g. |
+** |
+** unixEnterMutex() |
+** assert( unixMutexHeld() ); |
+** unixEnterLeave() |
+*/ |
+static void unixEnterMutex(void){ |
+ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); |
+} |
+static void unixLeaveMutex(void){ |
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); |
+} |
+#ifdef SQLITE_DEBUG |
+static int unixMutexHeld(void) { |
+ return sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); |
+} |
+#endif |
+ |
+ |
+#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) |
+/* |
+** Helper function for printing out trace information from debugging |
+** binaries. This returns the string representation of the supplied |
+** integer lock-type. |
+*/ |
+static const char *azFileLock(int eFileLock){ |
+ switch( eFileLock ){ |
+ case NO_LOCK: return "NONE"; |
+ case SHARED_LOCK: return "SHARED"; |
+ case RESERVED_LOCK: return "RESERVED"; |
+ case PENDING_LOCK: return "PENDING"; |
+ case EXCLUSIVE_LOCK: return "EXCLUSIVE"; |
+ } |
+ return "ERROR"; |
+} |
+#endif |
+ |
+#ifdef SQLITE_LOCK_TRACE |
+/* |
+** Print out information about all locking operations. |
+** |
+** This routine is used for troubleshooting locks on multithreaded |
+** platforms. Enable by compiling with the -DSQLITE_LOCK_TRACE |
+** command-line option on the compiler. This code is normally |
+** turned off. |
+*/ |
+static int lockTrace(int fd, int op, struct flock *p){ |
+ char *zOpName, *zType; |
+ int s; |
+ int savedErrno; |
+ if( op==F_GETLK ){ |
+ zOpName = "GETLK"; |
+ }else if( op==F_SETLK ){ |
+ zOpName = "SETLK"; |
+ }else{ |
+ s = osFcntl(fd, op, p); |
+ sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s); |
+ return s; |
+ } |
+ if( p->l_type==F_RDLCK ){ |
+ zType = "RDLCK"; |
+ }else if( p->l_type==F_WRLCK ){ |
+ zType = "WRLCK"; |
+ }else if( p->l_type==F_UNLCK ){ |
+ zType = "UNLCK"; |
+ }else{ |
+ assert( 0 ); |
+ } |
+ assert( p->l_whence==SEEK_SET ); |
+ s = osFcntl(fd, op, p); |
+ savedErrno = errno; |
+ sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n", |
+ threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len, |
+ (int)p->l_pid, s); |
+ if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){ |
+ struct flock l2; |
+ l2 = *p; |
+ osFcntl(fd, F_GETLK, &l2); |
+ if( l2.l_type==F_RDLCK ){ |
+ zType = "RDLCK"; |
+ }else if( l2.l_type==F_WRLCK ){ |
+ zType = "WRLCK"; |
+ }else if( l2.l_type==F_UNLCK ){ |
+ zType = "UNLCK"; |
+ }else{ |
+ assert( 0 ); |
+ } |
+ sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n", |
+ zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid); |
+ } |
+ errno = savedErrno; |
+ return s; |
+} |
+#undef osFcntl |
+#define osFcntl lockTrace |
+#endif /* SQLITE_LOCK_TRACE */ |
+ |
+/* |
+** Retry ftruncate() calls that fail due to EINTR |
+** |
+** All calls to ftruncate() within this file should be made through this wrapper. |
+** On the Android platform, bypassing the logic below could lead to a corrupt |
+** database. |
+*/ |
+static int robust_ftruncate(int h, sqlite3_int64 sz){ |
+ int rc; |
+#ifdef __ANDROID__ |
+ /* On Android, ftruncate() always uses 32-bit offsets, even if |
+ ** _FILE_OFFSET_BITS=64 is defined. This means it is unsafe to attempt to |
+ ** truncate a file to any size larger than 2GiB. Silently ignore any |
+ ** such attempts. */ |
+ if( sz>(sqlite3_int64)0x7FFFFFFF ){ |
+ rc = SQLITE_OK; |
+ }else |
+#endif |
+ do{ rc = osFtruncate(h,sz); }while( rc<0 && errno==EINTR ); |
+ return rc; |
+} |
+ |
+/* |
+** This routine translates a standard POSIX errno code into something |
+** useful to the clients of the sqlite3 functions. Specifically, it is |
+** intended to translate a variety of "try again" errors into SQLITE_BUSY |
+** and a variety of "please close the file descriptor NOW" errors into |
+** SQLITE_IOERR |
+** |
+** Errors during initialization of locks, or file system support for locks, |
+** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately. |
+*/ |
+static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) { |
+ switch (posixError) { |
+#if 0 |
+ /* At one point this code was not commented out. In theory, this branch |
+ ** should never be hit, as this function should only be called after |
+ ** a locking-related function (i.e. fcntl()) has returned non-zero with |
+ ** the value of errno as the first argument. Since a system call has failed, |
+ ** errno should be non-zero. |
+ ** |
+ ** Despite this, if errno really is zero, we still don't want to return |
+ ** SQLITE_OK. The system call failed, and *some* SQLite error should be |
+ ** propagated back to the caller. Commenting this branch out means errno==0 |
+ ** will be handled by the "default:" case below. |
+ */ |
+ case 0: |
+ return SQLITE_OK; |
+#endif |
+ |
+ case EAGAIN: |
+ case ETIMEDOUT: |
+ case EBUSY: |
+ case EINTR: |
+ case ENOLCK: |
+ /* random NFS retry error, unless during file system support |
+ * introspection, in which it actually means what it says */ |
+ return SQLITE_BUSY; |
+ |
+ case EACCES: |
+ /* EACCES is like EAGAIN during locking operations, but not any other time*/ |
+ if( (sqliteIOErr == SQLITE_IOERR_LOCK) || |
+ (sqliteIOErr == SQLITE_IOERR_UNLOCK) || |
+ (sqliteIOErr == SQLITE_IOERR_RDLOCK) || |
+ (sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) ){ |
+ return SQLITE_BUSY; |
+ } |
+ /* else fall through */ |
+ case EPERM: |
+ return SQLITE_PERM; |
+ |
+#if EOPNOTSUPP!=ENOTSUP |
+ case EOPNOTSUPP: |
+ /* something went terribly awry, unless during file system support |
+ * introspection, in which it actually means what it says */ |
+#endif |
+#ifdef ENOTSUP |
+ case ENOTSUP: |
+ /* invalid fd, unless during file system support introspection, in which |
+ * it actually means what it says */ |
+#endif |
+ case EIO: |
+ case EBADF: |
+ case EINVAL: |
+ case ENOTCONN: |
+ case ENODEV: |
+ case ENXIO: |
+ case ENOENT: |
+#ifdef ESTALE /* ESTALE is not defined on Interix systems */ |
+ case ESTALE: |
+#endif |
+ case ENOSYS: |
+ /* these should force the client to close the file and reconnect */ |
+ |
+ default: |
+ return sqliteIOErr; |
+ } |
+} |
+ |
+ |
+/****************************************************************************** |
+****************** Begin Unique File ID Utility Used By VxWorks *************** |
+** |
+** On most versions of unix, we can get a unique ID for a file by concatenating |
+** the device number and the inode number. But this does not work on VxWorks. |
+** On VxWorks, a unique file id must be based on the canonical filename. |
+** |
+** A pointer to an instance of the following structure can be used as a |
+** unique file ID in VxWorks. Each instance of this structure contains |
+** a copy of the canonical filename. There is also a reference count. |
+** The structure is reclaimed when the number of pointers to it drops to |
+** zero. |
+** |
+** There are never very many files open at one time and lookups are not |
+** a performance-critical path, so it is sufficient to put these |
+** structures on a linked list. |
+*/ |
+struct vxworksFileId { |
+ struct vxworksFileId *pNext; /* Next in a list of them all */ |
+ int nRef; /* Number of references to this one */ |
+ int nName; /* Length of the zCanonicalName[] string */ |
+ char *zCanonicalName; /* Canonical filename */ |
+}; |
+ |
+#if OS_VXWORKS |
+/* |
+** All unique filenames are held on a linked list headed by this |
+** variable: |
+*/ |
+static struct vxworksFileId *vxworksFileList = 0; |
+ |
+/* |
+** Simplify a filename into its canonical form |
+** by making the following changes: |
+** |
+** * removing any trailing and duplicate / |
+** * convert /./ into just / |
+** * convert /A/../ where A is any simple name into just / |
+** |
+** Changes are made in-place. Return the new name length. |
+** |
+** The original filename is in z[0..n-1]. Return the number of |
+** characters in the simplified name. |
+*/ |
+static int vxworksSimplifyName(char *z, int n){ |
+ int i, j; |
+ while( n>1 && z[n-1]=='/' ){ n--; } |
+ for(i=j=0; i<n; i++){ |
+ if( z[i]=='/' ){ |
+ if( z[i+1]=='/' ) continue; |
+ if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){ |
+ i += 1; |
+ continue; |
+ } |
+ if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){ |
+ while( j>0 && z[j-1]!='/' ){ j--; } |
+ if( j>0 ){ j--; } |
+ i += 2; |
+ continue; |
+ } |
+ } |
+ z[j++] = z[i]; |
+ } |
+ z[j] = 0; |
+ return j; |
+} |
+ |
+/* |
+** Find a unique file ID for the given absolute pathname. Return |
+** a pointer to the vxworksFileId object. This pointer is the unique |
+** file ID. |
+** |
+** The nRef field of the vxworksFileId object is incremented before |
+** the object is returned. A new vxworksFileId object is created |
+** and added to the global list if necessary. |
+** |
+** If a memory allocation error occurs, return NULL. |
+*/ |
+static struct vxworksFileId *vxworksFindFileId(const char *zAbsoluteName){ |
+ struct vxworksFileId *pNew; /* search key and new file ID */ |
+ struct vxworksFileId *pCandidate; /* For looping over existing file IDs */ |
+ int n; /* Length of zAbsoluteName string */ |
+ |
+ assert( zAbsoluteName[0]=='/' ); |
+ n = (int)strlen(zAbsoluteName); |
+ pNew = sqlite3_malloc( sizeof(*pNew) + (n+1) ); |
+ if( pNew==0 ) return 0; |
+ pNew->zCanonicalName = (char*)&pNew[1]; |
+ memcpy(pNew->zCanonicalName, zAbsoluteName, n+1); |
+ n = vxworksSimplifyName(pNew->zCanonicalName, n); |
+ |
+ /* Search for an existing entry that matching the canonical name. |
+ ** If found, increment the reference count and return a pointer to |
+ ** the existing file ID. |
+ */ |
+ unixEnterMutex(); |
+ for(pCandidate=vxworksFileList; pCandidate; pCandidate=pCandidate->pNext){ |
+ if( pCandidate->nName==n |
+ && memcmp(pCandidate->zCanonicalName, pNew->zCanonicalName, n)==0 |
+ ){ |
+ sqlite3_free(pNew); |
+ pCandidate->nRef++; |
+ unixLeaveMutex(); |
+ return pCandidate; |
+ } |
+ } |
+ |
+ /* No match was found. We will make a new file ID */ |
+ pNew->nRef = 1; |
+ pNew->nName = n; |
+ pNew->pNext = vxworksFileList; |
+ vxworksFileList = pNew; |
+ unixLeaveMutex(); |
+ return pNew; |
+} |
+ |
+/* |
+** Decrement the reference count on a vxworksFileId object. Free |
+** the object when the reference count reaches zero. |
+*/ |
+static void vxworksReleaseFileId(struct vxworksFileId *pId){ |
+ unixEnterMutex(); |
+ assert( pId->nRef>0 ); |
+ pId->nRef--; |
+ if( pId->nRef==0 ){ |
+ struct vxworksFileId **pp; |
+ for(pp=&vxworksFileList; *pp && *pp!=pId; pp = &((*pp)->pNext)){} |
+ assert( *pp==pId ); |
+ *pp = pId->pNext; |
+ sqlite3_free(pId); |
+ } |
+ unixLeaveMutex(); |
+} |
+#endif /* OS_VXWORKS */ |
+/*************** End of Unique File ID Utility Used By VxWorks **************** |
+******************************************************************************/ |
+ |
+ |
+/****************************************************************************** |
+*************************** Posix Advisory Locking **************************** |
+** |
+** POSIX advisory locks are broken by design. ANSI STD 1003.1 (1996) |
+** section 6.5.2.2 lines 483 through 490 specify that when a process |
+** sets or clears a lock, that operation overrides any prior locks set |
+** by the same process. It does not explicitly say so, but this implies |
+** that it overrides locks set by the same process using a different |
+** file descriptor. Consider this test case: |
+** |
+** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644); |
+** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644); |
+** |
+** Suppose ./file1 and ./file2 are really the same file (because |
+** one is a hard or symbolic link to the other) then if you set |
+** an exclusive lock on fd1, then try to get an exclusive lock |
+** on fd2, it works. I would have expected the second lock to |
+** fail since there was already a lock on the file due to fd1. |
+** But not so. Since both locks came from the same process, the |
+** second overrides the first, even though they were on different |
+** file descriptors opened on different file names. |
+** |
+** This means that we cannot use POSIX locks to synchronize file access |
+** among competing threads of the same process. POSIX locks will work fine |
+** to synchronize access for threads in separate processes, but not |
+** threads within the same process. |
+** |
+** To work around the problem, SQLite has to manage file locks internally |
+** on its own. Whenever a new database is opened, we have to find the |
+** specific inode of the database file (the inode is determined by the |
+** st_dev and st_ino fields of the stat structure that fstat() fills in) |
+** and check for locks already existing on that inode. When locks are |
+** created or removed, we have to look at our own internal record of the |
+** locks to see if another thread has previously set a lock on that same |
+** inode. |
+** |
+** (Aside: The use of inode numbers as unique IDs does not work on VxWorks. |
+** For VxWorks, we have to use the alternative unique ID system based on |
+** canonical filename and implemented in the previous division.) |
+** |
+** The sqlite3_file structure for POSIX is no longer just an integer file |
+** descriptor. It is now a structure that holds the integer file |
+** descriptor and a pointer to a structure that describes the internal |
+** locks on the corresponding inode. There is one locking structure |
+** per inode, so if the same inode is opened twice, both unixFile structures |
+** point to the same locking structure. The locking structure keeps |
+** a reference count (so we will know when to delete it) and a "cnt" |
+** field that tells us its internal lock status. cnt==0 means the |
+** file is unlocked. cnt==-1 means the file has an exclusive lock. |
+** cnt>0 means there are cnt shared locks on the file. |
+** |
+** Any attempt to lock or unlock a file first checks the locking |
+** structure. The fcntl() system call is only invoked to set a |
+** POSIX lock if the internal lock structure transitions between |
+** a locked and an unlocked state. |
+** |
+** But wait: there are yet more problems with POSIX advisory locks. |
+** |
+** If you close a file descriptor that points to a file that has locks, |
+** all locks on that file that are owned by the current process are |
+** released. To work around this problem, each unixInodeInfo object |
+** maintains a count of the number of pending locks on tha inode. |
+** When an attempt is made to close an unixFile, if there are |
+** other unixFile open on the same inode that are holding locks, the call |
+** to close() the file descriptor is deferred until all of the locks clear. |
+** The unixInodeInfo structure keeps a list of file descriptors that need to |
+** be closed and that list is walked (and cleared) when the last lock |
+** clears. |
+** |
+** Yet another problem: LinuxThreads do not play well with posix locks. |
+** |
+** Many older versions of linux use the LinuxThreads library which is |
+** not posix compliant. Under LinuxThreads, a lock created by thread |
+** A cannot be modified or overridden by a different thread B. |
+** Only thread A can modify the lock. Locking behavior is correct |
+** if the appliation uses the newer Native Posix Thread Library (NPTL) |
+** on linux - with NPTL a lock created by thread A can override locks |
+** in thread B. But there is no way to know at compile-time which |
+** threading library is being used. So there is no way to know at |
+** compile-time whether or not thread A can override locks on thread B. |
+** One has to do a run-time check to discover the behavior of the |
+** current process. |
+** |
+** SQLite used to support LinuxThreads. But support for LinuxThreads |
+** was dropped beginning with version 3.7.0. SQLite will still work with |
+** LinuxThreads provided that (1) there is no more than one connection |
+** per database file in the same process and (2) database connections |
+** do not move across threads. |
+*/ |
+ |
+/* |
+** An instance of the following structure serves as the key used |
+** to locate a particular unixInodeInfo object. |
+*/ |
+struct unixFileId { |
+ dev_t dev; /* Device number */ |
+#if OS_VXWORKS |
+ struct vxworksFileId *pId; /* Unique file ID for vxworks. */ |
+#else |
+ ino_t ino; /* Inode number */ |
+#endif |
+}; |
+ |
+/* |
+** An instance of the following structure is allocated for each open |
+** inode. Or, on LinuxThreads, there is one of these structures for |
+** each inode opened by each thread. |
+** |
+** A single inode can have multiple file descriptors, so each unixFile |
+** structure contains a pointer to an instance of this object and this |
+** object keeps a count of the number of unixFile pointing to it. |
+*/ |
+struct unixInodeInfo { |
+ struct unixFileId fileId; /* The lookup key */ |
+ int nShared; /* Number of SHARED locks held */ |
+ unsigned char eFileLock; /* One of SHARED_LOCK, RESERVED_LOCK etc. */ |
+ unsigned char bProcessLock; /* An exclusive process lock is held */ |
+ int nRef; /* Number of pointers to this structure */ |
+ unixShmNode *pShmNode; /* Shared memory associated with this inode */ |
+ int nLock; /* Number of outstanding file locks */ |
+ UnixUnusedFd *pUnused; /* Unused file descriptors to close */ |
+ unixInodeInfo *pNext; /* List of all unixInodeInfo objects */ |
+ unixInodeInfo *pPrev; /* .... doubly linked */ |
+#if SQLITE_ENABLE_LOCKING_STYLE |
+ unsigned long long sharedByte; /* for AFP simulated shared lock */ |
+#endif |
+#if OS_VXWORKS |
+ sem_t *pSem; /* Named POSIX semaphore */ |
+ char aSemName[MAX_PATHNAME+2]; /* Name of that semaphore */ |
+#endif |
+}; |
+ |
+/* |
+** A lists of all unixInodeInfo objects. |
+*/ |
+static unixInodeInfo *inodeList = 0; |
+ |
+/* |
+** |
+** This function - unixLogError_x(), is only ever called via the macro |
+** unixLogError(). |
+** |
+** It is invoked after an error occurs in an OS function and errno has been |
+** set. It logs a message using sqlite3_log() containing the current value of |
+** errno and, if possible, the human-readable equivalent from strerror() or |
+** strerror_r(). |
+** |
+** The first argument passed to the macro should be the error code that |
+** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN). |
+** The two subsequent arguments should be the name of the OS function that |
+** failed (e.g. "unlink", "open") and the associated file-system path, |
+** if any. |
+*/ |
+#define unixLogError(a,b,c) unixLogErrorAtLine(a,b,c,__LINE__) |
+static int unixLogErrorAtLine( |
+ int errcode, /* SQLite error code */ |
+ const char *zFunc, /* Name of OS function that failed */ |
+ const char *zPath, /* File path associated with error */ |
+ int iLine /* Source line number where error occurred */ |
+){ |
+ char *zErr; /* Message from strerror() or equivalent */ |
+ int iErrno = errno; /* Saved syscall error number */ |
+ |
+ /* If this is not a threadsafe build (SQLITE_THREADSAFE==0), then use |
+ ** the strerror() function to obtain the human-readable error message |
+ ** equivalent to errno. Otherwise, use strerror_r(). |
+ */ |
+#if SQLITE_THREADSAFE && defined(HAVE_STRERROR_R) |
+ char aErr[80]; |
+ memset(aErr, 0, sizeof(aErr)); |
+ zErr = aErr; |
+ |
+ /* If STRERROR_R_CHAR_P (set by autoconf scripts) or __USE_GNU is defined, |
+ ** assume that the system provides the GNU version of strerror_r() that |
+ ** returns a pointer to a buffer containing the error message. That pointer |
+ ** may point to aErr[], or it may point to some static storage somewhere. |
+ ** Otherwise, assume that the system provides the POSIX version of |
+ ** strerror_r(), which always writes an error message into aErr[]. |
+ ** |
+ ** If the code incorrectly assumes that it is the POSIX version that is |
+ ** available, the error message will often be an empty string. Not a |
+ ** huge problem. Incorrectly concluding that the GNU version is available |
+ ** could lead to a segfault though. |
+ */ |
+#if defined(STRERROR_R_CHAR_P) || defined(__USE_GNU) |
+ zErr = |
+# endif |
+ strerror_r(iErrno, aErr, sizeof(aErr)-1); |
+ |
+#elif SQLITE_THREADSAFE |
+ /* This is a threadsafe build, but strerror_r() is not available. */ |
+ zErr = ""; |
+#else |
+ /* Non-threadsafe build, use strerror(). */ |
+ zErr = strerror(iErrno); |
+#endif |
+ |
+ if( zPath==0 ) zPath = ""; |
+ sqlite3_log(errcode, |
+ "os_unix.c:%d: (%d) %s(%s) - %s", |
+ iLine, iErrno, zFunc, zPath, zErr |
+ ); |
+ |
+ return errcode; |
+} |
+ |
+/* |
+** Close a file descriptor. |
+** |
+** We assume that close() almost always works, since it is only in a |
+** very sick application or on a very sick platform that it might fail. |
+** If it does fail, simply leak the file descriptor, but do log the |
+** error. |
+** |
+** Note that it is not safe to retry close() after EINTR since the |
+** file descriptor might have already been reused by another thread. |
+** So we don't even try to recover from an EINTR. Just log the error |
+** and move on. |
+*/ |
+static void robust_close(unixFile *pFile, int h, int lineno){ |
+ if( osClose(h) ){ |
+ unixLogErrorAtLine(SQLITE_IOERR_CLOSE, "close", |
+ pFile ? pFile->zPath : 0, lineno); |
+ } |
+} |
+ |
+/* |
+** Close all file descriptors accumuated in the unixInodeInfo->pUnused list. |
+*/ |
+static void closePendingFds(unixFile *pFile){ |
+ unixInodeInfo *pInode = pFile->pInode; |
+ UnixUnusedFd *p; |
+ UnixUnusedFd *pNext; |
+ for(p=pInode->pUnused; p; p=pNext){ |
+ pNext = p->pNext; |
+ robust_close(pFile, p->fd, __LINE__); |
+ sqlite3_free(p); |
+ } |
+ pInode->pUnused = 0; |
+} |
+ |
+/* |
+** Release a unixInodeInfo structure previously allocated by findInodeInfo(). |
+** |
+** The mutex entered using the unixEnterMutex() function must be held |
+** when this function is called. |
+*/ |
+static void releaseInodeInfo(unixFile *pFile){ |
+ unixInodeInfo *pInode = pFile->pInode; |
+ assert( unixMutexHeld() ); |
+ if( ALWAYS(pInode) ){ |
+ pInode->nRef--; |
+ if( pInode->nRef==0 ){ |
+ assert( pInode->pShmNode==0 ); |
+ closePendingFds(pFile); |
+ if( pInode->pPrev ){ |
+ assert( pInode->pPrev->pNext==pInode ); |
+ pInode->pPrev->pNext = pInode->pNext; |
+ }else{ |
+ assert( inodeList==pInode ); |
+ inodeList = pInode->pNext; |
+ } |
+ if( pInode->pNext ){ |
+ assert( pInode->pNext->pPrev==pInode ); |
+ pInode->pNext->pPrev = pInode->pPrev; |
+ } |
+ sqlite3_free(pInode); |
+ } |
+ } |
+} |
+ |
+/* |
+** Given a file descriptor, locate the unixInodeInfo object that |
+** describes that file descriptor. Create a new one if necessary. The |
+** return value might be uninitialized if an error occurs. |
+** |
+** The mutex entered using the unixEnterMutex() function must be held |
+** when this function is called. |
+** |
+** Return an appropriate error code. |
+*/ |
+static int findInodeInfo( |
+ unixFile *pFile, /* Unix file with file desc used in the key */ |
+ unixInodeInfo **ppInode /* Return the unixInodeInfo object here */ |
+){ |
+ int rc; /* System call return code */ |
+ int fd; /* The file descriptor for pFile */ |
+ struct unixFileId fileId; /* Lookup key for the unixInodeInfo */ |
+ struct stat statbuf; /* Low-level file information */ |
+ unixInodeInfo *pInode = 0; /* Candidate unixInodeInfo object */ |
+ |
+ assert( unixMutexHeld() ); |
+ |
+ /* Get low-level information about the file that we can used to |
+ ** create a unique name for the file. |
+ */ |
+ fd = pFile->h; |
+ rc = osFstat(fd, &statbuf); |
+ if( rc!=0 ){ |
+ pFile->lastErrno = errno; |
+#ifdef EOVERFLOW |
+ if( pFile->lastErrno==EOVERFLOW ) return SQLITE_NOLFS; |
+#endif |
+ return SQLITE_IOERR; |
+ } |
+ |
+#ifdef __APPLE__ |
+ /* On OS X on an msdos filesystem, the inode number is reported |
+ ** incorrectly for zero-size files. See ticket #3260. To work |
+ ** around this problem (we consider it a bug in OS X, not SQLite) |
+ ** we always increase the file size to 1 by writing a single byte |
+ ** prior to accessing the inode number. The one byte written is |
+ ** an ASCII 'S' character which also happens to be the first byte |
+ ** in the header of every SQLite database. In this way, if there |
+ ** is a race condition such that another thread has already populated |
+ ** the first page of the database, no damage is done. |
+ */ |
+ if( statbuf.st_size==0 && (pFile->fsFlags & SQLITE_FSFLAGS_IS_MSDOS)!=0 ){ |
+ do{ rc = osWrite(fd, "S", 1); }while( rc<0 && errno==EINTR ); |
+ if( rc!=1 ){ |
+ pFile->lastErrno = errno; |
+ return SQLITE_IOERR; |
+ } |
+ rc = osFstat(fd, &statbuf); |
+ if( rc!=0 ){ |
+ pFile->lastErrno = errno; |
+ return SQLITE_IOERR; |
+ } |
+ } |
+#endif |
+ |
+ memset(&fileId, 0, sizeof(fileId)); |
+ fileId.dev = statbuf.st_dev; |
+#if OS_VXWORKS |
+ fileId.pId = pFile->pId; |
+#else |
+ fileId.ino = statbuf.st_ino; |
+#endif |
+ pInode = inodeList; |
+ while( pInode && memcmp(&fileId, &pInode->fileId, sizeof(fileId)) ){ |
+ pInode = pInode->pNext; |
+ } |
+ if( pInode==0 ){ |
+ pInode = sqlite3_malloc( sizeof(*pInode) ); |
+ if( pInode==0 ){ |
+ return SQLITE_NOMEM; |
+ } |
+ memset(pInode, 0, sizeof(*pInode)); |
+ memcpy(&pInode->fileId, &fileId, sizeof(fileId)); |
+ pInode->nRef = 1; |
+ pInode->pNext = inodeList; |
+ pInode->pPrev = 0; |
+ if( inodeList ) inodeList->pPrev = pInode; |
+ inodeList = pInode; |
+ }else{ |
+ pInode->nRef++; |
+ } |
+ *ppInode = pInode; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Return TRUE if pFile has been renamed or unlinked since it was first opened. |
+*/ |
+static int fileHasMoved(unixFile *pFile){ |
+#if OS_VXWORKS |
+ return pFile->pInode!=0 && pFile->pId!=pFile->pInode->fileId.pId; |
+#else |
+ struct stat buf; |
+ return pFile->pInode!=0 && |
+ (osStat(pFile->zPath, &buf)!=0 || buf.st_ino!=pFile->pInode->fileId.ino); |
+#endif |
+} |
+ |
+ |
+/* |
+** Check a unixFile that is a database. Verify the following: |
+** |
+** (1) There is exactly one hard link on the file |
+** (2) The file is not a symbolic link |
+** (3) The file has not been renamed or unlinked |
+** |
+** Issue sqlite3_log(SQLITE_WARNING,...) messages if anything is not right. |
+*/ |
+static void verifyDbFile(unixFile *pFile){ |
+ struct stat buf; |
+ int rc; |
+ if( pFile->ctrlFlags & UNIXFILE_WARNED ){ |
+ /* One or more of the following warnings have already been issued. Do not |
+ ** repeat them so as not to clutter the error log */ |
+ return; |
+ } |
+ rc = osFstat(pFile->h, &buf); |
+ if( rc!=0 ){ |
+ sqlite3_log(SQLITE_WARNING, "cannot fstat db file %s", pFile->zPath); |
+ pFile->ctrlFlags |= UNIXFILE_WARNED; |
+ return; |
+ } |
+ if( buf.st_nlink==0 && (pFile->ctrlFlags & UNIXFILE_DELETE)==0 ){ |
+ sqlite3_log(SQLITE_WARNING, "file unlinked while open: %s", pFile->zPath); |
+ pFile->ctrlFlags |= UNIXFILE_WARNED; |
+ return; |
+ } |
+ if( buf.st_nlink>1 ){ |
+ sqlite3_log(SQLITE_WARNING, "multiple links to file: %s", pFile->zPath); |
+ pFile->ctrlFlags |= UNIXFILE_WARNED; |
+ return; |
+ } |
+ if( fileHasMoved(pFile) ){ |
+ sqlite3_log(SQLITE_WARNING, "file renamed while open: %s", pFile->zPath); |
+ pFile->ctrlFlags |= UNIXFILE_WARNED; |
+ return; |
+ } |
+} |
+ |
+ |
+/* |
+** This routine checks if there is a RESERVED lock held on the specified |
+** file by this or any other process. If such a lock is held, set *pResOut |
+** to a non-zero value otherwise *pResOut is set to zero. The return value |
+** is set to SQLITE_OK unless an I/O error occurs during lock checking. |
+*/ |
+static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){ |
+ int rc = SQLITE_OK; |
+ int reserved = 0; |
+ unixFile *pFile = (unixFile*)id; |
+ |
+ SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); |
+ |
+ assert( pFile ); |
+ unixEnterMutex(); /* Because pFile->pInode is shared across threads */ |
+ |
+ /* Check if a thread in this process holds such a lock */ |
+ if( pFile->pInode->eFileLock>SHARED_LOCK ){ |
+ reserved = 1; |
+ } |
+ |
+ /* Otherwise see if some other process holds it. |
+ */ |
+#ifndef __DJGPP__ |
+ if( !reserved && !pFile->pInode->bProcessLock ){ |
+ struct flock lock; |
+ lock.l_whence = SEEK_SET; |
+ lock.l_start = RESERVED_BYTE; |
+ lock.l_len = 1; |
+ lock.l_type = F_WRLCK; |
+ if( osFcntl(pFile->h, F_GETLK, &lock) ){ |
+ rc = SQLITE_IOERR_CHECKRESERVEDLOCK; |
+ pFile->lastErrno = errno; |
+ } else if( lock.l_type!=F_UNLCK ){ |
+ reserved = 1; |
+ } |
+ } |
+#endif |
+ |
+ unixLeaveMutex(); |
+ OSTRACE(("TEST WR-LOCK %d %d %d (unix)\n", pFile->h, rc, reserved)); |
+ |
+ *pResOut = reserved; |
+ return rc; |
+} |
+ |
+/* |
+** Attempt to set a system-lock on the file pFile. The lock is |
+** described by pLock. |
+** |
+** If the pFile was opened read/write from unix-excl, then the only lock |
+** ever obtained is an exclusive lock, and it is obtained exactly once |
+** the first time any lock is attempted. All subsequent system locking |
+** operations become no-ops. Locking operations still happen internally, |
+** in order to coordinate access between separate database connections |
+** within this process, but all of that is handled in memory and the |
+** operating system does not participate. |
+** |
+** This function is a pass-through to fcntl(F_SETLK) if pFile is using |
+** any VFS other than "unix-excl" or if pFile is opened on "unix-excl" |
+** and is read-only. |
+** |
+** Zero is returned if the call completes successfully, or -1 if a call |
+** to fcntl() fails. In this case, errno is set appropriately (by fcntl()). |
+*/ |
+static int unixFileLock(unixFile *pFile, struct flock *pLock){ |
+ int rc; |
+ unixInodeInfo *pInode = pFile->pInode; |
+ assert( unixMutexHeld() ); |
+ assert( pInode!=0 ); |
+ if( ((pFile->ctrlFlags & UNIXFILE_EXCL)!=0 || pInode->bProcessLock) |
+ && ((pFile->ctrlFlags & UNIXFILE_RDONLY)==0) |
+ ){ |
+ if( pInode->bProcessLock==0 ){ |
+ struct flock lock; |
+ assert( pInode->nLock==0 ); |
+ lock.l_whence = SEEK_SET; |
+ lock.l_start = SHARED_FIRST; |
+ lock.l_len = SHARED_SIZE; |
+ lock.l_type = F_WRLCK; |
+ rc = osFcntl(pFile->h, F_SETLK, &lock); |
+ if( rc<0 ) return rc; |
+ pInode->bProcessLock = 1; |
+ pInode->nLock++; |
+ }else{ |
+ rc = 0; |
+ } |
+ }else{ |
+ rc = osFcntl(pFile->h, F_SETLK, pLock); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Lock the file with the lock specified by parameter eFileLock - one |
+** of the following: |
+** |
+** (1) SHARED_LOCK |
+** (2) RESERVED_LOCK |
+** (3) PENDING_LOCK |
+** (4) EXCLUSIVE_LOCK |
+** |
+** Sometimes when requesting one lock state, additional lock states |
+** are inserted in between. The locking might fail on one of the later |
+** transitions leaving the lock state different from what it started but |
+** still short of its goal. The following chart shows the allowed |
+** transitions and the inserted intermediate states: |
+** |
+** UNLOCKED -> SHARED |
+** SHARED -> RESERVED |
+** SHARED -> (PENDING) -> EXCLUSIVE |
+** RESERVED -> (PENDING) -> EXCLUSIVE |
+** PENDING -> EXCLUSIVE |
+** |
+** This routine will only increase a lock. Use the sqlite3OsUnlock() |
+** routine to lower a locking level. |
+*/ |
+static int unixLock(sqlite3_file *id, int eFileLock){ |
+ /* The following describes the implementation of the various locks and |
+ ** lock transitions in terms of the POSIX advisory shared and exclusive |
+ ** lock primitives (called read-locks and write-locks below, to avoid |
+ ** confusion with SQLite lock names). The algorithms are complicated |
+ ** slightly in order to be compatible with windows systems simultaneously |
+ ** accessing the same database file, in case that is ever required. |
+ ** |
+ ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved |
+ ** byte', each single bytes at well known offsets, and the 'shared byte |
+ ** range', a range of 510 bytes at a well known offset. |
+ ** |
+ ** To obtain a SHARED lock, a read-lock is obtained on the 'pending |
+ ** byte'. If this is successful, a random byte from the 'shared byte |
+ ** range' is read-locked and the lock on the 'pending byte' released. |
+ ** |
+ ** A process may only obtain a RESERVED lock after it has a SHARED lock. |
+ ** A RESERVED lock is implemented by grabbing a write-lock on the |
+ ** 'reserved byte'. |
+ ** |
+ ** A process may only obtain a PENDING lock after it has obtained a |
+ ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock |
+ ** on the 'pending byte'. This ensures that no new SHARED locks can be |
+ ** obtained, but existing SHARED locks are allowed to persist. A process |
+ ** does not have to obtain a RESERVED lock on the way to a PENDING lock. |
+ ** This property is used by the algorithm for rolling back a journal file |
+ ** after a crash. |
+ ** |
+ ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is |
+ ** implemented by obtaining a write-lock on the entire 'shared byte |
+ ** range'. Since all other locks require a read-lock on one of the bytes |
+ ** within this range, this ensures that no other locks are held on the |
+ ** database. |
+ ** |
+ ** The reason a single byte cannot be used instead of the 'shared byte |
+ ** range' is that some versions of windows do not support read-locks. By |
+ ** locking a random byte from a range, concurrent SHARED locks may exist |
+ ** even if the locking primitive used is always a write-lock. |
+ */ |
+ int rc = SQLITE_OK; |
+ unixFile *pFile = (unixFile*)id; |
+ unixInodeInfo *pInode; |
+ struct flock lock; |
+ int tErrno = 0; |
+ |
+ assert( pFile ); |
+ OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (unix)\n", pFile->h, |
+ azFileLock(eFileLock), azFileLock(pFile->eFileLock), |
+ azFileLock(pFile->pInode->eFileLock), pFile->pInode->nShared , getpid())); |
+ |
+ /* If there is already a lock of this type or more restrictive on the |
+ ** unixFile, do nothing. Don't use the end_lock: exit path, as |
+ ** unixEnterMutex() hasn't been called yet. |
+ */ |
+ if( pFile->eFileLock>=eFileLock ){ |
+ OSTRACE(("LOCK %d %s ok (already held) (unix)\n", pFile->h, |
+ azFileLock(eFileLock))); |
+ return SQLITE_OK; |
+ } |
+ |
+ /* Make sure the locking sequence is correct. |
+ ** (1) We never move from unlocked to anything higher than shared lock. |
+ ** (2) SQLite never explicitly requests a pendig lock. |
+ ** (3) A shared lock is always held when a reserve lock is requested. |
+ */ |
+ assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK ); |
+ assert( eFileLock!=PENDING_LOCK ); |
+ assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK ); |
+ |
+ /* This mutex is needed because pFile->pInode is shared across threads |
+ */ |
+ unixEnterMutex(); |
+ pInode = pFile->pInode; |
+ |
+ /* If some thread using this PID has a lock via a different unixFile* |
+ ** handle that precludes the requested lock, return BUSY. |
+ */ |
+ if( (pFile->eFileLock!=pInode->eFileLock && |
+ (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK)) |
+ ){ |
+ rc = SQLITE_BUSY; |
+ goto end_lock; |
+ } |
+ |
+ /* If a SHARED lock is requested, and some thread using this PID already |
+ ** has a SHARED or RESERVED lock, then increment reference counts and |
+ ** return SQLITE_OK. |
+ */ |
+ if( eFileLock==SHARED_LOCK && |
+ (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){ |
+ assert( eFileLock==SHARED_LOCK ); |
+ assert( pFile->eFileLock==0 ); |
+ assert( pInode->nShared>0 ); |
+ pFile->eFileLock = SHARED_LOCK; |
+ pInode->nShared++; |
+ pInode->nLock++; |
+ goto end_lock; |
+ } |
+ |
+ |
+ /* A PENDING lock is needed before acquiring a SHARED lock and before |
+ ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will |
+ ** be released. |
+ */ |
+ lock.l_len = 1L; |
+ lock.l_whence = SEEK_SET; |
+ if( eFileLock==SHARED_LOCK |
+ || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK) |
+ ){ |
+ lock.l_type = (eFileLock==SHARED_LOCK?F_RDLCK:F_WRLCK); |
+ lock.l_start = PENDING_BYTE; |
+ if( unixFileLock(pFile, &lock) ){ |
+ tErrno = errno; |
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); |
+ if( rc!=SQLITE_BUSY ){ |
+ pFile->lastErrno = tErrno; |
+ } |
+ goto end_lock; |
+ } |
+ } |
+ |
+ |
+ /* If control gets to this point, then actually go ahead and make |
+ ** operating system calls for the specified lock. |
+ */ |
+ if( eFileLock==SHARED_LOCK ){ |
+ assert( pInode->nShared==0 ); |
+ assert( pInode->eFileLock==0 ); |
+ assert( rc==SQLITE_OK ); |
+ |
+ /* Now get the read-lock */ |
+ lock.l_start = SHARED_FIRST; |
+ lock.l_len = SHARED_SIZE; |
+ if( unixFileLock(pFile, &lock) ){ |
+ tErrno = errno; |
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); |
+ } |
+ |
+ /* Drop the temporary PENDING lock */ |
+ lock.l_start = PENDING_BYTE; |
+ lock.l_len = 1L; |
+ lock.l_type = F_UNLCK; |
+ if( unixFileLock(pFile, &lock) && rc==SQLITE_OK ){ |
+ /* This could happen with a network mount */ |
+ tErrno = errno; |
+ rc = SQLITE_IOERR_UNLOCK; |
+ } |
+ |
+ if( rc ){ |
+ if( rc!=SQLITE_BUSY ){ |
+ pFile->lastErrno = tErrno; |
+ } |
+ goto end_lock; |
+ }else{ |
+ pFile->eFileLock = SHARED_LOCK; |
+ pInode->nLock++; |
+ pInode->nShared = 1; |
+ } |
+ }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){ |
+ /* We are trying for an exclusive lock but another thread in this |
+ ** same process is still holding a shared lock. */ |
+ rc = SQLITE_BUSY; |
+ }else{ |
+ /* The request was for a RESERVED or EXCLUSIVE lock. It is |
+ ** assumed that there is a SHARED or greater lock on the file |
+ ** already. |
+ */ |
+ assert( 0!=pFile->eFileLock ); |
+ lock.l_type = F_WRLCK; |
+ |
+ assert( eFileLock==RESERVED_LOCK || eFileLock==EXCLUSIVE_LOCK ); |
+ if( eFileLock==RESERVED_LOCK ){ |
+ lock.l_start = RESERVED_BYTE; |
+ lock.l_len = 1L; |
+ }else{ |
+ lock.l_start = SHARED_FIRST; |
+ lock.l_len = SHARED_SIZE; |
+ } |
+ |
+ if( unixFileLock(pFile, &lock) ){ |
+ tErrno = errno; |
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); |
+ if( rc!=SQLITE_BUSY ){ |
+ pFile->lastErrno = tErrno; |
+ } |
+ } |
+ } |
+ |
+ |
+#ifdef SQLITE_DEBUG |
+ /* Set up the transaction-counter change checking flags when |
+ ** transitioning from a SHARED to a RESERVED lock. The change |
+ ** from SHARED to RESERVED marks the beginning of a normal |
+ ** write operation (not a hot journal rollback). |
+ */ |
+ if( rc==SQLITE_OK |
+ && pFile->eFileLock<=SHARED_LOCK |
+ && eFileLock==RESERVED_LOCK |
+ ){ |
+ pFile->transCntrChng = 0; |
+ pFile->dbUpdate = 0; |
+ pFile->inNormalWrite = 1; |
+ } |
+#endif |
+ |
+ |
+ if( rc==SQLITE_OK ){ |
+ pFile->eFileLock = eFileLock; |
+ pInode->eFileLock = eFileLock; |
+ }else if( eFileLock==EXCLUSIVE_LOCK ){ |
+ pFile->eFileLock = PENDING_LOCK; |
+ pInode->eFileLock = PENDING_LOCK; |
+ } |
+ |
+end_lock: |
+ unixLeaveMutex(); |
+ OSTRACE(("LOCK %d %s %s (unix)\n", pFile->h, azFileLock(eFileLock), |
+ rc==SQLITE_OK ? "ok" : "failed")); |
+ return rc; |
+} |
+ |
+/* |
+** Add the file descriptor used by file handle pFile to the corresponding |
+** pUnused list. |
+*/ |
+static void setPendingFd(unixFile *pFile){ |
+ unixInodeInfo *pInode = pFile->pInode; |
+ UnixUnusedFd *p = pFile->pUnused; |
+ p->pNext = pInode->pUnused; |
+ pInode->pUnused = p; |
+ pFile->h = -1; |
+ pFile->pUnused = 0; |
+} |
+ |
+/* |
+** Lower the locking level on file descriptor pFile to eFileLock. eFileLock |
+** must be either NO_LOCK or SHARED_LOCK. |
+** |
+** If the locking level of the file descriptor is already at or below |
+** the requested locking level, this routine is a no-op. |
+** |
+** If handleNFSUnlock is true, then on downgrading an EXCLUSIVE_LOCK to SHARED |
+** the byte range is divided into 2 parts and the first part is unlocked then |
+** set to a read lock, then the other part is simply unlocked. This works |
+** around a bug in BSD NFS lockd (also seen on MacOSX 10.3+) that fails to |
+** remove the write lock on a region when a read lock is set. |
+*/ |
+static int posixUnlock(sqlite3_file *id, int eFileLock, int handleNFSUnlock){ |
+ unixFile *pFile = (unixFile*)id; |
+ unixInodeInfo *pInode; |
+ struct flock lock; |
+ int rc = SQLITE_OK; |
+ |
+ assert( pFile ); |
+ OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (unix)\n", pFile->h, eFileLock, |
+ pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared, |
+ getpid())); |
+ |
+ assert( eFileLock<=SHARED_LOCK ); |
+ if( pFile->eFileLock<=eFileLock ){ |
+ return SQLITE_OK; |
+ } |
+ unixEnterMutex(); |
+ pInode = pFile->pInode; |
+ assert( pInode->nShared!=0 ); |
+ if( pFile->eFileLock>SHARED_LOCK ){ |
+ assert( pInode->eFileLock==pFile->eFileLock ); |
+ |
+#ifdef SQLITE_DEBUG |
+ /* When reducing a lock such that other processes can start |
+ ** reading the database file again, make sure that the |
+ ** transaction counter was updated if any part of the database |
+ ** file changed. If the transaction counter is not updated, |
+ ** other connections to the same file might not realize that |
+ ** the file has changed and hence might not know to flush their |
+ ** cache. The use of a stale cache can lead to database corruption. |
+ */ |
+ pFile->inNormalWrite = 0; |
+#endif |
+ |
+ /* downgrading to a shared lock on NFS involves clearing the write lock |
+ ** before establishing the readlock - to avoid a race condition we downgrade |
+ ** the lock in 2 blocks, so that part of the range will be covered by a |
+ ** write lock until the rest is covered by a read lock: |
+ ** 1: [WWWWW] |
+ ** 2: [....W] |
+ ** 3: [RRRRW] |
+ ** 4: [RRRR.] |
+ */ |
+ if( eFileLock==SHARED_LOCK ){ |
+ |
+#if !defined(__APPLE__) || !SQLITE_ENABLE_LOCKING_STYLE |
+ (void)handleNFSUnlock; |
+ assert( handleNFSUnlock==0 ); |
+#endif |
+#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
+ if( handleNFSUnlock ){ |
+ int tErrno; /* Error code from system call errors */ |
+ off_t divSize = SHARED_SIZE - 1; |
+ |
+ lock.l_type = F_UNLCK; |
+ lock.l_whence = SEEK_SET; |
+ lock.l_start = SHARED_FIRST; |
+ lock.l_len = divSize; |
+ if( unixFileLock(pFile, &lock)==(-1) ){ |
+ tErrno = errno; |
+ rc = SQLITE_IOERR_UNLOCK; |
+ if( IS_LOCK_ERROR(rc) ){ |
+ pFile->lastErrno = tErrno; |
+ } |
+ goto end_unlock; |
+ } |
+ lock.l_type = F_RDLCK; |
+ lock.l_whence = SEEK_SET; |
+ lock.l_start = SHARED_FIRST; |
+ lock.l_len = divSize; |
+ if( unixFileLock(pFile, &lock)==(-1) ){ |
+ tErrno = errno; |
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK); |
+ if( IS_LOCK_ERROR(rc) ){ |
+ pFile->lastErrno = tErrno; |
+ } |
+ goto end_unlock; |
+ } |
+ lock.l_type = F_UNLCK; |
+ lock.l_whence = SEEK_SET; |
+ lock.l_start = SHARED_FIRST+divSize; |
+ lock.l_len = SHARED_SIZE-divSize; |
+ if( unixFileLock(pFile, &lock)==(-1) ){ |
+ tErrno = errno; |
+ rc = SQLITE_IOERR_UNLOCK; |
+ if( IS_LOCK_ERROR(rc) ){ |
+ pFile->lastErrno = tErrno; |
+ } |
+ goto end_unlock; |
+ } |
+ }else |
+#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ |
+ { |
+ lock.l_type = F_RDLCK; |
+ lock.l_whence = SEEK_SET; |
+ lock.l_start = SHARED_FIRST; |
+ lock.l_len = SHARED_SIZE; |
+ if( unixFileLock(pFile, &lock) ){ |
+ /* In theory, the call to unixFileLock() cannot fail because another |
+ ** process is holding an incompatible lock. If it does, this |
+ ** indicates that the other process is not following the locking |
+ ** protocol. If this happens, return SQLITE_IOERR_RDLOCK. Returning |
+ ** SQLITE_BUSY would confuse the upper layer (in practice it causes |
+ ** an assert to fail). */ |
+ rc = SQLITE_IOERR_RDLOCK; |
+ pFile->lastErrno = errno; |
+ goto end_unlock; |
+ } |
+ } |
+ } |
+ lock.l_type = F_UNLCK; |
+ lock.l_whence = SEEK_SET; |
+ lock.l_start = PENDING_BYTE; |
+ lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE ); |
+ if( unixFileLock(pFile, &lock)==0 ){ |
+ pInode->eFileLock = SHARED_LOCK; |
+ }else{ |
+ rc = SQLITE_IOERR_UNLOCK; |
+ pFile->lastErrno = errno; |
+ goto end_unlock; |
+ } |
+ } |
+ if( eFileLock==NO_LOCK ){ |
+ /* Decrement the shared lock counter. Release the lock using an |
+ ** OS call only when all threads in this same process have released |
+ ** the lock. |
+ */ |
+ pInode->nShared--; |
+ if( pInode->nShared==0 ){ |
+ lock.l_type = F_UNLCK; |
+ lock.l_whence = SEEK_SET; |
+ lock.l_start = lock.l_len = 0L; |
+ if( unixFileLock(pFile, &lock)==0 ){ |
+ pInode->eFileLock = NO_LOCK; |
+ }else{ |
+ rc = SQLITE_IOERR_UNLOCK; |
+ pFile->lastErrno = errno; |
+ pInode->eFileLock = NO_LOCK; |
+ pFile->eFileLock = NO_LOCK; |
+ } |
+ } |
+ |
+ /* Decrement the count of locks against this same file. When the |
+ ** count reaches zero, close any other file descriptors whose close |
+ ** was deferred because of outstanding locks. |
+ */ |
+ pInode->nLock--; |
+ assert( pInode->nLock>=0 ); |
+ if( pInode->nLock==0 ){ |
+ closePendingFds(pFile); |
+ } |
+ } |
+ |
+end_unlock: |
+ unixLeaveMutex(); |
+ if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock; |
+ return rc; |
+} |
+ |
+/* |
+** Lower the locking level on file descriptor pFile to eFileLock. eFileLock |
+** must be either NO_LOCK or SHARED_LOCK. |
+** |
+** If the locking level of the file descriptor is already at or below |
+** the requested locking level, this routine is a no-op. |
+*/ |
+static int unixUnlock(sqlite3_file *id, int eFileLock){ |
+#if SQLITE_MAX_MMAP_SIZE>0 |
+ assert( eFileLock==SHARED_LOCK || ((unixFile *)id)->nFetchOut==0 ); |
+#endif |
+ return posixUnlock(id, eFileLock, 0); |
+} |
+ |
+#if SQLITE_MAX_MMAP_SIZE>0 |
+static int unixMapfile(unixFile *pFd, i64 nByte); |
+static void unixUnmapfile(unixFile *pFd); |
+#endif |
+ |
+/* |
+** This function performs the parts of the "close file" operation |
+** common to all locking schemes. It closes the directory and file |
+** handles, if they are valid, and sets all fields of the unixFile |
+** structure to 0. |
+** |
+** It is *not* necessary to hold the mutex when this routine is called, |
+** even on VxWorks. A mutex will be acquired on VxWorks by the |
+** vxworksReleaseFileId() routine. |
+*/ |
+static int closeUnixFile(sqlite3_file *id){ |
+ unixFile *pFile = (unixFile*)id; |
+#if SQLITE_MAX_MMAP_SIZE>0 |
+ unixUnmapfile(pFile); |
+#endif |
+ if( pFile->h>=0 ){ |
+ robust_close(pFile, pFile->h, __LINE__); |
+ pFile->h = -1; |
+ } |
+#if OS_VXWORKS |
+ if( pFile->pId ){ |
+ if( pFile->ctrlFlags & UNIXFILE_DELETE ){ |
+ osUnlink(pFile->pId->zCanonicalName); |
+ } |
+ vxworksReleaseFileId(pFile->pId); |
+ pFile->pId = 0; |
+ } |
+#endif |
+#ifdef SQLITE_UNLINK_AFTER_CLOSE |
+ if( pFile->ctrlFlags & UNIXFILE_DELETE ){ |
+ osUnlink(pFile->zPath); |
+ sqlite3_free(*(char**)&pFile->zPath); |
+ pFile->zPath = 0; |
+ } |
+#endif |
+ OSTRACE(("CLOSE %-3d\n", pFile->h)); |
+ OpenCounter(-1); |
+ sqlite3_free(pFile->pUnused); |
+ memset(pFile, 0, sizeof(unixFile)); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Close a file. |
+*/ |
+static int unixClose(sqlite3_file *id){ |
+ int rc = SQLITE_OK; |
+ unixFile *pFile = (unixFile *)id; |
+ verifyDbFile(pFile); |
+ unixUnlock(id, NO_LOCK); |
+ unixEnterMutex(); |
+ |
+ /* unixFile.pInode is always valid here. Otherwise, a different close |
+ ** routine (e.g. nolockClose()) would be called instead. |
+ */ |
+ assert( pFile->pInode->nLock>0 || pFile->pInode->bProcessLock==0 ); |
+ if( ALWAYS(pFile->pInode) && pFile->pInode->nLock ){ |
+ /* If there are outstanding locks, do not actually close the file just |
+ ** yet because that would clear those locks. Instead, add the file |
+ ** descriptor to pInode->pUnused list. It will be automatically closed |
+ ** when the last lock is cleared. |
+ */ |
+ setPendingFd(pFile); |
+ } |
+ releaseInodeInfo(pFile); |
+ rc = closeUnixFile(id); |
+ unixLeaveMutex(); |
+ return rc; |
+} |
+ |
+/************** End of the posix advisory lock implementation ***************** |
+******************************************************************************/ |
+ |
+/****************************************************************************** |
+****************************** No-op Locking ********************************** |
+** |
+** Of the various locking implementations available, this is by far the |
+** simplest: locking is ignored. No attempt is made to lock the database |
+** file for reading or writing. |
+** |
+** This locking mode is appropriate for use on read-only databases |
+** (ex: databases that are burned into CD-ROM, for example.) It can |
+** also be used if the application employs some external mechanism to |
+** prevent simultaneous access of the same database by two or more |
+** database connections. But there is a serious risk of database |
+** corruption if this locking mode is used in situations where multiple |
+** database connections are accessing the same database file at the same |
+** time and one or more of those connections are writing. |
+*/ |
+ |
+static int nolockCheckReservedLock(sqlite3_file *NotUsed, int *pResOut){ |
+ UNUSED_PARAMETER(NotUsed); |
+ *pResOut = 0; |
+ return SQLITE_OK; |
+} |
+static int nolockLock(sqlite3_file *NotUsed, int NotUsed2){ |
+ UNUSED_PARAMETER2(NotUsed, NotUsed2); |
+ return SQLITE_OK; |
+} |
+static int nolockUnlock(sqlite3_file *NotUsed, int NotUsed2){ |
+ UNUSED_PARAMETER2(NotUsed, NotUsed2); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Close the file. |
+*/ |
+static int nolockClose(sqlite3_file *id) { |
+ return closeUnixFile(id); |
+} |
+ |
+/******************* End of the no-op lock implementation ********************* |
+******************************************************************************/ |
+ |
+/****************************************************************************** |
+************************* Begin dot-file Locking ****************************** |
+** |
+** The dotfile locking implementation uses the existence of separate lock |
+** files (really a directory) to control access to the database. This works |
+** on just about every filesystem imaginable. But there are serious downsides: |
+** |
+** (1) There is zero concurrency. A single reader blocks all other |
+** connections from reading or writing the database. |
+** |
+** (2) An application crash or power loss can leave stale lock files |
+** sitting around that need to be cleared manually. |
+** |
+** Nevertheless, a dotlock is an appropriate locking mode for use if no |
+** other locking strategy is available. |
+** |
+** Dotfile locking works by creating a subdirectory in the same directory as |
+** the database and with the same name but with a ".lock" extension added. |
+** The existence of a lock directory implies an EXCLUSIVE lock. All other |
+** lock types (SHARED, RESERVED, PENDING) are mapped into EXCLUSIVE. |
+*/ |
+ |
+/* |
+** The file suffix added to the data base filename in order to create the |
+** lock directory. |
+*/ |
+#define DOTLOCK_SUFFIX ".lock" |
+ |
+/* |
+** This routine checks if there is a RESERVED lock held on the specified |
+** file by this or any other process. If such a lock is held, set *pResOut |
+** to a non-zero value otherwise *pResOut is set to zero. The return value |
+** is set to SQLITE_OK unless an I/O error occurs during lock checking. |
+** |
+** In dotfile locking, either a lock exists or it does not. So in this |
+** variation of CheckReservedLock(), *pResOut is set to true if any lock |
+** is held on the file and false if the file is unlocked. |
+*/ |
+static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) { |
+ int rc = SQLITE_OK; |
+ int reserved = 0; |
+ unixFile *pFile = (unixFile*)id; |
+ |
+ SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); |
+ |
+ assert( pFile ); |
+ |
+ /* Check if a thread in this process holds such a lock */ |
+ if( pFile->eFileLock>SHARED_LOCK ){ |
+ /* Either this connection or some other connection in the same process |
+ ** holds a lock on the file. No need to check further. */ |
+ reserved = 1; |
+ }else{ |
+ /* The lock is held if and only if the lockfile exists */ |
+ const char *zLockFile = (const char*)pFile->lockingContext; |
+ reserved = osAccess(zLockFile, 0)==0; |
+ } |
+ OSTRACE(("TEST WR-LOCK %d %d %d (dotlock)\n", pFile->h, rc, reserved)); |
+ *pResOut = reserved; |
+ return rc; |
+} |
+ |
+/* |
+** Lock the file with the lock specified by parameter eFileLock - one |
+** of the following: |
+** |
+** (1) SHARED_LOCK |
+** (2) RESERVED_LOCK |
+** (3) PENDING_LOCK |
+** (4) EXCLUSIVE_LOCK |
+** |
+** Sometimes when requesting one lock state, additional lock states |
+** are inserted in between. The locking might fail on one of the later |
+** transitions leaving the lock state different from what it started but |
+** still short of its goal. The following chart shows the allowed |
+** transitions and the inserted intermediate states: |
+** |
+** UNLOCKED -> SHARED |
+** SHARED -> RESERVED |
+** SHARED -> (PENDING) -> EXCLUSIVE |
+** RESERVED -> (PENDING) -> EXCLUSIVE |
+** PENDING -> EXCLUSIVE |
+** |
+** This routine will only increase a lock. Use the sqlite3OsUnlock() |
+** routine to lower a locking level. |
+** |
+** With dotfile locking, we really only support state (4): EXCLUSIVE. |
+** But we track the other locking levels internally. |
+*/ |
+static int dotlockLock(sqlite3_file *id, int eFileLock) { |
+ unixFile *pFile = (unixFile*)id; |
+ char *zLockFile = (char *)pFile->lockingContext; |
+ int rc = SQLITE_OK; |
+ |
+ |
+ /* If we have any lock, then the lock file already exists. All we have |
+ ** to do is adjust our internal record of the lock level. |
+ */ |
+ if( pFile->eFileLock > NO_LOCK ){ |
+ pFile->eFileLock = eFileLock; |
+ /* Always update the timestamp on the old file */ |
+#ifdef HAVE_UTIME |
+ utime(zLockFile, NULL); |
+#else |
+ utimes(zLockFile, NULL); |
+#endif |
+ return SQLITE_OK; |
+ } |
+ |
+ /* grab an exclusive lock */ |
+ rc = osMkdir(zLockFile, 0777); |
+ if( rc<0 ){ |
+ /* failed to open/create the lock directory */ |
+ int tErrno = errno; |
+ if( EEXIST == tErrno ){ |
+ rc = SQLITE_BUSY; |
+ } else { |
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); |
+ if( IS_LOCK_ERROR(rc) ){ |
+ pFile->lastErrno = tErrno; |
+ } |
+ } |
+ return rc; |
+ } |
+ |
+ /* got it, set the type and return ok */ |
+ pFile->eFileLock = eFileLock; |
+ return rc; |
+} |
+ |
+/* |
+** Lower the locking level on file descriptor pFile to eFileLock. eFileLock |
+** must be either NO_LOCK or SHARED_LOCK. |
+** |
+** If the locking level of the file descriptor is already at or below |
+** the requested locking level, this routine is a no-op. |
+** |
+** When the locking level reaches NO_LOCK, delete the lock file. |
+*/ |
+static int dotlockUnlock(sqlite3_file *id, int eFileLock) { |
+ unixFile *pFile = (unixFile*)id; |
+ char *zLockFile = (char *)pFile->lockingContext; |
+ int rc; |
+ |
+ assert( pFile ); |
+ OSTRACE(("UNLOCK %d %d was %d pid=%d (dotlock)\n", pFile->h, eFileLock, |
+ pFile->eFileLock, getpid())); |
+ assert( eFileLock<=SHARED_LOCK ); |
+ |
+ /* no-op if possible */ |
+ if( pFile->eFileLock==eFileLock ){ |
+ return SQLITE_OK; |
+ } |
+ |
+ /* To downgrade to shared, simply update our internal notion of the |
+ ** lock state. No need to mess with the file on disk. |
+ */ |
+ if( eFileLock==SHARED_LOCK ){ |
+ pFile->eFileLock = SHARED_LOCK; |
+ return SQLITE_OK; |
+ } |
+ |
+ /* To fully unlock the database, delete the lock file */ |
+ assert( eFileLock==NO_LOCK ); |
+ rc = osRmdir(zLockFile); |
+ if( rc<0 && errno==ENOTDIR ) rc = osUnlink(zLockFile); |
+ if( rc<0 ){ |
+ int tErrno = errno; |
+ rc = 0; |
+ if( ENOENT != tErrno ){ |
+ rc = SQLITE_IOERR_UNLOCK; |
+ } |
+ if( IS_LOCK_ERROR(rc) ){ |
+ pFile->lastErrno = tErrno; |
+ } |
+ return rc; |
+ } |
+ pFile->eFileLock = NO_LOCK; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Close a file. Make sure the lock has been released before closing. |
+*/ |
+static int dotlockClose(sqlite3_file *id) { |
+ int rc = SQLITE_OK; |
+ if( id ){ |
+ unixFile *pFile = (unixFile*)id; |
+ dotlockUnlock(id, NO_LOCK); |
+ sqlite3_free(pFile->lockingContext); |
+ rc = closeUnixFile(id); |
+ } |
+ return rc; |
+} |
+/****************** End of the dot-file lock implementation ******************* |
+******************************************************************************/ |
+ |
+/****************************************************************************** |
+************************** Begin flock Locking ******************************** |
+** |
+** Use the flock() system call to do file locking. |
+** |
+** flock() locking is like dot-file locking in that the various |
+** fine-grain locking levels supported by SQLite are collapsed into |
+** a single exclusive lock. In other words, SHARED, RESERVED, and |
+** PENDING locks are the same thing as an EXCLUSIVE lock. SQLite |
+** still works when you do this, but concurrency is reduced since |
+** only a single process can be reading the database at a time. |
+** |
+** Omit this section if SQLITE_ENABLE_LOCKING_STYLE is turned off or if |
+** compiling for VXWORKS. |
+*/ |
+#if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS |
+ |
+/* |
+** Retry flock() calls that fail with EINTR |
+*/ |
+#ifdef EINTR |
+static int robust_flock(int fd, int op){ |
+ int rc; |
+ do{ rc = flock(fd,op); }while( rc<0 && errno==EINTR ); |
+ return rc; |
+} |
+#else |
+# define robust_flock(a,b) flock(a,b) |
+#endif |
+ |
+ |
+/* |
+** This routine checks if there is a RESERVED lock held on the specified |
+** file by this or any other process. If such a lock is held, set *pResOut |
+** to a non-zero value otherwise *pResOut is set to zero. The return value |
+** is set to SQLITE_OK unless an I/O error occurs during lock checking. |
+*/ |
+static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){ |
+ int rc = SQLITE_OK; |
+ int reserved = 0; |
+ unixFile *pFile = (unixFile*)id; |
+ |
+ SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); |
+ |
+ assert( pFile ); |
+ |
+ /* Check if a thread in this process holds such a lock */ |
+ if( pFile->eFileLock>SHARED_LOCK ){ |
+ reserved = 1; |
+ } |
+ |
+ /* Otherwise see if some other process holds it. */ |
+ if( !reserved ){ |
+ /* attempt to get the lock */ |
+ int lrc = robust_flock(pFile->h, LOCK_EX | LOCK_NB); |
+ if( !lrc ){ |
+ /* got the lock, unlock it */ |
+ lrc = robust_flock(pFile->h, LOCK_UN); |
+ if ( lrc ) { |
+ int tErrno = errno; |
+ /* unlock failed with an error */ |
+ lrc = SQLITE_IOERR_UNLOCK; |
+ if( IS_LOCK_ERROR(lrc) ){ |
+ pFile->lastErrno = tErrno; |
+ rc = lrc; |
+ } |
+ } |
+ } else { |
+ int tErrno = errno; |
+ reserved = 1; |
+ /* someone else might have it reserved */ |
+ lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); |
+ if( IS_LOCK_ERROR(lrc) ){ |
+ pFile->lastErrno = tErrno; |
+ rc = lrc; |
+ } |
+ } |
+ } |
+ OSTRACE(("TEST WR-LOCK %d %d %d (flock)\n", pFile->h, rc, reserved)); |
+ |
+#ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS |
+ if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){ |
+ rc = SQLITE_OK; |
+ reserved=1; |
+ } |
+#endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */ |
+ *pResOut = reserved; |
+ return rc; |
+} |
+ |
+/* |
+** Lock the file with the lock specified by parameter eFileLock - one |
+** of the following: |
+** |
+** (1) SHARED_LOCK |
+** (2) RESERVED_LOCK |
+** (3) PENDING_LOCK |
+** (4) EXCLUSIVE_LOCK |
+** |
+** Sometimes when requesting one lock state, additional lock states |
+** are inserted in between. The locking might fail on one of the later |
+** transitions leaving the lock state different from what it started but |
+** still short of its goal. The following chart shows the allowed |
+** transitions and the inserted intermediate states: |
+** |
+** UNLOCKED -> SHARED |
+** SHARED -> RESERVED |
+** SHARED -> (PENDING) -> EXCLUSIVE |
+** RESERVED -> (PENDING) -> EXCLUSIVE |
+** PENDING -> EXCLUSIVE |
+** |
+** flock() only really support EXCLUSIVE locks. We track intermediate |
+** lock states in the sqlite3_file structure, but all locks SHARED or |
+** above are really EXCLUSIVE locks and exclude all other processes from |
+** access the file. |
+** |
+** This routine will only increase a lock. Use the sqlite3OsUnlock() |
+** routine to lower a locking level. |
+*/ |
+static int flockLock(sqlite3_file *id, int eFileLock) { |
+ int rc = SQLITE_OK; |
+ unixFile *pFile = (unixFile*)id; |
+ |
+ assert( pFile ); |
+ |
+ /* if we already have a lock, it is exclusive. |
+ ** Just adjust level and punt on outta here. */ |
+ if (pFile->eFileLock > NO_LOCK) { |
+ pFile->eFileLock = eFileLock; |
+ return SQLITE_OK; |
+ } |
+ |
+ /* grab an exclusive lock */ |
+ |
+ if (robust_flock(pFile->h, LOCK_EX | LOCK_NB)) { |
+ int tErrno = errno; |
+ /* didn't get, must be busy */ |
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); |
+ if( IS_LOCK_ERROR(rc) ){ |
+ pFile->lastErrno = tErrno; |
+ } |
+ } else { |
+ /* got it, set the type and return ok */ |
+ pFile->eFileLock = eFileLock; |
+ } |
+ OSTRACE(("LOCK %d %s %s (flock)\n", pFile->h, azFileLock(eFileLock), |
+ rc==SQLITE_OK ? "ok" : "failed")); |
+#ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS |
+ if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){ |
+ rc = SQLITE_BUSY; |
+ } |
+#endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */ |
+ return rc; |
+} |
+ |
+ |
+/* |
+** Lower the locking level on file descriptor pFile to eFileLock. eFileLock |
+** must be either NO_LOCK or SHARED_LOCK. |
+** |
+** If the locking level of the file descriptor is already at or below |
+** the requested locking level, this routine is a no-op. |
+*/ |
+static int flockUnlock(sqlite3_file *id, int eFileLock) { |
+ unixFile *pFile = (unixFile*)id; |
+ |
+ assert( pFile ); |
+ OSTRACE(("UNLOCK %d %d was %d pid=%d (flock)\n", pFile->h, eFileLock, |
+ pFile->eFileLock, getpid())); |
+ assert( eFileLock<=SHARED_LOCK ); |
+ |
+ /* no-op if possible */ |
+ if( pFile->eFileLock==eFileLock ){ |
+ return SQLITE_OK; |
+ } |
+ |
+ /* shared can just be set because we always have an exclusive */ |
+ if (eFileLock==SHARED_LOCK) { |
+ pFile->eFileLock = eFileLock; |
+ return SQLITE_OK; |
+ } |
+ |
+ /* no, really, unlock. */ |
+ if( robust_flock(pFile->h, LOCK_UN) ){ |
+#ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS |
+ return SQLITE_OK; |
+#endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */ |
+ return SQLITE_IOERR_UNLOCK; |
+ }else{ |
+ pFile->eFileLock = NO_LOCK; |
+ return SQLITE_OK; |
+ } |
+} |
+ |
+/* |
+** Close a file. |
+*/ |
+static int flockClose(sqlite3_file *id) { |
+ int rc = SQLITE_OK; |
+ if( id ){ |
+ flockUnlock(id, NO_LOCK); |
+ rc = closeUnixFile(id); |
+ } |
+ return rc; |
+} |
+ |
+#endif /* SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORK */ |
+ |
+/******************* End of the flock lock implementation ********************* |
+******************************************************************************/ |
+ |
+/****************************************************************************** |
+************************ Begin Named Semaphore Locking ************************ |
+** |
+** Named semaphore locking is only supported on VxWorks. |
+** |
+** Semaphore locking is like dot-lock and flock in that it really only |
+** supports EXCLUSIVE locking. Only a single process can read or write |
+** the database file at a time. This reduces potential concurrency, but |
+** makes the lock implementation much easier. |
+*/ |
+#if OS_VXWORKS |
+ |
+/* |
+** This routine checks if there is a RESERVED lock held on the specified |
+** file by this or any other process. If such a lock is held, set *pResOut |
+** to a non-zero value otherwise *pResOut is set to zero. The return value |
+** is set to SQLITE_OK unless an I/O error occurs during lock checking. |
+*/ |
+static int semCheckReservedLock(sqlite3_file *id, int *pResOut) { |
+ int rc = SQLITE_OK; |
+ int reserved = 0; |
+ unixFile *pFile = (unixFile*)id; |
+ |
+ SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); |
+ |
+ assert( pFile ); |
+ |
+ /* Check if a thread in this process holds such a lock */ |
+ if( pFile->eFileLock>SHARED_LOCK ){ |
+ reserved = 1; |
+ } |
+ |
+ /* Otherwise see if some other process holds it. */ |
+ if( !reserved ){ |
+ sem_t *pSem = pFile->pInode->pSem; |
+ |
+ if( sem_trywait(pSem)==-1 ){ |
+ int tErrno = errno; |
+ if( EAGAIN != tErrno ){ |
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK); |
+ pFile->lastErrno = tErrno; |
+ } else { |
+ /* someone else has the lock when we are in NO_LOCK */ |
+ reserved = (pFile->eFileLock < SHARED_LOCK); |
+ } |
+ }else{ |
+ /* we could have it if we want it */ |
+ sem_post(pSem); |
+ } |
+ } |
+ OSTRACE(("TEST WR-LOCK %d %d %d (sem)\n", pFile->h, rc, reserved)); |
+ |
+ *pResOut = reserved; |
+ return rc; |
+} |
+ |
+/* |
+** Lock the file with the lock specified by parameter eFileLock - one |
+** of the following: |
+** |
+** (1) SHARED_LOCK |
+** (2) RESERVED_LOCK |
+** (3) PENDING_LOCK |
+** (4) EXCLUSIVE_LOCK |
+** |
+** Sometimes when requesting one lock state, additional lock states |
+** are inserted in between. The locking might fail on one of the later |
+** transitions leaving the lock state different from what it started but |
+** still short of its goal. The following chart shows the allowed |
+** transitions and the inserted intermediate states: |
+** |
+** UNLOCKED -> SHARED |
+** SHARED -> RESERVED |
+** SHARED -> (PENDING) -> EXCLUSIVE |
+** RESERVED -> (PENDING) -> EXCLUSIVE |
+** PENDING -> EXCLUSIVE |
+** |
+** Semaphore locks only really support EXCLUSIVE locks. We track intermediate |
+** lock states in the sqlite3_file structure, but all locks SHARED or |
+** above are really EXCLUSIVE locks and exclude all other processes from |
+** access the file. |
+** |
+** This routine will only increase a lock. Use the sqlite3OsUnlock() |
+** routine to lower a locking level. |
+*/ |
+static int semLock(sqlite3_file *id, int eFileLock) { |
+ unixFile *pFile = (unixFile*)id; |
+ sem_t *pSem = pFile->pInode->pSem; |
+ int rc = SQLITE_OK; |
+ |
+ /* if we already have a lock, it is exclusive. |
+ ** Just adjust level and punt on outta here. */ |
+ if (pFile->eFileLock > NO_LOCK) { |
+ pFile->eFileLock = eFileLock; |
+ rc = SQLITE_OK; |
+ goto sem_end_lock; |
+ } |
+ |
+ /* lock semaphore now but bail out when already locked. */ |
+ if( sem_trywait(pSem)==-1 ){ |
+ rc = SQLITE_BUSY; |
+ goto sem_end_lock; |
+ } |
+ |
+ /* got it, set the type and return ok */ |
+ pFile->eFileLock = eFileLock; |
+ |
+ sem_end_lock: |
+ return rc; |
+} |
+ |
+/* |
+** Lower the locking level on file descriptor pFile to eFileLock. eFileLock |
+** must be either NO_LOCK or SHARED_LOCK. |
+** |
+** If the locking level of the file descriptor is already at or below |
+** the requested locking level, this routine is a no-op. |
+*/ |
+static int semUnlock(sqlite3_file *id, int eFileLock) { |
+ unixFile *pFile = (unixFile*)id; |
+ sem_t *pSem = pFile->pInode->pSem; |
+ |
+ assert( pFile ); |
+ assert( pSem ); |
+ OSTRACE(("UNLOCK %d %d was %d pid=%d (sem)\n", pFile->h, eFileLock, |
+ pFile->eFileLock, getpid())); |
+ assert( eFileLock<=SHARED_LOCK ); |
+ |
+ /* no-op if possible */ |
+ if( pFile->eFileLock==eFileLock ){ |
+ return SQLITE_OK; |
+ } |
+ |
+ /* shared can just be set because we always have an exclusive */ |
+ if (eFileLock==SHARED_LOCK) { |
+ pFile->eFileLock = eFileLock; |
+ return SQLITE_OK; |
+ } |
+ |
+ /* no, really unlock. */ |
+ if ( sem_post(pSem)==-1 ) { |
+ int rc, tErrno = errno; |
+ rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); |
+ if( IS_LOCK_ERROR(rc) ){ |
+ pFile->lastErrno = tErrno; |
+ } |
+ return rc; |
+ } |
+ pFile->eFileLock = NO_LOCK; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+ ** Close a file. |
+ */ |
+static int semClose(sqlite3_file *id) { |
+ if( id ){ |
+ unixFile *pFile = (unixFile*)id; |
+ semUnlock(id, NO_LOCK); |
+ assert( pFile ); |
+ unixEnterMutex(); |
+ releaseInodeInfo(pFile); |
+ unixLeaveMutex(); |
+ closeUnixFile(id); |
+ } |
+ return SQLITE_OK; |
+} |
+ |
+#endif /* OS_VXWORKS */ |
+/* |
+** Named semaphore locking is only available on VxWorks. |
+** |
+*************** End of the named semaphore lock implementation **************** |
+******************************************************************************/ |
+ |
+ |
+/****************************************************************************** |
+*************************** Begin AFP Locking ********************************* |
+** |
+** AFP is the Apple Filing Protocol. AFP is a network filesystem found |
+** on Apple Macintosh computers - both OS9 and OSX. |
+** |
+** Third-party implementations of AFP are available. But this code here |
+** only works on OSX. |
+*/ |
+ |
+#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
+/* |
+** The afpLockingContext structure contains all afp lock specific state |
+*/ |
+typedef struct afpLockingContext afpLockingContext; |
+struct afpLockingContext { |
+ int reserved; |
+ const char *dbPath; /* Name of the open file */ |
+}; |
+ |
+struct ByteRangeLockPB2 |
+{ |
+ unsigned long long offset; /* offset to first byte to lock */ |
+ unsigned long long length; /* nbr of bytes to lock */ |
+ unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */ |
+ unsigned char unLockFlag; /* 1 = unlock, 0 = lock */ |
+ unsigned char startEndFlag; /* 1=rel to end of fork, 0=rel to start */ |
+ int fd; /* file desc to assoc this lock with */ |
+}; |
+ |
+#define afpfsByteRangeLock2FSCTL _IOWR('z', 23, struct ByteRangeLockPB2) |
+ |
+/* |
+** This is a utility for setting or clearing a bit-range lock on an |
+** AFP filesystem. |
+** |
+** Return SQLITE_OK on success, SQLITE_BUSY on failure. |
+*/ |
+static int afpSetLock( |
+ const char *path, /* Name of the file to be locked or unlocked */ |
+ unixFile *pFile, /* Open file descriptor on path */ |
+ unsigned long long offset, /* First byte to be locked */ |
+ unsigned long long length, /* Number of bytes to lock */ |
+ int setLockFlag /* True to set lock. False to clear lock */ |
+){ |
+ struct ByteRangeLockPB2 pb; |
+ int err; |
+ |
+ pb.unLockFlag = setLockFlag ? 0 : 1; |
+ pb.startEndFlag = 0; |
+ pb.offset = offset; |
+ pb.length = length; |
+ pb.fd = pFile->h; |
+ |
+ OSTRACE(("AFPSETLOCK [%s] for %d%s in range %llx:%llx\n", |
+ (setLockFlag?"ON":"OFF"), pFile->h, (pb.fd==-1?"[testval-1]":""), |
+ offset, length)); |
+ err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0); |
+ if ( err==-1 ) { |
+ int rc; |
+ int tErrno = errno; |
+ OSTRACE(("AFPSETLOCK failed to fsctl() '%s' %d %s\n", |
+ path, tErrno, strerror(tErrno))); |
+#ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS |
+ rc = SQLITE_BUSY; |
+#else |
+ rc = sqliteErrorFromPosixError(tErrno, |
+ setLockFlag ? SQLITE_IOERR_LOCK : SQLITE_IOERR_UNLOCK); |
+#endif /* SQLITE_IGNORE_AFP_LOCK_ERRORS */ |
+ if( IS_LOCK_ERROR(rc) ){ |
+ pFile->lastErrno = tErrno; |
+ } |
+ return rc; |
+ } else { |
+ return SQLITE_OK; |
+ } |
+} |
+ |
+/* |
+** This routine checks if there is a RESERVED lock held on the specified |
+** file by this or any other process. If such a lock is held, set *pResOut |
+** to a non-zero value otherwise *pResOut is set to zero. The return value |
+** is set to SQLITE_OK unless an I/O error occurs during lock checking. |
+*/ |
+static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){ |
+ int rc = SQLITE_OK; |
+ int reserved = 0; |
+ unixFile *pFile = (unixFile*)id; |
+ afpLockingContext *context; |
+ |
+ SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); |
+ |
+ assert( pFile ); |
+ context = (afpLockingContext *) pFile->lockingContext; |
+ if( context->reserved ){ |
+ *pResOut = 1; |
+ return SQLITE_OK; |
+ } |
+ unixEnterMutex(); /* Because pFile->pInode is shared across threads */ |
+ |
+ /* Check if a thread in this process holds such a lock */ |
+ if( pFile->pInode->eFileLock>SHARED_LOCK ){ |
+ reserved = 1; |
+ } |
+ |
+ /* Otherwise see if some other process holds it. |
+ */ |
+ if( !reserved ){ |
+ /* lock the RESERVED byte */ |
+ int lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1); |
+ if( SQLITE_OK==lrc ){ |
+ /* if we succeeded in taking the reserved lock, unlock it to restore |
+ ** the original state */ |
+ lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0); |
+ } else { |
+ /* if we failed to get the lock then someone else must have it */ |
+ reserved = 1; |
+ } |
+ if( IS_LOCK_ERROR(lrc) ){ |
+ rc=lrc; |
+ } |
+ } |
+ |
+ unixLeaveMutex(); |
+ OSTRACE(("TEST WR-LOCK %d %d %d (afp)\n", pFile->h, rc, reserved)); |
+ |
+ *pResOut = reserved; |
+ return rc; |
+} |
+ |
+/* |
+** Lock the file with the lock specified by parameter eFileLock - one |
+** of the following: |
+** |
+** (1) SHARED_LOCK |
+** (2) RESERVED_LOCK |
+** (3) PENDING_LOCK |
+** (4) EXCLUSIVE_LOCK |
+** |
+** Sometimes when requesting one lock state, additional lock states |
+** are inserted in between. The locking might fail on one of the later |
+** transitions leaving the lock state different from what it started but |
+** still short of its goal. The following chart shows the allowed |
+** transitions and the inserted intermediate states: |
+** |
+** UNLOCKED -> SHARED |
+** SHARED -> RESERVED |
+** SHARED -> (PENDING) -> EXCLUSIVE |
+** RESERVED -> (PENDING) -> EXCLUSIVE |
+** PENDING -> EXCLUSIVE |
+** |
+** This routine will only increase a lock. Use the sqlite3OsUnlock() |
+** routine to lower a locking level. |
+*/ |
+static int afpLock(sqlite3_file *id, int eFileLock){ |
+ int rc = SQLITE_OK; |
+ unixFile *pFile = (unixFile*)id; |
+ unixInodeInfo *pInode = pFile->pInode; |
+ afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; |
+ |
+ assert( pFile ); |
+ OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (afp)\n", pFile->h, |
+ azFileLock(eFileLock), azFileLock(pFile->eFileLock), |
+ azFileLock(pInode->eFileLock), pInode->nShared , getpid())); |
+ |
+ /* If there is already a lock of this type or more restrictive on the |
+ ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as |
+ ** unixEnterMutex() hasn't been called yet. |
+ */ |
+ if( pFile->eFileLock>=eFileLock ){ |
+ OSTRACE(("LOCK %d %s ok (already held) (afp)\n", pFile->h, |
+ azFileLock(eFileLock))); |
+ return SQLITE_OK; |
+ } |
+ |
+ /* Make sure the locking sequence is correct |
+ ** (1) We never move from unlocked to anything higher than shared lock. |
+ ** (2) SQLite never explicitly requests a pendig lock. |
+ ** (3) A shared lock is always held when a reserve lock is requested. |
+ */ |
+ assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK ); |
+ assert( eFileLock!=PENDING_LOCK ); |
+ assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK ); |
+ |
+ /* This mutex is needed because pFile->pInode is shared across threads |
+ */ |
+ unixEnterMutex(); |
+ pInode = pFile->pInode; |
+ |
+ /* If some thread using this PID has a lock via a different unixFile* |
+ ** handle that precludes the requested lock, return BUSY. |
+ */ |
+ if( (pFile->eFileLock!=pInode->eFileLock && |
+ (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK)) |
+ ){ |
+ rc = SQLITE_BUSY; |
+ goto afp_end_lock; |
+ } |
+ |
+ /* If a SHARED lock is requested, and some thread using this PID already |
+ ** has a SHARED or RESERVED lock, then increment reference counts and |
+ ** return SQLITE_OK. |
+ */ |
+ if( eFileLock==SHARED_LOCK && |
+ (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){ |
+ assert( eFileLock==SHARED_LOCK ); |
+ assert( pFile->eFileLock==0 ); |
+ assert( pInode->nShared>0 ); |
+ pFile->eFileLock = SHARED_LOCK; |
+ pInode->nShared++; |
+ pInode->nLock++; |
+ goto afp_end_lock; |
+ } |
+ |
+ /* A PENDING lock is needed before acquiring a SHARED lock and before |
+ ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will |
+ ** be released. |
+ */ |
+ if( eFileLock==SHARED_LOCK |
+ || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK) |
+ ){ |
+ int failed; |
+ failed = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 1); |
+ if (failed) { |
+ rc = failed; |
+ goto afp_end_lock; |
+ } |
+ } |
+ |
+ /* If control gets to this point, then actually go ahead and make |
+ ** operating system calls for the specified lock. |
+ */ |
+ if( eFileLock==SHARED_LOCK ){ |
+ int lrc1, lrc2, lrc1Errno = 0; |
+ long lk, mask; |
+ |
+ assert( pInode->nShared==0 ); |
+ assert( pInode->eFileLock==0 ); |
+ |
+ mask = (sizeof(long)==8) ? LARGEST_INT64 : 0x7fffffff; |
+ /* Now get the read-lock SHARED_LOCK */ |
+ /* note that the quality of the randomness doesn't matter that much */ |
+ lk = random(); |
+ pInode->sharedByte = (lk & mask)%(SHARED_SIZE - 1); |
+ lrc1 = afpSetLock(context->dbPath, pFile, |
+ SHARED_FIRST+pInode->sharedByte, 1, 1); |
+ if( IS_LOCK_ERROR(lrc1) ){ |
+ lrc1Errno = pFile->lastErrno; |
+ } |
+ /* Drop the temporary PENDING lock */ |
+ lrc2 = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0); |
+ |
+ if( IS_LOCK_ERROR(lrc1) ) { |
+ pFile->lastErrno = lrc1Errno; |
+ rc = lrc1; |
+ goto afp_end_lock; |
+ } else if( IS_LOCK_ERROR(lrc2) ){ |
+ rc = lrc2; |
+ goto afp_end_lock; |
+ } else if( lrc1 != SQLITE_OK ) { |
+ rc = lrc1; |
+ } else { |
+ pFile->eFileLock = SHARED_LOCK; |
+ pInode->nLock++; |
+ pInode->nShared = 1; |
+ } |
+ }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){ |
+ /* We are trying for an exclusive lock but another thread in this |
+ ** same process is still holding a shared lock. */ |
+ rc = SQLITE_BUSY; |
+ }else{ |
+ /* The request was for a RESERVED or EXCLUSIVE lock. It is |
+ ** assumed that there is a SHARED or greater lock on the file |
+ ** already. |
+ */ |
+ int failed = 0; |
+ assert( 0!=pFile->eFileLock ); |
+ if (eFileLock >= RESERVED_LOCK && pFile->eFileLock < RESERVED_LOCK) { |
+ /* Acquire a RESERVED lock */ |
+ failed = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1); |
+ if( !failed ){ |
+ context->reserved = 1; |
+ } |
+ } |
+ if (!failed && eFileLock == EXCLUSIVE_LOCK) { |
+ /* Acquire an EXCLUSIVE lock */ |
+ |
+ /* Remove the shared lock before trying the range. we'll need to |
+ ** reestablish the shared lock if we can't get the afpUnlock |
+ */ |
+ if( !(failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST + |
+ pInode->sharedByte, 1, 0)) ){ |
+ int failed2 = SQLITE_OK; |
+ /* now attemmpt to get the exclusive lock range */ |
+ failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST, |
+ SHARED_SIZE, 1); |
+ if( failed && (failed2 = afpSetLock(context->dbPath, pFile, |
+ SHARED_FIRST + pInode->sharedByte, 1, 1)) ){ |
+ /* Can't reestablish the shared lock. Sqlite can't deal, this is |
+ ** a critical I/O error |
+ */ |
+ rc = ((failed & SQLITE_IOERR) == SQLITE_IOERR) ? failed2 : |
+ SQLITE_IOERR_LOCK; |
+ goto afp_end_lock; |
+ } |
+ }else{ |
+ rc = failed; |
+ } |
+ } |
+ if( failed ){ |
+ rc = failed; |
+ } |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ pFile->eFileLock = eFileLock; |
+ pInode->eFileLock = eFileLock; |
+ }else if( eFileLock==EXCLUSIVE_LOCK ){ |
+ pFile->eFileLock = PENDING_LOCK; |
+ pInode->eFileLock = PENDING_LOCK; |
+ } |
+ |
+afp_end_lock: |
+ unixLeaveMutex(); |
+ OSTRACE(("LOCK %d %s %s (afp)\n", pFile->h, azFileLock(eFileLock), |
+ rc==SQLITE_OK ? "ok" : "failed")); |
+ return rc; |
+} |
+ |
+/* |
+** Lower the locking level on file descriptor pFile to eFileLock. eFileLock |
+** must be either NO_LOCK or SHARED_LOCK. |
+** |
+** If the locking level of the file descriptor is already at or below |
+** the requested locking level, this routine is a no-op. |
+*/ |
+static int afpUnlock(sqlite3_file *id, int eFileLock) { |
+ int rc = SQLITE_OK; |
+ unixFile *pFile = (unixFile*)id; |
+ unixInodeInfo *pInode; |
+ afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; |
+ int skipShared = 0; |
+#ifdef SQLITE_TEST |
+ int h = pFile->h; |
+#endif |
+ |
+ assert( pFile ); |
+ OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (afp)\n", pFile->h, eFileLock, |
+ pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared, |
+ getpid())); |
+ |
+ assert( eFileLock<=SHARED_LOCK ); |
+ if( pFile->eFileLock<=eFileLock ){ |
+ return SQLITE_OK; |
+ } |
+ unixEnterMutex(); |
+ pInode = pFile->pInode; |
+ assert( pInode->nShared!=0 ); |
+ if( pFile->eFileLock>SHARED_LOCK ){ |
+ assert( pInode->eFileLock==pFile->eFileLock ); |
+ SimulateIOErrorBenign(1); |
+ SimulateIOError( h=(-1) ) |
+ SimulateIOErrorBenign(0); |
+ |
+#ifdef SQLITE_DEBUG |
+ /* When reducing a lock such that other processes can start |
+ ** reading the database file again, make sure that the |
+ ** transaction counter was updated if any part of the database |
+ ** file changed. If the transaction counter is not updated, |
+ ** other connections to the same file might not realize that |
+ ** the file has changed and hence might not know to flush their |
+ ** cache. The use of a stale cache can lead to database corruption. |
+ */ |
+ assert( pFile->inNormalWrite==0 |
+ || pFile->dbUpdate==0 |
+ || pFile->transCntrChng==1 ); |
+ pFile->inNormalWrite = 0; |
+#endif |
+ |
+ if( pFile->eFileLock==EXCLUSIVE_LOCK ){ |
+ rc = afpSetLock(context->dbPath, pFile, SHARED_FIRST, SHARED_SIZE, 0); |
+ if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1) ){ |
+ /* only re-establish the shared lock if necessary */ |
+ int sharedLockByte = SHARED_FIRST+pInode->sharedByte; |
+ rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 1); |
+ } else { |
+ skipShared = 1; |
+ } |
+ } |
+ if( rc==SQLITE_OK && pFile->eFileLock>=PENDING_LOCK ){ |
+ rc = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0); |
+ } |
+ if( rc==SQLITE_OK && pFile->eFileLock>=RESERVED_LOCK && context->reserved ){ |
+ rc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0); |
+ if( !rc ){ |
+ context->reserved = 0; |
+ } |
+ } |
+ if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1)){ |
+ pInode->eFileLock = SHARED_LOCK; |
+ } |
+ } |
+ if( rc==SQLITE_OK && eFileLock==NO_LOCK ){ |
+ |
+ /* Decrement the shared lock counter. Release the lock using an |
+ ** OS call only when all threads in this same process have released |
+ ** the lock. |
+ */ |
+ unsigned long long sharedLockByte = SHARED_FIRST+pInode->sharedByte; |
+ pInode->nShared--; |
+ if( pInode->nShared==0 ){ |
+ SimulateIOErrorBenign(1); |
+ SimulateIOError( h=(-1) ) |
+ SimulateIOErrorBenign(0); |
+ if( !skipShared ){ |
+ rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 0); |
+ } |
+ if( !rc ){ |
+ pInode->eFileLock = NO_LOCK; |
+ pFile->eFileLock = NO_LOCK; |
+ } |
+ } |
+ if( rc==SQLITE_OK ){ |
+ pInode->nLock--; |
+ assert( pInode->nLock>=0 ); |
+ if( pInode->nLock==0 ){ |
+ closePendingFds(pFile); |
+ } |
+ } |
+ } |
+ |
+ unixLeaveMutex(); |
+ if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock; |
+ return rc; |
+} |
+ |
+/* |
+** Close a file & cleanup AFP specific locking context |
+*/ |
+static int afpClose(sqlite3_file *id) { |
+ int rc = SQLITE_OK; |
+ if( id ){ |
+ unixFile *pFile = (unixFile*)id; |
+ afpUnlock(id, NO_LOCK); |
+ unixEnterMutex(); |
+ if( pFile->pInode && pFile->pInode->nLock ){ |
+ /* If there are outstanding locks, do not actually close the file just |
+ ** yet because that would clear those locks. Instead, add the file |
+ ** descriptor to pInode->aPending. It will be automatically closed when |
+ ** the last lock is cleared. |
+ */ |
+ setPendingFd(pFile); |
+ } |
+ releaseInodeInfo(pFile); |
+ sqlite3_free(pFile->lockingContext); |
+ rc = closeUnixFile(id); |
+ unixLeaveMutex(); |
+ } |
+ return rc; |
+} |
+ |
+#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ |
+/* |
+** The code above is the AFP lock implementation. The code is specific |
+** to MacOSX and does not work on other unix platforms. No alternative |
+** is available. If you don't compile for a mac, then the "unix-afp" |
+** VFS is not available. |
+** |
+********************* End of the AFP lock implementation ********************** |
+******************************************************************************/ |
+ |
+/****************************************************************************** |
+*************************** Begin NFS Locking ********************************/ |
+ |
+#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
+/* |
+ ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock |
+ ** must be either NO_LOCK or SHARED_LOCK. |
+ ** |
+ ** If the locking level of the file descriptor is already at or below |
+ ** the requested locking level, this routine is a no-op. |
+ */ |
+static int nfsUnlock(sqlite3_file *id, int eFileLock){ |
+ return posixUnlock(id, eFileLock, 1); |
+} |
+ |
+#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ |
+/* |
+** The code above is the NFS lock implementation. The code is specific |
+** to MacOSX and does not work on other unix platforms. No alternative |
+** is available. |
+** |
+********************* End of the NFS lock implementation ********************** |
+******************************************************************************/ |
+ |
+/****************************************************************************** |
+**************** Non-locking sqlite3_file methods ***************************** |
+** |
+** The next division contains implementations for all methods of the |
+** sqlite3_file object other than the locking methods. The locking |
+** methods were defined in divisions above (one locking method per |
+** division). Those methods that are common to all locking modes |
+** are gather together into this division. |
+*/ |
+ |
+/* |
+** Seek to the offset passed as the second argument, then read cnt |
+** bytes into pBuf. Return the number of bytes actually read. |
+** |
+** NB: If you define USE_PREAD or USE_PREAD64, then it might also |
+** be necessary to define _XOPEN_SOURCE to be 500. This varies from |
+** one system to another. Since SQLite does not define USE_PREAD |
+** in any form by default, we will not attempt to define _XOPEN_SOURCE. |
+** See tickets #2741 and #2681. |
+** |
+** To avoid stomping the errno value on a failed read the lastErrno value |
+** is set before returning. |
+*/ |
+static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){ |
+ int got; |
+ int prior = 0; |
+#if (!defined(USE_PREAD) && !defined(USE_PREAD64)) |
+ i64 newOffset; |
+#endif |
+ TIMER_START; |
+ assert( cnt==(cnt&0x1ffff) ); |
+ assert( id->h>2 ); |
+ cnt &= 0x1ffff; |
+ do{ |
+#if defined(USE_PREAD) |
+ got = osPread(id->h, pBuf, cnt, offset); |
+ SimulateIOError( got = -1 ); |
+#elif defined(USE_PREAD64) |
+ got = osPread64(id->h, pBuf, cnt, offset); |
+ SimulateIOError( got = -1 ); |
+#else |
+ newOffset = lseek(id->h, offset, SEEK_SET); |
+ SimulateIOError( newOffset-- ); |
+ if( newOffset!=offset ){ |
+ if( newOffset == -1 ){ |
+ ((unixFile*)id)->lastErrno = errno; |
+ }else{ |
+ ((unixFile*)id)->lastErrno = 0; |
+ } |
+ return -1; |
+ } |
+ got = osRead(id->h, pBuf, cnt); |
+#endif |
+ if( got==cnt ) break; |
+ if( got<0 ){ |
+ if( errno==EINTR ){ got = 1; continue; } |
+ prior = 0; |
+ ((unixFile*)id)->lastErrno = errno; |
+ break; |
+ }else if( got>0 ){ |
+ cnt -= got; |
+ offset += got; |
+ prior += got; |
+ pBuf = (void*)(got + (char*)pBuf); |
+ } |
+ }while( got>0 ); |
+ TIMER_END; |
+ OSTRACE(("READ %-3d %5d %7lld %llu\n", |
+ id->h, got+prior, offset-prior, TIMER_ELAPSED)); |
+ return got+prior; |
+} |
+ |
+/* |
+** Read data from a file into a buffer. Return SQLITE_OK if all |
+** bytes were read successfully and SQLITE_IOERR if anything goes |
+** wrong. |
+*/ |
+static int unixRead( |
+ sqlite3_file *id, |
+ void *pBuf, |
+ int amt, |
+ sqlite3_int64 offset |
+){ |
+ unixFile *pFile = (unixFile *)id; |
+ int got; |
+ assert( id ); |
+ assert( offset>=0 ); |
+ assert( amt>0 ); |
+ |
+ /* If this is a database file (not a journal, master-journal or temp |
+ ** file), the bytes in the locking range should never be read or written. */ |
+#if 0 |
+ assert( pFile->pUnused==0 |
+ || offset>=PENDING_BYTE+512 |
+ || offset+amt<=PENDING_BYTE |
+ ); |
+#endif |
+ |
+#if SQLITE_MAX_MMAP_SIZE>0 |
+ /* Deal with as much of this read request as possible by transfering |
+ ** data from the memory mapping using memcpy(). */ |
+ if( offset<pFile->mmapSize ){ |
+ if( offset+amt <= pFile->mmapSize ){ |
+ memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], amt); |
+ return SQLITE_OK; |
+ }else{ |
+ int nCopy = pFile->mmapSize - offset; |
+ memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], nCopy); |
+ pBuf = &((u8 *)pBuf)[nCopy]; |
+ amt -= nCopy; |
+ offset += nCopy; |
+ } |
+ } |
+#endif |
+ |
+ got = seekAndRead(pFile, offset, pBuf, amt); |
+ if( got==amt ){ |
+ return SQLITE_OK; |
+ }else if( got<0 ){ |
+ /* lastErrno set by seekAndRead */ |
+ return SQLITE_IOERR_READ; |
+ }else{ |
+ pFile->lastErrno = 0; /* not a system error */ |
+ /* Unread parts of the buffer must be zero-filled */ |
+ memset(&((char*)pBuf)[got], 0, amt-got); |
+ return SQLITE_IOERR_SHORT_READ; |
+ } |
+} |
+ |
+/* |
+** Attempt to seek the file-descriptor passed as the first argument to |
+** absolute offset iOff, then attempt to write nBuf bytes of data from |
+** pBuf to it. If an error occurs, return -1 and set *piErrno. Otherwise, |
+** return the actual number of bytes written (which may be less than |
+** nBuf). |
+*/ |
+static int seekAndWriteFd( |
+ int fd, /* File descriptor to write to */ |
+ i64 iOff, /* File offset to begin writing at */ |
+ const void *pBuf, /* Copy data from this buffer to the file */ |
+ int nBuf, /* Size of buffer pBuf in bytes */ |
+ int *piErrno /* OUT: Error number if error occurs */ |
+){ |
+ int rc = 0; /* Value returned by system call */ |
+ |
+ assert( nBuf==(nBuf&0x1ffff) ); |
+ assert( fd>2 ); |
+ nBuf &= 0x1ffff; |
+ TIMER_START; |
+ |
+#if defined(USE_PREAD) |
+ do{ rc = osPwrite(fd, pBuf, nBuf, iOff); }while( rc<0 && errno==EINTR ); |
+#elif defined(USE_PREAD64) |
+ do{ rc = osPwrite64(fd, pBuf, nBuf, iOff);}while( rc<0 && errno==EINTR); |
+#else |
+ do{ |
+ i64 iSeek = lseek(fd, iOff, SEEK_SET); |
+ SimulateIOError( iSeek-- ); |
+ |
+ if( iSeek!=iOff ){ |
+ if( piErrno ) *piErrno = (iSeek==-1 ? errno : 0); |
+ return -1; |
+ } |
+ rc = osWrite(fd, pBuf, nBuf); |
+ }while( rc<0 && errno==EINTR ); |
+#endif |
+ |
+ TIMER_END; |
+ OSTRACE(("WRITE %-3d %5d %7lld %llu\n", fd, rc, iOff, TIMER_ELAPSED)); |
+ |
+ if( rc<0 && piErrno ) *piErrno = errno; |
+ return rc; |
+} |
+ |
+ |
+/* |
+** Seek to the offset in id->offset then read cnt bytes into pBuf. |
+** Return the number of bytes actually read. Update the offset. |
+** |
+** To avoid stomping the errno value on a failed write the lastErrno value |
+** is set before returning. |
+*/ |
+static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){ |
+ return seekAndWriteFd(id->h, offset, pBuf, cnt, &id->lastErrno); |
+} |
+ |
+ |
+/* |
+** Write data from a buffer into a file. Return SQLITE_OK on success |
+** or some other error code on failure. |
+*/ |
+static int unixWrite( |
+ sqlite3_file *id, |
+ const void *pBuf, |
+ int amt, |
+ sqlite3_int64 offset |
+){ |
+ unixFile *pFile = (unixFile*)id; |
+ int wrote = 0; |
+ assert( id ); |
+ assert( amt>0 ); |
+ |
+ /* If this is a database file (not a journal, master-journal or temp |
+ ** file), the bytes in the locking range should never be read or written. */ |
+#if 0 |
+ assert( pFile->pUnused==0 |
+ || offset>=PENDING_BYTE+512 |
+ || offset+amt<=PENDING_BYTE |
+ ); |
+#endif |
+ |
+#ifdef SQLITE_DEBUG |
+ /* If we are doing a normal write to a database file (as opposed to |
+ ** doing a hot-journal rollback or a write to some file other than a |
+ ** normal database file) then record the fact that the database |
+ ** has changed. If the transaction counter is modified, record that |
+ ** fact too. |
+ */ |
+ if( pFile->inNormalWrite ){ |
+ pFile->dbUpdate = 1; /* The database has been modified */ |
+ if( offset<=24 && offset+amt>=27 ){ |
+ int rc; |
+ char oldCntr[4]; |
+ SimulateIOErrorBenign(1); |
+ rc = seekAndRead(pFile, 24, oldCntr, 4); |
+ SimulateIOErrorBenign(0); |
+ if( rc!=4 || memcmp(oldCntr, &((char*)pBuf)[24-offset], 4)!=0 ){ |
+ pFile->transCntrChng = 1; /* The transaction counter has changed */ |
+ } |
+ } |
+ } |
+#endif |
+ |
+#if SQLITE_MAX_MMAP_SIZE>0 |
+ /* Deal with as much of this write request as possible by transfering |
+ ** data from the memory mapping using memcpy(). */ |
+ if( offset<pFile->mmapSize ){ |
+ if( offset+amt <= pFile->mmapSize ){ |
+ memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, amt); |
+ return SQLITE_OK; |
+ }else{ |
+ int nCopy = pFile->mmapSize - offset; |
+ memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, nCopy); |
+ pBuf = &((u8 *)pBuf)[nCopy]; |
+ amt -= nCopy; |
+ offset += nCopy; |
+ } |
+ } |
+#endif |
+ |
+ while( amt>0 && (wrote = seekAndWrite(pFile, offset, pBuf, amt))>0 ){ |
+ amt -= wrote; |
+ offset += wrote; |
+ pBuf = &((char*)pBuf)[wrote]; |
+ } |
+ SimulateIOError(( wrote=(-1), amt=1 )); |
+ SimulateDiskfullError(( wrote=0, amt=1 )); |
+ |
+ if( amt>0 ){ |
+ if( wrote<0 && pFile->lastErrno!=ENOSPC ){ |
+ /* lastErrno set by seekAndWrite */ |
+ return SQLITE_IOERR_WRITE; |
+ }else{ |
+ pFile->lastErrno = 0; /* not a system error */ |
+ return SQLITE_FULL; |
+ } |
+ } |
+ |
+ return SQLITE_OK; |
+} |
+ |
+#ifdef SQLITE_TEST |
+/* |
+** Count the number of fullsyncs and normal syncs. This is used to test |
+** that syncs and fullsyncs are occurring at the right times. |
+*/ |
+int sqlite3_sync_count = 0; |
+int sqlite3_fullsync_count = 0; |
+#endif |
+ |
+/* |
+** We do not trust systems to provide a working fdatasync(). Some do. |
+** Others do no. To be safe, we will stick with the (slightly slower) |
+** fsync(). If you know that your system does support fdatasync() correctly, |
+** then simply compile with -Dfdatasync=fdatasync |
+*/ |
+#if !defined(fdatasync) |
+# define fdatasync fsync |
+#endif |
+ |
+/* |
+** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not |
+** the F_FULLFSYNC macro is defined. F_FULLFSYNC is currently |
+** only available on Mac OS X. But that could change. |
+*/ |
+#ifdef F_FULLFSYNC |
+# define HAVE_FULLFSYNC 1 |
+#else |
+# define HAVE_FULLFSYNC 0 |
+#endif |
+ |
+ |
+/* |
+** The fsync() system call does not work as advertised on many |
+** unix systems. The following procedure is an attempt to make |
+** it work better. |
+** |
+** The SQLITE_NO_SYNC macro disables all fsync()s. This is useful |
+** for testing when we want to run through the test suite quickly. |
+** You are strongly advised *not* to deploy with SQLITE_NO_SYNC |
+** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash |
+** or power failure will likely corrupt the database file. |
+** |
+** SQLite sets the dataOnly flag if the size of the file is unchanged. |
+** The idea behind dataOnly is that it should only write the file content |
+** to disk, not the inode. We only set dataOnly if the file size is |
+** unchanged since the file size is part of the inode. However, |
+** Ted Ts'o tells us that fdatasync() will also write the inode if the |
+** file size has changed. The only real difference between fdatasync() |
+** and fsync(), Ted tells us, is that fdatasync() will not flush the |
+** inode if the mtime or owner or other inode attributes have changed. |
+** We only care about the file size, not the other file attributes, so |
+** as far as SQLite is concerned, an fdatasync() is always adequate. |
+** So, we always use fdatasync() if it is available, regardless of |
+** the value of the dataOnly flag. |
+*/ |
+static int full_fsync(int fd, int fullSync, int dataOnly){ |
+ int rc; |
+ |
+ /* The following "ifdef/elif/else/" block has the same structure as |
+ ** the one below. It is replicated here solely to avoid cluttering |
+ ** up the real code with the UNUSED_PARAMETER() macros. |
+ */ |
+#ifdef SQLITE_NO_SYNC |
+ UNUSED_PARAMETER(fd); |
+ UNUSED_PARAMETER(fullSync); |
+ UNUSED_PARAMETER(dataOnly); |
+#elif HAVE_FULLFSYNC |
+ UNUSED_PARAMETER(dataOnly); |
+#else |
+ UNUSED_PARAMETER(fullSync); |
+ UNUSED_PARAMETER(dataOnly); |
+#endif |
+ |
+ /* Record the number of times that we do a normal fsync() and |
+ ** FULLSYNC. This is used during testing to verify that this procedure |
+ ** gets called with the correct arguments. |
+ */ |
+#ifdef SQLITE_TEST |
+ if( fullSync ) sqlite3_fullsync_count++; |
+ sqlite3_sync_count++; |
+#endif |
+ |
+ /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a |
+ ** no-op |
+ */ |
+#ifdef SQLITE_NO_SYNC |
+ rc = SQLITE_OK; |
+#elif HAVE_FULLFSYNC |
+ if( fullSync ){ |
+ rc = osFcntl(fd, F_FULLFSYNC, 0); |
+ }else{ |
+ rc = 1; |
+ } |
+ /* If the FULLFSYNC failed, fall back to attempting an fsync(). |
+ ** It shouldn't be possible for fullfsync to fail on the local |
+ ** file system (on OSX), so failure indicates that FULLFSYNC |
+ ** isn't supported for this file system. So, attempt an fsync |
+ ** and (for now) ignore the overhead of a superfluous fcntl call. |
+ ** It'd be better to detect fullfsync support once and avoid |
+ ** the fcntl call every time sync is called. |
+ */ |
+ if( rc ) rc = fsync(fd); |
+ |
+#elif defined(__APPLE__) |
+ /* fdatasync() on HFS+ doesn't yet flush the file size if it changed correctly |
+ ** so currently we default to the macro that redefines fdatasync to fsync |
+ */ |
+ rc = fsync(fd); |
+#else |
+ rc = fdatasync(fd); |
+#if OS_VXWORKS |
+ if( rc==-1 && errno==ENOTSUP ){ |
+ rc = fsync(fd); |
+ } |
+#endif /* OS_VXWORKS */ |
+#endif /* ifdef SQLITE_NO_SYNC elif HAVE_FULLFSYNC */ |
+ |
+ if( OS_VXWORKS && rc!= -1 ){ |
+ rc = 0; |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Open a file descriptor to the directory containing file zFilename. |
+** If successful, *pFd is set to the opened file descriptor and |
+** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM |
+** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined |
+** value. |
+** |
+** The directory file descriptor is used for only one thing - to |
+** fsync() a directory to make sure file creation and deletion events |
+** are flushed to disk. Such fsyncs are not needed on newer |
+** journaling filesystems, but are required on older filesystems. |
+** |
+** This routine can be overridden using the xSetSysCall interface. |
+** The ability to override this routine was added in support of the |
+** chromium sandbox. Opening a directory is a security risk (we are |
+** told) so making it overrideable allows the chromium sandbox to |
+** replace this routine with a harmless no-op. To make this routine |
+** a no-op, replace it with a stub that returns SQLITE_OK but leaves |
+** *pFd set to a negative number. |
+** |
+** If SQLITE_OK is returned, the caller is responsible for closing |
+** the file descriptor *pFd using close(). |
+*/ |
+static int openDirectory(const char *zFilename, int *pFd){ |
+ int ii; |
+ int fd = -1; |
+ char zDirname[MAX_PATHNAME+1]; |
+ |
+ sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename); |
+ for(ii=(int)strlen(zDirname); ii>1 && zDirname[ii]!='/'; ii--); |
+ if( ii>0 ){ |
+ zDirname[ii] = '\0'; |
+ fd = robust_open(zDirname, O_RDONLY|O_BINARY, 0); |
+ if( fd>=0 ){ |
+ OSTRACE(("OPENDIR %-3d %s\n", fd, zDirname)); |
+ } |
+ } |
+ *pFd = fd; |
+ return (fd>=0?SQLITE_OK:unixLogError(SQLITE_CANTOPEN_BKPT, "open", zDirname)); |
+} |
+ |
+/* |
+** Make sure all writes to a particular file are committed to disk. |
+** |
+** If dataOnly==0 then both the file itself and its metadata (file |
+** size, access time, etc) are synced. If dataOnly!=0 then only the |
+** file data is synced. |
+** |
+** Under Unix, also make sure that the directory entry for the file |
+** has been created by fsync-ing the directory that contains the file. |
+** If we do not do this and we encounter a power failure, the directory |
+** entry for the journal might not exist after we reboot. The next |
+** SQLite to access the file will not know that the journal exists (because |
+** the directory entry for the journal was never created) and the transaction |
+** will not roll back - possibly leading to database corruption. |
+*/ |
+static int unixSync(sqlite3_file *id, int flags){ |
+ int rc; |
+ unixFile *pFile = (unixFile*)id; |
+ |
+ int isDataOnly = (flags&SQLITE_SYNC_DATAONLY); |
+ int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL; |
+ |
+ /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */ |
+ assert((flags&0x0F)==SQLITE_SYNC_NORMAL |
+ || (flags&0x0F)==SQLITE_SYNC_FULL |
+ ); |
+ |
+ /* Unix cannot, but some systems may return SQLITE_FULL from here. This |
+ ** line is to test that doing so does not cause any problems. |
+ */ |
+ SimulateDiskfullError( return SQLITE_FULL ); |
+ |
+ assert( pFile ); |
+ OSTRACE(("SYNC %-3d\n", pFile->h)); |
+ rc = full_fsync(pFile->h, isFullsync, isDataOnly); |
+ SimulateIOError( rc=1 ); |
+ if( rc ){ |
+ pFile->lastErrno = errno; |
+ return unixLogError(SQLITE_IOERR_FSYNC, "full_fsync", pFile->zPath); |
+ } |
+ |
+ /* Also fsync the directory containing the file if the DIRSYNC flag |
+ ** is set. This is a one-time occurrence. Many systems (examples: AIX) |
+ ** are unable to fsync a directory, so ignore errors on the fsync. |
+ */ |
+ if( pFile->ctrlFlags & UNIXFILE_DIRSYNC ){ |
+ int dirfd; |
+ OSTRACE(("DIRSYNC %s (have_fullfsync=%d fullsync=%d)\n", pFile->zPath, |
+ HAVE_FULLFSYNC, isFullsync)); |
+ rc = osOpenDirectory(pFile->zPath, &dirfd); |
+ if( rc==SQLITE_OK && dirfd>=0 ){ |
+ full_fsync(dirfd, 0, 0); |
+ robust_close(pFile, dirfd, __LINE__); |
+ }else if( rc==SQLITE_CANTOPEN ){ |
+ rc = SQLITE_OK; |
+ } |
+ pFile->ctrlFlags &= ~UNIXFILE_DIRSYNC; |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Truncate an open file to a specified size |
+*/ |
+static int unixTruncate(sqlite3_file *id, i64 nByte){ |
+ unixFile *pFile = (unixFile *)id; |
+ int rc; |
+ assert( pFile ); |
+ SimulateIOError( return SQLITE_IOERR_TRUNCATE ); |
+ |
+ /* If the user has configured a chunk-size for this file, truncate the |
+ ** file so that it consists of an integer number of chunks (i.e. the |
+ ** actual file size after the operation may be larger than the requested |
+ ** size). |
+ */ |
+ if( pFile->szChunk>0 ){ |
+ nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk; |
+ } |
+ |
+ rc = robust_ftruncate(pFile->h, nByte); |
+ if( rc ){ |
+ pFile->lastErrno = errno; |
+ return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath); |
+ }else{ |
+#ifdef SQLITE_DEBUG |
+ /* If we are doing a normal write to a database file (as opposed to |
+ ** doing a hot-journal rollback or a write to some file other than a |
+ ** normal database file) and we truncate the file to zero length, |
+ ** that effectively updates the change counter. This might happen |
+ ** when restoring a database using the backup API from a zero-length |
+ ** source. |
+ */ |
+ if( pFile->inNormalWrite && nByte==0 ){ |
+ pFile->transCntrChng = 1; |
+ } |
+#endif |
+ |
+#if SQLITE_MAX_MMAP_SIZE>0 |
+ /* If the file was just truncated to a size smaller than the currently |
+ ** mapped region, reduce the effective mapping size as well. SQLite will |
+ ** use read() and write() to access data beyond this point from now on. |
+ */ |
+ if( nByte<pFile->mmapSize ){ |
+ pFile->mmapSize = nByte; |
+ } |
+#endif |
+ |
+ return SQLITE_OK; |
+ } |
+} |
+ |
+/* |
+** Determine the current size of a file in bytes |
+*/ |
+static int unixFileSize(sqlite3_file *id, i64 *pSize){ |
+ int rc; |
+ struct stat buf; |
+ assert( id ); |
+ rc = osFstat(((unixFile*)id)->h, &buf); |
+ SimulateIOError( rc=1 ); |
+ if( rc!=0 ){ |
+ ((unixFile*)id)->lastErrno = errno; |
+ return SQLITE_IOERR_FSTAT; |
+ } |
+ *pSize = buf.st_size; |
+ |
+ /* When opening a zero-size database, the findInodeInfo() procedure |
+ ** writes a single byte into that file in order to work around a bug |
+ ** in the OS-X msdos filesystem. In order to avoid problems with upper |
+ ** layers, we need to report this file size as zero even though it is |
+ ** really 1. Ticket #3260. |
+ */ |
+ if( *pSize==1 ) *pSize = 0; |
+ |
+ |
+ return SQLITE_OK; |
+} |
+ |
+#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) |
+/* |
+** Handler for proxy-locking file-control verbs. Defined below in the |
+** proxying locking division. |
+*/ |
+static int proxyFileControl(sqlite3_file*,int,void*); |
+#endif |
+ |
+/* |
+** This function is called to handle the SQLITE_FCNTL_SIZE_HINT |
+** file-control operation. Enlarge the database to nBytes in size |
+** (rounded up to the next chunk-size). If the database is already |
+** nBytes or larger, this routine is a no-op. |
+*/ |
+static int fcntlSizeHint(unixFile *pFile, i64 nByte){ |
+ if( pFile->szChunk>0 ){ |
+ i64 nSize; /* Required file size */ |
+ struct stat buf; /* Used to hold return values of fstat() */ |
+ |
+ if( osFstat(pFile->h, &buf) ) return SQLITE_IOERR_FSTAT; |
+ |
+ nSize = ((nByte+pFile->szChunk-1) / pFile->szChunk) * pFile->szChunk; |
+ if( nSize>(i64)buf.st_size ){ |
+ |
+#if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE |
+ /* The code below is handling the return value of osFallocate() |
+ ** correctly. posix_fallocate() is defined to "returns zero on success, |
+ ** or an error number on failure". See the manpage for details. */ |
+ int err; |
+ do{ |
+ err = osFallocate(pFile->h, buf.st_size, nSize-buf.st_size); |
+ }while( err==EINTR ); |
+ if( err ) return SQLITE_IOERR_WRITE; |
+#else |
+ /* If the OS does not have posix_fallocate(), fake it. First use |
+ ** ftruncate() to set the file size, then write a single byte to |
+ ** the last byte in each block within the extended region. This |
+ ** is the same technique used by glibc to implement posix_fallocate() |
+ ** on systems that do not have a real fallocate() system call. |
+ */ |
+ int nBlk = buf.st_blksize; /* File-system block size */ |
+ i64 iWrite; /* Next offset to write to */ |
+ |
+ if( robust_ftruncate(pFile->h, nSize) ){ |
+ pFile->lastErrno = errno; |
+ return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath); |
+ } |
+ iWrite = ((buf.st_size + 2*nBlk - 1)/nBlk)*nBlk-1; |
+ while( iWrite<nSize ){ |
+ int nWrite = seekAndWrite(pFile, iWrite, "", 1); |
+ if( nWrite!=1 ) return SQLITE_IOERR_WRITE; |
+ iWrite += nBlk; |
+ } |
+#endif |
+ } |
+ } |
+ |
+#if SQLITE_MAX_MMAP_SIZE>0 |
+ if( pFile->mmapSizeMax>0 && nByte>pFile->mmapSize ){ |
+ int rc; |
+ if( pFile->szChunk<=0 ){ |
+ if( robust_ftruncate(pFile->h, nByte) ){ |
+ pFile->lastErrno = errno; |
+ return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath); |
+ } |
+ } |
+ |
+ rc = unixMapfile(pFile, nByte); |
+ return rc; |
+ } |
+#endif |
+ |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** If *pArg is initially negative then this is a query. Set *pArg to |
+** 1 or 0 depending on whether or not bit mask of pFile->ctrlFlags is set. |
+** |
+** If *pArg is 0 or 1, then clear or set the mask bit of pFile->ctrlFlags. |
+*/ |
+static void unixModeBit(unixFile *pFile, unsigned char mask, int *pArg){ |
+ if( *pArg<0 ){ |
+ *pArg = (pFile->ctrlFlags & mask)!=0; |
+ }else if( (*pArg)==0 ){ |
+ pFile->ctrlFlags &= ~mask; |
+ }else{ |
+ pFile->ctrlFlags |= mask; |
+ } |
+} |
+ |
+/* Forward declaration */ |
+static int unixGetTempname(int nBuf, char *zBuf); |
+ |
+/* |
+** Information and control of an open file handle. |
+*/ |
+static int unixFileControl(sqlite3_file *id, int op, void *pArg){ |
+ unixFile *pFile = (unixFile*)id; |
+ switch( op ){ |
+ case SQLITE_FCNTL_LOCKSTATE: { |
+ *(int*)pArg = pFile->eFileLock; |
+ return SQLITE_OK; |
+ } |
+ case SQLITE_LAST_ERRNO: { |
+ *(int*)pArg = pFile->lastErrno; |
+ return SQLITE_OK; |
+ } |
+ case SQLITE_FCNTL_CHUNK_SIZE: { |
+ pFile->szChunk = *(int *)pArg; |
+ return SQLITE_OK; |
+ } |
+ case SQLITE_FCNTL_SIZE_HINT: { |
+ int rc; |
+ SimulateIOErrorBenign(1); |
+ rc = fcntlSizeHint(pFile, *(i64 *)pArg); |
+ SimulateIOErrorBenign(0); |
+ return rc; |
+ } |
+ case SQLITE_FCNTL_PERSIST_WAL: { |
+ unixModeBit(pFile, UNIXFILE_PERSIST_WAL, (int*)pArg); |
+ return SQLITE_OK; |
+ } |
+ case SQLITE_FCNTL_POWERSAFE_OVERWRITE: { |
+ unixModeBit(pFile, UNIXFILE_PSOW, (int*)pArg); |
+ return SQLITE_OK; |
+ } |
+ case SQLITE_FCNTL_VFSNAME: { |
+ *(char**)pArg = sqlite3_mprintf("%s", pFile->pVfs->zName); |
+ return SQLITE_OK; |
+ } |
+ case SQLITE_FCNTL_TEMPFILENAME: { |
+ char *zTFile = sqlite3_malloc( pFile->pVfs->mxPathname ); |
+ if( zTFile ){ |
+ unixGetTempname(pFile->pVfs->mxPathname, zTFile); |
+ *(char**)pArg = zTFile; |
+ } |
+ return SQLITE_OK; |
+ } |
+ case SQLITE_FCNTL_HAS_MOVED: { |
+ *(int*)pArg = fileHasMoved(pFile); |
+ return SQLITE_OK; |
+ } |
+#if SQLITE_MAX_MMAP_SIZE>0 |
+ case SQLITE_FCNTL_MMAP_SIZE: { |
+ i64 newLimit = *(i64*)pArg; |
+ int rc = SQLITE_OK; |
+ if( newLimit>sqlite3GlobalConfig.mxMmap ){ |
+ newLimit = sqlite3GlobalConfig.mxMmap; |
+ } |
+ *(i64*)pArg = pFile->mmapSizeMax; |
+ if( newLimit>=0 && newLimit!=pFile->mmapSizeMax && pFile->nFetchOut==0 ){ |
+ pFile->mmapSizeMax = newLimit; |
+ if( pFile->mmapSize>0 ){ |
+ unixUnmapfile(pFile); |
+ rc = unixMapfile(pFile, -1); |
+ } |
+ } |
+ return rc; |
+ } |
+#endif |
+#ifdef SQLITE_DEBUG |
+ /* The pager calls this method to signal that it has done |
+ ** a rollback and that the database is therefore unchanged and |
+ ** it hence it is OK for the transaction change counter to be |
+ ** unchanged. |
+ */ |
+ case SQLITE_FCNTL_DB_UNCHANGED: { |
+ ((unixFile*)id)->dbUpdate = 0; |
+ return SQLITE_OK; |
+ } |
+#endif |
+#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) |
+ case SQLITE_SET_LOCKPROXYFILE: |
+ case SQLITE_GET_LOCKPROXYFILE: { |
+ return proxyFileControl(id,op,pArg); |
+ } |
+#endif /* SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) */ |
+ } |
+ return SQLITE_NOTFOUND; |
+} |
+ |
+/* |
+** Return the sector size in bytes of the underlying block device for |
+** the specified file. This is almost always 512 bytes, but may be |
+** larger for some devices. |
+** |
+** SQLite code assumes this function cannot fail. It also assumes that |
+** if two files are created in the same file-system directory (i.e. |
+** a database and its journal file) that the sector size will be the |
+** same for both. |
+*/ |
+#ifndef __QNXNTO__ |
+static int unixSectorSize(sqlite3_file *NotUsed){ |
+ UNUSED_PARAMETER(NotUsed); |
+ return SQLITE_DEFAULT_SECTOR_SIZE; |
+} |
+#endif |
+ |
+/* |
+** The following version of unixSectorSize() is optimized for QNX. |
+*/ |
+#ifdef __QNXNTO__ |
+#include <sys/dcmd_blk.h> |
+#include <sys/statvfs.h> |
+static int unixSectorSize(sqlite3_file *id){ |
+ unixFile *pFile = (unixFile*)id; |
+ if( pFile->sectorSize == 0 ){ |
+ struct statvfs fsInfo; |
+ |
+ /* Set defaults for non-supported filesystems */ |
+ pFile->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE; |
+ pFile->deviceCharacteristics = 0; |
+ if( fstatvfs(pFile->h, &fsInfo) == -1 ) { |
+ return pFile->sectorSize; |
+ } |
+ |
+ if( !strcmp(fsInfo.f_basetype, "tmp") ) { |
+ pFile->sectorSize = fsInfo.f_bsize; |
+ pFile->deviceCharacteristics = |
+ SQLITE_IOCAP_ATOMIC4K | /* All ram filesystem writes are atomic */ |
+ SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until |
+ ** the write succeeds */ |
+ SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind |
+ ** so it is ordered */ |
+ 0; |
+ }else if( strstr(fsInfo.f_basetype, "etfs") ){ |
+ pFile->sectorSize = fsInfo.f_bsize; |
+ pFile->deviceCharacteristics = |
+ /* etfs cluster size writes are atomic */ |
+ (pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) | |
+ SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until |
+ ** the write succeeds */ |
+ SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind |
+ ** so it is ordered */ |
+ 0; |
+ }else if( !strcmp(fsInfo.f_basetype, "qnx6") ){ |
+ pFile->sectorSize = fsInfo.f_bsize; |
+ pFile->deviceCharacteristics = |
+ SQLITE_IOCAP_ATOMIC | /* All filesystem writes are atomic */ |
+ SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until |
+ ** the write succeeds */ |
+ SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind |
+ ** so it is ordered */ |
+ 0; |
+ }else if( !strcmp(fsInfo.f_basetype, "qnx4") ){ |
+ pFile->sectorSize = fsInfo.f_bsize; |
+ pFile->deviceCharacteristics = |
+ /* full bitset of atomics from max sector size and smaller */ |
+ ((pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) << 1) - 2 | |
+ SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind |
+ ** so it is ordered */ |
+ 0; |
+ }else if( strstr(fsInfo.f_basetype, "dos") ){ |
+ pFile->sectorSize = fsInfo.f_bsize; |
+ pFile->deviceCharacteristics = |
+ /* full bitset of atomics from max sector size and smaller */ |
+ ((pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) << 1) - 2 | |
+ SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind |
+ ** so it is ordered */ |
+ 0; |
+ }else{ |
+ pFile->deviceCharacteristics = |
+ SQLITE_IOCAP_ATOMIC512 | /* blocks are atomic */ |
+ SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until |
+ ** the write succeeds */ |
+ 0; |
+ } |
+ } |
+ /* Last chance verification. If the sector size isn't a multiple of 512 |
+ ** then it isn't valid.*/ |
+ if( pFile->sectorSize % 512 != 0 ){ |
+ pFile->deviceCharacteristics = 0; |
+ pFile->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE; |
+ } |
+ return pFile->sectorSize; |
+} |
+#endif /* __QNXNTO__ */ |
+ |
+/* |
+** Return the device characteristics for the file. |
+** |
+** This VFS is set up to return SQLITE_IOCAP_POWERSAFE_OVERWRITE by default. |
+** However, that choice is controversial since technically the underlying |
+** file system does not always provide powersafe overwrites. (In other |
+** words, after a power-loss event, parts of the file that were never |
+** written might end up being altered.) However, non-PSOW behavior is very, |
+** very rare. And asserting PSOW makes a large reduction in the amount |
+** of required I/O for journaling, since a lot of padding is eliminated. |
+** Hence, while POWERSAFE_OVERWRITE is on by default, there is a file-control |
+** available to turn it off and URI query parameter available to turn it off. |
+*/ |
+static int unixDeviceCharacteristics(sqlite3_file *id){ |
+ unixFile *p = (unixFile*)id; |
+ int rc = 0; |
+#ifdef __QNXNTO__ |
+ if( p->sectorSize==0 ) unixSectorSize(id); |
+ rc = p->deviceCharacteristics; |
+#endif |
+ if( p->ctrlFlags & UNIXFILE_PSOW ){ |
+ rc |= SQLITE_IOCAP_POWERSAFE_OVERWRITE; |
+ } |
+ return rc; |
+} |
+ |
+#if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 |
+ |
+/* |
+** Return the system page size. |
+** |
+** This function should not be called directly by other code in this file. |
+** Instead, it should be called via macro osGetpagesize(). |
+*/ |
+static int unixGetpagesize(void){ |
+#if defined(_BSD_SOURCE) |
+ return getpagesize(); |
+#else |
+ return (int)sysconf(_SC_PAGESIZE); |
+#endif |
+} |
+ |
+#endif /* !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 */ |
+ |
+#ifndef SQLITE_OMIT_WAL |
+ |
+/* |
+** Object used to represent an shared memory buffer. |
+** |
+** When multiple threads all reference the same wal-index, each thread |
+** has its own unixShm object, but they all point to a single instance |
+** of this unixShmNode object. In other words, each wal-index is opened |
+** only once per process. |
+** |
+** Each unixShmNode object is connected to a single unixInodeInfo object. |
+** We could coalesce this object into unixInodeInfo, but that would mean |
+** every open file that does not use shared memory (in other words, most |
+** open files) would have to carry around this extra information. So |
+** the unixInodeInfo object contains a pointer to this unixShmNode object |
+** and the unixShmNode object is created only when needed. |
+** |
+** unixMutexHeld() must be true when creating or destroying |
+** this object or while reading or writing the following fields: |
+** |
+** nRef |
+** |
+** The following fields are read-only after the object is created: |
+** |
+** fid |
+** zFilename |
+** |
+** Either unixShmNode.mutex must be held or unixShmNode.nRef==0 and |
+** unixMutexHeld() is true when reading or writing any other field |
+** in this structure. |
+*/ |
+struct unixShmNode { |
+ unixInodeInfo *pInode; /* unixInodeInfo that owns this SHM node */ |
+ sqlite3_mutex *mutex; /* Mutex to access this object */ |
+ char *zFilename; /* Name of the mmapped file */ |
+ int h; /* Open file descriptor */ |
+ int szRegion; /* Size of shared-memory regions */ |
+ u16 nRegion; /* Size of array apRegion */ |
+ u8 isReadonly; /* True if read-only */ |
+ char **apRegion; /* Array of mapped shared-memory regions */ |
+ int nRef; /* Number of unixShm objects pointing to this */ |
+ unixShm *pFirst; /* All unixShm objects pointing to this */ |
+#ifdef SQLITE_DEBUG |
+ u8 exclMask; /* Mask of exclusive locks held */ |
+ u8 sharedMask; /* Mask of shared locks held */ |
+ u8 nextShmId; /* Next available unixShm.id value */ |
+#endif |
+}; |
+ |
+/* |
+** Structure used internally by this VFS to record the state of an |
+** open shared memory connection. |
+** |
+** The following fields are initialized when this object is created and |
+** are read-only thereafter: |
+** |
+** unixShm.pFile |
+** unixShm.id |
+** |
+** All other fields are read/write. The unixShm.pFile->mutex must be held |
+** while accessing any read/write fields. |
+*/ |
+struct unixShm { |
+ unixShmNode *pShmNode; /* The underlying unixShmNode object */ |
+ unixShm *pNext; /* Next unixShm with the same unixShmNode */ |
+ u8 hasMutex; /* True if holding the unixShmNode mutex */ |
+ u8 id; /* Id of this connection within its unixShmNode */ |
+ u16 sharedMask; /* Mask of shared locks held */ |
+ u16 exclMask; /* Mask of exclusive locks held */ |
+}; |
+ |
+/* |
+** Constants used for locking |
+*/ |
+#define UNIX_SHM_BASE ((22+SQLITE_SHM_NLOCK)*4) /* first lock byte */ |
+#define UNIX_SHM_DMS (UNIX_SHM_BASE+SQLITE_SHM_NLOCK) /* deadman switch */ |
+ |
+/* |
+** Apply posix advisory locks for all bytes from ofst through ofst+n-1. |
+** |
+** Locks block if the mask is exactly UNIX_SHM_C and are non-blocking |
+** otherwise. |
+*/ |
+static int unixShmSystemLock( |
+ unixShmNode *pShmNode, /* Apply locks to this open shared-memory segment */ |
+ int lockType, /* F_UNLCK, F_RDLCK, or F_WRLCK */ |
+ int ofst, /* First byte of the locking range */ |
+ int n /* Number of bytes to lock */ |
+){ |
+ struct flock f; /* The posix advisory locking structure */ |
+ int rc = SQLITE_OK; /* Result code form fcntl() */ |
+ |
+ /* Access to the unixShmNode object is serialized by the caller */ |
+ assert( sqlite3_mutex_held(pShmNode->mutex) || pShmNode->nRef==0 ); |
+ |
+ /* Shared locks never span more than one byte */ |
+ assert( n==1 || lockType!=F_RDLCK ); |
+ |
+ /* Locks are within range */ |
+ assert( n>=1 && n<SQLITE_SHM_NLOCK ); |
+ |
+ if( pShmNode->h>=0 ){ |
+ /* Initialize the locking parameters */ |
+ memset(&f, 0, sizeof(f)); |
+ f.l_type = lockType; |
+ f.l_whence = SEEK_SET; |
+ f.l_start = ofst; |
+ f.l_len = n; |
+ |
+ rc = osFcntl(pShmNode->h, F_SETLK, &f); |
+ rc = (rc!=(-1)) ? SQLITE_OK : SQLITE_BUSY; |
+ } |
+ |
+ /* Update the global lock state and do debug tracing */ |
+#ifdef SQLITE_DEBUG |
+ { u16 mask; |
+ OSTRACE(("SHM-LOCK ")); |
+ mask = ofst>31 ? 0xffff : (1<<(ofst+n)) - (1<<ofst); |
+ if( rc==SQLITE_OK ){ |
+ if( lockType==F_UNLCK ){ |
+ OSTRACE(("unlock %d ok", ofst)); |
+ pShmNode->exclMask &= ~mask; |
+ pShmNode->sharedMask &= ~mask; |
+ }else if( lockType==F_RDLCK ){ |
+ OSTRACE(("read-lock %d ok", ofst)); |
+ pShmNode->exclMask &= ~mask; |
+ pShmNode->sharedMask |= mask; |
+ }else{ |
+ assert( lockType==F_WRLCK ); |
+ OSTRACE(("write-lock %d ok", ofst)); |
+ pShmNode->exclMask |= mask; |
+ pShmNode->sharedMask &= ~mask; |
+ } |
+ }else{ |
+ if( lockType==F_UNLCK ){ |
+ OSTRACE(("unlock %d failed", ofst)); |
+ }else if( lockType==F_RDLCK ){ |
+ OSTRACE(("read-lock failed")); |
+ }else{ |
+ assert( lockType==F_WRLCK ); |
+ OSTRACE(("write-lock %d failed", ofst)); |
+ } |
+ } |
+ OSTRACE((" - afterwards %03x,%03x\n", |
+ pShmNode->sharedMask, pShmNode->exclMask)); |
+ } |
+#endif |
+ |
+ return rc; |
+} |
+ |
+/* |
+** Return the minimum number of 32KB shm regions that should be mapped at |
+** a time, assuming that each mapping must be an integer multiple of the |
+** current system page-size. |
+** |
+** Usually, this is 1. The exception seems to be systems that are configured |
+** to use 64KB pages - in this case each mapping must cover at least two |
+** shm regions. |
+*/ |
+static int unixShmRegionPerMap(void){ |
+ int shmsz = 32*1024; /* SHM region size */ |
+ int pgsz = osGetpagesize(); /* System page size */ |
+ assert( ((pgsz-1)&pgsz)==0 ); /* Page size must be a power of 2 */ |
+ if( pgsz<shmsz ) return 1; |
+ return pgsz/shmsz; |
+} |
+ |
+/* |
+** Purge the unixShmNodeList list of all entries with unixShmNode.nRef==0. |
+** |
+** This is not a VFS shared-memory method; it is a utility function called |
+** by VFS shared-memory methods. |
+*/ |
+static void unixShmPurge(unixFile *pFd){ |
+ unixShmNode *p = pFd->pInode->pShmNode; |
+ assert( unixMutexHeld() ); |
+ if( p && p->nRef==0 ){ |
+ int nShmPerMap = unixShmRegionPerMap(); |
+ int i; |
+ assert( p->pInode==pFd->pInode ); |
+ sqlite3_mutex_free(p->mutex); |
+ for(i=0; i<p->nRegion; i+=nShmPerMap){ |
+ if( p->h>=0 ){ |
+ osMunmap(p->apRegion[i], p->szRegion); |
+ }else{ |
+ sqlite3_free(p->apRegion[i]); |
+ } |
+ } |
+ sqlite3_free(p->apRegion); |
+ if( p->h>=0 ){ |
+ robust_close(pFd, p->h, __LINE__); |
+ p->h = -1; |
+ } |
+ p->pInode->pShmNode = 0; |
+ sqlite3_free(p); |
+ } |
+} |
+ |
+/* |
+** Open a shared-memory area associated with open database file pDbFd. |
+** This particular implementation uses mmapped files. |
+** |
+** The file used to implement shared-memory is in the same directory |
+** as the open database file and has the same name as the open database |
+** file with the "-shm" suffix added. For example, if the database file |
+** is "/home/user1/config.db" then the file that is created and mmapped |
+** for shared memory will be called "/home/user1/config.db-shm". |
+** |
+** Another approach to is to use files in /dev/shm or /dev/tmp or an |
+** some other tmpfs mount. But if a file in a different directory |
+** from the database file is used, then differing access permissions |
+** or a chroot() might cause two different processes on the same |
+** database to end up using different files for shared memory - |
+** meaning that their memory would not really be shared - resulting |
+** in database corruption. Nevertheless, this tmpfs file usage |
+** can be enabled at compile-time using -DSQLITE_SHM_DIRECTORY="/dev/shm" |
+** or the equivalent. The use of the SQLITE_SHM_DIRECTORY compile-time |
+** option results in an incompatible build of SQLite; builds of SQLite |
+** that with differing SQLITE_SHM_DIRECTORY settings attempt to use the |
+** same database file at the same time, database corruption will likely |
+** result. The SQLITE_SHM_DIRECTORY compile-time option is considered |
+** "unsupported" and may go away in a future SQLite release. |
+** |
+** When opening a new shared-memory file, if no other instances of that |
+** file are currently open, in this process or in other processes, then |
+** the file must be truncated to zero length or have its header cleared. |
+** |
+** If the original database file (pDbFd) is using the "unix-excl" VFS |
+** that means that an exclusive lock is held on the database file and |
+** that no other processes are able to read or write the database. In |
+** that case, we do not really need shared memory. No shared memory |
+** file is created. The shared memory will be simulated with heap memory. |
+*/ |
+static int unixOpenSharedMemory(unixFile *pDbFd){ |
+ struct unixShm *p = 0; /* The connection to be opened */ |
+ struct unixShmNode *pShmNode; /* The underlying mmapped file */ |
+ int rc; /* Result code */ |
+ unixInodeInfo *pInode; /* The inode of fd */ |
+ char *zShmFilename; /* Name of the file used for SHM */ |
+ int nShmFilename; /* Size of the SHM filename in bytes */ |
+ |
+ /* Allocate space for the new unixShm object. */ |
+ p = sqlite3_malloc( sizeof(*p) ); |
+ if( p==0 ) return SQLITE_NOMEM; |
+ memset(p, 0, sizeof(*p)); |
+ assert( pDbFd->pShm==0 ); |
+ |
+ /* Check to see if a unixShmNode object already exists. Reuse an existing |
+ ** one if present. Create a new one if necessary. |
+ */ |
+ unixEnterMutex(); |
+ pInode = pDbFd->pInode; |
+ pShmNode = pInode->pShmNode; |
+ if( pShmNode==0 ){ |
+ struct stat sStat; /* fstat() info for database file */ |
+ |
+ /* Call fstat() to figure out the permissions on the database file. If |
+ ** a new *-shm file is created, an attempt will be made to create it |
+ ** with the same permissions. |
+ */ |
+ if( osFstat(pDbFd->h, &sStat) && pInode->bProcessLock==0 ){ |
+ rc = SQLITE_IOERR_FSTAT; |
+ goto shm_open_err; |
+ } |
+ |
+#ifdef SQLITE_SHM_DIRECTORY |
+ nShmFilename = sizeof(SQLITE_SHM_DIRECTORY) + 31; |
+#else |
+ nShmFilename = 6 + (int)strlen(pDbFd->zPath); |
+#endif |
+ pShmNode = sqlite3_malloc( sizeof(*pShmNode) + nShmFilename ); |
+ if( pShmNode==0 ){ |
+ rc = SQLITE_NOMEM; |
+ goto shm_open_err; |
+ } |
+ memset(pShmNode, 0, sizeof(*pShmNode)+nShmFilename); |
+ zShmFilename = pShmNode->zFilename = (char*)&pShmNode[1]; |
+#ifdef SQLITE_SHM_DIRECTORY |
+ sqlite3_snprintf(nShmFilename, zShmFilename, |
+ SQLITE_SHM_DIRECTORY "/sqlite-shm-%x-%x", |
+ (u32)sStat.st_ino, (u32)sStat.st_dev); |
+#else |
+ sqlite3_snprintf(nShmFilename, zShmFilename, "%s-shm", pDbFd->zPath); |
+ sqlite3FileSuffix3(pDbFd->zPath, zShmFilename); |
+#endif |
+ pShmNode->h = -1; |
+ pDbFd->pInode->pShmNode = pShmNode; |
+ pShmNode->pInode = pDbFd->pInode; |
+ pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); |
+ if( pShmNode->mutex==0 ){ |
+ rc = SQLITE_NOMEM; |
+ goto shm_open_err; |
+ } |
+ |
+ if( pInode->bProcessLock==0 ){ |
+ int openFlags = O_RDWR | O_CREAT; |
+ if( sqlite3_uri_boolean(pDbFd->zPath, "readonly_shm", 0) ){ |
+ openFlags = O_RDONLY; |
+ pShmNode->isReadonly = 1; |
+ } |
+ pShmNode->h = robust_open(zShmFilename, openFlags, (sStat.st_mode&0777)); |
+ if( pShmNode->h<0 ){ |
+ rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zShmFilename); |
+ goto shm_open_err; |
+ } |
+ |
+ /* If this process is running as root, make sure that the SHM file |
+ ** is owned by the same user that owns the original database. Otherwise, |
+ ** the original owner will not be able to connect. |
+ */ |
+ osFchown(pShmNode->h, sStat.st_uid, sStat.st_gid); |
+ |
+ /* Check to see if another process is holding the dead-man switch. |
+ ** If not, truncate the file to zero length. |
+ */ |
+ rc = SQLITE_OK; |
+ if( unixShmSystemLock(pShmNode, F_WRLCK, UNIX_SHM_DMS, 1)==SQLITE_OK ){ |
+ if( robust_ftruncate(pShmNode->h, 0) ){ |
+ rc = unixLogError(SQLITE_IOERR_SHMOPEN, "ftruncate", zShmFilename); |
+ } |
+ } |
+ if( rc==SQLITE_OK ){ |
+ rc = unixShmSystemLock(pShmNode, F_RDLCK, UNIX_SHM_DMS, 1); |
+ } |
+ if( rc ) goto shm_open_err; |
+ } |
+ } |
+ |
+ /* Make the new connection a child of the unixShmNode */ |
+ p->pShmNode = pShmNode; |
+#ifdef SQLITE_DEBUG |
+ p->id = pShmNode->nextShmId++; |
+#endif |
+ pShmNode->nRef++; |
+ pDbFd->pShm = p; |
+ unixLeaveMutex(); |
+ |
+ /* The reference count on pShmNode has already been incremented under |
+ ** the cover of the unixEnterMutex() mutex and the pointer from the |
+ ** new (struct unixShm) object to the pShmNode has been set. All that is |
+ ** left to do is to link the new object into the linked list starting |
+ ** at pShmNode->pFirst. This must be done while holding the pShmNode->mutex |
+ ** mutex. |
+ */ |
+ sqlite3_mutex_enter(pShmNode->mutex); |
+ p->pNext = pShmNode->pFirst; |
+ pShmNode->pFirst = p; |
+ sqlite3_mutex_leave(pShmNode->mutex); |
+ return SQLITE_OK; |
+ |
+ /* Jump here on any error */ |
+shm_open_err: |
+ unixShmPurge(pDbFd); /* This call frees pShmNode if required */ |
+ sqlite3_free(p); |
+ unixLeaveMutex(); |
+ return rc; |
+} |
+ |
+/* |
+** This function is called to obtain a pointer to region iRegion of the |
+** shared-memory associated with the database file fd. Shared-memory regions |
+** are numbered starting from zero. Each shared-memory region is szRegion |
+** bytes in size. |
+** |
+** If an error occurs, an error code is returned and *pp is set to NULL. |
+** |
+** Otherwise, if the bExtend parameter is 0 and the requested shared-memory |
+** region has not been allocated (by any client, including one running in a |
+** separate process), then *pp is set to NULL and SQLITE_OK returned. If |
+** bExtend is non-zero and the requested shared-memory region has not yet |
+** been allocated, it is allocated by this function. |
+** |
+** If the shared-memory region has already been allocated or is allocated by |
+** this call as described above, then it is mapped into this processes |
+** address space (if it is not already), *pp is set to point to the mapped |
+** memory and SQLITE_OK returned. |
+*/ |
+static int unixShmMap( |
+ sqlite3_file *fd, /* Handle open on database file */ |
+ int iRegion, /* Region to retrieve */ |
+ int szRegion, /* Size of regions */ |
+ int bExtend, /* True to extend file if necessary */ |
+ void volatile **pp /* OUT: Mapped memory */ |
+){ |
+ unixFile *pDbFd = (unixFile*)fd; |
+ unixShm *p; |
+ unixShmNode *pShmNode; |
+ int rc = SQLITE_OK; |
+ int nShmPerMap = unixShmRegionPerMap(); |
+ int nReqRegion; |
+ |
+ /* If the shared-memory file has not yet been opened, open it now. */ |
+ if( pDbFd->pShm==0 ){ |
+ rc = unixOpenSharedMemory(pDbFd); |
+ if( rc!=SQLITE_OK ) return rc; |
+ } |
+ |
+ p = pDbFd->pShm; |
+ pShmNode = p->pShmNode; |
+ sqlite3_mutex_enter(pShmNode->mutex); |
+ assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 ); |
+ assert( pShmNode->pInode==pDbFd->pInode ); |
+ assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 ); |
+ assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 ); |
+ |
+ /* Minimum number of regions required to be mapped. */ |
+ nReqRegion = ((iRegion+nShmPerMap) / nShmPerMap) * nShmPerMap; |
+ |
+ if( pShmNode->nRegion<nReqRegion ){ |
+ char **apNew; /* New apRegion[] array */ |
+ int nByte = nReqRegion*szRegion; /* Minimum required file size */ |
+ struct stat sStat; /* Used by fstat() */ |
+ |
+ pShmNode->szRegion = szRegion; |
+ |
+ if( pShmNode->h>=0 ){ |
+ /* The requested region is not mapped into this processes address space. |
+ ** Check to see if it has been allocated (i.e. if the wal-index file is |
+ ** large enough to contain the requested region). |
+ */ |
+ if( osFstat(pShmNode->h, &sStat) ){ |
+ rc = SQLITE_IOERR_SHMSIZE; |
+ goto shmpage_out; |
+ } |
+ |
+ if( sStat.st_size<nByte ){ |
+ /* The requested memory region does not exist. If bExtend is set to |
+ ** false, exit early. *pp will be set to NULL and SQLITE_OK returned. |
+ */ |
+ if( !bExtend ){ |
+ goto shmpage_out; |
+ } |
+ |
+ /* Alternatively, if bExtend is true, extend the file. Do this by |
+ ** writing a single byte to the end of each (OS) page being |
+ ** allocated or extended. Technically, we need only write to the |
+ ** last page in order to extend the file. But writing to all new |
+ ** pages forces the OS to allocate them immediately, which reduces |
+ ** the chances of SIGBUS while accessing the mapped region later on. |
+ */ |
+ else{ |
+ static const int pgsz = 4096; |
+ int iPg; |
+ |
+ /* Write to the last byte of each newly allocated or extended page */ |
+ assert( (nByte % pgsz)==0 ); |
+ for(iPg=(sStat.st_size/pgsz); iPg<(nByte/pgsz); iPg++){ |
+ if( seekAndWriteFd(pShmNode->h, iPg*pgsz + pgsz-1, "", 1, 0)!=1 ){ |
+ const char *zFile = pShmNode->zFilename; |
+ rc = unixLogError(SQLITE_IOERR_SHMSIZE, "write", zFile); |
+ goto shmpage_out; |
+ } |
+ } |
+ } |
+ } |
+ } |
+ |
+ /* Map the requested memory region into this processes address space. */ |
+ apNew = (char **)sqlite3_realloc( |
+ pShmNode->apRegion, nReqRegion*sizeof(char *) |
+ ); |
+ if( !apNew ){ |
+ rc = SQLITE_IOERR_NOMEM; |
+ goto shmpage_out; |
+ } |
+ pShmNode->apRegion = apNew; |
+ while( pShmNode->nRegion<nReqRegion ){ |
+ int nMap = szRegion*nShmPerMap; |
+ int i; |
+ void *pMem; |
+ if( pShmNode->h>=0 ){ |
+ pMem = osMmap(0, nMap, |
+ pShmNode->isReadonly ? PROT_READ : PROT_READ|PROT_WRITE, |
+ MAP_SHARED, pShmNode->h, szRegion*(i64)pShmNode->nRegion |
+ ); |
+ if( pMem==MAP_FAILED ){ |
+ rc = unixLogError(SQLITE_IOERR_SHMMAP, "mmap", pShmNode->zFilename); |
+ goto shmpage_out; |
+ } |
+ }else{ |
+ pMem = sqlite3_malloc(szRegion); |
+ if( pMem==0 ){ |
+ rc = SQLITE_NOMEM; |
+ goto shmpage_out; |
+ } |
+ memset(pMem, 0, szRegion); |
+ } |
+ |
+ for(i=0; i<nShmPerMap; i++){ |
+ pShmNode->apRegion[pShmNode->nRegion+i] = &((char*)pMem)[szRegion*i]; |
+ } |
+ pShmNode->nRegion += nShmPerMap; |
+ } |
+ } |
+ |
+shmpage_out: |
+ if( pShmNode->nRegion>iRegion ){ |
+ *pp = pShmNode->apRegion[iRegion]; |
+ }else{ |
+ *pp = 0; |
+ } |
+ if( pShmNode->isReadonly && rc==SQLITE_OK ) rc = SQLITE_READONLY; |
+ sqlite3_mutex_leave(pShmNode->mutex); |
+ return rc; |
+} |
+ |
+/* |
+** Change the lock state for a shared-memory segment. |
+** |
+** Note that the relationship between SHAREd and EXCLUSIVE locks is a little |
+** different here than in posix. In xShmLock(), one can go from unlocked |
+** to shared and back or from unlocked to exclusive and back. But one may |
+** not go from shared to exclusive or from exclusive to shared. |
+*/ |
+static int unixShmLock( |
+ sqlite3_file *fd, /* Database file holding the shared memory */ |
+ int ofst, /* First lock to acquire or release */ |
+ int n, /* Number of locks to acquire or release */ |
+ int flags /* What to do with the lock */ |
+){ |
+ unixFile *pDbFd = (unixFile*)fd; /* Connection holding shared memory */ |
+ unixShm *p = pDbFd->pShm; /* The shared memory being locked */ |
+ unixShm *pX; /* For looping over all siblings */ |
+ unixShmNode *pShmNode = p->pShmNode; /* The underlying file iNode */ |
+ int rc = SQLITE_OK; /* Result code */ |
+ u16 mask; /* Mask of locks to take or release */ |
+ |
+ assert( pShmNode==pDbFd->pInode->pShmNode ); |
+ assert( pShmNode->pInode==pDbFd->pInode ); |
+ assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK ); |
+ assert( n>=1 ); |
+ assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED) |
+ || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE) |
+ || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED) |
+ || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) ); |
+ assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 ); |
+ assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 ); |
+ assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 ); |
+ |
+ mask = (1<<(ofst+n)) - (1<<ofst); |
+ assert( n>1 || mask==(1<<ofst) ); |
+ sqlite3_mutex_enter(pShmNode->mutex); |
+ if( flags & SQLITE_SHM_UNLOCK ){ |
+ u16 allMask = 0; /* Mask of locks held by siblings */ |
+ |
+ /* See if any siblings hold this same lock */ |
+ for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ |
+ if( pX==p ) continue; |
+ assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 ); |
+ allMask |= pX->sharedMask; |
+ } |
+ |
+ /* Unlock the system-level locks */ |
+ if( (mask & allMask)==0 ){ |
+ rc = unixShmSystemLock(pShmNode, F_UNLCK, ofst+UNIX_SHM_BASE, n); |
+ }else{ |
+ rc = SQLITE_OK; |
+ } |
+ |
+ /* Undo the local locks */ |
+ if( rc==SQLITE_OK ){ |
+ p->exclMask &= ~mask; |
+ p->sharedMask &= ~mask; |
+ } |
+ }else if( flags & SQLITE_SHM_SHARED ){ |
+ u16 allShared = 0; /* Union of locks held by connections other than "p" */ |
+ |
+ /* Find out which shared locks are already held by sibling connections. |
+ ** If any sibling already holds an exclusive lock, go ahead and return |
+ ** SQLITE_BUSY. |
+ */ |
+ for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ |
+ if( (pX->exclMask & mask)!=0 ){ |
+ rc = SQLITE_BUSY; |
+ break; |
+ } |
+ allShared |= pX->sharedMask; |
+ } |
+ |
+ /* Get shared locks at the system level, if necessary */ |
+ if( rc==SQLITE_OK ){ |
+ if( (allShared & mask)==0 ){ |
+ rc = unixShmSystemLock(pShmNode, F_RDLCK, ofst+UNIX_SHM_BASE, n); |
+ }else{ |
+ rc = SQLITE_OK; |
+ } |
+ } |
+ |
+ /* Get the local shared locks */ |
+ if( rc==SQLITE_OK ){ |
+ p->sharedMask |= mask; |
+ } |
+ }else{ |
+ /* Make sure no sibling connections hold locks that will block this |
+ ** lock. If any do, return SQLITE_BUSY right away. |
+ */ |
+ for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ |
+ if( (pX->exclMask & mask)!=0 || (pX->sharedMask & mask)!=0 ){ |
+ rc = SQLITE_BUSY; |
+ break; |
+ } |
+ } |
+ |
+ /* Get the exclusive locks at the system level. Then if successful |
+ ** also mark the local connection as being locked. |
+ */ |
+ if( rc==SQLITE_OK ){ |
+ rc = unixShmSystemLock(pShmNode, F_WRLCK, ofst+UNIX_SHM_BASE, n); |
+ if( rc==SQLITE_OK ){ |
+ assert( (p->sharedMask & mask)==0 ); |
+ p->exclMask |= mask; |
+ } |
+ } |
+ } |
+ sqlite3_mutex_leave(pShmNode->mutex); |
+ OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n", |
+ p->id, getpid(), p->sharedMask, p->exclMask)); |
+ return rc; |
+} |
+ |
+/* |
+** Implement a memory barrier or memory fence on shared memory. |
+** |
+** All loads and stores begun before the barrier must complete before |
+** any load or store begun after the barrier. |
+*/ |
+static void unixShmBarrier( |
+ sqlite3_file *fd /* Database file holding the shared memory */ |
+){ |
+ UNUSED_PARAMETER(fd); |
+ unixEnterMutex(); |
+ unixLeaveMutex(); |
+} |
+ |
+/* |
+** Close a connection to shared-memory. Delete the underlying |
+** storage if deleteFlag is true. |
+** |
+** If there is no shared memory associated with the connection then this |
+** routine is a harmless no-op. |
+*/ |
+static int unixShmUnmap( |
+ sqlite3_file *fd, /* The underlying database file */ |
+ int deleteFlag /* Delete shared-memory if true */ |
+){ |
+ unixShm *p; /* The connection to be closed */ |
+ unixShmNode *pShmNode; /* The underlying shared-memory file */ |
+ unixShm **pp; /* For looping over sibling connections */ |
+ unixFile *pDbFd; /* The underlying database file */ |
+ |
+ pDbFd = (unixFile*)fd; |
+ p = pDbFd->pShm; |
+ if( p==0 ) return SQLITE_OK; |
+ pShmNode = p->pShmNode; |
+ |
+ assert( pShmNode==pDbFd->pInode->pShmNode ); |
+ assert( pShmNode->pInode==pDbFd->pInode ); |
+ |
+ /* Remove connection p from the set of connections associated |
+ ** with pShmNode */ |
+ sqlite3_mutex_enter(pShmNode->mutex); |
+ for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){} |
+ *pp = p->pNext; |
+ |
+ /* Free the connection p */ |
+ sqlite3_free(p); |
+ pDbFd->pShm = 0; |
+ sqlite3_mutex_leave(pShmNode->mutex); |
+ |
+ /* If pShmNode->nRef has reached 0, then close the underlying |
+ ** shared-memory file, too */ |
+ unixEnterMutex(); |
+ assert( pShmNode->nRef>0 ); |
+ pShmNode->nRef--; |
+ if( pShmNode->nRef==0 ){ |
+ if( deleteFlag && pShmNode->h>=0 ) osUnlink(pShmNode->zFilename); |
+ unixShmPurge(pDbFd); |
+ } |
+ unixLeaveMutex(); |
+ |
+ return SQLITE_OK; |
+} |
+ |
+ |
+#else |
+# define unixShmMap 0 |
+# define unixShmLock 0 |
+# define unixShmBarrier 0 |
+# define unixShmUnmap 0 |
+#endif /* #ifndef SQLITE_OMIT_WAL */ |
+ |
+#if SQLITE_MAX_MMAP_SIZE>0 |
+/* |
+** If it is currently memory mapped, unmap file pFd. |
+*/ |
+static void unixUnmapfile(unixFile *pFd){ |
+ assert( pFd->nFetchOut==0 ); |
+ if( pFd->pMapRegion ){ |
+ osMunmap(pFd->pMapRegion, pFd->mmapSizeActual); |
+ pFd->pMapRegion = 0; |
+ pFd->mmapSize = 0; |
+ pFd->mmapSizeActual = 0; |
+ } |
+} |
+ |
+/* |
+** Attempt to set the size of the memory mapping maintained by file |
+** descriptor pFd to nNew bytes. Any existing mapping is discarded. |
+** |
+** If successful, this function sets the following variables: |
+** |
+** unixFile.pMapRegion |
+** unixFile.mmapSize |
+** unixFile.mmapSizeActual |
+** |
+** If unsuccessful, an error message is logged via sqlite3_log() and |
+** the three variables above are zeroed. In this case SQLite should |
+** continue accessing the database using the xRead() and xWrite() |
+** methods. |
+*/ |
+static void unixRemapfile( |
+ unixFile *pFd, /* File descriptor object */ |
+ i64 nNew /* Required mapping size */ |
+){ |
+ const char *zErr = "mmap"; |
+ int h = pFd->h; /* File descriptor open on db file */ |
+ u8 *pOrig = (u8 *)pFd->pMapRegion; /* Pointer to current file mapping */ |
+ i64 nOrig = pFd->mmapSizeActual; /* Size of pOrig region in bytes */ |
+ u8 *pNew = 0; /* Location of new mapping */ |
+ int flags = PROT_READ; /* Flags to pass to mmap() */ |
+ |
+ assert( pFd->nFetchOut==0 ); |
+ assert( nNew>pFd->mmapSize ); |
+ assert( nNew<=pFd->mmapSizeMax ); |
+ assert( nNew>0 ); |
+ assert( pFd->mmapSizeActual>=pFd->mmapSize ); |
+ assert( MAP_FAILED!=0 ); |
+ |
+ if( (pFd->ctrlFlags & UNIXFILE_RDONLY)==0 ) flags |= PROT_WRITE; |
+ |
+ if( pOrig ){ |
+#if HAVE_MREMAP |
+ i64 nReuse = pFd->mmapSize; |
+#else |
+ const int szSyspage = osGetpagesize(); |
+ i64 nReuse = (pFd->mmapSize & ~(szSyspage-1)); |
+#endif |
+ u8 *pReq = &pOrig[nReuse]; |
+ |
+ /* Unmap any pages of the existing mapping that cannot be reused. */ |
+ if( nReuse!=nOrig ){ |
+ osMunmap(pReq, nOrig-nReuse); |
+ } |
+ |
+#if HAVE_MREMAP |
+ pNew = osMremap(pOrig, nReuse, nNew, MREMAP_MAYMOVE); |
+ zErr = "mremap"; |
+#else |
+ pNew = osMmap(pReq, nNew-nReuse, flags, MAP_SHARED, h, nReuse); |
+ if( pNew!=MAP_FAILED ){ |
+ if( pNew!=pReq ){ |
+ osMunmap(pNew, nNew - nReuse); |
+ pNew = 0; |
+ }else{ |
+ pNew = pOrig; |
+ } |
+ } |
+#endif |
+ |
+ /* The attempt to extend the existing mapping failed. Free it. */ |
+ if( pNew==MAP_FAILED || pNew==0 ){ |
+ osMunmap(pOrig, nReuse); |
+ } |
+ } |
+ |
+ /* If pNew is still NULL, try to create an entirely new mapping. */ |
+ if( pNew==0 ){ |
+ pNew = osMmap(0, nNew, flags, MAP_SHARED, h, 0); |
+ } |
+ |
+ if( pNew==MAP_FAILED ){ |
+ pNew = 0; |
+ nNew = 0; |
+ unixLogError(SQLITE_OK, zErr, pFd->zPath); |
+ |
+ /* If the mmap() above failed, assume that all subsequent mmap() calls |
+ ** will probably fail too. Fall back to using xRead/xWrite exclusively |
+ ** in this case. */ |
+ pFd->mmapSizeMax = 0; |
+ } |
+ pFd->pMapRegion = (void *)pNew; |
+ pFd->mmapSize = pFd->mmapSizeActual = nNew; |
+} |
+ |
+/* |
+** Memory map or remap the file opened by file-descriptor pFd (if the file |
+** is already mapped, the existing mapping is replaced by the new). Or, if |
+** there already exists a mapping for this file, and there are still |
+** outstanding xFetch() references to it, this function is a no-op. |
+** |
+** If parameter nByte is non-negative, then it is the requested size of |
+** the mapping to create. Otherwise, if nByte is less than zero, then the |
+** requested size is the size of the file on disk. The actual size of the |
+** created mapping is either the requested size or the value configured |
+** using SQLITE_FCNTL_MMAP_LIMIT, whichever is smaller. |
+** |
+** SQLITE_OK is returned if no error occurs (even if the mapping is not |
+** recreated as a result of outstanding references) or an SQLite error |
+** code otherwise. |
+*/ |
+static int unixMapfile(unixFile *pFd, i64 nByte){ |
+ i64 nMap = nByte; |
+ int rc; |
+ |
+ assert( nMap>=0 || pFd->nFetchOut==0 ); |
+ if( pFd->nFetchOut>0 ) return SQLITE_OK; |
+ |
+ if( nMap<0 ){ |
+ struct stat statbuf; /* Low-level file information */ |
+ rc = osFstat(pFd->h, &statbuf); |
+ if( rc!=SQLITE_OK ){ |
+ return SQLITE_IOERR_FSTAT; |
+ } |
+ nMap = statbuf.st_size; |
+ } |
+ if( nMap>pFd->mmapSizeMax ){ |
+ nMap = pFd->mmapSizeMax; |
+ } |
+ |
+ if( nMap!=pFd->mmapSize ){ |
+ if( nMap>0 ){ |
+ unixRemapfile(pFd, nMap); |
+ }else{ |
+ unixUnmapfile(pFd); |
+ } |
+ } |
+ |
+ return SQLITE_OK; |
+} |
+#endif /* SQLITE_MAX_MMAP_SIZE>0 */ |
+ |
+/* |
+** If possible, return a pointer to a mapping of file fd starting at offset |
+** iOff. The mapping must be valid for at least nAmt bytes. |
+** |
+** If such a pointer can be obtained, store it in *pp and return SQLITE_OK. |
+** Or, if one cannot but no error occurs, set *pp to 0 and return SQLITE_OK. |
+** Finally, if an error does occur, return an SQLite error code. The final |
+** value of *pp is undefined in this case. |
+** |
+** If this function does return a pointer, the caller must eventually |
+** release the reference by calling unixUnfetch(). |
+*/ |
+static int unixFetch(sqlite3_file *fd, i64 iOff, int nAmt, void **pp){ |
+#if SQLITE_MAX_MMAP_SIZE>0 |
+ unixFile *pFd = (unixFile *)fd; /* The underlying database file */ |
+#endif |
+ *pp = 0; |
+ |
+#if SQLITE_MAX_MMAP_SIZE>0 |
+ if( pFd->mmapSizeMax>0 ){ |
+ if( pFd->pMapRegion==0 ){ |
+ int rc = unixMapfile(pFd, -1); |
+ if( rc!=SQLITE_OK ) return rc; |
+ } |
+ if( pFd->mmapSize >= iOff+nAmt ){ |
+ *pp = &((u8 *)pFd->pMapRegion)[iOff]; |
+ pFd->nFetchOut++; |
+ } |
+ } |
+#endif |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** If the third argument is non-NULL, then this function releases a |
+** reference obtained by an earlier call to unixFetch(). The second |
+** argument passed to this function must be the same as the corresponding |
+** argument that was passed to the unixFetch() invocation. |
+** |
+** Or, if the third argument is NULL, then this function is being called |
+** to inform the VFS layer that, according to POSIX, any existing mapping |
+** may now be invalid and should be unmapped. |
+*/ |
+static int unixUnfetch(sqlite3_file *fd, i64 iOff, void *p){ |
+#if SQLITE_MAX_MMAP_SIZE>0 |
+ unixFile *pFd = (unixFile *)fd; /* The underlying database file */ |
+ UNUSED_PARAMETER(iOff); |
+ |
+ /* If p==0 (unmap the entire file) then there must be no outstanding |
+ ** xFetch references. Or, if p!=0 (meaning it is an xFetch reference), |
+ ** then there must be at least one outstanding. */ |
+ assert( (p==0)==(pFd->nFetchOut==0) ); |
+ |
+ /* If p!=0, it must match the iOff value. */ |
+ assert( p==0 || p==&((u8 *)pFd->pMapRegion)[iOff] ); |
+ |
+ if( p ){ |
+ pFd->nFetchOut--; |
+ }else{ |
+ unixUnmapfile(pFd); |
+ } |
+ |
+ assert( pFd->nFetchOut>=0 ); |
+#else |
+ UNUSED_PARAMETER(fd); |
+ UNUSED_PARAMETER(p); |
+ UNUSED_PARAMETER(iOff); |
+#endif |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Here ends the implementation of all sqlite3_file methods. |
+** |
+********************** End sqlite3_file Methods ******************************* |
+******************************************************************************/ |
+ |
+/* |
+** This division contains definitions of sqlite3_io_methods objects that |
+** implement various file locking strategies. It also contains definitions |
+** of "finder" functions. A finder-function is used to locate the appropriate |
+** sqlite3_io_methods object for a particular database file. The pAppData |
+** field of the sqlite3_vfs VFS objects are initialized to be pointers to |
+** the correct finder-function for that VFS. |
+** |
+** Most finder functions return a pointer to a fixed sqlite3_io_methods |
+** object. The only interesting finder-function is autolockIoFinder, which |
+** looks at the filesystem type and tries to guess the best locking |
+** strategy from that. |
+** |
+** For finder-function F, two objects are created: |
+** |
+** (1) The real finder-function named "FImpt()". |
+** |
+** (2) A constant pointer to this function named just "F". |
+** |
+** |
+** A pointer to the F pointer is used as the pAppData value for VFS |
+** objects. We have to do this instead of letting pAppData point |
+** directly at the finder-function since C90 rules prevent a void* |
+** from be cast into a function pointer. |
+** |
+** |
+** Each instance of this macro generates two objects: |
+** |
+** * A constant sqlite3_io_methods object call METHOD that has locking |
+** methods CLOSE, LOCK, UNLOCK, CKRESLOCK. |
+** |
+** * An I/O method finder function called FINDER that returns a pointer |
+** to the METHOD object in the previous bullet. |
+*/ |
+#define IOMETHODS(FINDER, METHOD, VERSION, CLOSE, LOCK, UNLOCK, CKLOCK, SHMMAP) \ |
+static const sqlite3_io_methods METHOD = { \ |
+ VERSION, /* iVersion */ \ |
+ CLOSE, /* xClose */ \ |
+ unixRead, /* xRead */ \ |
+ unixWrite, /* xWrite */ \ |
+ unixTruncate, /* xTruncate */ \ |
+ unixSync, /* xSync */ \ |
+ unixFileSize, /* xFileSize */ \ |
+ LOCK, /* xLock */ \ |
+ UNLOCK, /* xUnlock */ \ |
+ CKLOCK, /* xCheckReservedLock */ \ |
+ unixFileControl, /* xFileControl */ \ |
+ unixSectorSize, /* xSectorSize */ \ |
+ unixDeviceCharacteristics, /* xDeviceCapabilities */ \ |
+ SHMMAP, /* xShmMap */ \ |
+ unixShmLock, /* xShmLock */ \ |
+ unixShmBarrier, /* xShmBarrier */ \ |
+ unixShmUnmap, /* xShmUnmap */ \ |
+ unixFetch, /* xFetch */ \ |
+ unixUnfetch, /* xUnfetch */ \ |
+}; \ |
+static const sqlite3_io_methods *FINDER##Impl(const char *z, unixFile *p){ \ |
+ UNUSED_PARAMETER(z); UNUSED_PARAMETER(p); \ |
+ return &METHOD; \ |
+} \ |
+static const sqlite3_io_methods *(*const FINDER)(const char*,unixFile *p) \ |
+ = FINDER##Impl; |
+ |
+/* |
+** Here are all of the sqlite3_io_methods objects for each of the |
+** locking strategies. Functions that return pointers to these methods |
+** are also created. |
+*/ |
+IOMETHODS( |
+ posixIoFinder, /* Finder function name */ |
+ posixIoMethods, /* sqlite3_io_methods object name */ |
+ 3, /* shared memory and mmap are enabled */ |
+ unixClose, /* xClose method */ |
+ unixLock, /* xLock method */ |
+ unixUnlock, /* xUnlock method */ |
+ unixCheckReservedLock, /* xCheckReservedLock method */ |
+ unixShmMap /* xShmMap method */ |
+) |
+IOMETHODS( |
+ nolockIoFinder, /* Finder function name */ |
+ nolockIoMethods, /* sqlite3_io_methods object name */ |
+ 3, /* shared memory is disabled */ |
+ nolockClose, /* xClose method */ |
+ nolockLock, /* xLock method */ |
+ nolockUnlock, /* xUnlock method */ |
+ nolockCheckReservedLock, /* xCheckReservedLock method */ |
+ 0 /* xShmMap method */ |
+) |
+IOMETHODS( |
+ dotlockIoFinder, /* Finder function name */ |
+ dotlockIoMethods, /* sqlite3_io_methods object name */ |
+ 1, /* shared memory is disabled */ |
+ dotlockClose, /* xClose method */ |
+ dotlockLock, /* xLock method */ |
+ dotlockUnlock, /* xUnlock method */ |
+ dotlockCheckReservedLock, /* xCheckReservedLock method */ |
+ 0 /* xShmMap method */ |
+) |
+ |
+#if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS |
+IOMETHODS( |
+ flockIoFinder, /* Finder function name */ |
+ flockIoMethods, /* sqlite3_io_methods object name */ |
+ 1, /* shared memory is disabled */ |
+ flockClose, /* xClose method */ |
+ flockLock, /* xLock method */ |
+ flockUnlock, /* xUnlock method */ |
+ flockCheckReservedLock, /* xCheckReservedLock method */ |
+ 0 /* xShmMap method */ |
+) |
+#endif |
+ |
+#if OS_VXWORKS |
+IOMETHODS( |
+ semIoFinder, /* Finder function name */ |
+ semIoMethods, /* sqlite3_io_methods object name */ |
+ 1, /* shared memory is disabled */ |
+ semClose, /* xClose method */ |
+ semLock, /* xLock method */ |
+ semUnlock, /* xUnlock method */ |
+ semCheckReservedLock, /* xCheckReservedLock method */ |
+ 0 /* xShmMap method */ |
+) |
+#endif |
+ |
+#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
+IOMETHODS( |
+ afpIoFinder, /* Finder function name */ |
+ afpIoMethods, /* sqlite3_io_methods object name */ |
+ 1, /* shared memory is disabled */ |
+ afpClose, /* xClose method */ |
+ afpLock, /* xLock method */ |
+ afpUnlock, /* xUnlock method */ |
+ afpCheckReservedLock, /* xCheckReservedLock method */ |
+ 0 /* xShmMap method */ |
+) |
+#endif |
+ |
+/* |
+** The proxy locking method is a "super-method" in the sense that it |
+** opens secondary file descriptors for the conch and lock files and |
+** it uses proxy, dot-file, AFP, and flock() locking methods on those |
+** secondary files. For this reason, the division that implements |
+** proxy locking is located much further down in the file. But we need |
+** to go ahead and define the sqlite3_io_methods and finder function |
+** for proxy locking here. So we forward declare the I/O methods. |
+*/ |
+#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
+static int proxyClose(sqlite3_file*); |
+static int proxyLock(sqlite3_file*, int); |
+static int proxyUnlock(sqlite3_file*, int); |
+static int proxyCheckReservedLock(sqlite3_file*, int*); |
+IOMETHODS( |
+ proxyIoFinder, /* Finder function name */ |
+ proxyIoMethods, /* sqlite3_io_methods object name */ |
+ 1, /* shared memory is disabled */ |
+ proxyClose, /* xClose method */ |
+ proxyLock, /* xLock method */ |
+ proxyUnlock, /* xUnlock method */ |
+ proxyCheckReservedLock, /* xCheckReservedLock method */ |
+ 0 /* xShmMap method */ |
+) |
+#endif |
+ |
+/* nfs lockd on OSX 10.3+ doesn't clear write locks when a read lock is set */ |
+#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
+IOMETHODS( |
+ nfsIoFinder, /* Finder function name */ |
+ nfsIoMethods, /* sqlite3_io_methods object name */ |
+ 1, /* shared memory is disabled */ |
+ unixClose, /* xClose method */ |
+ unixLock, /* xLock method */ |
+ nfsUnlock, /* xUnlock method */ |
+ unixCheckReservedLock, /* xCheckReservedLock method */ |
+ 0 /* xShmMap method */ |
+) |
+#endif |
+ |
+#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
+/* |
+** This "finder" function attempts to determine the best locking strategy |
+** for the database file "filePath". It then returns the sqlite3_io_methods |
+** object that implements that strategy. |
+** |
+** This is for MacOSX only. |
+*/ |
+static const sqlite3_io_methods *autolockIoFinderImpl( |
+ const char *filePath, /* name of the database file */ |
+ unixFile *pNew /* open file object for the database file */ |
+){ |
+ static const struct Mapping { |
+ const char *zFilesystem; /* Filesystem type name */ |
+ const sqlite3_io_methods *pMethods; /* Appropriate locking method */ |
+ } aMap[] = { |
+ { "hfs", &posixIoMethods }, |
+ { "ufs", &posixIoMethods }, |
+ { "afpfs", &afpIoMethods }, |
+ { "smbfs", &afpIoMethods }, |
+ { "webdav", &nolockIoMethods }, |
+ { 0, 0 } |
+ }; |
+ int i; |
+ struct statfs fsInfo; |
+ struct flock lockInfo; |
+ |
+ if( !filePath ){ |
+ /* If filePath==NULL that means we are dealing with a transient file |
+ ** that does not need to be locked. */ |
+ return &nolockIoMethods; |
+ } |
+ if( statfs(filePath, &fsInfo) != -1 ){ |
+ if( fsInfo.f_flags & MNT_RDONLY ){ |
+ return &nolockIoMethods; |
+ } |
+ for(i=0; aMap[i].zFilesystem; i++){ |
+ if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){ |
+ return aMap[i].pMethods; |
+ } |
+ } |
+ } |
+ |
+ /* Default case. Handles, amongst others, "nfs". |
+ ** Test byte-range lock using fcntl(). If the call succeeds, |
+ ** assume that the file-system supports POSIX style locks. |
+ */ |
+ lockInfo.l_len = 1; |
+ lockInfo.l_start = 0; |
+ lockInfo.l_whence = SEEK_SET; |
+ lockInfo.l_type = F_RDLCK; |
+ if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) { |
+ if( strcmp(fsInfo.f_fstypename, "nfs")==0 ){ |
+ return &nfsIoMethods; |
+ } else { |
+ return &posixIoMethods; |
+ } |
+ }else{ |
+ return &dotlockIoMethods; |
+ } |
+} |
+static const sqlite3_io_methods |
+ *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl; |
+ |
+#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ |
+ |
+#if OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE |
+/* |
+** This "finder" function attempts to determine the best locking strategy |
+** for the database file "filePath". It then returns the sqlite3_io_methods |
+** object that implements that strategy. |
+** |
+** This is for VXWorks only. |
+*/ |
+static const sqlite3_io_methods *autolockIoFinderImpl( |
+ const char *filePath, /* name of the database file */ |
+ unixFile *pNew /* the open file object */ |
+){ |
+ struct flock lockInfo; |
+ |
+ if( !filePath ){ |
+ /* If filePath==NULL that means we are dealing with a transient file |
+ ** that does not need to be locked. */ |
+ return &nolockIoMethods; |
+ } |
+ |
+ /* Test if fcntl() is supported and use POSIX style locks. |
+ ** Otherwise fall back to the named semaphore method. |
+ */ |
+ lockInfo.l_len = 1; |
+ lockInfo.l_start = 0; |
+ lockInfo.l_whence = SEEK_SET; |
+ lockInfo.l_type = F_RDLCK; |
+ if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) { |
+ return &posixIoMethods; |
+ }else{ |
+ return &semIoMethods; |
+ } |
+} |
+static const sqlite3_io_methods |
+ *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl; |
+ |
+#endif /* OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE */ |
+ |
+/* |
+** An abstract type for a pointer to an IO method finder function: |
+*/ |
+typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*); |
+ |
+ |
+/**************************************************************************** |
+**************************** sqlite3_vfs methods **************************** |
+** |
+** This division contains the implementation of methods on the |
+** sqlite3_vfs object. |
+*/ |
+ |
+/* |
+** Initialize the contents of the unixFile structure pointed to by pId. |
+*/ |
+static int fillInUnixFile( |
+ sqlite3_vfs *pVfs, /* Pointer to vfs object */ |
+ int h, /* Open file descriptor of file being opened */ |
+ sqlite3_file *pId, /* Write to the unixFile structure here */ |
+ const char *zFilename, /* Name of the file being opened */ |
+ int ctrlFlags /* Zero or more UNIXFILE_* values */ |
+){ |
+ const sqlite3_io_methods *pLockingStyle; |
+ unixFile *pNew = (unixFile *)pId; |
+ int rc = SQLITE_OK; |
+ |
+ assert( pNew->pInode==NULL ); |
+ |
+ /* Usually the path zFilename should not be a relative pathname. The |
+ ** exception is when opening the proxy "conch" file in builds that |
+ ** include the special Apple locking styles. |
+ */ |
+#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
+ assert( zFilename==0 || zFilename[0]=='/' |
+ || pVfs->pAppData==(void*)&autolockIoFinder ); |
+#else |
+ assert( zFilename==0 || zFilename[0]=='/' ); |
+#endif |
+ |
+ /* No locking occurs in temporary files */ |
+ assert( zFilename!=0 || (ctrlFlags & UNIXFILE_NOLOCK)!=0 ); |
+ |
+ OSTRACE(("OPEN %-3d %s\n", h, zFilename)); |
+ pNew->h = h; |
+ pNew->pVfs = pVfs; |
+ pNew->zPath = zFilename; |
+ pNew->ctrlFlags = (u8)ctrlFlags; |
+#if SQLITE_MAX_MMAP_SIZE>0 |
+ pNew->mmapSizeMax = sqlite3GlobalConfig.szMmap; |
+#endif |
+ if( sqlite3_uri_boolean(((ctrlFlags & UNIXFILE_URI) ? zFilename : 0), |
+ "psow", SQLITE_POWERSAFE_OVERWRITE) ){ |
+ pNew->ctrlFlags |= UNIXFILE_PSOW; |
+ } |
+ if( strcmp(pVfs->zName,"unix-excl")==0 ){ |
+ pNew->ctrlFlags |= UNIXFILE_EXCL; |
+ } |
+ |
+#if OS_VXWORKS |
+ pNew->pId = vxworksFindFileId(zFilename); |
+ if( pNew->pId==0 ){ |
+ ctrlFlags |= UNIXFILE_NOLOCK; |
+ rc = SQLITE_NOMEM; |
+ } |
+#endif |
+ |
+ if( ctrlFlags & UNIXFILE_NOLOCK ){ |
+ pLockingStyle = &nolockIoMethods; |
+ }else{ |
+ pLockingStyle = (**(finder_type*)pVfs->pAppData)(zFilename, pNew); |
+#if SQLITE_ENABLE_LOCKING_STYLE |
+ /* Cache zFilename in the locking context (AFP and dotlock override) for |
+ ** proxyLock activation is possible (remote proxy is based on db name) |
+ ** zFilename remains valid until file is closed, to support */ |
+ pNew->lockingContext = (void*)zFilename; |
+#endif |
+ } |
+ |
+ if( pLockingStyle == &posixIoMethods |
+#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
+ || pLockingStyle == &nfsIoMethods |
+#endif |
+ ){ |
+ unixEnterMutex(); |
+ rc = findInodeInfo(pNew, &pNew->pInode); |
+ if( rc!=SQLITE_OK ){ |
+ /* If an error occurred in findInodeInfo(), close the file descriptor |
+ ** immediately, before releasing the mutex. findInodeInfo() may fail |
+ ** in two scenarios: |
+ ** |
+ ** (a) A call to fstat() failed. |
+ ** (b) A malloc failed. |
+ ** |
+ ** Scenario (b) may only occur if the process is holding no other |
+ ** file descriptors open on the same file. If there were other file |
+ ** descriptors on this file, then no malloc would be required by |
+ ** findInodeInfo(). If this is the case, it is quite safe to close |
+ ** handle h - as it is guaranteed that no posix locks will be released |
+ ** by doing so. |
+ ** |
+ ** If scenario (a) caused the error then things are not so safe. The |
+ ** implicit assumption here is that if fstat() fails, things are in |
+ ** such bad shape that dropping a lock or two doesn't matter much. |
+ */ |
+ robust_close(pNew, h, __LINE__); |
+ h = -1; |
+ } |
+ unixLeaveMutex(); |
+ } |
+ |
+#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) |
+ else if( pLockingStyle == &afpIoMethods ){ |
+ /* AFP locking uses the file path so it needs to be included in |
+ ** the afpLockingContext. |
+ */ |
+ afpLockingContext *pCtx; |
+ pNew->lockingContext = pCtx = sqlite3_malloc( sizeof(*pCtx) ); |
+ if( pCtx==0 ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ /* NB: zFilename exists and remains valid until the file is closed |
+ ** according to requirement F11141. So we do not need to make a |
+ ** copy of the filename. */ |
+ pCtx->dbPath = zFilename; |
+ pCtx->reserved = 0; |
+ srandomdev(); |
+ unixEnterMutex(); |
+ rc = findInodeInfo(pNew, &pNew->pInode); |
+ if( rc!=SQLITE_OK ){ |
+ sqlite3_free(pNew->lockingContext); |
+ robust_close(pNew, h, __LINE__); |
+ h = -1; |
+ } |
+ unixLeaveMutex(); |
+ } |
+ } |
+#endif |
+ |
+ else if( pLockingStyle == &dotlockIoMethods ){ |
+ /* Dotfile locking uses the file path so it needs to be included in |
+ ** the dotlockLockingContext |
+ */ |
+ char *zLockFile; |
+ int nFilename; |
+ assert( zFilename!=0 ); |
+ nFilename = (int)strlen(zFilename) + 6; |
+ zLockFile = (char *)sqlite3_malloc(nFilename); |
+ if( zLockFile==0 ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ sqlite3_snprintf(nFilename, zLockFile, "%s" DOTLOCK_SUFFIX, zFilename); |
+ } |
+ pNew->lockingContext = zLockFile; |
+ } |
+ |
+#if OS_VXWORKS |
+ else if( pLockingStyle == &semIoMethods ){ |
+ /* Named semaphore locking uses the file path so it needs to be |
+ ** included in the semLockingContext |
+ */ |
+ unixEnterMutex(); |
+ rc = findInodeInfo(pNew, &pNew->pInode); |
+ if( (rc==SQLITE_OK) && (pNew->pInode->pSem==NULL) ){ |
+ char *zSemName = pNew->pInode->aSemName; |
+ int n; |
+ sqlite3_snprintf(MAX_PATHNAME, zSemName, "/%s.sem", |
+ pNew->pId->zCanonicalName); |
+ for( n=1; zSemName[n]; n++ ) |
+ if( zSemName[n]=='/' ) zSemName[n] = '_'; |
+ pNew->pInode->pSem = sem_open(zSemName, O_CREAT, 0666, 1); |
+ if( pNew->pInode->pSem == SEM_FAILED ){ |
+ rc = SQLITE_NOMEM; |
+ pNew->pInode->aSemName[0] = '\0'; |
+ } |
+ } |
+ unixLeaveMutex(); |
+ } |
+#endif |
+ |
+ pNew->lastErrno = 0; |
+#if OS_VXWORKS |
+ if( rc!=SQLITE_OK ){ |
+ if( h>=0 ) robust_close(pNew, h, __LINE__); |
+ h = -1; |
+ osUnlink(zFilename); |
+ pNew->ctrlFlags |= UNIXFILE_DELETE; |
+ } |
+#endif |
+ if( rc!=SQLITE_OK ){ |
+ if( h>=0 ) robust_close(pNew, h, __LINE__); |
+ }else{ |
+ pNew->pMethod = pLockingStyle; |
+ OpenCounter(+1); |
+ verifyDbFile(pNew); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Return the name of a directory in which to put temporary files. |
+** If no suitable temporary file directory can be found, return NULL. |
+*/ |
+static const char *unixTempFileDir(void){ |
+ static const char *azDirs[] = { |
+ 0, |
+ 0, |
+ 0, |
+ "/var/tmp", |
+ "/usr/tmp", |
+ "/tmp", |
+ 0 /* List terminator */ |
+ }; |
+ unsigned int i; |
+ struct stat buf; |
+ const char *zDir = 0; |
+ |
+ azDirs[0] = sqlite3_temp_directory; |
+ if( !azDirs[1] ) azDirs[1] = getenv("SQLITE_TMPDIR"); |
+ if( !azDirs[2] ) azDirs[2] = getenv("TMPDIR"); |
+ for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); zDir=azDirs[i++]){ |
+ if( zDir==0 ) continue; |
+ if( osStat(zDir, &buf) ) continue; |
+ if( !S_ISDIR(buf.st_mode) ) continue; |
+ if( osAccess(zDir, 07) ) continue; |
+ break; |
+ } |
+ return zDir; |
+} |
+ |
+/* |
+** Create a temporary file name in zBuf. zBuf must be allocated |
+** by the calling process and must be big enough to hold at least |
+** pVfs->mxPathname bytes. |
+*/ |
+static int unixGetTempname(int nBuf, char *zBuf){ |
+ static const unsigned char zChars[] = |
+ "abcdefghijklmnopqrstuvwxyz" |
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZ" |
+ "0123456789"; |
+ unsigned int i, j; |
+ const char *zDir; |
+ |
+ /* It's odd to simulate an io-error here, but really this is just |
+ ** using the io-error infrastructure to test that SQLite handles this |
+ ** function failing. |
+ */ |
+ SimulateIOError( return SQLITE_IOERR ); |
+ |
+ zDir = unixTempFileDir(); |
+ if( zDir==0 ) zDir = "."; |
+ |
+ /* Check that the output buffer is large enough for the temporary file |
+ ** name. If it is not, return SQLITE_ERROR. |
+ */ |
+ if( (strlen(zDir) + strlen(SQLITE_TEMP_FILE_PREFIX) + 18) >= (size_t)nBuf ){ |
+ return SQLITE_ERROR; |
+ } |
+ |
+ do{ |
+ sqlite3_snprintf(nBuf-18, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX, zDir); |
+ j = (int)strlen(zBuf); |
+ sqlite3_randomness(15, &zBuf[j]); |
+ for(i=0; i<15; i++, j++){ |
+ zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ]; |
+ } |
+ zBuf[j] = 0; |
+ zBuf[j+1] = 0; |
+ }while( osAccess(zBuf,0)==0 ); |
+ return SQLITE_OK; |
+} |
+ |
+#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) |
+/* |
+** Routine to transform a unixFile into a proxy-locking unixFile. |
+** Implementation in the proxy-lock division, but used by unixOpen() |
+** if SQLITE_PREFER_PROXY_LOCKING is defined. |
+*/ |
+static int proxyTransformUnixFile(unixFile*, const char*); |
+#endif |
+ |
+/* |
+** Search for an unused file descriptor that was opened on the database |
+** file (not a journal or master-journal file) identified by pathname |
+** zPath with SQLITE_OPEN_XXX flags matching those passed as the second |
+** argument to this function. |
+** |
+** Such a file descriptor may exist if a database connection was closed |
+** but the associated file descriptor could not be closed because some |
+** other file descriptor open on the same file is holding a file-lock. |
+** Refer to comments in the unixClose() function and the lengthy comment |
+** describing "Posix Advisory Locking" at the start of this file for |
+** further details. Also, ticket #4018. |
+** |
+** If a suitable file descriptor is found, then it is returned. If no |
+** such file descriptor is located, -1 is returned. |
+*/ |
+static UnixUnusedFd *findReusableFd(const char *zPath, int flags){ |
+ UnixUnusedFd *pUnused = 0; |
+ |
+ /* Do not search for an unused file descriptor on vxworks. Not because |
+ ** vxworks would not benefit from the change (it might, we're not sure), |
+ ** but because no way to test it is currently available. It is better |
+ ** not to risk breaking vxworks support for the sake of such an obscure |
+ ** feature. */ |
+#if !OS_VXWORKS |
+ struct stat sStat; /* Results of stat() call */ |
+ |
+ /* A stat() call may fail for various reasons. If this happens, it is |
+ ** almost certain that an open() call on the same path will also fail. |
+ ** For this reason, if an error occurs in the stat() call here, it is |
+ ** ignored and -1 is returned. The caller will try to open a new file |
+ ** descriptor on the same path, fail, and return an error to SQLite. |
+ ** |
+ ** Even if a subsequent open() call does succeed, the consequences of |
+ ** not searching for a reusable file descriptor are not dire. */ |
+ if( 0==osStat(zPath, &sStat) ){ |
+ unixInodeInfo *pInode; |
+ |
+ unixEnterMutex(); |
+ pInode = inodeList; |
+ while( pInode && (pInode->fileId.dev!=sStat.st_dev |
+ || pInode->fileId.ino!=sStat.st_ino) ){ |
+ pInode = pInode->pNext; |
+ } |
+ if( pInode ){ |
+ UnixUnusedFd **pp; |
+ for(pp=&pInode->pUnused; *pp && (*pp)->flags!=flags; pp=&((*pp)->pNext)); |
+ pUnused = *pp; |
+ if( pUnused ){ |
+ *pp = pUnused->pNext; |
+ } |
+ } |
+ unixLeaveMutex(); |
+ } |
+#endif /* if !OS_VXWORKS */ |
+ return pUnused; |
+} |
+ |
+/* |
+** This function is called by unixOpen() to determine the unix permissions |
+** to create new files with. If no error occurs, then SQLITE_OK is returned |
+** and a value suitable for passing as the third argument to open(2) is |
+** written to *pMode. If an IO error occurs, an SQLite error code is |
+** returned and the value of *pMode is not modified. |
+** |
+** In most cases, this routine sets *pMode to 0, which will become |
+** an indication to robust_open() to create the file using |
+** SQLITE_DEFAULT_FILE_PERMISSIONS adjusted by the umask. |
+** But if the file being opened is a WAL or regular journal file, then |
+** this function queries the file-system for the permissions on the |
+** corresponding database file and sets *pMode to this value. Whenever |
+** possible, WAL and journal files are created using the same permissions |
+** as the associated database file. |
+** |
+** If the SQLITE_ENABLE_8_3_NAMES option is enabled, then the |
+** original filename is unavailable. But 8_3_NAMES is only used for |
+** FAT filesystems and permissions do not matter there, so just use |
+** the default permissions. |
+*/ |
+static int findCreateFileMode( |
+ const char *zPath, /* Path of file (possibly) being created */ |
+ int flags, /* Flags passed as 4th argument to xOpen() */ |
+ mode_t *pMode, /* OUT: Permissions to open file with */ |
+ uid_t *pUid, /* OUT: uid to set on the file */ |
+ gid_t *pGid /* OUT: gid to set on the file */ |
+){ |
+ int rc = SQLITE_OK; /* Return Code */ |
+ *pMode = 0; |
+ *pUid = 0; |
+ *pGid = 0; |
+ if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){ |
+ char zDb[MAX_PATHNAME+1]; /* Database file path */ |
+ int nDb; /* Number of valid bytes in zDb */ |
+ struct stat sStat; /* Output of stat() on database file */ |
+ |
+ /* zPath is a path to a WAL or journal file. The following block derives |
+ ** the path to the associated database file from zPath. This block handles |
+ ** the following naming conventions: |
+ ** |
+ ** "<path to db>-journal" |
+ ** "<path to db>-wal" |
+ ** "<path to db>-journalNN" |
+ ** "<path to db>-walNN" |
+ ** |
+ ** where NN is a decimal number. The NN naming schemes are |
+ ** used by the test_multiplex.c module. |
+ */ |
+ nDb = sqlite3Strlen30(zPath) - 1; |
+#ifdef SQLITE_ENABLE_8_3_NAMES |
+ while( nDb>0 && sqlite3Isalnum(zPath[nDb]) ) nDb--; |
+ if( nDb==0 || zPath[nDb]!='-' ) return SQLITE_OK; |
+#else |
+ while( zPath[nDb]!='-' ){ |
+ assert( nDb>0 ); |
+ assert( zPath[nDb]!='\n' ); |
+ nDb--; |
+ } |
+#endif |
+ memcpy(zDb, zPath, nDb); |
+ zDb[nDb] = '\0'; |
+ |
+ if( 0==osStat(zDb, &sStat) ){ |
+ *pMode = sStat.st_mode & 0777; |
+ *pUid = sStat.st_uid; |
+ *pGid = sStat.st_gid; |
+ }else{ |
+ rc = SQLITE_IOERR_FSTAT; |
+ } |
+ }else if( flags & SQLITE_OPEN_DELETEONCLOSE ){ |
+ *pMode = 0600; |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Open the file zPath. |
+** |
+** Previously, the SQLite OS layer used three functions in place of this |
+** one: |
+** |
+** sqlite3OsOpenReadWrite(); |
+** sqlite3OsOpenReadOnly(); |
+** sqlite3OsOpenExclusive(); |
+** |
+** These calls correspond to the following combinations of flags: |
+** |
+** ReadWrite() -> (READWRITE | CREATE) |
+** ReadOnly() -> (READONLY) |
+** OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE) |
+** |
+** The old OpenExclusive() accepted a boolean argument - "delFlag". If |
+** true, the file was configured to be automatically deleted when the |
+** file handle closed. To achieve the same effect using this new |
+** interface, add the DELETEONCLOSE flag to those specified above for |
+** OpenExclusive(). |
+*/ |
+static int unixOpen( |
+ sqlite3_vfs *pVfs, /* The VFS for which this is the xOpen method */ |
+ const char *zPath, /* Pathname of file to be opened */ |
+ sqlite3_file *pFile, /* The file descriptor to be filled in */ |
+ int flags, /* Input flags to control the opening */ |
+ int *pOutFlags /* Output flags returned to SQLite core */ |
+){ |
+ unixFile *p = (unixFile *)pFile; |
+ int fd = -1; /* File descriptor returned by open() */ |
+ int openFlags = 0; /* Flags to pass to open() */ |
+ int eType = flags&0xFFFFFF00; /* Type of file to open */ |
+ int noLock; /* True to omit locking primitives */ |
+ int rc = SQLITE_OK; /* Function Return Code */ |
+ int ctrlFlags = 0; /* UNIXFILE_* flags */ |
+ |
+ int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE); |
+ int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE); |
+ int isCreate = (flags & SQLITE_OPEN_CREATE); |
+ int isReadonly = (flags & SQLITE_OPEN_READONLY); |
+ int isReadWrite = (flags & SQLITE_OPEN_READWRITE); |
+#if SQLITE_ENABLE_LOCKING_STYLE |
+ int isAutoProxy = (flags & SQLITE_OPEN_AUTOPROXY); |
+#endif |
+#if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE |
+ struct statfs fsInfo; |
+#endif |
+ |
+ /* If creating a master or main-file journal, this function will open |
+ ** a file-descriptor on the directory too. The first time unixSync() |
+ ** is called the directory file descriptor will be fsync()ed and close()d. |
+ */ |
+ int syncDir = (isCreate && ( |
+ eType==SQLITE_OPEN_MASTER_JOURNAL |
+ || eType==SQLITE_OPEN_MAIN_JOURNAL |
+ || eType==SQLITE_OPEN_WAL |
+ )); |
+ |
+ /* If argument zPath is a NULL pointer, this function is required to open |
+ ** a temporary file. Use this buffer to store the file name in. |
+ */ |
+ char zTmpname[MAX_PATHNAME+2]; |
+ const char *zName = zPath; |
+ |
+ /* Check the following statements are true: |
+ ** |
+ ** (a) Exactly one of the READWRITE and READONLY flags must be set, and |
+ ** (b) if CREATE is set, then READWRITE must also be set, and |
+ ** (c) if EXCLUSIVE is set, then CREATE must also be set. |
+ ** (d) if DELETEONCLOSE is set, then CREATE must also be set. |
+ */ |
+ assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly)); |
+ assert(isCreate==0 || isReadWrite); |
+ assert(isExclusive==0 || isCreate); |
+ assert(isDelete==0 || isCreate); |
+ |
+ /* The main DB, main journal, WAL file and master journal are never |
+ ** automatically deleted. Nor are they ever temporary files. */ |
+ assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB ); |
+ assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL ); |
+ assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MASTER_JOURNAL ); |
+ assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL ); |
+ |
+ /* Assert that the upper layer has set one of the "file-type" flags. */ |
+ assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB |
+ || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL |
+ || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_MASTER_JOURNAL |
+ || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL |
+ ); |
+ |
+ /* Detect a pid change and reset the PRNG. There is a race condition |
+ ** here such that two or more threads all trying to open databases at |
+ ** the same instant might all reset the PRNG. But multiple resets |
+ ** are harmless. |
+ */ |
+ if( randomnessPid!=getpid() ){ |
+ randomnessPid = getpid(); |
+ sqlite3_randomness(0,0); |
+ } |
+ |
+ memset(p, 0, sizeof(unixFile)); |
+ |
+ if( eType==SQLITE_OPEN_MAIN_DB ){ |
+ UnixUnusedFd *pUnused; |
+ pUnused = findReusableFd(zName, flags); |
+ if( pUnused ){ |
+ fd = pUnused->fd; |
+ }else{ |
+ pUnused = sqlite3_malloc(sizeof(*pUnused)); |
+ if( !pUnused ){ |
+ return SQLITE_NOMEM; |
+ } |
+ } |
+ p->pUnused = pUnused; |
+ |
+ /* Database filenames are double-zero terminated if they are not |
+ ** URIs with parameters. Hence, they can always be passed into |
+ ** sqlite3_uri_parameter(). */ |
+ assert( (flags & SQLITE_OPEN_URI) || zName[strlen(zName)+1]==0 ); |
+ |
+ }else if( !zName ){ |
+ /* If zName is NULL, the upper layer is requesting a temp file. */ |
+ assert(isDelete && !syncDir); |
+ rc = unixGetTempname(MAX_PATHNAME+2, zTmpname); |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ zName = zTmpname; |
+ |
+ /* Generated temporary filenames are always double-zero terminated |
+ ** for use by sqlite3_uri_parameter(). */ |
+ assert( zName[strlen(zName)+1]==0 ); |
+ } |
+ |
+ /* Determine the value of the flags parameter passed to POSIX function |
+ ** open(). These must be calculated even if open() is not called, as |
+ ** they may be stored as part of the file handle and used by the |
+ ** 'conch file' locking functions later on. */ |
+ if( isReadonly ) openFlags |= O_RDONLY; |
+ if( isReadWrite ) openFlags |= O_RDWR; |
+ if( isCreate ) openFlags |= O_CREAT; |
+ if( isExclusive ) openFlags |= (O_EXCL|O_NOFOLLOW); |
+ openFlags |= (O_LARGEFILE|O_BINARY); |
+ |
+ if( fd<0 ){ |
+ mode_t openMode; /* Permissions to create file with */ |
+ uid_t uid; /* Userid for the file */ |
+ gid_t gid; /* Groupid for the file */ |
+ rc = findCreateFileMode(zName, flags, &openMode, &uid, &gid); |
+ if( rc!=SQLITE_OK ){ |
+ assert( !p->pUnused ); |
+ assert( eType==SQLITE_OPEN_WAL || eType==SQLITE_OPEN_MAIN_JOURNAL ); |
+ return rc; |
+ } |
+ fd = robust_open(zName, openFlags, openMode); |
+ OSTRACE(("OPENX %-3d %s 0%o\n", fd, zName, openFlags)); |
+ if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){ |
+ /* Failed to open the file for read/write access. Try read-only. */ |
+ flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE); |
+ openFlags &= ~(O_RDWR|O_CREAT); |
+ flags |= SQLITE_OPEN_READONLY; |
+ openFlags |= O_RDONLY; |
+ isReadonly = 1; |
+ fd = robust_open(zName, openFlags, openMode); |
+ } |
+ if( fd<0 ){ |
+ rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zName); |
+ goto open_finished; |
+ } |
+ |
+ /* If this process is running as root and if creating a new rollback |
+ ** journal or WAL file, set the ownership of the journal or WAL to be |
+ ** the same as the original database. |
+ */ |
+ if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){ |
+ osFchown(fd, uid, gid); |
+ } |
+ } |
+ assert( fd>=0 ); |
+ if( pOutFlags ){ |
+ *pOutFlags = flags; |
+ } |
+ |
+ if( p->pUnused ){ |
+ p->pUnused->fd = fd; |
+ p->pUnused->flags = flags; |
+ } |
+ |
+ if( isDelete ){ |
+#if OS_VXWORKS |
+ zPath = zName; |
+#elif defined(SQLITE_UNLINK_AFTER_CLOSE) |
+ zPath = sqlite3_mprintf("%s", zName); |
+ if( zPath==0 ){ |
+ robust_close(p, fd, __LINE__); |
+ return SQLITE_NOMEM; |
+ } |
+#else |
+ osUnlink(zName); |
+#endif |
+ } |
+#if SQLITE_ENABLE_LOCKING_STYLE |
+ else{ |
+ p->openFlags = openFlags; |
+ } |
+#endif |
+ |
+ noLock = eType!=SQLITE_OPEN_MAIN_DB; |
+ |
+ |
+#if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE |
+ if( fstatfs(fd, &fsInfo) == -1 ){ |
+ ((unixFile*)pFile)->lastErrno = errno; |
+ robust_close(p, fd, __LINE__); |
+ return SQLITE_IOERR_ACCESS; |
+ } |
+ if (0 == strncmp("msdos", fsInfo.f_fstypename, 5)) { |
+ ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS; |
+ } |
+#endif |
+ |
+ /* Set up appropriate ctrlFlags */ |
+ if( isDelete ) ctrlFlags |= UNIXFILE_DELETE; |
+ if( isReadonly ) ctrlFlags |= UNIXFILE_RDONLY; |
+ if( noLock ) ctrlFlags |= UNIXFILE_NOLOCK; |
+ if( syncDir ) ctrlFlags |= UNIXFILE_DIRSYNC; |
+ if( flags & SQLITE_OPEN_URI ) ctrlFlags |= UNIXFILE_URI; |
+ |
+#if SQLITE_ENABLE_LOCKING_STYLE |
+#if SQLITE_PREFER_PROXY_LOCKING |
+ isAutoProxy = 1; |
+#endif |
+ if( isAutoProxy && (zPath!=NULL) && (!noLock) && pVfs->xOpen ){ |
+ char *envforce = getenv("SQLITE_FORCE_PROXY_LOCKING"); |
+ int useProxy = 0; |
+ |
+ /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means |
+ ** never use proxy, NULL means use proxy for non-local files only. */ |
+ if( envforce!=NULL ){ |
+ useProxy = atoi(envforce)>0; |
+ }else{ |
+ if( statfs(zPath, &fsInfo) == -1 ){ |
+ /* In theory, the close(fd) call is sub-optimal. If the file opened |
+ ** with fd is a database file, and there are other connections open |
+ ** on that file that are currently holding advisory locks on it, |
+ ** then the call to close() will cancel those locks. In practice, |
+ ** we're assuming that statfs() doesn't fail very often. At least |
+ ** not while other file descriptors opened by the same process on |
+ ** the same file are working. */ |
+ p->lastErrno = errno; |
+ robust_close(p, fd, __LINE__); |
+ rc = SQLITE_IOERR_ACCESS; |
+ goto open_finished; |
+ } |
+ useProxy = !(fsInfo.f_flags&MNT_LOCAL); |
+ } |
+ if( useProxy ){ |
+ rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags); |
+ if( rc==SQLITE_OK ){ |
+ rc = proxyTransformUnixFile((unixFile*)pFile, ":auto:"); |
+ if( rc!=SQLITE_OK ){ |
+ /* Use unixClose to clean up the resources added in fillInUnixFile |
+ ** and clear all the structure's references. Specifically, |
+ ** pFile->pMethods will be NULL so sqlite3OsClose will be a no-op |
+ */ |
+ unixClose(pFile); |
+ return rc; |
+ } |
+ } |
+ goto open_finished; |
+ } |
+ } |
+#endif |
+ |
+ rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags); |
+ |
+open_finished: |
+ if( rc!=SQLITE_OK ){ |
+ sqlite3_free(p->pUnused); |
+ } |
+ return rc; |
+} |
+ |
+ |
+/* |
+** Delete the file at zPath. If the dirSync argument is true, fsync() |
+** the directory after deleting the file. |
+*/ |
+static int unixDelete( |
+ sqlite3_vfs *NotUsed, /* VFS containing this as the xDelete method */ |
+ const char *zPath, /* Name of file to be deleted */ |
+ int dirSync /* If true, fsync() directory after deleting file */ |
+){ |
+ int rc = SQLITE_OK; |
+ UNUSED_PARAMETER(NotUsed); |
+ SimulateIOError(return SQLITE_IOERR_DELETE); |
+ if( osUnlink(zPath)==(-1) ){ |
+ if( errno==ENOENT |
+#if OS_VXWORKS |
+ || osAccess(zPath,0)!=0 |
+#endif |
+ ){ |
+ rc = SQLITE_IOERR_DELETE_NOENT; |
+ }else{ |
+ rc = unixLogError(SQLITE_IOERR_DELETE, "unlink", zPath); |
+ } |
+ return rc; |
+ } |
+#ifndef SQLITE_DISABLE_DIRSYNC |
+ if( (dirSync & 1)!=0 ){ |
+ int fd; |
+ rc = osOpenDirectory(zPath, &fd); |
+ if( rc==SQLITE_OK ){ |
+#if OS_VXWORKS |
+ if( fsync(fd)==-1 ) |
+#else |
+ if( fsync(fd) ) |
+#endif |
+ { |
+ rc = unixLogError(SQLITE_IOERR_DIR_FSYNC, "fsync", zPath); |
+ } |
+ robust_close(0, fd, __LINE__); |
+ }else if( rc==SQLITE_CANTOPEN ){ |
+ rc = SQLITE_OK; |
+ } |
+ } |
+#endif |
+ return rc; |
+} |
+ |
+/* |
+** Test the existence of or access permissions of file zPath. The |
+** test performed depends on the value of flags: |
+** |
+** SQLITE_ACCESS_EXISTS: Return 1 if the file exists |
+** SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable. |
+** SQLITE_ACCESS_READONLY: Return 1 if the file is readable. |
+** |
+** Otherwise return 0. |
+*/ |
+static int unixAccess( |
+ sqlite3_vfs *NotUsed, /* The VFS containing this xAccess method */ |
+ const char *zPath, /* Path of the file to examine */ |
+ int flags, /* What do we want to learn about the zPath file? */ |
+ int *pResOut /* Write result boolean here */ |
+){ |
+ int amode = 0; |
+ UNUSED_PARAMETER(NotUsed); |
+ SimulateIOError( return SQLITE_IOERR_ACCESS; ); |
+ switch( flags ){ |
+ case SQLITE_ACCESS_EXISTS: |
+ amode = F_OK; |
+ break; |
+ case SQLITE_ACCESS_READWRITE: |
+ amode = W_OK|R_OK; |
+ break; |
+ case SQLITE_ACCESS_READ: |
+ amode = R_OK; |
+ break; |
+ |
+ default: |
+ assert(!"Invalid flags argument"); |
+ } |
+ *pResOut = (osAccess(zPath, amode)==0); |
+ if( flags==SQLITE_ACCESS_EXISTS && *pResOut ){ |
+ struct stat buf; |
+ if( 0==osStat(zPath, &buf) && buf.st_size==0 ){ |
+ *pResOut = 0; |
+ } |
+ } |
+ return SQLITE_OK; |
+} |
+ |
+ |
+/* |
+** Turn a relative pathname into a full pathname. The relative path |
+** is stored as a nul-terminated string in the buffer pointed to by |
+** zPath. |
+** |
+** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes |
+** (in this case, MAX_PATHNAME bytes). The full-path is written to |
+** this buffer before returning. |
+*/ |
+static int unixFullPathname( |
+ sqlite3_vfs *pVfs, /* Pointer to vfs object */ |
+ const char *zPath, /* Possibly relative input path */ |
+ int nOut, /* Size of output buffer in bytes */ |
+ char *zOut /* Output buffer */ |
+){ |
+ |
+ /* It's odd to simulate an io-error here, but really this is just |
+ ** using the io-error infrastructure to test that SQLite handles this |
+ ** function failing. This function could fail if, for example, the |
+ ** current working directory has been unlinked. |
+ */ |
+ SimulateIOError( return SQLITE_ERROR ); |
+ |
+ assert( pVfs->mxPathname==MAX_PATHNAME ); |
+ UNUSED_PARAMETER(pVfs); |
+ |
+ zOut[nOut-1] = '\0'; |
+ if( zPath[0]=='/' ){ |
+ sqlite3_snprintf(nOut, zOut, "%s", zPath); |
+ }else{ |
+ int nCwd; |
+ if( osGetcwd(zOut, nOut-1)==0 ){ |
+ return unixLogError(SQLITE_CANTOPEN_BKPT, "getcwd", zPath); |
+ } |
+ nCwd = (int)strlen(zOut); |
+ sqlite3_snprintf(nOut-nCwd, &zOut[nCwd], "/%s", zPath); |
+ } |
+ return SQLITE_OK; |
+} |
+ |
+ |
+#ifndef SQLITE_OMIT_LOAD_EXTENSION |
+/* |
+** Interfaces for opening a shared library, finding entry points |
+** within the shared library, and closing the shared library. |
+*/ |
+#include <dlfcn.h> |
+static void *unixDlOpen(sqlite3_vfs *NotUsed, const char *zFilename){ |
+ UNUSED_PARAMETER(NotUsed); |
+ return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL); |
+} |
+ |
+/* |
+** SQLite calls this function immediately after a call to unixDlSym() or |
+** unixDlOpen() fails (returns a null pointer). If a more detailed error |
+** message is available, it is written to zBufOut. If no error message |
+** is available, zBufOut is left unmodified and SQLite uses a default |
+** error message. |
+*/ |
+static void unixDlError(sqlite3_vfs *NotUsed, int nBuf, char *zBufOut){ |
+ const char *zErr; |
+ UNUSED_PARAMETER(NotUsed); |
+ unixEnterMutex(); |
+ zErr = dlerror(); |
+ if( zErr ){ |
+ sqlite3_snprintf(nBuf, zBufOut, "%s", zErr); |
+ } |
+ unixLeaveMutex(); |
+} |
+static void (*unixDlSym(sqlite3_vfs *NotUsed, void *p, const char*zSym))(void){ |
+ /* |
+ ** GCC with -pedantic-errors says that C90 does not allow a void* to be |
+ ** cast into a pointer to a function. And yet the library dlsym() routine |
+ ** returns a void* which is really a pointer to a function. So how do we |
+ ** use dlsym() with -pedantic-errors? |
+ ** |
+ ** Variable x below is defined to be a pointer to a function taking |
+ ** parameters void* and const char* and returning a pointer to a function. |
+ ** We initialize x by assigning it a pointer to the dlsym() function. |
+ ** (That assignment requires a cast.) Then we call the function that |
+ ** x points to. |
+ ** |
+ ** This work-around is unlikely to work correctly on any system where |
+ ** you really cannot cast a function pointer into void*. But then, on the |
+ ** other hand, dlsym() will not work on such a system either, so we have |
+ ** not really lost anything. |
+ */ |
+ void (*(*x)(void*,const char*))(void); |
+ UNUSED_PARAMETER(NotUsed); |
+ x = (void(*(*)(void*,const char*))(void))dlsym; |
+ return (*x)(p, zSym); |
+} |
+static void unixDlClose(sqlite3_vfs *NotUsed, void *pHandle){ |
+ UNUSED_PARAMETER(NotUsed); |
+ dlclose(pHandle); |
+} |
+#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */ |
+ #define unixDlOpen 0 |
+ #define unixDlError 0 |
+ #define unixDlSym 0 |
+ #define unixDlClose 0 |
+#endif |
+ |
+/* |
+** Write nBuf bytes of random data to the supplied buffer zBuf. |
+*/ |
+static int unixRandomness(sqlite3_vfs *NotUsed, int nBuf, char *zBuf){ |
+ UNUSED_PARAMETER(NotUsed); |
+ assert((size_t)nBuf>=(sizeof(time_t)+sizeof(int))); |
+ |
+ /* We have to initialize zBuf to prevent valgrind from reporting |
+ ** errors. The reports issued by valgrind are incorrect - we would |
+ ** prefer that the randomness be increased by making use of the |
+ ** uninitialized space in zBuf - but valgrind errors tend to worry |
+ ** some users. Rather than argue, it seems easier just to initialize |
+ ** the whole array and silence valgrind, even if that means less randomness |
+ ** in the random seed. |
+ ** |
+ ** When testing, initializing zBuf[] to zero is all we do. That means |
+ ** that we always use the same random number sequence. This makes the |
+ ** tests repeatable. |
+ */ |
+ memset(zBuf, 0, nBuf); |
+ randomnessPid = getpid(); |
+#if !defined(SQLITE_TEST) |
+ { |
+ int fd, got; |
+ fd = robust_open("/dev/urandom", O_RDONLY, 0); |
+ if( fd<0 ){ |
+ time_t t; |
+ time(&t); |
+ memcpy(zBuf, &t, sizeof(t)); |
+ memcpy(&zBuf[sizeof(t)], &randomnessPid, sizeof(randomnessPid)); |
+ assert( sizeof(t)+sizeof(randomnessPid)<=(size_t)nBuf ); |
+ nBuf = sizeof(t) + sizeof(randomnessPid); |
+ }else{ |
+ do{ got = osRead(fd, zBuf, nBuf); }while( got<0 && errno==EINTR ); |
+ robust_close(0, fd, __LINE__); |
+ } |
+ } |
+#endif |
+ return nBuf; |
+} |
+ |
+ |
+/* |
+** Sleep for a little while. Return the amount of time slept. |
+** The argument is the number of microseconds we want to sleep. |
+** The return value is the number of microseconds of sleep actually |
+** requested from the underlying operating system, a number which |
+** might be greater than or equal to the argument, but not less |
+** than the argument. |
+*/ |
+static int unixSleep(sqlite3_vfs *NotUsed, int microseconds){ |
+#if OS_VXWORKS |
+ struct timespec sp; |
+ |
+ sp.tv_sec = microseconds / 1000000; |
+ sp.tv_nsec = (microseconds % 1000000) * 1000; |
+ nanosleep(&sp, NULL); |
+ UNUSED_PARAMETER(NotUsed); |
+ return microseconds; |
+#elif defined(HAVE_USLEEP) && HAVE_USLEEP |
+ usleep(microseconds); |
+ UNUSED_PARAMETER(NotUsed); |
+ return microseconds; |
+#else |
+ int seconds = (microseconds+999999)/1000000; |
+ sleep(seconds); |
+ UNUSED_PARAMETER(NotUsed); |
+ return seconds*1000000; |
+#endif |
+} |
+ |
+/* |
+** The following variable, if set to a non-zero value, is interpreted as |
+** the number of seconds since 1970 and is used to set the result of |
+** sqlite3OsCurrentTime() during testing. |
+*/ |
+#ifdef SQLITE_TEST |
+int sqlite3_current_time = 0; /* Fake system time in seconds since 1970. */ |
+#endif |
+ |
+/* |
+** Find the current time (in Universal Coordinated Time). Write into *piNow |
+** the current time and date as a Julian Day number times 86_400_000. In |
+** other words, write into *piNow the number of milliseconds since the Julian |
+** epoch of noon in Greenwich on November 24, 4714 B.C according to the |
+** proleptic Gregorian calendar. |
+** |
+** On success, return SQLITE_OK. Return SQLITE_ERROR if the time and date |
+** cannot be found. |
+*/ |
+static int unixCurrentTimeInt64(sqlite3_vfs *NotUsed, sqlite3_int64 *piNow){ |
+ static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000; |
+ int rc = SQLITE_OK; |
+#if defined(NO_GETTOD) |
+ time_t t; |
+ time(&t); |
+ *piNow = ((sqlite3_int64)t)*1000 + unixEpoch; |
+#elif OS_VXWORKS |
+ struct timespec sNow; |
+ clock_gettime(CLOCK_REALTIME, &sNow); |
+ *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_nsec/1000000; |
+#else |
+ struct timeval sNow; |
+ if( gettimeofday(&sNow, 0)==0 ){ |
+ *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_usec/1000; |
+ }else{ |
+ rc = SQLITE_ERROR; |
+ } |
+#endif |
+ |
+#ifdef SQLITE_TEST |
+ if( sqlite3_current_time ){ |
+ *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch; |
+ } |
+#endif |
+ UNUSED_PARAMETER(NotUsed); |
+ return rc; |
+} |
+ |
+/* |
+** Find the current time (in Universal Coordinated Time). Write the |
+** current time and date as a Julian Day number into *prNow and |
+** return 0. Return 1 if the time and date cannot be found. |
+*/ |
+static int unixCurrentTime(sqlite3_vfs *NotUsed, double *prNow){ |
+ sqlite3_int64 i = 0; |
+ int rc; |
+ UNUSED_PARAMETER(NotUsed); |
+ rc = unixCurrentTimeInt64(0, &i); |
+ *prNow = i/86400000.0; |
+ return rc; |
+} |
+ |
+/* |
+** We added the xGetLastError() method with the intention of providing |
+** better low-level error messages when operating-system problems come up |
+** during SQLite operation. But so far, none of that has been implemented |
+** in the core. So this routine is never called. For now, it is merely |
+** a place-holder. |
+*/ |
+static int unixGetLastError(sqlite3_vfs *NotUsed, int NotUsed2, char *NotUsed3){ |
+ UNUSED_PARAMETER(NotUsed); |
+ UNUSED_PARAMETER(NotUsed2); |
+ UNUSED_PARAMETER(NotUsed3); |
+ return 0; |
+} |
+ |
+ |
+/* |
+************************ End of sqlite3_vfs methods *************************** |
+******************************************************************************/ |
+ |
+/****************************************************************************** |
+************************** Begin Proxy Locking ******************************** |
+** |
+** Proxy locking is a "uber-locking-method" in this sense: It uses the |
+** other locking methods on secondary lock files. Proxy locking is a |
+** meta-layer over top of the primitive locking implemented above. For |
+** this reason, the division that implements of proxy locking is deferred |
+** until late in the file (here) after all of the other I/O methods have |
+** been defined - so that the primitive locking methods are available |
+** as services to help with the implementation of proxy locking. |
+** |
+**** |
+** |
+** The default locking schemes in SQLite use byte-range locks on the |
+** database file to coordinate safe, concurrent access by multiple readers |
+** and writers [http://sqlite.org/lockingv3.html]. The five file locking |
+** states (UNLOCKED, PENDING, SHARED, RESERVED, EXCLUSIVE) are implemented |
+** as POSIX read & write locks over fixed set of locations (via fsctl), |
+** on AFP and SMB only exclusive byte-range locks are available via fsctl |
+** with _IOWR('z', 23, struct ByteRangeLockPB2) to track the same 5 states. |
+** To simulate a F_RDLCK on the shared range, on AFP a randomly selected |
+** address in the shared range is taken for a SHARED lock, the entire |
+** shared range is taken for an EXCLUSIVE lock): |
+** |
+** PENDING_BYTE 0x40000000 |
+** RESERVED_BYTE 0x40000001 |
+** SHARED_RANGE 0x40000002 -> 0x40000200 |
+** |
+** This works well on the local file system, but shows a nearly 100x |
+** slowdown in read performance on AFP because the AFP client disables |
+** the read cache when byte-range locks are present. Enabling the read |
+** cache exposes a cache coherency problem that is present on all OS X |
+** supported network file systems. NFS and AFP both observe the |
+** close-to-open semantics for ensuring cache coherency |
+** [http://nfs.sourceforge.net/#faq_a8], which does not effectively |
+** address the requirements for concurrent database access by multiple |
+** readers and writers |
+** [http://www.nabble.com/SQLite-on-NFS-cache-coherency-td15655701.html]. |
+** |
+** To address the performance and cache coherency issues, proxy file locking |
+** changes the way database access is controlled by limiting access to a |
+** single host at a time and moving file locks off of the database file |
+** and onto a proxy file on the local file system. |
+** |
+** |
+** Using proxy locks |
+** ----------------- |
+** |
+** C APIs |
+** |
+** sqlite3_file_control(db, dbname, SQLITE_SET_LOCKPROXYFILE, |
+** <proxy_path> | ":auto:"); |
+** sqlite3_file_control(db, dbname, SQLITE_GET_LOCKPROXYFILE, &<proxy_path>); |
+** |
+** |
+** SQL pragmas |
+** |
+** PRAGMA [database.]lock_proxy_file=<proxy_path> | :auto: |
+** PRAGMA [database.]lock_proxy_file |
+** |
+** Specifying ":auto:" means that if there is a conch file with a matching |
+** host ID in it, the proxy path in the conch file will be used, otherwise |
+** a proxy path based on the user's temp dir |
+** (via confstr(_CS_DARWIN_USER_TEMP_DIR,...)) will be used and the |
+** actual proxy file name is generated from the name and path of the |
+** database file. For example: |
+** |
+** For database path "/Users/me/foo.db" |
+** The lock path will be "<tmpdir>/sqliteplocks/_Users_me_foo.db:auto:") |
+** |
+** Once a lock proxy is configured for a database connection, it can not |
+** be removed, however it may be switched to a different proxy path via |
+** the above APIs (assuming the conch file is not being held by another |
+** connection or process). |
+** |
+** |
+** How proxy locking works |
+** ----------------------- |
+** |
+** Proxy file locking relies primarily on two new supporting files: |
+** |
+** * conch file to limit access to the database file to a single host |
+** at a time |
+** |
+** * proxy file to act as a proxy for the advisory locks normally |
+** taken on the database |
+** |
+** The conch file - to use a proxy file, sqlite must first "hold the conch" |
+** by taking an sqlite-style shared lock on the conch file, reading the |
+** contents and comparing the host's unique host ID (see below) and lock |
+** proxy path against the values stored in the conch. The conch file is |
+** stored in the same directory as the database file and the file name |
+** is patterned after the database file name as ".<databasename>-conch". |
+** If the conch file does not exist, or its contents do not match the |
+** host ID and/or proxy path, then the lock is escalated to an exclusive |
+** lock and the conch file contents is updated with the host ID and proxy |
+** path and the lock is downgraded to a shared lock again. If the conch |
+** is held by another process (with a shared lock), the exclusive lock |
+** will fail and SQLITE_BUSY is returned. |
+** |
+** The proxy file - a single-byte file used for all advisory file locks |
+** normally taken on the database file. This allows for safe sharing |
+** of the database file for multiple readers and writers on the same |
+** host (the conch ensures that they all use the same local lock file). |
+** |
+** Requesting the lock proxy does not immediately take the conch, it is |
+** only taken when the first request to lock database file is made. |
+** This matches the semantics of the traditional locking behavior, where |
+** opening a connection to a database file does not take a lock on it. |
+** The shared lock and an open file descriptor are maintained until |
+** the connection to the database is closed. |
+** |
+** The proxy file and the lock file are never deleted so they only need |
+** to be created the first time they are used. |
+** |
+** Configuration options |
+** --------------------- |
+** |
+** SQLITE_PREFER_PROXY_LOCKING |
+** |
+** Database files accessed on non-local file systems are |
+** automatically configured for proxy locking, lock files are |
+** named automatically using the same logic as |
+** PRAGMA lock_proxy_file=":auto:" |
+** |
+** SQLITE_PROXY_DEBUG |
+** |
+** Enables the logging of error messages during host id file |
+** retrieval and creation |
+** |
+** LOCKPROXYDIR |
+** |
+** Overrides the default directory used for lock proxy files that |
+** are named automatically via the ":auto:" setting |
+** |
+** SQLITE_DEFAULT_PROXYDIR_PERMISSIONS |
+** |
+** Permissions to use when creating a directory for storing the |
+** lock proxy files, only used when LOCKPROXYDIR is not set. |
+** |
+** |
+** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING, |
+** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will |
+** force proxy locking to be used for every database file opened, and 0 |
+** will force automatic proxy locking to be disabled for all database |
+** files (explicitly calling the SQLITE_SET_LOCKPROXYFILE pragma or |
+** sqlite_file_control API is not affected by SQLITE_FORCE_PROXY_LOCKING). |
+*/ |
+ |
+/* |
+** Proxy locking is only available on MacOSX |
+*/ |
+#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
+ |
+/* |
+** The proxyLockingContext has the path and file structures for the remote |
+** and local proxy files in it |
+*/ |
+typedef struct proxyLockingContext proxyLockingContext; |
+struct proxyLockingContext { |
+ unixFile *conchFile; /* Open conch file */ |
+ char *conchFilePath; /* Name of the conch file */ |
+ unixFile *lockProxy; /* Open proxy lock file */ |
+ char *lockProxyPath; /* Name of the proxy lock file */ |
+ char *dbPath; /* Name of the open file */ |
+ int conchHeld; /* 1 if the conch is held, -1 if lockless */ |
+ void *oldLockingContext; /* Original lockingcontext to restore on close */ |
+ sqlite3_io_methods const *pOldMethod; /* Original I/O methods for close */ |
+}; |
+ |
+/* |
+** The proxy lock file path for the database at dbPath is written into lPath, |
+** which must point to valid, writable memory large enough for a maxLen length |
+** file path. |
+*/ |
+static int proxyGetLockPath(const char *dbPath, char *lPath, size_t maxLen){ |
+ int len; |
+ int dbLen; |
+ int i; |
+ |
+#ifdef LOCKPROXYDIR |
+ len = strlcpy(lPath, LOCKPROXYDIR, maxLen); |
+#else |
+# ifdef _CS_DARWIN_USER_TEMP_DIR |
+ { |
+ if( !confstr(_CS_DARWIN_USER_TEMP_DIR, lPath, maxLen) ){ |
+ OSTRACE(("GETLOCKPATH failed %s errno=%d pid=%d\n", |
+ lPath, errno, getpid())); |
+ return SQLITE_IOERR_LOCK; |
+ } |
+ len = strlcat(lPath, "sqliteplocks", maxLen); |
+ } |
+# else |
+ len = strlcpy(lPath, "/tmp/", maxLen); |
+# endif |
+#endif |
+ |
+ if( lPath[len-1]!='/' ){ |
+ len = strlcat(lPath, "/", maxLen); |
+ } |
+ |
+ /* transform the db path to a unique cache name */ |
+ dbLen = (int)strlen(dbPath); |
+ for( i=0; i<dbLen && (i+len+7)<(int)maxLen; i++){ |
+ char c = dbPath[i]; |
+ lPath[i+len] = (c=='/')?'_':c; |
+ } |
+ lPath[i+len]='\0'; |
+ strlcat(lPath, ":auto:", maxLen); |
+ OSTRACE(("GETLOCKPATH proxy lock path=%s pid=%d\n", lPath, getpid())); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+ ** Creates the lock file and any missing directories in lockPath |
+ */ |
+static int proxyCreateLockPath(const char *lockPath){ |
+ int i, len; |
+ char buf[MAXPATHLEN]; |
+ int start = 0; |
+ |
+ assert(lockPath!=NULL); |
+ /* try to create all the intermediate directories */ |
+ len = (int)strlen(lockPath); |
+ buf[0] = lockPath[0]; |
+ for( i=1; i<len; i++ ){ |
+ if( lockPath[i] == '/' && (i - start > 0) ){ |
+ /* only mkdir if leaf dir != "." or "/" or ".." */ |
+ if( i-start>2 || (i-start==1 && buf[start] != '.' && buf[start] != '/') |
+ || (i-start==2 && buf[start] != '.' && buf[start+1] != '.') ){ |
+ buf[i]='\0'; |
+ if( osMkdir(buf, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS) ){ |
+ int err=errno; |
+ if( err!=EEXIST ) { |
+ OSTRACE(("CREATELOCKPATH FAILED creating %s, " |
+ "'%s' proxy lock path=%s pid=%d\n", |
+ buf, strerror(err), lockPath, getpid())); |
+ return err; |
+ } |
+ } |
+ } |
+ start=i+1; |
+ } |
+ buf[i] = lockPath[i]; |
+ } |
+ OSTRACE(("CREATELOCKPATH proxy lock path=%s pid=%d\n", lockPath, getpid())); |
+ return 0; |
+} |
+ |
+/* |
+** Create a new VFS file descriptor (stored in memory obtained from |
+** sqlite3_malloc) and open the file named "path" in the file descriptor. |
+** |
+** The caller is responsible not only for closing the file descriptor |
+** but also for freeing the memory associated with the file descriptor. |
+*/ |
+static int proxyCreateUnixFile( |
+ const char *path, /* path for the new unixFile */ |
+ unixFile **ppFile, /* unixFile created and returned by ref */ |
+ int islockfile /* if non zero missing dirs will be created */ |
+) { |
+ int fd = -1; |
+ unixFile *pNew; |
+ int rc = SQLITE_OK; |
+ int openFlags = O_RDWR | O_CREAT; |
+ sqlite3_vfs dummyVfs; |
+ int terrno = 0; |
+ UnixUnusedFd *pUnused = NULL; |
+ |
+ /* 1. first try to open/create the file |
+ ** 2. if that fails, and this is a lock file (not-conch), try creating |
+ ** the parent directories and then try again. |
+ ** 3. if that fails, try to open the file read-only |
+ ** otherwise return BUSY (if lock file) or CANTOPEN for the conch file |
+ */ |
+ pUnused = findReusableFd(path, openFlags); |
+ if( pUnused ){ |
+ fd = pUnused->fd; |
+ }else{ |
+ pUnused = sqlite3_malloc(sizeof(*pUnused)); |
+ if( !pUnused ){ |
+ return SQLITE_NOMEM; |
+ } |
+ } |
+ if( fd<0 ){ |
+ fd = robust_open(path, openFlags, 0); |
+ terrno = errno; |
+ if( fd<0 && errno==ENOENT && islockfile ){ |
+ if( proxyCreateLockPath(path) == SQLITE_OK ){ |
+ fd = robust_open(path, openFlags, 0); |
+ } |
+ } |
+ } |
+ if( fd<0 ){ |
+ openFlags = O_RDONLY; |
+ fd = robust_open(path, openFlags, 0); |
+ terrno = errno; |
+ } |
+ if( fd<0 ){ |
+ if( islockfile ){ |
+ return SQLITE_BUSY; |
+ } |
+ switch (terrno) { |
+ case EACCES: |
+ return SQLITE_PERM; |
+ case EIO: |
+ return SQLITE_IOERR_LOCK; /* even though it is the conch */ |
+ default: |
+ return SQLITE_CANTOPEN_BKPT; |
+ } |
+ } |
+ |
+ pNew = (unixFile *)sqlite3_malloc(sizeof(*pNew)); |
+ if( pNew==NULL ){ |
+ rc = SQLITE_NOMEM; |
+ goto end_create_proxy; |
+ } |
+ memset(pNew, 0, sizeof(unixFile)); |
+ pNew->openFlags = openFlags; |
+ memset(&dummyVfs, 0, sizeof(dummyVfs)); |
+ dummyVfs.pAppData = (void*)&autolockIoFinder; |
+ dummyVfs.zName = "dummy"; |
+ pUnused->fd = fd; |
+ pUnused->flags = openFlags; |
+ pNew->pUnused = pUnused; |
+ |
+ rc = fillInUnixFile(&dummyVfs, fd, (sqlite3_file*)pNew, path, 0); |
+ if( rc==SQLITE_OK ){ |
+ *ppFile = pNew; |
+ return SQLITE_OK; |
+ } |
+end_create_proxy: |
+ robust_close(pNew, fd, __LINE__); |
+ sqlite3_free(pNew); |
+ sqlite3_free(pUnused); |
+ return rc; |
+} |
+ |
+#ifdef SQLITE_TEST |
+/* simulate multiple hosts by creating unique hostid file paths */ |
+int sqlite3_hostid_num = 0; |
+#endif |
+ |
+#define PROXY_HOSTIDLEN 16 /* conch file host id length */ |
+ |
+/* Not always defined in the headers as it ought to be */ |
+extern int gethostuuid(uuid_t id, const struct timespec *wait); |
+ |
+/* get the host ID via gethostuuid(), pHostID must point to PROXY_HOSTIDLEN |
+** bytes of writable memory. |
+*/ |
+static int proxyGetHostID(unsigned char *pHostID, int *pError){ |
+ assert(PROXY_HOSTIDLEN == sizeof(uuid_t)); |
+ memset(pHostID, 0, PROXY_HOSTIDLEN); |
+#if defined(__MAX_OS_X_VERSION_MIN_REQUIRED)\ |
+ && __MAC_OS_X_VERSION_MIN_REQUIRED<1050 |
+ { |
+ static const struct timespec timeout = {1, 0}; /* 1 sec timeout */ |
+ if( gethostuuid(pHostID, &timeout) ){ |
+ int err = errno; |
+ if( pError ){ |
+ *pError = err; |
+ } |
+ return SQLITE_IOERR; |
+ } |
+ } |
+#else |
+ UNUSED_PARAMETER(pError); |
+#endif |
+#ifdef SQLITE_TEST |
+ /* simulate multiple hosts by creating unique hostid file paths */ |
+ if( sqlite3_hostid_num != 0){ |
+ pHostID[0] = (char)(pHostID[0] + (char)(sqlite3_hostid_num & 0xFF)); |
+ } |
+#endif |
+ |
+ return SQLITE_OK; |
+} |
+ |
+/* The conch file contains the header, host id and lock file path |
+ */ |
+#define PROXY_CONCHVERSION 2 /* 1-byte header, 16-byte host id, path */ |
+#define PROXY_HEADERLEN 1 /* conch file header length */ |
+#define PROXY_PATHINDEX (PROXY_HEADERLEN+PROXY_HOSTIDLEN) |
+#define PROXY_MAXCONCHLEN (PROXY_HEADERLEN+PROXY_HOSTIDLEN+MAXPATHLEN) |
+ |
+/* |
+** Takes an open conch file, copies the contents to a new path and then moves |
+** it back. The newly created file's file descriptor is assigned to the |
+** conch file structure and finally the original conch file descriptor is |
+** closed. Returns zero if successful. |
+*/ |
+static int proxyBreakConchLock(unixFile *pFile, uuid_t myHostID){ |
+ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; |
+ unixFile *conchFile = pCtx->conchFile; |
+ char tPath[MAXPATHLEN]; |
+ char buf[PROXY_MAXCONCHLEN]; |
+ char *cPath = pCtx->conchFilePath; |
+ size_t readLen = 0; |
+ size_t pathLen = 0; |
+ char errmsg[64] = ""; |
+ int fd = -1; |
+ int rc = -1; |
+ UNUSED_PARAMETER(myHostID); |
+ |
+ /* create a new path by replace the trailing '-conch' with '-break' */ |
+ pathLen = strlcpy(tPath, cPath, MAXPATHLEN); |
+ if( pathLen>MAXPATHLEN || pathLen<6 || |
+ (strlcpy(&tPath[pathLen-5], "break", 6) != 5) ){ |
+ sqlite3_snprintf(sizeof(errmsg),errmsg,"path error (len %d)",(int)pathLen); |
+ goto end_breaklock; |
+ } |
+ /* read the conch content */ |
+ readLen = osPread(conchFile->h, buf, PROXY_MAXCONCHLEN, 0); |
+ if( readLen<PROXY_PATHINDEX ){ |
+ sqlite3_snprintf(sizeof(errmsg),errmsg,"read error (len %d)",(int)readLen); |
+ goto end_breaklock; |
+ } |
+ /* write it out to the temporary break file */ |
+ fd = robust_open(tPath, (O_RDWR|O_CREAT|O_EXCL), 0); |
+ if( fd<0 ){ |
+ sqlite3_snprintf(sizeof(errmsg), errmsg, "create failed (%d)", errno); |
+ goto end_breaklock; |
+ } |
+ if( osPwrite(fd, buf, readLen, 0) != (ssize_t)readLen ){ |
+ sqlite3_snprintf(sizeof(errmsg), errmsg, "write failed (%d)", errno); |
+ goto end_breaklock; |
+ } |
+ if( rename(tPath, cPath) ){ |
+ sqlite3_snprintf(sizeof(errmsg), errmsg, "rename failed (%d)", errno); |
+ goto end_breaklock; |
+ } |
+ rc = 0; |
+ fprintf(stderr, "broke stale lock on %s\n", cPath); |
+ robust_close(pFile, conchFile->h, __LINE__); |
+ conchFile->h = fd; |
+ conchFile->openFlags = O_RDWR | O_CREAT; |
+ |
+end_breaklock: |
+ if( rc ){ |
+ if( fd>=0 ){ |
+ osUnlink(tPath); |
+ robust_close(pFile, fd, __LINE__); |
+ } |
+ fprintf(stderr, "failed to break stale lock on %s, %s\n", cPath, errmsg); |
+ } |
+ return rc; |
+} |
+ |
+/* Take the requested lock on the conch file and break a stale lock if the |
+** host id matches. |
+*/ |
+static int proxyConchLock(unixFile *pFile, uuid_t myHostID, int lockType){ |
+ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; |
+ unixFile *conchFile = pCtx->conchFile; |
+ int rc = SQLITE_OK; |
+ int nTries = 0; |
+ struct timespec conchModTime; |
+ |
+ memset(&conchModTime, 0, sizeof(conchModTime)); |
+ do { |
+ rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType); |
+ nTries ++; |
+ if( rc==SQLITE_BUSY ){ |
+ /* If the lock failed (busy): |
+ * 1st try: get the mod time of the conch, wait 0.5s and try again. |
+ * 2nd try: fail if the mod time changed or host id is different, wait |
+ * 10 sec and try again |
+ * 3rd try: break the lock unless the mod time has changed. |
+ */ |
+ struct stat buf; |
+ if( osFstat(conchFile->h, &buf) ){ |
+ pFile->lastErrno = errno; |
+ return SQLITE_IOERR_LOCK; |
+ } |
+ |
+ if( nTries==1 ){ |
+ conchModTime = buf.st_mtimespec; |
+ usleep(500000); /* wait 0.5 sec and try the lock again*/ |
+ continue; |
+ } |
+ |
+ assert( nTries>1 ); |
+ if( conchModTime.tv_sec != buf.st_mtimespec.tv_sec || |
+ conchModTime.tv_nsec != buf.st_mtimespec.tv_nsec ){ |
+ return SQLITE_BUSY; |
+ } |
+ |
+ if( nTries==2 ){ |
+ char tBuf[PROXY_MAXCONCHLEN]; |
+ int len = osPread(conchFile->h, tBuf, PROXY_MAXCONCHLEN, 0); |
+ if( len<0 ){ |
+ pFile->lastErrno = errno; |
+ return SQLITE_IOERR_LOCK; |
+ } |
+ if( len>PROXY_PATHINDEX && tBuf[0]==(char)PROXY_CONCHVERSION){ |
+ /* don't break the lock if the host id doesn't match */ |
+ if( 0!=memcmp(&tBuf[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN) ){ |
+ return SQLITE_BUSY; |
+ } |
+ }else{ |
+ /* don't break the lock on short read or a version mismatch */ |
+ return SQLITE_BUSY; |
+ } |
+ usleep(10000000); /* wait 10 sec and try the lock again */ |
+ continue; |
+ } |
+ |
+ assert( nTries==3 ); |
+ if( 0==proxyBreakConchLock(pFile, myHostID) ){ |
+ rc = SQLITE_OK; |
+ if( lockType==EXCLUSIVE_LOCK ){ |
+ rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, SHARED_LOCK); |
+ } |
+ if( !rc ){ |
+ rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType); |
+ } |
+ } |
+ } |
+ } while( rc==SQLITE_BUSY && nTries<3 ); |
+ |
+ return rc; |
+} |
+ |
+/* Takes the conch by taking a shared lock and read the contents conch, if |
+** lockPath is non-NULL, the host ID and lock file path must match. A NULL |
+** lockPath means that the lockPath in the conch file will be used if the |
+** host IDs match, or a new lock path will be generated automatically |
+** and written to the conch file. |
+*/ |
+static int proxyTakeConch(unixFile *pFile){ |
+ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; |
+ |
+ if( pCtx->conchHeld!=0 ){ |
+ return SQLITE_OK; |
+ }else{ |
+ unixFile *conchFile = pCtx->conchFile; |
+ uuid_t myHostID; |
+ int pError = 0; |
+ char readBuf[PROXY_MAXCONCHLEN]; |
+ char lockPath[MAXPATHLEN]; |
+ char *tempLockPath = NULL; |
+ int rc = SQLITE_OK; |
+ int createConch = 0; |
+ int hostIdMatch = 0; |
+ int readLen = 0; |
+ int tryOldLockPath = 0; |
+ int forceNewLockPath = 0; |
+ |
+ OSTRACE(("TAKECONCH %d for %s pid=%d\n", conchFile->h, |
+ (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), getpid())); |
+ |
+ rc = proxyGetHostID(myHostID, &pError); |
+ if( (rc&0xff)==SQLITE_IOERR ){ |
+ pFile->lastErrno = pError; |
+ goto end_takeconch; |
+ } |
+ rc = proxyConchLock(pFile, myHostID, SHARED_LOCK); |
+ if( rc!=SQLITE_OK ){ |
+ goto end_takeconch; |
+ } |
+ /* read the existing conch file */ |
+ readLen = seekAndRead((unixFile*)conchFile, 0, readBuf, PROXY_MAXCONCHLEN); |
+ if( readLen<0 ){ |
+ /* I/O error: lastErrno set by seekAndRead */ |
+ pFile->lastErrno = conchFile->lastErrno; |
+ rc = SQLITE_IOERR_READ; |
+ goto end_takeconch; |
+ }else if( readLen<=(PROXY_HEADERLEN+PROXY_HOSTIDLEN) || |
+ readBuf[0]!=(char)PROXY_CONCHVERSION ){ |
+ /* a short read or version format mismatch means we need to create a new |
+ ** conch file. |
+ */ |
+ createConch = 1; |
+ } |
+ /* if the host id matches and the lock path already exists in the conch |
+ ** we'll try to use the path there, if we can't open that path, we'll |
+ ** retry with a new auto-generated path |
+ */ |
+ do { /* in case we need to try again for an :auto: named lock file */ |
+ |
+ if( !createConch && !forceNewLockPath ){ |
+ hostIdMatch = !memcmp(&readBuf[PROXY_HEADERLEN], myHostID, |
+ PROXY_HOSTIDLEN); |
+ /* if the conch has data compare the contents */ |
+ if( !pCtx->lockProxyPath ){ |
+ /* for auto-named local lock file, just check the host ID and we'll |
+ ** use the local lock file path that's already in there |
+ */ |
+ if( hostIdMatch ){ |
+ size_t pathLen = (readLen - PROXY_PATHINDEX); |
+ |
+ if( pathLen>=MAXPATHLEN ){ |
+ pathLen=MAXPATHLEN-1; |
+ } |
+ memcpy(lockPath, &readBuf[PROXY_PATHINDEX], pathLen); |
+ lockPath[pathLen] = 0; |
+ tempLockPath = lockPath; |
+ tryOldLockPath = 1; |
+ /* create a copy of the lock path if the conch is taken */ |
+ goto end_takeconch; |
+ } |
+ }else if( hostIdMatch |
+ && !strncmp(pCtx->lockProxyPath, &readBuf[PROXY_PATHINDEX], |
+ readLen-PROXY_PATHINDEX) |
+ ){ |
+ /* conch host and lock path match */ |
+ goto end_takeconch; |
+ } |
+ } |
+ |
+ /* if the conch isn't writable and doesn't match, we can't take it */ |
+ if( (conchFile->openFlags&O_RDWR) == 0 ){ |
+ rc = SQLITE_BUSY; |
+ goto end_takeconch; |
+ } |
+ |
+ /* either the conch didn't match or we need to create a new one */ |
+ if( !pCtx->lockProxyPath ){ |
+ proxyGetLockPath(pCtx->dbPath, lockPath, MAXPATHLEN); |
+ tempLockPath = lockPath; |
+ /* create a copy of the lock path _only_ if the conch is taken */ |
+ } |
+ |
+ /* update conch with host and path (this will fail if other process |
+ ** has a shared lock already), if the host id matches, use the big |
+ ** stick. |
+ */ |
+ futimes(conchFile->h, NULL); |
+ if( hostIdMatch && !createConch ){ |
+ if( conchFile->pInode && conchFile->pInode->nShared>1 ){ |
+ /* We are trying for an exclusive lock but another thread in this |
+ ** same process is still holding a shared lock. */ |
+ rc = SQLITE_BUSY; |
+ } else { |
+ rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK); |
+ } |
+ }else{ |
+ rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, EXCLUSIVE_LOCK); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ char writeBuffer[PROXY_MAXCONCHLEN]; |
+ int writeSize = 0; |
+ |
+ writeBuffer[0] = (char)PROXY_CONCHVERSION; |
+ memcpy(&writeBuffer[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN); |
+ if( pCtx->lockProxyPath!=NULL ){ |
+ strlcpy(&writeBuffer[PROXY_PATHINDEX], pCtx->lockProxyPath, MAXPATHLEN); |
+ }else{ |
+ strlcpy(&writeBuffer[PROXY_PATHINDEX], tempLockPath, MAXPATHLEN); |
+ } |
+ writeSize = PROXY_PATHINDEX + strlen(&writeBuffer[PROXY_PATHINDEX]); |
+ robust_ftruncate(conchFile->h, writeSize); |
+ rc = unixWrite((sqlite3_file *)conchFile, writeBuffer, writeSize, 0); |
+ fsync(conchFile->h); |
+ /* If we created a new conch file (not just updated the contents of a |
+ ** valid conch file), try to match the permissions of the database |
+ */ |
+ if( rc==SQLITE_OK && createConch ){ |
+ struct stat buf; |
+ int err = osFstat(pFile->h, &buf); |
+ if( err==0 ){ |
+ mode_t cmode = buf.st_mode&(S_IRUSR|S_IWUSR | S_IRGRP|S_IWGRP | |
+ S_IROTH|S_IWOTH); |
+ /* try to match the database file R/W permissions, ignore failure */ |
+#ifndef SQLITE_PROXY_DEBUG |
+ osFchmod(conchFile->h, cmode); |
+#else |
+ do{ |
+ rc = osFchmod(conchFile->h, cmode); |
+ }while( rc==(-1) && errno==EINTR ); |
+ if( rc!=0 ){ |
+ int code = errno; |
+ fprintf(stderr, "fchmod %o FAILED with %d %s\n", |
+ cmode, code, strerror(code)); |
+ } else { |
+ fprintf(stderr, "fchmod %o SUCCEDED\n",cmode); |
+ } |
+ }else{ |
+ int code = errno; |
+ fprintf(stderr, "STAT FAILED[%d] with %d %s\n", |
+ err, code, strerror(code)); |
+#endif |
+ } |
+ } |
+ } |
+ conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, SHARED_LOCK); |
+ |
+ end_takeconch: |
+ OSTRACE(("TRANSPROXY: CLOSE %d\n", pFile->h)); |
+ if( rc==SQLITE_OK && pFile->openFlags ){ |
+ int fd; |
+ if( pFile->h>=0 ){ |
+ robust_close(pFile, pFile->h, __LINE__); |
+ } |
+ pFile->h = -1; |
+ fd = robust_open(pCtx->dbPath, pFile->openFlags, 0); |
+ OSTRACE(("TRANSPROXY: OPEN %d\n", fd)); |
+ if( fd>=0 ){ |
+ pFile->h = fd; |
+ }else{ |
+ rc=SQLITE_CANTOPEN_BKPT; /* SQLITE_BUSY? proxyTakeConch called |
+ during locking */ |
+ } |
+ } |
+ if( rc==SQLITE_OK && !pCtx->lockProxy ){ |
+ char *path = tempLockPath ? tempLockPath : pCtx->lockProxyPath; |
+ rc = proxyCreateUnixFile(path, &pCtx->lockProxy, 1); |
+ if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && tryOldLockPath ){ |
+ /* we couldn't create the proxy lock file with the old lock file path |
+ ** so try again via auto-naming |
+ */ |
+ forceNewLockPath = 1; |
+ tryOldLockPath = 0; |
+ continue; /* go back to the do {} while start point, try again */ |
+ } |
+ } |
+ if( rc==SQLITE_OK ){ |
+ /* Need to make a copy of path if we extracted the value |
+ ** from the conch file or the path was allocated on the stack |
+ */ |
+ if( tempLockPath ){ |
+ pCtx->lockProxyPath = sqlite3DbStrDup(0, tempLockPath); |
+ if( !pCtx->lockProxyPath ){ |
+ rc = SQLITE_NOMEM; |
+ } |
+ } |
+ } |
+ if( rc==SQLITE_OK ){ |
+ pCtx->conchHeld = 1; |
+ |
+ if( pCtx->lockProxy->pMethod == &afpIoMethods ){ |
+ afpLockingContext *afpCtx; |
+ afpCtx = (afpLockingContext *)pCtx->lockProxy->lockingContext; |
+ afpCtx->dbPath = pCtx->lockProxyPath; |
+ } |
+ } else { |
+ conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK); |
+ } |
+ OSTRACE(("TAKECONCH %d %s\n", conchFile->h, |
+ rc==SQLITE_OK?"ok":"failed")); |
+ return rc; |
+ } while (1); /* in case we need to retry the :auto: lock file - |
+ ** we should never get here except via the 'continue' call. */ |
+ } |
+} |
+ |
+/* |
+** If pFile holds a lock on a conch file, then release that lock. |
+*/ |
+static int proxyReleaseConch(unixFile *pFile){ |
+ int rc = SQLITE_OK; /* Subroutine return code */ |
+ proxyLockingContext *pCtx; /* The locking context for the proxy lock */ |
+ unixFile *conchFile; /* Name of the conch file */ |
+ |
+ pCtx = (proxyLockingContext *)pFile->lockingContext; |
+ conchFile = pCtx->conchFile; |
+ OSTRACE(("RELEASECONCH %d for %s pid=%d\n", conchFile->h, |
+ (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), |
+ getpid())); |
+ if( pCtx->conchHeld>0 ){ |
+ rc = conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK); |
+ } |
+ pCtx->conchHeld = 0; |
+ OSTRACE(("RELEASECONCH %d %s\n", conchFile->h, |
+ (rc==SQLITE_OK ? "ok" : "failed"))); |
+ return rc; |
+} |
+ |
+/* |
+** Given the name of a database file, compute the name of its conch file. |
+** Store the conch filename in memory obtained from sqlite3_malloc(). |
+** Make *pConchPath point to the new name. Return SQLITE_OK on success |
+** or SQLITE_NOMEM if unable to obtain memory. |
+** |
+** The caller is responsible for ensuring that the allocated memory |
+** space is eventually freed. |
+** |
+** *pConchPath is set to NULL if a memory allocation error occurs. |
+*/ |
+static int proxyCreateConchPathname(char *dbPath, char **pConchPath){ |
+ int i; /* Loop counter */ |
+ int len = (int)strlen(dbPath); /* Length of database filename - dbPath */ |
+ char *conchPath; /* buffer in which to construct conch name */ |
+ |
+ /* Allocate space for the conch filename and initialize the name to |
+ ** the name of the original database file. */ |
+ *pConchPath = conchPath = (char *)sqlite3_malloc(len + 8); |
+ if( conchPath==0 ){ |
+ return SQLITE_NOMEM; |
+ } |
+ memcpy(conchPath, dbPath, len+1); |
+ |
+ /* now insert a "." before the last / character */ |
+ for( i=(len-1); i>=0; i-- ){ |
+ if( conchPath[i]=='/' ){ |
+ i++; |
+ break; |
+ } |
+ } |
+ conchPath[i]='.'; |
+ while ( i<len ){ |
+ conchPath[i+1]=dbPath[i]; |
+ i++; |
+ } |
+ |
+ /* append the "-conch" suffix to the file */ |
+ memcpy(&conchPath[i+1], "-conch", 7); |
+ assert( (int)strlen(conchPath) == len+7 ); |
+ |
+ return SQLITE_OK; |
+} |
+ |
+ |
+/* Takes a fully configured proxy locking-style unix file and switches |
+** the local lock file path |
+*/ |
+static int switchLockProxyPath(unixFile *pFile, const char *path) { |
+ proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext; |
+ char *oldPath = pCtx->lockProxyPath; |
+ int rc = SQLITE_OK; |
+ |
+ if( pFile->eFileLock!=NO_LOCK ){ |
+ return SQLITE_BUSY; |
+ } |
+ |
+ /* nothing to do if the path is NULL, :auto: or matches the existing path */ |
+ if( !path || path[0]=='\0' || !strcmp(path, ":auto:") || |
+ (oldPath && !strncmp(oldPath, path, MAXPATHLEN)) ){ |
+ return SQLITE_OK; |
+ }else{ |
+ unixFile *lockProxy = pCtx->lockProxy; |
+ pCtx->lockProxy=NULL; |
+ pCtx->conchHeld = 0; |
+ if( lockProxy!=NULL ){ |
+ rc=lockProxy->pMethod->xClose((sqlite3_file *)lockProxy); |
+ if( rc ) return rc; |
+ sqlite3_free(lockProxy); |
+ } |
+ sqlite3_free(oldPath); |
+ pCtx->lockProxyPath = sqlite3DbStrDup(0, path); |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** pFile is a file that has been opened by a prior xOpen call. dbPath |
+** is a string buffer at least MAXPATHLEN+1 characters in size. |
+** |
+** This routine find the filename associated with pFile and writes it |
+** int dbPath. |
+*/ |
+static int proxyGetDbPathForUnixFile(unixFile *pFile, char *dbPath){ |
+#if defined(__APPLE__) |
+ if( pFile->pMethod == &afpIoMethods ){ |
+ /* afp style keeps a reference to the db path in the filePath field |
+ ** of the struct */ |
+ assert( (int)strlen((char*)pFile->lockingContext)<=MAXPATHLEN ); |
+ strlcpy(dbPath, ((afpLockingContext *)pFile->lockingContext)->dbPath, MAXPATHLEN); |
+ } else |
+#endif |
+ if( pFile->pMethod == &dotlockIoMethods ){ |
+ /* dot lock style uses the locking context to store the dot lock |
+ ** file path */ |
+ int len = strlen((char *)pFile->lockingContext) - strlen(DOTLOCK_SUFFIX); |
+ memcpy(dbPath, (char *)pFile->lockingContext, len + 1); |
+ }else{ |
+ /* all other styles use the locking context to store the db file path */ |
+ assert( strlen((char*)pFile->lockingContext)<=MAXPATHLEN ); |
+ strlcpy(dbPath, (char *)pFile->lockingContext, MAXPATHLEN); |
+ } |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Takes an already filled in unix file and alters it so all file locking |
+** will be performed on the local proxy lock file. The following fields |
+** are preserved in the locking context so that they can be restored and |
+** the unix structure properly cleaned up at close time: |
+** ->lockingContext |
+** ->pMethod |
+*/ |
+static int proxyTransformUnixFile(unixFile *pFile, const char *path) { |
+ proxyLockingContext *pCtx; |
+ char dbPath[MAXPATHLEN+1]; /* Name of the database file */ |
+ char *lockPath=NULL; |
+ int rc = SQLITE_OK; |
+ |
+ if( pFile->eFileLock!=NO_LOCK ){ |
+ return SQLITE_BUSY; |
+ } |
+ proxyGetDbPathForUnixFile(pFile, dbPath); |
+ if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ){ |
+ lockPath=NULL; |
+ }else{ |
+ lockPath=(char *)path; |
+ } |
+ |
+ OSTRACE(("TRANSPROXY %d for %s pid=%d\n", pFile->h, |
+ (lockPath ? lockPath : ":auto:"), getpid())); |
+ |
+ pCtx = sqlite3_malloc( sizeof(*pCtx) ); |
+ if( pCtx==0 ){ |
+ return SQLITE_NOMEM; |
+ } |
+ memset(pCtx, 0, sizeof(*pCtx)); |
+ |
+ rc = proxyCreateConchPathname(dbPath, &pCtx->conchFilePath); |
+ if( rc==SQLITE_OK ){ |
+ rc = proxyCreateUnixFile(pCtx->conchFilePath, &pCtx->conchFile, 0); |
+ if( rc==SQLITE_CANTOPEN && ((pFile->openFlags&O_RDWR) == 0) ){ |
+ /* if (a) the open flags are not O_RDWR, (b) the conch isn't there, and |
+ ** (c) the file system is read-only, then enable no-locking access. |
+ ** Ugh, since O_RDONLY==0x0000 we test for !O_RDWR since unixOpen asserts |
+ ** that openFlags will have only one of O_RDONLY or O_RDWR. |
+ */ |
+ struct statfs fsInfo; |
+ struct stat conchInfo; |
+ int goLockless = 0; |
+ |
+ if( osStat(pCtx->conchFilePath, &conchInfo) == -1 ) { |
+ int err = errno; |
+ if( (err==ENOENT) && (statfs(dbPath, &fsInfo) != -1) ){ |
+ goLockless = (fsInfo.f_flags&MNT_RDONLY) == MNT_RDONLY; |
+ } |
+ } |
+ if( goLockless ){ |
+ pCtx->conchHeld = -1; /* read only FS/ lockless */ |
+ rc = SQLITE_OK; |
+ } |
+ } |
+ } |
+ if( rc==SQLITE_OK && lockPath ){ |
+ pCtx->lockProxyPath = sqlite3DbStrDup(0, lockPath); |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ pCtx->dbPath = sqlite3DbStrDup(0, dbPath); |
+ if( pCtx->dbPath==NULL ){ |
+ rc = SQLITE_NOMEM; |
+ } |
+ } |
+ if( rc==SQLITE_OK ){ |
+ /* all memory is allocated, proxys are created and assigned, |
+ ** switch the locking context and pMethod then return. |
+ */ |
+ pCtx->oldLockingContext = pFile->lockingContext; |
+ pFile->lockingContext = pCtx; |
+ pCtx->pOldMethod = pFile->pMethod; |
+ pFile->pMethod = &proxyIoMethods; |
+ }else{ |
+ if( pCtx->conchFile ){ |
+ pCtx->conchFile->pMethod->xClose((sqlite3_file *)pCtx->conchFile); |
+ sqlite3_free(pCtx->conchFile); |
+ } |
+ sqlite3DbFree(0, pCtx->lockProxyPath); |
+ sqlite3_free(pCtx->conchFilePath); |
+ sqlite3_free(pCtx); |
+ } |
+ OSTRACE(("TRANSPROXY %d %s\n", pFile->h, |
+ (rc==SQLITE_OK ? "ok" : "failed"))); |
+ return rc; |
+} |
+ |
+ |
+/* |
+** This routine handles sqlite3_file_control() calls that are specific |
+** to proxy locking. |
+*/ |
+static int proxyFileControl(sqlite3_file *id, int op, void *pArg){ |
+ switch( op ){ |
+ case SQLITE_GET_LOCKPROXYFILE: { |
+ unixFile *pFile = (unixFile*)id; |
+ if( pFile->pMethod == &proxyIoMethods ){ |
+ proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext; |
+ proxyTakeConch(pFile); |
+ if( pCtx->lockProxyPath ){ |
+ *(const char **)pArg = pCtx->lockProxyPath; |
+ }else{ |
+ *(const char **)pArg = ":auto: (not held)"; |
+ } |
+ } else { |
+ *(const char **)pArg = NULL; |
+ } |
+ return SQLITE_OK; |
+ } |
+ case SQLITE_SET_LOCKPROXYFILE: { |
+ unixFile *pFile = (unixFile*)id; |
+ int rc = SQLITE_OK; |
+ int isProxyStyle = (pFile->pMethod == &proxyIoMethods); |
+ if( pArg==NULL || (const char *)pArg==0 ){ |
+ if( isProxyStyle ){ |
+ /* turn off proxy locking - not supported */ |
+ rc = SQLITE_ERROR /*SQLITE_PROTOCOL? SQLITE_MISUSE?*/; |
+ }else{ |
+ /* turn off proxy locking - already off - NOOP */ |
+ rc = SQLITE_OK; |
+ } |
+ }else{ |
+ const char *proxyPath = (const char *)pArg; |
+ if( isProxyStyle ){ |
+ proxyLockingContext *pCtx = |
+ (proxyLockingContext*)pFile->lockingContext; |
+ if( !strcmp(pArg, ":auto:") |
+ || (pCtx->lockProxyPath && |
+ !strncmp(pCtx->lockProxyPath, proxyPath, MAXPATHLEN)) |
+ ){ |
+ rc = SQLITE_OK; |
+ }else{ |
+ rc = switchLockProxyPath(pFile, proxyPath); |
+ } |
+ }else{ |
+ /* turn on proxy file locking */ |
+ rc = proxyTransformUnixFile(pFile, proxyPath); |
+ } |
+ } |
+ return rc; |
+ } |
+ default: { |
+ assert( 0 ); /* The call assures that only valid opcodes are sent */ |
+ } |
+ } |
+ /*NOTREACHED*/ |
+ return SQLITE_ERROR; |
+} |
+ |
+/* |
+** Within this division (the proxying locking implementation) the procedures |
+** above this point are all utilities. The lock-related methods of the |
+** proxy-locking sqlite3_io_method object follow. |
+*/ |
+ |
+ |
+/* |
+** This routine checks if there is a RESERVED lock held on the specified |
+** file by this or any other process. If such a lock is held, set *pResOut |
+** to a non-zero value otherwise *pResOut is set to zero. The return value |
+** is set to SQLITE_OK unless an I/O error occurs during lock checking. |
+*/ |
+static int proxyCheckReservedLock(sqlite3_file *id, int *pResOut) { |
+ unixFile *pFile = (unixFile*)id; |
+ int rc = proxyTakeConch(pFile); |
+ if( rc==SQLITE_OK ){ |
+ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; |
+ if( pCtx->conchHeld>0 ){ |
+ unixFile *proxy = pCtx->lockProxy; |
+ return proxy->pMethod->xCheckReservedLock((sqlite3_file*)proxy, pResOut); |
+ }else{ /* conchHeld < 0 is lockless */ |
+ pResOut=0; |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Lock the file with the lock specified by parameter eFileLock - one |
+** of the following: |
+** |
+** (1) SHARED_LOCK |
+** (2) RESERVED_LOCK |
+** (3) PENDING_LOCK |
+** (4) EXCLUSIVE_LOCK |
+** |
+** Sometimes when requesting one lock state, additional lock states |
+** are inserted in between. The locking might fail on one of the later |
+** transitions leaving the lock state different from what it started but |
+** still short of its goal. The following chart shows the allowed |
+** transitions and the inserted intermediate states: |
+** |
+** UNLOCKED -> SHARED |
+** SHARED -> RESERVED |
+** SHARED -> (PENDING) -> EXCLUSIVE |
+** RESERVED -> (PENDING) -> EXCLUSIVE |
+** PENDING -> EXCLUSIVE |
+** |
+** This routine will only increase a lock. Use the sqlite3OsUnlock() |
+** routine to lower a locking level. |
+*/ |
+static int proxyLock(sqlite3_file *id, int eFileLock) { |
+ unixFile *pFile = (unixFile*)id; |
+ int rc = proxyTakeConch(pFile); |
+ if( rc==SQLITE_OK ){ |
+ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; |
+ if( pCtx->conchHeld>0 ){ |
+ unixFile *proxy = pCtx->lockProxy; |
+ rc = proxy->pMethod->xLock((sqlite3_file*)proxy, eFileLock); |
+ pFile->eFileLock = proxy->eFileLock; |
+ }else{ |
+ /* conchHeld < 0 is lockless */ |
+ } |
+ } |
+ return rc; |
+} |
+ |
+ |
+/* |
+** Lower the locking level on file descriptor pFile to eFileLock. eFileLock |
+** must be either NO_LOCK or SHARED_LOCK. |
+** |
+** If the locking level of the file descriptor is already at or below |
+** the requested locking level, this routine is a no-op. |
+*/ |
+static int proxyUnlock(sqlite3_file *id, int eFileLock) { |
+ unixFile *pFile = (unixFile*)id; |
+ int rc = proxyTakeConch(pFile); |
+ if( rc==SQLITE_OK ){ |
+ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; |
+ if( pCtx->conchHeld>0 ){ |
+ unixFile *proxy = pCtx->lockProxy; |
+ rc = proxy->pMethod->xUnlock((sqlite3_file*)proxy, eFileLock); |
+ pFile->eFileLock = proxy->eFileLock; |
+ }else{ |
+ /* conchHeld < 0 is lockless */ |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Close a file that uses proxy locks. |
+*/ |
+static int proxyClose(sqlite3_file *id) { |
+ if( id ){ |
+ unixFile *pFile = (unixFile*)id; |
+ proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; |
+ unixFile *lockProxy = pCtx->lockProxy; |
+ unixFile *conchFile = pCtx->conchFile; |
+ int rc = SQLITE_OK; |
+ |
+ if( lockProxy ){ |
+ rc = lockProxy->pMethod->xUnlock((sqlite3_file*)lockProxy, NO_LOCK); |
+ if( rc ) return rc; |
+ rc = lockProxy->pMethod->xClose((sqlite3_file*)lockProxy); |
+ if( rc ) return rc; |
+ sqlite3_free(lockProxy); |
+ pCtx->lockProxy = 0; |
+ } |
+ if( conchFile ){ |
+ if( pCtx->conchHeld ){ |
+ rc = proxyReleaseConch(pFile); |
+ if( rc ) return rc; |
+ } |
+ rc = conchFile->pMethod->xClose((sqlite3_file*)conchFile); |
+ if( rc ) return rc; |
+ sqlite3_free(conchFile); |
+ } |
+ sqlite3DbFree(0, pCtx->lockProxyPath); |
+ sqlite3_free(pCtx->conchFilePath); |
+ sqlite3DbFree(0, pCtx->dbPath); |
+ /* restore the original locking context and pMethod then close it */ |
+ pFile->lockingContext = pCtx->oldLockingContext; |
+ pFile->pMethod = pCtx->pOldMethod; |
+ sqlite3_free(pCtx); |
+ return pFile->pMethod->xClose(id); |
+ } |
+ return SQLITE_OK; |
+} |
+ |
+ |
+ |
+#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ |
+/* |
+** The proxy locking style is intended for use with AFP filesystems. |
+** And since AFP is only supported on MacOSX, the proxy locking is also |
+** restricted to MacOSX. |
+** |
+** |
+******************* End of the proxy lock implementation ********************** |
+******************************************************************************/ |
+ |
+/* |
+** Initialize the operating system interface. |
+** |
+** This routine registers all VFS implementations for unix-like operating |
+** systems. This routine, and the sqlite3_os_end() routine that follows, |
+** should be the only routines in this file that are visible from other |
+** files. |
+** |
+** This routine is called once during SQLite initialization and by a |
+** single thread. The memory allocation and mutex subsystems have not |
+** necessarily been initialized when this routine is called, and so they |
+** should not be used. |
+*/ |
+int sqlite3_os_init(void){ |
+ /* |
+ ** The following macro defines an initializer for an sqlite3_vfs object. |
+ ** The name of the VFS is NAME. The pAppData is a pointer to a pointer |
+ ** to the "finder" function. (pAppData is a pointer to a pointer because |
+ ** silly C90 rules prohibit a void* from being cast to a function pointer |
+ ** and so we have to go through the intermediate pointer to avoid problems |
+ ** when compiling with -pedantic-errors on GCC.) |
+ ** |
+ ** The FINDER parameter to this macro is the name of the pointer to the |
+ ** finder-function. The finder-function returns a pointer to the |
+ ** sqlite_io_methods object that implements the desired locking |
+ ** behaviors. See the division above that contains the IOMETHODS |
+ ** macro for addition information on finder-functions. |
+ ** |
+ ** Most finders simply return a pointer to a fixed sqlite3_io_methods |
+ ** object. But the "autolockIoFinder" available on MacOSX does a little |
+ ** more than that; it looks at the filesystem type that hosts the |
+ ** database file and tries to choose an locking method appropriate for |
+ ** that filesystem time. |
+ */ |
+ #define UNIXVFS(VFSNAME, FINDER) { \ |
+ 3, /* iVersion */ \ |
+ sizeof(unixFile), /* szOsFile */ \ |
+ MAX_PATHNAME, /* mxPathname */ \ |
+ 0, /* pNext */ \ |
+ VFSNAME, /* zName */ \ |
+ (void*)&FINDER, /* pAppData */ \ |
+ unixOpen, /* xOpen */ \ |
+ unixDelete, /* xDelete */ \ |
+ unixAccess, /* xAccess */ \ |
+ unixFullPathname, /* xFullPathname */ \ |
+ unixDlOpen, /* xDlOpen */ \ |
+ unixDlError, /* xDlError */ \ |
+ unixDlSym, /* xDlSym */ \ |
+ unixDlClose, /* xDlClose */ \ |
+ unixRandomness, /* xRandomness */ \ |
+ unixSleep, /* xSleep */ \ |
+ unixCurrentTime, /* xCurrentTime */ \ |
+ unixGetLastError, /* xGetLastError */ \ |
+ unixCurrentTimeInt64, /* xCurrentTimeInt64 */ \ |
+ unixSetSystemCall, /* xSetSystemCall */ \ |
+ unixGetSystemCall, /* xGetSystemCall */ \ |
+ unixNextSystemCall, /* xNextSystemCall */ \ |
+ } |
+ |
+ /* |
+ ** All default VFSes for unix are contained in the following array. |
+ ** |
+ ** Note that the sqlite3_vfs.pNext field of the VFS object is modified |
+ ** by the SQLite core when the VFS is registered. So the following |
+ ** array cannot be const. |
+ */ |
+ static sqlite3_vfs aVfs[] = { |
+#if SQLITE_ENABLE_LOCKING_STYLE && (OS_VXWORKS || defined(__APPLE__)) |
+ UNIXVFS("unix", autolockIoFinder ), |
+#else |
+ UNIXVFS("unix", posixIoFinder ), |
+#endif |
+ UNIXVFS("unix-none", nolockIoFinder ), |
+ UNIXVFS("unix-dotfile", dotlockIoFinder ), |
+ UNIXVFS("unix-excl", posixIoFinder ), |
+#if OS_VXWORKS |
+ UNIXVFS("unix-namedsem", semIoFinder ), |
+#endif |
+#if SQLITE_ENABLE_LOCKING_STYLE |
+ UNIXVFS("unix-posix", posixIoFinder ), |
+#if !OS_VXWORKS |
+ UNIXVFS("unix-flock", flockIoFinder ), |
+#endif |
+#endif |
+#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) |
+ UNIXVFS("unix-afp", afpIoFinder ), |
+ UNIXVFS("unix-nfs", nfsIoFinder ), |
+ UNIXVFS("unix-proxy", proxyIoFinder ), |
+#endif |
+ }; |
+ unsigned int i; /* Loop counter */ |
+ |
+ /* Double-check that the aSyscall[] array has been constructed |
+ ** correctly. See ticket [bb3a86e890c8e96ab] */ |
+ assert( ArraySize(aSyscall)==25 ); |
+ |
+ /* Register all VFSes defined in the aVfs[] array */ |
+ for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){ |
+ sqlite3_vfs_register(&aVfs[i], i==0); |
+ } |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Shutdown the operating system interface. |
+** |
+** Some operating systems might need to do some cleanup in this routine, |
+** to release dynamically allocated objects. But not on unix. |
+** This routine is a no-op for unix. |
+*/ |
+int sqlite3_os_end(void){ |
+ return SQLITE_OK; |
+} |
+ |
+#endif /* SQLITE_OS_UNIX */ |