Index: third_party/sqlite/src/ext/fts3/fts3_write.c |
diff --git a/third_party/sqlite/src/ext/fts3/fts3_write.c b/third_party/sqlite/src/ext/fts3/fts3_write.c |
index 3636c7dfc15db798a9aae562d2420a4f09ae9954..0da08c62d8bd05f7650b428d254d66369244193b 100644 |
--- a/third_party/sqlite/src/ext/fts3/fts3_write.c |
+++ b/third_party/sqlite/src/ext/fts3/fts3_write.c |
@@ -17,13 +17,16 @@ |
** code in fts3.c. |
*/ |
+#include "fts3Int.h" |
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) |
-#include "fts3Int.h" |
#include <string.h> |
#include <assert.h> |
#include <stdlib.h> |
+ |
+#define FTS_MAX_APPENDABLE_HEIGHT 16 |
+ |
/* |
** When full-text index nodes are loaded from disk, the buffer that they |
** are loaded into has the following number of bytes of padding at the end |
@@ -36,14 +39,63 @@ |
*/ |
#define FTS3_NODE_PADDING (FTS3_VARINT_MAX*2) |
+/* |
+** Under certain circumstances, b-tree nodes (doclists) can be loaded into |
+** memory incrementally instead of all at once. This can be a big performance |
+** win (reduced IO and CPU) if SQLite stops calling the virtual table xNext() |
+** method before retrieving all query results (as may happen, for example, |
+** if a query has a LIMIT clause). |
+** |
+** Incremental loading is used for b-tree nodes FTS3_NODE_CHUNK_THRESHOLD |
+** bytes and larger. Nodes are loaded in chunks of FTS3_NODE_CHUNKSIZE bytes. |
+** The code is written so that the hard lower-limit for each of these values |
+** is 1. Clearly such small values would be inefficient, but can be useful |
+** for testing purposes. |
+** |
+** If this module is built with SQLITE_TEST defined, these constants may |
+** be overridden at runtime for testing purposes. File fts3_test.c contains |
+** a Tcl interface to read and write the values. |
+*/ |
+#ifdef SQLITE_TEST |
+int test_fts3_node_chunksize = (4*1024); |
+int test_fts3_node_chunk_threshold = (4*1024)*4; |
+# define FTS3_NODE_CHUNKSIZE test_fts3_node_chunksize |
+# define FTS3_NODE_CHUNK_THRESHOLD test_fts3_node_chunk_threshold |
+#else |
+# define FTS3_NODE_CHUNKSIZE (4*1024) |
+# define FTS3_NODE_CHUNK_THRESHOLD (FTS3_NODE_CHUNKSIZE*4) |
+#endif |
+ |
+/* |
+** The two values that may be meaningfully bound to the :1 parameter in |
+** statements SQL_REPLACE_STAT and SQL_SELECT_STAT. |
+*/ |
+#define FTS_STAT_DOCTOTAL 0 |
+#define FTS_STAT_INCRMERGEHINT 1 |
+#define FTS_STAT_AUTOINCRMERGE 2 |
+ |
+/* |
+** If FTS_LOG_MERGES is defined, call sqlite3_log() to report each automatic |
+** and incremental merge operation that takes place. This is used for |
+** debugging FTS only, it should not usually be turned on in production |
+** systems. |
+*/ |
+#ifdef FTS3_LOG_MERGES |
+static void fts3LogMerge(int nMerge, sqlite3_int64 iAbsLevel){ |
+ sqlite3_log(SQLITE_OK, "%d-way merge from level %d", nMerge, (int)iAbsLevel); |
+} |
+#else |
+#define fts3LogMerge(x, y) |
+#endif |
+ |
+ |
typedef struct PendingList PendingList; |
typedef struct SegmentNode SegmentNode; |
typedef struct SegmentWriter SegmentWriter; |
/* |
-** Data structure used while accumulating terms in the pending-terms hash |
-** table. The hash table entry maps from term (a string) to a malloc'd |
-** instance of this structure. |
+** An instance of the following data structure is used to build doclists |
+** incrementally. See function fts3PendingListAppend() for details. |
*/ |
struct PendingList { |
int nData; |
@@ -74,7 +126,6 @@ struct Fts3DeferredToken { |
** |
** sqlite3Fts3SegReaderNew() |
** sqlite3Fts3SegReaderFree() |
-** sqlite3Fts3SegReaderCost() |
** sqlite3Fts3SegReaderIterate() |
** |
** Methods used to manipulate Fts3SegReader structures: |
@@ -85,6 +136,8 @@ struct Fts3DeferredToken { |
*/ |
struct Fts3SegReader { |
int iIdx; /* Index within level, or 0x7FFFFFFF for PT */ |
+ u8 bLookup; /* True for a lookup only */ |
+ u8 rootOnly; /* True for a root-only reader */ |
sqlite3_int64 iStartBlock; /* Rowid of first leaf block to traverse */ |
sqlite3_int64 iLeafEndBlock; /* Rowid of final leaf block to traverse */ |
@@ -93,6 +146,9 @@ struct Fts3SegReader { |
char *aNode; /* Pointer to node data (or NULL) */ |
int nNode; /* Size of buffer at aNode (or 0) */ |
+ int nPopulate; /* If >0, bytes of buffer aNode[] loaded */ |
+ sqlite3_blob *pBlob; /* If not NULL, blob handle to read node */ |
+ |
Fts3HashElem **ppNextElem; |
/* Variables set by fts3SegReaderNext(). These may be read directly |
@@ -106,13 +162,16 @@ struct Fts3SegReader { |
char *aDoclist; /* Pointer to doclist of current entry */ |
int nDoclist; /* Size of doclist in current entry */ |
- /* The following variables are used to iterate through the current doclist */ |
+ /* The following variables are used by fts3SegReaderNextDocid() to iterate |
+ ** through the current doclist (aDoclist/nDoclist). |
+ */ |
char *pOffsetList; |
+ int nOffsetList; /* For descending pending seg-readers only */ |
sqlite3_int64 iDocid; |
}; |
#define fts3SegReaderIsPending(p) ((p)->ppNextElem!=0) |
-#define fts3SegReaderIsRootOnly(p) ((p)->aNode==(char *)&(p)[1]) |
+#define fts3SegReaderIsRootOnly(p) ((p)->rootOnly!=0) |
/* |
** An instance of this structure is used to create a segment b-tree in the |
@@ -134,6 +193,7 @@ struct SegmentWriter { |
int nSize; /* Size of allocation at aData */ |
int nData; /* Bytes of data in aData */ |
char *aData; /* Pointer to block from malloc() */ |
+ i64 nLeafData; /* Number of bytes of leaf data written */ |
}; |
/* |
@@ -145,6 +205,14 @@ struct SegmentWriter { |
** fts3NodeAddTerm() |
** fts3NodeWrite() |
** fts3NodeFree() |
+** |
+** When a b+tree is written to the database (either as a result of a merge |
+** or the pending-terms table being flushed), leaves are written into the |
+** database file as soon as they are completely populated. The interior of |
+** the tree is assembled in memory and written out only once all leaves have |
+** been populated and stored. This is Ok, as the b+-tree fanout is usually |
+** very large, meaning that the interior of the tree consumes relatively |
+** little memory. |
*/ |
struct SegmentNode { |
SegmentNode *pParent; /* Parent node (or NULL for root node) */ |
@@ -175,17 +243,35 @@ struct SegmentNode { |
#define SQL_NEXT_SEGMENTS_ID 10 |
#define SQL_INSERT_SEGDIR 11 |
#define SQL_SELECT_LEVEL 12 |
-#define SQL_SELECT_ALL_LEVEL 13 |
+#define SQL_SELECT_LEVEL_RANGE 13 |
#define SQL_SELECT_LEVEL_COUNT 14 |
-#define SQL_SELECT_SEGDIR_COUNT_MAX 15 |
-#define SQL_DELETE_SEGDIR_BY_LEVEL 16 |
+#define SQL_SELECT_SEGDIR_MAX_LEVEL 15 |
+#define SQL_DELETE_SEGDIR_LEVEL 16 |
#define SQL_DELETE_SEGMENTS_RANGE 17 |
#define SQL_CONTENT_INSERT 18 |
#define SQL_DELETE_DOCSIZE 19 |
#define SQL_REPLACE_DOCSIZE 20 |
#define SQL_SELECT_DOCSIZE 21 |
-#define SQL_SELECT_DOCTOTAL 22 |
-#define SQL_REPLACE_DOCTOTAL 23 |
+#define SQL_SELECT_STAT 22 |
+#define SQL_REPLACE_STAT 23 |
+ |
+#define SQL_SELECT_ALL_PREFIX_LEVEL 24 |
+#define SQL_DELETE_ALL_TERMS_SEGDIR 25 |
+#define SQL_DELETE_SEGDIR_RANGE 26 |
+#define SQL_SELECT_ALL_LANGID 27 |
+#define SQL_FIND_MERGE_LEVEL 28 |
+#define SQL_MAX_LEAF_NODE_ESTIMATE 29 |
+#define SQL_DELETE_SEGDIR_ENTRY 30 |
+#define SQL_SHIFT_SEGDIR_ENTRY 31 |
+#define SQL_SELECT_SEGDIR 32 |
+#define SQL_CHOMP_SEGDIR 33 |
+#define SQL_SEGMENT_IS_APPENDABLE 34 |
+#define SQL_SELECT_INDEXES 35 |
+#define SQL_SELECT_MXLEVEL 36 |
+ |
+#define SQL_SELECT_LEVEL_RANGE2 37 |
+#define SQL_UPDATE_LEVEL_IDX 38 |
+#define SQL_UPDATE_LEVEL 39 |
/* |
** This function is used to obtain an SQLite prepared statement handle |
@@ -212,20 +298,21 @@ static int fts3SqlStmt( |
/* 4 */ "DELETE FROM %Q.'%q_segdir'", |
/* 5 */ "DELETE FROM %Q.'%q_docsize'", |
/* 6 */ "DELETE FROM %Q.'%q_stat'", |
-/* 7 */ "SELECT %s FROM %Q.'%q_content' AS x WHERE rowid=?", |
+/* 7 */ "SELECT %s WHERE rowid=?", |
/* 8 */ "SELECT (SELECT max(idx) FROM %Q.'%q_segdir' WHERE level = ?) + 1", |
-/* 9 */ "INSERT INTO %Q.'%q_segments'(blockid, block) VALUES(?, ?)", |
+/* 9 */ "REPLACE INTO %Q.'%q_segments'(blockid, block) VALUES(?, ?)", |
/* 10 */ "SELECT coalesce((SELECT max(blockid) FROM %Q.'%q_segments') + 1, 1)", |
-/* 11 */ "INSERT INTO %Q.'%q_segdir' VALUES(?,?,?,?,?,?)", |
+/* 11 */ "REPLACE INTO %Q.'%q_segdir' VALUES(?,?,?,?,?,?)", |
/* Return segments in order from oldest to newest.*/ |
/* 12 */ "SELECT idx, start_block, leaves_end_block, end_block, root " |
"FROM %Q.'%q_segdir' WHERE level = ? ORDER BY idx ASC", |
/* 13 */ "SELECT idx, start_block, leaves_end_block, end_block, root " |
- "FROM %Q.'%q_segdir' ORDER BY level DESC, idx ASC", |
+ "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?" |
+ "ORDER BY level DESC, idx ASC", |
/* 14 */ "SELECT count(*) FROM %Q.'%q_segdir' WHERE level = ?", |
-/* 15 */ "SELECT count(*), max(level) FROM %Q.'%q_segdir'", |
+/* 15 */ "SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?", |
/* 16 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ?", |
/* 17 */ "DELETE FROM %Q.'%q_segments' WHERE blockid BETWEEN ? AND ?", |
@@ -233,8 +320,72 @@ static int fts3SqlStmt( |
/* 19 */ "DELETE FROM %Q.'%q_docsize' WHERE docid = ?", |
/* 20 */ "REPLACE INTO %Q.'%q_docsize' VALUES(?,?)", |
/* 21 */ "SELECT size FROM %Q.'%q_docsize' WHERE docid=?", |
-/* 22 */ "SELECT value FROM %Q.'%q_stat' WHERE id=0", |
-/* 23 */ "REPLACE INTO %Q.'%q_stat' VALUES(0,?)", |
+/* 22 */ "SELECT value FROM %Q.'%q_stat' WHERE id=?", |
+/* 23 */ "REPLACE INTO %Q.'%q_stat' VALUES(?,?)", |
+/* 24 */ "", |
+/* 25 */ "", |
+ |
+/* 26 */ "DELETE FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?", |
+/* 27 */ "SELECT DISTINCT level / (1024 * ?) FROM %Q.'%q_segdir'", |
+ |
+/* This statement is used to determine which level to read the input from |
+** when performing an incremental merge. It returns the absolute level number |
+** of the oldest level in the db that contains at least ? segments. Or, |
+** if no level in the FTS index contains more than ? segments, the statement |
+** returns zero rows. */ |
+/* 28 */ "SELECT level FROM %Q.'%q_segdir' GROUP BY level HAVING count(*)>=?" |
+ " ORDER BY (level %% 1024) ASC LIMIT 1", |
+ |
+/* Estimate the upper limit on the number of leaf nodes in a new segment |
+** created by merging the oldest :2 segments from absolute level :1. See |
+** function sqlite3Fts3Incrmerge() for details. */ |
+/* 29 */ "SELECT 2 * total(1 + leaves_end_block - start_block) " |
+ " FROM %Q.'%q_segdir' WHERE level = ? AND idx < ?", |
+ |
+/* SQL_DELETE_SEGDIR_ENTRY |
+** Delete the %_segdir entry on absolute level :1 with index :2. */ |
+/* 30 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?", |
+ |
+/* SQL_SHIFT_SEGDIR_ENTRY |
+** Modify the idx value for the segment with idx=:3 on absolute level :2 |
+** to :1. */ |
+/* 31 */ "UPDATE %Q.'%q_segdir' SET idx = ? WHERE level=? AND idx=?", |
+ |
+/* SQL_SELECT_SEGDIR |
+** Read a single entry from the %_segdir table. The entry from absolute |
+** level :1 with index value :2. */ |
+/* 32 */ "SELECT idx, start_block, leaves_end_block, end_block, root " |
+ "FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?", |
+ |
+/* SQL_CHOMP_SEGDIR |
+** Update the start_block (:1) and root (:2) fields of the %_segdir |
+** entry located on absolute level :3 with index :4. */ |
+/* 33 */ "UPDATE %Q.'%q_segdir' SET start_block = ?, root = ?" |
+ "WHERE level = ? AND idx = ?", |
+ |
+/* SQL_SEGMENT_IS_APPENDABLE |
+** Return a single row if the segment with end_block=? is appendable. Or |
+** no rows otherwise. */ |
+/* 34 */ "SELECT 1 FROM %Q.'%q_segments' WHERE blockid=? AND block IS NULL", |
+ |
+/* SQL_SELECT_INDEXES |
+** Return the list of valid segment indexes for absolute level ? */ |
+/* 35 */ "SELECT idx FROM %Q.'%q_segdir' WHERE level=? ORDER BY 1 ASC", |
+ |
+/* SQL_SELECT_MXLEVEL |
+** Return the largest relative level in the FTS index or indexes. */ |
+/* 36 */ "SELECT max( level %% 1024 ) FROM %Q.'%q_segdir'", |
+ |
+ /* Return segments in order from oldest to newest.*/ |
+/* 37 */ "SELECT level, idx, end_block " |
+ "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ? " |
+ "ORDER BY level DESC, idx ASC", |
+ |
+ /* Update statements used while promoting segments */ |
+/* 38 */ "UPDATE OR FAIL %Q.'%q_segdir' SET level=-1,idx=? " |
+ "WHERE level=? AND idx=?", |
+/* 39 */ "UPDATE OR FAIL %Q.'%q_segdir' SET level=? WHERE level=-1" |
+ |
}; |
int rc = SQLITE_OK; |
sqlite3_stmt *pStmt; |
@@ -248,7 +399,7 @@ static int fts3SqlStmt( |
if( eStmt==SQL_CONTENT_INSERT ){ |
zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName, p->zWriteExprlist); |
}else if( eStmt==SQL_SELECT_CONTENT_BY_ROWID ){ |
- zSql = sqlite3_mprintf(azSql[eStmt], p->zReadExprlist, p->zDb, p->zName); |
+ zSql = sqlite3_mprintf(azSql[eStmt], p->zReadExprlist); |
}else{ |
zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName); |
} |
@@ -272,26 +423,22 @@ static int fts3SqlStmt( |
return rc; |
} |
+ |
static int fts3SelectDocsize( |
Fts3Table *pTab, /* FTS3 table handle */ |
- int eStmt, /* Either SQL_SELECT_DOCSIZE or DOCTOTAL */ |
sqlite3_int64 iDocid, /* Docid to bind for SQL_SELECT_DOCSIZE */ |
sqlite3_stmt **ppStmt /* OUT: Statement handle */ |
){ |
sqlite3_stmt *pStmt = 0; /* Statement requested from fts3SqlStmt() */ |
int rc; /* Return code */ |
- assert( eStmt==SQL_SELECT_DOCSIZE || eStmt==SQL_SELECT_DOCTOTAL ); |
- |
- rc = fts3SqlStmt(pTab, eStmt, &pStmt, 0); |
+ rc = fts3SqlStmt(pTab, SQL_SELECT_DOCSIZE, &pStmt, 0); |
if( rc==SQLITE_OK ){ |
- if( eStmt==SQL_SELECT_DOCSIZE ){ |
- sqlite3_bind_int64(pStmt, 1, iDocid); |
- } |
+ sqlite3_bind_int64(pStmt, 1, iDocid); |
rc = sqlite3_step(pStmt); |
if( rc!=SQLITE_ROW || sqlite3_column_type(pStmt, 0)!=SQLITE_BLOB ){ |
rc = sqlite3_reset(pStmt); |
- if( rc==SQLITE_OK ) rc = SQLITE_CORRUPT; |
+ if( rc==SQLITE_OK ) rc = FTS_CORRUPT_VTAB; |
pStmt = 0; |
}else{ |
rc = SQLITE_OK; |
@@ -306,7 +453,21 @@ int sqlite3Fts3SelectDoctotal( |
Fts3Table *pTab, /* Fts3 table handle */ |
sqlite3_stmt **ppStmt /* OUT: Statement handle */ |
){ |
- return fts3SelectDocsize(pTab, SQL_SELECT_DOCTOTAL, 0, ppStmt); |
+ sqlite3_stmt *pStmt = 0; |
+ int rc; |
+ rc = fts3SqlStmt(pTab, SQL_SELECT_STAT, &pStmt, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL); |
+ if( sqlite3_step(pStmt)!=SQLITE_ROW |
+ || sqlite3_column_type(pStmt, 0)!=SQLITE_BLOB |
+ ){ |
+ rc = sqlite3_reset(pStmt); |
+ if( rc==SQLITE_OK ) rc = FTS_CORRUPT_VTAB; |
+ pStmt = 0; |
+ } |
+ } |
+ *ppStmt = pStmt; |
+ return rc; |
} |
int sqlite3Fts3SelectDocsize( |
@@ -314,7 +475,7 @@ int sqlite3Fts3SelectDocsize( |
sqlite3_int64 iDocid, /* Docid to read size data for */ |
sqlite3_stmt **ppStmt /* OUT: Statement handle */ |
){ |
- return fts3SelectDocsize(pTab, SQL_SELECT_DOCSIZE, iDocid, ppStmt); |
+ return fts3SelectDocsize(pTab, iDocid, ppStmt); |
} |
/* |
@@ -344,36 +505,74 @@ static void fts3SqlExec( |
/* |
-** This function ensures that the caller has obtained a shared-cache |
-** table-lock on the %_content table. This is required before reading |
-** data from the fts3 table. If this lock is not acquired first, then |
-** the caller may end up holding read-locks on the %_segments and %_segdir |
-** tables, but no read-lock on the %_content table. If this happens |
-** a second connection will be able to write to the fts3 table, but |
-** attempting to commit those writes might return SQLITE_LOCKED or |
-** SQLITE_LOCKED_SHAREDCACHE (because the commit attempts to obtain |
-** write-locks on the %_segments and %_segdir ** tables). |
+** This function ensures that the caller has obtained an exclusive |
+** shared-cache table-lock on the %_segdir table. This is required before |
+** writing data to the fts3 table. If this lock is not acquired first, then |
+** the caller may end up attempting to take this lock as part of committing |
+** a transaction, causing SQLite to return SQLITE_LOCKED or |
+** LOCKED_SHAREDCACHEto a COMMIT command. |
** |
-** We try to avoid this because if FTS3 returns any error when committing |
-** a transaction, the whole transaction will be rolled back. And this is |
-** not what users expect when they get SQLITE_LOCKED_SHAREDCACHE. It can |
-** still happen if the user reads data directly from the %_segments or |
-** %_segdir tables instead of going through FTS3 though. |
+** It is best to avoid this because if FTS3 returns any error when |
+** committing a transaction, the whole transaction will be rolled back. |
+** And this is not what users expect when they get SQLITE_LOCKED_SHAREDCACHE. |
+** It can still happen if the user locks the underlying tables directly |
+** instead of accessing them via FTS. |
*/ |
-int sqlite3Fts3ReadLock(Fts3Table *p){ |
- int rc; /* Return code */ |
- sqlite3_stmt *pStmt; /* Statement used to obtain lock */ |
- |
- rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pStmt, 0); |
- if( rc==SQLITE_OK ){ |
- sqlite3_bind_null(pStmt, 1); |
- sqlite3_step(pStmt); |
- rc = sqlite3_reset(pStmt); |
+static int fts3Writelock(Fts3Table *p){ |
+ int rc = SQLITE_OK; |
+ |
+ if( p->nPendingData==0 ){ |
+ sqlite3_stmt *pStmt; |
+ rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pStmt, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_null(pStmt, 1); |
+ sqlite3_step(pStmt); |
+ rc = sqlite3_reset(pStmt); |
+ } |
} |
+ |
return rc; |
} |
/* |
+** FTS maintains a separate indexes for each language-id (a 32-bit integer). |
+** Within each language id, a separate index is maintained to store the |
+** document terms, and each configured prefix size (configured the FTS |
+** "prefix=" option). And each index consists of multiple levels ("relative |
+** levels"). |
+** |
+** All three of these values (the language id, the specific index and the |
+** level within the index) are encoded in 64-bit integer values stored |
+** in the %_segdir table on disk. This function is used to convert three |
+** separate component values into the single 64-bit integer value that |
+** can be used to query the %_segdir table. |
+** |
+** Specifically, each language-id/index combination is allocated 1024 |
+** 64-bit integer level values ("absolute levels"). The main terms index |
+** for language-id 0 is allocate values 0-1023. The first prefix index |
+** (if any) for language-id 0 is allocated values 1024-2047. And so on. |
+** Language 1 indexes are allocated immediately following language 0. |
+** |
+** So, for a system with nPrefix prefix indexes configured, the block of |
+** absolute levels that corresponds to language-id iLangid and index |
+** iIndex starts at absolute level ((iLangid * (nPrefix+1) + iIndex) * 1024). |
+*/ |
+static sqlite3_int64 getAbsoluteLevel( |
+ Fts3Table *p, /* FTS3 table handle */ |
+ int iLangid, /* Language id */ |
+ int iIndex, /* Index in p->aIndex[] */ |
+ int iLevel /* Level of segments */ |
+){ |
+ sqlite3_int64 iBase; /* First absolute level for iLangid/iIndex */ |
+ assert( iLangid>=0 ); |
+ assert( p->nIndex>0 ); |
+ assert( iIndex>=0 && iIndex<p->nIndex ); |
+ |
+ iBase = ((sqlite3_int64)iLangid * p->nIndex + iIndex) * FTS3_SEGDIR_MAXLEVEL; |
+ return iBase + iLevel; |
+} |
+ |
+/* |
** Set *ppStmt to a statement handle that may be used to iterate through |
** all rows in the %_segdir table, from oldest to newest. If successful, |
** return SQLITE_OK. If an error occurs while preparing the statement, |
@@ -390,14 +589,35 @@ int sqlite3Fts3ReadLock(Fts3Table *p){ |
** 3: end_block |
** 4: root |
*/ |
-int sqlite3Fts3AllSegdirs(Fts3Table *p, int iLevel, sqlite3_stmt **ppStmt){ |
+int sqlite3Fts3AllSegdirs( |
+ Fts3Table *p, /* FTS3 table */ |
+ int iLangid, /* Language being queried */ |
+ int iIndex, /* Index for p->aIndex[] */ |
+ int iLevel, /* Level to select (relative level) */ |
+ sqlite3_stmt **ppStmt /* OUT: Compiled statement */ |
+){ |
int rc; |
sqlite3_stmt *pStmt = 0; |
+ |
+ assert( iLevel==FTS3_SEGCURSOR_ALL || iLevel>=0 ); |
+ assert( iLevel<FTS3_SEGDIR_MAXLEVEL ); |
+ assert( iIndex>=0 && iIndex<p->nIndex ); |
+ |
if( iLevel<0 ){ |
- rc = fts3SqlStmt(p, SQL_SELECT_ALL_LEVEL, &pStmt, 0); |
+ /* "SELECT * FROM %_segdir WHERE level BETWEEN ? AND ? ORDER BY ..." */ |
+ rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE, &pStmt, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0)); |
+ sqlite3_bind_int64(pStmt, 2, |
+ getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1) |
+ ); |
+ } |
}else{ |
+ /* "SELECT * FROM %_segdir WHERE level = ? ORDER BY ..." */ |
rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0); |
- if( rc==SQLITE_OK ) sqlite3_bind_int(pStmt, 1, iLevel); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex,iLevel)); |
+ } |
} |
*ppStmt = pStmt; |
return rc; |
@@ -513,6 +733,47 @@ static int fts3PendingListAppend( |
} |
/* |
+** Free a PendingList object allocated by fts3PendingListAppend(). |
+*/ |
+static void fts3PendingListDelete(PendingList *pList){ |
+ sqlite3_free(pList); |
+} |
+ |
+/* |
+** Add an entry to one of the pending-terms hash tables. |
+*/ |
+static int fts3PendingTermsAddOne( |
+ Fts3Table *p, |
+ int iCol, |
+ int iPos, |
+ Fts3Hash *pHash, /* Pending terms hash table to add entry to */ |
+ const char *zToken, |
+ int nToken |
+){ |
+ PendingList *pList; |
+ int rc = SQLITE_OK; |
+ |
+ pList = (PendingList *)fts3HashFind(pHash, zToken, nToken); |
+ if( pList ){ |
+ p->nPendingData -= (pList->nData + nToken + sizeof(Fts3HashElem)); |
+ } |
+ if( fts3PendingListAppend(&pList, p->iPrevDocid, iCol, iPos, &rc) ){ |
+ if( pList==fts3HashInsert(pHash, zToken, nToken, pList) ){ |
+ /* Malloc failed while inserting the new entry. This can only |
+ ** happen if there was no previous entry for this token. |
+ */ |
+ assert( 0==fts3HashFind(pHash, zToken, nToken) ); |
+ sqlite3_free(pList); |
+ rc = SQLITE_NOMEM; |
+ } |
+ } |
+ if( rc==SQLITE_OK ){ |
+ p->nPendingData += (pList->nData + nToken + sizeof(Fts3HashElem)); |
+ } |
+ return rc; |
+} |
+ |
+/* |
** Tokenize the nul-terminated string zText and add all tokens to the |
** pending-terms hash-table. The docid used is that currently stored in |
** p->iPrevDocid, and the column is specified by argument iCol. |
@@ -521,18 +782,19 @@ static int fts3PendingListAppend( |
*/ |
static int fts3PendingTermsAdd( |
Fts3Table *p, /* Table into which text will be inserted */ |
+ int iLangid, /* Language id to use */ |
const char *zText, /* Text of document to be inserted */ |
int iCol, /* Column into which text is being inserted */ |
- u32 *pnWord /* OUT: Number of tokens inserted */ |
+ u32 *pnWord /* IN/OUT: Incr. by number tokens inserted */ |
){ |
int rc; |
- int iStart; |
- int iEnd; |
- int iPos; |
+ int iStart = 0; |
+ int iEnd = 0; |
+ int iPos = 0; |
int nWord = 0; |
char const *zToken; |
- int nToken; |
+ int nToken = 0; |
sqlite3_tokenizer *pTokenizer = p->pTokenizer; |
sqlite3_tokenizer_module const *pModule = pTokenizer->pModule; |
@@ -542,18 +804,24 @@ static int fts3PendingTermsAdd( |
assert( pTokenizer && pModule ); |
- rc = pModule->xOpen(pTokenizer, zText, -1, &pCsr); |
+ /* If the user has inserted a NULL value, this function may be called with |
+ ** zText==0. In this case, add zero token entries to the hash table and |
+ ** return early. */ |
+ if( zText==0 ){ |
+ *pnWord = 0; |
+ return SQLITE_OK; |
+ } |
+ |
+ rc = sqlite3Fts3OpenTokenizer(pTokenizer, iLangid, zText, -1, &pCsr); |
if( rc!=SQLITE_OK ){ |
return rc; |
} |
- pCsr->pTokenizer = pTokenizer; |
xNext = pModule->xNext; |
while( SQLITE_OK==rc |
&& SQLITE_OK==(rc = xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos)) |
){ |
- PendingList *pList; |
- |
+ int i; |
if( iPos>=nWord ) nWord = iPos+1; |
/* Positions cannot be negative; we use -1 as a terminator internally. |
@@ -564,27 +832,24 @@ static int fts3PendingTermsAdd( |
break; |
} |
- pList = (PendingList *)fts3HashFind(&p->pendingTerms, zToken, nToken); |
- if( pList ){ |
- p->nPendingData -= (pList->nData + nToken + sizeof(Fts3HashElem)); |
- } |
- if( fts3PendingListAppend(&pList, p->iPrevDocid, iCol, iPos, &rc) ){ |
- if( pList==fts3HashInsert(&p->pendingTerms, zToken, nToken, pList) ){ |
- /* Malloc failed while inserting the new entry. This can only |
- ** happen if there was no previous entry for this token. |
- */ |
- assert( 0==fts3HashFind(&p->pendingTerms, zToken, nToken) ); |
- sqlite3_free(pList); |
- rc = SQLITE_NOMEM; |
- } |
- } |
- if( rc==SQLITE_OK ){ |
- p->nPendingData += (pList->nData + nToken + sizeof(Fts3HashElem)); |
+ /* Add the term to the terms index */ |
+ rc = fts3PendingTermsAddOne( |
+ p, iCol, iPos, &p->aIndex[0].hPending, zToken, nToken |
+ ); |
+ |
+ /* Add the term to each of the prefix indexes that it is not too |
+ ** short for. */ |
+ for(i=1; rc==SQLITE_OK && i<p->nIndex; i++){ |
+ struct Fts3Index *pIndex = &p->aIndex[i]; |
+ if( nToken<pIndex->nPrefix ) continue; |
+ rc = fts3PendingTermsAddOne( |
+ p, iCol, iPos, &pIndex->hPending, zToken, pIndex->nPrefix |
+ ); |
} |
} |
pModule->xClose(pCsr); |
- *pnWord = nWord; |
+ *pnWord += nWord; |
return (rc==SQLITE_DONE ? SQLITE_OK : rc); |
} |
@@ -593,30 +858,45 @@ static int fts3PendingTermsAdd( |
** fts3PendingTermsAdd() are to add term/position-list pairs for the |
** contents of the document with docid iDocid. |
*/ |
-static int fts3PendingTermsDocid(Fts3Table *p, sqlite_int64 iDocid){ |
+static int fts3PendingTermsDocid( |
+ Fts3Table *p, /* Full-text table handle */ |
+ int iLangid, /* Language id of row being written */ |
+ sqlite_int64 iDocid /* Docid of row being written */ |
+){ |
+ assert( iLangid>=0 ); |
+ |
/* TODO(shess) Explore whether partially flushing the buffer on |
** forced-flush would provide better performance. I suspect that if |
** we ordered the doclists by size and flushed the largest until the |
** buffer was half empty, that would let the less frequent terms |
** generate longer doclists. |
*/ |
- if( iDocid<=p->iPrevDocid || p->nPendingData>p->nMaxPendingData ){ |
+ if( iDocid<=p->iPrevDocid |
+ || p->iPrevLangid!=iLangid |
+ || p->nPendingData>p->nMaxPendingData |
+ ){ |
int rc = sqlite3Fts3PendingTermsFlush(p); |
if( rc!=SQLITE_OK ) return rc; |
} |
p->iPrevDocid = iDocid; |
+ p->iPrevLangid = iLangid; |
return SQLITE_OK; |
} |
/* |
-** Discard the contents of the pending-terms hash table. |
+** Discard the contents of the pending-terms hash tables. |
*/ |
void sqlite3Fts3PendingTermsClear(Fts3Table *p){ |
- Fts3HashElem *pElem; |
- for(pElem=fts3HashFirst(&p->pendingTerms); pElem; pElem=fts3HashNext(pElem)){ |
- sqlite3_free(fts3HashData(pElem)); |
+ int i; |
+ for(i=0; i<p->nIndex; i++){ |
+ Fts3HashElem *pElem; |
+ Fts3Hash *pHash = &p->aIndex[i].hPending; |
+ for(pElem=fts3HashFirst(pHash); pElem; pElem=fts3HashNext(pElem)){ |
+ PendingList *pList = (PendingList *)fts3HashData(pElem); |
+ fts3PendingListDelete(pList); |
+ } |
+ fts3HashClear(pHash); |
} |
- fts3HashClear(&p->pendingTerms); |
p->nPendingData = 0; |
} |
@@ -628,17 +908,23 @@ void sqlite3Fts3PendingTermsClear(Fts3Table *p){ |
** Argument apVal is the same as the similarly named argument passed to |
** fts3InsertData(). Parameter iDocid is the docid of the new row. |
*/ |
-static int fts3InsertTerms(Fts3Table *p, sqlite3_value **apVal, u32 *aSz){ |
+static int fts3InsertTerms( |
+ Fts3Table *p, |
+ int iLangid, |
+ sqlite3_value **apVal, |
+ u32 *aSz |
+){ |
int i; /* Iterator variable */ |
for(i=2; i<p->nColumn+2; i++){ |
- const char *zText = (const char *)sqlite3_value_text(apVal[i]); |
- if( zText ){ |
- int rc = fts3PendingTermsAdd(p, zText, i-2, &aSz[i-2]); |
+ int iCol = i-2; |
+ if( p->abNotindexed[iCol]==0 ){ |
+ const char *zText = (const char *)sqlite3_value_text(apVal[i]); |
+ int rc = fts3PendingTermsAdd(p, iLangid, zText, iCol, &aSz[iCol]); |
if( rc!=SQLITE_OK ){ |
return rc; |
} |
+ aSz[p->nColumn] += sqlite3_value_bytes(apVal[i]); |
} |
- aSz[p->nColumn] += sqlite3_value_bytes(apVal[i]); |
} |
return SQLITE_OK; |
} |
@@ -655,6 +941,7 @@ static int fts3InsertTerms(Fts3Table *p, sqlite3_value **apVal, u32 *aSz){ |
** apVal[p->nColumn+1] Right-most user-defined column |
** apVal[p->nColumn+2] Hidden column with same name as table |
** apVal[p->nColumn+3] Hidden "docid" column (alias for rowid) |
+** apVal[p->nColumn+4] Hidden languageid column |
*/ |
static int fts3InsertData( |
Fts3Table *p, /* Full-text table */ |
@@ -664,6 +951,18 @@ static int fts3InsertData( |
int rc; /* Return code */ |
sqlite3_stmt *pContentInsert; /* INSERT INTO %_content VALUES(...) */ |
+ if( p->zContentTbl ){ |
+ sqlite3_value *pRowid = apVal[p->nColumn+3]; |
+ if( sqlite3_value_type(pRowid)==SQLITE_NULL ){ |
+ pRowid = apVal[1]; |
+ } |
+ if( sqlite3_value_type(pRowid)!=SQLITE_INTEGER ){ |
+ return SQLITE_CONSTRAINT; |
+ } |
+ *piDocid = sqlite3_value_int64(pRowid); |
+ return SQLITE_OK; |
+ } |
+ |
/* Locate the statement handle used to insert data into the %_content |
** table. The SQL for this statement is: |
** |
@@ -673,9 +972,13 @@ static int fts3InsertData( |
** defined columns in the FTS3 table, plus one for the docid field. |
*/ |
rc = fts3SqlStmt(p, SQL_CONTENT_INSERT, &pContentInsert, &apVal[1]); |
- if( rc!=SQLITE_OK ){ |
- return rc; |
+ if( rc==SQLITE_OK && p->zLanguageid ){ |
+ rc = sqlite3_bind_int( |
+ pContentInsert, p->nColumn+2, |
+ sqlite3_value_int(apVal[p->nColumn+4]) |
+ ); |
} |
+ if( rc!=SQLITE_OK ) return rc; |
/* There is a quirk here. The users INSERT statement may have specified |
** a value for the "rowid" field, for the "docid" field, or for both. |
@@ -714,14 +1017,16 @@ static int fts3InsertData( |
** Remove all data from the FTS3 table. Clear the hash table containing |
** pending terms. |
*/ |
-static int fts3DeleteAll(Fts3Table *p){ |
+static int fts3DeleteAll(Fts3Table *p, int bContent){ |
int rc = SQLITE_OK; /* Return code */ |
/* Discard the contents of the pending-terms hash table. */ |
sqlite3Fts3PendingTermsClear(p); |
- /* Delete everything from the %_content, %_segments and %_segdir tables. */ |
- fts3SqlExec(&rc, p, SQL_DELETE_ALL_CONTENT, 0); |
+ /* Delete everything from the shadow tables. Except, leave %_content as |
+ ** is if bContent is false. */ |
+ assert( p->zContentTbl==0 || bContent==0 ); |
+ if( bContent ) fts3SqlExec(&rc, p, SQL_DELETE_ALL_CONTENT, 0); |
fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGMENTS, 0); |
fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGDIR, 0); |
if( p->bHasDocsize ){ |
@@ -734,6 +1039,15 @@ static int fts3DeleteAll(Fts3Table *p){ |
} |
/* |
+** |
+*/ |
+static int langidFromSelect(Fts3Table *p, sqlite3_stmt *pSelect){ |
+ int iLangid = 0; |
+ if( p->zLanguageid ) iLangid = sqlite3_column_int(pSelect, p->nColumn+1); |
+ return iLangid; |
+} |
+ |
+/* |
** The first element in the apVal[] array is assumed to contain the docid |
** (an integer) of a row about to be deleted. Remove all terms from the |
** full-text index. |
@@ -741,27 +1055,35 @@ static int fts3DeleteAll(Fts3Table *p){ |
static void fts3DeleteTerms( |
int *pRC, /* Result code */ |
Fts3Table *p, /* The FTS table to delete from */ |
- sqlite3_value **apVal, /* apVal[] contains the docid to be deleted */ |
- u32 *aSz /* Sizes of deleted document written here */ |
+ sqlite3_value *pRowid, /* The docid to be deleted */ |
+ u32 *aSz, /* Sizes of deleted document written here */ |
+ int *pbFound /* OUT: Set to true if row really does exist */ |
){ |
int rc; |
sqlite3_stmt *pSelect; |
+ assert( *pbFound==0 ); |
if( *pRC ) return; |
- rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pSelect, apVal); |
+ rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pSelect, &pRowid); |
if( rc==SQLITE_OK ){ |
if( SQLITE_ROW==sqlite3_step(pSelect) ){ |
int i; |
- for(i=1; i<=p->nColumn; i++){ |
- const char *zText = (const char *)sqlite3_column_text(pSelect, i); |
- rc = fts3PendingTermsAdd(p, zText, -1, &aSz[i-1]); |
- if( rc!=SQLITE_OK ){ |
- sqlite3_reset(pSelect); |
- *pRC = rc; |
- return; |
+ int iLangid = langidFromSelect(p, pSelect); |
+ rc = fts3PendingTermsDocid(p, iLangid, sqlite3_column_int64(pSelect, 0)); |
+ for(i=1; rc==SQLITE_OK && i<=p->nColumn; i++){ |
+ int iCol = i-1; |
+ if( p->abNotindexed[iCol]==0 ){ |
+ const char *zText = (const char *)sqlite3_column_text(pSelect, i); |
+ rc = fts3PendingTermsAdd(p, iLangid, zText, -1, &aSz[iCol]); |
+ aSz[p->nColumn] += sqlite3_column_bytes(pSelect, i); |
} |
- aSz[p->nColumn] += sqlite3_column_bytes(pSelect, i); |
} |
+ if( rc!=SQLITE_OK ){ |
+ sqlite3_reset(pSelect); |
+ *pRC = rc; |
+ return; |
+ } |
+ *pbFound = 1; |
} |
rc = sqlite3_reset(pSelect); |
}else{ |
@@ -774,7 +1096,7 @@ static void fts3DeleteTerms( |
** Forward declaration to account for the circular dependency between |
** functions fts3SegmentMerge() and fts3AllocateSegdirIdx(). |
*/ |
-static int fts3SegmentMerge(Fts3Table *, int); |
+static int fts3SegmentMerge(Fts3Table *, int, int, int); |
/* |
** This function allocates a new level iLevel index in the segdir table. |
@@ -791,15 +1113,26 @@ static int fts3SegmentMerge(Fts3Table *, int); |
** If successful, *piIdx is set to the allocated index slot and SQLITE_OK |
** returned. Otherwise, an SQLite error code is returned. |
*/ |
-static int fts3AllocateSegdirIdx(Fts3Table *p, int iLevel, int *piIdx){ |
+static int fts3AllocateSegdirIdx( |
+ Fts3Table *p, |
+ int iLangid, /* Language id */ |
+ int iIndex, /* Index for p->aIndex */ |
+ int iLevel, |
+ int *piIdx |
+){ |
int rc; /* Return Code */ |
sqlite3_stmt *pNextIdx; /* Query for next idx at level iLevel */ |
int iNext = 0; /* Result of query pNextIdx */ |
+ assert( iLangid>=0 ); |
+ assert( p->nIndex>=1 ); |
+ |
/* Set variable iNext to the next available segdir index at level iLevel. */ |
rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pNextIdx, 0); |
if( rc==SQLITE_OK ){ |
- sqlite3_bind_int(pNextIdx, 1, iLevel); |
+ sqlite3_bind_int64( |
+ pNextIdx, 1, getAbsoluteLevel(p, iLangid, iIndex, iLevel) |
+ ); |
if( SQLITE_ROW==sqlite3_step(pNextIdx) ){ |
iNext = sqlite3_column_int(pNextIdx, 0); |
} |
@@ -813,7 +1146,8 @@ static int fts3AllocateSegdirIdx(Fts3Table *p, int iLevel, int *piIdx){ |
** if iNext is less than FTS3_MERGE_COUNT, allocate index iNext. |
*/ |
if( iNext>=FTS3_MERGE_COUNT ){ |
- rc = fts3SegmentMerge(p, iLevel); |
+ fts3LogMerge(16, getAbsoluteLevel(p, iLangid, iIndex, iLevel)); |
+ rc = fts3SegmentMerge(p, iLangid, iIndex, iLevel); |
*piIdx = 0; |
}else{ |
*piIdx = iNext; |
@@ -854,12 +1188,13 @@ int sqlite3Fts3ReadBlock( |
Fts3Table *p, /* FTS3 table handle */ |
sqlite3_int64 iBlockid, /* Access the row with blockid=$iBlockid */ |
char **paBlob, /* OUT: Blob data in malloc'd buffer */ |
- int *pnBlob /* OUT: Size of blob data */ |
+ int *pnBlob, /* OUT: Size of blob data */ |
+ int *pnLoad /* OUT: Bytes actually loaded */ |
){ |
int rc; /* Return code */ |
/* pnBlob must be non-NULL. paBlob may be NULL or non-NULL. */ |
- assert( pnBlob); |
+ assert( pnBlob ); |
if( p->pSegments ){ |
rc = sqlite3_blob_reopen(p->pSegments, iBlockid); |
@@ -875,11 +1210,16 @@ int sqlite3Fts3ReadBlock( |
if( rc==SQLITE_OK ){ |
int nByte = sqlite3_blob_bytes(p->pSegments); |
+ *pnBlob = nByte; |
if( paBlob ){ |
char *aByte = sqlite3_malloc(nByte + FTS3_NODE_PADDING); |
if( !aByte ){ |
rc = SQLITE_NOMEM; |
}else{ |
+ if( pnLoad && nByte>(FTS3_NODE_CHUNK_THRESHOLD) ){ |
+ nByte = FTS3_NODE_CHUNKSIZE; |
+ *pnLoad = nByte; |
+ } |
rc = sqlite3_blob_read(p->pSegments, aByte, nByte, 0); |
memset(&aByte[nByte], 0, FTS3_NODE_PADDING); |
if( rc!=SQLITE_OK ){ |
@@ -889,7 +1229,6 @@ int sqlite3Fts3ReadBlock( |
} |
*paBlob = aByte; |
} |
- *pnBlob = nByte; |
} |
return rc; |
@@ -903,13 +1242,67 @@ void sqlite3Fts3SegmentsClose(Fts3Table *p){ |
sqlite3_blob_close(p->pSegments); |
p->pSegments = 0; |
} |
+ |
+static int fts3SegReaderIncrRead(Fts3SegReader *pReader){ |
+ int nRead; /* Number of bytes to read */ |
+ int rc; /* Return code */ |
+ |
+ nRead = MIN(pReader->nNode - pReader->nPopulate, FTS3_NODE_CHUNKSIZE); |
+ rc = sqlite3_blob_read( |
+ pReader->pBlob, |
+ &pReader->aNode[pReader->nPopulate], |
+ nRead, |
+ pReader->nPopulate |
+ ); |
+ |
+ if( rc==SQLITE_OK ){ |
+ pReader->nPopulate += nRead; |
+ memset(&pReader->aNode[pReader->nPopulate], 0, FTS3_NODE_PADDING); |
+ if( pReader->nPopulate==pReader->nNode ){ |
+ sqlite3_blob_close(pReader->pBlob); |
+ pReader->pBlob = 0; |
+ pReader->nPopulate = 0; |
+ } |
+ } |
+ return rc; |
+} |
+ |
+static int fts3SegReaderRequire(Fts3SegReader *pReader, char *pFrom, int nByte){ |
+ int rc = SQLITE_OK; |
+ assert( !pReader->pBlob |
+ || (pFrom>=pReader->aNode && pFrom<&pReader->aNode[pReader->nNode]) |
+ ); |
+ while( pReader->pBlob && rc==SQLITE_OK |
+ && (pFrom - pReader->aNode + nByte)>pReader->nPopulate |
+ ){ |
+ rc = fts3SegReaderIncrRead(pReader); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Set an Fts3SegReader cursor to point at EOF. |
+*/ |
+static void fts3SegReaderSetEof(Fts3SegReader *pSeg){ |
+ if( !fts3SegReaderIsRootOnly(pSeg) ){ |
+ sqlite3_free(pSeg->aNode); |
+ sqlite3_blob_close(pSeg->pBlob); |
+ pSeg->pBlob = 0; |
+ } |
+ pSeg->aNode = 0; |
+} |
/* |
** Move the iterator passed as the first argument to the next term in the |
** segment. If successful, SQLITE_OK is returned. If there is no next term, |
** SQLITE_DONE. Otherwise, an SQLite error code. |
*/ |
-static int fts3SegReaderNext(Fts3Table *p, Fts3SegReader *pReader){ |
+static int fts3SegReaderNext( |
+ Fts3Table *p, |
+ Fts3SegReader *pReader, |
+ int bIncr |
+){ |
+ int rc; /* Return code of various sub-routines */ |
char *pNext; /* Cursor variable */ |
int nPrefix; /* Number of bytes in term prefix */ |
int nSuffix; /* Number of bytes in term suffix */ |
@@ -921,7 +1314,6 @@ static int fts3SegReaderNext(Fts3Table *p, Fts3SegReader *pReader){ |
} |
if( !pNext || pNext>=&pReader->aNode[pReader->nNode] ){ |
- int rc; /* Return code from Fts3ReadBlock() */ |
if( fts3SegReaderIsPending(pReader) ){ |
Fts3HashElem *pElem = *(pReader->ppNextElem); |
@@ -939,10 +1331,7 @@ static int fts3SegReaderNext(Fts3Table *p, Fts3SegReader *pReader){ |
return SQLITE_OK; |
} |
- if( !fts3SegReaderIsRootOnly(pReader) ){ |
- sqlite3_free(pReader->aNode); |
- } |
- pReader->aNode = 0; |
+ fts3SegReaderSetEof(pReader); |
/* If iCurrentBlock>=iLeafEndBlock, this is an EOF condition. All leaf |
** blocks have already been traversed. */ |
@@ -952,21 +1341,31 @@ static int fts3SegReaderNext(Fts3Table *p, Fts3SegReader *pReader){ |
} |
rc = sqlite3Fts3ReadBlock( |
- p, ++pReader->iCurrentBlock, &pReader->aNode, &pReader->nNode |
+ p, ++pReader->iCurrentBlock, &pReader->aNode, &pReader->nNode, |
+ (bIncr ? &pReader->nPopulate : 0) |
); |
if( rc!=SQLITE_OK ) return rc; |
+ assert( pReader->pBlob==0 ); |
+ if( bIncr && pReader->nPopulate<pReader->nNode ){ |
+ pReader->pBlob = p->pSegments; |
+ p->pSegments = 0; |
+ } |
pNext = pReader->aNode; |
} |
+ |
+ assert( !fts3SegReaderIsPending(pReader) ); |
+ |
+ rc = fts3SegReaderRequire(pReader, pNext, FTS3_VARINT_MAX*2); |
+ if( rc!=SQLITE_OK ) return rc; |
/* Because of the FTS3_NODE_PADDING bytes of padding, the following is |
- ** safe (no risk of overread) even if the node data is corrupted. |
- */ |
- pNext += sqlite3Fts3GetVarint32(pNext, &nPrefix); |
- pNext += sqlite3Fts3GetVarint32(pNext, &nSuffix); |
+ ** safe (no risk of overread) even if the node data is corrupted. */ |
+ pNext += fts3GetVarint32(pNext, &nPrefix); |
+ pNext += fts3GetVarint32(pNext, &nSuffix); |
if( nPrefix<0 || nSuffix<=0 |
|| &pNext[nSuffix]>&pReader->aNode[pReader->nNode] |
){ |
- return SQLITE_CORRUPT; |
+ return FTS_CORRUPT_VTAB; |
} |
if( nPrefix+nSuffix>pReader->nTermAlloc ){ |
@@ -978,10 +1377,14 @@ static int fts3SegReaderNext(Fts3Table *p, Fts3SegReader *pReader){ |
pReader->zTerm = zNew; |
pReader->nTermAlloc = nNew; |
} |
+ |
+ rc = fts3SegReaderRequire(pReader, pNext, nSuffix+FTS3_VARINT_MAX); |
+ if( rc!=SQLITE_OK ) return rc; |
+ |
memcpy(&pReader->zTerm[nPrefix], pNext, nSuffix); |
pReader->nTerm = nPrefix+nSuffix; |
pNext += nSuffix; |
- pNext += sqlite3Fts3GetVarint32(pNext, &pReader->nDoclist); |
+ pNext += fts3GetVarint32(pNext, &pReader->nDoclist); |
pReader->aDoclist = pNext; |
pReader->pOffsetList = 0; |
@@ -990,9 +1393,9 @@ static int fts3SegReaderNext(Fts3Table *p, Fts3SegReader *pReader){ |
** of these statements is untrue, then the data structure is corrupt. |
*/ |
if( &pReader->aDoclist[pReader->nDoclist]>&pReader->aNode[pReader->nNode] |
- || pReader->aDoclist[pReader->nDoclist-1] |
+ || (pReader->nPopulate==0 && pReader->aDoclist[pReader->nDoclist-1]) |
){ |
- return SQLITE_CORRUPT; |
+ return FTS_CORRUPT_VTAB; |
} |
return SQLITE_OK; |
} |
@@ -1001,12 +1404,26 @@ static int fts3SegReaderNext(Fts3Table *p, Fts3SegReader *pReader){ |
** Set the SegReader to point to the first docid in the doclist associated |
** with the current term. |
*/ |
-static void fts3SegReaderFirstDocid(Fts3SegReader *pReader){ |
- int n; |
+static int fts3SegReaderFirstDocid(Fts3Table *pTab, Fts3SegReader *pReader){ |
+ int rc = SQLITE_OK; |
assert( pReader->aDoclist ); |
assert( !pReader->pOffsetList ); |
- n = sqlite3Fts3GetVarint(pReader->aDoclist, &pReader->iDocid); |
- pReader->pOffsetList = &pReader->aDoclist[n]; |
+ if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){ |
+ u8 bEof = 0; |
+ pReader->iDocid = 0; |
+ pReader->nOffsetList = 0; |
+ sqlite3Fts3DoclistPrev(0, |
+ pReader->aDoclist, pReader->nDoclist, &pReader->pOffsetList, |
+ &pReader->iDocid, &pReader->nOffsetList, &bEof |
+ ); |
+ }else{ |
+ rc = fts3SegReaderRequire(pReader, pReader->aDoclist, FTS3_VARINT_MAX); |
+ if( rc==SQLITE_OK ){ |
+ int n = sqlite3Fts3GetVarint(pReader->aDoclist, &pReader->iDocid); |
+ pReader->pOffsetList = &pReader->aDoclist[n]; |
+ } |
+ } |
+ return rc; |
} |
/* |
@@ -1019,128 +1436,126 @@ static void fts3SegReaderFirstDocid(Fts3SegReader *pReader){ |
** *pnOffsetList is set to the length of the set of column-offset |
** lists, not including the nul-terminator byte. For example: |
*/ |
-static void fts3SegReaderNextDocid( |
- Fts3SegReader *pReader, |
- char **ppOffsetList, |
- int *pnOffsetList |
+static int fts3SegReaderNextDocid( |
+ Fts3Table *pTab, |
+ Fts3SegReader *pReader, /* Reader to advance to next docid */ |
+ char **ppOffsetList, /* OUT: Pointer to current position-list */ |
+ int *pnOffsetList /* OUT: Length of *ppOffsetList in bytes */ |
){ |
+ int rc = SQLITE_OK; |
char *p = pReader->pOffsetList; |
char c = 0; |
- /* Pointer p currently points at the first byte of an offset list. The |
- ** following two lines advance it to point one byte past the end of |
- ** the same offset list. |
- */ |
- while( *p | c ) c = *p++ & 0x80; |
- p++; |
- |
- /* If required, populate the output variables with a pointer to and the |
- ** size of the previous offset-list. |
- */ |
- if( ppOffsetList ){ |
- *ppOffsetList = pReader->pOffsetList; |
- *pnOffsetList = (int)(p - pReader->pOffsetList - 1); |
- } |
+ assert( p ); |
- /* If there are no more entries in the doclist, set pOffsetList to |
- ** NULL. Otherwise, set Fts3SegReader.iDocid to the next docid and |
- ** Fts3SegReader.pOffsetList to point to the next offset list before |
- ** returning. |
- */ |
- if( p>=&pReader->aDoclist[pReader->nDoclist] ){ |
- pReader->pOffsetList = 0; |
+ if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){ |
+ /* A pending-terms seg-reader for an FTS4 table that uses order=desc. |
+ ** Pending-terms doclists are always built up in ascending order, so |
+ ** we have to iterate through them backwards here. */ |
+ u8 bEof = 0; |
+ if( ppOffsetList ){ |
+ *ppOffsetList = pReader->pOffsetList; |
+ *pnOffsetList = pReader->nOffsetList - 1; |
+ } |
+ sqlite3Fts3DoclistPrev(0, |
+ pReader->aDoclist, pReader->nDoclist, &p, &pReader->iDocid, |
+ &pReader->nOffsetList, &bEof |
+ ); |
+ if( bEof ){ |
+ pReader->pOffsetList = 0; |
+ }else{ |
+ pReader->pOffsetList = p; |
+ } |
}else{ |
- sqlite3_int64 iDelta; |
- pReader->pOffsetList = p + sqlite3Fts3GetVarint(p, &iDelta); |
- pReader->iDocid += iDelta; |
- } |
-} |
- |
-/* |
-** This function is called to estimate the amount of data that will be |
-** loaded from the disk If SegReaderIterate() is called on this seg-reader, |
-** in units of average document size. |
-** |
-** This can be used as follows: If the caller has a small doclist that |
-** contains references to N documents, and is considering merging it with |
-** a large doclist (size X "average documents"), it may opt not to load |
-** the large doclist if X>N. |
-*/ |
-int sqlite3Fts3SegReaderCost( |
- Fts3Cursor *pCsr, /* FTS3 cursor handle */ |
- Fts3SegReader *pReader, /* Segment-reader handle */ |
- int *pnCost /* IN/OUT: Number of bytes read */ |
-){ |
- Fts3Table *p = (Fts3Table*)pCsr->base.pVtab; |
- int rc = SQLITE_OK; /* Return code */ |
- int nCost = 0; /* Cost in bytes to return */ |
- int pgsz = p->nPgsz; /* Database page size */ |
- |
- /* If this seg-reader is reading the pending-terms table, or if all data |
- ** for the segment is stored on the root page of the b-tree, then the cost |
- ** is zero. In this case all required data is already in main memory. |
- */ |
- if( p->bHasStat |
- && !fts3SegReaderIsPending(pReader) |
- && !fts3SegReaderIsRootOnly(pReader) |
- ){ |
- int nBlob = 0; |
- sqlite3_int64 iBlock; |
+ char *pEnd = &pReader->aDoclist[pReader->nDoclist]; |
- if( pCsr->nRowAvg==0 ){ |
- /* The average document size, which is required to calculate the cost |
- ** of each doclist, has not yet been determined. Read the required |
- ** data from the %_stat table to calculate it. |
- ** |
- ** Entry 0 of the %_stat table is a blob containing (nCol+1) FTS3 |
- ** varints, where nCol is the number of columns in the FTS3 table. |
- ** The first varint is the number of documents currently stored in |
- ** the table. The following nCol varints contain the total amount of |
- ** data stored in all rows of each column of the table, from left |
- ** to right. |
+ /* Pointer p currently points at the first byte of an offset list. The |
+ ** following block advances it to point one byte past the end of |
+ ** the same offset list. */ |
+ while( 1 ){ |
+ |
+ /* The following line of code (and the "p++" below the while() loop) is |
+ ** normally all that is required to move pointer p to the desired |
+ ** position. The exception is if this node is being loaded from disk |
+ ** incrementally and pointer "p" now points to the first byte past |
+ ** the populated part of pReader->aNode[]. |
*/ |
- sqlite3_stmt *pStmt; |
- sqlite3_int64 nDoc = 0; |
- sqlite3_int64 nByte = 0; |
- const char *pEnd; |
- const char *a; |
- |
- rc = sqlite3Fts3SelectDoctotal(p, &pStmt); |
- if( rc!=SQLITE_OK ) return rc; |
- a = sqlite3_column_blob(pStmt, 0); |
- assert( a ); |
- |
- pEnd = &a[sqlite3_column_bytes(pStmt, 0)]; |
- a += sqlite3Fts3GetVarint(a, &nDoc); |
- while( a<pEnd ){ |
- a += sqlite3Fts3GetVarint(a, &nByte); |
- } |
- if( nDoc==0 || nByte==0 ){ |
- sqlite3_reset(pStmt); |
- return SQLITE_CORRUPT; |
- } |
- |
- pCsr->nRowAvg = (int)(((nByte / nDoc) + pgsz) / pgsz); |
- assert( pCsr->nRowAvg>0 ); |
- rc = sqlite3_reset(pStmt); |
+ while( *p | c ) c = *p++ & 0x80; |
+ assert( *p==0 ); |
+ |
+ if( pReader->pBlob==0 || p<&pReader->aNode[pReader->nPopulate] ) break; |
+ rc = fts3SegReaderIncrRead(pReader); |
if( rc!=SQLITE_OK ) return rc; |
} |
+ p++; |
+ |
+ /* If required, populate the output variables with a pointer to and the |
+ ** size of the previous offset-list. |
+ */ |
+ if( ppOffsetList ){ |
+ *ppOffsetList = pReader->pOffsetList; |
+ *pnOffsetList = (int)(p - pReader->pOffsetList - 1); |
+ } |
- /* Assume that a blob flows over onto overflow pages if it is larger |
- ** than (pgsz-35) bytes in size (the file-format documentation |
- ** confirms this). |
+ /* List may have been edited in place by fts3EvalNearTrim() */ |
+ while( p<pEnd && *p==0 ) p++; |
+ |
+ /* If there are no more entries in the doclist, set pOffsetList to |
+ ** NULL. Otherwise, set Fts3SegReader.iDocid to the next docid and |
+ ** Fts3SegReader.pOffsetList to point to the next offset list before |
+ ** returning. |
*/ |
- for(iBlock=pReader->iStartBlock; iBlock<=pReader->iLeafEndBlock; iBlock++){ |
- rc = sqlite3Fts3ReadBlock(p, iBlock, 0, &nBlob); |
- if( rc!=SQLITE_OK ) break; |
- if( (nBlob+35)>pgsz ){ |
- int nOvfl = (nBlob + 34)/pgsz; |
- nCost += ((nOvfl + pCsr->nRowAvg - 1)/pCsr->nRowAvg); |
+ if( p>=pEnd ){ |
+ pReader->pOffsetList = 0; |
+ }else{ |
+ rc = fts3SegReaderRequire(pReader, p, FTS3_VARINT_MAX); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_int64 iDelta; |
+ pReader->pOffsetList = p + sqlite3Fts3GetVarint(p, &iDelta); |
+ if( pTab->bDescIdx ){ |
+ pReader->iDocid -= iDelta; |
+ }else{ |
+ pReader->iDocid += iDelta; |
+ } |
} |
} |
} |
- *pnCost += nCost; |
+ return SQLITE_OK; |
+} |
+ |
+ |
+int sqlite3Fts3MsrOvfl( |
+ Fts3Cursor *pCsr, |
+ Fts3MultiSegReader *pMsr, |
+ int *pnOvfl |
+){ |
+ Fts3Table *p = (Fts3Table*)pCsr->base.pVtab; |
+ int nOvfl = 0; |
+ int ii; |
+ int rc = SQLITE_OK; |
+ int pgsz = p->nPgsz; |
+ |
+ assert( p->bFts4 ); |
+ assert( pgsz>0 ); |
+ |
+ for(ii=0; rc==SQLITE_OK && ii<pMsr->nSegment; ii++){ |
+ Fts3SegReader *pReader = pMsr->apSegment[ii]; |
+ if( !fts3SegReaderIsPending(pReader) |
+ && !fts3SegReaderIsRootOnly(pReader) |
+ ){ |
+ sqlite3_int64 jj; |
+ for(jj=pReader->iStartBlock; jj<=pReader->iLeafEndBlock; jj++){ |
+ int nBlob; |
+ rc = sqlite3Fts3ReadBlock(p, jj, 0, &nBlob, 0); |
+ if( rc!=SQLITE_OK ) break; |
+ if( (nBlob+35)>pgsz ){ |
+ nOvfl += (nBlob + 34)/pgsz; |
+ } |
+ } |
+ } |
+ } |
+ *pnOvfl = nOvfl; |
return rc; |
} |
@@ -1153,6 +1568,7 @@ void sqlite3Fts3SegReaderFree(Fts3SegReader *pReader){ |
sqlite3_free(pReader->zTerm); |
if( !fts3SegReaderIsRootOnly(pReader) ){ |
sqlite3_free(pReader->aNode); |
+ sqlite3_blob_close(pReader->pBlob); |
} |
} |
sqlite3_free(pReader); |
@@ -1163,6 +1579,7 @@ void sqlite3Fts3SegReaderFree(Fts3SegReader *pReader){ |
*/ |
int sqlite3Fts3SegReaderNew( |
int iAge, /* Segment "age". */ |
+ int bLookup, /* True for a lookup only */ |
sqlite3_int64 iStartLeaf, /* First leaf to traverse */ |
sqlite3_int64 iEndLeaf, /* Final leaf to traverse */ |
sqlite3_int64 iEndBlock, /* Final block of segment */ |
@@ -1170,7 +1587,6 @@ int sqlite3Fts3SegReaderNew( |
int nRoot, /* Size of buffer containing root node */ |
Fts3SegReader **ppReader /* OUT: Allocated Fts3SegReader */ |
){ |
- int rc = SQLITE_OK; /* Return code */ |
Fts3SegReader *pReader; /* Newly allocated SegReader object */ |
int nExtra = 0; /* Bytes to allocate segment root node */ |
@@ -1185,6 +1601,7 @@ int sqlite3Fts3SegReaderNew( |
} |
memset(pReader, 0, sizeof(Fts3SegReader)); |
pReader->iIdx = iAge; |
+ pReader->bLookup = bLookup!=0; |
pReader->iStartBlock = iStartLeaf; |
pReader->iLeafEndBlock = iEndLeaf; |
pReader->iEndBlock = iEndBlock; |
@@ -1192,19 +1609,15 @@ int sqlite3Fts3SegReaderNew( |
if( nExtra ){ |
/* The entire segment is stored in the root node. */ |
pReader->aNode = (char *)&pReader[1]; |
+ pReader->rootOnly = 1; |
pReader->nNode = nRoot; |
memcpy(pReader->aNode, zRoot, nRoot); |
memset(&pReader->aNode[nRoot], 0, FTS3_NODE_PADDING); |
}else{ |
pReader->iCurrentBlock = iStartLeaf-1; |
} |
- |
- if( rc==SQLITE_OK ){ |
- *ppReader = pReader; |
- }else{ |
- sqlite3Fts3SegReaderFree(pReader); |
- } |
- return rc; |
+ *ppReader = pReader; |
+ return SQLITE_OK; |
} |
/* |
@@ -1229,12 +1642,28 @@ static int fts3CompareElemByTerm(const void *lhs, const void *rhs){ |
/* |
** This function is used to allocate an Fts3SegReader that iterates through |
** a subset of the terms stored in the Fts3Table.pendingTerms array. |
+** |
+** If the isPrefixIter parameter is zero, then the returned SegReader iterates |
+** through each term in the pending-terms table. Or, if isPrefixIter is |
+** non-zero, it iterates through each term and its prefixes. For example, if |
+** the pending terms hash table contains the terms "sqlite", "mysql" and |
+** "firebird", then the iterator visits the following 'terms' (in the order |
+** shown): |
+** |
+** f fi fir fire fireb firebi firebir firebird |
+** m my mys mysq mysql |
+** s sq sql sqli sqlit sqlite |
+** |
+** Whereas if isPrefixIter is zero, the terms visited are: |
+** |
+** firebird mysql sqlite |
*/ |
int sqlite3Fts3SegReaderPending( |
Fts3Table *p, /* Virtual table handle */ |
+ int iIndex, /* Index for p->aIndex */ |
const char *zTerm, /* Term to search for */ |
int nTerm, /* Size of buffer zTerm */ |
- int isPrefix, /* True for a term-prefix query */ |
+ int bPrefix, /* True for a prefix iterator */ |
Fts3SegReader **ppReader /* OUT: SegReader for pending-terms */ |
){ |
Fts3SegReader *pReader = 0; /* Fts3SegReader object to return */ |
@@ -1242,11 +1671,13 @@ int sqlite3Fts3SegReaderPending( |
Fts3HashElem **aElem = 0; /* Array of term hash entries to scan */ |
int nElem = 0; /* Size of array at aElem */ |
int rc = SQLITE_OK; /* Return Code */ |
+ Fts3Hash *pHash; |
- if( isPrefix ){ |
+ pHash = &p->aIndex[iIndex].hPending; |
+ if( bPrefix ){ |
int nAlloc = 0; /* Size of allocated array at aElem */ |
- for(pE=fts3HashFirst(&p->pendingTerms); pE; pE=fts3HashNext(pE)){ |
+ for(pE=fts3HashFirst(pHash); pE; pE=fts3HashNext(pE)){ |
char *zKey = (char *)fts3HashKey(pE); |
int nKey = fts3HashKeysize(pE); |
if( nTerm==0 || (nKey>=nTerm && 0==memcmp(zKey, zTerm, nTerm)) ){ |
@@ -1263,6 +1694,7 @@ int sqlite3Fts3SegReaderPending( |
} |
aElem = aElem2; |
} |
+ |
aElem[nElem++] = pE; |
} |
} |
@@ -1276,7 +1708,14 @@ int sqlite3Fts3SegReaderPending( |
} |
}else{ |
- pE = fts3HashFindElem(&p->pendingTerms, zTerm, nTerm); |
+ /* The query is a simple term lookup that matches at most one term in |
+ ** the index. All that is required is a straight hash-lookup. |
+ ** |
+ ** Because the stack address of pE may be accessed via the aElem pointer |
+ ** below, the "Fts3HashElem *pE" must be declared so that it is valid |
+ ** within this entire function, not just this "else{...}" block. |
+ */ |
+ pE = fts3HashFindElem(pHash, zTerm, nTerm); |
if( pE ){ |
aElem = &pE; |
nElem = 1; |
@@ -1296,7 +1735,7 @@ int sqlite3Fts3SegReaderPending( |
} |
} |
- if( isPrefix ){ |
+ if( bPrefix ){ |
sqlite3_free(aElem); |
} |
*ppReader = pReader; |
@@ -1360,6 +1799,18 @@ static int fts3SegReaderDoclistCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){ |
assert( pLhs->aNode && pRhs->aNode ); |
return rc; |
} |
+static int fts3SegReaderDoclistCmpRev(Fts3SegReader *pLhs, Fts3SegReader *pRhs){ |
+ int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0); |
+ if( rc==0 ){ |
+ if( pLhs->iDocid==pRhs->iDocid ){ |
+ rc = pRhs->iIdx - pLhs->iIdx; |
+ }else{ |
+ rc = (pLhs->iDocid < pRhs->iDocid) ? 1 : -1; |
+ } |
+ } |
+ assert( pLhs->aNode && pRhs->aNode ); |
+ return rc; |
+} |
/* |
** Compare the term that the Fts3SegReader object passed as the first argument |
@@ -1444,27 +1895,55 @@ static int fts3WriteSegment( |
return rc; |
} |
-/* |
-** Insert a record into the %_segdir table. |
+/* |
+** Find the largest relative level number in the table. If successful, set |
+** *pnMax to this value and return SQLITE_OK. Otherwise, if an error occurs, |
+** set *pnMax to zero and return an SQLite error code. |
*/ |
-static int fts3WriteSegdir( |
- Fts3Table *p, /* Virtual table handle */ |
- int iLevel, /* Value for "level" field */ |
- int iIdx, /* Value for "idx" field */ |
- sqlite3_int64 iStartBlock, /* Value for "start_block" field */ |
- sqlite3_int64 iLeafEndBlock, /* Value for "leaves_end_block" field */ |
- sqlite3_int64 iEndBlock, /* Value for "end_block" field */ |
- char *zRoot, /* Blob value for "root" field */ |
- int nRoot /* Number of bytes in buffer zRoot */ |
+int sqlite3Fts3MaxLevel(Fts3Table *p, int *pnMax){ |
+ int rc; |
+ int mxLevel = 0; |
+ sqlite3_stmt *pStmt = 0; |
+ |
+ rc = fts3SqlStmt(p, SQL_SELECT_MXLEVEL, &pStmt, 0); |
+ if( rc==SQLITE_OK ){ |
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){ |
+ mxLevel = sqlite3_column_int(pStmt, 0); |
+ } |
+ rc = sqlite3_reset(pStmt); |
+ } |
+ *pnMax = mxLevel; |
+ return rc; |
+} |
+ |
+/* |
+** Insert a record into the %_segdir table. |
+*/ |
+static int fts3WriteSegdir( |
+ Fts3Table *p, /* Virtual table handle */ |
+ sqlite3_int64 iLevel, /* Value for "level" field (absolute level) */ |
+ int iIdx, /* Value for "idx" field */ |
+ sqlite3_int64 iStartBlock, /* Value for "start_block" field */ |
+ sqlite3_int64 iLeafEndBlock, /* Value for "leaves_end_block" field */ |
+ sqlite3_int64 iEndBlock, /* Value for "end_block" field */ |
+ sqlite3_int64 nLeafData, /* Bytes of leaf data in segment */ |
+ char *zRoot, /* Blob value for "root" field */ |
+ int nRoot /* Number of bytes in buffer zRoot */ |
){ |
sqlite3_stmt *pStmt; |
int rc = fts3SqlStmt(p, SQL_INSERT_SEGDIR, &pStmt, 0); |
if( rc==SQLITE_OK ){ |
- sqlite3_bind_int(pStmt, 1, iLevel); |
+ sqlite3_bind_int64(pStmt, 1, iLevel); |
sqlite3_bind_int(pStmt, 2, iIdx); |
sqlite3_bind_int64(pStmt, 3, iStartBlock); |
sqlite3_bind_int64(pStmt, 4, iLeafEndBlock); |
- sqlite3_bind_int64(pStmt, 5, iEndBlock); |
+ if( nLeafData==0 ){ |
+ sqlite3_bind_int64(pStmt, 5, iEndBlock); |
+ }else{ |
+ char *zEnd = sqlite3_mprintf("%lld %lld", iEndBlock, nLeafData); |
+ if( !zEnd ) return SQLITE_NOMEM; |
+ sqlite3_bind_text(pStmt, 5, zEnd, -1, sqlite3_free); |
+ } |
sqlite3_bind_blob(pStmt, 6, zRoot, nRoot, SQLITE_STATIC); |
sqlite3_step(pStmt); |
rc = sqlite3_reset(pStmt); |
@@ -1760,6 +2239,7 @@ static int fts3SegWriterAdd( |
/* The current leaf node is full. Write it out to the database. */ |
rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, nData); |
if( rc!=SQLITE_OK ) return rc; |
+ p->nLeafAdd++; |
/* Add the current term to the interior node tree. The term added to |
** the interior tree must: |
@@ -1789,6 +2269,9 @@ static int fts3SegWriterAdd( |
nDoclist; /* Doclist data */ |
} |
+ /* Increase the total number of bytes written to account for the new entry. */ |
+ pWriter->nLeafData += nReq; |
+ |
/* If the buffer currently allocated is too small for this entry, realloc |
** the buffer to make it large enough. |
*/ |
@@ -1843,7 +2326,7 @@ static int fts3SegWriterAdd( |
static int fts3SegWriterFlush( |
Fts3Table *p, /* Virtual table handle */ |
SegmentWriter *pWriter, /* SegmentWriter to flush to the db */ |
- int iLevel, /* Value for 'level' column of %_segdir */ |
+ sqlite3_int64 iLevel, /* Value for 'level' column of %_segdir */ |
int iIdx /* Value for 'idx' column of %_segdir */ |
){ |
int rc; /* Return code */ |
@@ -1860,14 +2343,15 @@ static int fts3SegWriterFlush( |
pWriter->iFirst, pWriter->iFree, &iLast, &zRoot, &nRoot); |
} |
if( rc==SQLITE_OK ){ |
- rc = fts3WriteSegdir( |
- p, iLevel, iIdx, pWriter->iFirst, iLastLeaf, iLast, zRoot, nRoot); |
+ rc = fts3WriteSegdir(p, iLevel, iIdx, |
+ pWriter->iFirst, iLastLeaf, iLast, pWriter->nLeafData, zRoot, nRoot); |
} |
}else{ |
/* The entire tree fits on the root node. Write it to the segdir table. */ |
- rc = fts3WriteSegdir( |
- p, iLevel, iIdx, 0, 0, 0, pWriter->aData, pWriter->nData); |
+ rc = fts3WriteSegdir(p, iLevel, iIdx, |
+ 0, 0, 0, pWriter->nLeafData, pWriter->aData, pWriter->nData); |
} |
+ p->nLeafAdd++; |
return rc; |
} |
@@ -1888,46 +2372,122 @@ static void fts3SegWriterFree(SegmentWriter *pWriter){ |
** The first value in the apVal[] array is assumed to contain an integer. |
** This function tests if there exist any documents with docid values that |
** are different from that integer. i.e. if deleting the document with docid |
-** apVal[0] would mean the FTS3 table were empty. |
+** pRowid would mean the FTS3 table were empty. |
** |
** If successful, *pisEmpty is set to true if the table is empty except for |
-** document apVal[0], or false otherwise, and SQLITE_OK is returned. If an |
+** document pRowid, or false otherwise, and SQLITE_OK is returned. If an |
** error occurs, an SQLite error code is returned. |
*/ |
-static int fts3IsEmpty(Fts3Table *p, sqlite3_value **apVal, int *pisEmpty){ |
+static int fts3IsEmpty(Fts3Table *p, sqlite3_value *pRowid, int *pisEmpty){ |
sqlite3_stmt *pStmt; |
int rc; |
- rc = fts3SqlStmt(p, SQL_IS_EMPTY, &pStmt, apVal); |
- if( rc==SQLITE_OK ){ |
- if( SQLITE_ROW==sqlite3_step(pStmt) ){ |
- *pisEmpty = sqlite3_column_int(pStmt, 0); |
+ if( p->zContentTbl ){ |
+ /* If using the content=xxx option, assume the table is never empty */ |
+ *pisEmpty = 0; |
+ rc = SQLITE_OK; |
+ }else{ |
+ rc = fts3SqlStmt(p, SQL_IS_EMPTY, &pStmt, &pRowid); |
+ if( rc==SQLITE_OK ){ |
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){ |
+ *pisEmpty = sqlite3_column_int(pStmt, 0); |
+ } |
+ rc = sqlite3_reset(pStmt); |
} |
- rc = sqlite3_reset(pStmt); |
} |
return rc; |
} |
/* |
-** Set *pnSegment to the total number of segments in the database. Set |
-** *pnMax to the largest segment level in the database (segment levels |
-** are stored in the 'level' column of the %_segdir table). |
+** Set *pnMax to the largest segment level in the database for the index |
+** iIndex. |
+** |
+** Segment levels are stored in the 'level' column of the %_segdir table. |
** |
** Return SQLITE_OK if successful, or an SQLite error code if not. |
*/ |
-static int fts3SegmentCountMax(Fts3Table *p, int *pnSegment, int *pnMax){ |
+static int fts3SegmentMaxLevel( |
+ Fts3Table *p, |
+ int iLangid, |
+ int iIndex, |
+ sqlite3_int64 *pnMax |
+){ |
sqlite3_stmt *pStmt; |
int rc; |
+ assert( iIndex>=0 && iIndex<p->nIndex ); |
+ |
+ /* Set pStmt to the compiled version of: |
+ ** |
+ ** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ? |
+ ** |
+ ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR). |
+ */ |
+ rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0); |
+ if( rc!=SQLITE_OK ) return rc; |
+ sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0)); |
+ sqlite3_bind_int64(pStmt, 2, |
+ getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1) |
+ ); |
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){ |
+ *pnMax = sqlite3_column_int64(pStmt, 0); |
+ } |
+ return sqlite3_reset(pStmt); |
+} |
- rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_COUNT_MAX, &pStmt, 0); |
+/* |
+** iAbsLevel is an absolute level that may be assumed to exist within |
+** the database. This function checks if it is the largest level number |
+** within its index. Assuming no error occurs, *pbMax is set to 1 if |
+** iAbsLevel is indeed the largest level, or 0 otherwise, and SQLITE_OK |
+** is returned. If an error occurs, an error code is returned and the |
+** final value of *pbMax is undefined. |
+*/ |
+static int fts3SegmentIsMaxLevel(Fts3Table *p, i64 iAbsLevel, int *pbMax){ |
+ |
+ /* Set pStmt to the compiled version of: |
+ ** |
+ ** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ? |
+ ** |
+ ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR). |
+ */ |
+ sqlite3_stmt *pStmt; |
+ int rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0); |
if( rc!=SQLITE_OK ) return rc; |
+ sqlite3_bind_int64(pStmt, 1, iAbsLevel+1); |
+ sqlite3_bind_int64(pStmt, 2, |
+ ((iAbsLevel/FTS3_SEGDIR_MAXLEVEL)+1) * FTS3_SEGDIR_MAXLEVEL |
+ ); |
+ |
+ *pbMax = 0; |
if( SQLITE_ROW==sqlite3_step(pStmt) ){ |
- *pnSegment = sqlite3_column_int(pStmt, 0); |
- *pnMax = sqlite3_column_int(pStmt, 1); |
+ *pbMax = sqlite3_column_type(pStmt, 0)==SQLITE_NULL; |
} |
return sqlite3_reset(pStmt); |
} |
/* |
+** Delete all entries in the %_segments table associated with the segment |
+** opened with seg-reader pSeg. This function does not affect the contents |
+** of the %_segdir table. |
+*/ |
+static int fts3DeleteSegment( |
+ Fts3Table *p, /* FTS table handle */ |
+ Fts3SegReader *pSeg /* Segment to delete */ |
+){ |
+ int rc = SQLITE_OK; /* Return code */ |
+ if( pSeg->iStartBlock ){ |
+ sqlite3_stmt *pDelete; /* SQL statement to delete rows */ |
+ rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDelete, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int64(pDelete, 1, pSeg->iStartBlock); |
+ sqlite3_bind_int64(pDelete, 2, pSeg->iEndBlock); |
+ sqlite3_step(pDelete); |
+ rc = sqlite3_reset(pDelete); |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* |
** This function is used after merging multiple segments into a single large |
** segment to delete the old, now redundant, segment b-trees. Specifically, |
** it: |
@@ -1943,42 +2503,46 @@ static int fts3SegmentCountMax(Fts3Table *p, int *pnSegment, int *pnMax){ |
*/ |
static int fts3DeleteSegdir( |
Fts3Table *p, /* Virtual table handle */ |
+ int iLangid, /* Language id */ |
+ int iIndex, /* Index for p->aIndex */ |
int iLevel, /* Level of %_segdir entries to delete */ |
Fts3SegReader **apSegment, /* Array of SegReader objects */ |
int nReader /* Size of array apSegment */ |
){ |
- int rc; /* Return Code */ |
+ int rc = SQLITE_OK; /* Return Code */ |
int i; /* Iterator variable */ |
- sqlite3_stmt *pDelete; /* SQL statement to delete rows */ |
+ sqlite3_stmt *pDelete = 0; /* SQL statement to delete rows */ |
- rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDelete, 0); |
for(i=0; rc==SQLITE_OK && i<nReader; i++){ |
- Fts3SegReader *pSegment = apSegment[i]; |
- if( pSegment->iStartBlock ){ |
- sqlite3_bind_int64(pDelete, 1, pSegment->iStartBlock); |
- sqlite3_bind_int64(pDelete, 2, pSegment->iEndBlock); |
- sqlite3_step(pDelete); |
- rc = sqlite3_reset(pDelete); |
- } |
+ rc = fts3DeleteSegment(p, apSegment[i]); |
} |
if( rc!=SQLITE_OK ){ |
return rc; |
} |
+ assert( iLevel>=0 || iLevel==FTS3_SEGCURSOR_ALL ); |
if( iLevel==FTS3_SEGCURSOR_ALL ){ |
- fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGDIR, 0); |
- }else if( iLevel==FTS3_SEGCURSOR_PENDING ){ |
- sqlite3Fts3PendingTermsClear(p); |
+ rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_RANGE, &pDelete, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int64(pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, 0)); |
+ sqlite3_bind_int64(pDelete, 2, |
+ getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1) |
+ ); |
+ } |
}else{ |
- assert( iLevel>=0 ); |
- rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_BY_LEVEL, &pDelete, 0); |
+ rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pDelete, 0); |
if( rc==SQLITE_OK ){ |
- sqlite3_bind_int(pDelete, 1, iLevel); |
- sqlite3_step(pDelete); |
- rc = sqlite3_reset(pDelete); |
+ sqlite3_bind_int64( |
+ pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, iLevel) |
+ ); |
} |
} |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_step(pDelete); |
+ rc = sqlite3_reset(pDelete); |
+ } |
+ |
return rc; |
} |
@@ -1990,9 +2554,13 @@ static int fts3DeleteSegdir( |
** |
** If there are no entries in the input position list for column iCol, then |
** *pnList is set to zero before returning. |
+** |
+** If parameter bZero is non-zero, then any part of the input list following |
+** the end of the output list is zeroed before returning. |
*/ |
static void fts3ColumnFilter( |
int iCol, /* Column to filter on */ |
+ int bZero, /* Zero out anything following *ppList */ |
char **ppList, /* IN/OUT: Pointer to position list */ |
int *pnList /* IN/OUT: Size of buffer *ppList in bytes */ |
){ |
@@ -2018,22 +2586,116 @@ static void fts3ColumnFilter( |
break; |
} |
p = &pList[1]; |
- p += sqlite3Fts3GetVarint32(p, &iCurrent); |
+ p += fts3GetVarint32(p, &iCurrent); |
} |
+ if( bZero && &pList[nList]!=pEnd ){ |
+ memset(&pList[nList], 0, pEnd - &pList[nList]); |
+ } |
*ppList = pList; |
*pnList = nList; |
} |
-int sqlite3Fts3SegReaderStart( |
+/* |
+** Cache data in the Fts3MultiSegReader.aBuffer[] buffer (overwriting any |
+** existing data). Grow the buffer if required. |
+** |
+** If successful, return SQLITE_OK. Otherwise, if an OOM error is encountered |
+** trying to resize the buffer, return SQLITE_NOMEM. |
+*/ |
+static int fts3MsrBufferData( |
+ Fts3MultiSegReader *pMsr, /* Multi-segment-reader handle */ |
+ char *pList, |
+ int nList |
+){ |
+ if( nList>pMsr->nBuffer ){ |
+ char *pNew; |
+ pMsr->nBuffer = nList*2; |
+ pNew = (char *)sqlite3_realloc(pMsr->aBuffer, pMsr->nBuffer); |
+ if( !pNew ) return SQLITE_NOMEM; |
+ pMsr->aBuffer = pNew; |
+ } |
+ |
+ memcpy(pMsr->aBuffer, pList, nList); |
+ return SQLITE_OK; |
+} |
+ |
+int sqlite3Fts3MsrIncrNext( |
Fts3Table *p, /* Virtual table handle */ |
- Fts3SegReaderCursor *pCsr, /* Cursor object */ |
- Fts3SegFilter *pFilter /* Restrictions on range of iteration */ |
+ Fts3MultiSegReader *pMsr, /* Multi-segment-reader handle */ |
+ sqlite3_int64 *piDocid, /* OUT: Docid value */ |
+ char **paPoslist, /* OUT: Pointer to position list */ |
+ int *pnPoslist /* OUT: Size of position list in bytes */ |
){ |
- int i; |
+ int nMerge = pMsr->nAdvance; |
+ Fts3SegReader **apSegment = pMsr->apSegment; |
+ int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = ( |
+ p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp |
+ ); |
+ |
+ if( nMerge==0 ){ |
+ *paPoslist = 0; |
+ return SQLITE_OK; |
+ } |
- /* Initialize the cursor object */ |
- pCsr->pFilter = pFilter; |
+ while( 1 ){ |
+ Fts3SegReader *pSeg; |
+ pSeg = pMsr->apSegment[0]; |
+ |
+ if( pSeg->pOffsetList==0 ){ |
+ *paPoslist = 0; |
+ break; |
+ }else{ |
+ int rc; |
+ char *pList; |
+ int nList; |
+ int j; |
+ sqlite3_int64 iDocid = apSegment[0]->iDocid; |
+ |
+ rc = fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList); |
+ j = 1; |
+ while( rc==SQLITE_OK |
+ && j<nMerge |
+ && apSegment[j]->pOffsetList |
+ && apSegment[j]->iDocid==iDocid |
+ ){ |
+ rc = fts3SegReaderNextDocid(p, apSegment[j], 0, 0); |
+ j++; |
+ } |
+ if( rc!=SQLITE_OK ) return rc; |
+ fts3SegReaderSort(pMsr->apSegment, nMerge, j, xCmp); |
+ |
+ if( nList>0 && fts3SegReaderIsPending(apSegment[0]) ){ |
+ rc = fts3MsrBufferData(pMsr, pList, nList+1); |
+ if( rc!=SQLITE_OK ) return rc; |
+ assert( (pMsr->aBuffer[nList] & 0xFE)==0x00 ); |
+ pList = pMsr->aBuffer; |
+ } |
+ |
+ if( pMsr->iColFilter>=0 ){ |
+ fts3ColumnFilter(pMsr->iColFilter, 1, &pList, &nList); |
+ } |
+ |
+ if( nList>0 ){ |
+ *paPoslist = pList; |
+ *piDocid = iDocid; |
+ *pnPoslist = nList; |
+ break; |
+ } |
+ } |
+ } |
+ |
+ return SQLITE_OK; |
+} |
+ |
+static int fts3SegReaderStart( |
+ Fts3Table *p, /* Virtual table handle */ |
+ Fts3MultiSegReader *pCsr, /* Cursor object */ |
+ const char *zTerm, /* Term searched for (or NULL) */ |
+ int nTerm /* Length of zTerm in bytes */ |
+){ |
+ int i; |
+ int nSeg = pCsr->nSegment; |
/* If the Fts3SegFilter defines a specific term (or term prefix) to search |
** for, then advance each segment iterator until it points to a term of |
@@ -2041,24 +2703,110 @@ int sqlite3Fts3SegReaderStart( |
** unnecessary merge/sort operations for the case where single segment |
** b-tree leaf nodes contain more than one term. |
*/ |
- for(i=0; i<pCsr->nSegment; i++){ |
- int nTerm = pFilter->nTerm; |
- const char *zTerm = pFilter->zTerm; |
+ for(i=0; pCsr->bRestart==0 && i<pCsr->nSegment; i++){ |
+ int res = 0; |
Fts3SegReader *pSeg = pCsr->apSegment[i]; |
do { |
- int rc = fts3SegReaderNext(p, pSeg); |
+ int rc = fts3SegReaderNext(p, pSeg, 0); |
if( rc!=SQLITE_OK ) return rc; |
- }while( zTerm && fts3SegReaderTermCmp(pSeg, zTerm, nTerm)<0 ); |
+ }while( zTerm && (res = fts3SegReaderTermCmp(pSeg, zTerm, nTerm))<0 ); |
+ |
+ if( pSeg->bLookup && res!=0 ){ |
+ fts3SegReaderSetEof(pSeg); |
+ } |
+ } |
+ fts3SegReaderSort(pCsr->apSegment, nSeg, nSeg, fts3SegReaderCmp); |
+ |
+ return SQLITE_OK; |
+} |
+ |
+int sqlite3Fts3SegReaderStart( |
+ Fts3Table *p, /* Virtual table handle */ |
+ Fts3MultiSegReader *pCsr, /* Cursor object */ |
+ Fts3SegFilter *pFilter /* Restrictions on range of iteration */ |
+){ |
+ pCsr->pFilter = pFilter; |
+ return fts3SegReaderStart(p, pCsr, pFilter->zTerm, pFilter->nTerm); |
+} |
+ |
+int sqlite3Fts3MsrIncrStart( |
+ Fts3Table *p, /* Virtual table handle */ |
+ Fts3MultiSegReader *pCsr, /* Cursor object */ |
+ int iCol, /* Column to match on. */ |
+ const char *zTerm, /* Term to iterate through a doclist for */ |
+ int nTerm /* Number of bytes in zTerm */ |
+){ |
+ int i; |
+ int rc; |
+ int nSegment = pCsr->nSegment; |
+ int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = ( |
+ p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp |
+ ); |
+ |
+ assert( pCsr->pFilter==0 ); |
+ assert( zTerm && nTerm>0 ); |
+ |
+ /* Advance each segment iterator until it points to the term zTerm/nTerm. */ |
+ rc = fts3SegReaderStart(p, pCsr, zTerm, nTerm); |
+ if( rc!=SQLITE_OK ) return rc; |
+ |
+ /* Determine how many of the segments actually point to zTerm/nTerm. */ |
+ for(i=0; i<nSegment; i++){ |
+ Fts3SegReader *pSeg = pCsr->apSegment[i]; |
+ if( !pSeg->aNode || fts3SegReaderTermCmp(pSeg, zTerm, nTerm) ){ |
+ break; |
+ } |
+ } |
+ pCsr->nAdvance = i; |
+ |
+ /* Advance each of the segments to point to the first docid. */ |
+ for(i=0; i<pCsr->nAdvance; i++){ |
+ rc = fts3SegReaderFirstDocid(p, pCsr->apSegment[i]); |
+ if( rc!=SQLITE_OK ) return rc; |
+ } |
+ fts3SegReaderSort(pCsr->apSegment, i, i, xCmp); |
+ |
+ assert( iCol<0 || iCol<p->nColumn ); |
+ pCsr->iColFilter = iCol; |
+ |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** This function is called on a MultiSegReader that has been started using |
+** sqlite3Fts3MsrIncrStart(). One or more calls to MsrIncrNext() may also |
+** have been made. Calling this function puts the MultiSegReader in such |
+** a state that if the next two calls are: |
+** |
+** sqlite3Fts3SegReaderStart() |
+** sqlite3Fts3SegReaderStep() |
+** |
+** then the entire doclist for the term is available in |
+** MultiSegReader.aDoclist/nDoclist. |
+*/ |
+int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader *pCsr){ |
+ int i; /* Used to iterate through segment-readers */ |
+ |
+ assert( pCsr->zTerm==0 ); |
+ assert( pCsr->nTerm==0 ); |
+ assert( pCsr->aDoclist==0 ); |
+ assert( pCsr->nDoclist==0 ); |
+ |
+ pCsr->nAdvance = 0; |
+ pCsr->bRestart = 1; |
+ for(i=0; i<pCsr->nSegment; i++){ |
+ pCsr->apSegment[i]->pOffsetList = 0; |
+ pCsr->apSegment[i]->nOffsetList = 0; |
+ pCsr->apSegment[i]->iDocid = 0; |
} |
- fts3SegReaderSort( |
- pCsr->apSegment, pCsr->nSegment, pCsr->nSegment, fts3SegReaderCmp); |
return SQLITE_OK; |
} |
+ |
int sqlite3Fts3SegReaderStep( |
Fts3Table *p, /* Virtual table handle */ |
- Fts3SegReaderCursor *pCsr /* Cursor object */ |
+ Fts3MultiSegReader *pCsr /* Cursor object */ |
){ |
int rc = SQLITE_OK; |
@@ -2067,10 +2815,14 @@ int sqlite3Fts3SegReaderStep( |
int isColFilter = (pCsr->pFilter->flags & FTS3_SEGMENT_COLUMN_FILTER); |
int isPrefix = (pCsr->pFilter->flags & FTS3_SEGMENT_PREFIX); |
int isScan = (pCsr->pFilter->flags & FTS3_SEGMENT_SCAN); |
+ int isFirst = (pCsr->pFilter->flags & FTS3_SEGMENT_FIRST); |
Fts3SegReader **apSegment = pCsr->apSegment; |
int nSegment = pCsr->nSegment; |
Fts3SegFilter *pFilter = pCsr->pFilter; |
+ int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = ( |
+ p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp |
+ ); |
if( pCsr->nSegment==0 ) return SQLITE_OK; |
@@ -2082,7 +2834,12 @@ int sqlite3Fts3SegReaderStep( |
** forward. Then sort the list in order of current term again. |
*/ |
for(i=0; i<pCsr->nAdvance; i++){ |
- rc = fts3SegReaderNext(p, apSegment[i]); |
+ Fts3SegReader *pSeg = apSegment[i]; |
+ if( pSeg->bLookup ){ |
+ fts3SegReaderSetEof(pSeg); |
+ }else{ |
+ rc = fts3SegReaderNext(p, pSeg, 0); |
+ } |
if( rc!=SQLITE_OK ) return rc; |
} |
fts3SegReaderSort(apSegment, nSegment, pCsr->nAdvance, fts3SegReaderCmp); |
@@ -2121,10 +2878,19 @@ int sqlite3Fts3SegReaderStep( |
} |
assert( isIgnoreEmpty || (isRequirePos && !isColFilter) ); |
- if( nMerge==1 && !isIgnoreEmpty ){ |
- pCsr->aDoclist = apSegment[0]->aDoclist; |
+ if( nMerge==1 |
+ && !isIgnoreEmpty |
+ && !isFirst |
+ && (p->bDescIdx==0 || fts3SegReaderIsPending(apSegment[0])==0) |
+ ){ |
pCsr->nDoclist = apSegment[0]->nDoclist; |
- rc = SQLITE_ROW; |
+ if( fts3SegReaderIsPending(apSegment[0]) ){ |
+ rc = fts3MsrBufferData(pCsr, apSegment[0]->aDoclist, pCsr->nDoclist); |
+ pCsr->aDoclist = pCsr->aBuffer; |
+ }else{ |
+ pCsr->aDoclist = apSegment[0]->aDoclist; |
+ } |
+ if( rc==SQLITE_OK ) rc = SQLITE_ROW; |
}else{ |
int nDoclist = 0; /* Size of doclist */ |
sqlite3_int64 iPrev = 0; /* Previous docid stored in doclist */ |
@@ -2134,31 +2900,43 @@ int sqlite3Fts3SegReaderStep( |
** and a single term returned with the merged doclist. |
*/ |
for(i=0; i<nMerge; i++){ |
- fts3SegReaderFirstDocid(apSegment[i]); |
+ fts3SegReaderFirstDocid(p, apSegment[i]); |
} |
- fts3SegReaderSort(apSegment, nMerge, nMerge, fts3SegReaderDoclistCmp); |
+ fts3SegReaderSort(apSegment, nMerge, nMerge, xCmp); |
while( apSegment[0]->pOffsetList ){ |
int j; /* Number of segments that share a docid */ |
- char *pList; |
- int nList; |
+ char *pList = 0; |
+ int nList = 0; |
int nByte; |
sqlite3_int64 iDocid = apSegment[0]->iDocid; |
- fts3SegReaderNextDocid(apSegment[0], &pList, &nList); |
+ fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList); |
j = 1; |
while( j<nMerge |
&& apSegment[j]->pOffsetList |
&& apSegment[j]->iDocid==iDocid |
){ |
- fts3SegReaderNextDocid(apSegment[j], 0, 0); |
+ fts3SegReaderNextDocid(p, apSegment[j], 0, 0); |
j++; |
} |
if( isColFilter ){ |
- fts3ColumnFilter(pFilter->iCol, &pList, &nList); |
+ fts3ColumnFilter(pFilter->iCol, 0, &pList, &nList); |
} |
if( !isIgnoreEmpty || nList>0 ){ |
- nByte = sqlite3Fts3VarintLen(iDocid-iPrev) + (isRequirePos?nList+1:0); |
+ |
+ /* Calculate the 'docid' delta value to write into the merged |
+ ** doclist. */ |
+ sqlite3_int64 iDelta; |
+ if( p->bDescIdx && nDoclist>0 ){ |
+ iDelta = iPrev - iDocid; |
+ }else{ |
+ iDelta = iDocid - iPrev; |
+ } |
+ assert( iDelta>0 || (nDoclist==0 && iDelta==iDocid) ); |
+ assert( nDoclist>0 || iDelta==iDocid ); |
+ |
+ nByte = sqlite3Fts3VarintLen(iDelta) + (isRequirePos?nList+1:0); |
if( nDoclist+nByte>pCsr->nBuffer ){ |
char *aNew; |
pCsr->nBuffer = (nDoclist+nByte)*2; |
@@ -2168,18 +2946,28 @@ int sqlite3Fts3SegReaderStep( |
} |
pCsr->aBuffer = aNew; |
} |
- nDoclist += sqlite3Fts3PutVarint( |
- &pCsr->aBuffer[nDoclist], iDocid-iPrev |
- ); |
- iPrev = iDocid; |
- if( isRequirePos ){ |
- memcpy(&pCsr->aBuffer[nDoclist], pList, nList); |
- nDoclist += nList; |
- pCsr->aBuffer[nDoclist++] = '\0'; |
+ |
+ if( isFirst ){ |
+ char *a = &pCsr->aBuffer[nDoclist]; |
+ int nWrite; |
+ |
+ nWrite = sqlite3Fts3FirstFilter(iDelta, pList, nList, a); |
+ if( nWrite ){ |
+ iPrev = iDocid; |
+ nDoclist += nWrite; |
+ } |
+ }else{ |
+ nDoclist += sqlite3Fts3PutVarint(&pCsr->aBuffer[nDoclist], iDelta); |
+ iPrev = iDocid; |
+ if( isRequirePos ){ |
+ memcpy(&pCsr->aBuffer[nDoclist], pList, nList); |
+ nDoclist += nList; |
+ pCsr->aBuffer[nDoclist++] = '\0'; |
+ } |
} |
} |
- fts3SegReaderSort(apSegment, nMerge, j, fts3SegReaderDoclistCmp); |
+ fts3SegReaderSort(apSegment, nMerge, j, xCmp); |
} |
if( nDoclist>0 ){ |
pCsr->aDoclist = pCsr->aBuffer; |
@@ -2193,8 +2981,9 @@ int sqlite3Fts3SegReaderStep( |
return rc; |
} |
+ |
void sqlite3Fts3SegReaderFinish( |
- Fts3SegReaderCursor *pCsr /* Cursor object */ |
+ Fts3MultiSegReader *pCsr /* Cursor object */ |
){ |
if( pCsr ){ |
int i; |
@@ -2211,6 +3000,140 @@ void sqlite3Fts3SegReaderFinish( |
} |
/* |
+** Decode the "end_block" field, selected by column iCol of the SELECT |
+** statement passed as the first argument. |
+** |
+** The "end_block" field may contain either an integer, or a text field |
+** containing the text representation of two non-negative integers separated |
+** by one or more space (0x20) characters. In the first case, set *piEndBlock |
+** to the integer value and *pnByte to zero before returning. In the second, |
+** set *piEndBlock to the first value and *pnByte to the second. |
+*/ |
+static void fts3ReadEndBlockField( |
+ sqlite3_stmt *pStmt, |
+ int iCol, |
+ i64 *piEndBlock, |
+ i64 *pnByte |
+){ |
+ const unsigned char *zText = sqlite3_column_text(pStmt, iCol); |
+ if( zText ){ |
+ int i; |
+ int iMul = 1; |
+ i64 iVal = 0; |
+ for(i=0; zText[i]>='0' && zText[i]<='9'; i++){ |
+ iVal = iVal*10 + (zText[i] - '0'); |
+ } |
+ *piEndBlock = iVal; |
+ while( zText[i]==' ' ) i++; |
+ iVal = 0; |
+ if( zText[i]=='-' ){ |
+ i++; |
+ iMul = -1; |
+ } |
+ for(/* no-op */; zText[i]>='0' && zText[i]<='9'; i++){ |
+ iVal = iVal*10 + (zText[i] - '0'); |
+ } |
+ *pnByte = (iVal * (i64)iMul); |
+ } |
+} |
+ |
+ |
+/* |
+** A segment of size nByte bytes has just been written to absolute level |
+** iAbsLevel. Promote any segments that should be promoted as a result. |
+*/ |
+static int fts3PromoteSegments( |
+ Fts3Table *p, /* FTS table handle */ |
+ sqlite3_int64 iAbsLevel, /* Absolute level just updated */ |
+ sqlite3_int64 nByte /* Size of new segment at iAbsLevel */ |
+){ |
+ int rc = SQLITE_OK; |
+ sqlite3_stmt *pRange; |
+ |
+ rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE2, &pRange, 0); |
+ |
+ if( rc==SQLITE_OK ){ |
+ int bOk = 0; |
+ i64 iLast = (iAbsLevel/FTS3_SEGDIR_MAXLEVEL + 1) * FTS3_SEGDIR_MAXLEVEL - 1; |
+ i64 nLimit = (nByte*3)/2; |
+ |
+ /* Loop through all entries in the %_segdir table corresponding to |
+ ** segments in this index on levels greater than iAbsLevel. If there is |
+ ** at least one such segment, and it is possible to determine that all |
+ ** such segments are smaller than nLimit bytes in size, they will be |
+ ** promoted to level iAbsLevel. */ |
+ sqlite3_bind_int64(pRange, 1, iAbsLevel+1); |
+ sqlite3_bind_int64(pRange, 2, iLast); |
+ while( SQLITE_ROW==sqlite3_step(pRange) ){ |
+ i64 nSize = 0, dummy; |
+ fts3ReadEndBlockField(pRange, 2, &dummy, &nSize); |
+ if( nSize<=0 || nSize>nLimit ){ |
+ /* If nSize==0, then the %_segdir.end_block field does not not |
+ ** contain a size value. This happens if it was written by an |
+ ** old version of FTS. In this case it is not possible to determine |
+ ** the size of the segment, and so segment promotion does not |
+ ** take place. */ |
+ bOk = 0; |
+ break; |
+ } |
+ bOk = 1; |
+ } |
+ rc = sqlite3_reset(pRange); |
+ |
+ if( bOk ){ |
+ int iIdx = 0; |
+ sqlite3_stmt *pUpdate1; |
+ sqlite3_stmt *pUpdate2; |
+ |
+ if( rc==SQLITE_OK ){ |
+ rc = fts3SqlStmt(p, SQL_UPDATE_LEVEL_IDX, &pUpdate1, 0); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ rc = fts3SqlStmt(p, SQL_UPDATE_LEVEL, &pUpdate2, 0); |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ |
+ /* Loop through all %_segdir entries for segments in this index with |
+ ** levels equal to or greater than iAbsLevel. As each entry is visited, |
+ ** updated it to set (level = -1) and (idx = N), where N is 0 for the |
+ ** oldest segment in the range, 1 for the next oldest, and so on. |
+ ** |
+ ** In other words, move all segments being promoted to level -1, |
+ ** setting the "idx" fields as appropriate to keep them in the same |
+ ** order. The contents of level -1 (which is never used, except |
+ ** transiently here), will be moved back to level iAbsLevel below. */ |
+ sqlite3_bind_int64(pRange, 1, iAbsLevel); |
+ while( SQLITE_ROW==sqlite3_step(pRange) ){ |
+ sqlite3_bind_int(pUpdate1, 1, iIdx++); |
+ sqlite3_bind_int(pUpdate1, 2, sqlite3_column_int(pRange, 0)); |
+ sqlite3_bind_int(pUpdate1, 3, sqlite3_column_int(pRange, 1)); |
+ sqlite3_step(pUpdate1); |
+ rc = sqlite3_reset(pUpdate1); |
+ if( rc!=SQLITE_OK ){ |
+ sqlite3_reset(pRange); |
+ break; |
+ } |
+ } |
+ } |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3_reset(pRange); |
+ } |
+ |
+ /* Move level -1 to level iAbsLevel */ |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int64(pUpdate2, 1, iAbsLevel); |
+ sqlite3_step(pUpdate2); |
+ rc = sqlite3_reset(pUpdate2); |
+ } |
+ } |
+ } |
+ |
+ |
+ return rc; |
+} |
+ |
+/* |
** Merge all level iLevel segments in the database into a single |
** iLevel+1 segment. Or, if iLevel<0, merge all segments into a |
** single segment with a level equal to the numerically largest level |
@@ -2221,43 +3144,67 @@ void sqlite3Fts3SegReaderFinish( |
** Otherwise, if successful, SQLITE_OK is returned. If an error occurs, |
** an SQLite error code is returned. |
*/ |
-static int fts3SegmentMerge(Fts3Table *p, int iLevel){ |
+static int fts3SegmentMerge( |
+ Fts3Table *p, |
+ int iLangid, /* Language id to merge */ |
+ int iIndex, /* Index in p->aIndex[] to merge */ |
+ int iLevel /* Level to merge */ |
+){ |
int rc; /* Return code */ |
int iIdx = 0; /* Index of new segment */ |
- int iNewLevel = 0; /* Level to create new segment at */ |
+ sqlite3_int64 iNewLevel = 0; /* Level/index to create new segment at */ |
SegmentWriter *pWriter = 0; /* Used to write the new, merged, segment */ |
Fts3SegFilter filter; /* Segment term filter condition */ |
- Fts3SegReaderCursor csr; /* Cursor to iterate through level(s) */ |
- |
- rc = sqlite3Fts3SegReaderCursor(p, iLevel, 0, 0, 1, 0, &csr); |
+ Fts3MultiSegReader csr; /* Cursor to iterate through level(s) */ |
+ int bIgnoreEmpty = 0; /* True to ignore empty segments */ |
+ i64 iMaxLevel = 0; /* Max level number for this index/langid */ |
+ |
+ assert( iLevel==FTS3_SEGCURSOR_ALL |
+ || iLevel==FTS3_SEGCURSOR_PENDING |
+ || iLevel>=0 |
+ ); |
+ assert( iLevel<FTS3_SEGDIR_MAXLEVEL ); |
+ assert( iIndex>=0 && iIndex<p->nIndex ); |
+ |
+ rc = sqlite3Fts3SegReaderCursor(p, iLangid, iIndex, iLevel, 0, 0, 1, 0, &csr); |
if( rc!=SQLITE_OK || csr.nSegment==0 ) goto finished; |
+ if( iLevel!=FTS3_SEGCURSOR_PENDING ){ |
+ rc = fts3SegmentMaxLevel(p, iLangid, iIndex, &iMaxLevel); |
+ if( rc!=SQLITE_OK ) goto finished; |
+ } |
+ |
if( iLevel==FTS3_SEGCURSOR_ALL ){ |
/* This call is to merge all segments in the database to a single |
- ** segment. The level of the new segment is equal to the the numerically |
- ** greatest segment level currently present in the database. The index |
- ** of the new segment is always 0. */ |
- int nDummy; /* TODO: Remove this */ |
+ ** segment. The level of the new segment is equal to the numerically |
+ ** greatest segment level currently present in the database for this |
+ ** index. The idx of the new segment is always 0. */ |
if( csr.nSegment==1 ){ |
rc = SQLITE_DONE; |
goto finished; |
} |
- rc = fts3SegmentCountMax(p, &nDummy, &iNewLevel); |
+ iNewLevel = iMaxLevel; |
+ bIgnoreEmpty = 1; |
+ |
}else{ |
- /* This call is to merge all segments at level iLevel. Find the next |
+ /* This call is to merge all segments at level iLevel. find the next |
** available segment index at level iLevel+1. The call to |
** fts3AllocateSegdirIdx() will merge the segments at level iLevel+1 to |
** a single iLevel+2 segment if necessary. */ |
- iNewLevel = iLevel+1; |
- rc = fts3AllocateSegdirIdx(p, iNewLevel, &iIdx); |
+ assert( FTS3_SEGCURSOR_PENDING==-1 ); |
+ iNewLevel = getAbsoluteLevel(p, iLangid, iIndex, iLevel+1); |
+ rc = fts3AllocateSegdirIdx(p, iLangid, iIndex, iLevel+1, &iIdx); |
+ bIgnoreEmpty = (iLevel!=FTS3_SEGCURSOR_PENDING) && (iNewLevel>iMaxLevel); |
} |
if( rc!=SQLITE_OK ) goto finished; |
+ |
assert( csr.nSegment>0 ); |
- assert( iNewLevel>=0 ); |
+ assert( iNewLevel>=getAbsoluteLevel(p, iLangid, iIndex, 0) ); |
+ assert( iNewLevel<getAbsoluteLevel(p, iLangid, iIndex,FTS3_SEGDIR_MAXLEVEL) ); |
memset(&filter, 0, sizeof(Fts3SegFilter)); |
filter.flags = FTS3_SEGMENT_REQUIRE_POS; |
- filter.flags |= (iLevel==FTS3_SEGCURSOR_ALL ? FTS3_SEGMENT_IGNORE_EMPTY : 0); |
+ filter.flags |= (bIgnoreEmpty ? FTS3_SEGMENT_IGNORE_EMPTY : 0); |
rc = sqlite3Fts3SegReaderStart(p, &csr, &filter); |
while( SQLITE_OK==rc ){ |
@@ -2267,11 +3214,22 @@ static int fts3SegmentMerge(Fts3Table *p, int iLevel){ |
csr.zTerm, csr.nTerm, csr.aDoclist, csr.nDoclist); |
} |
if( rc!=SQLITE_OK ) goto finished; |
- assert( pWriter ); |
+ assert( pWriter || bIgnoreEmpty ); |
- rc = fts3DeleteSegdir(p, iLevel, csr.apSegment, csr.nSegment); |
- if( rc!=SQLITE_OK ) goto finished; |
- rc = fts3SegWriterFlush(p, pWriter, iNewLevel, iIdx); |
+ if( iLevel!=FTS3_SEGCURSOR_PENDING ){ |
+ rc = fts3DeleteSegdir( |
+ p, iLangid, iIndex, iLevel, csr.apSegment, csr.nSegment |
+ ); |
+ if( rc!=SQLITE_OK ) goto finished; |
+ } |
+ if( pWriter ){ |
+ rc = fts3SegWriterFlush(p, pWriter, iNewLevel, iIdx); |
+ if( rc==SQLITE_OK ){ |
+ if( iLevel==FTS3_SEGCURSOR_PENDING || iNewLevel<iMaxLevel ){ |
+ rc = fts3PromoteSegments(p, iNewLevel, pWriter->nLeafData); |
+ } |
+ } |
+ } |
finished: |
fts3SegWriterFree(pWriter); |
@@ -2281,10 +3239,39 @@ static int fts3SegmentMerge(Fts3Table *p, int iLevel){ |
/* |
-** Flush the contents of pendingTerms to a level 0 segment. |
+** Flush the contents of pendingTerms to level 0 segments. |
*/ |
int sqlite3Fts3PendingTermsFlush(Fts3Table *p){ |
- return fts3SegmentMerge(p, FTS3_SEGCURSOR_PENDING); |
+ int rc = SQLITE_OK; |
+ int i; |
+ |
+ for(i=0; rc==SQLITE_OK && i<p->nIndex; i++){ |
+ rc = fts3SegmentMerge(p, p->iPrevLangid, i, FTS3_SEGCURSOR_PENDING); |
+ if( rc==SQLITE_DONE ) rc = SQLITE_OK; |
+ } |
+ sqlite3Fts3PendingTermsClear(p); |
+ |
+ /* Determine the auto-incr-merge setting if unknown. If enabled, |
+ ** estimate the number of leaf blocks of content to be written |
+ */ |
+ if( rc==SQLITE_OK && p->bHasStat |
+ && p->nAutoincrmerge==0xff && p->nLeafAdd>0 |
+ ){ |
+ sqlite3_stmt *pStmt = 0; |
+ rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pStmt, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int(pStmt, 1, FTS_STAT_AUTOINCRMERGE); |
+ rc = sqlite3_step(pStmt); |
+ if( rc==SQLITE_ROW ){ |
+ p->nAutoincrmerge = sqlite3_column_int(pStmt, 0); |
+ if( p->nAutoincrmerge==1 ) p->nAutoincrmerge = 8; |
+ }else if( rc==SQLITE_DONE ){ |
+ p->nAutoincrmerge = 0; |
+ } |
+ rc = sqlite3_reset(pStmt); |
+ } |
+ } |
+ return rc; |
} |
/* |
@@ -2328,9 +3315,9 @@ static void fts3DecodeIntArray( |
** a blob of varints. |
*/ |
static void fts3InsertDocsize( |
- int *pRC, /* Result code */ |
- Fts3Table *p, /* Table into which to insert */ |
- u32 *aSz /* Sizes of each column */ |
+ int *pRC, /* Result code */ |
+ Fts3Table *p, /* Table into which to insert */ |
+ u32 *aSz /* Sizes of each column, in tokens */ |
){ |
char *pBlob; /* The BLOB encoding of the document size */ |
int nBlob; /* Number of bytes in the BLOB */ |
@@ -2394,12 +3381,13 @@ static void fts3UpdateDocTotals( |
return; |
} |
pBlob = (char*)&a[nStat]; |
- rc = fts3SqlStmt(p, SQL_SELECT_DOCTOTAL, &pStmt, 0); |
+ rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pStmt, 0); |
if( rc ){ |
sqlite3_free(a); |
*pRC = rc; |
return; |
} |
+ sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL); |
if( sqlite3_step(pStmt)==SQLITE_ROW ){ |
fts3DecodeIntArray(nStat, a, |
sqlite3_column_blob(pStmt, 0), |
@@ -2407,7 +3395,12 @@ static void fts3UpdateDocTotals( |
}else{ |
memset(a, 0, sizeof(u32)*(nStat) ); |
} |
- sqlite3_reset(pStmt); |
+ rc = sqlite3_reset(pStmt); |
+ if( rc!=SQLITE_OK ){ |
+ sqlite3_free(a); |
+ *pRC = rc; |
+ return; |
+ } |
if( nChng<0 && a[0]<(u32)(-nChng) ){ |
a[0] = 0; |
}else{ |
@@ -2423,21 +3416,1848 @@ static void fts3UpdateDocTotals( |
a[i+1] = x; |
} |
fts3EncodeIntArray(nStat, a, pBlob, &nBlob); |
- rc = fts3SqlStmt(p, SQL_REPLACE_DOCTOTAL, &pStmt, 0); |
+ rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pStmt, 0); |
if( rc ){ |
sqlite3_free(a); |
*pRC = rc; |
return; |
} |
- sqlite3_bind_blob(pStmt, 1, pBlob, nBlob, SQLITE_STATIC); |
+ sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL); |
+ sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, SQLITE_STATIC); |
sqlite3_step(pStmt); |
*pRC = sqlite3_reset(pStmt); |
sqlite3_free(a); |
} |
/* |
-** Handle a 'special' INSERT of the form: |
-** |
+** Merge the entire database so that there is one segment for each |
+** iIndex/iLangid combination. |
+*/ |
+static int fts3DoOptimize(Fts3Table *p, int bReturnDone){ |
+ int bSeenDone = 0; |
+ int rc; |
+ sqlite3_stmt *pAllLangid = 0; |
+ |
+ rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0); |
+ if( rc==SQLITE_OK ){ |
+ int rc2; |
+ sqlite3_bind_int(pAllLangid, 1, p->nIndex); |
+ while( sqlite3_step(pAllLangid)==SQLITE_ROW ){ |
+ int i; |
+ int iLangid = sqlite3_column_int(pAllLangid, 0); |
+ for(i=0; rc==SQLITE_OK && i<p->nIndex; i++){ |
+ rc = fts3SegmentMerge(p, iLangid, i, FTS3_SEGCURSOR_ALL); |
+ if( rc==SQLITE_DONE ){ |
+ bSeenDone = 1; |
+ rc = SQLITE_OK; |
+ } |
+ } |
+ } |
+ rc2 = sqlite3_reset(pAllLangid); |
+ if( rc==SQLITE_OK ) rc = rc2; |
+ } |
+ |
+ sqlite3Fts3SegmentsClose(p); |
+ sqlite3Fts3PendingTermsClear(p); |
+ |
+ return (rc==SQLITE_OK && bReturnDone && bSeenDone) ? SQLITE_DONE : rc; |
+} |
+ |
+/* |
+** This function is called when the user executes the following statement: |
+** |
+** INSERT INTO <tbl>(<tbl>) VALUES('rebuild'); |
+** |
+** The entire FTS index is discarded and rebuilt. If the table is one |
+** created using the content=xxx option, then the new index is based on |
+** the current contents of the xxx table. Otherwise, it is rebuilt based |
+** on the contents of the %_content table. |
+*/ |
+static int fts3DoRebuild(Fts3Table *p){ |
+ int rc; /* Return Code */ |
+ |
+ rc = fts3DeleteAll(p, 0); |
+ if( rc==SQLITE_OK ){ |
+ u32 *aSz = 0; |
+ u32 *aSzIns = 0; |
+ u32 *aSzDel = 0; |
+ sqlite3_stmt *pStmt = 0; |
+ int nEntry = 0; |
+ |
+ /* Compose and prepare an SQL statement to loop through the content table */ |
+ char *zSql = sqlite3_mprintf("SELECT %s" , p->zReadExprlist); |
+ if( !zSql ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); |
+ sqlite3_free(zSql); |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ int nByte = sizeof(u32) * (p->nColumn+1)*3; |
+ aSz = (u32 *)sqlite3_malloc(nByte); |
+ if( aSz==0 ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ memset(aSz, 0, nByte); |
+ aSzIns = &aSz[p->nColumn+1]; |
+ aSzDel = &aSzIns[p->nColumn+1]; |
+ } |
+ } |
+ |
+ while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ |
+ int iCol; |
+ int iLangid = langidFromSelect(p, pStmt); |
+ rc = fts3PendingTermsDocid(p, iLangid, sqlite3_column_int64(pStmt, 0)); |
+ memset(aSz, 0, sizeof(aSz[0]) * (p->nColumn+1)); |
+ for(iCol=0; rc==SQLITE_OK && iCol<p->nColumn; iCol++){ |
+ if( p->abNotindexed[iCol]==0 ){ |
+ const char *z = (const char *) sqlite3_column_text(pStmt, iCol+1); |
+ rc = fts3PendingTermsAdd(p, iLangid, z, iCol, &aSz[iCol]); |
+ aSz[p->nColumn] += sqlite3_column_bytes(pStmt, iCol+1); |
+ } |
+ } |
+ if( p->bHasDocsize ){ |
+ fts3InsertDocsize(&rc, p, aSz); |
+ } |
+ if( rc!=SQLITE_OK ){ |
+ sqlite3_finalize(pStmt); |
+ pStmt = 0; |
+ }else{ |
+ nEntry++; |
+ for(iCol=0; iCol<=p->nColumn; iCol++){ |
+ aSzIns[iCol] += aSz[iCol]; |
+ } |
+ } |
+ } |
+ if( p->bFts4 ){ |
+ fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nEntry); |
+ } |
+ sqlite3_free(aSz); |
+ |
+ if( pStmt ){ |
+ int rc2 = sqlite3_finalize(pStmt); |
+ if( rc==SQLITE_OK ){ |
+ rc = rc2; |
+ } |
+ } |
+ } |
+ |
+ return rc; |
+} |
+ |
+ |
+/* |
+** This function opens a cursor used to read the input data for an |
+** incremental merge operation. Specifically, it opens a cursor to scan |
+** the oldest nSeg segments (idx=0 through idx=(nSeg-1)) in absolute |
+** level iAbsLevel. |
+*/ |
+static int fts3IncrmergeCsr( |
+ Fts3Table *p, /* FTS3 table handle */ |
+ sqlite3_int64 iAbsLevel, /* Absolute level to open */ |
+ int nSeg, /* Number of segments to merge */ |
+ Fts3MultiSegReader *pCsr /* Cursor object to populate */ |
+){ |
+ int rc; /* Return Code */ |
+ sqlite3_stmt *pStmt = 0; /* Statement used to read %_segdir entry */ |
+ int nByte; /* Bytes allocated at pCsr->apSegment[] */ |
+ |
+ /* Allocate space for the Fts3MultiSegReader.aCsr[] array */ |
+ memset(pCsr, 0, sizeof(*pCsr)); |
+ nByte = sizeof(Fts3SegReader *) * nSeg; |
+ pCsr->apSegment = (Fts3SegReader **)sqlite3_malloc(nByte); |
+ |
+ if( pCsr->apSegment==0 ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ memset(pCsr->apSegment, 0, nByte); |
+ rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ int i; |
+ int rc2; |
+ sqlite3_bind_int64(pStmt, 1, iAbsLevel); |
+ assert( pCsr->nSegment==0 ); |
+ for(i=0; rc==SQLITE_OK && sqlite3_step(pStmt)==SQLITE_ROW && i<nSeg; i++){ |
+ rc = sqlite3Fts3SegReaderNew(i, 0, |
+ sqlite3_column_int64(pStmt, 1), /* segdir.start_block */ |
+ sqlite3_column_int64(pStmt, 2), /* segdir.leaves_end_block */ |
+ sqlite3_column_int64(pStmt, 3), /* segdir.end_block */ |
+ sqlite3_column_blob(pStmt, 4), /* segdir.root */ |
+ sqlite3_column_bytes(pStmt, 4), /* segdir.root */ |
+ &pCsr->apSegment[i] |
+ ); |
+ pCsr->nSegment++; |
+ } |
+ rc2 = sqlite3_reset(pStmt); |
+ if( rc==SQLITE_OK ) rc = rc2; |
+ } |
+ |
+ return rc; |
+} |
+ |
+typedef struct IncrmergeWriter IncrmergeWriter; |
+typedef struct NodeWriter NodeWriter; |
+typedef struct Blob Blob; |
+typedef struct NodeReader NodeReader; |
+ |
+/* |
+** An instance of the following structure is used as a dynamic buffer |
+** to build up nodes or other blobs of data in. |
+** |
+** The function blobGrowBuffer() is used to extend the allocation. |
+*/ |
+struct Blob { |
+ char *a; /* Pointer to allocation */ |
+ int n; /* Number of valid bytes of data in a[] */ |
+ int nAlloc; /* Allocated size of a[] (nAlloc>=n) */ |
+}; |
+ |
+/* |
+** This structure is used to build up buffers containing segment b-tree |
+** nodes (blocks). |
+*/ |
+struct NodeWriter { |
+ sqlite3_int64 iBlock; /* Current block id */ |
+ Blob key; /* Last key written to the current block */ |
+ Blob block; /* Current block image */ |
+}; |
+ |
+/* |
+** An object of this type contains the state required to create or append |
+** to an appendable b-tree segment. |
+*/ |
+struct IncrmergeWriter { |
+ int nLeafEst; /* Space allocated for leaf blocks */ |
+ int nWork; /* Number of leaf pages flushed */ |
+ sqlite3_int64 iAbsLevel; /* Absolute level of input segments */ |
+ int iIdx; /* Index of *output* segment in iAbsLevel+1 */ |
+ sqlite3_int64 iStart; /* Block number of first allocated block */ |
+ sqlite3_int64 iEnd; /* Block number of last allocated block */ |
+ sqlite3_int64 nLeafData; /* Bytes of leaf page data so far */ |
+ u8 bNoLeafData; /* If true, store 0 for segment size */ |
+ NodeWriter aNodeWriter[FTS_MAX_APPENDABLE_HEIGHT]; |
+}; |
+ |
+/* |
+** An object of the following type is used to read data from a single |
+** FTS segment node. See the following functions: |
+** |
+** nodeReaderInit() |
+** nodeReaderNext() |
+** nodeReaderRelease() |
+*/ |
+struct NodeReader { |
+ const char *aNode; |
+ int nNode; |
+ int iOff; /* Current offset within aNode[] */ |
+ |
+ /* Output variables. Containing the current node entry. */ |
+ sqlite3_int64 iChild; /* Pointer to child node */ |
+ Blob term; /* Current term */ |
+ const char *aDoclist; /* Pointer to doclist */ |
+ int nDoclist; /* Size of doclist in bytes */ |
+}; |
+ |
+/* |
+** If *pRc is not SQLITE_OK when this function is called, it is a no-op. |
+** Otherwise, if the allocation at pBlob->a is not already at least nMin |
+** bytes in size, extend (realloc) it to be so. |
+** |
+** If an OOM error occurs, set *pRc to SQLITE_NOMEM and leave pBlob->a |
+** unmodified. Otherwise, if the allocation succeeds, update pBlob->nAlloc |
+** to reflect the new size of the pBlob->a[] buffer. |
+*/ |
+static void blobGrowBuffer(Blob *pBlob, int nMin, int *pRc){ |
+ if( *pRc==SQLITE_OK && nMin>pBlob->nAlloc ){ |
+ int nAlloc = nMin; |
+ char *a = (char *)sqlite3_realloc(pBlob->a, nAlloc); |
+ if( a ){ |
+ pBlob->nAlloc = nAlloc; |
+ pBlob->a = a; |
+ }else{ |
+ *pRc = SQLITE_NOMEM; |
+ } |
+ } |
+} |
+ |
+/* |
+** Attempt to advance the node-reader object passed as the first argument to |
+** the next entry on the node. |
+** |
+** Return an error code if an error occurs (SQLITE_NOMEM is possible). |
+** Otherwise return SQLITE_OK. If there is no next entry on the node |
+** (e.g. because the current entry is the last) set NodeReader->aNode to |
+** NULL to indicate EOF. Otherwise, populate the NodeReader structure output |
+** variables for the new entry. |
+*/ |
+static int nodeReaderNext(NodeReader *p){ |
+ int bFirst = (p->term.n==0); /* True for first term on the node */ |
+ int nPrefix = 0; /* Bytes to copy from previous term */ |
+ int nSuffix = 0; /* Bytes to append to the prefix */ |
+ int rc = SQLITE_OK; /* Return code */ |
+ |
+ assert( p->aNode ); |
+ if( p->iChild && bFirst==0 ) p->iChild++; |
+ if( p->iOff>=p->nNode ){ |
+ /* EOF */ |
+ p->aNode = 0; |
+ }else{ |
+ if( bFirst==0 ){ |
+ p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nPrefix); |
+ } |
+ p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nSuffix); |
+ |
+ blobGrowBuffer(&p->term, nPrefix+nSuffix, &rc); |
+ if( rc==SQLITE_OK ){ |
+ memcpy(&p->term.a[nPrefix], &p->aNode[p->iOff], nSuffix); |
+ p->term.n = nPrefix+nSuffix; |
+ p->iOff += nSuffix; |
+ if( p->iChild==0 ){ |
+ p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &p->nDoclist); |
+ p->aDoclist = &p->aNode[p->iOff]; |
+ p->iOff += p->nDoclist; |
+ } |
+ } |
+ } |
+ |
+ assert( p->iOff<=p->nNode ); |
+ |
+ return rc; |
+} |
+ |
+/* |
+** Release all dynamic resources held by node-reader object *p. |
+*/ |
+static void nodeReaderRelease(NodeReader *p){ |
+ sqlite3_free(p->term.a); |
+} |
+ |
+/* |
+** Initialize a node-reader object to read the node in buffer aNode/nNode. |
+** |
+** If successful, SQLITE_OK is returned and the NodeReader object set to |
+** point to the first entry on the node (if any). Otherwise, an SQLite |
+** error code is returned. |
+*/ |
+static int nodeReaderInit(NodeReader *p, const char *aNode, int nNode){ |
+ memset(p, 0, sizeof(NodeReader)); |
+ p->aNode = aNode; |
+ p->nNode = nNode; |
+ |
+ /* Figure out if this is a leaf or an internal node. */ |
+ if( p->aNode[0] ){ |
+ /* An internal node. */ |
+ p->iOff = 1 + sqlite3Fts3GetVarint(&p->aNode[1], &p->iChild); |
+ }else{ |
+ p->iOff = 1; |
+ } |
+ |
+ return nodeReaderNext(p); |
+} |
+ |
+/* |
+** This function is called while writing an FTS segment each time a leaf o |
+** node is finished and written to disk. The key (zTerm/nTerm) is guaranteed |
+** to be greater than the largest key on the node just written, but smaller |
+** than or equal to the first key that will be written to the next leaf |
+** node. |
+** |
+** The block id of the leaf node just written to disk may be found in |
+** (pWriter->aNodeWriter[0].iBlock) when this function is called. |
+*/ |
+static int fts3IncrmergePush( |
+ Fts3Table *p, /* Fts3 table handle */ |
+ IncrmergeWriter *pWriter, /* Writer object */ |
+ const char *zTerm, /* Term to write to internal node */ |
+ int nTerm /* Bytes at zTerm */ |
+){ |
+ sqlite3_int64 iPtr = pWriter->aNodeWriter[0].iBlock; |
+ int iLayer; |
+ |
+ assert( nTerm>0 ); |
+ for(iLayer=1; ALWAYS(iLayer<FTS_MAX_APPENDABLE_HEIGHT); iLayer++){ |
+ sqlite3_int64 iNextPtr = 0; |
+ NodeWriter *pNode = &pWriter->aNodeWriter[iLayer]; |
+ int rc = SQLITE_OK; |
+ int nPrefix; |
+ int nSuffix; |
+ int nSpace; |
+ |
+ /* Figure out how much space the key will consume if it is written to |
+ ** the current node of layer iLayer. Due to the prefix compression, |
+ ** the space required changes depending on which node the key is to |
+ ** be added to. */ |
+ nPrefix = fts3PrefixCompress(pNode->key.a, pNode->key.n, zTerm, nTerm); |
+ nSuffix = nTerm - nPrefix; |
+ nSpace = sqlite3Fts3VarintLen(nPrefix); |
+ nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix; |
+ |
+ if( pNode->key.n==0 || (pNode->block.n + nSpace)<=p->nNodeSize ){ |
+ /* If the current node of layer iLayer contains zero keys, or if adding |
+ ** the key to it will not cause it to grow to larger than nNodeSize |
+ ** bytes in size, write the key here. */ |
+ |
+ Blob *pBlk = &pNode->block; |
+ if( pBlk->n==0 ){ |
+ blobGrowBuffer(pBlk, p->nNodeSize, &rc); |
+ if( rc==SQLITE_OK ){ |
+ pBlk->a[0] = (char)iLayer; |
+ pBlk->n = 1 + sqlite3Fts3PutVarint(&pBlk->a[1], iPtr); |
+ } |
+ } |
+ blobGrowBuffer(pBlk, pBlk->n + nSpace, &rc); |
+ blobGrowBuffer(&pNode->key, nTerm, &rc); |
+ |
+ if( rc==SQLITE_OK ){ |
+ if( pNode->key.n ){ |
+ pBlk->n += sqlite3Fts3PutVarint(&pBlk->a[pBlk->n], nPrefix); |
+ } |
+ pBlk->n += sqlite3Fts3PutVarint(&pBlk->a[pBlk->n], nSuffix); |
+ memcpy(&pBlk->a[pBlk->n], &zTerm[nPrefix], nSuffix); |
+ pBlk->n += nSuffix; |
+ |
+ memcpy(pNode->key.a, zTerm, nTerm); |
+ pNode->key.n = nTerm; |
+ } |
+ }else{ |
+ /* Otherwise, flush the current node of layer iLayer to disk. |
+ ** Then allocate a new, empty sibling node. The key will be written |
+ ** into the parent of this node. */ |
+ rc = fts3WriteSegment(p, pNode->iBlock, pNode->block.a, pNode->block.n); |
+ |
+ assert( pNode->block.nAlloc>=p->nNodeSize ); |
+ pNode->block.a[0] = (char)iLayer; |
+ pNode->block.n = 1 + sqlite3Fts3PutVarint(&pNode->block.a[1], iPtr+1); |
+ |
+ iNextPtr = pNode->iBlock; |
+ pNode->iBlock++; |
+ pNode->key.n = 0; |
+ } |
+ |
+ if( rc!=SQLITE_OK || iNextPtr==0 ) return rc; |
+ iPtr = iNextPtr; |
+ } |
+ |
+ assert( 0 ); |
+ return 0; |
+} |
+ |
+/* |
+** Append a term and (optionally) doclist to the FTS segment node currently |
+** stored in blob *pNode. The node need not contain any terms, but the |
+** header must be written before this function is called. |
+** |
+** A node header is a single 0x00 byte for a leaf node, or a height varint |
+** followed by the left-hand-child varint for an internal node. |
+** |
+** The term to be appended is passed via arguments zTerm/nTerm. For a |
+** leaf node, the doclist is passed as aDoclist/nDoclist. For an internal |
+** node, both aDoclist and nDoclist must be passed 0. |
+** |
+** If the size of the value in blob pPrev is zero, then this is the first |
+** term written to the node. Otherwise, pPrev contains a copy of the |
+** previous term. Before this function returns, it is updated to contain a |
+** copy of zTerm/nTerm. |
+** |
+** It is assumed that the buffer associated with pNode is already large |
+** enough to accommodate the new entry. The buffer associated with pPrev |
+** is extended by this function if requrired. |
+** |
+** If an error (i.e. OOM condition) occurs, an SQLite error code is |
+** returned. Otherwise, SQLITE_OK. |
+*/ |
+static int fts3AppendToNode( |
+ Blob *pNode, /* Current node image to append to */ |
+ Blob *pPrev, /* Buffer containing previous term written */ |
+ const char *zTerm, /* New term to write */ |
+ int nTerm, /* Size of zTerm in bytes */ |
+ const char *aDoclist, /* Doclist (or NULL) to write */ |
+ int nDoclist /* Size of aDoclist in bytes */ |
+){ |
+ int rc = SQLITE_OK; /* Return code */ |
+ int bFirst = (pPrev->n==0); /* True if this is the first term written */ |
+ int nPrefix; /* Size of term prefix in bytes */ |
+ int nSuffix; /* Size of term suffix in bytes */ |
+ |
+ /* Node must have already been started. There must be a doclist for a |
+ ** leaf node, and there must not be a doclist for an internal node. */ |
+ assert( pNode->n>0 ); |
+ assert( (pNode->a[0]=='\0')==(aDoclist!=0) ); |
+ |
+ blobGrowBuffer(pPrev, nTerm, &rc); |
+ if( rc!=SQLITE_OK ) return rc; |
+ |
+ nPrefix = fts3PrefixCompress(pPrev->a, pPrev->n, zTerm, nTerm); |
+ nSuffix = nTerm - nPrefix; |
+ memcpy(pPrev->a, zTerm, nTerm); |
+ pPrev->n = nTerm; |
+ |
+ if( bFirst==0 ){ |
+ pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nPrefix); |
+ } |
+ pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nSuffix); |
+ memcpy(&pNode->a[pNode->n], &zTerm[nPrefix], nSuffix); |
+ pNode->n += nSuffix; |
+ |
+ if( aDoclist ){ |
+ pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nDoclist); |
+ memcpy(&pNode->a[pNode->n], aDoclist, nDoclist); |
+ pNode->n += nDoclist; |
+ } |
+ |
+ assert( pNode->n<=pNode->nAlloc ); |
+ |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Append the current term and doclist pointed to by cursor pCsr to the |
+** appendable b-tree segment opened for writing by pWriter. |
+** |
+** Return SQLITE_OK if successful, or an SQLite error code otherwise. |
+*/ |
+static int fts3IncrmergeAppend( |
+ Fts3Table *p, /* Fts3 table handle */ |
+ IncrmergeWriter *pWriter, /* Writer object */ |
+ Fts3MultiSegReader *pCsr /* Cursor containing term and doclist */ |
+){ |
+ const char *zTerm = pCsr->zTerm; |
+ int nTerm = pCsr->nTerm; |
+ const char *aDoclist = pCsr->aDoclist; |
+ int nDoclist = pCsr->nDoclist; |
+ int rc = SQLITE_OK; /* Return code */ |
+ int nSpace; /* Total space in bytes required on leaf */ |
+ int nPrefix; /* Size of prefix shared with previous term */ |
+ int nSuffix; /* Size of suffix (nTerm - nPrefix) */ |
+ NodeWriter *pLeaf; /* Object used to write leaf nodes */ |
+ |
+ pLeaf = &pWriter->aNodeWriter[0]; |
+ nPrefix = fts3PrefixCompress(pLeaf->key.a, pLeaf->key.n, zTerm, nTerm); |
+ nSuffix = nTerm - nPrefix; |
+ |
+ nSpace = sqlite3Fts3VarintLen(nPrefix); |
+ nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix; |
+ nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist; |
+ |
+ /* If the current block is not empty, and if adding this term/doclist |
+ ** to the current block would make it larger than Fts3Table.nNodeSize |
+ ** bytes, write this block out to the database. */ |
+ if( pLeaf->block.n>0 && (pLeaf->block.n + nSpace)>p->nNodeSize ){ |
+ rc = fts3WriteSegment(p, pLeaf->iBlock, pLeaf->block.a, pLeaf->block.n); |
+ pWriter->nWork++; |
+ |
+ /* Add the current term to the parent node. The term added to the |
+ ** parent must: |
+ ** |
+ ** a) be greater than the largest term on the leaf node just written |
+ ** to the database (still available in pLeaf->key), and |
+ ** |
+ ** b) be less than or equal to the term about to be added to the new |
+ ** leaf node (zTerm/nTerm). |
+ ** |
+ ** In other words, it must be the prefix of zTerm 1 byte longer than |
+ ** the common prefix (if any) of zTerm and pWriter->zTerm. |
+ */ |
+ if( rc==SQLITE_OK ){ |
+ rc = fts3IncrmergePush(p, pWriter, zTerm, nPrefix+1); |
+ } |
+ |
+ /* Advance to the next output block */ |
+ pLeaf->iBlock++; |
+ pLeaf->key.n = 0; |
+ pLeaf->block.n = 0; |
+ |
+ nSuffix = nTerm; |
+ nSpace = 1; |
+ nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix; |
+ nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist; |
+ } |
+ |
+ pWriter->nLeafData += nSpace; |
+ blobGrowBuffer(&pLeaf->block, pLeaf->block.n + nSpace, &rc); |
+ if( rc==SQLITE_OK ){ |
+ if( pLeaf->block.n==0 ){ |
+ pLeaf->block.n = 1; |
+ pLeaf->block.a[0] = '\0'; |
+ } |
+ rc = fts3AppendToNode( |
+ &pLeaf->block, &pLeaf->key, zTerm, nTerm, aDoclist, nDoclist |
+ ); |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** This function is called to release all dynamic resources held by the |
+** merge-writer object pWriter, and if no error has occurred, to flush |
+** all outstanding node buffers held by pWriter to disk. |
+** |
+** If *pRc is not SQLITE_OK when this function is called, then no attempt |
+** is made to write any data to disk. Instead, this function serves only |
+** to release outstanding resources. |
+** |
+** Otherwise, if *pRc is initially SQLITE_OK and an error occurs while |
+** flushing buffers to disk, *pRc is set to an SQLite error code before |
+** returning. |
+*/ |
+static void fts3IncrmergeRelease( |
+ Fts3Table *p, /* FTS3 table handle */ |
+ IncrmergeWriter *pWriter, /* Merge-writer object */ |
+ int *pRc /* IN/OUT: Error code */ |
+){ |
+ int i; /* Used to iterate through non-root layers */ |
+ int iRoot; /* Index of root in pWriter->aNodeWriter */ |
+ NodeWriter *pRoot; /* NodeWriter for root node */ |
+ int rc = *pRc; /* Error code */ |
+ |
+ /* Set iRoot to the index in pWriter->aNodeWriter[] of the output segment |
+ ** root node. If the segment fits entirely on a single leaf node, iRoot |
+ ** will be set to 0. If the root node is the parent of the leaves, iRoot |
+ ** will be 1. And so on. */ |
+ for(iRoot=FTS_MAX_APPENDABLE_HEIGHT-1; iRoot>=0; iRoot--){ |
+ NodeWriter *pNode = &pWriter->aNodeWriter[iRoot]; |
+ if( pNode->block.n>0 ) break; |
+ assert( *pRc || pNode->block.nAlloc==0 ); |
+ assert( *pRc || pNode->key.nAlloc==0 ); |
+ sqlite3_free(pNode->block.a); |
+ sqlite3_free(pNode->key.a); |
+ } |
+ |
+ /* Empty output segment. This is a no-op. */ |
+ if( iRoot<0 ) return; |
+ |
+ /* The entire output segment fits on a single node. Normally, this means |
+ ** the node would be stored as a blob in the "root" column of the %_segdir |
+ ** table. However, this is not permitted in this case. The problem is that |
+ ** space has already been reserved in the %_segments table, and so the |
+ ** start_block and end_block fields of the %_segdir table must be populated. |
+ ** And, by design or by accident, released versions of FTS cannot handle |
+ ** segments that fit entirely on the root node with start_block!=0. |
+ ** |
+ ** Instead, create a synthetic root node that contains nothing but a |
+ ** pointer to the single content node. So that the segment consists of a |
+ ** single leaf and a single interior (root) node. |
+ ** |
+ ** Todo: Better might be to defer allocating space in the %_segments |
+ ** table until we are sure it is needed. |
+ */ |
+ if( iRoot==0 ){ |
+ Blob *pBlock = &pWriter->aNodeWriter[1].block; |
+ blobGrowBuffer(pBlock, 1 + FTS3_VARINT_MAX, &rc); |
+ if( rc==SQLITE_OK ){ |
+ pBlock->a[0] = 0x01; |
+ pBlock->n = 1 + sqlite3Fts3PutVarint( |
+ &pBlock->a[1], pWriter->aNodeWriter[0].iBlock |
+ ); |
+ } |
+ iRoot = 1; |
+ } |
+ pRoot = &pWriter->aNodeWriter[iRoot]; |
+ |
+ /* Flush all currently outstanding nodes to disk. */ |
+ for(i=0; i<iRoot; i++){ |
+ NodeWriter *pNode = &pWriter->aNodeWriter[i]; |
+ if( pNode->block.n>0 && rc==SQLITE_OK ){ |
+ rc = fts3WriteSegment(p, pNode->iBlock, pNode->block.a, pNode->block.n); |
+ } |
+ sqlite3_free(pNode->block.a); |
+ sqlite3_free(pNode->key.a); |
+ } |
+ |
+ /* Write the %_segdir record. */ |
+ if( rc==SQLITE_OK ){ |
+ rc = fts3WriteSegdir(p, |
+ pWriter->iAbsLevel+1, /* level */ |
+ pWriter->iIdx, /* idx */ |
+ pWriter->iStart, /* start_block */ |
+ pWriter->aNodeWriter[0].iBlock, /* leaves_end_block */ |
+ pWriter->iEnd, /* end_block */ |
+ (pWriter->bNoLeafData==0 ? pWriter->nLeafData : 0), /* end_block */ |
+ pRoot->block.a, pRoot->block.n /* root */ |
+ ); |
+ } |
+ sqlite3_free(pRoot->block.a); |
+ sqlite3_free(pRoot->key.a); |
+ |
+ *pRc = rc; |
+} |
+ |
+/* |
+** Compare the term in buffer zLhs (size in bytes nLhs) with that in |
+** zRhs (size in bytes nRhs) using memcmp. If one term is a prefix of |
+** the other, it is considered to be smaller than the other. |
+** |
+** Return -ve if zLhs is smaller than zRhs, 0 if it is equal, or +ve |
+** if it is greater. |
+*/ |
+static int fts3TermCmp( |
+ const char *zLhs, int nLhs, /* LHS of comparison */ |
+ const char *zRhs, int nRhs /* RHS of comparison */ |
+){ |
+ int nCmp = MIN(nLhs, nRhs); |
+ int res; |
+ |
+ res = memcmp(zLhs, zRhs, nCmp); |
+ if( res==0 ) res = nLhs - nRhs; |
+ |
+ return res; |
+} |
+ |
+ |
+/* |
+** Query to see if the entry in the %_segments table with blockid iEnd is |
+** NULL. If no error occurs and the entry is NULL, set *pbRes 1 before |
+** returning. Otherwise, set *pbRes to 0. |
+** |
+** Or, if an error occurs while querying the database, return an SQLite |
+** error code. The final value of *pbRes is undefined in this case. |
+** |
+** This is used to test if a segment is an "appendable" segment. If it |
+** is, then a NULL entry has been inserted into the %_segments table |
+** with blockid %_segdir.end_block. |
+*/ |
+static int fts3IsAppendable(Fts3Table *p, sqlite3_int64 iEnd, int *pbRes){ |
+ int bRes = 0; /* Result to set *pbRes to */ |
+ sqlite3_stmt *pCheck = 0; /* Statement to query database with */ |
+ int rc; /* Return code */ |
+ |
+ rc = fts3SqlStmt(p, SQL_SEGMENT_IS_APPENDABLE, &pCheck, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int64(pCheck, 1, iEnd); |
+ if( SQLITE_ROW==sqlite3_step(pCheck) ) bRes = 1; |
+ rc = sqlite3_reset(pCheck); |
+ } |
+ |
+ *pbRes = bRes; |
+ return rc; |
+} |
+ |
+/* |
+** This function is called when initializing an incremental-merge operation. |
+** It checks if the existing segment with index value iIdx at absolute level |
+** (iAbsLevel+1) can be appended to by the incremental merge. If it can, the |
+** merge-writer object *pWriter is initialized to write to it. |
+** |
+** An existing segment can be appended to by an incremental merge if: |
+** |
+** * It was initially created as an appendable segment (with all required |
+** space pre-allocated), and |
+** |
+** * The first key read from the input (arguments zKey and nKey) is |
+** greater than the largest key currently stored in the potential |
+** output segment. |
+*/ |
+static int fts3IncrmergeLoad( |
+ Fts3Table *p, /* Fts3 table handle */ |
+ sqlite3_int64 iAbsLevel, /* Absolute level of input segments */ |
+ int iIdx, /* Index of candidate output segment */ |
+ const char *zKey, /* First key to write */ |
+ int nKey, /* Number of bytes in nKey */ |
+ IncrmergeWriter *pWriter /* Populate this object */ |
+){ |
+ int rc; /* Return code */ |
+ sqlite3_stmt *pSelect = 0; /* SELECT to read %_segdir entry */ |
+ |
+ rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR, &pSelect, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_int64 iStart = 0; /* Value of %_segdir.start_block */ |
+ sqlite3_int64 iLeafEnd = 0; /* Value of %_segdir.leaves_end_block */ |
+ sqlite3_int64 iEnd = 0; /* Value of %_segdir.end_block */ |
+ const char *aRoot = 0; /* Pointer to %_segdir.root buffer */ |
+ int nRoot = 0; /* Size of aRoot[] in bytes */ |
+ int rc2; /* Return code from sqlite3_reset() */ |
+ int bAppendable = 0; /* Set to true if segment is appendable */ |
+ |
+ /* Read the %_segdir entry for index iIdx absolute level (iAbsLevel+1) */ |
+ sqlite3_bind_int64(pSelect, 1, iAbsLevel+1); |
+ sqlite3_bind_int(pSelect, 2, iIdx); |
+ if( sqlite3_step(pSelect)==SQLITE_ROW ){ |
+ iStart = sqlite3_column_int64(pSelect, 1); |
+ iLeafEnd = sqlite3_column_int64(pSelect, 2); |
+ fts3ReadEndBlockField(pSelect, 3, &iEnd, &pWriter->nLeafData); |
+ if( pWriter->nLeafData<0 ){ |
+ pWriter->nLeafData = pWriter->nLeafData * -1; |
+ } |
+ pWriter->bNoLeafData = (pWriter->nLeafData==0); |
+ nRoot = sqlite3_column_bytes(pSelect, 4); |
+ aRoot = sqlite3_column_blob(pSelect, 4); |
+ }else{ |
+ return sqlite3_reset(pSelect); |
+ } |
+ |
+ /* Check for the zero-length marker in the %_segments table */ |
+ rc = fts3IsAppendable(p, iEnd, &bAppendable); |
+ |
+ /* Check that zKey/nKey is larger than the largest key the candidate */ |
+ if( rc==SQLITE_OK && bAppendable ){ |
+ char *aLeaf = 0; |
+ int nLeaf = 0; |
+ |
+ rc = sqlite3Fts3ReadBlock(p, iLeafEnd, &aLeaf, &nLeaf, 0); |
+ if( rc==SQLITE_OK ){ |
+ NodeReader reader; |
+ for(rc = nodeReaderInit(&reader, aLeaf, nLeaf); |
+ rc==SQLITE_OK && reader.aNode; |
+ rc = nodeReaderNext(&reader) |
+ ){ |
+ assert( reader.aNode ); |
+ } |
+ if( fts3TermCmp(zKey, nKey, reader.term.a, reader.term.n)<=0 ){ |
+ bAppendable = 0; |
+ } |
+ nodeReaderRelease(&reader); |
+ } |
+ sqlite3_free(aLeaf); |
+ } |
+ |
+ if( rc==SQLITE_OK && bAppendable ){ |
+ /* It is possible to append to this segment. Set up the IncrmergeWriter |
+ ** object to do so. */ |
+ int i; |
+ int nHeight = (int)aRoot[0]; |
+ NodeWriter *pNode; |
+ |
+ pWriter->nLeafEst = (int)((iEnd - iStart) + 1)/FTS_MAX_APPENDABLE_HEIGHT; |
+ pWriter->iStart = iStart; |
+ pWriter->iEnd = iEnd; |
+ pWriter->iAbsLevel = iAbsLevel; |
+ pWriter->iIdx = iIdx; |
+ |
+ for(i=nHeight+1; i<FTS_MAX_APPENDABLE_HEIGHT; i++){ |
+ pWriter->aNodeWriter[i].iBlock = pWriter->iStart + i*pWriter->nLeafEst; |
+ } |
+ |
+ pNode = &pWriter->aNodeWriter[nHeight]; |
+ pNode->iBlock = pWriter->iStart + pWriter->nLeafEst*nHeight; |
+ blobGrowBuffer(&pNode->block, MAX(nRoot, p->nNodeSize), &rc); |
+ if( rc==SQLITE_OK ){ |
+ memcpy(pNode->block.a, aRoot, nRoot); |
+ pNode->block.n = nRoot; |
+ } |
+ |
+ for(i=nHeight; i>=0 && rc==SQLITE_OK; i--){ |
+ NodeReader reader; |
+ pNode = &pWriter->aNodeWriter[i]; |
+ |
+ rc = nodeReaderInit(&reader, pNode->block.a, pNode->block.n); |
+ while( reader.aNode && rc==SQLITE_OK ) rc = nodeReaderNext(&reader); |
+ blobGrowBuffer(&pNode->key, reader.term.n, &rc); |
+ if( rc==SQLITE_OK ){ |
+ memcpy(pNode->key.a, reader.term.a, reader.term.n); |
+ pNode->key.n = reader.term.n; |
+ if( i>0 ){ |
+ char *aBlock = 0; |
+ int nBlock = 0; |
+ pNode = &pWriter->aNodeWriter[i-1]; |
+ pNode->iBlock = reader.iChild; |
+ rc = sqlite3Fts3ReadBlock(p, reader.iChild, &aBlock, &nBlock, 0); |
+ blobGrowBuffer(&pNode->block, MAX(nBlock, p->nNodeSize), &rc); |
+ if( rc==SQLITE_OK ){ |
+ memcpy(pNode->block.a, aBlock, nBlock); |
+ pNode->block.n = nBlock; |
+ } |
+ sqlite3_free(aBlock); |
+ } |
+ } |
+ nodeReaderRelease(&reader); |
+ } |
+ } |
+ |
+ rc2 = sqlite3_reset(pSelect); |
+ if( rc==SQLITE_OK ) rc = rc2; |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** Determine the largest segment index value that exists within absolute |
+** level iAbsLevel+1. If no error occurs, set *piIdx to this value plus |
+** one before returning SQLITE_OK. Or, if there are no segments at all |
+** within level iAbsLevel, set *piIdx to zero. |
+** |
+** If an error occurs, return an SQLite error code. The final value of |
+** *piIdx is undefined in this case. |
+*/ |
+static int fts3IncrmergeOutputIdx( |
+ Fts3Table *p, /* FTS Table handle */ |
+ sqlite3_int64 iAbsLevel, /* Absolute index of input segments */ |
+ int *piIdx /* OUT: Next free index at iAbsLevel+1 */ |
+){ |
+ int rc; |
+ sqlite3_stmt *pOutputIdx = 0; /* SQL used to find output index */ |
+ |
+ rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pOutputIdx, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int64(pOutputIdx, 1, iAbsLevel+1); |
+ sqlite3_step(pOutputIdx); |
+ *piIdx = sqlite3_column_int(pOutputIdx, 0); |
+ rc = sqlite3_reset(pOutputIdx); |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** Allocate an appendable output segment on absolute level iAbsLevel+1 |
+** with idx value iIdx. |
+** |
+** In the %_segdir table, a segment is defined by the values in three |
+** columns: |
+** |
+** start_block |
+** leaves_end_block |
+** end_block |
+** |
+** When an appendable segment is allocated, it is estimated that the |
+** maximum number of leaf blocks that may be required is the sum of the |
+** number of leaf blocks consumed by the input segments, plus the number |
+** of input segments, multiplied by two. This value is stored in stack |
+** variable nLeafEst. |
+** |
+** A total of 16*nLeafEst blocks are allocated when an appendable segment |
+** is created ((1 + end_block - start_block)==16*nLeafEst). The contiguous |
+** array of leaf nodes starts at the first block allocated. The array |
+** of interior nodes that are parents of the leaf nodes start at block |
+** (start_block + (1 + end_block - start_block) / 16). And so on. |
+** |
+** In the actual code below, the value "16" is replaced with the |
+** pre-processor macro FTS_MAX_APPENDABLE_HEIGHT. |
+*/ |
+static int fts3IncrmergeWriter( |
+ Fts3Table *p, /* Fts3 table handle */ |
+ sqlite3_int64 iAbsLevel, /* Absolute level of input segments */ |
+ int iIdx, /* Index of new output segment */ |
+ Fts3MultiSegReader *pCsr, /* Cursor that data will be read from */ |
+ IncrmergeWriter *pWriter /* Populate this object */ |
+){ |
+ int rc; /* Return Code */ |
+ int i; /* Iterator variable */ |
+ int nLeafEst = 0; /* Blocks allocated for leaf nodes */ |
+ sqlite3_stmt *pLeafEst = 0; /* SQL used to determine nLeafEst */ |
+ sqlite3_stmt *pFirstBlock = 0; /* SQL used to determine first block */ |
+ |
+ /* Calculate nLeafEst. */ |
+ rc = fts3SqlStmt(p, SQL_MAX_LEAF_NODE_ESTIMATE, &pLeafEst, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int64(pLeafEst, 1, iAbsLevel); |
+ sqlite3_bind_int64(pLeafEst, 2, pCsr->nSegment); |
+ if( SQLITE_ROW==sqlite3_step(pLeafEst) ){ |
+ nLeafEst = sqlite3_column_int(pLeafEst, 0); |
+ } |
+ rc = sqlite3_reset(pLeafEst); |
+ } |
+ if( rc!=SQLITE_OK ) return rc; |
+ |
+ /* Calculate the first block to use in the output segment */ |
+ rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pFirstBlock, 0); |
+ if( rc==SQLITE_OK ){ |
+ if( SQLITE_ROW==sqlite3_step(pFirstBlock) ){ |
+ pWriter->iStart = sqlite3_column_int64(pFirstBlock, 0); |
+ pWriter->iEnd = pWriter->iStart - 1; |
+ pWriter->iEnd += nLeafEst * FTS_MAX_APPENDABLE_HEIGHT; |
+ } |
+ rc = sqlite3_reset(pFirstBlock); |
+ } |
+ if( rc!=SQLITE_OK ) return rc; |
+ |
+ /* Insert the marker in the %_segments table to make sure nobody tries |
+ ** to steal the space just allocated. This is also used to identify |
+ ** appendable segments. */ |
+ rc = fts3WriteSegment(p, pWriter->iEnd, 0, 0); |
+ if( rc!=SQLITE_OK ) return rc; |
+ |
+ pWriter->iAbsLevel = iAbsLevel; |
+ pWriter->nLeafEst = nLeafEst; |
+ pWriter->iIdx = iIdx; |
+ |
+ /* Set up the array of NodeWriter objects */ |
+ for(i=0; i<FTS_MAX_APPENDABLE_HEIGHT; i++){ |
+ pWriter->aNodeWriter[i].iBlock = pWriter->iStart + i*pWriter->nLeafEst; |
+ } |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Remove an entry from the %_segdir table. This involves running the |
+** following two statements: |
+** |
+** DELETE FROM %_segdir WHERE level = :iAbsLevel AND idx = :iIdx |
+** UPDATE %_segdir SET idx = idx - 1 WHERE level = :iAbsLevel AND idx > :iIdx |
+** |
+** The DELETE statement removes the specific %_segdir level. The UPDATE |
+** statement ensures that the remaining segments have contiguously allocated |
+** idx values. |
+*/ |
+static int fts3RemoveSegdirEntry( |
+ Fts3Table *p, /* FTS3 table handle */ |
+ sqlite3_int64 iAbsLevel, /* Absolute level to delete from */ |
+ int iIdx /* Index of %_segdir entry to delete */ |
+){ |
+ int rc; /* Return code */ |
+ sqlite3_stmt *pDelete = 0; /* DELETE statement */ |
+ |
+ rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_ENTRY, &pDelete, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int64(pDelete, 1, iAbsLevel); |
+ sqlite3_bind_int(pDelete, 2, iIdx); |
+ sqlite3_step(pDelete); |
+ rc = sqlite3_reset(pDelete); |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** One or more segments have just been removed from absolute level iAbsLevel. |
+** Update the 'idx' values of the remaining segments in the level so that |
+** the idx values are a contiguous sequence starting from 0. |
+*/ |
+static int fts3RepackSegdirLevel( |
+ Fts3Table *p, /* FTS3 table handle */ |
+ sqlite3_int64 iAbsLevel /* Absolute level to repack */ |
+){ |
+ int rc; /* Return code */ |
+ int *aIdx = 0; /* Array of remaining idx values */ |
+ int nIdx = 0; /* Valid entries in aIdx[] */ |
+ int nAlloc = 0; /* Allocated size of aIdx[] */ |
+ int i; /* Iterator variable */ |
+ sqlite3_stmt *pSelect = 0; /* Select statement to read idx values */ |
+ sqlite3_stmt *pUpdate = 0; /* Update statement to modify idx values */ |
+ |
+ rc = fts3SqlStmt(p, SQL_SELECT_INDEXES, &pSelect, 0); |
+ if( rc==SQLITE_OK ){ |
+ int rc2; |
+ sqlite3_bind_int64(pSelect, 1, iAbsLevel); |
+ while( SQLITE_ROW==sqlite3_step(pSelect) ){ |
+ if( nIdx>=nAlloc ){ |
+ int *aNew; |
+ nAlloc += 16; |
+ aNew = sqlite3_realloc(aIdx, nAlloc*sizeof(int)); |
+ if( !aNew ){ |
+ rc = SQLITE_NOMEM; |
+ break; |
+ } |
+ aIdx = aNew; |
+ } |
+ aIdx[nIdx++] = sqlite3_column_int(pSelect, 0); |
+ } |
+ rc2 = sqlite3_reset(pSelect); |
+ if( rc==SQLITE_OK ) rc = rc2; |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ rc = fts3SqlStmt(p, SQL_SHIFT_SEGDIR_ENTRY, &pUpdate, 0); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int64(pUpdate, 2, iAbsLevel); |
+ } |
+ |
+ assert( p->bIgnoreSavepoint==0 ); |
+ p->bIgnoreSavepoint = 1; |
+ for(i=0; rc==SQLITE_OK && i<nIdx; i++){ |
+ if( aIdx[i]!=i ){ |
+ sqlite3_bind_int(pUpdate, 3, aIdx[i]); |
+ sqlite3_bind_int(pUpdate, 1, i); |
+ sqlite3_step(pUpdate); |
+ rc = sqlite3_reset(pUpdate); |
+ } |
+ } |
+ p->bIgnoreSavepoint = 0; |
+ |
+ sqlite3_free(aIdx); |
+ return rc; |
+} |
+ |
+static void fts3StartNode(Blob *pNode, int iHeight, sqlite3_int64 iChild){ |
+ pNode->a[0] = (char)iHeight; |
+ if( iChild ){ |
+ assert( pNode->nAlloc>=1+sqlite3Fts3VarintLen(iChild) ); |
+ pNode->n = 1 + sqlite3Fts3PutVarint(&pNode->a[1], iChild); |
+ }else{ |
+ assert( pNode->nAlloc>=1 ); |
+ pNode->n = 1; |
+ } |
+} |
+ |
+/* |
+** The first two arguments are a pointer to and the size of a segment b-tree |
+** node. The node may be a leaf or an internal node. |
+** |
+** This function creates a new node image in blob object *pNew by copying |
+** all terms that are greater than or equal to zTerm/nTerm (for leaf nodes) |
+** or greater than zTerm/nTerm (for internal nodes) from aNode/nNode. |
+*/ |
+static int fts3TruncateNode( |
+ const char *aNode, /* Current node image */ |
+ int nNode, /* Size of aNode in bytes */ |
+ Blob *pNew, /* OUT: Write new node image here */ |
+ const char *zTerm, /* Omit all terms smaller than this */ |
+ int nTerm, /* Size of zTerm in bytes */ |
+ sqlite3_int64 *piBlock /* OUT: Block number in next layer down */ |
+){ |
+ NodeReader reader; /* Reader object */ |
+ Blob prev = {0, 0, 0}; /* Previous term written to new node */ |
+ int rc = SQLITE_OK; /* Return code */ |
+ int bLeaf = aNode[0]=='\0'; /* True for a leaf node */ |
+ |
+ /* Allocate required output space */ |
+ blobGrowBuffer(pNew, nNode, &rc); |
+ if( rc!=SQLITE_OK ) return rc; |
+ pNew->n = 0; |
+ |
+ /* Populate new node buffer */ |
+ for(rc = nodeReaderInit(&reader, aNode, nNode); |
+ rc==SQLITE_OK && reader.aNode; |
+ rc = nodeReaderNext(&reader) |
+ ){ |
+ if( pNew->n==0 ){ |
+ int res = fts3TermCmp(reader.term.a, reader.term.n, zTerm, nTerm); |
+ if( res<0 || (bLeaf==0 && res==0) ) continue; |
+ fts3StartNode(pNew, (int)aNode[0], reader.iChild); |
+ *piBlock = reader.iChild; |
+ } |
+ rc = fts3AppendToNode( |
+ pNew, &prev, reader.term.a, reader.term.n, |
+ reader.aDoclist, reader.nDoclist |
+ ); |
+ if( rc!=SQLITE_OK ) break; |
+ } |
+ if( pNew->n==0 ){ |
+ fts3StartNode(pNew, (int)aNode[0], reader.iChild); |
+ *piBlock = reader.iChild; |
+ } |
+ assert( pNew->n<=pNew->nAlloc ); |
+ |
+ nodeReaderRelease(&reader); |
+ sqlite3_free(prev.a); |
+ return rc; |
+} |
+ |
+/* |
+** Remove all terms smaller than zTerm/nTerm from segment iIdx in absolute |
+** level iAbsLevel. This may involve deleting entries from the %_segments |
+** table, and modifying existing entries in both the %_segments and %_segdir |
+** tables. |
+** |
+** SQLITE_OK is returned if the segment is updated successfully. Or an |
+** SQLite error code otherwise. |
+*/ |
+static int fts3TruncateSegment( |
+ Fts3Table *p, /* FTS3 table handle */ |
+ sqlite3_int64 iAbsLevel, /* Absolute level of segment to modify */ |
+ int iIdx, /* Index within level of segment to modify */ |
+ const char *zTerm, /* Remove terms smaller than this */ |
+ int nTerm /* Number of bytes in buffer zTerm */ |
+){ |
+ int rc = SQLITE_OK; /* Return code */ |
+ Blob root = {0,0,0}; /* New root page image */ |
+ Blob block = {0,0,0}; /* Buffer used for any other block */ |
+ sqlite3_int64 iBlock = 0; /* Block id */ |
+ sqlite3_int64 iNewStart = 0; /* New value for iStartBlock */ |
+ sqlite3_int64 iOldStart = 0; /* Old value for iStartBlock */ |
+ sqlite3_stmt *pFetch = 0; /* Statement used to fetch segdir */ |
+ |
+ rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR, &pFetch, 0); |
+ if( rc==SQLITE_OK ){ |
+ int rc2; /* sqlite3_reset() return code */ |
+ sqlite3_bind_int64(pFetch, 1, iAbsLevel); |
+ sqlite3_bind_int(pFetch, 2, iIdx); |
+ if( SQLITE_ROW==sqlite3_step(pFetch) ){ |
+ const char *aRoot = sqlite3_column_blob(pFetch, 4); |
+ int nRoot = sqlite3_column_bytes(pFetch, 4); |
+ iOldStart = sqlite3_column_int64(pFetch, 1); |
+ rc = fts3TruncateNode(aRoot, nRoot, &root, zTerm, nTerm, &iBlock); |
+ } |
+ rc2 = sqlite3_reset(pFetch); |
+ if( rc==SQLITE_OK ) rc = rc2; |
+ } |
+ |
+ while( rc==SQLITE_OK && iBlock ){ |
+ char *aBlock = 0; |
+ int nBlock = 0; |
+ iNewStart = iBlock; |
+ |
+ rc = sqlite3Fts3ReadBlock(p, iBlock, &aBlock, &nBlock, 0); |
+ if( rc==SQLITE_OK ){ |
+ rc = fts3TruncateNode(aBlock, nBlock, &block, zTerm, nTerm, &iBlock); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ rc = fts3WriteSegment(p, iNewStart, block.a, block.n); |
+ } |
+ sqlite3_free(aBlock); |
+ } |
+ |
+ /* Variable iNewStart now contains the first valid leaf node. */ |
+ if( rc==SQLITE_OK && iNewStart ){ |
+ sqlite3_stmt *pDel = 0; |
+ rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDel, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int64(pDel, 1, iOldStart); |
+ sqlite3_bind_int64(pDel, 2, iNewStart-1); |
+ sqlite3_step(pDel); |
+ rc = sqlite3_reset(pDel); |
+ } |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_stmt *pChomp = 0; |
+ rc = fts3SqlStmt(p, SQL_CHOMP_SEGDIR, &pChomp, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int64(pChomp, 1, iNewStart); |
+ sqlite3_bind_blob(pChomp, 2, root.a, root.n, SQLITE_STATIC); |
+ sqlite3_bind_int64(pChomp, 3, iAbsLevel); |
+ sqlite3_bind_int(pChomp, 4, iIdx); |
+ sqlite3_step(pChomp); |
+ rc = sqlite3_reset(pChomp); |
+ } |
+ } |
+ |
+ sqlite3_free(root.a); |
+ sqlite3_free(block.a); |
+ return rc; |
+} |
+ |
+/* |
+** This function is called after an incrmental-merge operation has run to |
+** merge (or partially merge) two or more segments from absolute level |
+** iAbsLevel. |
+** |
+** Each input segment is either removed from the db completely (if all of |
+** its data was copied to the output segment by the incrmerge operation) |
+** or modified in place so that it no longer contains those entries that |
+** have been duplicated in the output segment. |
+*/ |
+static int fts3IncrmergeChomp( |
+ Fts3Table *p, /* FTS table handle */ |
+ sqlite3_int64 iAbsLevel, /* Absolute level containing segments */ |
+ Fts3MultiSegReader *pCsr, /* Chomp all segments opened by this cursor */ |
+ int *pnRem /* Number of segments not deleted */ |
+){ |
+ int i; |
+ int nRem = 0; |
+ int rc = SQLITE_OK; |
+ |
+ for(i=pCsr->nSegment-1; i>=0 && rc==SQLITE_OK; i--){ |
+ Fts3SegReader *pSeg = 0; |
+ int j; |
+ |
+ /* Find the Fts3SegReader object with Fts3SegReader.iIdx==i. It is hiding |
+ ** somewhere in the pCsr->apSegment[] array. */ |
+ for(j=0; ALWAYS(j<pCsr->nSegment); j++){ |
+ pSeg = pCsr->apSegment[j]; |
+ if( pSeg->iIdx==i ) break; |
+ } |
+ assert( j<pCsr->nSegment && pSeg->iIdx==i ); |
+ |
+ if( pSeg->aNode==0 ){ |
+ /* Seg-reader is at EOF. Remove the entire input segment. */ |
+ rc = fts3DeleteSegment(p, pSeg); |
+ if( rc==SQLITE_OK ){ |
+ rc = fts3RemoveSegdirEntry(p, iAbsLevel, pSeg->iIdx); |
+ } |
+ *pnRem = 0; |
+ }else{ |
+ /* The incremental merge did not copy all the data from this |
+ ** segment to the upper level. The segment is modified in place |
+ ** so that it contains no keys smaller than zTerm/nTerm. */ |
+ const char *zTerm = pSeg->zTerm; |
+ int nTerm = pSeg->nTerm; |
+ rc = fts3TruncateSegment(p, iAbsLevel, pSeg->iIdx, zTerm, nTerm); |
+ nRem++; |
+ } |
+ } |
+ |
+ if( rc==SQLITE_OK && nRem!=pCsr->nSegment ){ |
+ rc = fts3RepackSegdirLevel(p, iAbsLevel); |
+ } |
+ |
+ *pnRem = nRem; |
+ return rc; |
+} |
+ |
+/* |
+** Store an incr-merge hint in the database. |
+*/ |
+static int fts3IncrmergeHintStore(Fts3Table *p, Blob *pHint){ |
+ sqlite3_stmt *pReplace = 0; |
+ int rc; /* Return code */ |
+ |
+ rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pReplace, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int(pReplace, 1, FTS_STAT_INCRMERGEHINT); |
+ sqlite3_bind_blob(pReplace, 2, pHint->a, pHint->n, SQLITE_STATIC); |
+ sqlite3_step(pReplace); |
+ rc = sqlite3_reset(pReplace); |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** Load an incr-merge hint from the database. The incr-merge hint, if one |
+** exists, is stored in the rowid==1 row of the %_stat table. |
+** |
+** If successful, populate blob *pHint with the value read from the %_stat |
+** table and return SQLITE_OK. Otherwise, if an error occurs, return an |
+** SQLite error code. |
+*/ |
+static int fts3IncrmergeHintLoad(Fts3Table *p, Blob *pHint){ |
+ sqlite3_stmt *pSelect = 0; |
+ int rc; |
+ |
+ pHint->n = 0; |
+ rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pSelect, 0); |
+ if( rc==SQLITE_OK ){ |
+ int rc2; |
+ sqlite3_bind_int(pSelect, 1, FTS_STAT_INCRMERGEHINT); |
+ if( SQLITE_ROW==sqlite3_step(pSelect) ){ |
+ const char *aHint = sqlite3_column_blob(pSelect, 0); |
+ int nHint = sqlite3_column_bytes(pSelect, 0); |
+ if( aHint ){ |
+ blobGrowBuffer(pHint, nHint, &rc); |
+ if( rc==SQLITE_OK ){ |
+ memcpy(pHint->a, aHint, nHint); |
+ pHint->n = nHint; |
+ } |
+ } |
+ } |
+ rc2 = sqlite3_reset(pSelect); |
+ if( rc==SQLITE_OK ) rc = rc2; |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** If *pRc is not SQLITE_OK when this function is called, it is a no-op. |
+** Otherwise, append an entry to the hint stored in blob *pHint. Each entry |
+** consists of two varints, the absolute level number of the input segments |
+** and the number of input segments. |
+** |
+** If successful, leave *pRc set to SQLITE_OK and return. If an error occurs, |
+** set *pRc to an SQLite error code before returning. |
+*/ |
+static void fts3IncrmergeHintPush( |
+ Blob *pHint, /* Hint blob to append to */ |
+ i64 iAbsLevel, /* First varint to store in hint */ |
+ int nInput, /* Second varint to store in hint */ |
+ int *pRc /* IN/OUT: Error code */ |
+){ |
+ blobGrowBuffer(pHint, pHint->n + 2*FTS3_VARINT_MAX, pRc); |
+ if( *pRc==SQLITE_OK ){ |
+ pHint->n += sqlite3Fts3PutVarint(&pHint->a[pHint->n], iAbsLevel); |
+ pHint->n += sqlite3Fts3PutVarint(&pHint->a[pHint->n], (i64)nInput); |
+ } |
+} |
+ |
+/* |
+** Read the last entry (most recently pushed) from the hint blob *pHint |
+** and then remove the entry. Write the two values read to *piAbsLevel and |
+** *pnInput before returning. |
+** |
+** If no error occurs, return SQLITE_OK. If the hint blob in *pHint does |
+** not contain at least two valid varints, return SQLITE_CORRUPT_VTAB. |
+*/ |
+static int fts3IncrmergeHintPop(Blob *pHint, i64 *piAbsLevel, int *pnInput){ |
+ const int nHint = pHint->n; |
+ int i; |
+ |
+ i = pHint->n-2; |
+ while( i>0 && (pHint->a[i-1] & 0x80) ) i--; |
+ while( i>0 && (pHint->a[i-1] & 0x80) ) i--; |
+ |
+ pHint->n = i; |
+ i += sqlite3Fts3GetVarint(&pHint->a[i], piAbsLevel); |
+ i += fts3GetVarint32(&pHint->a[i], pnInput); |
+ if( i!=nHint ) return SQLITE_CORRUPT_VTAB; |
+ |
+ return SQLITE_OK; |
+} |
+ |
+ |
+/* |
+** Attempt an incremental merge that writes nMerge leaf blocks. |
+** |
+** Incremental merges happen nMin segments at a time. The segments |
+** to be merged are the nMin oldest segments (the ones with the smallest |
+** values for the _segdir.idx field) in the highest level that contains |
+** at least nMin segments. Multiple merges might occur in an attempt to |
+** write the quota of nMerge leaf blocks. |
+*/ |
+int sqlite3Fts3Incrmerge(Fts3Table *p, int nMerge, int nMin){ |
+ int rc; /* Return code */ |
+ int nRem = nMerge; /* Number of leaf pages yet to be written */ |
+ Fts3MultiSegReader *pCsr; /* Cursor used to read input data */ |
+ Fts3SegFilter *pFilter; /* Filter used with cursor pCsr */ |
+ IncrmergeWriter *pWriter; /* Writer object */ |
+ int nSeg = 0; /* Number of input segments */ |
+ sqlite3_int64 iAbsLevel = 0; /* Absolute level number to work on */ |
+ Blob hint = {0, 0, 0}; /* Hint read from %_stat table */ |
+ int bDirtyHint = 0; /* True if blob 'hint' has been modified */ |
+ |
+ /* Allocate space for the cursor, filter and writer objects */ |
+ const int nAlloc = sizeof(*pCsr) + sizeof(*pFilter) + sizeof(*pWriter); |
+ pWriter = (IncrmergeWriter *)sqlite3_malloc(nAlloc); |
+ if( !pWriter ) return SQLITE_NOMEM; |
+ pFilter = (Fts3SegFilter *)&pWriter[1]; |
+ pCsr = (Fts3MultiSegReader *)&pFilter[1]; |
+ |
+ rc = fts3IncrmergeHintLoad(p, &hint); |
+ while( rc==SQLITE_OK && nRem>0 ){ |
+ const i64 nMod = FTS3_SEGDIR_MAXLEVEL * p->nIndex; |
+ sqlite3_stmt *pFindLevel = 0; /* SQL used to determine iAbsLevel */ |
+ int bUseHint = 0; /* True if attempting to append */ |
+ int iIdx = 0; /* Largest idx in level (iAbsLevel+1) */ |
+ |
+ /* Search the %_segdir table for the absolute level with the smallest |
+ ** relative level number that contains at least nMin segments, if any. |
+ ** If one is found, set iAbsLevel to the absolute level number and |
+ ** nSeg to nMin. If no level with at least nMin segments can be found, |
+ ** set nSeg to -1. |
+ */ |
+ rc = fts3SqlStmt(p, SQL_FIND_MERGE_LEVEL, &pFindLevel, 0); |
+ sqlite3_bind_int(pFindLevel, 1, nMin); |
+ if( sqlite3_step(pFindLevel)==SQLITE_ROW ){ |
+ iAbsLevel = sqlite3_column_int64(pFindLevel, 0); |
+ nSeg = nMin; |
+ }else{ |
+ nSeg = -1; |
+ } |
+ rc = sqlite3_reset(pFindLevel); |
+ |
+ /* If the hint read from the %_stat table is not empty, check if the |
+ ** last entry in it specifies a relative level smaller than or equal |
+ ** to the level identified by the block above (if any). If so, this |
+ ** iteration of the loop will work on merging at the hinted level. |
+ */ |
+ if( rc==SQLITE_OK && hint.n ){ |
+ int nHint = hint.n; |
+ sqlite3_int64 iHintAbsLevel = 0; /* Hint level */ |
+ int nHintSeg = 0; /* Hint number of segments */ |
+ |
+ rc = fts3IncrmergeHintPop(&hint, &iHintAbsLevel, &nHintSeg); |
+ if( nSeg<0 || (iAbsLevel % nMod) >= (iHintAbsLevel % nMod) ){ |
+ iAbsLevel = iHintAbsLevel; |
+ nSeg = nHintSeg; |
+ bUseHint = 1; |
+ bDirtyHint = 1; |
+ }else{ |
+ /* This undoes the effect of the HintPop() above - so that no entry |
+ ** is removed from the hint blob. */ |
+ hint.n = nHint; |
+ } |
+ } |
+ |
+ /* If nSeg is less that zero, then there is no level with at least |
+ ** nMin segments and no hint in the %_stat table. No work to do. |
+ ** Exit early in this case. */ |
+ if( nSeg<0 ) break; |
+ |
+ /* Open a cursor to iterate through the contents of the oldest nSeg |
+ ** indexes of absolute level iAbsLevel. If this cursor is opened using |
+ ** the 'hint' parameters, it is possible that there are less than nSeg |
+ ** segments available in level iAbsLevel. In this case, no work is |
+ ** done on iAbsLevel - fall through to the next iteration of the loop |
+ ** to start work on some other level. */ |
+ memset(pWriter, 0, nAlloc); |
+ pFilter->flags = FTS3_SEGMENT_REQUIRE_POS; |
+ |
+ if( rc==SQLITE_OK ){ |
+ rc = fts3IncrmergeOutputIdx(p, iAbsLevel, &iIdx); |
+ assert( bUseHint==1 || bUseHint==0 ); |
+ if( iIdx==0 || (bUseHint && iIdx==1) ){ |
+ int bIgnore = 0; |
+ rc = fts3SegmentIsMaxLevel(p, iAbsLevel+1, &bIgnore); |
+ if( bIgnore ){ |
+ pFilter->flags |= FTS3_SEGMENT_IGNORE_EMPTY; |
+ } |
+ } |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ rc = fts3IncrmergeCsr(p, iAbsLevel, nSeg, pCsr); |
+ } |
+ if( SQLITE_OK==rc && pCsr->nSegment==nSeg |
+ && SQLITE_OK==(rc = sqlite3Fts3SegReaderStart(p, pCsr, pFilter)) |
+ && SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pCsr)) |
+ ){ |
+ if( bUseHint && iIdx>0 ){ |
+ const char *zKey = pCsr->zTerm; |
+ int nKey = pCsr->nTerm; |
+ rc = fts3IncrmergeLoad(p, iAbsLevel, iIdx-1, zKey, nKey, pWriter); |
+ }else{ |
+ rc = fts3IncrmergeWriter(p, iAbsLevel, iIdx, pCsr, pWriter); |
+ } |
+ |
+ if( rc==SQLITE_OK && pWriter->nLeafEst ){ |
+ fts3LogMerge(nSeg, iAbsLevel); |
+ do { |
+ rc = fts3IncrmergeAppend(p, pWriter, pCsr); |
+ if( rc==SQLITE_OK ) rc = sqlite3Fts3SegReaderStep(p, pCsr); |
+ if( pWriter->nWork>=nRem && rc==SQLITE_ROW ) rc = SQLITE_OK; |
+ }while( rc==SQLITE_ROW ); |
+ |
+ /* Update or delete the input segments */ |
+ if( rc==SQLITE_OK ){ |
+ nRem -= (1 + pWriter->nWork); |
+ rc = fts3IncrmergeChomp(p, iAbsLevel, pCsr, &nSeg); |
+ if( nSeg!=0 ){ |
+ bDirtyHint = 1; |
+ fts3IncrmergeHintPush(&hint, iAbsLevel, nSeg, &rc); |
+ } |
+ } |
+ } |
+ |
+ if( nSeg!=0 ){ |
+ pWriter->nLeafData = pWriter->nLeafData * -1; |
+ } |
+ fts3IncrmergeRelease(p, pWriter, &rc); |
+ if( nSeg==0 && pWriter->bNoLeafData==0 ){ |
+ fts3PromoteSegments(p, iAbsLevel+1, pWriter->nLeafData); |
+ } |
+ } |
+ |
+ sqlite3Fts3SegReaderFinish(pCsr); |
+ } |
+ |
+ /* Write the hint values into the %_stat table for the next incr-merger */ |
+ if( bDirtyHint && rc==SQLITE_OK ){ |
+ rc = fts3IncrmergeHintStore(p, &hint); |
+ } |
+ |
+ sqlite3_free(pWriter); |
+ sqlite3_free(hint.a); |
+ return rc; |
+} |
+ |
+/* |
+** Convert the text beginning at *pz into an integer and return |
+** its value. Advance *pz to point to the first character past |
+** the integer. |
+*/ |
+static int fts3Getint(const char **pz){ |
+ const char *z = *pz; |
+ int i = 0; |
+ while( (*z)>='0' && (*z)<='9' ) i = 10*i + *(z++) - '0'; |
+ *pz = z; |
+ return i; |
+} |
+ |
+/* |
+** Process statements of the form: |
+** |
+** INSERT INTO table(table) VALUES('merge=A,B'); |
+** |
+** A and B are integers that decode to be the number of leaf pages |
+** written for the merge, and the minimum number of segments on a level |
+** before it will be selected for a merge, respectively. |
+*/ |
+static int fts3DoIncrmerge( |
+ Fts3Table *p, /* FTS3 table handle */ |
+ const char *zParam /* Nul-terminated string containing "A,B" */ |
+){ |
+ int rc; |
+ int nMin = (FTS3_MERGE_COUNT / 2); |
+ int nMerge = 0; |
+ const char *z = zParam; |
+ |
+ /* Read the first integer value */ |
+ nMerge = fts3Getint(&z); |
+ |
+ /* If the first integer value is followed by a ',', read the second |
+ ** integer value. */ |
+ if( z[0]==',' && z[1]!='\0' ){ |
+ z++; |
+ nMin = fts3Getint(&z); |
+ } |
+ |
+ if( z[0]!='\0' || nMin<2 ){ |
+ rc = SQLITE_ERROR; |
+ }else{ |
+ rc = SQLITE_OK; |
+ if( !p->bHasStat ){ |
+ assert( p->bFts4==0 ); |
+ sqlite3Fts3CreateStatTable(&rc, p); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3Fts3Incrmerge(p, nMerge, nMin); |
+ } |
+ sqlite3Fts3SegmentsClose(p); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Process statements of the form: |
+** |
+** INSERT INTO table(table) VALUES('automerge=X'); |
+** |
+** where X is an integer. X==0 means to turn automerge off. X!=0 means |
+** turn it on. The setting is persistent. |
+*/ |
+static int fts3DoAutoincrmerge( |
+ Fts3Table *p, /* FTS3 table handle */ |
+ const char *zParam /* Nul-terminated string containing boolean */ |
+){ |
+ int rc = SQLITE_OK; |
+ sqlite3_stmt *pStmt = 0; |
+ p->nAutoincrmerge = fts3Getint(&zParam); |
+ if( p->nAutoincrmerge==1 || p->nAutoincrmerge>FTS3_MERGE_COUNT ){ |
+ p->nAutoincrmerge = 8; |
+ } |
+ if( !p->bHasStat ){ |
+ assert( p->bFts4==0 ); |
+ sqlite3Fts3CreateStatTable(&rc, p); |
+ if( rc ) return rc; |
+ } |
+ rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pStmt, 0); |
+ if( rc ) return rc; |
+ sqlite3_bind_int(pStmt, 1, FTS_STAT_AUTOINCRMERGE); |
+ sqlite3_bind_int(pStmt, 2, p->nAutoincrmerge); |
+ sqlite3_step(pStmt); |
+ rc = sqlite3_reset(pStmt); |
+ return rc; |
+} |
+ |
+/* |
+** Return a 64-bit checksum for the FTS index entry specified by the |
+** arguments to this function. |
+*/ |
+static u64 fts3ChecksumEntry( |
+ const char *zTerm, /* Pointer to buffer containing term */ |
+ int nTerm, /* Size of zTerm in bytes */ |
+ int iLangid, /* Language id for current row */ |
+ int iIndex, /* Index (0..Fts3Table.nIndex-1) */ |
+ i64 iDocid, /* Docid for current row. */ |
+ int iCol, /* Column number */ |
+ int iPos /* Position */ |
+){ |
+ int i; |
+ u64 ret = (u64)iDocid; |
+ |
+ ret += (ret<<3) + iLangid; |
+ ret += (ret<<3) + iIndex; |
+ ret += (ret<<3) + iCol; |
+ ret += (ret<<3) + iPos; |
+ for(i=0; i<nTerm; i++) ret += (ret<<3) + zTerm[i]; |
+ |
+ return ret; |
+} |
+ |
+/* |
+** Return a checksum of all entries in the FTS index that correspond to |
+** language id iLangid. The checksum is calculated by XORing the checksums |
+** of each individual entry (see fts3ChecksumEntry()) together. |
+** |
+** If successful, the checksum value is returned and *pRc set to SQLITE_OK. |
+** Otherwise, if an error occurs, *pRc is set to an SQLite error code. The |
+** return value is undefined in this case. |
+*/ |
+static u64 fts3ChecksumIndex( |
+ Fts3Table *p, /* FTS3 table handle */ |
+ int iLangid, /* Language id to return cksum for */ |
+ int iIndex, /* Index to cksum (0..p->nIndex-1) */ |
+ int *pRc /* OUT: Return code */ |
+){ |
+ Fts3SegFilter filter; |
+ Fts3MultiSegReader csr; |
+ int rc; |
+ u64 cksum = 0; |
+ |
+ assert( *pRc==SQLITE_OK ); |
+ |
+ memset(&filter, 0, sizeof(filter)); |
+ memset(&csr, 0, sizeof(csr)); |
+ filter.flags = FTS3_SEGMENT_REQUIRE_POS|FTS3_SEGMENT_IGNORE_EMPTY; |
+ filter.flags |= FTS3_SEGMENT_SCAN; |
+ |
+ rc = sqlite3Fts3SegReaderCursor( |
+ p, iLangid, iIndex, FTS3_SEGCURSOR_ALL, 0, 0, 0, 1,&csr |
+ ); |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3Fts3SegReaderStart(p, &csr, &filter); |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ while( SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, &csr)) ){ |
+ char *pCsr = csr.aDoclist; |
+ char *pEnd = &pCsr[csr.nDoclist]; |
+ |
+ i64 iDocid = 0; |
+ i64 iCol = 0; |
+ i64 iPos = 0; |
+ |
+ pCsr += sqlite3Fts3GetVarint(pCsr, &iDocid); |
+ while( pCsr<pEnd ){ |
+ i64 iVal = 0; |
+ pCsr += sqlite3Fts3GetVarint(pCsr, &iVal); |
+ if( pCsr<pEnd ){ |
+ if( iVal==0 || iVal==1 ){ |
+ iCol = 0; |
+ iPos = 0; |
+ if( iVal ){ |
+ pCsr += sqlite3Fts3GetVarint(pCsr, &iCol); |
+ }else{ |
+ pCsr += sqlite3Fts3GetVarint(pCsr, &iVal); |
+ iDocid += iVal; |
+ } |
+ }else{ |
+ iPos += (iVal - 2); |
+ cksum = cksum ^ fts3ChecksumEntry( |
+ csr.zTerm, csr.nTerm, iLangid, iIndex, iDocid, |
+ (int)iCol, (int)iPos |
+ ); |
+ } |
+ } |
+ } |
+ } |
+ } |
+ sqlite3Fts3SegReaderFinish(&csr); |
+ |
+ *pRc = rc; |
+ return cksum; |
+} |
+ |
+/* |
+** Check if the contents of the FTS index match the current contents of the |
+** content table. If no error occurs and the contents do match, set *pbOk |
+** to true and return SQLITE_OK. Or if the contents do not match, set *pbOk |
+** to false before returning. |
+** |
+** If an error occurs (e.g. an OOM or IO error), return an SQLite error |
+** code. The final value of *pbOk is undefined in this case. |
+*/ |
+static int fts3IntegrityCheck(Fts3Table *p, int *pbOk){ |
+ int rc = SQLITE_OK; /* Return code */ |
+ u64 cksum1 = 0; /* Checksum based on FTS index contents */ |
+ u64 cksum2 = 0; /* Checksum based on %_content contents */ |
+ sqlite3_stmt *pAllLangid = 0; /* Statement to return all language-ids */ |
+ |
+ /* This block calculates the checksum according to the FTS index. */ |
+ rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0); |
+ if( rc==SQLITE_OK ){ |
+ int rc2; |
+ sqlite3_bind_int(pAllLangid, 1, p->nIndex); |
+ while( rc==SQLITE_OK && sqlite3_step(pAllLangid)==SQLITE_ROW ){ |
+ int iLangid = sqlite3_column_int(pAllLangid, 0); |
+ int i; |
+ for(i=0; i<p->nIndex; i++){ |
+ cksum1 = cksum1 ^ fts3ChecksumIndex(p, iLangid, i, &rc); |
+ } |
+ } |
+ rc2 = sqlite3_reset(pAllLangid); |
+ if( rc==SQLITE_OK ) rc = rc2; |
+ } |
+ |
+ /* This block calculates the checksum according to the %_content table */ |
+ rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_tokenizer_module const *pModule = p->pTokenizer->pModule; |
+ sqlite3_stmt *pStmt = 0; |
+ char *zSql; |
+ |
+ zSql = sqlite3_mprintf("SELECT %s" , p->zReadExprlist); |
+ if( !zSql ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); |
+ sqlite3_free(zSql); |
+ } |
+ |
+ while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ |
+ i64 iDocid = sqlite3_column_int64(pStmt, 0); |
+ int iLang = langidFromSelect(p, pStmt); |
+ int iCol; |
+ |
+ for(iCol=0; rc==SQLITE_OK && iCol<p->nColumn; iCol++){ |
+ if( p->abNotindexed[iCol]==0 ){ |
+ const char *zText = (const char *)sqlite3_column_text(pStmt, iCol+1); |
+ int nText = sqlite3_column_bytes(pStmt, iCol+1); |
+ sqlite3_tokenizer_cursor *pT = 0; |
+ |
+ rc = sqlite3Fts3OpenTokenizer(p->pTokenizer, iLang, zText, nText,&pT); |
+ while( rc==SQLITE_OK ){ |
+ char const *zToken; /* Buffer containing token */ |
+ int nToken = 0; /* Number of bytes in token */ |
+ int iDum1 = 0, iDum2 = 0; /* Dummy variables */ |
+ int iPos = 0; /* Position of token in zText */ |
+ |
+ rc = pModule->xNext(pT, &zToken, &nToken, &iDum1, &iDum2, &iPos); |
+ if( rc==SQLITE_OK ){ |
+ int i; |
+ cksum2 = cksum2 ^ fts3ChecksumEntry( |
+ zToken, nToken, iLang, 0, iDocid, iCol, iPos |
+ ); |
+ for(i=1; i<p->nIndex; i++){ |
+ if( p->aIndex[i].nPrefix<=nToken ){ |
+ cksum2 = cksum2 ^ fts3ChecksumEntry( |
+ zToken, p->aIndex[i].nPrefix, iLang, i, iDocid, iCol, iPos |
+ ); |
+ } |
+ } |
+ } |
+ } |
+ if( pT ) pModule->xClose(pT); |
+ if( rc==SQLITE_DONE ) rc = SQLITE_OK; |
+ } |
+ } |
+ } |
+ |
+ sqlite3_finalize(pStmt); |
+ } |
+ |
+ *pbOk = (cksum1==cksum2); |
+ return rc; |
+} |
+ |
+/* |
+** Run the integrity-check. If no error occurs and the current contents of |
+** the FTS index are correct, return SQLITE_OK. Or, if the contents of the |
+** FTS index are incorrect, return SQLITE_CORRUPT_VTAB. |
+** |
+** Or, if an error (e.g. an OOM or IO error) occurs, return an SQLite |
+** error code. |
+** |
+** The integrity-check works as follows. For each token and indexed token |
+** prefix in the document set, a 64-bit checksum is calculated (by code |
+** in fts3ChecksumEntry()) based on the following: |
+** |
+** + The index number (0 for the main index, 1 for the first prefix |
+** index etc.), |
+** + The token (or token prefix) text itself, |
+** + The language-id of the row it appears in, |
+** + The docid of the row it appears in, |
+** + The column it appears in, and |
+** + The tokens position within that column. |
+** |
+** The checksums for all entries in the index are XORed together to create |
+** a single checksum for the entire index. |
+** |
+** The integrity-check code calculates the same checksum in two ways: |
+** |
+** 1. By scanning the contents of the FTS index, and |
+** 2. By scanning and tokenizing the content table. |
+** |
+** If the two checksums are identical, the integrity-check is deemed to have |
+** passed. |
+*/ |
+static int fts3DoIntegrityCheck( |
+ Fts3Table *p /* FTS3 table handle */ |
+){ |
+ int rc; |
+ int bOk = 0; |
+ rc = fts3IntegrityCheck(p, &bOk); |
+ if( rc==SQLITE_OK && bOk==0 ) rc = SQLITE_CORRUPT_VTAB; |
+ return rc; |
+} |
+ |
+/* |
+** Handle a 'special' INSERT of the form: |
+** |
** "INSERT INTO tbl(tbl) VALUES(<expr>)" |
** |
** Argument pVal contains the result of <expr>. Currently the only |
@@ -2451,12 +5271,15 @@ static int fts3SpecialInsert(Fts3Table *p, sqlite3_value *pVal){ |
if( !zVal ){ |
return SQLITE_NOMEM; |
}else if( nVal==8 && 0==sqlite3_strnicmp(zVal, "optimize", 8) ){ |
- rc = fts3SegmentMerge(p, FTS3_SEGCURSOR_ALL); |
- if( rc==SQLITE_DONE ){ |
- rc = SQLITE_OK; |
- }else{ |
- sqlite3Fts3PendingTermsClear(p); |
- } |
+ rc = fts3DoOptimize(p, 0); |
+ }else if( nVal==7 && 0==sqlite3_strnicmp(zVal, "rebuild", 7) ){ |
+ rc = fts3DoRebuild(p); |
+ }else if( nVal==15 && 0==sqlite3_strnicmp(zVal, "integrity-check", 15) ){ |
+ rc = fts3DoIntegrityCheck(p); |
+ }else if( nVal>6 && 0==sqlite3_strnicmp(zVal, "merge=", 6) ){ |
+ rc = fts3DoIncrmerge(p, &zVal[6]); |
+ }else if( nVal>10 && 0==sqlite3_strnicmp(zVal, "automerge=", 10) ){ |
+ rc = fts3DoAutoincrmerge(p, &zVal[10]); |
#ifdef SQLITE_TEST |
}else if( nVal>9 && 0==sqlite3_strnicmp(zVal, "nodesize=", 9) ){ |
p->nNodeSize = atoi(&zVal[9]); |
@@ -2464,49 +5287,18 @@ static int fts3SpecialInsert(Fts3Table *p, sqlite3_value *pVal){ |
}else if( nVal>11 && 0==sqlite3_strnicmp(zVal, "maxpending=", 9) ){ |
p->nMaxPendingData = atoi(&zVal[11]); |
rc = SQLITE_OK; |
+ }else if( nVal>21 && 0==sqlite3_strnicmp(zVal, "test-no-incr-doclist=", 21) ){ |
+ p->bNoIncrDoclist = atoi(&zVal[21]); |
+ rc = SQLITE_OK; |
#endif |
}else{ |
rc = SQLITE_ERROR; |
} |
- sqlite3Fts3SegmentsClose(p); |
return rc; |
} |
-/* |
-** Return the deferred doclist associated with deferred token pDeferred. |
-** This function assumes that sqlite3Fts3CacheDeferredDoclists() has already |
-** been called to allocate and populate the doclist. |
-*/ |
-char *sqlite3Fts3DeferredDoclist(Fts3DeferredToken *pDeferred, int *pnByte){ |
- if( pDeferred->pList ){ |
- *pnByte = pDeferred->pList->nData; |
- return pDeferred->pList->aData; |
- } |
- *pnByte = 0; |
- return 0; |
-} |
- |
-/* |
-** Helper fucntion for FreeDeferredDoclists(). This function removes all |
-** references to deferred doclists from within the tree of Fts3Expr |
-** structures headed by |
-*/ |
-static void fts3DeferredDoclistClear(Fts3Expr *pExpr){ |
- if( pExpr ){ |
- fts3DeferredDoclistClear(pExpr->pLeft); |
- fts3DeferredDoclistClear(pExpr->pRight); |
- if( pExpr->isLoaded ){ |
- sqlite3_free(pExpr->aDoclist); |
- pExpr->isLoaded = 0; |
- pExpr->aDoclist = 0; |
- pExpr->nDoclist = 0; |
- pExpr->pCurrent = 0; |
- pExpr->iCurrent = 0; |
- } |
- } |
-} |
- |
+#ifndef SQLITE_DISABLE_FTS4_DEFERRED |
/* |
** Delete all cached deferred doclists. Deferred doclists are cached |
** (allocated) by the sqlite3Fts3CacheDeferredDoclists() function. |
@@ -2514,12 +5306,9 @@ static void fts3DeferredDoclistClear(Fts3Expr *pExpr){ |
void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *pCsr){ |
Fts3DeferredToken *pDef; |
for(pDef=pCsr->pDeferred; pDef; pDef=pDef->pNext){ |
- sqlite3_free(pDef->pList); |
+ fts3PendingListDelete(pDef->pList); |
pDef->pList = 0; |
} |
- if( pCsr->pDeferred ){ |
- fts3DeferredDoclistClear(pCsr->pExpr); |
- } |
} |
/* |
@@ -2531,7 +5320,7 @@ void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *pCsr){ |
Fts3DeferredToken *pNext; |
for(pDef=pCsr->pDeferred; pDef; pDef=pNext){ |
pNext = pDef->pNext; |
- sqlite3_free(pDef->pList); |
+ fts3PendingListDelete(pDef->pList); |
sqlite3_free(pDef); |
} |
pCsr->pDeferred = 0; |
@@ -2560,32 +5349,34 @@ int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *pCsr){ |
iDocid = sqlite3_column_int64(pCsr->pStmt, 0); |
for(i=0; i<p->nColumn && rc==SQLITE_OK; i++){ |
- const char *zText = (const char *)sqlite3_column_text(pCsr->pStmt, i+1); |
- sqlite3_tokenizer_cursor *pTC = 0; |
- |
- rc = pModule->xOpen(pT, zText, -1, &pTC); |
- while( rc==SQLITE_OK ){ |
- char const *zToken; /* Buffer containing token */ |
- int nToken; /* Number of bytes in token */ |
- int iDum1, iDum2; /* Dummy variables */ |
- int iPos; /* Position of token in zText */ |
- |
- pTC->pTokenizer = pT; |
- rc = pModule->xNext(pTC, &zToken, &nToken, &iDum1, &iDum2, &iPos); |
- for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){ |
- Fts3PhraseToken *pPT = pDef->pToken; |
- if( (pDef->iCol>=p->nColumn || pDef->iCol==i) |
- && (pPT->n==nToken || (pPT->isPrefix && pPT->n<nToken)) |
- && (0==memcmp(zToken, pPT->z, pPT->n)) |
- ){ |
- fts3PendingListAppend(&pDef->pList, iDocid, i, iPos, &rc); |
+ if( p->abNotindexed[i]==0 ){ |
+ const char *zText = (const char *)sqlite3_column_text(pCsr->pStmt, i+1); |
+ sqlite3_tokenizer_cursor *pTC = 0; |
+ |
+ rc = sqlite3Fts3OpenTokenizer(pT, pCsr->iLangid, zText, -1, &pTC); |
+ while( rc==SQLITE_OK ){ |
+ char const *zToken; /* Buffer containing token */ |
+ int nToken = 0; /* Number of bytes in token */ |
+ int iDum1 = 0, iDum2 = 0; /* Dummy variables */ |
+ int iPos = 0; /* Position of token in zText */ |
+ |
+ rc = pModule->xNext(pTC, &zToken, &nToken, &iDum1, &iDum2, &iPos); |
+ for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){ |
+ Fts3PhraseToken *pPT = pDef->pToken; |
+ if( (pDef->iCol>=p->nColumn || pDef->iCol==i) |
+ && (pPT->bFirst==0 || iPos==0) |
+ && (pPT->n==nToken || (pPT->isPrefix && pPT->n<nToken)) |
+ && (0==memcmp(zToken, pPT->z, pPT->n)) |
+ ){ |
+ fts3PendingListAppend(&pDef->pList, iDocid, i, iPos, &rc); |
+ } |
} |
} |
+ if( pTC ) pModule->xClose(pTC); |
+ if( rc==SQLITE_DONE ) rc = SQLITE_OK; |
} |
- if( pTC ) pModule->xClose(pTC); |
- if( rc==SQLITE_DONE ) rc = SQLITE_OK; |
} |
- |
+ |
for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){ |
if( pDef->pList ){ |
rc = fts3PendingListAppendVarint(&pDef->pList, 0); |
@@ -2596,6 +5387,33 @@ int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *pCsr){ |
return rc; |
} |
+int sqlite3Fts3DeferredTokenList( |
+ Fts3DeferredToken *p, |
+ char **ppData, |
+ int *pnData |
+){ |
+ char *pRet; |
+ int nSkip; |
+ sqlite3_int64 dummy; |
+ |
+ *ppData = 0; |
+ *pnData = 0; |
+ |
+ if( p->pList==0 ){ |
+ return SQLITE_OK; |
+ } |
+ |
+ pRet = (char *)sqlite3_malloc(p->pList->nData); |
+ if( !pRet ) return SQLITE_NOMEM; |
+ |
+ nSkip = sqlite3Fts3GetVarint(p->pList->aData, &dummy); |
+ *pnData = p->pList->nData - nSkip; |
+ *ppData = pRet; |
+ |
+ memcpy(pRet, &p->pList->aData[nSkip], *pnData); |
+ return SQLITE_OK; |
+} |
+ |
/* |
** Add an entry for token pToken to the pCsr->pDeferred list. |
*/ |
@@ -2620,11 +5438,61 @@ int sqlite3Fts3DeferToken( |
return SQLITE_OK; |
} |
+#endif |
+ |
+/* |
+** SQLite value pRowid contains the rowid of a row that may or may not be |
+** present in the FTS3 table. If it is, delete it and adjust the contents |
+** of subsiduary data structures accordingly. |
+*/ |
+static int fts3DeleteByRowid( |
+ Fts3Table *p, |
+ sqlite3_value *pRowid, |
+ int *pnChng, /* IN/OUT: Decrement if row is deleted */ |
+ u32 *aSzDel |
+){ |
+ int rc = SQLITE_OK; /* Return code */ |
+ int bFound = 0; /* True if *pRowid really is in the table */ |
+ |
+ fts3DeleteTerms(&rc, p, pRowid, aSzDel, &bFound); |
+ if( bFound && rc==SQLITE_OK ){ |
+ int isEmpty = 0; /* Deleting *pRowid leaves the table empty */ |
+ rc = fts3IsEmpty(p, pRowid, &isEmpty); |
+ if( rc==SQLITE_OK ){ |
+ if( isEmpty ){ |
+ /* Deleting this row means the whole table is empty. In this case |
+ ** delete the contents of all three tables and throw away any |
+ ** data in the pendingTerms hash table. */ |
+ rc = fts3DeleteAll(p, 1); |
+ *pnChng = 0; |
+ memset(aSzDel, 0, sizeof(u32) * (p->nColumn+1) * 2); |
+ }else{ |
+ *pnChng = *pnChng - 1; |
+ if( p->zContentTbl==0 ){ |
+ fts3SqlExec(&rc, p, SQL_DELETE_CONTENT, &pRowid); |
+ } |
+ if( p->bHasDocsize ){ |
+ fts3SqlExec(&rc, p, SQL_DELETE_DOCSIZE, &pRowid); |
+ } |
+ } |
+ } |
+ } |
+ return rc; |
+} |
/* |
** This function does the work for the xUpdate method of FTS3 virtual |
-** tables. |
+** tables. The schema of the virtual table being: |
+** |
+** CREATE TABLE <table name>( |
+** <user columns>, |
+** <table name> HIDDEN, |
+** docid HIDDEN, |
+** <langid> HIDDEN |
+** ); |
+** |
+** |
*/ |
int sqlite3Fts3UpdateMethod( |
sqlite3_vtab *pVtab, /* FTS3 vtab object */ |
@@ -2635,55 +5503,121 @@ int sqlite3Fts3UpdateMethod( |
Fts3Table *p = (Fts3Table *)pVtab; |
int rc = SQLITE_OK; /* Return Code */ |
int isRemove = 0; /* True for an UPDATE or DELETE */ |
- sqlite3_int64 iRemove = 0; /* Rowid removed by UPDATE or DELETE */ |
- u32 *aSzIns; /* Sizes of inserted documents */ |
- u32 *aSzDel; /* Sizes of deleted documents */ |
+ u32 *aSzIns = 0; /* Sizes of inserted documents */ |
+ u32 *aSzDel = 0; /* Sizes of deleted documents */ |
int nChng = 0; /* Net change in number of documents */ |
+ int bInsertDone = 0; |
+ |
+ /* At this point it must be known if the %_stat table exists or not. |
+ ** So bHasStat may not be 2. */ |
+ assert( p->bHasStat==0 || p->bHasStat==1 ); |
assert( p->pSegments==0 ); |
+ assert( |
+ nArg==1 /* DELETE operations */ |
+ || nArg==(2 + p->nColumn + 3) /* INSERT or UPDATE operations */ |
+ ); |
+ |
+ /* Check for a "special" INSERT operation. One of the form: |
+ ** |
+ ** INSERT INTO xyz(xyz) VALUES('command'); |
+ */ |
+ if( nArg>1 |
+ && sqlite3_value_type(apVal[0])==SQLITE_NULL |
+ && sqlite3_value_type(apVal[p->nColumn+2])!=SQLITE_NULL |
+ ){ |
+ rc = fts3SpecialInsert(p, apVal[p->nColumn+2]); |
+ goto update_out; |
+ } |
+ |
+ if( nArg>1 && sqlite3_value_int(apVal[2 + p->nColumn + 2])<0 ){ |
+ rc = SQLITE_CONSTRAINT; |
+ goto update_out; |
+ } |
/* Allocate space to hold the change in document sizes */ |
- aSzIns = sqlite3_malloc( sizeof(aSzIns[0])*(p->nColumn+1)*2 ); |
- if( aSzIns==0 ) return SQLITE_NOMEM; |
- aSzDel = &aSzIns[p->nColumn+1]; |
- memset(aSzIns, 0, sizeof(aSzIns[0])*(p->nColumn+1)*2); |
+ aSzDel = sqlite3_malloc( sizeof(aSzDel[0])*(p->nColumn+1)*2 ); |
+ if( aSzDel==0 ){ |
+ rc = SQLITE_NOMEM; |
+ goto update_out; |
+ } |
+ aSzIns = &aSzDel[p->nColumn+1]; |
+ memset(aSzDel, 0, sizeof(aSzDel[0])*(p->nColumn+1)*2); |
- /* If this is a DELETE or UPDATE operation, remove the old record. */ |
- if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){ |
- int isEmpty = 0; |
- rc = fts3IsEmpty(p, apVal, &isEmpty); |
- if( rc==SQLITE_OK ){ |
- if( isEmpty ){ |
- /* Deleting this row means the whole table is empty. In this case |
- ** delete the contents of all three tables and throw away any |
- ** data in the pendingTerms hash table. |
- */ |
- rc = fts3DeleteAll(p); |
+ rc = fts3Writelock(p); |
+ if( rc!=SQLITE_OK ) goto update_out; |
+ |
+ /* If this is an INSERT operation, or an UPDATE that modifies the rowid |
+ ** value, then this operation requires constraint handling. |
+ ** |
+ ** If the on-conflict mode is REPLACE, this means that the existing row |
+ ** should be deleted from the database before inserting the new row. Or, |
+ ** if the on-conflict mode is other than REPLACE, then this method must |
+ ** detect the conflict and return SQLITE_CONSTRAINT before beginning to |
+ ** modify the database file. |
+ */ |
+ if( nArg>1 && p->zContentTbl==0 ){ |
+ /* Find the value object that holds the new rowid value. */ |
+ sqlite3_value *pNewRowid = apVal[3+p->nColumn]; |
+ if( sqlite3_value_type(pNewRowid)==SQLITE_NULL ){ |
+ pNewRowid = apVal[1]; |
+ } |
+ |
+ if( sqlite3_value_type(pNewRowid)!=SQLITE_NULL && ( |
+ sqlite3_value_type(apVal[0])==SQLITE_NULL |
+ || sqlite3_value_int64(apVal[0])!=sqlite3_value_int64(pNewRowid) |
+ )){ |
+ /* The new rowid is not NULL (in this case the rowid will be |
+ ** automatically assigned and there is no chance of a conflict), and |
+ ** the statement is either an INSERT or an UPDATE that modifies the |
+ ** rowid column. So if the conflict mode is REPLACE, then delete any |
+ ** existing row with rowid=pNewRowid. |
+ ** |
+ ** Or, if the conflict mode is not REPLACE, insert the new record into |
+ ** the %_content table. If we hit the duplicate rowid constraint (or any |
+ ** other error) while doing so, return immediately. |
+ ** |
+ ** This branch may also run if pNewRowid contains a value that cannot |
+ ** be losslessly converted to an integer. In this case, the eventual |
+ ** call to fts3InsertData() (either just below or further on in this |
+ ** function) will return SQLITE_MISMATCH. If fts3DeleteByRowid is |
+ ** invoked, it will delete zero rows (since no row will have |
+ ** docid=$pNewRowid if $pNewRowid is not an integer value). |
+ */ |
+ if( sqlite3_vtab_on_conflict(p->db)==SQLITE_REPLACE ){ |
+ rc = fts3DeleteByRowid(p, pNewRowid, &nChng, aSzDel); |
}else{ |
- isRemove = 1; |
- iRemove = sqlite3_value_int64(apVal[0]); |
- rc = fts3PendingTermsDocid(p, iRemove); |
- fts3DeleteTerms(&rc, p, apVal, aSzDel); |
- fts3SqlExec(&rc, p, SQL_DELETE_CONTENT, apVal); |
- if( p->bHasDocsize ){ |
- fts3SqlExec(&rc, p, SQL_DELETE_DOCSIZE, apVal); |
- } |
- nChng--; |
+ rc = fts3InsertData(p, apVal, pRowid); |
+ bInsertDone = 1; |
} |
} |
- }else if( sqlite3_value_type(apVal[p->nColumn+2])!=SQLITE_NULL ){ |
- sqlite3_free(aSzIns); |
- return fts3SpecialInsert(p, apVal[p->nColumn+2]); |
+ } |
+ if( rc!=SQLITE_OK ){ |
+ goto update_out; |
+ } |
+ |
+ /* If this is a DELETE or UPDATE operation, remove the old record. */ |
+ if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){ |
+ assert( sqlite3_value_type(apVal[0])==SQLITE_INTEGER ); |
+ rc = fts3DeleteByRowid(p, apVal[0], &nChng, aSzDel); |
+ isRemove = 1; |
} |
/* If this is an INSERT or UPDATE operation, insert the new record. */ |
if( nArg>1 && rc==SQLITE_OK ){ |
- rc = fts3InsertData(p, apVal, pRowid); |
- if( rc==SQLITE_OK && (!isRemove || *pRowid!=iRemove) ){ |
- rc = fts3PendingTermsDocid(p, *pRowid); |
+ int iLangid = sqlite3_value_int(apVal[2 + p->nColumn + 2]); |
+ if( bInsertDone==0 ){ |
+ rc = fts3InsertData(p, apVal, pRowid); |
+ if( rc==SQLITE_CONSTRAINT && p->zContentTbl==0 ){ |
+ rc = FTS_CORRUPT_VTAB; |
+ } |
+ } |
+ if( rc==SQLITE_OK && (!isRemove || *pRowid!=p->iPrevDocid ) ){ |
+ rc = fts3PendingTermsDocid(p, iLangid, *pRowid); |
} |
if( rc==SQLITE_OK ){ |
- rc = fts3InsertTerms(p, apVal, aSzIns); |
+ assert( p->iPrevDocid==*pRowid ); |
+ rc = fts3InsertTerms(p, iLangid, apVal, aSzIns); |
} |
if( p->bHasDocsize ){ |
fts3InsertDocsize(&rc, p, aSzIns); |
@@ -2691,11 +5625,12 @@ int sqlite3Fts3UpdateMethod( |
nChng++; |
} |
- if( p->bHasStat ){ |
+ if( p->bFts4 ){ |
fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nChng); |
} |
- sqlite3_free(aSzIns); |
+ update_out: |
+ sqlite3_free(aSzDel); |
sqlite3Fts3SegmentsClose(p); |
return rc; |
} |
@@ -2709,12 +5644,10 @@ int sqlite3Fts3Optimize(Fts3Table *p){ |
int rc; |
rc = sqlite3_exec(p->db, "SAVEPOINT fts3", 0, 0, 0); |
if( rc==SQLITE_OK ){ |
- rc = fts3SegmentMerge(p, FTS3_SEGCURSOR_ALL); |
- if( rc==SQLITE_OK ){ |
- rc = sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0); |
- if( rc==SQLITE_OK ){ |
- sqlite3Fts3PendingTermsClear(p); |
- } |
+ rc = fts3DoOptimize(p, 1); |
+ if( rc==SQLITE_OK || rc==SQLITE_DONE ){ |
+ int rc2 = sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0); |
+ if( rc2!=SQLITE_OK ) rc = rc2; |
}else{ |
sqlite3_exec(p->db, "ROLLBACK TO fts3", 0, 0, 0); |
sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0); |