Index: third_party/sqlite/sqlite-src-3070603/src/bitvec.c |
diff --git a/third_party/sqlite/sqlite-src-3070603/src/bitvec.c b/third_party/sqlite/sqlite-src-3070603/src/bitvec.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..47d33ea840833e575464c853f501e7c60ef1bde6 |
--- /dev/null |
+++ b/third_party/sqlite/sqlite-src-3070603/src/bitvec.c |
@@ -0,0 +1,408 @@ |
+/* |
+** 2008 February 16 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+************************************************************************* |
+** This file implements an object that represents a fixed-length |
+** bitmap. Bits are numbered starting with 1. |
+** |
+** A bitmap is used to record which pages of a database file have been |
+** journalled during a transaction, or which pages have the "dont-write" |
+** property. Usually only a few pages are meet either condition. |
+** So the bitmap is usually sparse and has low cardinality. |
+** But sometimes (for example when during a DROP of a large table) most |
+** or all of the pages in a database can get journalled. In those cases, |
+** the bitmap becomes dense with high cardinality. The algorithm needs |
+** to handle both cases well. |
+** |
+** The size of the bitmap is fixed when the object is created. |
+** |
+** All bits are clear when the bitmap is created. Individual bits |
+** may be set or cleared one at a time. |
+** |
+** Test operations are about 100 times more common that set operations. |
+** Clear operations are exceedingly rare. There are usually between |
+** 5 and 500 set operations per Bitvec object, though the number of sets can |
+** sometimes grow into tens of thousands or larger. The size of the |
+** Bitvec object is the number of pages in the database file at the |
+** start of a transaction, and is thus usually less than a few thousand, |
+** but can be as large as 2 billion for a really big database. |
+*/ |
+#include "sqliteInt.h" |
+ |
+/* Size of the Bitvec structure in bytes. */ |
+#define BITVEC_SZ 512 |
+ |
+/* Round the union size down to the nearest pointer boundary, since that's how |
+** it will be aligned within the Bitvec struct. */ |
+#define BITVEC_USIZE (((BITVEC_SZ-(3*sizeof(u32)))/sizeof(Bitvec*))*sizeof(Bitvec*)) |
+ |
+/* Type of the array "element" for the bitmap representation. |
+** Should be a power of 2, and ideally, evenly divide into BITVEC_USIZE. |
+** Setting this to the "natural word" size of your CPU may improve |
+** performance. */ |
+#define BITVEC_TELEM u8 |
+/* Size, in bits, of the bitmap element. */ |
+#define BITVEC_SZELEM 8 |
+/* Number of elements in a bitmap array. */ |
+#define BITVEC_NELEM (BITVEC_USIZE/sizeof(BITVEC_TELEM)) |
+/* Number of bits in the bitmap array. */ |
+#define BITVEC_NBIT (BITVEC_NELEM*BITVEC_SZELEM) |
+ |
+/* Number of u32 values in hash table. */ |
+#define BITVEC_NINT (BITVEC_USIZE/sizeof(u32)) |
+/* Maximum number of entries in hash table before |
+** sub-dividing and re-hashing. */ |
+#define BITVEC_MXHASH (BITVEC_NINT/2) |
+/* Hashing function for the aHash representation. |
+** Empirical testing showed that the *37 multiplier |
+** (an arbitrary prime)in the hash function provided |
+** no fewer collisions than the no-op *1. */ |
+#define BITVEC_HASH(X) (((X)*1)%BITVEC_NINT) |
+ |
+#define BITVEC_NPTR (BITVEC_USIZE/sizeof(Bitvec *)) |
+ |
+ |
+/* |
+** A bitmap is an instance of the following structure. |
+** |
+** This bitmap records the existance of zero or more bits |
+** with values between 1 and iSize, inclusive. |
+** |
+** There are three possible representations of the bitmap. |
+** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight |
+** bitmap. The least significant bit is bit 1. |
+** |
+** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is |
+** a hash table that will hold up to BITVEC_MXHASH distinct values. |
+** |
+** Otherwise, the value i is redirected into one of BITVEC_NPTR |
+** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap |
+** handles up to iDivisor separate values of i. apSub[0] holds |
+** values between 1 and iDivisor. apSub[1] holds values between |
+** iDivisor+1 and 2*iDivisor. apSub[N] holds values between |
+** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized |
+** to hold deal with values between 1 and iDivisor. |
+*/ |
+struct Bitvec { |
+ u32 iSize; /* Maximum bit index. Max iSize is 4,294,967,296. */ |
+ u32 nSet; /* Number of bits that are set - only valid for aHash |
+ ** element. Max is BITVEC_NINT. For BITVEC_SZ of 512, |
+ ** this would be 125. */ |
+ u32 iDivisor; /* Number of bits handled by each apSub[] entry. */ |
+ /* Should >=0 for apSub element. */ |
+ /* Max iDivisor is max(u32) / BITVEC_NPTR + 1. */ |
+ /* For a BITVEC_SZ of 512, this would be 34,359,739. */ |
+ union { |
+ BITVEC_TELEM aBitmap[BITVEC_NELEM]; /* Bitmap representation */ |
+ u32 aHash[BITVEC_NINT]; /* Hash table representation */ |
+ Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */ |
+ } u; |
+}; |
+ |
+/* |
+** Create a new bitmap object able to handle bits between 0 and iSize, |
+** inclusive. Return a pointer to the new object. Return NULL if |
+** malloc fails. |
+*/ |
+Bitvec *sqlite3BitvecCreate(u32 iSize){ |
+ Bitvec *p; |
+ assert( sizeof(*p)==BITVEC_SZ ); |
+ p = sqlite3MallocZero( sizeof(*p) ); |
+ if( p ){ |
+ p->iSize = iSize; |
+ } |
+ return p; |
+} |
+ |
+/* |
+** Check to see if the i-th bit is set. Return true or false. |
+** If p is NULL (if the bitmap has not been created) or if |
+** i is out of range, then return false. |
+*/ |
+int sqlite3BitvecTest(Bitvec *p, u32 i){ |
+ if( p==0 ) return 0; |
+ if( i>p->iSize || i==0 ) return 0; |
+ i--; |
+ while( p->iDivisor ){ |
+ u32 bin = i/p->iDivisor; |
+ i = i%p->iDivisor; |
+ p = p->u.apSub[bin]; |
+ if (!p) { |
+ return 0; |
+ } |
+ } |
+ if( p->iSize<=BITVEC_NBIT ){ |
+ return (p->u.aBitmap[i/BITVEC_SZELEM] & (1<<(i&(BITVEC_SZELEM-1))))!=0; |
+ } else{ |
+ u32 h = BITVEC_HASH(i++); |
+ while( p->u.aHash[h] ){ |
+ if( p->u.aHash[h]==i ) return 1; |
+ h = (h+1) % BITVEC_NINT; |
+ } |
+ return 0; |
+ } |
+} |
+ |
+/* |
+** Set the i-th bit. Return 0 on success and an error code if |
+** anything goes wrong. |
+** |
+** This routine might cause sub-bitmaps to be allocated. Failing |
+** to get the memory needed to hold the sub-bitmap is the only |
+** that can go wrong with an insert, assuming p and i are valid. |
+** |
+** The calling function must ensure that p is a valid Bitvec object |
+** and that the value for "i" is within range of the Bitvec object. |
+** Otherwise the behavior is undefined. |
+*/ |
+int sqlite3BitvecSet(Bitvec *p, u32 i){ |
+ u32 h; |
+ if( p==0 ) return SQLITE_OK; |
+ assert( i>0 ); |
+ assert( i<=p->iSize ); |
+ i--; |
+ while((p->iSize > BITVEC_NBIT) && p->iDivisor) { |
+ u32 bin = i/p->iDivisor; |
+ i = i%p->iDivisor; |
+ if( p->u.apSub[bin]==0 ){ |
+ p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor ); |
+ if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM; |
+ } |
+ p = p->u.apSub[bin]; |
+ } |
+ if( p->iSize<=BITVEC_NBIT ){ |
+ p->u.aBitmap[i/BITVEC_SZELEM] |= 1 << (i&(BITVEC_SZELEM-1)); |
+ return SQLITE_OK; |
+ } |
+ h = BITVEC_HASH(i++); |
+ /* if there wasn't a hash collision, and this doesn't */ |
+ /* completely fill the hash, then just add it without */ |
+ /* worring about sub-dividing and re-hashing. */ |
+ if( !p->u.aHash[h] ){ |
+ if (p->nSet<(BITVEC_NINT-1)) { |
+ goto bitvec_set_end; |
+ } else { |
+ goto bitvec_set_rehash; |
+ } |
+ } |
+ /* there was a collision, check to see if it's already */ |
+ /* in hash, if not, try to find a spot for it */ |
+ do { |
+ if( p->u.aHash[h]==i ) return SQLITE_OK; |
+ h++; |
+ if( h>=BITVEC_NINT ) h = 0; |
+ } while( p->u.aHash[h] ); |
+ /* we didn't find it in the hash. h points to the first */ |
+ /* available free spot. check to see if this is going to */ |
+ /* make our hash too "full". */ |
+bitvec_set_rehash: |
+ if( p->nSet>=BITVEC_MXHASH ){ |
+ unsigned int j; |
+ int rc; |
+ u32 *aiValues = sqlite3StackAllocRaw(0, sizeof(p->u.aHash)); |
+ if( aiValues==0 ){ |
+ return SQLITE_NOMEM; |
+ }else{ |
+ memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash)); |
+ memset(p->u.apSub, 0, sizeof(p->u.apSub)); |
+ p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR; |
+ rc = sqlite3BitvecSet(p, i); |
+ for(j=0; j<BITVEC_NINT; j++){ |
+ if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]); |
+ } |
+ sqlite3StackFree(0, aiValues); |
+ return rc; |
+ } |
+ } |
+bitvec_set_end: |
+ p->nSet++; |
+ p->u.aHash[h] = i; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Clear the i-th bit. |
+** |
+** pBuf must be a pointer to at least BITVEC_SZ bytes of temporary storage |
+** that BitvecClear can use to rebuilt its hash table. |
+*/ |
+void sqlite3BitvecClear(Bitvec *p, u32 i, void *pBuf){ |
+ if( p==0 ) return; |
+ assert( i>0 ); |
+ i--; |
+ while( p->iDivisor ){ |
+ u32 bin = i/p->iDivisor; |
+ i = i%p->iDivisor; |
+ p = p->u.apSub[bin]; |
+ if (!p) { |
+ return; |
+ } |
+ } |
+ if( p->iSize<=BITVEC_NBIT ){ |
+ p->u.aBitmap[i/BITVEC_SZELEM] &= ~(1 << (i&(BITVEC_SZELEM-1))); |
+ }else{ |
+ unsigned int j; |
+ u32 *aiValues = pBuf; |
+ memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash)); |
+ memset(p->u.aHash, 0, sizeof(p->u.aHash)); |
+ p->nSet = 0; |
+ for(j=0; j<BITVEC_NINT; j++){ |
+ if( aiValues[j] && aiValues[j]!=(i+1) ){ |
+ u32 h = BITVEC_HASH(aiValues[j]-1); |
+ p->nSet++; |
+ while( p->u.aHash[h] ){ |
+ h++; |
+ if( h>=BITVEC_NINT ) h = 0; |
+ } |
+ p->u.aHash[h] = aiValues[j]; |
+ } |
+ } |
+ } |
+} |
+ |
+/* |
+** Destroy a bitmap object. Reclaim all memory used. |
+*/ |
+void sqlite3BitvecDestroy(Bitvec *p){ |
+ if( p==0 ) return; |
+ if( p->iDivisor ){ |
+ unsigned int i; |
+ for(i=0; i<BITVEC_NPTR; i++){ |
+ sqlite3BitvecDestroy(p->u.apSub[i]); |
+ } |
+ } |
+ sqlite3_free(p); |
+} |
+ |
+/* |
+** Return the value of the iSize parameter specified when Bitvec *p |
+** was created. |
+*/ |
+u32 sqlite3BitvecSize(Bitvec *p){ |
+ return p->iSize; |
+} |
+ |
+#ifndef SQLITE_OMIT_BUILTIN_TEST |
+/* |
+** Let V[] be an array of unsigned characters sufficient to hold |
+** up to N bits. Let I be an integer between 0 and N. 0<=I<N. |
+** Then the following macros can be used to set, clear, or test |
+** individual bits within V. |
+*/ |
+#define SETBIT(V,I) V[I>>3] |= (1<<(I&7)) |
+#define CLEARBIT(V,I) V[I>>3] &= ~(1<<(I&7)) |
+#define TESTBIT(V,I) (V[I>>3]&(1<<(I&7)))!=0 |
+ |
+/* |
+** This routine runs an extensive test of the Bitvec code. |
+** |
+** The input is an array of integers that acts as a program |
+** to test the Bitvec. The integers are opcodes followed |
+** by 0, 1, or 3 operands, depending on the opcode. Another |
+** opcode follows immediately after the last operand. |
+** |
+** There are 6 opcodes numbered from 0 through 5. 0 is the |
+** "halt" opcode and causes the test to end. |
+** |
+** 0 Halt and return the number of errors |
+** 1 N S X Set N bits beginning with S and incrementing by X |
+** 2 N S X Clear N bits beginning with S and incrementing by X |
+** 3 N Set N randomly chosen bits |
+** 4 N Clear N randomly chosen bits |
+** 5 N S X Set N bits from S increment X in array only, not in bitvec |
+** |
+** The opcodes 1 through 4 perform set and clear operations are performed |
+** on both a Bitvec object and on a linear array of bits obtained from malloc. |
+** Opcode 5 works on the linear array only, not on the Bitvec. |
+** Opcode 5 is used to deliberately induce a fault in order to |
+** confirm that error detection works. |
+** |
+** At the conclusion of the test the linear array is compared |
+** against the Bitvec object. If there are any differences, |
+** an error is returned. If they are the same, zero is returned. |
+** |
+** If a memory allocation error occurs, return -1. |
+*/ |
+int sqlite3BitvecBuiltinTest(int sz, int *aOp){ |
+ Bitvec *pBitvec = 0; |
+ unsigned char *pV = 0; |
+ int rc = -1; |
+ int i, nx, pc, op; |
+ void *pTmpSpace; |
+ |
+ /* Allocate the Bitvec to be tested and a linear array of |
+ ** bits to act as the reference */ |
+ pBitvec = sqlite3BitvecCreate( sz ); |
+ pV = sqlite3_malloc( (sz+7)/8 + 1 ); |
+ pTmpSpace = sqlite3_malloc(BITVEC_SZ); |
+ if( pBitvec==0 || pV==0 || pTmpSpace==0 ) goto bitvec_end; |
+ memset(pV, 0, (sz+7)/8 + 1); |
+ |
+ /* NULL pBitvec tests */ |
+ sqlite3BitvecSet(0, 1); |
+ sqlite3BitvecClear(0, 1, pTmpSpace); |
+ |
+ /* Run the program */ |
+ pc = 0; |
+ while( (op = aOp[pc])!=0 ){ |
+ switch( op ){ |
+ case 1: |
+ case 2: |
+ case 5: { |
+ nx = 4; |
+ i = aOp[pc+2] - 1; |
+ aOp[pc+2] += aOp[pc+3]; |
+ break; |
+ } |
+ case 3: |
+ case 4: |
+ default: { |
+ nx = 2; |
+ sqlite3_randomness(sizeof(i), &i); |
+ break; |
+ } |
+ } |
+ if( (--aOp[pc+1]) > 0 ) nx = 0; |
+ pc += nx; |
+ i = (i & 0x7fffffff)%sz; |
+ if( (op & 1)!=0 ){ |
+ SETBIT(pV, (i+1)); |
+ if( op!=5 ){ |
+ if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end; |
+ } |
+ }else{ |
+ CLEARBIT(pV, (i+1)); |
+ sqlite3BitvecClear(pBitvec, i+1, pTmpSpace); |
+ } |
+ } |
+ |
+ /* Test to make sure the linear array exactly matches the |
+ ** Bitvec object. Start with the assumption that they do |
+ ** match (rc==0). Change rc to non-zero if a discrepancy |
+ ** is found. |
+ */ |
+ rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1) |
+ + sqlite3BitvecTest(pBitvec, 0) |
+ + (sqlite3BitvecSize(pBitvec) - sz); |
+ for(i=1; i<=sz; i++){ |
+ if( (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){ |
+ rc = i; |
+ break; |
+ } |
+ } |
+ |
+ /* Free allocated structure */ |
+bitvec_end: |
+ sqlite3_free(pTmpSpace); |
+ sqlite3_free(pV); |
+ sqlite3BitvecDestroy(pBitvec); |
+ return rc; |
+} |
+#endif /* SQLITE_OMIT_BUILTIN_TEST */ |