| Index: third_party/sqlite/sqlite-src-3080704/src/vdbemem.c
|
| diff --git a/third_party/sqlite/sqlite-src-3080704/src/vdbemem.c b/third_party/sqlite/sqlite-src-3080704/src/vdbemem.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..870fb5bd891c2c83ae8c8683afa5ceca93b99649
|
| --- /dev/null
|
| +++ b/third_party/sqlite/sqlite-src-3080704/src/vdbemem.c
|
| @@ -0,0 +1,1575 @@
|
| +/*
|
| +** 2004 May 26
|
| +**
|
| +** The author disclaims copyright to this source code. In place of
|
| +** a legal notice, here is a blessing:
|
| +**
|
| +** May you do good and not evil.
|
| +** May you find forgiveness for yourself and forgive others.
|
| +** May you share freely, never taking more than you give.
|
| +**
|
| +*************************************************************************
|
| +**
|
| +** This file contains code use to manipulate "Mem" structure. A "Mem"
|
| +** stores a single value in the VDBE. Mem is an opaque structure visible
|
| +** only within the VDBE. Interface routines refer to a Mem using the
|
| +** name sqlite_value
|
| +*/
|
| +#include "sqliteInt.h"
|
| +#include "vdbeInt.h"
|
| +
|
| +#ifdef SQLITE_DEBUG
|
| +/*
|
| +** Check invariants on a Mem object.
|
| +**
|
| +** This routine is intended for use inside of assert() statements, like
|
| +** this: assert( sqlite3VdbeCheckMemInvariants(pMem) );
|
| +*/
|
| +int sqlite3VdbeCheckMemInvariants(Mem *p){
|
| + /* If MEM_Dyn is set then Mem.xDel!=0.
|
| + ** Mem.xDel is might not be initialized if MEM_Dyn is clear.
|
| + */
|
| + assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );
|
| +
|
| + /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we
|
| + ** ensure that if Mem.szMalloc>0 then it is safe to do
|
| + ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
|
| + ** That saves a few cycles in inner loops. */
|
| + assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );
|
| +
|
| + /* Cannot be both MEM_Int and MEM_Real at the same time */
|
| + assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) );
|
| +
|
| + /* The szMalloc field holds the correct memory allocation size */
|
| + assert( p->szMalloc==0
|
| + || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) );
|
| +
|
| + /* If p holds a string or blob, the Mem.z must point to exactly
|
| + ** one of the following:
|
| + **
|
| + ** (1) Memory in Mem.zMalloc and managed by the Mem object
|
| + ** (2) Memory to be freed using Mem.xDel
|
| + ** (3) An ephemeral string or blob
|
| + ** (4) A static string or blob
|
| + */
|
| + if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){
|
| + assert(
|
| + ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) +
|
| + ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
|
| + ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
|
| + ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
|
| + );
|
| + }
|
| + return 1;
|
| +}
|
| +#endif
|
| +
|
| +
|
| +/*
|
| +** If pMem is an object with a valid string representation, this routine
|
| +** ensures the internal encoding for the string representation is
|
| +** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
|
| +**
|
| +** If pMem is not a string object, or the encoding of the string
|
| +** representation is already stored using the requested encoding, then this
|
| +** routine is a no-op.
|
| +**
|
| +** SQLITE_OK is returned if the conversion is successful (or not required).
|
| +** SQLITE_NOMEM may be returned if a malloc() fails during conversion
|
| +** between formats.
|
| +*/
|
| +int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
|
| +#ifndef SQLITE_OMIT_UTF16
|
| + int rc;
|
| +#endif
|
| + assert( (pMem->flags&MEM_RowSet)==0 );
|
| + assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
|
| + || desiredEnc==SQLITE_UTF16BE );
|
| + if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
|
| + return SQLITE_OK;
|
| + }
|
| + assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
| +#ifdef SQLITE_OMIT_UTF16
|
| + return SQLITE_ERROR;
|
| +#else
|
| +
|
| + /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
|
| + ** then the encoding of the value may not have changed.
|
| + */
|
| + rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
|
| + assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
|
| + assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
|
| + assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
|
| + return rc;
|
| +#endif
|
| +}
|
| +
|
| +/*
|
| +** Make sure pMem->z points to a writable allocation of at least
|
| +** min(n,32) bytes.
|
| +**
|
| +** If the bPreserve argument is true, then copy of the content of
|
| +** pMem->z into the new allocation. pMem must be either a string or
|
| +** blob if bPreserve is true. If bPreserve is false, any prior content
|
| +** in pMem->z is discarded.
|
| +*/
|
| +SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
|
| + assert( sqlite3VdbeCheckMemInvariants(pMem) );
|
| + assert( (pMem->flags&MEM_RowSet)==0 );
|
| +
|
| + /* If the bPreserve flag is set to true, then the memory cell must already
|
| + ** contain a valid string or blob value. */
|
| + assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
|
| + testcase( bPreserve && pMem->z==0 );
|
| +
|
| + assert( pMem->szMalloc==0
|
| + || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) );
|
| + if( pMem->szMalloc<n ){
|
| + if( n<32 ) n = 32;
|
| + if( bPreserve && pMem->szMalloc>0 && pMem->z==pMem->zMalloc ){
|
| + pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
|
| + bPreserve = 0;
|
| + }else{
|
| + if( pMem->szMalloc>0 ) sqlite3DbFree(pMem->db, pMem->zMalloc);
|
| + pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
|
| + }
|
| + if( pMem->zMalloc==0 ){
|
| + sqlite3VdbeMemSetNull(pMem);
|
| + pMem->z = 0;
|
| + pMem->szMalloc = 0;
|
| + return SQLITE_NOMEM;
|
| + }else{
|
| + pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
|
| + }
|
| + }
|
| +
|
| + if( bPreserve && pMem->z && pMem->z!=pMem->zMalloc ){
|
| + memcpy(pMem->zMalloc, pMem->z, pMem->n);
|
| + }
|
| + if( (pMem->flags&MEM_Dyn)!=0 ){
|
| + assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
|
| + pMem->xDel((void *)(pMem->z));
|
| + }
|
| +
|
| + pMem->z = pMem->zMalloc;
|
| + pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
|
| + return SQLITE_OK;
|
| +}
|
| +
|
| +/*
|
| +** Change the pMem->zMalloc allocation to be at least szNew bytes.
|
| +** If pMem->zMalloc already meets or exceeds the requested size, this
|
| +** routine is a no-op.
|
| +**
|
| +** Any prior string or blob content in the pMem object may be discarded.
|
| +** The pMem->xDel destructor is called, if it exists. Though MEM_Str
|
| +** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, and MEM_Null
|
| +** values are preserved.
|
| +**
|
| +** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
|
| +** if unable to complete the resizing.
|
| +*/
|
| +int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){
|
| + assert( szNew>0 );
|
| + assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 );
|
| + if( pMem->szMalloc<szNew ){
|
| + return sqlite3VdbeMemGrow(pMem, szNew, 0);
|
| + }
|
| + assert( (pMem->flags & MEM_Dyn)==0 );
|
| + pMem->z = pMem->zMalloc;
|
| + pMem->flags &= (MEM_Null|MEM_Int|MEM_Real);
|
| + return SQLITE_OK;
|
| +}
|
| +
|
| +/*
|
| +** Change pMem so that its MEM_Str or MEM_Blob value is stored in
|
| +** MEM.zMalloc, where it can be safely written.
|
| +**
|
| +** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
|
| +*/
|
| +int sqlite3VdbeMemMakeWriteable(Mem *pMem){
|
| + int f;
|
| + assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
| + assert( (pMem->flags&MEM_RowSet)==0 );
|
| + ExpandBlob(pMem);
|
| + f = pMem->flags;
|
| + if( (f&(MEM_Str|MEM_Blob)) && (pMem->szMalloc==0 || pMem->z!=pMem->zMalloc) ){
|
| + if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){
|
| + return SQLITE_NOMEM;
|
| + }
|
| + pMem->z[pMem->n] = 0;
|
| + pMem->z[pMem->n+1] = 0;
|
| + pMem->flags |= MEM_Term;
|
| +#ifdef SQLITE_DEBUG
|
| + pMem->pScopyFrom = 0;
|
| +#endif
|
| + }
|
| +
|
| + return SQLITE_OK;
|
| +}
|
| +
|
| +/*
|
| +** If the given Mem* has a zero-filled tail, turn it into an ordinary
|
| +** blob stored in dynamically allocated space.
|
| +*/
|
| +#ifndef SQLITE_OMIT_INCRBLOB
|
| +int sqlite3VdbeMemExpandBlob(Mem *pMem){
|
| + if( pMem->flags & MEM_Zero ){
|
| + int nByte;
|
| + assert( pMem->flags&MEM_Blob );
|
| + assert( (pMem->flags&MEM_RowSet)==0 );
|
| + assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
| +
|
| + /* Set nByte to the number of bytes required to store the expanded blob. */
|
| + nByte = pMem->n + pMem->u.nZero;
|
| + if( nByte<=0 ){
|
| + nByte = 1;
|
| + }
|
| + if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
|
| + return SQLITE_NOMEM;
|
| + }
|
| +
|
| + memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
|
| + pMem->n += pMem->u.nZero;
|
| + pMem->flags &= ~(MEM_Zero|MEM_Term);
|
| + }
|
| + return SQLITE_OK;
|
| +}
|
| +#endif
|
| +
|
| +/*
|
| +** It is already known that pMem contains an unterminated string.
|
| +** Add the zero terminator.
|
| +*/
|
| +static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){
|
| + if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){
|
| + return SQLITE_NOMEM;
|
| + }
|
| + pMem->z[pMem->n] = 0;
|
| + pMem->z[pMem->n+1] = 0;
|
| + pMem->flags |= MEM_Term;
|
| + return SQLITE_OK;
|
| +}
|
| +
|
| +/*
|
| +** Make sure the given Mem is \u0000 terminated.
|
| +*/
|
| +int sqlite3VdbeMemNulTerminate(Mem *pMem){
|
| + assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
| + testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) );
|
| + testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 );
|
| + if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){
|
| + return SQLITE_OK; /* Nothing to do */
|
| + }else{
|
| + return vdbeMemAddTerminator(pMem);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Add MEM_Str to the set of representations for the given Mem. Numbers
|
| +** are converted using sqlite3_snprintf(). Converting a BLOB to a string
|
| +** is a no-op.
|
| +**
|
| +** Existing representations MEM_Int and MEM_Real are invalidated if
|
| +** bForce is true but are retained if bForce is false.
|
| +**
|
| +** A MEM_Null value will never be passed to this function. This function is
|
| +** used for converting values to text for returning to the user (i.e. via
|
| +** sqlite3_value_text()), or for ensuring that values to be used as btree
|
| +** keys are strings. In the former case a NULL pointer is returned the
|
| +** user and the latter is an internal programming error.
|
| +*/
|
| +int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){
|
| + int fg = pMem->flags;
|
| + const int nByte = 32;
|
| +
|
| + assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
| + assert( !(fg&MEM_Zero) );
|
| + assert( !(fg&(MEM_Str|MEM_Blob)) );
|
| + assert( fg&(MEM_Int|MEM_Real) );
|
| + assert( (pMem->flags&MEM_RowSet)==0 );
|
| + assert( EIGHT_BYTE_ALIGNMENT(pMem) );
|
| +
|
| +
|
| + if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){
|
| + return SQLITE_NOMEM;
|
| + }
|
| +
|
| + /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8
|
| + ** string representation of the value. Then, if the required encoding
|
| + ** is UTF-16le or UTF-16be do a translation.
|
| + **
|
| + ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
|
| + */
|
| + if( fg & MEM_Int ){
|
| + sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
|
| + }else{
|
| + assert( fg & MEM_Real );
|
| + sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->u.r);
|
| + }
|
| + pMem->n = sqlite3Strlen30(pMem->z);
|
| + pMem->enc = SQLITE_UTF8;
|
| + pMem->flags |= MEM_Str|MEM_Term;
|
| + if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real);
|
| + sqlite3VdbeChangeEncoding(pMem, enc);
|
| + return SQLITE_OK;
|
| +}
|
| +
|
| +/*
|
| +** Memory cell pMem contains the context of an aggregate function.
|
| +** This routine calls the finalize method for that function. The
|
| +** result of the aggregate is stored back into pMem.
|
| +**
|
| +** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
|
| +** otherwise.
|
| +*/
|
| +int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
|
| + int rc = SQLITE_OK;
|
| + if( ALWAYS(pFunc && pFunc->xFinalize) ){
|
| + sqlite3_context ctx;
|
| + Mem t;
|
| + assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
|
| + assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
| + memset(&ctx, 0, sizeof(ctx));
|
| + memset(&t, 0, sizeof(t));
|
| + t.flags = MEM_Null;
|
| + t.db = pMem->db;
|
| + ctx.pOut = &t;
|
| + ctx.pMem = pMem;
|
| + ctx.pFunc = pFunc;
|
| + pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
|
| + assert( (pMem->flags & MEM_Dyn)==0 );
|
| + if( pMem->szMalloc>0 ) sqlite3DbFree(pMem->db, pMem->zMalloc);
|
| + memcpy(pMem, &t, sizeof(t));
|
| + rc = ctx.isError;
|
| + }
|
| + return rc;
|
| +}
|
| +
|
| +/*
|
| +** If the memory cell contains a value that must be freed by
|
| +** invoking the external callback in Mem.xDel, then this routine
|
| +** will free that value. It also sets Mem.flags to MEM_Null.
|
| +**
|
| +** This is a helper routine for sqlite3VdbeMemSetNull() and
|
| +** for sqlite3VdbeMemRelease(). Use those other routines as the
|
| +** entry point for releasing Mem resources.
|
| +*/
|
| +static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){
|
| + assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
|
| + assert( VdbeMemDynamic(p) );
|
| + if( p->flags&MEM_Agg ){
|
| + sqlite3VdbeMemFinalize(p, p->u.pDef);
|
| + assert( (p->flags & MEM_Agg)==0 );
|
| + testcase( p->flags & MEM_Dyn );
|
| + }
|
| + if( p->flags&MEM_Dyn ){
|
| + assert( (p->flags&MEM_RowSet)==0 );
|
| + assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
|
| + p->xDel((void *)p->z);
|
| + }else if( p->flags&MEM_RowSet ){
|
| + sqlite3RowSetClear(p->u.pRowSet);
|
| + }else if( p->flags&MEM_Frame ){
|
| + VdbeFrame *pFrame = p->u.pFrame;
|
| + pFrame->pParent = pFrame->v->pDelFrame;
|
| + pFrame->v->pDelFrame = pFrame;
|
| + }
|
| + p->flags = MEM_Null;
|
| +}
|
| +
|
| +/*
|
| +** Release memory held by the Mem p, both external memory cleared
|
| +** by p->xDel and memory in p->zMalloc.
|
| +**
|
| +** This is a helper routine invoked by sqlite3VdbeMemRelease() in
|
| +** the unusual case where there really is memory in p that needs
|
| +** to be freed.
|
| +*/
|
| +static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
|
| + if( VdbeMemDynamic(p) ){
|
| + vdbeMemClearExternAndSetNull(p);
|
| + }
|
| + if( p->szMalloc ){
|
| + sqlite3DbFree(p->db, p->zMalloc);
|
| + p->szMalloc = 0;
|
| + }
|
| + p->z = 0;
|
| +}
|
| +
|
| +/*
|
| +** Release any memory resources held by the Mem. Both the memory that is
|
| +** free by Mem.xDel and the Mem.zMalloc allocation are freed.
|
| +**
|
| +** Use this routine prior to clean up prior to abandoning a Mem, or to
|
| +** reset a Mem back to its minimum memory utilization.
|
| +**
|
| +** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
|
| +** prior to inserting new content into the Mem.
|
| +*/
|
| +void sqlite3VdbeMemRelease(Mem *p){
|
| + assert( sqlite3VdbeCheckMemInvariants(p) );
|
| + if( VdbeMemDynamic(p) || p->szMalloc ){
|
| + vdbeMemClear(p);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Convert a 64-bit IEEE double into a 64-bit signed integer.
|
| +** If the double is out of range of a 64-bit signed integer then
|
| +** return the closest available 64-bit signed integer.
|
| +*/
|
| +static i64 doubleToInt64(double r){
|
| +#ifdef SQLITE_OMIT_FLOATING_POINT
|
| + /* When floating-point is omitted, double and int64 are the same thing */
|
| + return r;
|
| +#else
|
| + /*
|
| + ** Many compilers we encounter do not define constants for the
|
| + ** minimum and maximum 64-bit integers, or they define them
|
| + ** inconsistently. And many do not understand the "LL" notation.
|
| + ** So we define our own static constants here using nothing
|
| + ** larger than a 32-bit integer constant.
|
| + */
|
| + static const i64 maxInt = LARGEST_INT64;
|
| + static const i64 minInt = SMALLEST_INT64;
|
| +
|
| + if( r<=(double)minInt ){
|
| + return minInt;
|
| + }else if( r>=(double)maxInt ){
|
| + return maxInt;
|
| + }else{
|
| + return (i64)r;
|
| + }
|
| +#endif
|
| +}
|
| +
|
| +/*
|
| +** Return some kind of integer value which is the best we can do
|
| +** at representing the value that *pMem describes as an integer.
|
| +** If pMem is an integer, then the value is exact. If pMem is
|
| +** a floating-point then the value returned is the integer part.
|
| +** If pMem is a string or blob, then we make an attempt to convert
|
| +** it into an integer and return that. If pMem represents an
|
| +** an SQL-NULL value, return 0.
|
| +**
|
| +** If pMem represents a string value, its encoding might be changed.
|
| +*/
|
| +i64 sqlite3VdbeIntValue(Mem *pMem){
|
| + int flags;
|
| + assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
| + assert( EIGHT_BYTE_ALIGNMENT(pMem) );
|
| + flags = pMem->flags;
|
| + if( flags & MEM_Int ){
|
| + return pMem->u.i;
|
| + }else if( flags & MEM_Real ){
|
| + return doubleToInt64(pMem->u.r);
|
| + }else if( flags & (MEM_Str|MEM_Blob) ){
|
| + i64 value = 0;
|
| + assert( pMem->z || pMem->n==0 );
|
| + sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
|
| + return value;
|
| + }else{
|
| + return 0;
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Return the best representation of pMem that we can get into a
|
| +** double. If pMem is already a double or an integer, return its
|
| +** value. If it is a string or blob, try to convert it to a double.
|
| +** If it is a NULL, return 0.0.
|
| +*/
|
| +double sqlite3VdbeRealValue(Mem *pMem){
|
| + assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
| + assert( EIGHT_BYTE_ALIGNMENT(pMem) );
|
| + if( pMem->flags & MEM_Real ){
|
| + return pMem->u.r;
|
| + }else if( pMem->flags & MEM_Int ){
|
| + return (double)pMem->u.i;
|
| + }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
|
| + /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
|
| + double val = (double)0;
|
| + sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
|
| + return val;
|
| + }else{
|
| + /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
|
| + return (double)0;
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** The MEM structure is already a MEM_Real. Try to also make it a
|
| +** MEM_Int if we can.
|
| +*/
|
| +void sqlite3VdbeIntegerAffinity(Mem *pMem){
|
| + i64 ix;
|
| + assert( pMem->flags & MEM_Real );
|
| + assert( (pMem->flags & MEM_RowSet)==0 );
|
| + assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
| + assert( EIGHT_BYTE_ALIGNMENT(pMem) );
|
| +
|
| + ix = doubleToInt64(pMem->u.r);
|
| +
|
| + /* Only mark the value as an integer if
|
| + **
|
| + ** (1) the round-trip conversion real->int->real is a no-op, and
|
| + ** (2) The integer is neither the largest nor the smallest
|
| + ** possible integer (ticket #3922)
|
| + **
|
| + ** The second and third terms in the following conditional enforces
|
| + ** the second condition under the assumption that addition overflow causes
|
| + ** values to wrap around.
|
| + */
|
| + if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){
|
| + pMem->u.i = ix;
|
| + MemSetTypeFlag(pMem, MEM_Int);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Convert pMem to type integer. Invalidate any prior representations.
|
| +*/
|
| +int sqlite3VdbeMemIntegerify(Mem *pMem){
|
| + assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
| + assert( (pMem->flags & MEM_RowSet)==0 );
|
| + assert( EIGHT_BYTE_ALIGNMENT(pMem) );
|
| +
|
| + pMem->u.i = sqlite3VdbeIntValue(pMem);
|
| + MemSetTypeFlag(pMem, MEM_Int);
|
| + return SQLITE_OK;
|
| +}
|
| +
|
| +/*
|
| +** Convert pMem so that it is of type MEM_Real.
|
| +** Invalidate any prior representations.
|
| +*/
|
| +int sqlite3VdbeMemRealify(Mem *pMem){
|
| + assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
| + assert( EIGHT_BYTE_ALIGNMENT(pMem) );
|
| +
|
| + pMem->u.r = sqlite3VdbeRealValue(pMem);
|
| + MemSetTypeFlag(pMem, MEM_Real);
|
| + return SQLITE_OK;
|
| +}
|
| +
|
| +/*
|
| +** Convert pMem so that it has types MEM_Real or MEM_Int or both.
|
| +** Invalidate any prior representations.
|
| +**
|
| +** Every effort is made to force the conversion, even if the input
|
| +** is a string that does not look completely like a number. Convert
|
| +** as much of the string as we can and ignore the rest.
|
| +*/
|
| +int sqlite3VdbeMemNumerify(Mem *pMem){
|
| + if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){
|
| + assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
|
| + assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
| + if( 0==sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc) ){
|
| + MemSetTypeFlag(pMem, MEM_Int);
|
| + }else{
|
| + pMem->u.r = sqlite3VdbeRealValue(pMem);
|
| + MemSetTypeFlag(pMem, MEM_Real);
|
| + sqlite3VdbeIntegerAffinity(pMem);
|
| + }
|
| + }
|
| + assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 );
|
| + pMem->flags &= ~(MEM_Str|MEM_Blob);
|
| + return SQLITE_OK;
|
| +}
|
| +
|
| +/*
|
| +** Cast the datatype of the value in pMem according to the affinity
|
| +** "aff". Casting is different from applying affinity in that a cast
|
| +** is forced. In other words, the value is converted into the desired
|
| +** affinity even if that results in loss of data. This routine is
|
| +** used (for example) to implement the SQL "cast()" operator.
|
| +*/
|
| +void sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){
|
| + if( pMem->flags & MEM_Null ) return;
|
| + switch( aff ){
|
| + case SQLITE_AFF_NONE: { /* Really a cast to BLOB */
|
| + if( (pMem->flags & MEM_Blob)==0 ){
|
| + sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
|
| + assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
|
| + MemSetTypeFlag(pMem, MEM_Blob);
|
| + }else{
|
| + pMem->flags &= ~(MEM_TypeMask&~MEM_Blob);
|
| + }
|
| + break;
|
| + }
|
| + case SQLITE_AFF_NUMERIC: {
|
| + sqlite3VdbeMemNumerify(pMem);
|
| + break;
|
| + }
|
| + case SQLITE_AFF_INTEGER: {
|
| + sqlite3VdbeMemIntegerify(pMem);
|
| + break;
|
| + }
|
| + case SQLITE_AFF_REAL: {
|
| + sqlite3VdbeMemRealify(pMem);
|
| + break;
|
| + }
|
| + default: {
|
| + assert( aff==SQLITE_AFF_TEXT );
|
| + assert( MEM_Str==(MEM_Blob>>3) );
|
| + pMem->flags |= (pMem->flags&MEM_Blob)>>3;
|
| + sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
|
| + assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
|
| + pMem->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
|
| + break;
|
| + }
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Initialize bulk memory to be a consistent Mem object.
|
| +**
|
| +** The minimum amount of initialization feasible is performed.
|
| +*/
|
| +void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
|
| + assert( (flags & ~MEM_TypeMask)==0 );
|
| + pMem->flags = flags;
|
| + pMem->db = db;
|
| + pMem->szMalloc = 0;
|
| +}
|
| +
|
| +
|
| +/*
|
| +** Delete any previous value and set the value stored in *pMem to NULL.
|
| +**
|
| +** This routine calls the Mem.xDel destructor to dispose of values that
|
| +** require the destructor. But it preserves the Mem.zMalloc memory allocation.
|
| +** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
|
| +** routine to invoke the destructor and deallocates Mem.zMalloc.
|
| +**
|
| +** Use this routine to reset the Mem prior to insert a new value.
|
| +**
|
| +** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
|
| +*/
|
| +void sqlite3VdbeMemSetNull(Mem *pMem){
|
| + if( VdbeMemDynamic(pMem) ){
|
| + vdbeMemClearExternAndSetNull(pMem);
|
| + }else{
|
| + pMem->flags = MEM_Null;
|
| + }
|
| +}
|
| +void sqlite3ValueSetNull(sqlite3_value *p){
|
| + sqlite3VdbeMemSetNull((Mem*)p);
|
| +}
|
| +
|
| +/*
|
| +** Delete any previous value and set the value to be a BLOB of length
|
| +** n containing all zeros.
|
| +*/
|
| +void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
|
| + sqlite3VdbeMemRelease(pMem);
|
| + pMem->flags = MEM_Blob|MEM_Zero;
|
| + pMem->n = 0;
|
| + if( n<0 ) n = 0;
|
| + pMem->u.nZero = n;
|
| + pMem->enc = SQLITE_UTF8;
|
| + pMem->z = 0;
|
| +}
|
| +
|
| +/*
|
| +** The pMem is known to contain content that needs to be destroyed prior
|
| +** to a value change. So invoke the destructor, then set the value to
|
| +** a 64-bit integer.
|
| +*/
|
| +static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){
|
| + sqlite3VdbeMemSetNull(pMem);
|
| + pMem->u.i = val;
|
| + pMem->flags = MEM_Int;
|
| +}
|
| +
|
| +/*
|
| +** Delete any previous value and set the value stored in *pMem to val,
|
| +** manifest type INTEGER.
|
| +*/
|
| +void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
|
| + if( VdbeMemDynamic(pMem) ){
|
| + vdbeReleaseAndSetInt64(pMem, val);
|
| + }else{
|
| + pMem->u.i = val;
|
| + pMem->flags = MEM_Int;
|
| + }
|
| +}
|
| +
|
| +#ifndef SQLITE_OMIT_FLOATING_POINT
|
| +/*
|
| +** Delete any previous value and set the value stored in *pMem to val,
|
| +** manifest type REAL.
|
| +*/
|
| +void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
|
| + sqlite3VdbeMemSetNull(pMem);
|
| + if( !sqlite3IsNaN(val) ){
|
| + pMem->u.r = val;
|
| + pMem->flags = MEM_Real;
|
| + }
|
| +}
|
| +#endif
|
| +
|
| +/*
|
| +** Delete any previous value and set the value of pMem to be an
|
| +** empty boolean index.
|
| +*/
|
| +void sqlite3VdbeMemSetRowSet(Mem *pMem){
|
| + sqlite3 *db = pMem->db;
|
| + assert( db!=0 );
|
| + assert( (pMem->flags & MEM_RowSet)==0 );
|
| + sqlite3VdbeMemRelease(pMem);
|
| + pMem->zMalloc = sqlite3DbMallocRaw(db, 64);
|
| + if( db->mallocFailed ){
|
| + pMem->flags = MEM_Null;
|
| + pMem->szMalloc = 0;
|
| + }else{
|
| + assert( pMem->zMalloc );
|
| + pMem->szMalloc = sqlite3DbMallocSize(db, pMem->zMalloc);
|
| + pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, pMem->szMalloc);
|
| + assert( pMem->u.pRowSet!=0 );
|
| + pMem->flags = MEM_RowSet;
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Return true if the Mem object contains a TEXT or BLOB that is
|
| +** too large - whose size exceeds SQLITE_MAX_LENGTH.
|
| +*/
|
| +int sqlite3VdbeMemTooBig(Mem *p){
|
| + assert( p->db!=0 );
|
| + if( p->flags & (MEM_Str|MEM_Blob) ){
|
| + int n = p->n;
|
| + if( p->flags & MEM_Zero ){
|
| + n += p->u.nZero;
|
| + }
|
| + return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +#ifdef SQLITE_DEBUG
|
| +/*
|
| +** This routine prepares a memory cell for modification by breaking
|
| +** its link to a shallow copy and by marking any current shallow
|
| +** copies of this cell as invalid.
|
| +**
|
| +** This is used for testing and debugging only - to make sure shallow
|
| +** copies are not misused.
|
| +*/
|
| +void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){
|
| + int i;
|
| + Mem *pX;
|
| + for(i=1, pX=&pVdbe->aMem[1]; i<=pVdbe->nMem; i++, pX++){
|
| + if( pX->pScopyFrom==pMem ){
|
| + pX->flags |= MEM_Undefined;
|
| + pX->pScopyFrom = 0;
|
| + }
|
| + }
|
| + pMem->pScopyFrom = 0;
|
| +}
|
| +#endif /* SQLITE_DEBUG */
|
| +
|
| +/*
|
| +** Size of struct Mem not including the Mem.zMalloc member.
|
| +*/
|
| +#define MEMCELLSIZE offsetof(Mem,zMalloc)
|
| +
|
| +/*
|
| +** Make an shallow copy of pFrom into pTo. Prior contents of
|
| +** pTo are freed. The pFrom->z field is not duplicated. If
|
| +** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
|
| +** and flags gets srcType (either MEM_Ephem or MEM_Static).
|
| +*/
|
| +void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
|
| + assert( (pFrom->flags & MEM_RowSet)==0 );
|
| + assert( pTo->db==pFrom->db );
|
| + if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
|
| + memcpy(pTo, pFrom, MEMCELLSIZE);
|
| + if( (pFrom->flags&MEM_Static)==0 ){
|
| + pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
|
| + assert( srcType==MEM_Ephem || srcType==MEM_Static );
|
| + pTo->flags |= srcType;
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Make a full copy of pFrom into pTo. Prior contents of pTo are
|
| +** freed before the copy is made.
|
| +*/
|
| +int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
|
| + int rc = SQLITE_OK;
|
| +
|
| + assert( pTo->db==pFrom->db );
|
| + assert( (pFrom->flags & MEM_RowSet)==0 );
|
| + if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
|
| + memcpy(pTo, pFrom, MEMCELLSIZE);
|
| + pTo->flags &= ~MEM_Dyn;
|
| + if( pTo->flags&(MEM_Str|MEM_Blob) ){
|
| + if( 0==(pFrom->flags&MEM_Static) ){
|
| + pTo->flags |= MEM_Ephem;
|
| + rc = sqlite3VdbeMemMakeWriteable(pTo);
|
| + }
|
| + }
|
| +
|
| + return rc;
|
| +}
|
| +
|
| +/*
|
| +** Transfer the contents of pFrom to pTo. Any existing value in pTo is
|
| +** freed. If pFrom contains ephemeral data, a copy is made.
|
| +**
|
| +** pFrom contains an SQL NULL when this routine returns.
|
| +*/
|
| +void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
|
| + assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
|
| + assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
|
| + assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
|
| +
|
| + sqlite3VdbeMemRelease(pTo);
|
| + memcpy(pTo, pFrom, sizeof(Mem));
|
| + pFrom->flags = MEM_Null;
|
| + pFrom->szMalloc = 0;
|
| +}
|
| +
|
| +/*
|
| +** Change the value of a Mem to be a string or a BLOB.
|
| +**
|
| +** The memory management strategy depends on the value of the xDel
|
| +** parameter. If the value passed is SQLITE_TRANSIENT, then the
|
| +** string is copied into a (possibly existing) buffer managed by the
|
| +** Mem structure. Otherwise, any existing buffer is freed and the
|
| +** pointer copied.
|
| +**
|
| +** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
|
| +** size limit) then no memory allocation occurs. If the string can be
|
| +** stored without allocating memory, then it is. If a memory allocation
|
| +** is required to store the string, then value of pMem is unchanged. In
|
| +** either case, SQLITE_TOOBIG is returned.
|
| +*/
|
| +int sqlite3VdbeMemSetStr(
|
| + Mem *pMem, /* Memory cell to set to string value */
|
| + const char *z, /* String pointer */
|
| + int n, /* Bytes in string, or negative */
|
| + u8 enc, /* Encoding of z. 0 for BLOBs */
|
| + void (*xDel)(void*) /* Destructor function */
|
| +){
|
| + int nByte = n; /* New value for pMem->n */
|
| + int iLimit; /* Maximum allowed string or blob size */
|
| + u16 flags = 0; /* New value for pMem->flags */
|
| +
|
| + assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
| + assert( (pMem->flags & MEM_RowSet)==0 );
|
| +
|
| + /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
|
| + if( !z ){
|
| + sqlite3VdbeMemSetNull(pMem);
|
| + return SQLITE_OK;
|
| + }
|
| +
|
| + if( pMem->db ){
|
| + iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
|
| + }else{
|
| + iLimit = SQLITE_MAX_LENGTH;
|
| + }
|
| + flags = (enc==0?MEM_Blob:MEM_Str);
|
| + if( nByte<0 ){
|
| + assert( enc!=0 );
|
| + if( enc==SQLITE_UTF8 ){
|
| + nByte = sqlite3Strlen30(z);
|
| + if( nByte>iLimit ) nByte = iLimit+1;
|
| + }else{
|
| + for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
|
| + }
|
| + flags |= MEM_Term;
|
| + }
|
| +
|
| + /* The following block sets the new values of Mem.z and Mem.xDel. It
|
| + ** also sets a flag in local variable "flags" to indicate the memory
|
| + ** management (one of MEM_Dyn or MEM_Static).
|
| + */
|
| + if( xDel==SQLITE_TRANSIENT ){
|
| + int nAlloc = nByte;
|
| + if( flags&MEM_Term ){
|
| + nAlloc += (enc==SQLITE_UTF8?1:2);
|
| + }
|
| + if( nByte>iLimit ){
|
| + return SQLITE_TOOBIG;
|
| + }
|
| + testcase( nAlloc==0 );
|
| + testcase( nAlloc==31 );
|
| + testcase( nAlloc==32 );
|
| + if( sqlite3VdbeMemClearAndResize(pMem, MAX(nAlloc,32)) ){
|
| + return SQLITE_NOMEM;
|
| + }
|
| + memcpy(pMem->z, z, nAlloc);
|
| + }else if( xDel==SQLITE_DYNAMIC ){
|
| + sqlite3VdbeMemRelease(pMem);
|
| + pMem->zMalloc = pMem->z = (char *)z;
|
| + pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
|
| + }else{
|
| + sqlite3VdbeMemRelease(pMem);
|
| + pMem->z = (char *)z;
|
| + pMem->xDel = xDel;
|
| + flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
|
| + }
|
| +
|
| + pMem->n = nByte;
|
| + pMem->flags = flags;
|
| + pMem->enc = (enc==0 ? SQLITE_UTF8 : enc);
|
| +
|
| +#ifndef SQLITE_OMIT_UTF16
|
| + if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
|
| + return SQLITE_NOMEM;
|
| + }
|
| +#endif
|
| +
|
| + if( nByte>iLimit ){
|
| + return SQLITE_TOOBIG;
|
| + }
|
| +
|
| + return SQLITE_OK;
|
| +}
|
| +
|
| +/*
|
| +** Move data out of a btree key or data field and into a Mem structure.
|
| +** The data or key is taken from the entry that pCur is currently pointing
|
| +** to. offset and amt determine what portion of the data or key to retrieve.
|
| +** key is true to get the key or false to get data. The result is written
|
| +** into the pMem element.
|
| +**
|
| +** The pMem object must have been initialized. This routine will use
|
| +** pMem->zMalloc to hold the content from the btree, if possible. New
|
| +** pMem->zMalloc space will be allocated if necessary. The calling routine
|
| +** is responsible for making sure that the pMem object is eventually
|
| +** destroyed.
|
| +**
|
| +** If this routine fails for any reason (malloc returns NULL or unable
|
| +** to read from the disk) then the pMem is left in an inconsistent state.
|
| +*/
|
| +int sqlite3VdbeMemFromBtree(
|
| + BtCursor *pCur, /* Cursor pointing at record to retrieve. */
|
| + u32 offset, /* Offset from the start of data to return bytes from. */
|
| + u32 amt, /* Number of bytes to return. */
|
| + int key, /* If true, retrieve from the btree key, not data. */
|
| + Mem *pMem /* OUT: Return data in this Mem structure. */
|
| +){
|
| + char *zData; /* Data from the btree layer */
|
| + u32 available = 0; /* Number of bytes available on the local btree page */
|
| + int rc = SQLITE_OK; /* Return code */
|
| +
|
| + assert( sqlite3BtreeCursorIsValid(pCur) );
|
| + assert( !VdbeMemDynamic(pMem) );
|
| +
|
| + /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
|
| + ** that both the BtShared and database handle mutexes are held. */
|
| + assert( (pMem->flags & MEM_RowSet)==0 );
|
| + if( key ){
|
| + zData = (char *)sqlite3BtreeKeyFetch(pCur, &available);
|
| + }else{
|
| + zData = (char *)sqlite3BtreeDataFetch(pCur, &available);
|
| + }
|
| + assert( zData!=0 );
|
| +
|
| + if( offset+amt<=available ){
|
| + pMem->z = &zData[offset];
|
| + pMem->flags = MEM_Blob|MEM_Ephem;
|
| + pMem->n = (int)amt;
|
| + }else{
|
| + pMem->flags = MEM_Null;
|
| + if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+2)) ){
|
| + if( key ){
|
| + rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z);
|
| + }else{
|
| + rc = sqlite3BtreeData(pCur, offset, amt, pMem->z);
|
| + }
|
| + if( rc==SQLITE_OK ){
|
| + pMem->z[amt] = 0;
|
| + pMem->z[amt+1] = 0;
|
| + pMem->flags = MEM_Blob|MEM_Term;
|
| + pMem->n = (int)amt;
|
| + }else{
|
| + sqlite3VdbeMemRelease(pMem);
|
| + }
|
| + }
|
| + }
|
| +
|
| + return rc;
|
| +}
|
| +
|
| +/*
|
| +** The pVal argument is known to be a value other than NULL.
|
| +** Convert it into a string with encoding enc and return a pointer
|
| +** to a zero-terminated version of that string.
|
| +*/
|
| +static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){
|
| + assert( pVal!=0 );
|
| + assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
|
| + assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
|
| + assert( (pVal->flags & MEM_RowSet)==0 );
|
| + assert( (pVal->flags & (MEM_Null))==0 );
|
| + if( pVal->flags & (MEM_Blob|MEM_Str) ){
|
| + pVal->flags |= MEM_Str;
|
| + if( pVal->flags & MEM_Zero ){
|
| + sqlite3VdbeMemExpandBlob(pVal);
|
| + }
|
| + if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){
|
| + sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
|
| + }
|
| + if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
|
| + assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
|
| + if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
|
| + return 0;
|
| + }
|
| + }
|
| + sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */
|
| + }else{
|
| + sqlite3VdbeMemStringify(pVal, enc, 0);
|
| + assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
|
| + }
|
| + assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
|
| + || pVal->db->mallocFailed );
|
| + if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
|
| + return pVal->z;
|
| + }else{
|
| + return 0;
|
| + }
|
| +}
|
| +
|
| +/* This function is only available internally, it is not part of the
|
| +** external API. It works in a similar way to sqlite3_value_text(),
|
| +** except the data returned is in the encoding specified by the second
|
| +** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
|
| +** SQLITE_UTF8.
|
| +**
|
| +** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
|
| +** If that is the case, then the result must be aligned on an even byte
|
| +** boundary.
|
| +*/
|
| +const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
|
| + if( !pVal ) return 0;
|
| + assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
|
| + assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
|
| + assert( (pVal->flags & MEM_RowSet)==0 );
|
| + if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){
|
| + return pVal->z;
|
| + }
|
| + if( pVal->flags&MEM_Null ){
|
| + return 0;
|
| + }
|
| + return valueToText(pVal, enc);
|
| +}
|
| +
|
| +/*
|
| +** Create a new sqlite3_value object.
|
| +*/
|
| +sqlite3_value *sqlite3ValueNew(sqlite3 *db){
|
| + Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
|
| + if( p ){
|
| + p->flags = MEM_Null;
|
| + p->db = db;
|
| + }
|
| + return p;
|
| +}
|
| +
|
| +/*
|
| +** Context object passed by sqlite3Stat4ProbeSetValue() through to
|
| +** valueNew(). See comments above valueNew() for details.
|
| +*/
|
| +struct ValueNewStat4Ctx {
|
| + Parse *pParse;
|
| + Index *pIdx;
|
| + UnpackedRecord **ppRec;
|
| + int iVal;
|
| +};
|
| +
|
| +/*
|
| +** Allocate and return a pointer to a new sqlite3_value object. If
|
| +** the second argument to this function is NULL, the object is allocated
|
| +** by calling sqlite3ValueNew().
|
| +**
|
| +** Otherwise, if the second argument is non-zero, then this function is
|
| +** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
|
| +** already been allocated, allocate the UnpackedRecord structure that
|
| +** that function will return to its caller here. Then return a pointer
|
| +** an sqlite3_value within the UnpackedRecord.a[] array.
|
| +*/
|
| +static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){
|
| +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
|
| + if( p ){
|
| + UnpackedRecord *pRec = p->ppRec[0];
|
| +
|
| + if( pRec==0 ){
|
| + Index *pIdx = p->pIdx; /* Index being probed */
|
| + int nByte; /* Bytes of space to allocate */
|
| + int i; /* Counter variable */
|
| + int nCol = pIdx->nColumn; /* Number of index columns including rowid */
|
| +
|
| + nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord));
|
| + pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
|
| + if( pRec ){
|
| + pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx);
|
| + if( pRec->pKeyInfo ){
|
| + assert( pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField==nCol );
|
| + assert( pRec->pKeyInfo->enc==ENC(db) );
|
| + pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
|
| + for(i=0; i<nCol; i++){
|
| + pRec->aMem[i].flags = MEM_Null;
|
| + pRec->aMem[i].db = db;
|
| + }
|
| + }else{
|
| + sqlite3DbFree(db, pRec);
|
| + pRec = 0;
|
| + }
|
| + }
|
| + if( pRec==0 ) return 0;
|
| + p->ppRec[0] = pRec;
|
| + }
|
| +
|
| + pRec->nField = p->iVal+1;
|
| + return &pRec->aMem[p->iVal];
|
| + }
|
| +#else
|
| + UNUSED_PARAMETER(p);
|
| +#endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
|
| + return sqlite3ValueNew(db);
|
| +}
|
| +
|
| +/*
|
| +** Extract a value from the supplied expression in the manner described
|
| +** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
|
| +** using valueNew().
|
| +**
|
| +** If pCtx is NULL and an error occurs after the sqlite3_value object
|
| +** has been allocated, it is freed before returning. Or, if pCtx is not
|
| +** NULL, it is assumed that the caller will free any allocated object
|
| +** in all cases.
|
| +*/
|
| +static int valueFromExpr(
|
| + sqlite3 *db, /* The database connection */
|
| + Expr *pExpr, /* The expression to evaluate */
|
| + u8 enc, /* Encoding to use */
|
| + u8 affinity, /* Affinity to use */
|
| + sqlite3_value **ppVal, /* Write the new value here */
|
| + struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
|
| +){
|
| + int op;
|
| + char *zVal = 0;
|
| + sqlite3_value *pVal = 0;
|
| + int negInt = 1;
|
| + const char *zNeg = "";
|
| + int rc = SQLITE_OK;
|
| +
|
| + if( !pExpr ){
|
| + *ppVal = 0;
|
| + return SQLITE_OK;
|
| + }
|
| + while( (op = pExpr->op)==TK_UPLUS ) pExpr = pExpr->pLeft;
|
| + if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
|
| +
|
| + if( op==TK_CAST ){
|
| + u8 aff = sqlite3AffinityType(pExpr->u.zToken,0);
|
| + rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx);
|
| + testcase( rc!=SQLITE_OK );
|
| + if( *ppVal ){
|
| + sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8);
|
| + sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8);
|
| + }
|
| + return rc;
|
| + }
|
| +
|
| + /* Handle negative integers in a single step. This is needed in the
|
| + ** case when the value is -9223372036854775808.
|
| + */
|
| + if( op==TK_UMINUS
|
| + && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
|
| + pExpr = pExpr->pLeft;
|
| + op = pExpr->op;
|
| + negInt = -1;
|
| + zNeg = "-";
|
| + }
|
| +
|
| + if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
|
| + pVal = valueNew(db, pCtx);
|
| + if( pVal==0 ) goto no_mem;
|
| + if( ExprHasProperty(pExpr, EP_IntValue) ){
|
| + sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
|
| + }else{
|
| + zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
|
| + if( zVal==0 ) goto no_mem;
|
| + sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
|
| + }
|
| + if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){
|
| + sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
|
| + }else{
|
| + sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
|
| + }
|
| + if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str;
|
| + if( enc!=SQLITE_UTF8 ){
|
| + rc = sqlite3VdbeChangeEncoding(pVal, enc);
|
| + }
|
| + }else if( op==TK_UMINUS ) {
|
| + /* This branch happens for multiple negative signs. Ex: -(-5) */
|
| + if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal)
|
| + && pVal!=0
|
| + ){
|
| + sqlite3VdbeMemNumerify(pVal);
|
| + if( pVal->flags & MEM_Real ){
|
| + pVal->u.r = -pVal->u.r;
|
| + }else if( pVal->u.i==SMALLEST_INT64 ){
|
| + pVal->u.r = -(double)SMALLEST_INT64;
|
| + MemSetTypeFlag(pVal, MEM_Real);
|
| + }else{
|
| + pVal->u.i = -pVal->u.i;
|
| + }
|
| + sqlite3ValueApplyAffinity(pVal, affinity, enc);
|
| + }
|
| + }else if( op==TK_NULL ){
|
| + pVal = valueNew(db, pCtx);
|
| + if( pVal==0 ) goto no_mem;
|
| + }
|
| +#ifndef SQLITE_OMIT_BLOB_LITERAL
|
| + else if( op==TK_BLOB ){
|
| + int nVal;
|
| + assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
|
| + assert( pExpr->u.zToken[1]=='\'' );
|
| + pVal = valueNew(db, pCtx);
|
| + if( !pVal ) goto no_mem;
|
| + zVal = &pExpr->u.zToken[2];
|
| + nVal = sqlite3Strlen30(zVal)-1;
|
| + assert( zVal[nVal]=='\'' );
|
| + sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
|
| + 0, SQLITE_DYNAMIC);
|
| + }
|
| +#endif
|
| +
|
| + *ppVal = pVal;
|
| + return rc;
|
| +
|
| +no_mem:
|
| + db->mallocFailed = 1;
|
| + sqlite3DbFree(db, zVal);
|
| + assert( *ppVal==0 );
|
| +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
|
| + if( pCtx==0 ) sqlite3ValueFree(pVal);
|
| +#else
|
| + assert( pCtx==0 ); sqlite3ValueFree(pVal);
|
| +#endif
|
| + return SQLITE_NOMEM;
|
| +}
|
| +
|
| +/*
|
| +** Create a new sqlite3_value object, containing the value of pExpr.
|
| +**
|
| +** This only works for very simple expressions that consist of one constant
|
| +** token (i.e. "5", "5.1", "'a string'"). If the expression can
|
| +** be converted directly into a value, then the value is allocated and
|
| +** a pointer written to *ppVal. The caller is responsible for deallocating
|
| +** the value by passing it to sqlite3ValueFree() later on. If the expression
|
| +** cannot be converted to a value, then *ppVal is set to NULL.
|
| +*/
|
| +int sqlite3ValueFromExpr(
|
| + sqlite3 *db, /* The database connection */
|
| + Expr *pExpr, /* The expression to evaluate */
|
| + u8 enc, /* Encoding to use */
|
| + u8 affinity, /* Affinity to use */
|
| + sqlite3_value **ppVal /* Write the new value here */
|
| +){
|
| + return valueFromExpr(db, pExpr, enc, affinity, ppVal, 0);
|
| +}
|
| +
|
| +#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
|
| +/*
|
| +** The implementation of the sqlite_record() function. This function accepts
|
| +** a single argument of any type. The return value is a formatted database
|
| +** record (a blob) containing the argument value.
|
| +**
|
| +** This is used to convert the value stored in the 'sample' column of the
|
| +** sqlite_stat3 table to the record format SQLite uses internally.
|
| +*/
|
| +static void recordFunc(
|
| + sqlite3_context *context,
|
| + int argc,
|
| + sqlite3_value **argv
|
| +){
|
| + const int file_format = 1;
|
| + int iSerial; /* Serial type */
|
| + int nSerial; /* Bytes of space for iSerial as varint */
|
| + int nVal; /* Bytes of space required for argv[0] */
|
| + int nRet;
|
| + sqlite3 *db;
|
| + u8 *aRet;
|
| +
|
| + UNUSED_PARAMETER( argc );
|
| + iSerial = sqlite3VdbeSerialType(argv[0], file_format);
|
| + nSerial = sqlite3VarintLen(iSerial);
|
| + nVal = sqlite3VdbeSerialTypeLen(iSerial);
|
| + db = sqlite3_context_db_handle(context);
|
| +
|
| + nRet = 1 + nSerial + nVal;
|
| + aRet = sqlite3DbMallocRaw(db, nRet);
|
| + if( aRet==0 ){
|
| + sqlite3_result_error_nomem(context);
|
| + }else{
|
| + aRet[0] = nSerial+1;
|
| + putVarint32(&aRet[1], iSerial);
|
| + sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], iSerial);
|
| + sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT);
|
| + sqlite3DbFree(db, aRet);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Register built-in functions used to help read ANALYZE data.
|
| +*/
|
| +void sqlite3AnalyzeFunctions(void){
|
| + static SQLITE_WSD FuncDef aAnalyzeTableFuncs[] = {
|
| + FUNCTION(sqlite_record, 1, 0, 0, recordFunc),
|
| + };
|
| + int i;
|
| + FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
|
| + FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aAnalyzeTableFuncs);
|
| + for(i=0; i<ArraySize(aAnalyzeTableFuncs); i++){
|
| + sqlite3FuncDefInsert(pHash, &aFunc[i]);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Attempt to extract a value from pExpr and use it to construct *ppVal.
|
| +**
|
| +** If pAlloc is not NULL, then an UnpackedRecord object is created for
|
| +** pAlloc if one does not exist and the new value is added to the
|
| +** UnpackedRecord object.
|
| +**
|
| +** A value is extracted in the following cases:
|
| +**
|
| +** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
|
| +**
|
| +** * The expression is a bound variable, and this is a reprepare, or
|
| +**
|
| +** * The expression is a literal value.
|
| +**
|
| +** On success, *ppVal is made to point to the extracted value. The caller
|
| +** is responsible for ensuring that the value is eventually freed.
|
| +*/
|
| +static int stat4ValueFromExpr(
|
| + Parse *pParse, /* Parse context */
|
| + Expr *pExpr, /* The expression to extract a value from */
|
| + u8 affinity, /* Affinity to use */
|
| + struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */
|
| + sqlite3_value **ppVal /* OUT: New value object (or NULL) */
|
| +){
|
| + int rc = SQLITE_OK;
|
| + sqlite3_value *pVal = 0;
|
| + sqlite3 *db = pParse->db;
|
| +
|
| + /* Skip over any TK_COLLATE nodes */
|
| + pExpr = sqlite3ExprSkipCollate(pExpr);
|
| +
|
| + if( !pExpr ){
|
| + pVal = valueNew(db, pAlloc);
|
| + if( pVal ){
|
| + sqlite3VdbeMemSetNull((Mem*)pVal);
|
| + }
|
| + }else if( pExpr->op==TK_VARIABLE
|
| + || NEVER(pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE)
|
| + ){
|
| + Vdbe *v;
|
| + int iBindVar = pExpr->iColumn;
|
| + sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar);
|
| + if( (v = pParse->pReprepare)!=0 ){
|
| + pVal = valueNew(db, pAlloc);
|
| + if( pVal ){
|
| + rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
|
| + if( rc==SQLITE_OK ){
|
| + sqlite3ValueApplyAffinity(pVal, affinity, ENC(db));
|
| + }
|
| + pVal->db = pParse->db;
|
| + }
|
| + }
|
| + }else{
|
| + rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc);
|
| + }
|
| +
|
| + assert( pVal==0 || pVal->db==db );
|
| + *ppVal = pVal;
|
| + return rc;
|
| +}
|
| +
|
| +/*
|
| +** This function is used to allocate and populate UnpackedRecord
|
| +** structures intended to be compared against sample index keys stored
|
| +** in the sqlite_stat4 table.
|
| +**
|
| +** A single call to this function attempts to populates field iVal (leftmost
|
| +** is 0 etc.) of the unpacked record with a value extracted from expression
|
| +** pExpr. Extraction of values is possible if:
|
| +**
|
| +** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
|
| +**
|
| +** * The expression is a bound variable, and this is a reprepare, or
|
| +**
|
| +** * The sqlite3ValueFromExpr() function is able to extract a value
|
| +** from the expression (i.e. the expression is a literal value).
|
| +**
|
| +** If a value can be extracted, the affinity passed as the 5th argument
|
| +** is applied to it before it is copied into the UnpackedRecord. Output
|
| +** parameter *pbOk is set to true if a value is extracted, or false
|
| +** otherwise.
|
| +**
|
| +** When this function is called, *ppRec must either point to an object
|
| +** allocated by an earlier call to this function, or must be NULL. If it
|
| +** is NULL and a value can be successfully extracted, a new UnpackedRecord
|
| +** is allocated (and *ppRec set to point to it) before returning.
|
| +**
|
| +** Unless an error is encountered, SQLITE_OK is returned. It is not an
|
| +** error if a value cannot be extracted from pExpr. If an error does
|
| +** occur, an SQLite error code is returned.
|
| +*/
|
| +int sqlite3Stat4ProbeSetValue(
|
| + Parse *pParse, /* Parse context */
|
| + Index *pIdx, /* Index being probed */
|
| + UnpackedRecord **ppRec, /* IN/OUT: Probe record */
|
| + Expr *pExpr, /* The expression to extract a value from */
|
| + u8 affinity, /* Affinity to use */
|
| + int iVal, /* Array element to populate */
|
| + int *pbOk /* OUT: True if value was extracted */
|
| +){
|
| + int rc;
|
| + sqlite3_value *pVal = 0;
|
| + struct ValueNewStat4Ctx alloc;
|
| +
|
| + alloc.pParse = pParse;
|
| + alloc.pIdx = pIdx;
|
| + alloc.ppRec = ppRec;
|
| + alloc.iVal = iVal;
|
| +
|
| + rc = stat4ValueFromExpr(pParse, pExpr, affinity, &alloc, &pVal);
|
| + assert( pVal==0 || pVal->db==pParse->db );
|
| + *pbOk = (pVal!=0);
|
| + return rc;
|
| +}
|
| +
|
| +/*
|
| +** Attempt to extract a value from expression pExpr using the methods
|
| +** as described for sqlite3Stat4ProbeSetValue() above.
|
| +**
|
| +** If successful, set *ppVal to point to a new value object and return
|
| +** SQLITE_OK. If no value can be extracted, but no other error occurs
|
| +** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
|
| +** does occur, return an SQLite error code. The final value of *ppVal
|
| +** is undefined in this case.
|
| +*/
|
| +int sqlite3Stat4ValueFromExpr(
|
| + Parse *pParse, /* Parse context */
|
| + Expr *pExpr, /* The expression to extract a value from */
|
| + u8 affinity, /* Affinity to use */
|
| + sqlite3_value **ppVal /* OUT: New value object (or NULL) */
|
| +){
|
| + return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal);
|
| +}
|
| +
|
| +/*
|
| +** Extract the iCol-th column from the nRec-byte record in pRec. Write
|
| +** the column value into *ppVal. If *ppVal is initially NULL then a new
|
| +** sqlite3_value object is allocated.
|
| +**
|
| +** If *ppVal is initially NULL then the caller is responsible for
|
| +** ensuring that the value written into *ppVal is eventually freed.
|
| +*/
|
| +int sqlite3Stat4Column(
|
| + sqlite3 *db, /* Database handle */
|
| + const void *pRec, /* Pointer to buffer containing record */
|
| + int nRec, /* Size of buffer pRec in bytes */
|
| + int iCol, /* Column to extract */
|
| + sqlite3_value **ppVal /* OUT: Extracted value */
|
| +){
|
| + u32 t; /* a column type code */
|
| + int nHdr; /* Size of the header in the record */
|
| + int iHdr; /* Next unread header byte */
|
| + int iField; /* Next unread data byte */
|
| + int szField; /* Size of the current data field */
|
| + int i; /* Column index */
|
| + u8 *a = (u8*)pRec; /* Typecast byte array */
|
| + Mem *pMem = *ppVal; /* Write result into this Mem object */
|
| +
|
| + assert( iCol>0 );
|
| + iHdr = getVarint32(a, nHdr);
|
| + if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT;
|
| + iField = nHdr;
|
| + for(i=0; i<=iCol; i++){
|
| + iHdr += getVarint32(&a[iHdr], t);
|
| + testcase( iHdr==nHdr );
|
| + testcase( iHdr==nHdr+1 );
|
| + if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT;
|
| + szField = sqlite3VdbeSerialTypeLen(t);
|
| + iField += szField;
|
| + }
|
| + testcase( iField==nRec );
|
| + testcase( iField==nRec+1 );
|
| + if( iField>nRec ) return SQLITE_CORRUPT_BKPT;
|
| + if( pMem==0 ){
|
| + pMem = *ppVal = sqlite3ValueNew(db);
|
| + if( pMem==0 ) return SQLITE_NOMEM;
|
| + }
|
| + sqlite3VdbeSerialGet(&a[iField-szField], t, pMem);
|
| + pMem->enc = ENC(db);
|
| + return SQLITE_OK;
|
| +}
|
| +
|
| +/*
|
| +** Unless it is NULL, the argument must be an UnpackedRecord object returned
|
| +** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
|
| +** the object.
|
| +*/
|
| +void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
|
| + if( pRec ){
|
| + int i;
|
| + int nCol = pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField;
|
| + Mem *aMem = pRec->aMem;
|
| + sqlite3 *db = aMem[0].db;
|
| + for(i=0; i<nCol; i++){
|
| + if( aMem[i].szMalloc ) sqlite3DbFree(db, aMem[i].zMalloc);
|
| + }
|
| + sqlite3KeyInfoUnref(pRec->pKeyInfo);
|
| + sqlite3DbFree(db, pRec);
|
| + }
|
| +}
|
| +#endif /* ifdef SQLITE_ENABLE_STAT4 */
|
| +
|
| +/*
|
| +** Change the string value of an sqlite3_value object
|
| +*/
|
| +void sqlite3ValueSetStr(
|
| + sqlite3_value *v, /* Value to be set */
|
| + int n, /* Length of string z */
|
| + const void *z, /* Text of the new string */
|
| + u8 enc, /* Encoding to use */
|
| + void (*xDel)(void*) /* Destructor for the string */
|
| +){
|
| + if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
|
| +}
|
| +
|
| +/*
|
| +** Free an sqlite3_value object
|
| +*/
|
| +void sqlite3ValueFree(sqlite3_value *v){
|
| + if( !v ) return;
|
| + sqlite3VdbeMemRelease((Mem *)v);
|
| + sqlite3DbFree(((Mem*)v)->db, v);
|
| +}
|
| +
|
| +/*
|
| +** Return the number of bytes in the sqlite3_value object assuming
|
| +** that it uses the encoding "enc"
|
| +*/
|
| +int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
|
| + Mem *p = (Mem*)pVal;
|
| + if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){
|
| + if( p->flags & MEM_Zero ){
|
| + return p->n + p->u.nZero;
|
| + }else{
|
| + return p->n;
|
| + }
|
| + }
|
| + return 0;
|
| +}
|
|
|