Index: third_party/sqlite/sqlite-src-3070603/src/fkey.c |
diff --git a/third_party/sqlite/sqlite-src-3070603/src/fkey.c b/third_party/sqlite/sqlite-src-3070603/src/fkey.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..34fdfda5d94636c2194cc3a1926128fea9dbea40 |
--- /dev/null |
+++ b/third_party/sqlite/sqlite-src-3070603/src/fkey.c |
@@ -0,0 +1,1189 @@ |
+/* |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+************************************************************************* |
+** This file contains code used by the compiler to add foreign key |
+** support to compiled SQL statements. |
+*/ |
+#include "sqliteInt.h" |
+ |
+#ifndef SQLITE_OMIT_FOREIGN_KEY |
+#ifndef SQLITE_OMIT_TRIGGER |
+ |
+/* |
+** Deferred and Immediate FKs |
+** -------------------------- |
+** |
+** Foreign keys in SQLite come in two flavours: deferred and immediate. |
+** If an immediate foreign key constraint is violated, SQLITE_CONSTRAINT |
+** is returned and the current statement transaction rolled back. If a |
+** deferred foreign key constraint is violated, no action is taken |
+** immediately. However if the application attempts to commit the |
+** transaction before fixing the constraint violation, the attempt fails. |
+** |
+** Deferred constraints are implemented using a simple counter associated |
+** with the database handle. The counter is set to zero each time a |
+** database transaction is opened. Each time a statement is executed |
+** that causes a foreign key violation, the counter is incremented. Each |
+** time a statement is executed that removes an existing violation from |
+** the database, the counter is decremented. When the transaction is |
+** committed, the commit fails if the current value of the counter is |
+** greater than zero. This scheme has two big drawbacks: |
+** |
+** * When a commit fails due to a deferred foreign key constraint, |
+** there is no way to tell which foreign constraint is not satisfied, |
+** or which row it is not satisfied for. |
+** |
+** * If the database contains foreign key violations when the |
+** transaction is opened, this may cause the mechanism to malfunction. |
+** |
+** Despite these problems, this approach is adopted as it seems simpler |
+** than the alternatives. |
+** |
+** INSERT operations: |
+** |
+** I.1) For each FK for which the table is the child table, search |
+** the parent table for a match. If none is found increment the |
+** constraint counter. |
+** |
+** I.2) For each FK for which the table is the parent table, |
+** search the child table for rows that correspond to the new |
+** row in the parent table. Decrement the counter for each row |
+** found (as the constraint is now satisfied). |
+** |
+** DELETE operations: |
+** |
+** D.1) For each FK for which the table is the child table, |
+** search the parent table for a row that corresponds to the |
+** deleted row in the child table. If such a row is not found, |
+** decrement the counter. |
+** |
+** D.2) For each FK for which the table is the parent table, search |
+** the child table for rows that correspond to the deleted row |
+** in the parent table. For each found increment the counter. |
+** |
+** UPDATE operations: |
+** |
+** An UPDATE command requires that all 4 steps above are taken, but only |
+** for FK constraints for which the affected columns are actually |
+** modified (values must be compared at runtime). |
+** |
+** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2. |
+** This simplifies the implementation a bit. |
+** |
+** For the purposes of immediate FK constraints, the OR REPLACE conflict |
+** resolution is considered to delete rows before the new row is inserted. |
+** If a delete caused by OR REPLACE violates an FK constraint, an exception |
+** is thrown, even if the FK constraint would be satisfied after the new |
+** row is inserted. |
+** |
+** Immediate constraints are usually handled similarly. The only difference |
+** is that the counter used is stored as part of each individual statement |
+** object (struct Vdbe). If, after the statement has run, its immediate |
+** constraint counter is greater than zero, it returns SQLITE_CONSTRAINT |
+** and the statement transaction is rolled back. An exception is an INSERT |
+** statement that inserts a single row only (no triggers). In this case, |
+** instead of using a counter, an exception is thrown immediately if the |
+** INSERT violates a foreign key constraint. This is necessary as such |
+** an INSERT does not open a statement transaction. |
+** |
+** TODO: How should dropping a table be handled? How should renaming a |
+** table be handled? |
+** |
+** |
+** Query API Notes |
+** --------------- |
+** |
+** Before coding an UPDATE or DELETE row operation, the code-generator |
+** for those two operations needs to know whether or not the operation |
+** requires any FK processing and, if so, which columns of the original |
+** row are required by the FK processing VDBE code (i.e. if FKs were |
+** implemented using triggers, which of the old.* columns would be |
+** accessed). No information is required by the code-generator before |
+** coding an INSERT operation. The functions used by the UPDATE/DELETE |
+** generation code to query for this information are: |
+** |
+** sqlite3FkRequired() - Test to see if FK processing is required. |
+** sqlite3FkOldmask() - Query for the set of required old.* columns. |
+** |
+** |
+** Externally accessible module functions |
+** -------------------------------------- |
+** |
+** sqlite3FkCheck() - Check for foreign key violations. |
+** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions. |
+** sqlite3FkDelete() - Delete an FKey structure. |
+*/ |
+ |
+/* |
+** VDBE Calling Convention |
+** ----------------------- |
+** |
+** Example: |
+** |
+** For the following INSERT statement: |
+** |
+** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c); |
+** INSERT INTO t1 VALUES(1, 2, 3.1); |
+** |
+** Register (x): 2 (type integer) |
+** Register (x+1): 1 (type integer) |
+** Register (x+2): NULL (type NULL) |
+** Register (x+3): 3.1 (type real) |
+*/ |
+ |
+/* |
+** A foreign key constraint requires that the key columns in the parent |
+** table are collectively subject to a UNIQUE or PRIMARY KEY constraint. |
+** Given that pParent is the parent table for foreign key constraint pFKey, |
+** search the schema a unique index on the parent key columns. |
+** |
+** If successful, zero is returned. If the parent key is an INTEGER PRIMARY |
+** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx |
+** is set to point to the unique index. |
+** |
+** If the parent key consists of a single column (the foreign key constraint |
+** is not a composite foreign key), output variable *paiCol is set to NULL. |
+** Otherwise, it is set to point to an allocated array of size N, where |
+** N is the number of columns in the parent key. The first element of the |
+** array is the index of the child table column that is mapped by the FK |
+** constraint to the parent table column stored in the left-most column |
+** of index *ppIdx. The second element of the array is the index of the |
+** child table column that corresponds to the second left-most column of |
+** *ppIdx, and so on. |
+** |
+** If the required index cannot be found, either because: |
+** |
+** 1) The named parent key columns do not exist, or |
+** |
+** 2) The named parent key columns do exist, but are not subject to a |
+** UNIQUE or PRIMARY KEY constraint, or |
+** |
+** 3) No parent key columns were provided explicitly as part of the |
+** foreign key definition, and the parent table does not have a |
+** PRIMARY KEY, or |
+** |
+** 4) No parent key columns were provided explicitly as part of the |
+** foreign key definition, and the PRIMARY KEY of the parent table |
+** consists of a a different number of columns to the child key in |
+** the child table. |
+** |
+** then non-zero is returned, and a "foreign key mismatch" error loaded |
+** into pParse. If an OOM error occurs, non-zero is returned and the |
+** pParse->db->mallocFailed flag is set. |
+*/ |
+static int locateFkeyIndex( |
+ Parse *pParse, /* Parse context to store any error in */ |
+ Table *pParent, /* Parent table of FK constraint pFKey */ |
+ FKey *pFKey, /* Foreign key to find index for */ |
+ Index **ppIdx, /* OUT: Unique index on parent table */ |
+ int **paiCol /* OUT: Map of index columns in pFKey */ |
+){ |
+ Index *pIdx = 0; /* Value to return via *ppIdx */ |
+ int *aiCol = 0; /* Value to return via *paiCol */ |
+ int nCol = pFKey->nCol; /* Number of columns in parent key */ |
+ char *zKey = pFKey->aCol[0].zCol; /* Name of left-most parent key column */ |
+ |
+ /* The caller is responsible for zeroing output parameters. */ |
+ assert( ppIdx && *ppIdx==0 ); |
+ assert( !paiCol || *paiCol==0 ); |
+ assert( pParse ); |
+ |
+ /* If this is a non-composite (single column) foreign key, check if it |
+ ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx |
+ ** and *paiCol set to zero and return early. |
+ ** |
+ ** Otherwise, for a composite foreign key (more than one column), allocate |
+ ** space for the aiCol array (returned via output parameter *paiCol). |
+ ** Non-composite foreign keys do not require the aiCol array. |
+ */ |
+ if( nCol==1 ){ |
+ /* The FK maps to the IPK if any of the following are true: |
+ ** |
+ ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly |
+ ** mapped to the primary key of table pParent, or |
+ ** 2) The FK is explicitly mapped to a column declared as INTEGER |
+ ** PRIMARY KEY. |
+ */ |
+ if( pParent->iPKey>=0 ){ |
+ if( !zKey ) return 0; |
+ if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0; |
+ } |
+ }else if( paiCol ){ |
+ assert( nCol>1 ); |
+ aiCol = (int *)sqlite3DbMallocRaw(pParse->db, nCol*sizeof(int)); |
+ if( !aiCol ) return 1; |
+ *paiCol = aiCol; |
+ } |
+ |
+ for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){ |
+ if( pIdx->nColumn==nCol && pIdx->onError!=OE_None ){ |
+ /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number |
+ ** of columns. If each indexed column corresponds to a foreign key |
+ ** column of pFKey, then this index is a winner. */ |
+ |
+ if( zKey==0 ){ |
+ /* If zKey is NULL, then this foreign key is implicitly mapped to |
+ ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be |
+ ** identified by the test (Index.autoIndex==2). */ |
+ if( pIdx->autoIndex==2 ){ |
+ if( aiCol ){ |
+ int i; |
+ for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom; |
+ } |
+ break; |
+ } |
+ }else{ |
+ /* If zKey is non-NULL, then this foreign key was declared to |
+ ** map to an explicit list of columns in table pParent. Check if this |
+ ** index matches those columns. Also, check that the index uses |
+ ** the default collation sequences for each column. */ |
+ int i, j; |
+ for(i=0; i<nCol; i++){ |
+ int iCol = pIdx->aiColumn[i]; /* Index of column in parent tbl */ |
+ char *zDfltColl; /* Def. collation for column */ |
+ char *zIdxCol; /* Name of indexed column */ |
+ |
+ /* If the index uses a collation sequence that is different from |
+ ** the default collation sequence for the column, this index is |
+ ** unusable. Bail out early in this case. */ |
+ zDfltColl = pParent->aCol[iCol].zColl; |
+ if( !zDfltColl ){ |
+ zDfltColl = "BINARY"; |
+ } |
+ if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break; |
+ |
+ zIdxCol = pParent->aCol[iCol].zName; |
+ for(j=0; j<nCol; j++){ |
+ if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){ |
+ if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom; |
+ break; |
+ } |
+ } |
+ if( j==nCol ) break; |
+ } |
+ if( i==nCol ) break; /* pIdx is usable */ |
+ } |
+ } |
+ } |
+ |
+ if( !pIdx ){ |
+ if( !pParse->disableTriggers ){ |
+ sqlite3ErrorMsg(pParse, "foreign key mismatch"); |
+ } |
+ sqlite3DbFree(pParse->db, aiCol); |
+ return 1; |
+ } |
+ |
+ *ppIdx = pIdx; |
+ return 0; |
+} |
+ |
+/* |
+** This function is called when a row is inserted into or deleted from the |
+** child table of foreign key constraint pFKey. If an SQL UPDATE is executed |
+** on the child table of pFKey, this function is invoked twice for each row |
+** affected - once to "delete" the old row, and then again to "insert" the |
+** new row. |
+** |
+** Each time it is called, this function generates VDBE code to locate the |
+** row in the parent table that corresponds to the row being inserted into |
+** or deleted from the child table. If the parent row can be found, no |
+** special action is taken. Otherwise, if the parent row can *not* be |
+** found in the parent table: |
+** |
+** Operation | FK type | Action taken |
+** -------------------------------------------------------------------------- |
+** INSERT immediate Increment the "immediate constraint counter". |
+** |
+** DELETE immediate Decrement the "immediate constraint counter". |
+** |
+** INSERT deferred Increment the "deferred constraint counter". |
+** |
+** DELETE deferred Decrement the "deferred constraint counter". |
+** |
+** These operations are identified in the comment at the top of this file |
+** (fkey.c) as "I.1" and "D.1". |
+*/ |
+static void fkLookupParent( |
+ Parse *pParse, /* Parse context */ |
+ int iDb, /* Index of database housing pTab */ |
+ Table *pTab, /* Parent table of FK pFKey */ |
+ Index *pIdx, /* Unique index on parent key columns in pTab */ |
+ FKey *pFKey, /* Foreign key constraint */ |
+ int *aiCol, /* Map from parent key columns to child table columns */ |
+ int regData, /* Address of array containing child table row */ |
+ int nIncr, /* Increment constraint counter by this */ |
+ int isIgnore /* If true, pretend pTab contains all NULL values */ |
+){ |
+ int i; /* Iterator variable */ |
+ Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */ |
+ int iCur = pParse->nTab - 1; /* Cursor number to use */ |
+ int iOk = sqlite3VdbeMakeLabel(v); /* jump here if parent key found */ |
+ |
+ /* If nIncr is less than zero, then check at runtime if there are any |
+ ** outstanding constraints to resolve. If there are not, there is no need |
+ ** to check if deleting this row resolves any outstanding violations. |
+ ** |
+ ** Check if any of the key columns in the child table row are NULL. If |
+ ** any are, then the constraint is considered satisfied. No need to |
+ ** search for a matching row in the parent table. */ |
+ if( nIncr<0 ){ |
+ sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk); |
+ } |
+ for(i=0; i<pFKey->nCol; i++){ |
+ int iReg = aiCol[i] + regData + 1; |
+ sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); |
+ } |
+ |
+ if( isIgnore==0 ){ |
+ if( pIdx==0 ){ |
+ /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY |
+ ** column of the parent table (table pTab). */ |
+ int iMustBeInt; /* Address of MustBeInt instruction */ |
+ int regTemp = sqlite3GetTempReg(pParse); |
+ |
+ /* Invoke MustBeInt to coerce the child key value to an integer (i.e. |
+ ** apply the affinity of the parent key). If this fails, then there |
+ ** is no matching parent key. Before using MustBeInt, make a copy of |
+ ** the value. Otherwise, the value inserted into the child key column |
+ ** will have INTEGER affinity applied to it, which may not be correct. */ |
+ sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[0]+1+regData, regTemp); |
+ iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0); |
+ |
+ /* If the parent table is the same as the child table, and we are about |
+ ** to increment the constraint-counter (i.e. this is an INSERT operation), |
+ ** then check if the row being inserted matches itself. If so, do not |
+ ** increment the constraint-counter. */ |
+ if( pTab==pFKey->pFrom && nIncr==1 ){ |
+ sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp); |
+ } |
+ |
+ sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead); |
+ sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp); |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk); |
+ sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); |
+ sqlite3VdbeJumpHere(v, iMustBeInt); |
+ sqlite3ReleaseTempReg(pParse, regTemp); |
+ }else{ |
+ int nCol = pFKey->nCol; |
+ int regTemp = sqlite3GetTempRange(pParse, nCol); |
+ int regRec = sqlite3GetTempReg(pParse); |
+ KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); |
+ |
+ sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb); |
+ sqlite3VdbeChangeP4(v, -1, (char*)pKey, P4_KEYINFO_HANDOFF); |
+ for(i=0; i<nCol; i++){ |
+ sqlite3VdbeAddOp2(v, OP_Copy, aiCol[i]+1+regData, regTemp+i); |
+ } |
+ |
+ /* If the parent table is the same as the child table, and we are about |
+ ** to increment the constraint-counter (i.e. this is an INSERT operation), |
+ ** then check if the row being inserted matches itself. If so, do not |
+ ** increment the constraint-counter. */ |
+ if( pTab==pFKey->pFrom && nIncr==1 ){ |
+ int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1; |
+ for(i=0; i<nCol; i++){ |
+ int iChild = aiCol[i]+1+regData; |
+ int iParent = pIdx->aiColumn[i]+1+regData; |
+ sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); |
+ } |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk); |
+ } |
+ |
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regTemp, nCol, regRec); |
+ sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v,pIdx), P4_TRANSIENT); |
+ sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0); |
+ |
+ sqlite3ReleaseTempReg(pParse, regRec); |
+ sqlite3ReleaseTempRange(pParse, regTemp, nCol); |
+ } |
+ } |
+ |
+ if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){ |
+ /* Special case: If this is an INSERT statement that will insert exactly |
+ ** one row into the table, raise a constraint immediately instead of |
+ ** incrementing a counter. This is necessary as the VM code is being |
+ ** generated for will not open a statement transaction. */ |
+ assert( nIncr==1 ); |
+ sqlite3HaltConstraint( |
+ pParse, OE_Abort, "foreign key constraint failed", P4_STATIC |
+ ); |
+ }else{ |
+ if( nIncr>0 && pFKey->isDeferred==0 ){ |
+ sqlite3ParseToplevel(pParse)->mayAbort = 1; |
+ } |
+ sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); |
+ } |
+ |
+ sqlite3VdbeResolveLabel(v, iOk); |
+ sqlite3VdbeAddOp1(v, OP_Close, iCur); |
+} |
+ |
+/* |
+** This function is called to generate code executed when a row is deleted |
+** from the parent table of foreign key constraint pFKey and, if pFKey is |
+** deferred, when a row is inserted into the same table. When generating |
+** code for an SQL UPDATE operation, this function may be called twice - |
+** once to "delete" the old row and once to "insert" the new row. |
+** |
+** The code generated by this function scans through the rows in the child |
+** table that correspond to the parent table row being deleted or inserted. |
+** For each child row found, one of the following actions is taken: |
+** |
+** Operation | FK type | Action taken |
+** -------------------------------------------------------------------------- |
+** DELETE immediate Increment the "immediate constraint counter". |
+** Or, if the ON (UPDATE|DELETE) action is RESTRICT, |
+** throw a "foreign key constraint failed" exception. |
+** |
+** INSERT immediate Decrement the "immediate constraint counter". |
+** |
+** DELETE deferred Increment the "deferred constraint counter". |
+** Or, if the ON (UPDATE|DELETE) action is RESTRICT, |
+** throw a "foreign key constraint failed" exception. |
+** |
+** INSERT deferred Decrement the "deferred constraint counter". |
+** |
+** These operations are identified in the comment at the top of this file |
+** (fkey.c) as "I.2" and "D.2". |
+*/ |
+static void fkScanChildren( |
+ Parse *pParse, /* Parse context */ |
+ SrcList *pSrc, /* SrcList containing the table to scan */ |
+ Table *pTab, |
+ Index *pIdx, /* Foreign key index */ |
+ FKey *pFKey, /* Foreign key relationship */ |
+ int *aiCol, /* Map from pIdx cols to child table cols */ |
+ int regData, /* Referenced table data starts here */ |
+ int nIncr /* Amount to increment deferred counter by */ |
+){ |
+ sqlite3 *db = pParse->db; /* Database handle */ |
+ int i; /* Iterator variable */ |
+ Expr *pWhere = 0; /* WHERE clause to scan with */ |
+ NameContext sNameContext; /* Context used to resolve WHERE clause */ |
+ WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */ |
+ int iFkIfZero = 0; /* Address of OP_FkIfZero */ |
+ Vdbe *v = sqlite3GetVdbe(pParse); |
+ |
+ assert( !pIdx || pIdx->pTable==pTab ); |
+ |
+ if( nIncr<0 ){ |
+ iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0); |
+ } |
+ |
+ /* Create an Expr object representing an SQL expression like: |
+ ** |
+ ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ... |
+ ** |
+ ** The collation sequence used for the comparison should be that of |
+ ** the parent key columns. The affinity of the parent key column should |
+ ** be applied to each child key value before the comparison takes place. |
+ */ |
+ for(i=0; i<pFKey->nCol; i++){ |
+ Expr *pLeft; /* Value from parent table row */ |
+ Expr *pRight; /* Column ref to child table */ |
+ Expr *pEq; /* Expression (pLeft = pRight) */ |
+ int iCol; /* Index of column in child table */ |
+ const char *zCol; /* Name of column in child table */ |
+ |
+ pLeft = sqlite3Expr(db, TK_REGISTER, 0); |
+ if( pLeft ){ |
+ /* Set the collation sequence and affinity of the LHS of each TK_EQ |
+ ** expression to the parent key column defaults. */ |
+ if( pIdx ){ |
+ Column *pCol; |
+ iCol = pIdx->aiColumn[i]; |
+ pCol = &pTab->aCol[iCol]; |
+ if( pTab->iPKey==iCol ) iCol = -1; |
+ pLeft->iTable = regData+iCol+1; |
+ pLeft->affinity = pCol->affinity; |
+ pLeft->pColl = sqlite3LocateCollSeq(pParse, pCol->zColl); |
+ }else{ |
+ pLeft->iTable = regData; |
+ pLeft->affinity = SQLITE_AFF_INTEGER; |
+ } |
+ } |
+ iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; |
+ assert( iCol>=0 ); |
+ zCol = pFKey->pFrom->aCol[iCol].zName; |
+ pRight = sqlite3Expr(db, TK_ID, zCol); |
+ pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0); |
+ pWhere = sqlite3ExprAnd(db, pWhere, pEq); |
+ } |
+ |
+ /* If the child table is the same as the parent table, and this scan |
+ ** is taking place as part of a DELETE operation (operation D.2), omit the |
+ ** row being deleted from the scan by adding ($rowid != rowid) to the WHERE |
+ ** clause, where $rowid is the rowid of the row being deleted. */ |
+ if( pTab==pFKey->pFrom && nIncr>0 ){ |
+ Expr *pEq; /* Expression (pLeft = pRight) */ |
+ Expr *pLeft; /* Value from parent table row */ |
+ Expr *pRight; /* Column ref to child table */ |
+ pLeft = sqlite3Expr(db, TK_REGISTER, 0); |
+ pRight = sqlite3Expr(db, TK_COLUMN, 0); |
+ if( pLeft && pRight ){ |
+ pLeft->iTable = regData; |
+ pLeft->affinity = SQLITE_AFF_INTEGER; |
+ pRight->iTable = pSrc->a[0].iCursor; |
+ pRight->iColumn = -1; |
+ } |
+ pEq = sqlite3PExpr(pParse, TK_NE, pLeft, pRight, 0); |
+ pWhere = sqlite3ExprAnd(db, pWhere, pEq); |
+ } |
+ |
+ /* Resolve the references in the WHERE clause. */ |
+ memset(&sNameContext, 0, sizeof(NameContext)); |
+ sNameContext.pSrcList = pSrc; |
+ sNameContext.pParse = pParse; |
+ sqlite3ResolveExprNames(&sNameContext, pWhere); |
+ |
+ /* Create VDBE to loop through the entries in pSrc that match the WHERE |
+ ** clause. If the constraint is not deferred, throw an exception for |
+ ** each row found. Otherwise, for deferred constraints, increment the |
+ ** deferred constraint counter by nIncr for each row selected. */ |
+ pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0); |
+ if( nIncr>0 && pFKey->isDeferred==0 ){ |
+ sqlite3ParseToplevel(pParse)->mayAbort = 1; |
+ } |
+ sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); |
+ if( pWInfo ){ |
+ sqlite3WhereEnd(pWInfo); |
+ } |
+ |
+ /* Clean up the WHERE clause constructed above. */ |
+ sqlite3ExprDelete(db, pWhere); |
+ if( iFkIfZero ){ |
+ sqlite3VdbeJumpHere(v, iFkIfZero); |
+ } |
+} |
+ |
+/* |
+** This function returns a pointer to the head of a linked list of FK |
+** constraints for which table pTab is the parent table. For example, |
+** given the following schema: |
+** |
+** CREATE TABLE t1(a PRIMARY KEY); |
+** CREATE TABLE t2(b REFERENCES t1(a); |
+** |
+** Calling this function with table "t1" as an argument returns a pointer |
+** to the FKey structure representing the foreign key constraint on table |
+** "t2". Calling this function with "t2" as the argument would return a |
+** NULL pointer (as there are no FK constraints for which t2 is the parent |
+** table). |
+*/ |
+FKey *sqlite3FkReferences(Table *pTab){ |
+ int nName = sqlite3Strlen30(pTab->zName); |
+ return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName, nName); |
+} |
+ |
+/* |
+** The second argument is a Trigger structure allocated by the |
+** fkActionTrigger() routine. This function deletes the Trigger structure |
+** and all of its sub-components. |
+** |
+** The Trigger structure or any of its sub-components may be allocated from |
+** the lookaside buffer belonging to database handle dbMem. |
+*/ |
+static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){ |
+ if( p ){ |
+ TriggerStep *pStep = p->step_list; |
+ sqlite3ExprDelete(dbMem, pStep->pWhere); |
+ sqlite3ExprListDelete(dbMem, pStep->pExprList); |
+ sqlite3SelectDelete(dbMem, pStep->pSelect); |
+ sqlite3ExprDelete(dbMem, p->pWhen); |
+ sqlite3DbFree(dbMem, p); |
+ } |
+} |
+ |
+/* |
+** This function is called to generate code that runs when table pTab is |
+** being dropped from the database. The SrcList passed as the second argument |
+** to this function contains a single entry guaranteed to resolve to |
+** table pTab. |
+** |
+** Normally, no code is required. However, if either |
+** |
+** (a) The table is the parent table of a FK constraint, or |
+** (b) The table is the child table of a deferred FK constraint and it is |
+** determined at runtime that there are outstanding deferred FK |
+** constraint violations in the database, |
+** |
+** then the equivalent of "DELETE FROM <tbl>" is executed before dropping |
+** the table from the database. Triggers are disabled while running this |
+** DELETE, but foreign key actions are not. |
+*/ |
+void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){ |
+ sqlite3 *db = pParse->db; |
+ if( (db->flags&SQLITE_ForeignKeys) && !IsVirtual(pTab) && !pTab->pSelect ){ |
+ int iSkip = 0; |
+ Vdbe *v = sqlite3GetVdbe(pParse); |
+ |
+ assert( v ); /* VDBE has already been allocated */ |
+ if( sqlite3FkReferences(pTab)==0 ){ |
+ /* Search for a deferred foreign key constraint for which this table |
+ ** is the child table. If one cannot be found, return without |
+ ** generating any VDBE code. If one can be found, then jump over |
+ ** the entire DELETE if there are no outstanding deferred constraints |
+ ** when this statement is run. */ |
+ FKey *p; |
+ for(p=pTab->pFKey; p; p=p->pNextFrom){ |
+ if( p->isDeferred ) break; |
+ } |
+ if( !p ) return; |
+ iSkip = sqlite3VdbeMakeLabel(v); |
+ sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip); |
+ } |
+ |
+ pParse->disableTriggers = 1; |
+ sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0); |
+ pParse->disableTriggers = 0; |
+ |
+ /* If the DELETE has generated immediate foreign key constraint |
+ ** violations, halt the VDBE and return an error at this point, before |
+ ** any modifications to the schema are made. This is because statement |
+ ** transactions are not able to rollback schema changes. */ |
+ sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2); |
+ sqlite3HaltConstraint( |
+ pParse, OE_Abort, "foreign key constraint failed", P4_STATIC |
+ ); |
+ |
+ if( iSkip ){ |
+ sqlite3VdbeResolveLabel(v, iSkip); |
+ } |
+ } |
+} |
+ |
+/* |
+** This function is called when inserting, deleting or updating a row of |
+** table pTab to generate VDBE code to perform foreign key constraint |
+** processing for the operation. |
+** |
+** For a DELETE operation, parameter regOld is passed the index of the |
+** first register in an array of (pTab->nCol+1) registers containing the |
+** rowid of the row being deleted, followed by each of the column values |
+** of the row being deleted, from left to right. Parameter regNew is passed |
+** zero in this case. |
+** |
+** For an INSERT operation, regOld is passed zero and regNew is passed the |
+** first register of an array of (pTab->nCol+1) registers containing the new |
+** row data. |
+** |
+** For an UPDATE operation, this function is called twice. Once before |
+** the original record is deleted from the table using the calling convention |
+** described for DELETE. Then again after the original record is deleted |
+** but before the new record is inserted using the INSERT convention. |
+*/ |
+void sqlite3FkCheck( |
+ Parse *pParse, /* Parse context */ |
+ Table *pTab, /* Row is being deleted from this table */ |
+ int regOld, /* Previous row data is stored here */ |
+ int regNew /* New row data is stored here */ |
+){ |
+ sqlite3 *db = pParse->db; /* Database handle */ |
+ FKey *pFKey; /* Used to iterate through FKs */ |
+ int iDb; /* Index of database containing pTab */ |
+ const char *zDb; /* Name of database containing pTab */ |
+ int isIgnoreErrors = pParse->disableTriggers; |
+ |
+ /* Exactly one of regOld and regNew should be non-zero. */ |
+ assert( (regOld==0)!=(regNew==0) ); |
+ |
+ /* If foreign-keys are disabled, this function is a no-op. */ |
+ if( (db->flags&SQLITE_ForeignKeys)==0 ) return; |
+ |
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
+ zDb = db->aDb[iDb].zName; |
+ |
+ /* Loop through all the foreign key constraints for which pTab is the |
+ ** child table (the table that the foreign key definition is part of). */ |
+ for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){ |
+ Table *pTo; /* Parent table of foreign key pFKey */ |
+ Index *pIdx = 0; /* Index on key columns in pTo */ |
+ int *aiFree = 0; |
+ int *aiCol; |
+ int iCol; |
+ int i; |
+ int isIgnore = 0; |
+ |
+ /* Find the parent table of this foreign key. Also find a unique index |
+ ** on the parent key columns in the parent table. If either of these |
+ ** schema items cannot be located, set an error in pParse and return |
+ ** early. */ |
+ if( pParse->disableTriggers ){ |
+ pTo = sqlite3FindTable(db, pFKey->zTo, zDb); |
+ }else{ |
+ pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb); |
+ } |
+ if( !pTo || locateFkeyIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){ |
+ if( !isIgnoreErrors || db->mallocFailed ) return; |
+ continue; |
+ } |
+ assert( pFKey->nCol==1 || (aiFree && pIdx) ); |
+ |
+ if( aiFree ){ |
+ aiCol = aiFree; |
+ }else{ |
+ iCol = pFKey->aCol[0].iFrom; |
+ aiCol = &iCol; |
+ } |
+ for(i=0; i<pFKey->nCol; i++){ |
+ if( aiCol[i]==pTab->iPKey ){ |
+ aiCol[i] = -1; |
+ } |
+#ifndef SQLITE_OMIT_AUTHORIZATION |
+ /* Request permission to read the parent key columns. If the |
+ ** authorization callback returns SQLITE_IGNORE, behave as if any |
+ ** values read from the parent table are NULL. */ |
+ if( db->xAuth ){ |
+ int rcauth; |
+ char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName; |
+ rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb); |
+ isIgnore = (rcauth==SQLITE_IGNORE); |
+ } |
+#endif |
+ } |
+ |
+ /* Take a shared-cache advisory read-lock on the parent table. Allocate |
+ ** a cursor to use to search the unique index on the parent key columns |
+ ** in the parent table. */ |
+ sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName); |
+ pParse->nTab++; |
+ |
+ if( regOld!=0 ){ |
+ /* A row is being removed from the child table. Search for the parent. |
+ ** If the parent does not exist, removing the child row resolves an |
+ ** outstanding foreign key constraint violation. */ |
+ fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1,isIgnore); |
+ } |
+ if( regNew!=0 ){ |
+ /* A row is being added to the child table. If a parent row cannot |
+ ** be found, adding the child row has violated the FK constraint. */ |
+ fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1,isIgnore); |
+ } |
+ |
+ sqlite3DbFree(db, aiFree); |
+ } |
+ |
+ /* Loop through all the foreign key constraints that refer to this table */ |
+ for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ |
+ Index *pIdx = 0; /* Foreign key index for pFKey */ |
+ SrcList *pSrc; |
+ int *aiCol = 0; |
+ |
+ if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){ |
+ assert( regOld==0 && regNew!=0 ); |
+ /* Inserting a single row into a parent table cannot cause an immediate |
+ ** foreign key violation. So do nothing in this case. */ |
+ continue; |
+ } |
+ |
+ if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){ |
+ if( !isIgnoreErrors || db->mallocFailed ) return; |
+ continue; |
+ } |
+ assert( aiCol || pFKey->nCol==1 ); |
+ |
+ /* Create a SrcList structure containing a single table (the table |
+ ** the foreign key that refers to this table is attached to). This |
+ ** is required for the sqlite3WhereXXX() interface. */ |
+ pSrc = sqlite3SrcListAppend(db, 0, 0, 0); |
+ if( pSrc ){ |
+ struct SrcList_item *pItem = pSrc->a; |
+ pItem->pTab = pFKey->pFrom; |
+ pItem->zName = pFKey->pFrom->zName; |
+ pItem->pTab->nRef++; |
+ pItem->iCursor = pParse->nTab++; |
+ |
+ if( regNew!=0 ){ |
+ fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1); |
+ } |
+ if( regOld!=0 ){ |
+ /* If there is a RESTRICT action configured for the current operation |
+ ** on the parent table of this FK, then throw an exception |
+ ** immediately if the FK constraint is violated, even if this is a |
+ ** deferred trigger. That's what RESTRICT means. To defer checking |
+ ** the constraint, the FK should specify NO ACTION (represented |
+ ** using OE_None). NO ACTION is the default. */ |
+ fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1); |
+ } |
+ pItem->zName = 0; |
+ sqlite3SrcListDelete(db, pSrc); |
+ } |
+ sqlite3DbFree(db, aiCol); |
+ } |
+} |
+ |
+#define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x))) |
+ |
+/* |
+** This function is called before generating code to update or delete a |
+** row contained in table pTab. |
+*/ |
+u32 sqlite3FkOldmask( |
+ Parse *pParse, /* Parse context */ |
+ Table *pTab /* Table being modified */ |
+){ |
+ u32 mask = 0; |
+ if( pParse->db->flags&SQLITE_ForeignKeys ){ |
+ FKey *p; |
+ int i; |
+ for(p=pTab->pFKey; p; p=p->pNextFrom){ |
+ for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom); |
+ } |
+ for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ |
+ Index *pIdx = 0; |
+ locateFkeyIndex(pParse, pTab, p, &pIdx, 0); |
+ if( pIdx ){ |
+ for(i=0; i<pIdx->nColumn; i++) mask |= COLUMN_MASK(pIdx->aiColumn[i]); |
+ } |
+ } |
+ } |
+ return mask; |
+} |
+ |
+/* |
+** This function is called before generating code to update or delete a |
+** row contained in table pTab. If the operation is a DELETE, then |
+** parameter aChange is passed a NULL value. For an UPDATE, aChange points |
+** to an array of size N, where N is the number of columns in table pTab. |
+** If the i'th column is not modified by the UPDATE, then the corresponding |
+** entry in the aChange[] array is set to -1. If the column is modified, |
+** the value is 0 or greater. Parameter chngRowid is set to true if the |
+** UPDATE statement modifies the rowid fields of the table. |
+** |
+** If any foreign key processing will be required, this function returns |
+** true. If there is no foreign key related processing, this function |
+** returns false. |
+*/ |
+int sqlite3FkRequired( |
+ Parse *pParse, /* Parse context */ |
+ Table *pTab, /* Table being modified */ |
+ int *aChange, /* Non-NULL for UPDATE operations */ |
+ int chngRowid /* True for UPDATE that affects rowid */ |
+){ |
+ if( pParse->db->flags&SQLITE_ForeignKeys ){ |
+ if( !aChange ){ |
+ /* A DELETE operation. Foreign key processing is required if the |
+ ** table in question is either the child or parent table for any |
+ ** foreign key constraint. */ |
+ return (sqlite3FkReferences(pTab) || pTab->pFKey); |
+ }else{ |
+ /* This is an UPDATE. Foreign key processing is only required if the |
+ ** operation modifies one or more child or parent key columns. */ |
+ int i; |
+ FKey *p; |
+ |
+ /* Check if any child key columns are being modified. */ |
+ for(p=pTab->pFKey; p; p=p->pNextFrom){ |
+ for(i=0; i<p->nCol; i++){ |
+ int iChildKey = p->aCol[i].iFrom; |
+ if( aChange[iChildKey]>=0 ) return 1; |
+ if( iChildKey==pTab->iPKey && chngRowid ) return 1; |
+ } |
+ } |
+ |
+ /* Check if any parent key columns are being modified. */ |
+ for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ |
+ for(i=0; i<p->nCol; i++){ |
+ char *zKey = p->aCol[i].zCol; |
+ int iKey; |
+ for(iKey=0; iKey<pTab->nCol; iKey++){ |
+ Column *pCol = &pTab->aCol[iKey]; |
+ if( (zKey ? !sqlite3StrICmp(pCol->zName, zKey) : pCol->isPrimKey) ){ |
+ if( aChange[iKey]>=0 ) return 1; |
+ if( iKey==pTab->iPKey && chngRowid ) return 1; |
+ } |
+ } |
+ } |
+ } |
+ } |
+ } |
+ return 0; |
+} |
+ |
+/* |
+** This function is called when an UPDATE or DELETE operation is being |
+** compiled on table pTab, which is the parent table of foreign-key pFKey. |
+** If the current operation is an UPDATE, then the pChanges parameter is |
+** passed a pointer to the list of columns being modified. If it is a |
+** DELETE, pChanges is passed a NULL pointer. |
+** |
+** It returns a pointer to a Trigger structure containing a trigger |
+** equivalent to the ON UPDATE or ON DELETE action specified by pFKey. |
+** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is |
+** returned (these actions require no special handling by the triggers |
+** sub-system, code for them is created by fkScanChildren()). |
+** |
+** For example, if pFKey is the foreign key and pTab is table "p" in |
+** the following schema: |
+** |
+** CREATE TABLE p(pk PRIMARY KEY); |
+** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE); |
+** |
+** then the returned trigger structure is equivalent to: |
+** |
+** CREATE TRIGGER ... DELETE ON p BEGIN |
+** DELETE FROM c WHERE ck = old.pk; |
+** END; |
+** |
+** The returned pointer is cached as part of the foreign key object. It |
+** is eventually freed along with the rest of the foreign key object by |
+** sqlite3FkDelete(). |
+*/ |
+static Trigger *fkActionTrigger( |
+ Parse *pParse, /* Parse context */ |
+ Table *pTab, /* Table being updated or deleted from */ |
+ FKey *pFKey, /* Foreign key to get action for */ |
+ ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */ |
+){ |
+ sqlite3 *db = pParse->db; /* Database handle */ |
+ int action; /* One of OE_None, OE_Cascade etc. */ |
+ Trigger *pTrigger; /* Trigger definition to return */ |
+ int iAction = (pChanges!=0); /* 1 for UPDATE, 0 for DELETE */ |
+ |
+ action = pFKey->aAction[iAction]; |
+ pTrigger = pFKey->apTrigger[iAction]; |
+ |
+ if( action!=OE_None && !pTrigger ){ |
+ u8 enableLookaside; /* Copy of db->lookaside.bEnabled */ |
+ char const *zFrom; /* Name of child table */ |
+ int nFrom; /* Length in bytes of zFrom */ |
+ Index *pIdx = 0; /* Parent key index for this FK */ |
+ int *aiCol = 0; /* child table cols -> parent key cols */ |
+ TriggerStep *pStep = 0; /* First (only) step of trigger program */ |
+ Expr *pWhere = 0; /* WHERE clause of trigger step */ |
+ ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */ |
+ Select *pSelect = 0; /* If RESTRICT, "SELECT RAISE(...)" */ |
+ int i; /* Iterator variable */ |
+ Expr *pWhen = 0; /* WHEN clause for the trigger */ |
+ |
+ if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0; |
+ assert( aiCol || pFKey->nCol==1 ); |
+ |
+ for(i=0; i<pFKey->nCol; i++){ |
+ Token tOld = { "old", 3 }; /* Literal "old" token */ |
+ Token tNew = { "new", 3 }; /* Literal "new" token */ |
+ Token tFromCol; /* Name of column in child table */ |
+ Token tToCol; /* Name of column in parent table */ |
+ int iFromCol; /* Idx of column in child table */ |
+ Expr *pEq; /* tFromCol = OLD.tToCol */ |
+ |
+ iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; |
+ assert( iFromCol>=0 ); |
+ tToCol.z = pIdx ? pTab->aCol[pIdx->aiColumn[i]].zName : "oid"; |
+ tFromCol.z = pFKey->pFrom->aCol[iFromCol].zName; |
+ |
+ tToCol.n = sqlite3Strlen30(tToCol.z); |
+ tFromCol.n = sqlite3Strlen30(tFromCol.z); |
+ |
+ /* Create the expression "OLD.zToCol = zFromCol". It is important |
+ ** that the "OLD.zToCol" term is on the LHS of the = operator, so |
+ ** that the affinity and collation sequence associated with the |
+ ** parent table are used for the comparison. */ |
+ pEq = sqlite3PExpr(pParse, TK_EQ, |
+ sqlite3PExpr(pParse, TK_DOT, |
+ sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld), |
+ sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol) |
+ , 0), |
+ sqlite3PExpr(pParse, TK_ID, 0, 0, &tFromCol) |
+ , 0); |
+ pWhere = sqlite3ExprAnd(db, pWhere, pEq); |
+ |
+ /* For ON UPDATE, construct the next term of the WHEN clause. |
+ ** The final WHEN clause will be like this: |
+ ** |
+ ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN) |
+ */ |
+ if( pChanges ){ |
+ pEq = sqlite3PExpr(pParse, TK_IS, |
+ sqlite3PExpr(pParse, TK_DOT, |
+ sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld), |
+ sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol), |
+ 0), |
+ sqlite3PExpr(pParse, TK_DOT, |
+ sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew), |
+ sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol), |
+ 0), |
+ 0); |
+ pWhen = sqlite3ExprAnd(db, pWhen, pEq); |
+ } |
+ |
+ if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){ |
+ Expr *pNew; |
+ if( action==OE_Cascade ){ |
+ pNew = sqlite3PExpr(pParse, TK_DOT, |
+ sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew), |
+ sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol) |
+ , 0); |
+ }else if( action==OE_SetDflt ){ |
+ Expr *pDflt = pFKey->pFrom->aCol[iFromCol].pDflt; |
+ if( pDflt ){ |
+ pNew = sqlite3ExprDup(db, pDflt, 0); |
+ }else{ |
+ pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); |
+ } |
+ }else{ |
+ pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); |
+ } |
+ pList = sqlite3ExprListAppend(pParse, pList, pNew); |
+ sqlite3ExprListSetName(pParse, pList, &tFromCol, 0); |
+ } |
+ } |
+ sqlite3DbFree(db, aiCol); |
+ |
+ zFrom = pFKey->pFrom->zName; |
+ nFrom = sqlite3Strlen30(zFrom); |
+ |
+ if( action==OE_Restrict ){ |
+ Token tFrom; |
+ Expr *pRaise; |
+ |
+ tFrom.z = zFrom; |
+ tFrom.n = nFrom; |
+ pRaise = sqlite3Expr(db, TK_RAISE, "foreign key constraint failed"); |
+ if( pRaise ){ |
+ pRaise->affinity = OE_Abort; |
+ } |
+ pSelect = sqlite3SelectNew(pParse, |
+ sqlite3ExprListAppend(pParse, 0, pRaise), |
+ sqlite3SrcListAppend(db, 0, &tFrom, 0), |
+ pWhere, |
+ 0, 0, 0, 0, 0, 0 |
+ ); |
+ pWhere = 0; |
+ } |
+ |
+ /* Disable lookaside memory allocation */ |
+ enableLookaside = db->lookaside.bEnabled; |
+ db->lookaside.bEnabled = 0; |
+ |
+ pTrigger = (Trigger *)sqlite3DbMallocZero(db, |
+ sizeof(Trigger) + /* struct Trigger */ |
+ sizeof(TriggerStep) + /* Single step in trigger program */ |
+ nFrom + 1 /* Space for pStep->target.z */ |
+ ); |
+ if( pTrigger ){ |
+ pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1]; |
+ pStep->target.z = (char *)&pStep[1]; |
+ pStep->target.n = nFrom; |
+ memcpy((char *)pStep->target.z, zFrom, nFrom); |
+ |
+ pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE); |
+ pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE); |
+ pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); |
+ if( pWhen ){ |
+ pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0, 0); |
+ pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE); |
+ } |
+ } |
+ |
+ /* Re-enable the lookaside buffer, if it was disabled earlier. */ |
+ db->lookaside.bEnabled = enableLookaside; |
+ |
+ sqlite3ExprDelete(db, pWhere); |
+ sqlite3ExprDelete(db, pWhen); |
+ sqlite3ExprListDelete(db, pList); |
+ sqlite3SelectDelete(db, pSelect); |
+ if( db->mallocFailed==1 ){ |
+ fkTriggerDelete(db, pTrigger); |
+ return 0; |
+ } |
+ |
+ switch( action ){ |
+ case OE_Restrict: |
+ pStep->op = TK_SELECT; |
+ break; |
+ case OE_Cascade: |
+ if( !pChanges ){ |
+ pStep->op = TK_DELETE; |
+ break; |
+ } |
+ default: |
+ pStep->op = TK_UPDATE; |
+ } |
+ pStep->pTrig = pTrigger; |
+ pTrigger->pSchema = pTab->pSchema; |
+ pTrigger->pTabSchema = pTab->pSchema; |
+ pFKey->apTrigger[iAction] = pTrigger; |
+ pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE); |
+ } |
+ |
+ return pTrigger; |
+} |
+ |
+/* |
+** This function is called when deleting or updating a row to implement |
+** any required CASCADE, SET NULL or SET DEFAULT actions. |
+*/ |
+void sqlite3FkActions( |
+ Parse *pParse, /* Parse context */ |
+ Table *pTab, /* Table being updated or deleted from */ |
+ ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */ |
+ int regOld /* Address of array containing old row */ |
+){ |
+ /* If foreign-key support is enabled, iterate through all FKs that |
+ ** refer to table pTab. If there is an action associated with the FK |
+ ** for this operation (either update or delete), invoke the associated |
+ ** trigger sub-program. */ |
+ if( pParse->db->flags&SQLITE_ForeignKeys ){ |
+ FKey *pFKey; /* Iterator variable */ |
+ for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ |
+ Trigger *pAction = fkActionTrigger(pParse, pTab, pFKey, pChanges); |
+ if( pAction ){ |
+ sqlite3CodeRowTriggerDirect(pParse, pAction, pTab, regOld, OE_Abort, 0); |
+ } |
+ } |
+ } |
+} |
+ |
+#endif /* ifndef SQLITE_OMIT_TRIGGER */ |
+ |
+/* |
+** Free all memory associated with foreign key definitions attached to |
+** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash |
+** hash table. |
+*/ |
+void sqlite3FkDelete(sqlite3 *db, Table *pTab){ |
+ FKey *pFKey; /* Iterator variable */ |
+ FKey *pNext; /* Copy of pFKey->pNextFrom */ |
+ |
+ assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) ); |
+ for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){ |
+ |
+ /* Remove the FK from the fkeyHash hash table. */ |
+ if( !db || db->pnBytesFreed==0 ){ |
+ if( pFKey->pPrevTo ){ |
+ pFKey->pPrevTo->pNextTo = pFKey->pNextTo; |
+ }else{ |
+ void *p = (void *)pFKey->pNextTo; |
+ const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo); |
+ sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, sqlite3Strlen30(z), p); |
+ } |
+ if( pFKey->pNextTo ){ |
+ pFKey->pNextTo->pPrevTo = pFKey->pPrevTo; |
+ } |
+ } |
+ |
+ /* EV: R-30323-21917 Each foreign key constraint in SQLite is |
+ ** classified as either immediate or deferred. |
+ */ |
+ assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 ); |
+ |
+ /* Delete any triggers created to implement actions for this FK. */ |
+#ifndef SQLITE_OMIT_TRIGGER |
+ fkTriggerDelete(db, pFKey->apTrigger[0]); |
+ fkTriggerDelete(db, pFKey->apTrigger[1]); |
+#endif |
+ |
+ pNext = pFKey->pNextFrom; |
+ sqlite3DbFree(db, pFKey); |
+ } |
+} |
+#endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */ |