Index: third_party/sqlite/sqlite-src-3070603/src/mem3.c |
diff --git a/third_party/sqlite/sqlite-src-3070603/src/mem3.c b/third_party/sqlite/sqlite-src-3070603/src/mem3.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..e2d66815b33431799e82b96b23b0e2a3fb1285fb |
--- /dev/null |
+++ b/third_party/sqlite/sqlite-src-3070603/src/mem3.c |
@@ -0,0 +1,687 @@ |
+/* |
+** 2007 October 14 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+************************************************************************* |
+** This file contains the C functions that implement a memory |
+** allocation subsystem for use by SQLite. |
+** |
+** This version of the memory allocation subsystem omits all |
+** use of malloc(). The SQLite user supplies a block of memory |
+** before calling sqlite3_initialize() from which allocations |
+** are made and returned by the xMalloc() and xRealloc() |
+** implementations. Once sqlite3_initialize() has been called, |
+** the amount of memory available to SQLite is fixed and cannot |
+** be changed. |
+** |
+** This version of the memory allocation subsystem is included |
+** in the build only if SQLITE_ENABLE_MEMSYS3 is defined. |
+*/ |
+#include "sqliteInt.h" |
+ |
+/* |
+** This version of the memory allocator is only built into the library |
+** SQLITE_ENABLE_MEMSYS3 is defined. Defining this symbol does not |
+** mean that the library will use a memory-pool by default, just that |
+** it is available. The mempool allocator is activated by calling |
+** sqlite3_config(). |
+*/ |
+#ifdef SQLITE_ENABLE_MEMSYS3 |
+ |
+/* |
+** Maximum size (in Mem3Blocks) of a "small" chunk. |
+*/ |
+#define MX_SMALL 10 |
+ |
+ |
+/* |
+** Number of freelist hash slots |
+*/ |
+#define N_HASH 61 |
+ |
+/* |
+** A memory allocation (also called a "chunk") consists of two or |
+** more blocks where each block is 8 bytes. The first 8 bytes are |
+** a header that is not returned to the user. |
+** |
+** A chunk is two or more blocks that is either checked out or |
+** free. The first block has format u.hdr. u.hdr.size4x is 4 times the |
+** size of the allocation in blocks if the allocation is free. |
+** The u.hdr.size4x&1 bit is true if the chunk is checked out and |
+** false if the chunk is on the freelist. The u.hdr.size4x&2 bit |
+** is true if the previous chunk is checked out and false if the |
+** previous chunk is free. The u.hdr.prevSize field is the size of |
+** the previous chunk in blocks if the previous chunk is on the |
+** freelist. If the previous chunk is checked out, then |
+** u.hdr.prevSize can be part of the data for that chunk and should |
+** not be read or written. |
+** |
+** We often identify a chunk by its index in mem3.aPool[]. When |
+** this is done, the chunk index refers to the second block of |
+** the chunk. In this way, the first chunk has an index of 1. |
+** A chunk index of 0 means "no such chunk" and is the equivalent |
+** of a NULL pointer. |
+** |
+** The second block of free chunks is of the form u.list. The |
+** two fields form a double-linked list of chunks of related sizes. |
+** Pointers to the head of the list are stored in mem3.aiSmall[] |
+** for smaller chunks and mem3.aiHash[] for larger chunks. |
+** |
+** The second block of a chunk is user data if the chunk is checked |
+** out. If a chunk is checked out, the user data may extend into |
+** the u.hdr.prevSize value of the following chunk. |
+*/ |
+typedef struct Mem3Block Mem3Block; |
+struct Mem3Block { |
+ union { |
+ struct { |
+ u32 prevSize; /* Size of previous chunk in Mem3Block elements */ |
+ u32 size4x; /* 4x the size of current chunk in Mem3Block elements */ |
+ } hdr; |
+ struct { |
+ u32 next; /* Index in mem3.aPool[] of next free chunk */ |
+ u32 prev; /* Index in mem3.aPool[] of previous free chunk */ |
+ } list; |
+ } u; |
+}; |
+ |
+/* |
+** All of the static variables used by this module are collected |
+** into a single structure named "mem3". This is to keep the |
+** static variables organized and to reduce namespace pollution |
+** when this module is combined with other in the amalgamation. |
+*/ |
+static SQLITE_WSD struct Mem3Global { |
+ /* |
+ ** Memory available for allocation. nPool is the size of the array |
+ ** (in Mem3Blocks) pointed to by aPool less 2. |
+ */ |
+ u32 nPool; |
+ Mem3Block *aPool; |
+ |
+ /* |
+ ** True if we are evaluating an out-of-memory callback. |
+ */ |
+ int alarmBusy; |
+ |
+ /* |
+ ** Mutex to control access to the memory allocation subsystem. |
+ */ |
+ sqlite3_mutex *mutex; |
+ |
+ /* |
+ ** The minimum amount of free space that we have seen. |
+ */ |
+ u32 mnMaster; |
+ |
+ /* |
+ ** iMaster is the index of the master chunk. Most new allocations |
+ ** occur off of this chunk. szMaster is the size (in Mem3Blocks) |
+ ** of the current master. iMaster is 0 if there is not master chunk. |
+ ** The master chunk is not in either the aiHash[] or aiSmall[]. |
+ */ |
+ u32 iMaster; |
+ u32 szMaster; |
+ |
+ /* |
+ ** Array of lists of free blocks according to the block size |
+ ** for smaller chunks, or a hash on the block size for larger |
+ ** chunks. |
+ */ |
+ u32 aiSmall[MX_SMALL-1]; /* For sizes 2 through MX_SMALL, inclusive */ |
+ u32 aiHash[N_HASH]; /* For sizes MX_SMALL+1 and larger */ |
+} mem3 = { 97535575 }; |
+ |
+#define mem3 GLOBAL(struct Mem3Global, mem3) |
+ |
+/* |
+** Unlink the chunk at mem3.aPool[i] from list it is currently |
+** on. *pRoot is the list that i is a member of. |
+*/ |
+static void memsys3UnlinkFromList(u32 i, u32 *pRoot){ |
+ u32 next = mem3.aPool[i].u.list.next; |
+ u32 prev = mem3.aPool[i].u.list.prev; |
+ assert( sqlite3_mutex_held(mem3.mutex) ); |
+ if( prev==0 ){ |
+ *pRoot = next; |
+ }else{ |
+ mem3.aPool[prev].u.list.next = next; |
+ } |
+ if( next ){ |
+ mem3.aPool[next].u.list.prev = prev; |
+ } |
+ mem3.aPool[i].u.list.next = 0; |
+ mem3.aPool[i].u.list.prev = 0; |
+} |
+ |
+/* |
+** Unlink the chunk at index i from |
+** whatever list is currently a member of. |
+*/ |
+static void memsys3Unlink(u32 i){ |
+ u32 size, hash; |
+ assert( sqlite3_mutex_held(mem3.mutex) ); |
+ assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 ); |
+ assert( i>=1 ); |
+ size = mem3.aPool[i-1].u.hdr.size4x/4; |
+ assert( size==mem3.aPool[i+size-1].u.hdr.prevSize ); |
+ assert( size>=2 ); |
+ if( size <= MX_SMALL ){ |
+ memsys3UnlinkFromList(i, &mem3.aiSmall[size-2]); |
+ }else{ |
+ hash = size % N_HASH; |
+ memsys3UnlinkFromList(i, &mem3.aiHash[hash]); |
+ } |
+} |
+ |
+/* |
+** Link the chunk at mem3.aPool[i] so that is on the list rooted |
+** at *pRoot. |
+*/ |
+static void memsys3LinkIntoList(u32 i, u32 *pRoot){ |
+ assert( sqlite3_mutex_held(mem3.mutex) ); |
+ mem3.aPool[i].u.list.next = *pRoot; |
+ mem3.aPool[i].u.list.prev = 0; |
+ if( *pRoot ){ |
+ mem3.aPool[*pRoot].u.list.prev = i; |
+ } |
+ *pRoot = i; |
+} |
+ |
+/* |
+** Link the chunk at index i into either the appropriate |
+** small chunk list, or into the large chunk hash table. |
+*/ |
+static void memsys3Link(u32 i){ |
+ u32 size, hash; |
+ assert( sqlite3_mutex_held(mem3.mutex) ); |
+ assert( i>=1 ); |
+ assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 ); |
+ size = mem3.aPool[i-1].u.hdr.size4x/4; |
+ assert( size==mem3.aPool[i+size-1].u.hdr.prevSize ); |
+ assert( size>=2 ); |
+ if( size <= MX_SMALL ){ |
+ memsys3LinkIntoList(i, &mem3.aiSmall[size-2]); |
+ }else{ |
+ hash = size % N_HASH; |
+ memsys3LinkIntoList(i, &mem3.aiHash[hash]); |
+ } |
+} |
+ |
+/* |
+** If the STATIC_MEM mutex is not already held, obtain it now. The mutex |
+** will already be held (obtained by code in malloc.c) if |
+** sqlite3GlobalConfig.bMemStat is true. |
+*/ |
+static void memsys3Enter(void){ |
+ if( sqlite3GlobalConfig.bMemstat==0 && mem3.mutex==0 ){ |
+ mem3.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); |
+ } |
+ sqlite3_mutex_enter(mem3.mutex); |
+} |
+static void memsys3Leave(void){ |
+ sqlite3_mutex_leave(mem3.mutex); |
+} |
+ |
+/* |
+** Called when we are unable to satisfy an allocation of nBytes. |
+*/ |
+static void memsys3OutOfMemory(int nByte){ |
+ if( !mem3.alarmBusy ){ |
+ mem3.alarmBusy = 1; |
+ assert( sqlite3_mutex_held(mem3.mutex) ); |
+ sqlite3_mutex_leave(mem3.mutex); |
+ sqlite3_release_memory(nByte); |
+ sqlite3_mutex_enter(mem3.mutex); |
+ mem3.alarmBusy = 0; |
+ } |
+} |
+ |
+ |
+/* |
+** Chunk i is a free chunk that has been unlinked. Adjust its |
+** size parameters for check-out and return a pointer to the |
+** user portion of the chunk. |
+*/ |
+static void *memsys3Checkout(u32 i, u32 nBlock){ |
+ u32 x; |
+ assert( sqlite3_mutex_held(mem3.mutex) ); |
+ assert( i>=1 ); |
+ assert( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ); |
+ assert( mem3.aPool[i+nBlock-1].u.hdr.prevSize==nBlock ); |
+ x = mem3.aPool[i-1].u.hdr.size4x; |
+ mem3.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2); |
+ mem3.aPool[i+nBlock-1].u.hdr.prevSize = nBlock; |
+ mem3.aPool[i+nBlock-1].u.hdr.size4x |= 2; |
+ return &mem3.aPool[i]; |
+} |
+ |
+/* |
+** Carve a piece off of the end of the mem3.iMaster free chunk. |
+** Return a pointer to the new allocation. Or, if the master chunk |
+** is not large enough, return 0. |
+*/ |
+static void *memsys3FromMaster(u32 nBlock){ |
+ assert( sqlite3_mutex_held(mem3.mutex) ); |
+ assert( mem3.szMaster>=nBlock ); |
+ if( nBlock>=mem3.szMaster-1 ){ |
+ /* Use the entire master */ |
+ void *p = memsys3Checkout(mem3.iMaster, mem3.szMaster); |
+ mem3.iMaster = 0; |
+ mem3.szMaster = 0; |
+ mem3.mnMaster = 0; |
+ return p; |
+ }else{ |
+ /* Split the master block. Return the tail. */ |
+ u32 newi, x; |
+ newi = mem3.iMaster + mem3.szMaster - nBlock; |
+ assert( newi > mem3.iMaster+1 ); |
+ mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = nBlock; |
+ mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x |= 2; |
+ mem3.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1; |
+ mem3.szMaster -= nBlock; |
+ mem3.aPool[newi-1].u.hdr.prevSize = mem3.szMaster; |
+ x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2; |
+ mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x; |
+ if( mem3.szMaster < mem3.mnMaster ){ |
+ mem3.mnMaster = mem3.szMaster; |
+ } |
+ return (void*)&mem3.aPool[newi]; |
+ } |
+} |
+ |
+/* |
+** *pRoot is the head of a list of free chunks of the same size |
+** or same size hash. In other words, *pRoot is an entry in either |
+** mem3.aiSmall[] or mem3.aiHash[]. |
+** |
+** This routine examines all entries on the given list and tries |
+** to coalesce each entries with adjacent free chunks. |
+** |
+** If it sees a chunk that is larger than mem3.iMaster, it replaces |
+** the current mem3.iMaster with the new larger chunk. In order for |
+** this mem3.iMaster replacement to work, the master chunk must be |
+** linked into the hash tables. That is not the normal state of |
+** affairs, of course. The calling routine must link the master |
+** chunk before invoking this routine, then must unlink the (possibly |
+** changed) master chunk once this routine has finished. |
+*/ |
+static void memsys3Merge(u32 *pRoot){ |
+ u32 iNext, prev, size, i, x; |
+ |
+ assert( sqlite3_mutex_held(mem3.mutex) ); |
+ for(i=*pRoot; i>0; i=iNext){ |
+ iNext = mem3.aPool[i].u.list.next; |
+ size = mem3.aPool[i-1].u.hdr.size4x; |
+ assert( (size&1)==0 ); |
+ if( (size&2)==0 ){ |
+ memsys3UnlinkFromList(i, pRoot); |
+ assert( i > mem3.aPool[i-1].u.hdr.prevSize ); |
+ prev = i - mem3.aPool[i-1].u.hdr.prevSize; |
+ if( prev==iNext ){ |
+ iNext = mem3.aPool[prev].u.list.next; |
+ } |
+ memsys3Unlink(prev); |
+ size = i + size/4 - prev; |
+ x = mem3.aPool[prev-1].u.hdr.size4x & 2; |
+ mem3.aPool[prev-1].u.hdr.size4x = size*4 | x; |
+ mem3.aPool[prev+size-1].u.hdr.prevSize = size; |
+ memsys3Link(prev); |
+ i = prev; |
+ }else{ |
+ size /= 4; |
+ } |
+ if( size>mem3.szMaster ){ |
+ mem3.iMaster = i; |
+ mem3.szMaster = size; |
+ } |
+ } |
+} |
+ |
+/* |
+** Return a block of memory of at least nBytes in size. |
+** Return NULL if unable. |
+** |
+** This function assumes that the necessary mutexes, if any, are |
+** already held by the caller. Hence "Unsafe". |
+*/ |
+static void *memsys3MallocUnsafe(int nByte){ |
+ u32 i; |
+ u32 nBlock; |
+ u32 toFree; |
+ |
+ assert( sqlite3_mutex_held(mem3.mutex) ); |
+ assert( sizeof(Mem3Block)==8 ); |
+ if( nByte<=12 ){ |
+ nBlock = 2; |
+ }else{ |
+ nBlock = (nByte + 11)/8; |
+ } |
+ assert( nBlock>=2 ); |
+ |
+ /* STEP 1: |
+ ** Look for an entry of the correct size in either the small |
+ ** chunk table or in the large chunk hash table. This is |
+ ** successful most of the time (about 9 times out of 10). |
+ */ |
+ if( nBlock <= MX_SMALL ){ |
+ i = mem3.aiSmall[nBlock-2]; |
+ if( i>0 ){ |
+ memsys3UnlinkFromList(i, &mem3.aiSmall[nBlock-2]); |
+ return memsys3Checkout(i, nBlock); |
+ } |
+ }else{ |
+ int hash = nBlock % N_HASH; |
+ for(i=mem3.aiHash[hash]; i>0; i=mem3.aPool[i].u.list.next){ |
+ if( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ){ |
+ memsys3UnlinkFromList(i, &mem3.aiHash[hash]); |
+ return memsys3Checkout(i, nBlock); |
+ } |
+ } |
+ } |
+ |
+ /* STEP 2: |
+ ** Try to satisfy the allocation by carving a piece off of the end |
+ ** of the master chunk. This step usually works if step 1 fails. |
+ */ |
+ if( mem3.szMaster>=nBlock ){ |
+ return memsys3FromMaster(nBlock); |
+ } |
+ |
+ |
+ /* STEP 3: |
+ ** Loop through the entire memory pool. Coalesce adjacent free |
+ ** chunks. Recompute the master chunk as the largest free chunk. |
+ ** Then try again to satisfy the allocation by carving a piece off |
+ ** of the end of the master chunk. This step happens very |
+ ** rarely (we hope!) |
+ */ |
+ for(toFree=nBlock*16; toFree<(mem3.nPool*16); toFree *= 2){ |
+ memsys3OutOfMemory(toFree); |
+ if( mem3.iMaster ){ |
+ memsys3Link(mem3.iMaster); |
+ mem3.iMaster = 0; |
+ mem3.szMaster = 0; |
+ } |
+ for(i=0; i<N_HASH; i++){ |
+ memsys3Merge(&mem3.aiHash[i]); |
+ } |
+ for(i=0; i<MX_SMALL-1; i++){ |
+ memsys3Merge(&mem3.aiSmall[i]); |
+ } |
+ if( mem3.szMaster ){ |
+ memsys3Unlink(mem3.iMaster); |
+ if( mem3.szMaster>=nBlock ){ |
+ return memsys3FromMaster(nBlock); |
+ } |
+ } |
+ } |
+ |
+ /* If none of the above worked, then we fail. */ |
+ return 0; |
+} |
+ |
+/* |
+** Free an outstanding memory allocation. |
+** |
+** This function assumes that the necessary mutexes, if any, are |
+** already held by the caller. Hence "Unsafe". |
+*/ |
+void memsys3FreeUnsafe(void *pOld){ |
+ Mem3Block *p = (Mem3Block*)pOld; |
+ int i; |
+ u32 size, x; |
+ assert( sqlite3_mutex_held(mem3.mutex) ); |
+ assert( p>mem3.aPool && p<&mem3.aPool[mem3.nPool] ); |
+ i = p - mem3.aPool; |
+ assert( (mem3.aPool[i-1].u.hdr.size4x&1)==1 ); |
+ size = mem3.aPool[i-1].u.hdr.size4x/4; |
+ assert( i+size<=mem3.nPool+1 ); |
+ mem3.aPool[i-1].u.hdr.size4x &= ~1; |
+ mem3.aPool[i+size-1].u.hdr.prevSize = size; |
+ mem3.aPool[i+size-1].u.hdr.size4x &= ~2; |
+ memsys3Link(i); |
+ |
+ /* Try to expand the master using the newly freed chunk */ |
+ if( mem3.iMaster ){ |
+ while( (mem3.aPool[mem3.iMaster-1].u.hdr.size4x&2)==0 ){ |
+ size = mem3.aPool[mem3.iMaster-1].u.hdr.prevSize; |
+ mem3.iMaster -= size; |
+ mem3.szMaster += size; |
+ memsys3Unlink(mem3.iMaster); |
+ x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2; |
+ mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x; |
+ mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster; |
+ } |
+ x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2; |
+ while( (mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x&1)==0 ){ |
+ memsys3Unlink(mem3.iMaster+mem3.szMaster); |
+ mem3.szMaster += mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x/4; |
+ mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x; |
+ mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster; |
+ } |
+ } |
+} |
+ |
+/* |
+** Return the size of an outstanding allocation, in bytes. The |
+** size returned omits the 8-byte header overhead. This only |
+** works for chunks that are currently checked out. |
+*/ |
+static int memsys3Size(void *p){ |
+ Mem3Block *pBlock; |
+ if( p==0 ) return 0; |
+ pBlock = (Mem3Block*)p; |
+ assert( (pBlock[-1].u.hdr.size4x&1)!=0 ); |
+ return (pBlock[-1].u.hdr.size4x&~3)*2 - 4; |
+} |
+ |
+/* |
+** Round up a request size to the next valid allocation size. |
+*/ |
+static int memsys3Roundup(int n){ |
+ if( n<=12 ){ |
+ return 12; |
+ }else{ |
+ return ((n+11)&~7) - 4; |
+ } |
+} |
+ |
+/* |
+** Allocate nBytes of memory. |
+*/ |
+static void *memsys3Malloc(int nBytes){ |
+ sqlite3_int64 *p; |
+ assert( nBytes>0 ); /* malloc.c filters out 0 byte requests */ |
+ memsys3Enter(); |
+ p = memsys3MallocUnsafe(nBytes); |
+ memsys3Leave(); |
+ return (void*)p; |
+} |
+ |
+/* |
+** Free memory. |
+*/ |
+void memsys3Free(void *pPrior){ |
+ assert( pPrior ); |
+ memsys3Enter(); |
+ memsys3FreeUnsafe(pPrior); |
+ memsys3Leave(); |
+} |
+ |
+/* |
+** Change the size of an existing memory allocation |
+*/ |
+void *memsys3Realloc(void *pPrior, int nBytes){ |
+ int nOld; |
+ void *p; |
+ if( pPrior==0 ){ |
+ return sqlite3_malloc(nBytes); |
+ } |
+ if( nBytes<=0 ){ |
+ sqlite3_free(pPrior); |
+ return 0; |
+ } |
+ nOld = memsys3Size(pPrior); |
+ if( nBytes<=nOld && nBytes>=nOld-128 ){ |
+ return pPrior; |
+ } |
+ memsys3Enter(); |
+ p = memsys3MallocUnsafe(nBytes); |
+ if( p ){ |
+ if( nOld<nBytes ){ |
+ memcpy(p, pPrior, nOld); |
+ }else{ |
+ memcpy(p, pPrior, nBytes); |
+ } |
+ memsys3FreeUnsafe(pPrior); |
+ } |
+ memsys3Leave(); |
+ return p; |
+} |
+ |
+/* |
+** Initialize this module. |
+*/ |
+static int memsys3Init(void *NotUsed){ |
+ UNUSED_PARAMETER(NotUsed); |
+ if( !sqlite3GlobalConfig.pHeap ){ |
+ return SQLITE_ERROR; |
+ } |
+ |
+ /* Store a pointer to the memory block in global structure mem3. */ |
+ assert( sizeof(Mem3Block)==8 ); |
+ mem3.aPool = (Mem3Block *)sqlite3GlobalConfig.pHeap; |
+ mem3.nPool = (sqlite3GlobalConfig.nHeap / sizeof(Mem3Block)) - 2; |
+ |
+ /* Initialize the master block. */ |
+ mem3.szMaster = mem3.nPool; |
+ mem3.mnMaster = mem3.szMaster; |
+ mem3.iMaster = 1; |
+ mem3.aPool[0].u.hdr.size4x = (mem3.szMaster<<2) + 2; |
+ mem3.aPool[mem3.nPool].u.hdr.prevSize = mem3.nPool; |
+ mem3.aPool[mem3.nPool].u.hdr.size4x = 1; |
+ |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Deinitialize this module. |
+*/ |
+static void memsys3Shutdown(void *NotUsed){ |
+ UNUSED_PARAMETER(NotUsed); |
+ mem3.mutex = 0; |
+ return; |
+} |
+ |
+ |
+ |
+/* |
+** Open the file indicated and write a log of all unfreed memory |
+** allocations into that log. |
+*/ |
+void sqlite3Memsys3Dump(const char *zFilename){ |
+#ifdef SQLITE_DEBUG |
+ FILE *out; |
+ u32 i, j; |
+ u32 size; |
+ if( zFilename==0 || zFilename[0]==0 ){ |
+ out = stdout; |
+ }else{ |
+ out = fopen(zFilename, "w"); |
+ if( out==0 ){ |
+ fprintf(stderr, "** Unable to output memory debug output log: %s **\n", |
+ zFilename); |
+ return; |
+ } |
+ } |
+ memsys3Enter(); |
+ fprintf(out, "CHUNKS:\n"); |
+ for(i=1; i<=mem3.nPool; i+=size/4){ |
+ size = mem3.aPool[i-1].u.hdr.size4x; |
+ if( size/4<=1 ){ |
+ fprintf(out, "%p size error\n", &mem3.aPool[i]); |
+ assert( 0 ); |
+ break; |
+ } |
+ if( (size&1)==0 && mem3.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){ |
+ fprintf(out, "%p tail size does not match\n", &mem3.aPool[i]); |
+ assert( 0 ); |
+ break; |
+ } |
+ if( ((mem3.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){ |
+ fprintf(out, "%p tail checkout bit is incorrect\n", &mem3.aPool[i]); |
+ assert( 0 ); |
+ break; |
+ } |
+ if( size&1 ){ |
+ fprintf(out, "%p %6d bytes checked out\n", &mem3.aPool[i], (size/4)*8-8); |
+ }else{ |
+ fprintf(out, "%p %6d bytes free%s\n", &mem3.aPool[i], (size/4)*8-8, |
+ i==mem3.iMaster ? " **master**" : ""); |
+ } |
+ } |
+ for(i=0; i<MX_SMALL-1; i++){ |
+ if( mem3.aiSmall[i]==0 ) continue; |
+ fprintf(out, "small(%2d):", i); |
+ for(j = mem3.aiSmall[i]; j>0; j=mem3.aPool[j].u.list.next){ |
+ fprintf(out, " %p(%d)", &mem3.aPool[j], |
+ (mem3.aPool[j-1].u.hdr.size4x/4)*8-8); |
+ } |
+ fprintf(out, "\n"); |
+ } |
+ for(i=0; i<N_HASH; i++){ |
+ if( mem3.aiHash[i]==0 ) continue; |
+ fprintf(out, "hash(%2d):", i); |
+ for(j = mem3.aiHash[i]; j>0; j=mem3.aPool[j].u.list.next){ |
+ fprintf(out, " %p(%d)", &mem3.aPool[j], |
+ (mem3.aPool[j-1].u.hdr.size4x/4)*8-8); |
+ } |
+ fprintf(out, "\n"); |
+ } |
+ fprintf(out, "master=%d\n", mem3.iMaster); |
+ fprintf(out, "nowUsed=%d\n", mem3.nPool*8 - mem3.szMaster*8); |
+ fprintf(out, "mxUsed=%d\n", mem3.nPool*8 - mem3.mnMaster*8); |
+ sqlite3_mutex_leave(mem3.mutex); |
+ if( out==stdout ){ |
+ fflush(stdout); |
+ }else{ |
+ fclose(out); |
+ } |
+#else |
+ UNUSED_PARAMETER(zFilename); |
+#endif |
+} |
+ |
+/* |
+** This routine is the only routine in this file with external |
+** linkage. |
+** |
+** Populate the low-level memory allocation function pointers in |
+** sqlite3GlobalConfig.m with pointers to the routines in this file. The |
+** arguments specify the block of memory to manage. |
+** |
+** This routine is only called by sqlite3_config(), and therefore |
+** is not required to be threadsafe (it is not). |
+*/ |
+const sqlite3_mem_methods *sqlite3MemGetMemsys3(void){ |
+ static const sqlite3_mem_methods mempoolMethods = { |
+ memsys3Malloc, |
+ memsys3Free, |
+ memsys3Realloc, |
+ memsys3Size, |
+ memsys3Roundup, |
+ memsys3Init, |
+ memsys3Shutdown, |
+ 0 |
+ }; |
+ return &mempoolMethods; |
+} |
+ |
+#endif /* SQLITE_ENABLE_MEMSYS3 */ |