Index: third_party/sqlite/sqlite-src-3070603/src/parse.y |
diff --git a/third_party/sqlite/sqlite-src-3070603/src/parse.y b/third_party/sqlite/sqlite-src-3070603/src/parse.y |
new file mode 100644 |
index 0000000000000000000000000000000000000000..92abd5ce58118d115980839ddd8e2397ac940db5 |
--- /dev/null |
+++ b/third_party/sqlite/sqlite-src-3070603/src/parse.y |
@@ -0,0 +1,1371 @@ |
+/* |
+** 2001 September 15 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+************************************************************************* |
+** This file contains SQLite's grammar for SQL. Process this file |
+** using the lemon parser generator to generate C code that runs |
+** the parser. Lemon will also generate a header file containing |
+** numeric codes for all of the tokens. |
+*/ |
+ |
+// All token codes are small integers with #defines that begin with "TK_" |
+%token_prefix TK_ |
+ |
+// The type of the data attached to each token is Token. This is also the |
+// default type for non-terminals. |
+// |
+%token_type {Token} |
+%default_type {Token} |
+ |
+// The generated parser function takes a 4th argument as follows: |
+%extra_argument {Parse *pParse} |
+ |
+// This code runs whenever there is a syntax error |
+// |
+%syntax_error { |
+ UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */ |
+ assert( TOKEN.z[0] ); /* The tokenizer always gives us a token */ |
+ sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); |
+ pParse->parseError = 1; |
+} |
+%stack_overflow { |
+ UNUSED_PARAMETER(yypMinor); /* Silence some compiler warnings */ |
+ sqlite3ErrorMsg(pParse, "parser stack overflow"); |
+ pParse->parseError = 1; |
+} |
+ |
+// The name of the generated procedure that implements the parser |
+// is as follows: |
+%name sqlite3Parser |
+ |
+// The following text is included near the beginning of the C source |
+// code file that implements the parser. |
+// |
+%include { |
+#include "sqliteInt.h" |
+ |
+/* |
+** Disable all error recovery processing in the parser push-down |
+** automaton. |
+*/ |
+#define YYNOERRORRECOVERY 1 |
+ |
+/* |
+** Make yytestcase() the same as testcase() |
+*/ |
+#define yytestcase(X) testcase(X) |
+ |
+/* |
+** An instance of this structure holds information about the |
+** LIMIT clause of a SELECT statement. |
+*/ |
+struct LimitVal { |
+ Expr *pLimit; /* The LIMIT expression. NULL if there is no limit */ |
+ Expr *pOffset; /* The OFFSET expression. NULL if there is none */ |
+}; |
+ |
+/* |
+** An instance of this structure is used to store the LIKE, |
+** GLOB, NOT LIKE, and NOT GLOB operators. |
+*/ |
+struct LikeOp { |
+ Token eOperator; /* "like" or "glob" or "regexp" */ |
+ int not; /* True if the NOT keyword is present */ |
+}; |
+ |
+/* |
+** An instance of the following structure describes the event of a |
+** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT, |
+** TK_DELETE, or TK_INSTEAD. If the event is of the form |
+** |
+** UPDATE ON (a,b,c) |
+** |
+** Then the "b" IdList records the list "a,b,c". |
+*/ |
+struct TrigEvent { int a; IdList * b; }; |
+ |
+/* |
+** An instance of this structure holds the ATTACH key and the key type. |
+*/ |
+struct AttachKey { int type; Token key; }; |
+ |
+} // end %include |
+ |
+// Input is a single SQL command |
+input ::= cmdlist. |
+cmdlist ::= cmdlist ecmd. |
+cmdlist ::= ecmd. |
+ecmd ::= SEMI. |
+ecmd ::= explain cmdx SEMI. |
+explain ::= . { sqlite3BeginParse(pParse, 0); } |
+%ifndef SQLITE_OMIT_EXPLAIN |
+explain ::= EXPLAIN. { sqlite3BeginParse(pParse, 1); } |
+explain ::= EXPLAIN QUERY PLAN. { sqlite3BeginParse(pParse, 2); } |
+%endif SQLITE_OMIT_EXPLAIN |
+cmdx ::= cmd. { sqlite3FinishCoding(pParse); } |
+ |
+///////////////////// Begin and end transactions. //////////////////////////// |
+// |
+ |
+cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);} |
+trans_opt ::= . |
+trans_opt ::= TRANSACTION. |
+trans_opt ::= TRANSACTION nm. |
+%type transtype {int} |
+transtype(A) ::= . {A = TK_DEFERRED;} |
+transtype(A) ::= DEFERRED(X). {A = @X;} |
+transtype(A) ::= IMMEDIATE(X). {A = @X;} |
+transtype(A) ::= EXCLUSIVE(X). {A = @X;} |
+cmd ::= COMMIT trans_opt. {sqlite3CommitTransaction(pParse);} |
+cmd ::= END trans_opt. {sqlite3CommitTransaction(pParse);} |
+cmd ::= ROLLBACK trans_opt. {sqlite3RollbackTransaction(pParse);} |
+ |
+savepoint_opt ::= SAVEPOINT. |
+savepoint_opt ::= . |
+cmd ::= SAVEPOINT nm(X). { |
+ sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X); |
+} |
+cmd ::= RELEASE savepoint_opt nm(X). { |
+ sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X); |
+} |
+cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). { |
+ sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X); |
+} |
+ |
+///////////////////// The CREATE TABLE statement //////////////////////////// |
+// |
+cmd ::= create_table create_table_args. |
+create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). { |
+ sqlite3StartTable(pParse,&Y,&Z,T,0,0,E); |
+} |
+createkw(A) ::= CREATE(X). { |
+ pParse->db->lookaside.bEnabled = 0; |
+ A = X; |
+} |
+%type ifnotexists {int} |
+ifnotexists(A) ::= . {A = 0;} |
+ifnotexists(A) ::= IF NOT EXISTS. {A = 1;} |
+%type temp {int} |
+%ifndef SQLITE_OMIT_TEMPDB |
+temp(A) ::= TEMP. {A = 1;} |
+%endif SQLITE_OMIT_TEMPDB |
+temp(A) ::= . {A = 0;} |
+create_table_args ::= LP columnlist conslist_opt(X) RP(Y). { |
+ sqlite3EndTable(pParse,&X,&Y,0); |
+} |
+create_table_args ::= AS select(S). { |
+ sqlite3EndTable(pParse,0,0,S); |
+ sqlite3SelectDelete(pParse->db, S); |
+} |
+columnlist ::= columnlist COMMA column. |
+columnlist ::= column. |
+ |
+// A "column" is a complete description of a single column in a |
+// CREATE TABLE statement. This includes the column name, its |
+// datatype, and other keywords such as PRIMARY KEY, UNIQUE, REFERENCES, |
+// NOT NULL and so forth. |
+// |
+column(A) ::= columnid(X) type carglist. { |
+ A.z = X.z; |
+ A.n = (int)(pParse->sLastToken.z-X.z) + pParse->sLastToken.n; |
+} |
+columnid(A) ::= nm(X). { |
+ sqlite3AddColumn(pParse,&X); |
+ A = X; |
+} |
+ |
+ |
+// An IDENTIFIER can be a generic identifier, or one of several |
+// keywords. Any non-standard keyword can also be an identifier. |
+// |
+%type id {Token} |
+id(A) ::= ID(X). {A = X;} |
+id(A) ::= INDEXED(X). {A = X;} |
+ |
+// The following directive causes tokens ABORT, AFTER, ASC, etc. to |
+// fallback to ID if they will not parse as their original value. |
+// This obviates the need for the "id" nonterminal. |
+// |
+%fallback ID |
+ ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW |
+ CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR |
+ IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN |
+ QUERY KEY OF OFFSET PRAGMA RAISE RELEASE REPLACE RESTRICT ROW ROLLBACK |
+ SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL |
+%ifdef SQLITE_OMIT_COMPOUND_SELECT |
+ EXCEPT INTERSECT UNION |
+%endif SQLITE_OMIT_COMPOUND_SELECT |
+ REINDEX RENAME CTIME_KW IF |
+ . |
+%wildcard ANY. |
+ |
+// Define operator precedence early so that this is the first occurance |
+// of the operator tokens in the grammer. Keeping the operators together |
+// causes them to be assigned integer values that are close together, |
+// which keeps parser tables smaller. |
+// |
+// The token values assigned to these symbols is determined by the order |
+// in which lemon first sees them. It must be the case that ISNULL/NOTNULL, |
+// NE/EQ, GT/LE, and GE/LT are separated by only a single value. See |
+// the sqlite3ExprIfFalse() routine for additional information on this |
+// constraint. |
+// |
+%left OR. |
+%left AND. |
+%right NOT. |
+%left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. |
+%left GT LE LT GE. |
+%right ESCAPE. |
+%left BITAND BITOR LSHIFT RSHIFT. |
+%left PLUS MINUS. |
+%left STAR SLASH REM. |
+%left CONCAT. |
+%left COLLATE. |
+%right BITNOT. |
+ |
+// And "ids" is an identifer-or-string. |
+// |
+%type ids {Token} |
+ids(A) ::= ID|STRING(X). {A = X;} |
+ |
+// The name of a column or table can be any of the following: |
+// |
+%type nm {Token} |
+nm(A) ::= id(X). {A = X;} |
+nm(A) ::= STRING(X). {A = X;} |
+nm(A) ::= JOIN_KW(X). {A = X;} |
+ |
+// A typetoken is really one or more tokens that form a type name such |
+// as can be found after the column name in a CREATE TABLE statement. |
+// Multiple tokens are concatenated to form the value of the typetoken. |
+// |
+%type typetoken {Token} |
+type ::= . |
+type ::= typetoken(X). {sqlite3AddColumnType(pParse,&X);} |
+typetoken(A) ::= typename(X). {A = X;} |
+typetoken(A) ::= typename(X) LP signed RP(Y). { |
+ A.z = X.z; |
+ A.n = (int)(&Y.z[Y.n] - X.z); |
+} |
+typetoken(A) ::= typename(X) LP signed COMMA signed RP(Y). { |
+ A.z = X.z; |
+ A.n = (int)(&Y.z[Y.n] - X.z); |
+} |
+%type typename {Token} |
+typename(A) ::= ids(X). {A = X;} |
+typename(A) ::= typename(X) ids(Y). {A.z=X.z; A.n=Y.n+(int)(Y.z-X.z);} |
+signed ::= plus_num. |
+signed ::= minus_num. |
+ |
+// "carglist" is a list of additional constraints that come after the |
+// column name and column type in a CREATE TABLE statement. |
+// |
+carglist ::= carglist carg. |
+carglist ::= . |
+carg ::= CONSTRAINT nm ccons. |
+carg ::= ccons. |
+ccons ::= DEFAULT term(X). {sqlite3AddDefaultValue(pParse,&X);} |
+ccons ::= DEFAULT LP expr(X) RP. {sqlite3AddDefaultValue(pParse,&X);} |
+ccons ::= DEFAULT PLUS term(X). {sqlite3AddDefaultValue(pParse,&X);} |
+ccons ::= DEFAULT MINUS(A) term(X). { |
+ ExprSpan v; |
+ v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, X.pExpr, 0, 0); |
+ v.zStart = A.z; |
+ v.zEnd = X.zEnd; |
+ sqlite3AddDefaultValue(pParse,&v); |
+} |
+ccons ::= DEFAULT id(X). { |
+ ExprSpan v; |
+ spanExpr(&v, pParse, TK_STRING, &X); |
+ sqlite3AddDefaultValue(pParse,&v); |
+} |
+ |
+// In addition to the type name, we also care about the primary key and |
+// UNIQUE constraints. |
+// |
+ccons ::= NULL onconf. |
+ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);} |
+ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I). |
+ {sqlite3AddPrimaryKey(pParse,0,R,I,Z);} |
+ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0);} |
+ccons ::= CHECK LP expr(X) RP. {sqlite3AddCheckConstraint(pParse,X.pExpr);} |
+ccons ::= REFERENCES nm(T) idxlist_opt(TA) refargs(R). |
+ {sqlite3CreateForeignKey(pParse,0,&T,TA,R);} |
+ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);} |
+ccons ::= COLLATE ids(C). {sqlite3AddCollateType(pParse, &C);} |
+ |
+// The optional AUTOINCREMENT keyword |
+%type autoinc {int} |
+autoinc(X) ::= . {X = 0;} |
+autoinc(X) ::= AUTOINCR. {X = 1;} |
+ |
+// The next group of rules parses the arguments to a REFERENCES clause |
+// that determine if the referential integrity checking is deferred or |
+// or immediate and which determine what action to take if a ref-integ |
+// check fails. |
+// |
+%type refargs {int} |
+refargs(A) ::= . { A = OE_None*0x0101; /* EV: R-19803-45884 */} |
+refargs(A) ::= refargs(X) refarg(Y). { A = (X & ~Y.mask) | Y.value; } |
+%type refarg {struct {int value; int mask;}} |
+refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; } |
+refarg(A) ::= ON INSERT refact. { A.value = 0; A.mask = 0x000000; } |
+refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; } |
+refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; } |
+%type refact {int} |
+refact(A) ::= SET NULL. { A = OE_SetNull; /* EV: R-33326-45252 */} |
+refact(A) ::= SET DEFAULT. { A = OE_SetDflt; /* EV: R-33326-45252 */} |
+refact(A) ::= CASCADE. { A = OE_Cascade; /* EV: R-33326-45252 */} |
+refact(A) ::= RESTRICT. { A = OE_Restrict; /* EV: R-33326-45252 */} |
+refact(A) ::= NO ACTION. { A = OE_None; /* EV: R-33326-45252 */} |
+%type defer_subclause {int} |
+defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt. {A = 0;} |
+defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;} |
+%type init_deferred_pred_opt {int} |
+init_deferred_pred_opt(A) ::= . {A = 0;} |
+init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;} |
+init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;} |
+ |
+// For the time being, the only constraint we care about is the primary |
+// key and UNIQUE. Both create indices. |
+// |
+conslist_opt(A) ::= . {A.n = 0; A.z = 0;} |
+conslist_opt(A) ::= COMMA(X) conslist. {A = X;} |
+conslist ::= conslist COMMA tcons. |
+conslist ::= conslist tcons. |
+conslist ::= tcons. |
+tcons ::= CONSTRAINT nm. |
+tcons ::= PRIMARY KEY LP idxlist(X) autoinc(I) RP onconf(R). |
+ {sqlite3AddPrimaryKey(pParse,X,R,I,0);} |
+tcons ::= UNIQUE LP idxlist(X) RP onconf(R). |
+ {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0);} |
+tcons ::= CHECK LP expr(E) RP onconf. |
+ {sqlite3AddCheckConstraint(pParse,E.pExpr);} |
+tcons ::= FOREIGN KEY LP idxlist(FA) RP |
+ REFERENCES nm(T) idxlist_opt(TA) refargs(R) defer_subclause_opt(D). { |
+ sqlite3CreateForeignKey(pParse, FA, &T, TA, R); |
+ sqlite3DeferForeignKey(pParse, D); |
+} |
+%type defer_subclause_opt {int} |
+defer_subclause_opt(A) ::= . {A = 0;} |
+defer_subclause_opt(A) ::= defer_subclause(X). {A = X;} |
+ |
+// The following is a non-standard extension that allows us to declare the |
+// default behavior when there is a constraint conflict. |
+// |
+%type onconf {int} |
+%type orconf {u8} |
+%type resolvetype {int} |
+onconf(A) ::= . {A = OE_Default;} |
+onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;} |
+orconf(A) ::= . {A = OE_Default;} |
+orconf(A) ::= OR resolvetype(X). {A = (u8)X;} |
+resolvetype(A) ::= raisetype(X). {A = X;} |
+resolvetype(A) ::= IGNORE. {A = OE_Ignore;} |
+resolvetype(A) ::= REPLACE. {A = OE_Replace;} |
+ |
+////////////////////////// The DROP TABLE ///////////////////////////////////// |
+// |
+cmd ::= DROP TABLE ifexists(E) fullname(X). { |
+ sqlite3DropTable(pParse, X, 0, E); |
+} |
+%type ifexists {int} |
+ifexists(A) ::= IF EXISTS. {A = 1;} |
+ifexists(A) ::= . {A = 0;} |
+ |
+///////////////////// The CREATE VIEW statement ///////////////////////////// |
+// |
+%ifndef SQLITE_OMIT_VIEW |
+cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) AS select(S). { |
+ sqlite3CreateView(pParse, &X, &Y, &Z, S, T, E); |
+} |
+cmd ::= DROP VIEW ifexists(E) fullname(X). { |
+ sqlite3DropTable(pParse, X, 1, E); |
+} |
+%endif SQLITE_OMIT_VIEW |
+ |
+//////////////////////// The SELECT statement ///////////////////////////////// |
+// |
+cmd ::= select(X). { |
+ SelectDest dest = {SRT_Output, 0, 0, 0, 0}; |
+ sqlite3Select(pParse, X, &dest); |
+ sqlite3SelectDelete(pParse->db, X); |
+} |
+ |
+%type select {Select*} |
+%destructor select {sqlite3SelectDelete(pParse->db, $$);} |
+%type oneselect {Select*} |
+%destructor oneselect {sqlite3SelectDelete(pParse->db, $$);} |
+ |
+select(A) ::= oneselect(X). {A = X;} |
+%ifndef SQLITE_OMIT_COMPOUND_SELECT |
+select(A) ::= select(X) multiselect_op(Y) oneselect(Z). { |
+ if( Z ){ |
+ Z->op = (u8)Y; |
+ Z->pPrior = X; |
+ }else{ |
+ sqlite3SelectDelete(pParse->db, X); |
+ } |
+ A = Z; |
+} |
+%type multiselect_op {int} |
+multiselect_op(A) ::= UNION(OP). {A = @OP;} |
+multiselect_op(A) ::= UNION ALL. {A = TK_ALL;} |
+multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP;} |
+%endif SQLITE_OMIT_COMPOUND_SELECT |
+oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y) |
+ groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). { |
+ A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset); |
+} |
+ |
+// The "distinct" nonterminal is true (1) if the DISTINCT keyword is |
+// present and false (0) if it is not. |
+// |
+%type distinct {int} |
+distinct(A) ::= DISTINCT. {A = 1;} |
+distinct(A) ::= ALL. {A = 0;} |
+distinct(A) ::= . {A = 0;} |
+ |
+// selcollist is a list of expressions that are to become the return |
+// values of the SELECT statement. The "*" in statements like |
+// "SELECT * FROM ..." is encoded as a special expression with an |
+// opcode of TK_ALL. |
+// |
+%type selcollist {ExprList*} |
+%destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);} |
+%type sclp {ExprList*} |
+%destructor sclp {sqlite3ExprListDelete(pParse->db, $$);} |
+sclp(A) ::= selcollist(X) COMMA. {A = X;} |
+sclp(A) ::= . {A = 0;} |
+selcollist(A) ::= sclp(P) expr(X) as(Y). { |
+ A = sqlite3ExprListAppend(pParse, P, X.pExpr); |
+ if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1); |
+ sqlite3ExprListSetSpan(pParse,A,&X); |
+} |
+selcollist(A) ::= sclp(P) STAR. { |
+ Expr *p = sqlite3Expr(pParse->db, TK_ALL, 0); |
+ A = sqlite3ExprListAppend(pParse, P, p); |
+} |
+selcollist(A) ::= sclp(P) nm(X) DOT STAR(Y). { |
+ Expr *pRight = sqlite3PExpr(pParse, TK_ALL, 0, 0, &Y); |
+ Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); |
+ Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); |
+ A = sqlite3ExprListAppend(pParse,P, pDot); |
+} |
+ |
+// An option "AS <id>" phrase that can follow one of the expressions that |
+// define the result set, or one of the tables in the FROM clause. |
+// |
+%type as {Token} |
+as(X) ::= AS nm(Y). {X = Y;} |
+as(X) ::= ids(Y). {X = Y;} |
+as(X) ::= . {X.n = 0;} |
+ |
+ |
+%type seltablist {SrcList*} |
+%destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);} |
+%type stl_prefix {SrcList*} |
+%destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);} |
+%type from {SrcList*} |
+%destructor from {sqlite3SrcListDelete(pParse->db, $$);} |
+ |
+// A complete FROM clause. |
+// |
+from(A) ::= . {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));} |
+from(A) ::= FROM seltablist(X). { |
+ A = X; |
+ sqlite3SrcListShiftJoinType(A); |
+} |
+ |
+// "seltablist" is a "Select Table List" - the content of the FROM clause |
+// in a SELECT statement. "stl_prefix" is a prefix of this list. |
+// |
+stl_prefix(A) ::= seltablist(X) joinop(Y). { |
+ A = X; |
+ if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].jointype = (u8)Y; |
+} |
+stl_prefix(A) ::= . {A = 0;} |
+seltablist(A) ::= stl_prefix(X) nm(Y) dbnm(D) as(Z) indexed_opt(I) on_opt(N) using_opt(U). { |
+ A = sqlite3SrcListAppendFromTerm(pParse,X,&Y,&D,&Z,0,N,U); |
+ sqlite3SrcListIndexedBy(pParse, A, &I); |
+} |
+%ifndef SQLITE_OMIT_SUBQUERY |
+ seltablist(A) ::= stl_prefix(X) LP select(S) RP |
+ as(Z) on_opt(N) using_opt(U). { |
+ A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,S,N,U); |
+ } |
+ seltablist(A) ::= stl_prefix(X) LP seltablist(F) RP |
+ as(Z) on_opt(N) using_opt(U). { |
+ if( X==0 && Z.n==0 && N==0 && U==0 ){ |
+ A = F; |
+ }else{ |
+ Select *pSubquery; |
+ sqlite3SrcListShiftJoinType(F); |
+ pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,0,0,0); |
+ A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,pSubquery,N,U); |
+ } |
+ } |
+ |
+ // A seltablist_paren nonterminal represents anything in a FROM that |
+ // is contained inside parentheses. This can be either a subquery or |
+ // a grouping of table and subqueries. |
+ // |
+// %type seltablist_paren {Select*} |
+// %destructor seltablist_paren {sqlite3SelectDelete(pParse->db, $$);} |
+// seltablist_paren(A) ::= select(S). {A = S;} |
+// seltablist_paren(A) ::= seltablist(F). { |
+// sqlite3SrcListShiftJoinType(F); |
+// A = sqlite3SelectNew(pParse,0,F,0,0,0,0,0,0,0); |
+// } |
+%endif SQLITE_OMIT_SUBQUERY |
+ |
+%type dbnm {Token} |
+dbnm(A) ::= . {A.z=0; A.n=0;} |
+dbnm(A) ::= DOT nm(X). {A = X;} |
+ |
+%type fullname {SrcList*} |
+%destructor fullname {sqlite3SrcListDelete(pParse->db, $$);} |
+fullname(A) ::= nm(X) dbnm(Y). {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y);} |
+ |
+%type joinop {int} |
+%type joinop2 {int} |
+joinop(X) ::= COMMA|JOIN. { X = JT_INNER; } |
+joinop(X) ::= JOIN_KW(A) JOIN. { X = sqlite3JoinType(pParse,&A,0,0); } |
+joinop(X) ::= JOIN_KW(A) nm(B) JOIN. { X = sqlite3JoinType(pParse,&A,&B,0); } |
+joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN. |
+ { X = sqlite3JoinType(pParse,&A,&B,&C); } |
+ |
+%type on_opt {Expr*} |
+%destructor on_opt {sqlite3ExprDelete(pParse->db, $$);} |
+on_opt(N) ::= ON expr(E). {N = E.pExpr;} |
+on_opt(N) ::= . {N = 0;} |
+ |
+// Note that this block abuses the Token type just a little. If there is |
+// no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If |
+// there is an INDEXED BY clause, then the token is populated as per normal, |
+// with z pointing to the token data and n containing the number of bytes |
+// in the token. |
+// |
+// If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is |
+// normally illegal. The sqlite3SrcListIndexedBy() function |
+// recognizes and interprets this as a special case. |
+// |
+%type indexed_opt {Token} |
+indexed_opt(A) ::= . {A.z=0; A.n=0;} |
+indexed_opt(A) ::= INDEXED BY nm(X). {A = X;} |
+indexed_opt(A) ::= NOT INDEXED. {A.z=0; A.n=1;} |
+ |
+%type using_opt {IdList*} |
+%destructor using_opt {sqlite3IdListDelete(pParse->db, $$);} |
+using_opt(U) ::= USING LP inscollist(L) RP. {U = L;} |
+using_opt(U) ::= . {U = 0;} |
+ |
+ |
+%type orderby_opt {ExprList*} |
+%destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);} |
+%type sortlist {ExprList*} |
+%destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);} |
+%type sortitem {Expr*} |
+%destructor sortitem {sqlite3ExprDelete(pParse->db, $$);} |
+ |
+orderby_opt(A) ::= . {A = 0;} |
+orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;} |
+sortlist(A) ::= sortlist(X) COMMA sortitem(Y) sortorder(Z). { |
+ A = sqlite3ExprListAppend(pParse,X,Y); |
+ if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; |
+} |
+sortlist(A) ::= sortitem(Y) sortorder(Z). { |
+ A = sqlite3ExprListAppend(pParse,0,Y); |
+ if( A && ALWAYS(A->a) ) A->a[0].sortOrder = (u8)Z; |
+} |
+sortitem(A) ::= expr(X). {A = X.pExpr;} |
+ |
+%type sortorder {int} |
+ |
+sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;} |
+sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;} |
+sortorder(A) ::= . {A = SQLITE_SO_ASC;} |
+ |
+%type groupby_opt {ExprList*} |
+%destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);} |
+groupby_opt(A) ::= . {A = 0;} |
+groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;} |
+ |
+%type having_opt {Expr*} |
+%destructor having_opt {sqlite3ExprDelete(pParse->db, $$);} |
+having_opt(A) ::= . {A = 0;} |
+having_opt(A) ::= HAVING expr(X). {A = X.pExpr;} |
+ |
+%type limit_opt {struct LimitVal} |
+ |
+// The destructor for limit_opt will never fire in the current grammar. |
+// The limit_opt non-terminal only occurs at the end of a single production |
+// rule for SELECT statements. As soon as the rule that create the |
+// limit_opt non-terminal reduces, the SELECT statement rule will also |
+// reduce. So there is never a limit_opt non-terminal on the stack |
+// except as a transient. So there is never anything to destroy. |
+// |
+//%destructor limit_opt { |
+// sqlite3ExprDelete(pParse->db, $$.pLimit); |
+// sqlite3ExprDelete(pParse->db, $$.pOffset); |
+//} |
+limit_opt(A) ::= . {A.pLimit = 0; A.pOffset = 0;} |
+limit_opt(A) ::= LIMIT expr(X). {A.pLimit = X.pExpr; A.pOffset = 0;} |
+limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y). |
+ {A.pLimit = X.pExpr; A.pOffset = Y.pExpr;} |
+limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). |
+ {A.pOffset = X.pExpr; A.pLimit = Y.pExpr;} |
+ |
+/////////////////////////// The DELETE statement ///////////////////////////// |
+// |
+%ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT |
+cmd ::= DELETE FROM fullname(X) indexed_opt(I) where_opt(W) |
+ orderby_opt(O) limit_opt(L). { |
+ sqlite3SrcListIndexedBy(pParse, X, &I); |
+ W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "DELETE"); |
+ sqlite3DeleteFrom(pParse,X,W); |
+} |
+%endif |
+%ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT |
+cmd ::= DELETE FROM fullname(X) indexed_opt(I) where_opt(W). { |
+ sqlite3SrcListIndexedBy(pParse, X, &I); |
+ sqlite3DeleteFrom(pParse,X,W); |
+} |
+%endif |
+ |
+%type where_opt {Expr*} |
+%destructor where_opt {sqlite3ExprDelete(pParse->db, $$);} |
+ |
+where_opt(A) ::= . {A = 0;} |
+where_opt(A) ::= WHERE expr(X). {A = X.pExpr;} |
+ |
+////////////////////////// The UPDATE command //////////////////////////////// |
+// |
+%ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT |
+cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) where_opt(W) orderby_opt(O) limit_opt(L). { |
+ sqlite3SrcListIndexedBy(pParse, X, &I); |
+ sqlite3ExprListCheckLength(pParse,Y,"set list"); |
+ W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "UPDATE"); |
+ sqlite3Update(pParse,X,Y,W,R); |
+} |
+%endif |
+%ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT |
+cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) where_opt(W). { |
+ sqlite3SrcListIndexedBy(pParse, X, &I); |
+ sqlite3ExprListCheckLength(pParse,Y,"set list"); |
+ sqlite3Update(pParse,X,Y,W,R); |
+} |
+%endif |
+ |
+%type setlist {ExprList*} |
+%destructor setlist {sqlite3ExprListDelete(pParse->db, $$);} |
+ |
+setlist(A) ::= setlist(Z) COMMA nm(X) EQ expr(Y). { |
+ A = sqlite3ExprListAppend(pParse, Z, Y.pExpr); |
+ sqlite3ExprListSetName(pParse, A, &X, 1); |
+} |
+setlist(A) ::= nm(X) EQ expr(Y). { |
+ A = sqlite3ExprListAppend(pParse, 0, Y.pExpr); |
+ sqlite3ExprListSetName(pParse, A, &X, 1); |
+} |
+ |
+////////////////////////// The INSERT command ///////////////////////////////// |
+// |
+cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) |
+ VALUES LP itemlist(Y) RP. |
+ {sqlite3Insert(pParse, X, Y, 0, F, R);} |
+cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) select(S). |
+ {sqlite3Insert(pParse, X, 0, S, F, R);} |
+cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) DEFAULT VALUES. |
+ {sqlite3Insert(pParse, X, 0, 0, F, R);} |
+ |
+%type insert_cmd {u8} |
+insert_cmd(A) ::= INSERT orconf(R). {A = R;} |
+insert_cmd(A) ::= REPLACE. {A = OE_Replace;} |
+ |
+ |
+%type itemlist {ExprList*} |
+%destructor itemlist {sqlite3ExprListDelete(pParse->db, $$);} |
+ |
+itemlist(A) ::= itemlist(X) COMMA expr(Y). |
+ {A = sqlite3ExprListAppend(pParse,X,Y.pExpr);} |
+itemlist(A) ::= expr(X). |
+ {A = sqlite3ExprListAppend(pParse,0,X.pExpr);} |
+ |
+%type inscollist_opt {IdList*} |
+%destructor inscollist_opt {sqlite3IdListDelete(pParse->db, $$);} |
+%type inscollist {IdList*} |
+%destructor inscollist {sqlite3IdListDelete(pParse->db, $$);} |
+ |
+inscollist_opt(A) ::= . {A = 0;} |
+inscollist_opt(A) ::= LP inscollist(X) RP. {A = X;} |
+inscollist(A) ::= inscollist(X) COMMA nm(Y). |
+ {A = sqlite3IdListAppend(pParse->db,X,&Y);} |
+inscollist(A) ::= nm(Y). |
+ {A = sqlite3IdListAppend(pParse->db,0,&Y);} |
+ |
+/////////////////////////// Expression Processing ///////////////////////////// |
+// |
+ |
+%type expr {ExprSpan} |
+%destructor expr {sqlite3ExprDelete(pParse->db, $$.pExpr);} |
+%type term {ExprSpan} |
+%destructor term {sqlite3ExprDelete(pParse->db, $$.pExpr);} |
+ |
+%include { |
+ /* This is a utility routine used to set the ExprSpan.zStart and |
+ ** ExprSpan.zEnd values of pOut so that the span covers the complete |
+ ** range of text beginning with pStart and going to the end of pEnd. |
+ */ |
+ static void spanSet(ExprSpan *pOut, Token *pStart, Token *pEnd){ |
+ pOut->zStart = pStart->z; |
+ pOut->zEnd = &pEnd->z[pEnd->n]; |
+ } |
+ |
+ /* Construct a new Expr object from a single identifier. Use the |
+ ** new Expr to populate pOut. Set the span of pOut to be the identifier |
+ ** that created the expression. |
+ */ |
+ static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token *pValue){ |
+ pOut->pExpr = sqlite3PExpr(pParse, op, 0, 0, pValue); |
+ pOut->zStart = pValue->z; |
+ pOut->zEnd = &pValue->z[pValue->n]; |
+ } |
+} |
+ |
+expr(A) ::= term(X). {A = X;} |
+expr(A) ::= LP(B) expr(X) RP(E). {A.pExpr = X.pExpr; spanSet(&A,&B,&E);} |
+term(A) ::= NULL(X). {spanExpr(&A, pParse, @X, &X);} |
+expr(A) ::= id(X). {spanExpr(&A, pParse, TK_ID, &X);} |
+expr(A) ::= JOIN_KW(X). {spanExpr(&A, pParse, TK_ID, &X);} |
+expr(A) ::= nm(X) DOT nm(Y). { |
+ Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); |
+ Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y); |
+ A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0); |
+ spanSet(&A,&X,&Y); |
+} |
+expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). { |
+ Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); |
+ Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y); |
+ Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Z); |
+ Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0); |
+ A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0); |
+ spanSet(&A,&X,&Z); |
+} |
+term(A) ::= INTEGER|FLOAT|BLOB(X). {spanExpr(&A, pParse, @X, &X);} |
+term(A) ::= STRING(X). {spanExpr(&A, pParse, @X, &X);} |
+expr(A) ::= REGISTER(X). { |
+ /* When doing a nested parse, one can include terms in an expression |
+ ** that look like this: #1 #2 ... These terms refer to registers |
+ ** in the virtual machine. #N is the N-th register. */ |
+ if( pParse->nested==0 ){ |
+ sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &X); |
+ A.pExpr = 0; |
+ }else{ |
+ A.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, &X); |
+ if( A.pExpr ) sqlite3GetInt32(&X.z[1], &A.pExpr->iTable); |
+ } |
+ spanSet(&A, &X, &X); |
+} |
+expr(A) ::= VARIABLE(X). { |
+ spanExpr(&A, pParse, TK_VARIABLE, &X); |
+ sqlite3ExprAssignVarNumber(pParse, A.pExpr); |
+ spanSet(&A, &X, &X); |
+} |
+expr(A) ::= expr(E) COLLATE ids(C). { |
+ A.pExpr = sqlite3ExprSetCollByToken(pParse, E.pExpr, &C); |
+ A.zStart = E.zStart; |
+ A.zEnd = &C.z[C.n]; |
+} |
+%ifndef SQLITE_OMIT_CAST |
+expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). { |
+ A.pExpr = sqlite3PExpr(pParse, TK_CAST, E.pExpr, 0, &T); |
+ spanSet(&A,&X,&Y); |
+} |
+%endif SQLITE_OMIT_CAST |
+expr(A) ::= ID(X) LP distinct(D) exprlist(Y) RP(E). { |
+ if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ |
+ sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X); |
+ } |
+ A.pExpr = sqlite3ExprFunction(pParse, Y, &X); |
+ spanSet(&A,&X,&E); |
+ if( D && A.pExpr ){ |
+ A.pExpr->flags |= EP_Distinct; |
+ } |
+} |
+expr(A) ::= ID(X) LP STAR RP(E). { |
+ A.pExpr = sqlite3ExprFunction(pParse, 0, &X); |
+ spanSet(&A,&X,&E); |
+} |
+term(A) ::= CTIME_KW(OP). { |
+ /* The CURRENT_TIME, CURRENT_DATE, and CURRENT_TIMESTAMP values are |
+ ** treated as functions that return constants */ |
+ A.pExpr = sqlite3ExprFunction(pParse, 0,&OP); |
+ if( A.pExpr ){ |
+ A.pExpr->op = TK_CONST_FUNC; |
+ } |
+ spanSet(&A, &OP, &OP); |
+} |
+ |
+%include { |
+ /* This routine constructs a binary expression node out of two ExprSpan |
+ ** objects and uses the result to populate a new ExprSpan object. |
+ */ |
+ static void spanBinaryExpr( |
+ ExprSpan *pOut, /* Write the result here */ |
+ Parse *pParse, /* The parsing context. Errors accumulate here */ |
+ int op, /* The binary operation */ |
+ ExprSpan *pLeft, /* The left operand */ |
+ ExprSpan *pRight /* The right operand */ |
+ ){ |
+ pOut->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr, 0); |
+ pOut->zStart = pLeft->zStart; |
+ pOut->zEnd = pRight->zEnd; |
+ } |
+} |
+ |
+expr(A) ::= expr(X) AND(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} |
+expr(A) ::= expr(X) OR(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} |
+expr(A) ::= expr(X) LT|GT|GE|LE(OP) expr(Y). |
+ {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} |
+expr(A) ::= expr(X) EQ|NE(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} |
+expr(A) ::= expr(X) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y). |
+ {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} |
+expr(A) ::= expr(X) PLUS|MINUS(OP) expr(Y). |
+ {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} |
+expr(A) ::= expr(X) STAR|SLASH|REM(OP) expr(Y). |
+ {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} |
+expr(A) ::= expr(X) CONCAT(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} |
+%type likeop {struct LikeOp} |
+likeop(A) ::= LIKE_KW(X). {A.eOperator = X; A.not = 0;} |
+likeop(A) ::= NOT LIKE_KW(X). {A.eOperator = X; A.not = 1;} |
+likeop(A) ::= MATCH(X). {A.eOperator = X; A.not = 0;} |
+likeop(A) ::= NOT MATCH(X). {A.eOperator = X; A.not = 1;} |
+expr(A) ::= expr(X) likeop(OP) expr(Y). [LIKE_KW] { |
+ ExprList *pList; |
+ pList = sqlite3ExprListAppend(pParse,0, Y.pExpr); |
+ pList = sqlite3ExprListAppend(pParse,pList, X.pExpr); |
+ A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator); |
+ if( OP.not ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); |
+ A.zStart = X.zStart; |
+ A.zEnd = Y.zEnd; |
+ if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc; |
+} |
+expr(A) ::= expr(X) likeop(OP) expr(Y) ESCAPE expr(E). [LIKE_KW] { |
+ ExprList *pList; |
+ pList = sqlite3ExprListAppend(pParse,0, Y.pExpr); |
+ pList = sqlite3ExprListAppend(pParse,pList, X.pExpr); |
+ pList = sqlite3ExprListAppend(pParse,pList, E.pExpr); |
+ A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator); |
+ if( OP.not ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); |
+ A.zStart = X.zStart; |
+ A.zEnd = E.zEnd; |
+ if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc; |
+} |
+ |
+%include { |
+ /* Construct an expression node for a unary postfix operator |
+ */ |
+ static void spanUnaryPostfix( |
+ ExprSpan *pOut, /* Write the new expression node here */ |
+ Parse *pParse, /* Parsing context to record errors */ |
+ int op, /* The operator */ |
+ ExprSpan *pOperand, /* The operand */ |
+ Token *pPostOp /* The operand token for setting the span */ |
+ ){ |
+ pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0); |
+ pOut->zStart = pOperand->zStart; |
+ pOut->zEnd = &pPostOp->z[pPostOp->n]; |
+ } |
+} |
+ |
+expr(A) ::= expr(X) ISNULL|NOTNULL(E). {spanUnaryPostfix(&A,pParse,@E,&X,&E);} |
+expr(A) ::= expr(X) NOT NULL(E). {spanUnaryPostfix(&A,pParse,TK_NOTNULL,&X,&E);} |
+ |
+%include { |
+ /* A routine to convert a binary TK_IS or TK_ISNOT expression into a |
+ ** unary TK_ISNULL or TK_NOTNULL expression. */ |
+ static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){ |
+ sqlite3 *db = pParse->db; |
+ if( db->mallocFailed==0 && pY->op==TK_NULL ){ |
+ pA->op = (u8)op; |
+ sqlite3ExprDelete(db, pA->pRight); |
+ pA->pRight = 0; |
+ } |
+ } |
+} |
+ |
+// expr1 IS expr2 |
+// expr1 IS NOT expr2 |
+// |
+// If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL. If expr2 |
+// is any other expression, code as TK_IS or TK_ISNOT. |
+// |
+expr(A) ::= expr(X) IS expr(Y). { |
+ spanBinaryExpr(&A,pParse,TK_IS,&X,&Y); |
+ binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_ISNULL); |
+} |
+expr(A) ::= expr(X) IS NOT expr(Y). { |
+ spanBinaryExpr(&A,pParse,TK_ISNOT,&X,&Y); |
+ binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_NOTNULL); |
+} |
+ |
+%include { |
+ /* Construct an expression node for a unary prefix operator |
+ */ |
+ static void spanUnaryPrefix( |
+ ExprSpan *pOut, /* Write the new expression node here */ |
+ Parse *pParse, /* Parsing context to record errors */ |
+ int op, /* The operator */ |
+ ExprSpan *pOperand, /* The operand */ |
+ Token *pPreOp /* The operand token for setting the span */ |
+ ){ |
+ pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0); |
+ pOut->zStart = pPreOp->z; |
+ pOut->zEnd = pOperand->zEnd; |
+ } |
+} |
+ |
+ |
+ |
+expr(A) ::= NOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);} |
+expr(A) ::= BITNOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);} |
+expr(A) ::= MINUS(B) expr(X). [BITNOT] |
+ {spanUnaryPrefix(&A,pParse,TK_UMINUS,&X,&B);} |
+expr(A) ::= PLUS(B) expr(X). [BITNOT] |
+ {spanUnaryPrefix(&A,pParse,TK_UPLUS,&X,&B);} |
+ |
+%type between_op {int} |
+between_op(A) ::= BETWEEN. {A = 0;} |
+between_op(A) ::= NOT BETWEEN. {A = 1;} |
+expr(A) ::= expr(W) between_op(N) expr(X) AND expr(Y). [BETWEEN] { |
+ ExprList *pList = sqlite3ExprListAppend(pParse,0, X.pExpr); |
+ pList = sqlite3ExprListAppend(pParse,pList, Y.pExpr); |
+ A.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, W.pExpr, 0, 0); |
+ if( A.pExpr ){ |
+ A.pExpr->x.pList = pList; |
+ }else{ |
+ sqlite3ExprListDelete(pParse->db, pList); |
+ } |
+ if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); |
+ A.zStart = W.zStart; |
+ A.zEnd = Y.zEnd; |
+} |
+%ifndef SQLITE_OMIT_SUBQUERY |
+ %type in_op {int} |
+ in_op(A) ::= IN. {A = 0;} |
+ in_op(A) ::= NOT IN. {A = 1;} |
+ expr(A) ::= expr(X) in_op(N) LP exprlist(Y) RP(E). [IN] { |
+ if( Y==0 ){ |
+ /* Expressions of the form |
+ ** |
+ ** expr1 IN () |
+ ** expr1 NOT IN () |
+ ** |
+ ** simplify to constants 0 (false) and 1 (true), respectively, |
+ ** regardless of the value of expr1. |
+ */ |
+ A.pExpr = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &sqlite3IntTokens[N]); |
+ sqlite3ExprDelete(pParse->db, X.pExpr); |
+ }else{ |
+ A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); |
+ if( A.pExpr ){ |
+ A.pExpr->x.pList = Y; |
+ sqlite3ExprSetHeight(pParse, A.pExpr); |
+ }else{ |
+ sqlite3ExprListDelete(pParse->db, Y); |
+ } |
+ if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); |
+ } |
+ A.zStart = X.zStart; |
+ A.zEnd = &E.z[E.n]; |
+ } |
+ expr(A) ::= LP(B) select(X) RP(E). { |
+ A.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0); |
+ if( A.pExpr ){ |
+ A.pExpr->x.pSelect = X; |
+ ExprSetProperty(A.pExpr, EP_xIsSelect); |
+ sqlite3ExprSetHeight(pParse, A.pExpr); |
+ }else{ |
+ sqlite3SelectDelete(pParse->db, X); |
+ } |
+ A.zStart = B.z; |
+ A.zEnd = &E.z[E.n]; |
+ } |
+ expr(A) ::= expr(X) in_op(N) LP select(Y) RP(E). [IN] { |
+ A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); |
+ if( A.pExpr ){ |
+ A.pExpr->x.pSelect = Y; |
+ ExprSetProperty(A.pExpr, EP_xIsSelect); |
+ sqlite3ExprSetHeight(pParse, A.pExpr); |
+ }else{ |
+ sqlite3SelectDelete(pParse->db, Y); |
+ } |
+ if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); |
+ A.zStart = X.zStart; |
+ A.zEnd = &E.z[E.n]; |
+ } |
+ expr(A) ::= expr(X) in_op(N) nm(Y) dbnm(Z). [IN] { |
+ SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z); |
+ A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); |
+ if( A.pExpr ){ |
+ A.pExpr->x.pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0); |
+ ExprSetProperty(A.pExpr, EP_xIsSelect); |
+ sqlite3ExprSetHeight(pParse, A.pExpr); |
+ }else{ |
+ sqlite3SrcListDelete(pParse->db, pSrc); |
+ } |
+ if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); |
+ A.zStart = X.zStart; |
+ A.zEnd = Z.z ? &Z.z[Z.n] : &Y.z[Y.n]; |
+ } |
+ expr(A) ::= EXISTS(B) LP select(Y) RP(E). { |
+ Expr *p = A.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0); |
+ if( p ){ |
+ p->x.pSelect = Y; |
+ ExprSetProperty(p, EP_xIsSelect); |
+ sqlite3ExprSetHeight(pParse, p); |
+ }else{ |
+ sqlite3SelectDelete(pParse->db, Y); |
+ } |
+ A.zStart = B.z; |
+ A.zEnd = &E.z[E.n]; |
+ } |
+%endif SQLITE_OMIT_SUBQUERY |
+ |
+/* CASE expressions */ |
+expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). { |
+ A.pExpr = sqlite3PExpr(pParse, TK_CASE, X, Z, 0); |
+ if( A.pExpr ){ |
+ A.pExpr->x.pList = Y; |
+ sqlite3ExprSetHeight(pParse, A.pExpr); |
+ }else{ |
+ sqlite3ExprListDelete(pParse->db, Y); |
+ } |
+ A.zStart = C.z; |
+ A.zEnd = &E.z[E.n]; |
+} |
+%type case_exprlist {ExprList*} |
+%destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);} |
+case_exprlist(A) ::= case_exprlist(X) WHEN expr(Y) THEN expr(Z). { |
+ A = sqlite3ExprListAppend(pParse,X, Y.pExpr); |
+ A = sqlite3ExprListAppend(pParse,A, Z.pExpr); |
+} |
+case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). { |
+ A = sqlite3ExprListAppend(pParse,0, Y.pExpr); |
+ A = sqlite3ExprListAppend(pParse,A, Z.pExpr); |
+} |
+%type case_else {Expr*} |
+%destructor case_else {sqlite3ExprDelete(pParse->db, $$);} |
+case_else(A) ::= ELSE expr(X). {A = X.pExpr;} |
+case_else(A) ::= . {A = 0;} |
+%type case_operand {Expr*} |
+%destructor case_operand {sqlite3ExprDelete(pParse->db, $$);} |
+case_operand(A) ::= expr(X). {A = X.pExpr;} |
+case_operand(A) ::= . {A = 0;} |
+ |
+%type exprlist {ExprList*} |
+%destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);} |
+%type nexprlist {ExprList*} |
+%destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);} |
+ |
+exprlist(A) ::= nexprlist(X). {A = X;} |
+exprlist(A) ::= . {A = 0;} |
+nexprlist(A) ::= nexprlist(X) COMMA expr(Y). |
+ {A = sqlite3ExprListAppend(pParse,X,Y.pExpr);} |
+nexprlist(A) ::= expr(Y). |
+ {A = sqlite3ExprListAppend(pParse,0,Y.pExpr);} |
+ |
+ |
+///////////////////////////// The CREATE INDEX command /////////////////////// |
+// |
+cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D) |
+ ON nm(Y) LP idxlist(Z) RP(E). { |
+ sqlite3CreateIndex(pParse, &X, &D, |
+ sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U, |
+ &S, &E, SQLITE_SO_ASC, NE); |
+} |
+ |
+%type uniqueflag {int} |
+uniqueflag(A) ::= UNIQUE. {A = OE_Abort;} |
+uniqueflag(A) ::= . {A = OE_None;} |
+ |
+%type idxlist {ExprList*} |
+%destructor idxlist {sqlite3ExprListDelete(pParse->db, $$);} |
+%type idxlist_opt {ExprList*} |
+%destructor idxlist_opt {sqlite3ExprListDelete(pParse->db, $$);} |
+ |
+idxlist_opt(A) ::= . {A = 0;} |
+idxlist_opt(A) ::= LP idxlist(X) RP. {A = X;} |
+idxlist(A) ::= idxlist(X) COMMA nm(Y) collate(C) sortorder(Z). { |
+ Expr *p = 0; |
+ if( C.n>0 ){ |
+ p = sqlite3Expr(pParse->db, TK_COLUMN, 0); |
+ sqlite3ExprSetCollByToken(pParse, p, &C); |
+ } |
+ A = sqlite3ExprListAppend(pParse,X, p); |
+ sqlite3ExprListSetName(pParse,A,&Y,1); |
+ sqlite3ExprListCheckLength(pParse, A, "index"); |
+ if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; |
+} |
+idxlist(A) ::= nm(Y) collate(C) sortorder(Z). { |
+ Expr *p = 0; |
+ if( C.n>0 ){ |
+ p = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0); |
+ sqlite3ExprSetCollByToken(pParse, p, &C); |
+ } |
+ A = sqlite3ExprListAppend(pParse,0, p); |
+ sqlite3ExprListSetName(pParse, A, &Y, 1); |
+ sqlite3ExprListCheckLength(pParse, A, "index"); |
+ if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; |
+} |
+ |
+%type collate {Token} |
+collate(C) ::= . {C.z = 0; C.n = 0;} |
+collate(C) ::= COLLATE ids(X). {C = X;} |
+ |
+ |
+///////////////////////////// The DROP INDEX command ///////////////////////// |
+// |
+cmd ::= DROP INDEX ifexists(E) fullname(X). {sqlite3DropIndex(pParse, X, E);} |
+ |
+///////////////////////////// The VACUUM command ///////////////////////////// |
+// |
+%ifndef SQLITE_OMIT_VACUUM |
+%ifndef SQLITE_OMIT_ATTACH |
+cmd ::= VACUUM. {sqlite3Vacuum(pParse);} |
+cmd ::= VACUUM nm. {sqlite3Vacuum(pParse);} |
+%endif SQLITE_OMIT_ATTACH |
+%endif SQLITE_OMIT_VACUUM |
+ |
+///////////////////////////// The PRAGMA command ///////////////////////////// |
+// |
+%ifndef SQLITE_OMIT_PRAGMA |
+cmd ::= PRAGMA nm(X) dbnm(Z). {sqlite3Pragma(pParse,&X,&Z,0,0);} |
+cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);} |
+cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);} |
+cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y). |
+ {sqlite3Pragma(pParse,&X,&Z,&Y,1);} |
+cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP. |
+ {sqlite3Pragma(pParse,&X,&Z,&Y,1);} |
+ |
+nmnum(A) ::= plus_num(X). {A = X;} |
+nmnum(A) ::= nm(X). {A = X;} |
+nmnum(A) ::= ON(X). {A = X;} |
+nmnum(A) ::= DELETE(X). {A = X;} |
+nmnum(A) ::= DEFAULT(X). {A = X;} |
+%endif SQLITE_OMIT_PRAGMA |
+plus_num(A) ::= plus_opt number(X). {A = X;} |
+minus_num(A) ::= MINUS number(X). {A = X;} |
+number(A) ::= INTEGER|FLOAT(X). {A = X;} |
+plus_opt ::= PLUS. |
+plus_opt ::= . |
+ |
+//////////////////////////// The CREATE TRIGGER command ///////////////////// |
+ |
+%ifndef SQLITE_OMIT_TRIGGER |
+ |
+cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). { |
+ Token all; |
+ all.z = A.z; |
+ all.n = (int)(Z.z - A.z) + Z.n; |
+ sqlite3FinishTrigger(pParse, S, &all); |
+} |
+ |
+trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z) |
+ trigger_time(C) trigger_event(D) |
+ ON fullname(E) foreach_clause when_clause(G). { |
+ sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR); |
+ A = (Z.n==0?B:Z); |
+} |
+ |
+%type trigger_time {int} |
+trigger_time(A) ::= BEFORE. { A = TK_BEFORE; } |
+trigger_time(A) ::= AFTER. { A = TK_AFTER; } |
+trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;} |
+trigger_time(A) ::= . { A = TK_BEFORE; } |
+ |
+%type trigger_event {struct TrigEvent} |
+%destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);} |
+trigger_event(A) ::= DELETE|INSERT(OP). {A.a = @OP; A.b = 0;} |
+trigger_event(A) ::= UPDATE(OP). {A.a = @OP; A.b = 0;} |
+trigger_event(A) ::= UPDATE OF inscollist(X). {A.a = TK_UPDATE; A.b = X;} |
+ |
+foreach_clause ::= . |
+foreach_clause ::= FOR EACH ROW. |
+ |
+%type when_clause {Expr*} |
+%destructor when_clause {sqlite3ExprDelete(pParse->db, $$);} |
+when_clause(A) ::= . { A = 0; } |
+when_clause(A) ::= WHEN expr(X). { A = X.pExpr; } |
+ |
+%type trigger_cmd_list {TriggerStep*} |
+%destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);} |
+trigger_cmd_list(A) ::= trigger_cmd_list(Y) trigger_cmd(X) SEMI. { |
+ assert( Y!=0 ); |
+ Y->pLast->pNext = X; |
+ Y->pLast = X; |
+ A = Y; |
+} |
+trigger_cmd_list(A) ::= trigger_cmd(X) SEMI. { |
+ assert( X!=0 ); |
+ X->pLast = X; |
+ A = X; |
+} |
+ |
+// Disallow qualified table names on INSERT, UPDATE, and DELETE statements |
+// within a trigger. The table to INSERT, UPDATE, or DELETE is always in |
+// the same database as the table that the trigger fires on. |
+// |
+%type trnm {Token} |
+trnm(A) ::= nm(X). {A = X;} |
+trnm(A) ::= nm DOT nm(X). { |
+ A = X; |
+ sqlite3ErrorMsg(pParse, |
+ "qualified table names are not allowed on INSERT, UPDATE, and DELETE " |
+ "statements within triggers"); |
+} |
+ |
+// Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE |
+// statements within triggers. We make a specific error message for this |
+// since it is an exception to the default grammar rules. |
+// |
+tridxby ::= . |
+tridxby ::= INDEXED BY nm. { |
+ sqlite3ErrorMsg(pParse, |
+ "the INDEXED BY clause is not allowed on UPDATE or DELETE statements " |
+ "within triggers"); |
+} |
+tridxby ::= NOT INDEXED. { |
+ sqlite3ErrorMsg(pParse, |
+ "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements " |
+ "within triggers"); |
+} |
+ |
+ |
+ |
+%type trigger_cmd {TriggerStep*} |
+%destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);} |
+// UPDATE |
+trigger_cmd(A) ::= |
+ UPDATE orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z). |
+ { A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R); } |
+ |
+// INSERT |
+trigger_cmd(A) ::= |
+ insert_cmd(R) INTO trnm(X) inscollist_opt(F) VALUES LP itemlist(Y) RP. |
+ {A = sqlite3TriggerInsertStep(pParse->db, &X, F, Y, 0, R);} |
+ |
+trigger_cmd(A) ::= insert_cmd(R) INTO trnm(X) inscollist_opt(F) select(S). |
+ {A = sqlite3TriggerInsertStep(pParse->db, &X, F, 0, S, R);} |
+ |
+// DELETE |
+trigger_cmd(A) ::= DELETE FROM trnm(X) tridxby where_opt(Y). |
+ {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y);} |
+ |
+// SELECT |
+trigger_cmd(A) ::= select(X). {A = sqlite3TriggerSelectStep(pParse->db, X); } |
+ |
+// The special RAISE expression that may occur in trigger programs |
+expr(A) ::= RAISE(X) LP IGNORE RP(Y). { |
+ A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0); |
+ if( A.pExpr ){ |
+ A.pExpr->affinity = OE_Ignore; |
+ } |
+ A.zStart = X.z; |
+ A.zEnd = &Y.z[Y.n]; |
+} |
+expr(A) ::= RAISE(X) LP raisetype(T) COMMA nm(Z) RP(Y). { |
+ A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &Z); |
+ if( A.pExpr ) { |
+ A.pExpr->affinity = (char)T; |
+ } |
+ A.zStart = X.z; |
+ A.zEnd = &Y.z[Y.n]; |
+} |
+%endif !SQLITE_OMIT_TRIGGER |
+ |
+%type raisetype {int} |
+raisetype(A) ::= ROLLBACK. {A = OE_Rollback;} |
+raisetype(A) ::= ABORT. {A = OE_Abort;} |
+raisetype(A) ::= FAIL. {A = OE_Fail;} |
+ |
+ |
+//////////////////////// DROP TRIGGER statement ////////////////////////////// |
+%ifndef SQLITE_OMIT_TRIGGER |
+cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). { |
+ sqlite3DropTrigger(pParse,X,NOERR); |
+} |
+%endif !SQLITE_OMIT_TRIGGER |
+ |
+//////////////////////// ATTACH DATABASE file AS name ///////////////////////// |
+%ifndef SQLITE_OMIT_ATTACH |
+cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). { |
+ sqlite3Attach(pParse, F.pExpr, D.pExpr, K); |
+} |
+cmd ::= DETACH database_kw_opt expr(D). { |
+ sqlite3Detach(pParse, D.pExpr); |
+} |
+ |
+%type key_opt {Expr*} |
+%destructor key_opt {sqlite3ExprDelete(pParse->db, $$);} |
+key_opt(A) ::= . { A = 0; } |
+key_opt(A) ::= KEY expr(X). { A = X.pExpr; } |
+ |
+database_kw_opt ::= DATABASE. |
+database_kw_opt ::= . |
+%endif SQLITE_OMIT_ATTACH |
+ |
+////////////////////////// REINDEX collation ////////////////////////////////// |
+%ifndef SQLITE_OMIT_REINDEX |
+cmd ::= REINDEX. {sqlite3Reindex(pParse, 0, 0);} |
+cmd ::= REINDEX nm(X) dbnm(Y). {sqlite3Reindex(pParse, &X, &Y);} |
+%endif SQLITE_OMIT_REINDEX |
+ |
+/////////////////////////////////// ANALYZE /////////////////////////////////// |
+%ifndef SQLITE_OMIT_ANALYZE |
+cmd ::= ANALYZE. {sqlite3Analyze(pParse, 0, 0);} |
+cmd ::= ANALYZE nm(X) dbnm(Y). {sqlite3Analyze(pParse, &X, &Y);} |
+%endif |
+ |
+//////////////////////// ALTER TABLE table ... //////////////////////////////// |
+%ifndef SQLITE_OMIT_ALTERTABLE |
+cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). { |
+ sqlite3AlterRenameTable(pParse,X,&Z); |
+} |
+cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column(Y). { |
+ sqlite3AlterFinishAddColumn(pParse, &Y); |
+} |
+add_column_fullname ::= fullname(X). { |
+ pParse->db->lookaside.bEnabled = 0; |
+ sqlite3AlterBeginAddColumn(pParse, X); |
+} |
+kwcolumn_opt ::= . |
+kwcolumn_opt ::= COLUMNKW. |
+%endif SQLITE_OMIT_ALTERTABLE |
+ |
+//////////////////////// CREATE VIRTUAL TABLE ... ///////////////////////////// |
+%ifndef SQLITE_OMIT_VIRTUALTABLE |
+cmd ::= create_vtab. {sqlite3VtabFinishParse(pParse,0);} |
+cmd ::= create_vtab LP vtabarglist RP(X). {sqlite3VtabFinishParse(pParse,&X);} |
+create_vtab ::= createkw VIRTUAL TABLE nm(X) dbnm(Y) USING nm(Z). { |
+ sqlite3VtabBeginParse(pParse, &X, &Y, &Z); |
+} |
+vtabarglist ::= vtabarg. |
+vtabarglist ::= vtabarglist COMMA vtabarg. |
+vtabarg ::= . {sqlite3VtabArgInit(pParse);} |
+vtabarg ::= vtabarg vtabargtoken. |
+vtabargtoken ::= ANY(X). {sqlite3VtabArgExtend(pParse,&X);} |
+vtabargtoken ::= lp anylist RP(X). {sqlite3VtabArgExtend(pParse,&X);} |
+lp ::= LP(X). {sqlite3VtabArgExtend(pParse,&X);} |
+anylist ::= . |
+anylist ::= anylist LP anylist RP. |
+anylist ::= anylist ANY. |
+%endif SQLITE_OMIT_VIRTUALTABLE |