| Index: third_party/sqlite/src/src/test_fuzzer.c
|
| diff --git a/third_party/sqlite/src/src/test_fuzzer.c b/third_party/sqlite/src/src/test_fuzzer.c
|
| deleted file mode 100644
|
| index cf59257175a32bfaa2b9d69eb859a0824fb6194d..0000000000000000000000000000000000000000
|
| --- a/third_party/sqlite/src/src/test_fuzzer.c
|
| +++ /dev/null
|
| @@ -1,944 +0,0 @@
|
| -/*
|
| -** 2011 March 24
|
| -**
|
| -** The author disclaims copyright to this source code. In place of
|
| -** a legal notice, here is a blessing:
|
| -**
|
| -** May you do good and not evil.
|
| -** May you find forgiveness for yourself and forgive others.
|
| -** May you share freely, never taking more than you give.
|
| -**
|
| -*************************************************************************
|
| -**
|
| -** Code for demonstartion virtual table that generates variations
|
| -** on an input word at increasing edit distances from the original.
|
| -**
|
| -** A fuzzer virtual table is created like this:
|
| -**
|
| -** CREATE VIRTUAL TABLE temp.f USING fuzzer;
|
| -**
|
| -** The name of the new virtual table in the example above is "f".
|
| -** Note that all fuzzer virtual tables must be TEMP tables. The
|
| -** "temp." prefix in front of the table name is required when the
|
| -** table is being created. The "temp." prefix can be omitted when
|
| -** using the table as long as the name is unambiguous.
|
| -**
|
| -** Before being used, the fuzzer needs to be programmed by giving it
|
| -** character transformations and a cost associated with each transformation.
|
| -** Examples:
|
| -**
|
| -** INSERT INTO f(cFrom,cTo,Cost) VALUES('','a',100);
|
| -**
|
| -** The above statement says that the cost of inserting a letter 'a' is
|
| -** 100. (All costs are integers. We recommend that costs be scaled so
|
| -** that the average cost is around 100.)
|
| -**
|
| -** INSERT INTO f(cFrom,cTo,Cost) VALUES('b','',87);
|
| -**
|
| -** The above statement says that the cost of deleting a single letter
|
| -** 'b' is 87.
|
| -**
|
| -** INSERT INTO f(cFrom,cTo,Cost) VALUES('o','oe',38);
|
| -** INSERT INTO f(cFrom,cTo,Cost) VALUES('oe','o',40);
|
| -**
|
| -** This third example says that the cost of transforming the single
|
| -** letter "o" into the two-letter sequence "oe" is 38 and that the
|
| -** cost of transforming "oe" back into "o" is 40.
|
| -**
|
| -** After all the transformation costs have been set, the fuzzer table
|
| -** can be queried as follows:
|
| -**
|
| -** SELECT word, distance FROM f
|
| -** WHERE word MATCH 'abcdefg'
|
| -** AND distance<200;
|
| -**
|
| -** This first query outputs the string "abcdefg" and all strings that
|
| -** can be derived from that string by appling the specified transformations.
|
| -** The strings are output together with their total transformation cost
|
| -** (called "distance") and appear in order of increasing cost. No string
|
| -** is output more than once. If there are multiple ways to transform the
|
| -** target string into the output string then the lowest cost transform is
|
| -** the one that is returned. In the example, the search is limited to
|
| -** strings with a total distance of less than 200.
|
| -**
|
| -** It is important to put some kind of a limit on the fuzzer output. This
|
| -** can be either in the form of a LIMIT clause at the end of the query,
|
| -** or better, a "distance<NNN" constraint where NNN is some number. The
|
| -** running time and memory requirement is exponential in the value of NNN
|
| -** so you want to make sure that NNN is not too big. A value of NNN that
|
| -** is about twice the average transformation cost seems to give good results.
|
| -**
|
| -** The fuzzer table can be useful for tasks such as spelling correction.
|
| -** Suppose there is a second table vocabulary(w) where the w column contains
|
| -** all correctly spelled words. Let $word be a word you want to look up.
|
| -**
|
| -** SELECT vocabulary.w FROM f, vocabulary
|
| -** WHERE f.word MATCH $word
|
| -** AND f.distance<=200
|
| -** AND f.word=vocabulary.w
|
| -** LIMIT 20
|
| -**
|
| -** The query above gives the 20 closest words to the $word being tested.
|
| -** (Note that for good performance, the vocubulary.w column should be
|
| -** indexed.)
|
| -**
|
| -** A similar query can be used to find all words in the dictionary that
|
| -** begin with some prefix $prefix:
|
| -**
|
| -** SELECT vocabulary.w FROM f, vocabulary
|
| -** WHERE f.word MATCH $prefix
|
| -** AND f.distance<=200
|
| -** AND vocabulary.w BETWEEN f.word AND (f.word || x'F7BFBFBF')
|
| -** LIMIT 50
|
| -**
|
| -** This last query will show up to 50 words out of the vocabulary that
|
| -** match or nearly match the $prefix.
|
| -*/
|
| -#include "sqlite3.h"
|
| -#include <stdlib.h>
|
| -#include <string.h>
|
| -#include <assert.h>
|
| -#include <stdio.h>
|
| -
|
| -#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| -
|
| -/*
|
| -** Forward declaration of objects used by this implementation
|
| -*/
|
| -typedef struct fuzzer_vtab fuzzer_vtab;
|
| -typedef struct fuzzer_cursor fuzzer_cursor;
|
| -typedef struct fuzzer_rule fuzzer_rule;
|
| -typedef struct fuzzer_seen fuzzer_seen;
|
| -typedef struct fuzzer_stem fuzzer_stem;
|
| -
|
| -/*
|
| -** Type of the "cost" of an edit operation. Might be changed to
|
| -** "float" or "double" or "sqlite3_int64" in the future.
|
| -*/
|
| -typedef int fuzzer_cost;
|
| -
|
| -
|
| -/*
|
| -** Each transformation rule is stored as an instance of this object.
|
| -** All rules are kept on a linked list sorted by rCost.
|
| -*/
|
| -struct fuzzer_rule {
|
| - fuzzer_rule *pNext; /* Next rule in order of increasing rCost */
|
| - fuzzer_cost rCost; /* Cost of this transformation */
|
| - int nFrom, nTo; /* Length of the zFrom and zTo strings */
|
| - char *zFrom; /* Transform from */
|
| - char zTo[4]; /* Transform to (extra space appended) */
|
| -};
|
| -
|
| -/*
|
| -** A stem object is used to generate variants. It is also used to record
|
| -** previously generated outputs.
|
| -**
|
| -** Every stem is added to a hash table as it is output. Generation of
|
| -** duplicate stems is suppressed.
|
| -**
|
| -** Active stems (those that might generate new outputs) are kepts on a linked
|
| -** list sorted by increasing cost. The cost is the sum of rBaseCost and
|
| -** pRule->rCost.
|
| -*/
|
| -struct fuzzer_stem {
|
| - char *zBasis; /* Word being fuzzed */
|
| - int nBasis; /* Length of the zBasis string */
|
| - const fuzzer_rule *pRule; /* Current rule to apply */
|
| - int n; /* Apply pRule at this character offset */
|
| - fuzzer_cost rBaseCost; /* Base cost of getting to zBasis */
|
| - fuzzer_cost rCostX; /* Precomputed rBaseCost + pRule->rCost */
|
| - fuzzer_stem *pNext; /* Next stem in rCost order */
|
| - fuzzer_stem *pHash; /* Next stem with same hash on zBasis */
|
| -};
|
| -
|
| -/*
|
| -** A fuzzer virtual-table object
|
| -*/
|
| -struct fuzzer_vtab {
|
| - sqlite3_vtab base; /* Base class - must be first */
|
| - char *zClassName; /* Name of this class. Default: "fuzzer" */
|
| - fuzzer_rule *pRule; /* All active rules in this fuzzer */
|
| - fuzzer_rule *pNewRule; /* New rules to add when last cursor expires */
|
| - int nCursor; /* Number of active cursors */
|
| -};
|
| -
|
| -#define FUZZER_HASH 4001 /* Hash table size */
|
| -#define FUZZER_NQUEUE 20 /* Number of slots on the stem queue */
|
| -
|
| -/* A fuzzer cursor object */
|
| -struct fuzzer_cursor {
|
| - sqlite3_vtab_cursor base; /* Base class - must be first */
|
| - sqlite3_int64 iRowid; /* The rowid of the current word */
|
| - fuzzer_vtab *pVtab; /* The virtual table this cursor belongs to */
|
| - fuzzer_cost rLimit; /* Maximum cost of any term */
|
| - fuzzer_stem *pStem; /* Stem with smallest rCostX */
|
| - fuzzer_stem *pDone; /* Stems already processed to completion */
|
| - fuzzer_stem *aQueue[FUZZER_NQUEUE]; /* Queue of stems with higher rCostX */
|
| - int mxQueue; /* Largest used index in aQueue[] */
|
| - char *zBuf; /* Temporary use buffer */
|
| - int nBuf; /* Bytes allocated for zBuf */
|
| - int nStem; /* Number of stems allocated */
|
| - fuzzer_rule nullRule; /* Null rule used first */
|
| - fuzzer_stem *apHash[FUZZER_HASH]; /* Hash of previously generated terms */
|
| -};
|
| -
|
| -/* Methods for the fuzzer module */
|
| -static int fuzzerConnect(
|
| - sqlite3 *db,
|
| - void *pAux,
|
| - int argc, const char *const*argv,
|
| - sqlite3_vtab **ppVtab,
|
| - char **pzErr
|
| -){
|
| - fuzzer_vtab *pNew;
|
| - int n;
|
| - if( strcmp(argv[1],"temp")!=0 ){
|
| - *pzErr = sqlite3_mprintf("%s virtual tables must be TEMP", argv[0]);
|
| - return SQLITE_ERROR;
|
| - }
|
| - n = strlen(argv[0]) + 1;
|
| - pNew = sqlite3_malloc( sizeof(*pNew) + n );
|
| - if( pNew==0 ) return SQLITE_NOMEM;
|
| - pNew->zClassName = (char*)&pNew[1];
|
| - memcpy(pNew->zClassName, argv[0], n);
|
| - sqlite3_declare_vtab(db, "CREATE TABLE x(word,distance,cFrom,cTo,cost)");
|
| - memset(pNew, 0, sizeof(*pNew));
|
| - *ppVtab = &pNew->base;
|
| - return SQLITE_OK;
|
| -}
|
| -/* Note that for this virtual table, the xCreate and xConnect
|
| -** methods are identical. */
|
| -
|
| -static int fuzzerDisconnect(sqlite3_vtab *pVtab){
|
| - fuzzer_vtab *p = (fuzzer_vtab*)pVtab;
|
| - assert( p->nCursor==0 );
|
| - do{
|
| - while( p->pRule ){
|
| - fuzzer_rule *pRule = p->pRule;
|
| - p->pRule = pRule->pNext;
|
| - sqlite3_free(pRule);
|
| - }
|
| - p->pRule = p->pNewRule;
|
| - p->pNewRule = 0;
|
| - }while( p->pRule );
|
| - sqlite3_free(p);
|
| - return SQLITE_OK;
|
| -}
|
| -/* The xDisconnect and xDestroy methods are also the same */
|
| -
|
| -/*
|
| -** The two input rule lists are both sorted in order of increasing
|
| -** cost. Merge them together into a single list, sorted by cost, and
|
| -** return a pointer to the head of that list.
|
| -*/
|
| -static fuzzer_rule *fuzzerMergeRules(fuzzer_rule *pA, fuzzer_rule *pB){
|
| - fuzzer_rule head;
|
| - fuzzer_rule *pTail;
|
| -
|
| - pTail = &head;
|
| - while( pA && pB ){
|
| - if( pA->rCost<=pB->rCost ){
|
| - pTail->pNext = pA;
|
| - pTail = pA;
|
| - pA = pA->pNext;
|
| - }else{
|
| - pTail->pNext = pB;
|
| - pTail = pB;
|
| - pB = pB->pNext;
|
| - }
|
| - }
|
| - if( pA==0 ){
|
| - pTail->pNext = pB;
|
| - }else{
|
| - pTail->pNext = pA;
|
| - }
|
| - return head.pNext;
|
| -}
|
| -
|
| -
|
| -/*
|
| -** Open a new fuzzer cursor.
|
| -*/
|
| -static int fuzzerOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
|
| - fuzzer_vtab *p = (fuzzer_vtab*)pVTab;
|
| - fuzzer_cursor *pCur;
|
| - pCur = sqlite3_malloc( sizeof(*pCur) );
|
| - if( pCur==0 ) return SQLITE_NOMEM;
|
| - memset(pCur, 0, sizeof(*pCur));
|
| - pCur->pVtab = p;
|
| - *ppCursor = &pCur->base;
|
| - if( p->nCursor==0 && p->pNewRule ){
|
| - unsigned int i;
|
| - fuzzer_rule *pX;
|
| - fuzzer_rule *a[15];
|
| - for(i=0; i<sizeof(a)/sizeof(a[0]); i++) a[i] = 0;
|
| - while( (pX = p->pNewRule)!=0 ){
|
| - p->pNewRule = pX->pNext;
|
| - pX->pNext = 0;
|
| - for(i=0; a[i] && i<sizeof(a)/sizeof(a[0])-1; i++){
|
| - pX = fuzzerMergeRules(a[i], pX);
|
| - a[i] = 0;
|
| - }
|
| - a[i] = fuzzerMergeRules(a[i], pX);
|
| - }
|
| - for(pX=a[0], i=1; i<sizeof(a)/sizeof(a[0]); i++){
|
| - pX = fuzzerMergeRules(a[i], pX);
|
| - }
|
| - p->pRule = fuzzerMergeRules(p->pRule, pX);
|
| - }
|
| - p->nCursor++;
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/*
|
| -** Free all stems in a list.
|
| -*/
|
| -static void fuzzerClearStemList(fuzzer_stem *pStem){
|
| - while( pStem ){
|
| - fuzzer_stem *pNext = pStem->pNext;
|
| - sqlite3_free(pStem);
|
| - pStem = pNext;
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Free up all the memory allocated by a cursor. Set it rLimit to 0
|
| -** to indicate that it is at EOF.
|
| -*/
|
| -static void fuzzerClearCursor(fuzzer_cursor *pCur, int clearHash){
|
| - int i;
|
| - fuzzerClearStemList(pCur->pStem);
|
| - fuzzerClearStemList(pCur->pDone);
|
| - for(i=0; i<FUZZER_NQUEUE; i++) fuzzerClearStemList(pCur->aQueue[i]);
|
| - pCur->rLimit = (fuzzer_cost)0;
|
| - if( clearHash && pCur->nStem ){
|
| - pCur->mxQueue = 0;
|
| - pCur->pStem = 0;
|
| - pCur->pDone = 0;
|
| - memset(pCur->aQueue, 0, sizeof(pCur->aQueue));
|
| - memset(pCur->apHash, 0, sizeof(pCur->apHash));
|
| - }
|
| - pCur->nStem = 0;
|
| -}
|
| -
|
| -/*
|
| -** Close a fuzzer cursor.
|
| -*/
|
| -static int fuzzerClose(sqlite3_vtab_cursor *cur){
|
| - fuzzer_cursor *pCur = (fuzzer_cursor *)cur;
|
| - fuzzerClearCursor(pCur, 0);
|
| - sqlite3_free(pCur->zBuf);
|
| - pCur->pVtab->nCursor--;
|
| - sqlite3_free(pCur);
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/*
|
| -** Compute the current output term for a fuzzer_stem.
|
| -*/
|
| -static int fuzzerRender(
|
| - fuzzer_stem *pStem, /* The stem to be rendered */
|
| - char **pzBuf, /* Write results into this buffer. realloc if needed */
|
| - int *pnBuf /* Size of the buffer */
|
| -){
|
| - const fuzzer_rule *pRule = pStem->pRule;
|
| - int n;
|
| - char *z;
|
| -
|
| - n = pStem->nBasis + pRule->nTo - pRule->nFrom;
|
| - if( (*pnBuf)<n+1 ){
|
| - (*pzBuf) = sqlite3_realloc((*pzBuf), n+100);
|
| - if( (*pzBuf)==0 ) return SQLITE_NOMEM;
|
| - (*pnBuf) = n+100;
|
| - }
|
| - n = pStem->n;
|
| - z = *pzBuf;
|
| - if( n<0 ){
|
| - memcpy(z, pStem->zBasis, pStem->nBasis+1);
|
| - }else{
|
| - memcpy(z, pStem->zBasis, n);
|
| - memcpy(&z[n], pRule->zTo, pRule->nTo);
|
| - memcpy(&z[n+pRule->nTo], &pStem->zBasis[n+pRule->nFrom],
|
| - pStem->nBasis-n-pRule->nFrom+1);
|
| - }
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/*
|
| -** Compute a hash on zBasis.
|
| -*/
|
| -static unsigned int fuzzerHash(const char *z){
|
| - unsigned int h = 0;
|
| - while( *z ){ h = (h<<3) ^ (h>>29) ^ *(z++); }
|
| - return h % FUZZER_HASH;
|
| -}
|
| -
|
| -/*
|
| -** Current cost of a stem
|
| -*/
|
| -static fuzzer_cost fuzzerCost(fuzzer_stem *pStem){
|
| - return pStem->rCostX = pStem->rBaseCost + pStem->pRule->rCost;
|
| -}
|
| -
|
| -#if 0
|
| -/*
|
| -** Print a description of a fuzzer_stem on stderr.
|
| -*/
|
| -static void fuzzerStemPrint(
|
| - const char *zPrefix,
|
| - fuzzer_stem *pStem,
|
| - const char *zSuffix
|
| -){
|
| - if( pStem->n<0 ){
|
| - fprintf(stderr, "%s[%s](%d)-->self%s",
|
| - zPrefix,
|
| - pStem->zBasis, pStem->rBaseCost,
|
| - zSuffix
|
| - );
|
| - }else{
|
| - char *zBuf = 0;
|
| - int nBuf = 0;
|
| - if( fuzzerRender(pStem, &zBuf, &nBuf)!=SQLITE_OK ) return;
|
| - fprintf(stderr, "%s[%s](%d)-->{%s}(%d)%s",
|
| - zPrefix,
|
| - pStem->zBasis, pStem->rBaseCost, zBuf, pStem->,
|
| - zSuffix
|
| - );
|
| - sqlite3_free(zBuf);
|
| - }
|
| -}
|
| -#endif
|
| -
|
| -/*
|
| -** Return 1 if the string to which the cursor is point has already
|
| -** been emitted. Return 0 if not. Return -1 on a memory allocation
|
| -** failures.
|
| -*/
|
| -static int fuzzerSeen(fuzzer_cursor *pCur, fuzzer_stem *pStem){
|
| - unsigned int h;
|
| - fuzzer_stem *pLookup;
|
| -
|
| - if( fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){
|
| - return -1;
|
| - }
|
| - h = fuzzerHash(pCur->zBuf);
|
| - pLookup = pCur->apHash[h];
|
| - while( pLookup && strcmp(pLookup->zBasis, pCur->zBuf)!=0 ){
|
| - pLookup = pLookup->pHash;
|
| - }
|
| - return pLookup!=0;
|
| -}
|
| -
|
| -/*
|
| -** Advance a fuzzer_stem to its next value. Return 0 if there are
|
| -** no more values that can be generated by this fuzzer_stem. Return
|
| -** -1 on a memory allocation failure.
|
| -*/
|
| -static int fuzzerAdvance(fuzzer_cursor *pCur, fuzzer_stem *pStem){
|
| - const fuzzer_rule *pRule;
|
| - while( (pRule = pStem->pRule)!=0 ){
|
| - while( pStem->n < pStem->nBasis - pRule->nFrom ){
|
| - pStem->n++;
|
| - if( pRule->nFrom==0
|
| - || memcmp(&pStem->zBasis[pStem->n], pRule->zFrom, pRule->nFrom)==0
|
| - ){
|
| - /* Found a rewrite case. Make sure it is not a duplicate */
|
| - int rc = fuzzerSeen(pCur, pStem);
|
| - if( rc<0 ) return -1;
|
| - if( rc==0 ){
|
| - fuzzerCost(pStem);
|
| - return 1;
|
| - }
|
| - }
|
| - }
|
| - pStem->n = -1;
|
| - pStem->pRule = pRule->pNext;
|
| - if( pStem->pRule && fuzzerCost(pStem)>pCur->rLimit ) pStem->pRule = 0;
|
| - }
|
| - return 0;
|
| -}
|
| -
|
| -/*
|
| -** The two input stem lists are both sorted in order of increasing
|
| -** rCostX. Merge them together into a single list, sorted by rCostX, and
|
| -** return a pointer to the head of that new list.
|
| -*/
|
| -static fuzzer_stem *fuzzerMergeStems(fuzzer_stem *pA, fuzzer_stem *pB){
|
| - fuzzer_stem head;
|
| - fuzzer_stem *pTail;
|
| -
|
| - pTail = &head;
|
| - while( pA && pB ){
|
| - if( pA->rCostX<=pB->rCostX ){
|
| - pTail->pNext = pA;
|
| - pTail = pA;
|
| - pA = pA->pNext;
|
| - }else{
|
| - pTail->pNext = pB;
|
| - pTail = pB;
|
| - pB = pB->pNext;
|
| - }
|
| - }
|
| - if( pA==0 ){
|
| - pTail->pNext = pB;
|
| - }else{
|
| - pTail->pNext = pA;
|
| - }
|
| - return head.pNext;
|
| -}
|
| -
|
| -/*
|
| -** Load pCur->pStem with the lowest-cost stem. Return a pointer
|
| -** to the lowest-cost stem.
|
| -*/
|
| -static fuzzer_stem *fuzzerLowestCostStem(fuzzer_cursor *pCur){
|
| - fuzzer_stem *pBest, *pX;
|
| - int iBest;
|
| - int i;
|
| -
|
| - if( pCur->pStem==0 ){
|
| - iBest = -1;
|
| - pBest = 0;
|
| - for(i=0; i<=pCur->mxQueue; i++){
|
| - pX = pCur->aQueue[i];
|
| - if( pX==0 ) continue;
|
| - if( pBest==0 || pBest->rCostX>pX->rCostX ){
|
| - pBest = pX;
|
| - iBest = i;
|
| - }
|
| - }
|
| - if( pBest ){
|
| - pCur->aQueue[iBest] = pBest->pNext;
|
| - pBest->pNext = 0;
|
| - pCur->pStem = pBest;
|
| - }
|
| - }
|
| - return pCur->pStem;
|
| -}
|
| -
|
| -/*
|
| -** Insert pNew into queue of pending stems. Then find the stem
|
| -** with the lowest rCostX and move it into pCur->pStem.
|
| -** list. The insert is done such the pNew is in the correct order
|
| -** according to fuzzer_stem.zBaseCost+fuzzer_stem.pRule->rCost.
|
| -*/
|
| -static fuzzer_stem *fuzzerInsert(fuzzer_cursor *pCur, fuzzer_stem *pNew){
|
| - fuzzer_stem *pX;
|
| - int i;
|
| -
|
| - /* If pCur->pStem exists and is greater than pNew, then make pNew
|
| - ** the new pCur->pStem and insert the old pCur->pStem instead.
|
| - */
|
| - if( (pX = pCur->pStem)!=0 && pX->rCostX>pNew->rCostX ){
|
| - pNew->pNext = 0;
|
| - pCur->pStem = pNew;
|
| - pNew = pX;
|
| - }
|
| -
|
| - /* Insert the new value */
|
| - pNew->pNext = 0;
|
| - pX = pNew;
|
| - for(i=0; i<=pCur->mxQueue; i++){
|
| - if( pCur->aQueue[i] ){
|
| - pX = fuzzerMergeStems(pX, pCur->aQueue[i]);
|
| - pCur->aQueue[i] = 0;
|
| - }else{
|
| - pCur->aQueue[i] = pX;
|
| - break;
|
| - }
|
| - }
|
| - if( i>pCur->mxQueue ){
|
| - if( i<FUZZER_NQUEUE ){
|
| - pCur->mxQueue = i;
|
| - pCur->aQueue[i] = pX;
|
| - }else{
|
| - assert( pCur->mxQueue==FUZZER_NQUEUE-1 );
|
| - pX = fuzzerMergeStems(pX, pCur->aQueue[FUZZER_NQUEUE-1]);
|
| - pCur->aQueue[FUZZER_NQUEUE-1] = pX;
|
| - }
|
| - }
|
| -
|
| - return fuzzerLowestCostStem(pCur);
|
| -}
|
| -
|
| -/*
|
| -** Allocate a new fuzzer_stem. Add it to the hash table but do not
|
| -** link it into either the pCur->pStem or pCur->pDone lists.
|
| -*/
|
| -static fuzzer_stem *fuzzerNewStem(
|
| - fuzzer_cursor *pCur,
|
| - const char *zWord,
|
| - fuzzer_cost rBaseCost
|
| -){
|
| - fuzzer_stem *pNew;
|
| - unsigned int h;
|
| -
|
| - pNew = sqlite3_malloc( sizeof(*pNew) + strlen(zWord) + 1 );
|
| - if( pNew==0 ) return 0;
|
| - memset(pNew, 0, sizeof(*pNew));
|
| - pNew->zBasis = (char*)&pNew[1];
|
| - pNew->nBasis = strlen(zWord);
|
| - memcpy(pNew->zBasis, zWord, pNew->nBasis+1);
|
| - pNew->pRule = pCur->pVtab->pRule;
|
| - pNew->n = -1;
|
| - pNew->rBaseCost = pNew->rCostX = rBaseCost;
|
| - h = fuzzerHash(pNew->zBasis);
|
| - pNew->pHash = pCur->apHash[h];
|
| - pCur->apHash[h] = pNew;
|
| - pCur->nStem++;
|
| - return pNew;
|
| -}
|
| -
|
| -
|
| -/*
|
| -** Advance a cursor to its next row of output
|
| -*/
|
| -static int fuzzerNext(sqlite3_vtab_cursor *cur){
|
| - fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
|
| - int rc;
|
| - fuzzer_stem *pStem, *pNew;
|
| -
|
| - pCur->iRowid++;
|
| -
|
| - /* Use the element the cursor is currently point to to create
|
| - ** a new stem and insert the new stem into the priority queue.
|
| - */
|
| - pStem = pCur->pStem;
|
| - if( pStem->rCostX>0 ){
|
| - rc = fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf);
|
| - if( rc==SQLITE_NOMEM ) return SQLITE_NOMEM;
|
| - pNew = fuzzerNewStem(pCur, pCur->zBuf, pStem->rCostX);
|
| - if( pNew ){
|
| - if( fuzzerAdvance(pCur, pNew)==0 ){
|
| - pNew->pNext = pCur->pDone;
|
| - pCur->pDone = pNew;
|
| - }else{
|
| - if( fuzzerInsert(pCur, pNew)==pNew ){
|
| - return SQLITE_OK;
|
| - }
|
| - }
|
| - }else{
|
| - return SQLITE_NOMEM;
|
| - }
|
| - }
|
| -
|
| - /* Adjust the priority queue so that the first element of the
|
| - ** stem list is the next lowest cost word.
|
| - */
|
| - while( (pStem = pCur->pStem)!=0 ){
|
| - if( fuzzerAdvance(pCur, pStem) ){
|
| - pCur->pStem = 0;
|
| - pStem = fuzzerInsert(pCur, pStem);
|
| - if( (rc = fuzzerSeen(pCur, pStem))!=0 ){
|
| - if( rc<0 ) return SQLITE_NOMEM;
|
| - continue;
|
| - }
|
| - return SQLITE_OK; /* New word found */
|
| - }
|
| - pCur->pStem = 0;
|
| - pStem->pNext = pCur->pDone;
|
| - pCur->pDone = pStem;
|
| - if( fuzzerLowestCostStem(pCur) ){
|
| - rc = fuzzerSeen(pCur, pCur->pStem);
|
| - if( rc<0 ) return SQLITE_NOMEM;
|
| - if( rc==0 ){
|
| - return SQLITE_OK;
|
| - }
|
| - }
|
| - }
|
| -
|
| - /* Reach this point only if queue has been exhausted and there is
|
| - ** nothing left to be output. */
|
| - pCur->rLimit = (fuzzer_cost)0;
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/*
|
| -** Called to "rewind" a cursor back to the beginning so that
|
| -** it starts its output over again. Always called at least once
|
| -** prior to any fuzzerColumn, fuzzerRowid, or fuzzerEof call.
|
| -*/
|
| -static int fuzzerFilter(
|
| - sqlite3_vtab_cursor *pVtabCursor,
|
| - int idxNum, const char *idxStr,
|
| - int argc, sqlite3_value **argv
|
| -){
|
| - fuzzer_cursor *pCur = (fuzzer_cursor *)pVtabCursor;
|
| - const char *zWord = 0;
|
| - fuzzer_stem *pStem;
|
| -
|
| - fuzzerClearCursor(pCur, 1);
|
| - pCur->rLimit = 2147483647;
|
| - if( idxNum==1 ){
|
| - zWord = (const char*)sqlite3_value_text(argv[0]);
|
| - }else if( idxNum==2 ){
|
| - pCur->rLimit = (fuzzer_cost)sqlite3_value_int(argv[0]);
|
| - }else if( idxNum==3 ){
|
| - zWord = (const char*)sqlite3_value_text(argv[0]);
|
| - pCur->rLimit = (fuzzer_cost)sqlite3_value_int(argv[1]);
|
| - }
|
| - if( zWord==0 ) zWord = "";
|
| - pCur->pStem = pStem = fuzzerNewStem(pCur, zWord, (fuzzer_cost)0);
|
| - if( pStem==0 ) return SQLITE_NOMEM;
|
| - pCur->nullRule.pNext = pCur->pVtab->pRule;
|
| - pCur->nullRule.rCost = 0;
|
| - pCur->nullRule.nFrom = 0;
|
| - pCur->nullRule.nTo = 0;
|
| - pCur->nullRule.zFrom = "";
|
| - pStem->pRule = &pCur->nullRule;
|
| - pStem->n = pStem->nBasis;
|
| - pCur->iRowid = 1;
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/*
|
| -** Only the word and distance columns have values. All other columns
|
| -** return NULL
|
| -*/
|
| -static int fuzzerColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
|
| - fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
|
| - if( i==0 ){
|
| - /* the "word" column */
|
| - if( fuzzerRender(pCur->pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){
|
| - return SQLITE_NOMEM;
|
| - }
|
| - sqlite3_result_text(ctx, pCur->zBuf, -1, SQLITE_TRANSIENT);
|
| - }else if( i==1 ){
|
| - /* the "distance" column */
|
| - sqlite3_result_int(ctx, pCur->pStem->rCostX);
|
| - }else{
|
| - /* All other columns are NULL */
|
| - sqlite3_result_null(ctx);
|
| - }
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/*
|
| -** The rowid.
|
| -*/
|
| -static int fuzzerRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
|
| - fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
|
| - *pRowid = pCur->iRowid;
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/*
|
| -** When the fuzzer_cursor.rLimit value is 0 or less, that is a signal
|
| -** that the cursor has nothing more to output.
|
| -*/
|
| -static int fuzzerEof(sqlite3_vtab_cursor *cur){
|
| - fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
|
| - return pCur->rLimit<=(fuzzer_cost)0;
|
| -}
|
| -
|
| -/*
|
| -** Search for terms of these forms:
|
| -**
|
| -** word MATCH $str
|
| -** distance < $value
|
| -** distance <= $value
|
| -**
|
| -** The distance< and distance<= are both treated as distance<=.
|
| -** The query plan number is as follows:
|
| -**
|
| -** 0: None of the terms above are found
|
| -** 1: There is a "word MATCH" term with $str in filter.argv[0].
|
| -** 2: There is a "distance<" term with $value in filter.argv[0].
|
| -** 3: Both "word MATCH" and "distance<" with $str in argv[0] and
|
| -** $value in argv[1].
|
| -*/
|
| -static int fuzzerBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
|
| - int iPlan = 0;
|
| - int iDistTerm = -1;
|
| - int i;
|
| - const struct sqlite3_index_constraint *pConstraint;
|
| - pConstraint = pIdxInfo->aConstraint;
|
| - for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
|
| - if( pConstraint->usable==0 ) continue;
|
| - if( (iPlan & 1)==0
|
| - && pConstraint->iColumn==0
|
| - && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH
|
| - ){
|
| - iPlan |= 1;
|
| - pIdxInfo->aConstraintUsage[i].argvIndex = 1;
|
| - pIdxInfo->aConstraintUsage[i].omit = 1;
|
| - }
|
| - if( (iPlan & 2)==0
|
| - && pConstraint->iColumn==1
|
| - && (pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT
|
| - || pConstraint->op==SQLITE_INDEX_CONSTRAINT_LE)
|
| - ){
|
| - iPlan |= 2;
|
| - iDistTerm = i;
|
| - }
|
| - }
|
| - if( iPlan==2 ){
|
| - pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 1;
|
| - }else if( iPlan==3 ){
|
| - pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 2;
|
| - }
|
| - pIdxInfo->idxNum = iPlan;
|
| - if( pIdxInfo->nOrderBy==1
|
| - && pIdxInfo->aOrderBy[0].iColumn==1
|
| - && pIdxInfo->aOrderBy[0].desc==0
|
| - ){
|
| - pIdxInfo->orderByConsumed = 1;
|
| - }
|
| - pIdxInfo->estimatedCost = (double)10000;
|
| -
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/*
|
| -** Disallow all attempts to DELETE or UPDATE. Only INSERTs are allowed.
|
| -**
|
| -** On an insert, the cFrom, cTo, and cost columns are used to construct
|
| -** a new rule. All other columns are ignored. The rule is ignored
|
| -** if cFrom and cTo are identical. A NULL value for cFrom or cTo is
|
| -** interpreted as an empty string. The cost must be positive.
|
| -*/
|
| -static int fuzzerUpdate(
|
| - sqlite3_vtab *pVTab,
|
| - int argc,
|
| - sqlite3_value **argv,
|
| - sqlite_int64 *pRowid
|
| -){
|
| - fuzzer_vtab *p = (fuzzer_vtab*)pVTab;
|
| - fuzzer_rule *pRule;
|
| - const char *zFrom;
|
| - int nFrom;
|
| - const char *zTo;
|
| - int nTo;
|
| - fuzzer_cost rCost;
|
| - if( argc!=7 ){
|
| - sqlite3_free(pVTab->zErrMsg);
|
| - pVTab->zErrMsg = sqlite3_mprintf("cannot delete from a %s virtual table",
|
| - p->zClassName);
|
| - return SQLITE_CONSTRAINT;
|
| - }
|
| - if( sqlite3_value_type(argv[0])!=SQLITE_NULL ){
|
| - sqlite3_free(pVTab->zErrMsg);
|
| - pVTab->zErrMsg = sqlite3_mprintf("cannot update a %s virtual table",
|
| - p->zClassName);
|
| - return SQLITE_CONSTRAINT;
|
| - }
|
| - zFrom = (char*)sqlite3_value_text(argv[4]);
|
| - if( zFrom==0 ) zFrom = "";
|
| - zTo = (char*)sqlite3_value_text(argv[5]);
|
| - if( zTo==0 ) zTo = "";
|
| - if( strcmp(zFrom,zTo)==0 ){
|
| - /* Silently ignore null transformations */
|
| - return SQLITE_OK;
|
| - }
|
| - rCost = sqlite3_value_int(argv[6]);
|
| - if( rCost<=0 ){
|
| - sqlite3_free(pVTab->zErrMsg);
|
| - pVTab->zErrMsg = sqlite3_mprintf("cost must be positive");
|
| - return SQLITE_CONSTRAINT;
|
| - }
|
| - nFrom = strlen(zFrom);
|
| - nTo = strlen(zTo);
|
| - pRule = sqlite3_malloc( sizeof(*pRule) + nFrom + nTo );
|
| - if( pRule==0 ){
|
| - return SQLITE_NOMEM;
|
| - }
|
| - pRule->zFrom = &pRule->zTo[nTo+1];
|
| - pRule->nFrom = nFrom;
|
| - memcpy(pRule->zFrom, zFrom, nFrom+1);
|
| - memcpy(pRule->zTo, zTo, nTo+1);
|
| - pRule->nTo = nTo;
|
| - pRule->rCost = rCost;
|
| - pRule->pNext = p->pNewRule;
|
| - p->pNewRule = pRule;
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/*
|
| -** A virtual table module that provides read-only access to a
|
| -** Tcl global variable namespace.
|
| -*/
|
| -static sqlite3_module fuzzerModule = {
|
| - 0, /* iVersion */
|
| - fuzzerConnect,
|
| - fuzzerConnect,
|
| - fuzzerBestIndex,
|
| - fuzzerDisconnect,
|
| - fuzzerDisconnect,
|
| - fuzzerOpen, /* xOpen - open a cursor */
|
| - fuzzerClose, /* xClose - close a cursor */
|
| - fuzzerFilter, /* xFilter - configure scan constraints */
|
| - fuzzerNext, /* xNext - advance a cursor */
|
| - fuzzerEof, /* xEof - check for end of scan */
|
| - fuzzerColumn, /* xColumn - read data */
|
| - fuzzerRowid, /* xRowid - read data */
|
| - fuzzerUpdate, /* xUpdate - INSERT */
|
| - 0, /* xBegin */
|
| - 0, /* xSync */
|
| - 0, /* xCommit */
|
| - 0, /* xRollback */
|
| - 0, /* xFindMethod */
|
| - 0, /* xRename */
|
| -};
|
| -
|
| -#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
| -
|
| -
|
| -/*
|
| -** Register the fuzzer virtual table
|
| -*/
|
| -int fuzzer_register(sqlite3 *db){
|
| - int rc = SQLITE_OK;
|
| -#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| - rc = sqlite3_create_module(db, "fuzzer", &fuzzerModule, 0);
|
| -#endif
|
| - return rc;
|
| -}
|
| -
|
| -#ifdef SQLITE_TEST
|
| -#include <tcl.h>
|
| -/*
|
| -** Decode a pointer to an sqlite3 object.
|
| -*/
|
| -extern int getDbPointer(Tcl_Interp *interp, const char *zA, sqlite3 **ppDb);
|
| -
|
| -/*
|
| -** Register the echo virtual table module.
|
| -*/
|
| -static int register_fuzzer_module(
|
| - ClientData clientData, /* Pointer to sqlite3_enable_XXX function */
|
| - Tcl_Interp *interp, /* The TCL interpreter that invoked this command */
|
| - int objc, /* Number of arguments */
|
| - Tcl_Obj *CONST objv[] /* Command arguments */
|
| -){
|
| - sqlite3 *db;
|
| - if( objc!=2 ){
|
| - Tcl_WrongNumArgs(interp, 1, objv, "DB");
|
| - return TCL_ERROR;
|
| - }
|
| - if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
|
| - fuzzer_register(db);
|
| - return TCL_OK;
|
| -}
|
| -
|
| -
|
| -/*
|
| -** Register commands with the TCL interpreter.
|
| -*/
|
| -int Sqlitetestfuzzer_Init(Tcl_Interp *interp){
|
| - static struct {
|
| - char *zName;
|
| - Tcl_ObjCmdProc *xProc;
|
| - void *clientData;
|
| - } aObjCmd[] = {
|
| - { "register_fuzzer_module", register_fuzzer_module, 0 },
|
| - };
|
| - int i;
|
| - for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){
|
| - Tcl_CreateObjCommand(interp, aObjCmd[i].zName,
|
| - aObjCmd[i].xProc, aObjCmd[i].clientData, 0);
|
| - }
|
| - return TCL_OK;
|
| -}
|
| -
|
| -#endif /* SQLITE_TEST */
|
|
|