Index: third_party/sqlite/src/src/test_fuzzer.c |
diff --git a/third_party/sqlite/src/src/test_fuzzer.c b/third_party/sqlite/src/src/test_fuzzer.c |
deleted file mode 100644 |
index cf59257175a32bfaa2b9d69eb859a0824fb6194d..0000000000000000000000000000000000000000 |
--- a/third_party/sqlite/src/src/test_fuzzer.c |
+++ /dev/null |
@@ -1,944 +0,0 @@ |
-/* |
-** 2011 March 24 |
-** |
-** The author disclaims copyright to this source code. In place of |
-** a legal notice, here is a blessing: |
-** |
-** May you do good and not evil. |
-** May you find forgiveness for yourself and forgive others. |
-** May you share freely, never taking more than you give. |
-** |
-************************************************************************* |
-** |
-** Code for demonstartion virtual table that generates variations |
-** on an input word at increasing edit distances from the original. |
-** |
-** A fuzzer virtual table is created like this: |
-** |
-** CREATE VIRTUAL TABLE temp.f USING fuzzer; |
-** |
-** The name of the new virtual table in the example above is "f". |
-** Note that all fuzzer virtual tables must be TEMP tables. The |
-** "temp." prefix in front of the table name is required when the |
-** table is being created. The "temp." prefix can be omitted when |
-** using the table as long as the name is unambiguous. |
-** |
-** Before being used, the fuzzer needs to be programmed by giving it |
-** character transformations and a cost associated with each transformation. |
-** Examples: |
-** |
-** INSERT INTO f(cFrom,cTo,Cost) VALUES('','a',100); |
-** |
-** The above statement says that the cost of inserting a letter 'a' is |
-** 100. (All costs are integers. We recommend that costs be scaled so |
-** that the average cost is around 100.) |
-** |
-** INSERT INTO f(cFrom,cTo,Cost) VALUES('b','',87); |
-** |
-** The above statement says that the cost of deleting a single letter |
-** 'b' is 87. |
-** |
-** INSERT INTO f(cFrom,cTo,Cost) VALUES('o','oe',38); |
-** INSERT INTO f(cFrom,cTo,Cost) VALUES('oe','o',40); |
-** |
-** This third example says that the cost of transforming the single |
-** letter "o" into the two-letter sequence "oe" is 38 and that the |
-** cost of transforming "oe" back into "o" is 40. |
-** |
-** After all the transformation costs have been set, the fuzzer table |
-** can be queried as follows: |
-** |
-** SELECT word, distance FROM f |
-** WHERE word MATCH 'abcdefg' |
-** AND distance<200; |
-** |
-** This first query outputs the string "abcdefg" and all strings that |
-** can be derived from that string by appling the specified transformations. |
-** The strings are output together with their total transformation cost |
-** (called "distance") and appear in order of increasing cost. No string |
-** is output more than once. If there are multiple ways to transform the |
-** target string into the output string then the lowest cost transform is |
-** the one that is returned. In the example, the search is limited to |
-** strings with a total distance of less than 200. |
-** |
-** It is important to put some kind of a limit on the fuzzer output. This |
-** can be either in the form of a LIMIT clause at the end of the query, |
-** or better, a "distance<NNN" constraint where NNN is some number. The |
-** running time and memory requirement is exponential in the value of NNN |
-** so you want to make sure that NNN is not too big. A value of NNN that |
-** is about twice the average transformation cost seems to give good results. |
-** |
-** The fuzzer table can be useful for tasks such as spelling correction. |
-** Suppose there is a second table vocabulary(w) where the w column contains |
-** all correctly spelled words. Let $word be a word you want to look up. |
-** |
-** SELECT vocabulary.w FROM f, vocabulary |
-** WHERE f.word MATCH $word |
-** AND f.distance<=200 |
-** AND f.word=vocabulary.w |
-** LIMIT 20 |
-** |
-** The query above gives the 20 closest words to the $word being tested. |
-** (Note that for good performance, the vocubulary.w column should be |
-** indexed.) |
-** |
-** A similar query can be used to find all words in the dictionary that |
-** begin with some prefix $prefix: |
-** |
-** SELECT vocabulary.w FROM f, vocabulary |
-** WHERE f.word MATCH $prefix |
-** AND f.distance<=200 |
-** AND vocabulary.w BETWEEN f.word AND (f.word || x'F7BFBFBF') |
-** LIMIT 50 |
-** |
-** This last query will show up to 50 words out of the vocabulary that |
-** match or nearly match the $prefix. |
-*/ |
-#include "sqlite3.h" |
-#include <stdlib.h> |
-#include <string.h> |
-#include <assert.h> |
-#include <stdio.h> |
- |
-#ifndef SQLITE_OMIT_VIRTUALTABLE |
- |
-/* |
-** Forward declaration of objects used by this implementation |
-*/ |
-typedef struct fuzzer_vtab fuzzer_vtab; |
-typedef struct fuzzer_cursor fuzzer_cursor; |
-typedef struct fuzzer_rule fuzzer_rule; |
-typedef struct fuzzer_seen fuzzer_seen; |
-typedef struct fuzzer_stem fuzzer_stem; |
- |
-/* |
-** Type of the "cost" of an edit operation. Might be changed to |
-** "float" or "double" or "sqlite3_int64" in the future. |
-*/ |
-typedef int fuzzer_cost; |
- |
- |
-/* |
-** Each transformation rule is stored as an instance of this object. |
-** All rules are kept on a linked list sorted by rCost. |
-*/ |
-struct fuzzer_rule { |
- fuzzer_rule *pNext; /* Next rule in order of increasing rCost */ |
- fuzzer_cost rCost; /* Cost of this transformation */ |
- int nFrom, nTo; /* Length of the zFrom and zTo strings */ |
- char *zFrom; /* Transform from */ |
- char zTo[4]; /* Transform to (extra space appended) */ |
-}; |
- |
-/* |
-** A stem object is used to generate variants. It is also used to record |
-** previously generated outputs. |
-** |
-** Every stem is added to a hash table as it is output. Generation of |
-** duplicate stems is suppressed. |
-** |
-** Active stems (those that might generate new outputs) are kepts on a linked |
-** list sorted by increasing cost. The cost is the sum of rBaseCost and |
-** pRule->rCost. |
-*/ |
-struct fuzzer_stem { |
- char *zBasis; /* Word being fuzzed */ |
- int nBasis; /* Length of the zBasis string */ |
- const fuzzer_rule *pRule; /* Current rule to apply */ |
- int n; /* Apply pRule at this character offset */ |
- fuzzer_cost rBaseCost; /* Base cost of getting to zBasis */ |
- fuzzer_cost rCostX; /* Precomputed rBaseCost + pRule->rCost */ |
- fuzzer_stem *pNext; /* Next stem in rCost order */ |
- fuzzer_stem *pHash; /* Next stem with same hash on zBasis */ |
-}; |
- |
-/* |
-** A fuzzer virtual-table object |
-*/ |
-struct fuzzer_vtab { |
- sqlite3_vtab base; /* Base class - must be first */ |
- char *zClassName; /* Name of this class. Default: "fuzzer" */ |
- fuzzer_rule *pRule; /* All active rules in this fuzzer */ |
- fuzzer_rule *pNewRule; /* New rules to add when last cursor expires */ |
- int nCursor; /* Number of active cursors */ |
-}; |
- |
-#define FUZZER_HASH 4001 /* Hash table size */ |
-#define FUZZER_NQUEUE 20 /* Number of slots on the stem queue */ |
- |
-/* A fuzzer cursor object */ |
-struct fuzzer_cursor { |
- sqlite3_vtab_cursor base; /* Base class - must be first */ |
- sqlite3_int64 iRowid; /* The rowid of the current word */ |
- fuzzer_vtab *pVtab; /* The virtual table this cursor belongs to */ |
- fuzzer_cost rLimit; /* Maximum cost of any term */ |
- fuzzer_stem *pStem; /* Stem with smallest rCostX */ |
- fuzzer_stem *pDone; /* Stems already processed to completion */ |
- fuzzer_stem *aQueue[FUZZER_NQUEUE]; /* Queue of stems with higher rCostX */ |
- int mxQueue; /* Largest used index in aQueue[] */ |
- char *zBuf; /* Temporary use buffer */ |
- int nBuf; /* Bytes allocated for zBuf */ |
- int nStem; /* Number of stems allocated */ |
- fuzzer_rule nullRule; /* Null rule used first */ |
- fuzzer_stem *apHash[FUZZER_HASH]; /* Hash of previously generated terms */ |
-}; |
- |
-/* Methods for the fuzzer module */ |
-static int fuzzerConnect( |
- sqlite3 *db, |
- void *pAux, |
- int argc, const char *const*argv, |
- sqlite3_vtab **ppVtab, |
- char **pzErr |
-){ |
- fuzzer_vtab *pNew; |
- int n; |
- if( strcmp(argv[1],"temp")!=0 ){ |
- *pzErr = sqlite3_mprintf("%s virtual tables must be TEMP", argv[0]); |
- return SQLITE_ERROR; |
- } |
- n = strlen(argv[0]) + 1; |
- pNew = sqlite3_malloc( sizeof(*pNew) + n ); |
- if( pNew==0 ) return SQLITE_NOMEM; |
- pNew->zClassName = (char*)&pNew[1]; |
- memcpy(pNew->zClassName, argv[0], n); |
- sqlite3_declare_vtab(db, "CREATE TABLE x(word,distance,cFrom,cTo,cost)"); |
- memset(pNew, 0, sizeof(*pNew)); |
- *ppVtab = &pNew->base; |
- return SQLITE_OK; |
-} |
-/* Note that for this virtual table, the xCreate and xConnect |
-** methods are identical. */ |
- |
-static int fuzzerDisconnect(sqlite3_vtab *pVtab){ |
- fuzzer_vtab *p = (fuzzer_vtab*)pVtab; |
- assert( p->nCursor==0 ); |
- do{ |
- while( p->pRule ){ |
- fuzzer_rule *pRule = p->pRule; |
- p->pRule = pRule->pNext; |
- sqlite3_free(pRule); |
- } |
- p->pRule = p->pNewRule; |
- p->pNewRule = 0; |
- }while( p->pRule ); |
- sqlite3_free(p); |
- return SQLITE_OK; |
-} |
-/* The xDisconnect and xDestroy methods are also the same */ |
- |
-/* |
-** The two input rule lists are both sorted in order of increasing |
-** cost. Merge them together into a single list, sorted by cost, and |
-** return a pointer to the head of that list. |
-*/ |
-static fuzzer_rule *fuzzerMergeRules(fuzzer_rule *pA, fuzzer_rule *pB){ |
- fuzzer_rule head; |
- fuzzer_rule *pTail; |
- |
- pTail = &head; |
- while( pA && pB ){ |
- if( pA->rCost<=pB->rCost ){ |
- pTail->pNext = pA; |
- pTail = pA; |
- pA = pA->pNext; |
- }else{ |
- pTail->pNext = pB; |
- pTail = pB; |
- pB = pB->pNext; |
- } |
- } |
- if( pA==0 ){ |
- pTail->pNext = pB; |
- }else{ |
- pTail->pNext = pA; |
- } |
- return head.pNext; |
-} |
- |
- |
-/* |
-** Open a new fuzzer cursor. |
-*/ |
-static int fuzzerOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ |
- fuzzer_vtab *p = (fuzzer_vtab*)pVTab; |
- fuzzer_cursor *pCur; |
- pCur = sqlite3_malloc( sizeof(*pCur) ); |
- if( pCur==0 ) return SQLITE_NOMEM; |
- memset(pCur, 0, sizeof(*pCur)); |
- pCur->pVtab = p; |
- *ppCursor = &pCur->base; |
- if( p->nCursor==0 && p->pNewRule ){ |
- unsigned int i; |
- fuzzer_rule *pX; |
- fuzzer_rule *a[15]; |
- for(i=0; i<sizeof(a)/sizeof(a[0]); i++) a[i] = 0; |
- while( (pX = p->pNewRule)!=0 ){ |
- p->pNewRule = pX->pNext; |
- pX->pNext = 0; |
- for(i=0; a[i] && i<sizeof(a)/sizeof(a[0])-1; i++){ |
- pX = fuzzerMergeRules(a[i], pX); |
- a[i] = 0; |
- } |
- a[i] = fuzzerMergeRules(a[i], pX); |
- } |
- for(pX=a[0], i=1; i<sizeof(a)/sizeof(a[0]); i++){ |
- pX = fuzzerMergeRules(a[i], pX); |
- } |
- p->pRule = fuzzerMergeRules(p->pRule, pX); |
- } |
- p->nCursor++; |
- return SQLITE_OK; |
-} |
- |
-/* |
-** Free all stems in a list. |
-*/ |
-static void fuzzerClearStemList(fuzzer_stem *pStem){ |
- while( pStem ){ |
- fuzzer_stem *pNext = pStem->pNext; |
- sqlite3_free(pStem); |
- pStem = pNext; |
- } |
-} |
- |
-/* |
-** Free up all the memory allocated by a cursor. Set it rLimit to 0 |
-** to indicate that it is at EOF. |
-*/ |
-static void fuzzerClearCursor(fuzzer_cursor *pCur, int clearHash){ |
- int i; |
- fuzzerClearStemList(pCur->pStem); |
- fuzzerClearStemList(pCur->pDone); |
- for(i=0; i<FUZZER_NQUEUE; i++) fuzzerClearStemList(pCur->aQueue[i]); |
- pCur->rLimit = (fuzzer_cost)0; |
- if( clearHash && pCur->nStem ){ |
- pCur->mxQueue = 0; |
- pCur->pStem = 0; |
- pCur->pDone = 0; |
- memset(pCur->aQueue, 0, sizeof(pCur->aQueue)); |
- memset(pCur->apHash, 0, sizeof(pCur->apHash)); |
- } |
- pCur->nStem = 0; |
-} |
- |
-/* |
-** Close a fuzzer cursor. |
-*/ |
-static int fuzzerClose(sqlite3_vtab_cursor *cur){ |
- fuzzer_cursor *pCur = (fuzzer_cursor *)cur; |
- fuzzerClearCursor(pCur, 0); |
- sqlite3_free(pCur->zBuf); |
- pCur->pVtab->nCursor--; |
- sqlite3_free(pCur); |
- return SQLITE_OK; |
-} |
- |
-/* |
-** Compute the current output term for a fuzzer_stem. |
-*/ |
-static int fuzzerRender( |
- fuzzer_stem *pStem, /* The stem to be rendered */ |
- char **pzBuf, /* Write results into this buffer. realloc if needed */ |
- int *pnBuf /* Size of the buffer */ |
-){ |
- const fuzzer_rule *pRule = pStem->pRule; |
- int n; |
- char *z; |
- |
- n = pStem->nBasis + pRule->nTo - pRule->nFrom; |
- if( (*pnBuf)<n+1 ){ |
- (*pzBuf) = sqlite3_realloc((*pzBuf), n+100); |
- if( (*pzBuf)==0 ) return SQLITE_NOMEM; |
- (*pnBuf) = n+100; |
- } |
- n = pStem->n; |
- z = *pzBuf; |
- if( n<0 ){ |
- memcpy(z, pStem->zBasis, pStem->nBasis+1); |
- }else{ |
- memcpy(z, pStem->zBasis, n); |
- memcpy(&z[n], pRule->zTo, pRule->nTo); |
- memcpy(&z[n+pRule->nTo], &pStem->zBasis[n+pRule->nFrom], |
- pStem->nBasis-n-pRule->nFrom+1); |
- } |
- return SQLITE_OK; |
-} |
- |
-/* |
-** Compute a hash on zBasis. |
-*/ |
-static unsigned int fuzzerHash(const char *z){ |
- unsigned int h = 0; |
- while( *z ){ h = (h<<3) ^ (h>>29) ^ *(z++); } |
- return h % FUZZER_HASH; |
-} |
- |
-/* |
-** Current cost of a stem |
-*/ |
-static fuzzer_cost fuzzerCost(fuzzer_stem *pStem){ |
- return pStem->rCostX = pStem->rBaseCost + pStem->pRule->rCost; |
-} |
- |
-#if 0 |
-/* |
-** Print a description of a fuzzer_stem on stderr. |
-*/ |
-static void fuzzerStemPrint( |
- const char *zPrefix, |
- fuzzer_stem *pStem, |
- const char *zSuffix |
-){ |
- if( pStem->n<0 ){ |
- fprintf(stderr, "%s[%s](%d)-->self%s", |
- zPrefix, |
- pStem->zBasis, pStem->rBaseCost, |
- zSuffix |
- ); |
- }else{ |
- char *zBuf = 0; |
- int nBuf = 0; |
- if( fuzzerRender(pStem, &zBuf, &nBuf)!=SQLITE_OK ) return; |
- fprintf(stderr, "%s[%s](%d)-->{%s}(%d)%s", |
- zPrefix, |
- pStem->zBasis, pStem->rBaseCost, zBuf, pStem->, |
- zSuffix |
- ); |
- sqlite3_free(zBuf); |
- } |
-} |
-#endif |
- |
-/* |
-** Return 1 if the string to which the cursor is point has already |
-** been emitted. Return 0 if not. Return -1 on a memory allocation |
-** failures. |
-*/ |
-static int fuzzerSeen(fuzzer_cursor *pCur, fuzzer_stem *pStem){ |
- unsigned int h; |
- fuzzer_stem *pLookup; |
- |
- if( fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){ |
- return -1; |
- } |
- h = fuzzerHash(pCur->zBuf); |
- pLookup = pCur->apHash[h]; |
- while( pLookup && strcmp(pLookup->zBasis, pCur->zBuf)!=0 ){ |
- pLookup = pLookup->pHash; |
- } |
- return pLookup!=0; |
-} |
- |
-/* |
-** Advance a fuzzer_stem to its next value. Return 0 if there are |
-** no more values that can be generated by this fuzzer_stem. Return |
-** -1 on a memory allocation failure. |
-*/ |
-static int fuzzerAdvance(fuzzer_cursor *pCur, fuzzer_stem *pStem){ |
- const fuzzer_rule *pRule; |
- while( (pRule = pStem->pRule)!=0 ){ |
- while( pStem->n < pStem->nBasis - pRule->nFrom ){ |
- pStem->n++; |
- if( pRule->nFrom==0 |
- || memcmp(&pStem->zBasis[pStem->n], pRule->zFrom, pRule->nFrom)==0 |
- ){ |
- /* Found a rewrite case. Make sure it is not a duplicate */ |
- int rc = fuzzerSeen(pCur, pStem); |
- if( rc<0 ) return -1; |
- if( rc==0 ){ |
- fuzzerCost(pStem); |
- return 1; |
- } |
- } |
- } |
- pStem->n = -1; |
- pStem->pRule = pRule->pNext; |
- if( pStem->pRule && fuzzerCost(pStem)>pCur->rLimit ) pStem->pRule = 0; |
- } |
- return 0; |
-} |
- |
-/* |
-** The two input stem lists are both sorted in order of increasing |
-** rCostX. Merge them together into a single list, sorted by rCostX, and |
-** return a pointer to the head of that new list. |
-*/ |
-static fuzzer_stem *fuzzerMergeStems(fuzzer_stem *pA, fuzzer_stem *pB){ |
- fuzzer_stem head; |
- fuzzer_stem *pTail; |
- |
- pTail = &head; |
- while( pA && pB ){ |
- if( pA->rCostX<=pB->rCostX ){ |
- pTail->pNext = pA; |
- pTail = pA; |
- pA = pA->pNext; |
- }else{ |
- pTail->pNext = pB; |
- pTail = pB; |
- pB = pB->pNext; |
- } |
- } |
- if( pA==0 ){ |
- pTail->pNext = pB; |
- }else{ |
- pTail->pNext = pA; |
- } |
- return head.pNext; |
-} |
- |
-/* |
-** Load pCur->pStem with the lowest-cost stem. Return a pointer |
-** to the lowest-cost stem. |
-*/ |
-static fuzzer_stem *fuzzerLowestCostStem(fuzzer_cursor *pCur){ |
- fuzzer_stem *pBest, *pX; |
- int iBest; |
- int i; |
- |
- if( pCur->pStem==0 ){ |
- iBest = -1; |
- pBest = 0; |
- for(i=0; i<=pCur->mxQueue; i++){ |
- pX = pCur->aQueue[i]; |
- if( pX==0 ) continue; |
- if( pBest==0 || pBest->rCostX>pX->rCostX ){ |
- pBest = pX; |
- iBest = i; |
- } |
- } |
- if( pBest ){ |
- pCur->aQueue[iBest] = pBest->pNext; |
- pBest->pNext = 0; |
- pCur->pStem = pBest; |
- } |
- } |
- return pCur->pStem; |
-} |
- |
-/* |
-** Insert pNew into queue of pending stems. Then find the stem |
-** with the lowest rCostX and move it into pCur->pStem. |
-** list. The insert is done such the pNew is in the correct order |
-** according to fuzzer_stem.zBaseCost+fuzzer_stem.pRule->rCost. |
-*/ |
-static fuzzer_stem *fuzzerInsert(fuzzer_cursor *pCur, fuzzer_stem *pNew){ |
- fuzzer_stem *pX; |
- int i; |
- |
- /* If pCur->pStem exists and is greater than pNew, then make pNew |
- ** the new pCur->pStem and insert the old pCur->pStem instead. |
- */ |
- if( (pX = pCur->pStem)!=0 && pX->rCostX>pNew->rCostX ){ |
- pNew->pNext = 0; |
- pCur->pStem = pNew; |
- pNew = pX; |
- } |
- |
- /* Insert the new value */ |
- pNew->pNext = 0; |
- pX = pNew; |
- for(i=0; i<=pCur->mxQueue; i++){ |
- if( pCur->aQueue[i] ){ |
- pX = fuzzerMergeStems(pX, pCur->aQueue[i]); |
- pCur->aQueue[i] = 0; |
- }else{ |
- pCur->aQueue[i] = pX; |
- break; |
- } |
- } |
- if( i>pCur->mxQueue ){ |
- if( i<FUZZER_NQUEUE ){ |
- pCur->mxQueue = i; |
- pCur->aQueue[i] = pX; |
- }else{ |
- assert( pCur->mxQueue==FUZZER_NQUEUE-1 ); |
- pX = fuzzerMergeStems(pX, pCur->aQueue[FUZZER_NQUEUE-1]); |
- pCur->aQueue[FUZZER_NQUEUE-1] = pX; |
- } |
- } |
- |
- return fuzzerLowestCostStem(pCur); |
-} |
- |
-/* |
-** Allocate a new fuzzer_stem. Add it to the hash table but do not |
-** link it into either the pCur->pStem or pCur->pDone lists. |
-*/ |
-static fuzzer_stem *fuzzerNewStem( |
- fuzzer_cursor *pCur, |
- const char *zWord, |
- fuzzer_cost rBaseCost |
-){ |
- fuzzer_stem *pNew; |
- unsigned int h; |
- |
- pNew = sqlite3_malloc( sizeof(*pNew) + strlen(zWord) + 1 ); |
- if( pNew==0 ) return 0; |
- memset(pNew, 0, sizeof(*pNew)); |
- pNew->zBasis = (char*)&pNew[1]; |
- pNew->nBasis = strlen(zWord); |
- memcpy(pNew->zBasis, zWord, pNew->nBasis+1); |
- pNew->pRule = pCur->pVtab->pRule; |
- pNew->n = -1; |
- pNew->rBaseCost = pNew->rCostX = rBaseCost; |
- h = fuzzerHash(pNew->zBasis); |
- pNew->pHash = pCur->apHash[h]; |
- pCur->apHash[h] = pNew; |
- pCur->nStem++; |
- return pNew; |
-} |
- |
- |
-/* |
-** Advance a cursor to its next row of output |
-*/ |
-static int fuzzerNext(sqlite3_vtab_cursor *cur){ |
- fuzzer_cursor *pCur = (fuzzer_cursor*)cur; |
- int rc; |
- fuzzer_stem *pStem, *pNew; |
- |
- pCur->iRowid++; |
- |
- /* Use the element the cursor is currently point to to create |
- ** a new stem and insert the new stem into the priority queue. |
- */ |
- pStem = pCur->pStem; |
- if( pStem->rCostX>0 ){ |
- rc = fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf); |
- if( rc==SQLITE_NOMEM ) return SQLITE_NOMEM; |
- pNew = fuzzerNewStem(pCur, pCur->zBuf, pStem->rCostX); |
- if( pNew ){ |
- if( fuzzerAdvance(pCur, pNew)==0 ){ |
- pNew->pNext = pCur->pDone; |
- pCur->pDone = pNew; |
- }else{ |
- if( fuzzerInsert(pCur, pNew)==pNew ){ |
- return SQLITE_OK; |
- } |
- } |
- }else{ |
- return SQLITE_NOMEM; |
- } |
- } |
- |
- /* Adjust the priority queue so that the first element of the |
- ** stem list is the next lowest cost word. |
- */ |
- while( (pStem = pCur->pStem)!=0 ){ |
- if( fuzzerAdvance(pCur, pStem) ){ |
- pCur->pStem = 0; |
- pStem = fuzzerInsert(pCur, pStem); |
- if( (rc = fuzzerSeen(pCur, pStem))!=0 ){ |
- if( rc<0 ) return SQLITE_NOMEM; |
- continue; |
- } |
- return SQLITE_OK; /* New word found */ |
- } |
- pCur->pStem = 0; |
- pStem->pNext = pCur->pDone; |
- pCur->pDone = pStem; |
- if( fuzzerLowestCostStem(pCur) ){ |
- rc = fuzzerSeen(pCur, pCur->pStem); |
- if( rc<0 ) return SQLITE_NOMEM; |
- if( rc==0 ){ |
- return SQLITE_OK; |
- } |
- } |
- } |
- |
- /* Reach this point only if queue has been exhausted and there is |
- ** nothing left to be output. */ |
- pCur->rLimit = (fuzzer_cost)0; |
- return SQLITE_OK; |
-} |
- |
-/* |
-** Called to "rewind" a cursor back to the beginning so that |
-** it starts its output over again. Always called at least once |
-** prior to any fuzzerColumn, fuzzerRowid, or fuzzerEof call. |
-*/ |
-static int fuzzerFilter( |
- sqlite3_vtab_cursor *pVtabCursor, |
- int idxNum, const char *idxStr, |
- int argc, sqlite3_value **argv |
-){ |
- fuzzer_cursor *pCur = (fuzzer_cursor *)pVtabCursor; |
- const char *zWord = 0; |
- fuzzer_stem *pStem; |
- |
- fuzzerClearCursor(pCur, 1); |
- pCur->rLimit = 2147483647; |
- if( idxNum==1 ){ |
- zWord = (const char*)sqlite3_value_text(argv[0]); |
- }else if( idxNum==2 ){ |
- pCur->rLimit = (fuzzer_cost)sqlite3_value_int(argv[0]); |
- }else if( idxNum==3 ){ |
- zWord = (const char*)sqlite3_value_text(argv[0]); |
- pCur->rLimit = (fuzzer_cost)sqlite3_value_int(argv[1]); |
- } |
- if( zWord==0 ) zWord = ""; |
- pCur->pStem = pStem = fuzzerNewStem(pCur, zWord, (fuzzer_cost)0); |
- if( pStem==0 ) return SQLITE_NOMEM; |
- pCur->nullRule.pNext = pCur->pVtab->pRule; |
- pCur->nullRule.rCost = 0; |
- pCur->nullRule.nFrom = 0; |
- pCur->nullRule.nTo = 0; |
- pCur->nullRule.zFrom = ""; |
- pStem->pRule = &pCur->nullRule; |
- pStem->n = pStem->nBasis; |
- pCur->iRowid = 1; |
- return SQLITE_OK; |
-} |
- |
-/* |
-** Only the word and distance columns have values. All other columns |
-** return NULL |
-*/ |
-static int fuzzerColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ |
- fuzzer_cursor *pCur = (fuzzer_cursor*)cur; |
- if( i==0 ){ |
- /* the "word" column */ |
- if( fuzzerRender(pCur->pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){ |
- return SQLITE_NOMEM; |
- } |
- sqlite3_result_text(ctx, pCur->zBuf, -1, SQLITE_TRANSIENT); |
- }else if( i==1 ){ |
- /* the "distance" column */ |
- sqlite3_result_int(ctx, pCur->pStem->rCostX); |
- }else{ |
- /* All other columns are NULL */ |
- sqlite3_result_null(ctx); |
- } |
- return SQLITE_OK; |
-} |
- |
-/* |
-** The rowid. |
-*/ |
-static int fuzzerRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){ |
- fuzzer_cursor *pCur = (fuzzer_cursor*)cur; |
- *pRowid = pCur->iRowid; |
- return SQLITE_OK; |
-} |
- |
-/* |
-** When the fuzzer_cursor.rLimit value is 0 or less, that is a signal |
-** that the cursor has nothing more to output. |
-*/ |
-static int fuzzerEof(sqlite3_vtab_cursor *cur){ |
- fuzzer_cursor *pCur = (fuzzer_cursor*)cur; |
- return pCur->rLimit<=(fuzzer_cost)0; |
-} |
- |
-/* |
-** Search for terms of these forms: |
-** |
-** word MATCH $str |
-** distance < $value |
-** distance <= $value |
-** |
-** The distance< and distance<= are both treated as distance<=. |
-** The query plan number is as follows: |
-** |
-** 0: None of the terms above are found |
-** 1: There is a "word MATCH" term with $str in filter.argv[0]. |
-** 2: There is a "distance<" term with $value in filter.argv[0]. |
-** 3: Both "word MATCH" and "distance<" with $str in argv[0] and |
-** $value in argv[1]. |
-*/ |
-static int fuzzerBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ |
- int iPlan = 0; |
- int iDistTerm = -1; |
- int i; |
- const struct sqlite3_index_constraint *pConstraint; |
- pConstraint = pIdxInfo->aConstraint; |
- for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){ |
- if( pConstraint->usable==0 ) continue; |
- if( (iPlan & 1)==0 |
- && pConstraint->iColumn==0 |
- && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH |
- ){ |
- iPlan |= 1; |
- pIdxInfo->aConstraintUsage[i].argvIndex = 1; |
- pIdxInfo->aConstraintUsage[i].omit = 1; |
- } |
- if( (iPlan & 2)==0 |
- && pConstraint->iColumn==1 |
- && (pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT |
- || pConstraint->op==SQLITE_INDEX_CONSTRAINT_LE) |
- ){ |
- iPlan |= 2; |
- iDistTerm = i; |
- } |
- } |
- if( iPlan==2 ){ |
- pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 1; |
- }else if( iPlan==3 ){ |
- pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 2; |
- } |
- pIdxInfo->idxNum = iPlan; |
- if( pIdxInfo->nOrderBy==1 |
- && pIdxInfo->aOrderBy[0].iColumn==1 |
- && pIdxInfo->aOrderBy[0].desc==0 |
- ){ |
- pIdxInfo->orderByConsumed = 1; |
- } |
- pIdxInfo->estimatedCost = (double)10000; |
- |
- return SQLITE_OK; |
-} |
- |
-/* |
-** Disallow all attempts to DELETE or UPDATE. Only INSERTs are allowed. |
-** |
-** On an insert, the cFrom, cTo, and cost columns are used to construct |
-** a new rule. All other columns are ignored. The rule is ignored |
-** if cFrom and cTo are identical. A NULL value for cFrom or cTo is |
-** interpreted as an empty string. The cost must be positive. |
-*/ |
-static int fuzzerUpdate( |
- sqlite3_vtab *pVTab, |
- int argc, |
- sqlite3_value **argv, |
- sqlite_int64 *pRowid |
-){ |
- fuzzer_vtab *p = (fuzzer_vtab*)pVTab; |
- fuzzer_rule *pRule; |
- const char *zFrom; |
- int nFrom; |
- const char *zTo; |
- int nTo; |
- fuzzer_cost rCost; |
- if( argc!=7 ){ |
- sqlite3_free(pVTab->zErrMsg); |
- pVTab->zErrMsg = sqlite3_mprintf("cannot delete from a %s virtual table", |
- p->zClassName); |
- return SQLITE_CONSTRAINT; |
- } |
- if( sqlite3_value_type(argv[0])!=SQLITE_NULL ){ |
- sqlite3_free(pVTab->zErrMsg); |
- pVTab->zErrMsg = sqlite3_mprintf("cannot update a %s virtual table", |
- p->zClassName); |
- return SQLITE_CONSTRAINT; |
- } |
- zFrom = (char*)sqlite3_value_text(argv[4]); |
- if( zFrom==0 ) zFrom = ""; |
- zTo = (char*)sqlite3_value_text(argv[5]); |
- if( zTo==0 ) zTo = ""; |
- if( strcmp(zFrom,zTo)==0 ){ |
- /* Silently ignore null transformations */ |
- return SQLITE_OK; |
- } |
- rCost = sqlite3_value_int(argv[6]); |
- if( rCost<=0 ){ |
- sqlite3_free(pVTab->zErrMsg); |
- pVTab->zErrMsg = sqlite3_mprintf("cost must be positive"); |
- return SQLITE_CONSTRAINT; |
- } |
- nFrom = strlen(zFrom); |
- nTo = strlen(zTo); |
- pRule = sqlite3_malloc( sizeof(*pRule) + nFrom + nTo ); |
- if( pRule==0 ){ |
- return SQLITE_NOMEM; |
- } |
- pRule->zFrom = &pRule->zTo[nTo+1]; |
- pRule->nFrom = nFrom; |
- memcpy(pRule->zFrom, zFrom, nFrom+1); |
- memcpy(pRule->zTo, zTo, nTo+1); |
- pRule->nTo = nTo; |
- pRule->rCost = rCost; |
- pRule->pNext = p->pNewRule; |
- p->pNewRule = pRule; |
- return SQLITE_OK; |
-} |
- |
-/* |
-** A virtual table module that provides read-only access to a |
-** Tcl global variable namespace. |
-*/ |
-static sqlite3_module fuzzerModule = { |
- 0, /* iVersion */ |
- fuzzerConnect, |
- fuzzerConnect, |
- fuzzerBestIndex, |
- fuzzerDisconnect, |
- fuzzerDisconnect, |
- fuzzerOpen, /* xOpen - open a cursor */ |
- fuzzerClose, /* xClose - close a cursor */ |
- fuzzerFilter, /* xFilter - configure scan constraints */ |
- fuzzerNext, /* xNext - advance a cursor */ |
- fuzzerEof, /* xEof - check for end of scan */ |
- fuzzerColumn, /* xColumn - read data */ |
- fuzzerRowid, /* xRowid - read data */ |
- fuzzerUpdate, /* xUpdate - INSERT */ |
- 0, /* xBegin */ |
- 0, /* xSync */ |
- 0, /* xCommit */ |
- 0, /* xRollback */ |
- 0, /* xFindMethod */ |
- 0, /* xRename */ |
-}; |
- |
-#endif /* SQLITE_OMIT_VIRTUALTABLE */ |
- |
- |
-/* |
-** Register the fuzzer virtual table |
-*/ |
-int fuzzer_register(sqlite3 *db){ |
- int rc = SQLITE_OK; |
-#ifndef SQLITE_OMIT_VIRTUALTABLE |
- rc = sqlite3_create_module(db, "fuzzer", &fuzzerModule, 0); |
-#endif |
- return rc; |
-} |
- |
-#ifdef SQLITE_TEST |
-#include <tcl.h> |
-/* |
-** Decode a pointer to an sqlite3 object. |
-*/ |
-extern int getDbPointer(Tcl_Interp *interp, const char *zA, sqlite3 **ppDb); |
- |
-/* |
-** Register the echo virtual table module. |
-*/ |
-static int register_fuzzer_module( |
- ClientData clientData, /* Pointer to sqlite3_enable_XXX function */ |
- Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ |
- int objc, /* Number of arguments */ |
- Tcl_Obj *CONST objv[] /* Command arguments */ |
-){ |
- sqlite3 *db; |
- if( objc!=2 ){ |
- Tcl_WrongNumArgs(interp, 1, objv, "DB"); |
- return TCL_ERROR; |
- } |
- if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; |
- fuzzer_register(db); |
- return TCL_OK; |
-} |
- |
- |
-/* |
-** Register commands with the TCL interpreter. |
-*/ |
-int Sqlitetestfuzzer_Init(Tcl_Interp *interp){ |
- static struct { |
- char *zName; |
- Tcl_ObjCmdProc *xProc; |
- void *clientData; |
- } aObjCmd[] = { |
- { "register_fuzzer_module", register_fuzzer_module, 0 }, |
- }; |
- int i; |
- for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){ |
- Tcl_CreateObjCommand(interp, aObjCmd[i].zName, |
- aObjCmd[i].xProc, aObjCmd[i].clientData, 0); |
- } |
- return TCL_OK; |
-} |
- |
-#endif /* SQLITE_TEST */ |