Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(12)

Unified Diff: third_party/sqlite/recover.patch

Issue 949043002: Add //third_party/sqlite to dirs_to_snapshot, remove net_sql.patch (Closed) Base URL: git@github.com:domokit/mojo.git@master
Patch Set: Created 5 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: third_party/sqlite/recover.patch
diff --git a/third_party/sqlite/recover.patch b/third_party/sqlite/recover.patch
deleted file mode 100644
index b601a445142929a41ca5eaf874e2c340dffaec4f..0000000000000000000000000000000000000000
--- a/third_party/sqlite/recover.patch
+++ /dev/null
@@ -1,2194 +0,0 @@
-Add new virtual table 'recover' to src/ and the amalgamation.
-
-Since recover.c is in somewhat active development, it is possible that
-the patch below will not reliably re-create the file.
-
-shess@chromium.org
-
-Generated with:
-git diff --cached --relative=third_party/sqlite/src --src-prefix='' --dst-prefix='' > third_party/sqlite/recover.patch
-[--cached because otherwise the diff adding recover.c wasn't generated.]
-
-diff --git Makefile.in Makefile.in
-index f3239f3..216742c 100644
---- Makefile.in
-+++ Makefile.in
-@@ -251,6 +251,7 @@ SRC = \
- $(TOP)/src/prepare.c \
- $(TOP)/src/printf.c \
- $(TOP)/src/random.c \
-+ $(TOP)/src/recover.c \
- $(TOP)/src/resolve.c \
- $(TOP)/src/rowset.c \
- $(TOP)/src/select.c \
-diff --git src/sqlite.h.in src/sqlite.h.in
-index 62b9326..fb76659 100644
---- src/sqlite.h.in
-+++ src/sqlite.h.in
-@@ -6403,6 +6403,17 @@ int sqlite3_wal_checkpoint_v2(
- #define SQLITE_CHECKPOINT_RESTART 2
-
-
-+/* Begin recover.patch for Chromium */
-+/*
-+** Call to initialize the recover virtual-table modules (see recover.c).
-+**
-+** This could be loaded by default in main.c, but that would make the
-+** virtual table available to Web SQL. Breaking it out allows only
-+** selected users to enable it (currently sql/recovery.cc).
-+*/
-+int recoverVtableInit(sqlite3 *db);
-+/* End recover.patch for Chromium */
-+
- /*
- ** Undo the hack that converts floating point types to integer for
- ** builds on processors without floating point support.
-diff --git tool/mksqlite3c.tcl tool/mksqlite3c.tcl
-index fa99f2d..df2df07 100644
---- tool/mksqlite3c.tcl
-+++ tool/mksqlite3c.tcl
-@@ -293,6 +293,8 @@ foreach file {
- main.c
- notify.c
-
-+ recover.c
-+
- fts3.c
- fts3_aux.c
- fts3_expr.c
-diff --git src/recover.c src/recover.c
-new file mode 100644
-index 0000000..6430c8b
---- /dev/null
-+++ src/recover.c
-@@ -0,0 +1,2130 @@
-+/*
-+** 2012 Jan 11
-+**
-+** The author disclaims copyright to this source code. In place of
-+** a legal notice, here is a blessing:
-+**
-+** May you do good and not evil.
-+** May you find forgiveness for yourself and forgive others.
-+** May you share freely, never taking more than you give.
-+*/
-+/* TODO(shess): THIS MODULE IS STILL EXPERIMENTAL. DO NOT USE IT. */
-+/* Implements a virtual table "recover" which can be used to recover
-+ * data from a corrupt table. The table is walked manually, with
-+ * corrupt items skipped. Additionally, any errors while reading will
-+ * be skipped.
-+ *
-+ * Given a table with this definition:
-+ *
-+ * CREATE TABLE Stuff (
-+ * name TEXT PRIMARY KEY,
-+ * value TEXT NOT NULL
-+ * );
-+ *
-+ * to recover the data from teh table, you could do something like:
-+ *
-+ * -- Attach another database, the original is not trustworthy.
-+ * ATTACH DATABASE '/tmp/db.db' AS rdb;
-+ * -- Create a new version of the table.
-+ * CREATE TABLE rdb.Stuff (
-+ * name TEXT PRIMARY KEY,
-+ * value TEXT NOT NULL
-+ * );
-+ * -- This will read the original table's data.
-+ * CREATE VIRTUAL TABLE temp.recover_Stuff using recover(
-+ * main.Stuff,
-+ * name TEXT STRICT NOT NULL, -- only real TEXT data allowed
-+ * value TEXT STRICT NOT NULL
-+ * );
-+ * -- Corruption means the UNIQUE constraint may no longer hold for
-+ * -- Stuff, so either OR REPLACE or OR IGNORE must be used.
-+ * INSERT OR REPLACE INTO rdb.Stuff (rowid, name, value )
-+ * SELECT rowid, name, value FROM temp.recover_Stuff;
-+ * DROP TABLE temp.recover_Stuff;
-+ * DETACH DATABASE rdb;
-+ * -- Move db.db to replace original db in filesystem.
-+ *
-+ *
-+ * Usage
-+ *
-+ * Given the goal of dealing with corruption, it would not be safe to
-+ * create a recovery table in the database being recovered. So
-+ * recovery tables must be created in the temp database. They are not
-+ * appropriate to persist, in any case. [As a bonus, sqlite_master
-+ * tables can be recovered. Perhaps more cute than useful, though.]
-+ *
-+ * The parameters are a specifier for the table to read, and a column
-+ * definition for each bit of data stored in that table. The named
-+ * table must be convertable to a root page number by reading the
-+ * sqlite_master table. Bare table names are assumed to be in
-+ * database 0 ("main"), other databases can be specified in db.table
-+ * fashion.
-+ *
-+ * Column definitions are similar to BUT NOT THE SAME AS those
-+ * provided to CREATE statements:
-+ * column-def: column-name [type-name [STRICT] [NOT NULL]]
-+ * type-name: (ANY|ROWID|INTEGER|FLOAT|NUMERIC|TEXT|BLOB)
-+ *
-+ * Only those exact type names are accepted, there is no type
-+ * intuition. The only constraints accepted are STRICT (see below)
-+ * and NOT NULL. Anything unexpected will cause the create to fail.
-+ *
-+ * ANY is a convenience to indicate that manifest typing is desired.
-+ * It is equivalent to not specifying a type at all. The results for
-+ * such columns will have the type of the data's storage. The exposed
-+ * schema will contain no type for that column.
-+ *
-+ * ROWID is used for columns representing aliases to the rowid
-+ * (INTEGER PRIMARY KEY, with or without AUTOINCREMENT), to make the
-+ * concept explicit. Such columns are actually stored as NULL, so
-+ * they cannot be simply ignored. The exposed schema will be INTEGER
-+ * for that column.
-+ *
-+ * NOT NULL causes rows with a NULL in that column to be skipped. It
-+ * also adds NOT NULL to the column in the exposed schema. If the
-+ * table has ever had columns added using ALTER TABLE, then those
-+ * columns implicitly contain NULL for rows which have not been
-+ * updated. [Workaround using COALESCE() in your SELECT statement.]
-+ *
-+ * The created table is read-only, with no indices. Any SELECT will
-+ * be a full-table scan, returning each valid row read from the
-+ * storage of the backing table. The rowid will be the rowid of the
-+ * row from the backing table. "Valid" means:
-+ * - The cell metadata for the row is well-formed. Mainly this means that
-+ * the cell header info describes a payload of the size indicated by
-+ * the cell's payload size.
-+ * - The cell does not run off the page.
-+ * - The cell does not overlap any other cell on the page.
-+ * - The cell contains doesn't contain too many columns.
-+ * - The types of the serialized data match the indicated types (see below).
-+ *
-+ *
-+ * Type affinity versus type storage.
-+ *
-+ * http://www.sqlite.org/datatype3.html describes SQLite's type
-+ * affinity system. The system provides for automated coercion of
-+ * types in certain cases, transparently enough that many developers
-+ * do not realize that it is happening. Importantly, it implies that
-+ * the raw data stored in the database may not have the obvious type.
-+ *
-+ * Differences between the stored data types and the expected data
-+ * types may be a signal of corruption. This module makes some
-+ * allowances for automatic coercion. It is important to be concious
-+ * of the difference between the schema exposed by the module, and the
-+ * data types read from storage. The following table describes how
-+ * the module interprets things:
-+ *
-+ * type schema data STRICT
-+ * ---- ------ ---- ------
-+ * ANY <none> any any
-+ * ROWID INTEGER n/a n/a
-+ * INTEGER INTEGER integer integer
-+ * FLOAT FLOAT integer or float float
-+ * NUMERIC NUMERIC integer, float, or text integer or float
-+ * TEXT TEXT text or blob text
-+ * BLOB BLOB blob blob
-+ *
-+ * type is the type provided to the recover module, schema is the
-+ * schema exposed by the module, data is the acceptable types of data
-+ * decoded from storage, and STRICT is a modification of that.
-+ *
-+ * A very loose recovery system might use ANY for all columns, then
-+ * use the appropriate sqlite3_column_*() calls to coerce to expected
-+ * types. This doesn't provide much protection if a page from a
-+ * different table with the same column count is linked into an
-+ * inappropriate btree.
-+ *
-+ * A very tight recovery system might use STRICT to enforce typing on
-+ * all columns, preferring to skip rows which are valid at the storage
-+ * level but don't contain the right types. Note that FLOAT STRICT is
-+ * almost certainly not appropriate, since integral values are
-+ * transparently stored as integers, when that is more efficient.
-+ *
-+ * Another option is to use ANY for all columns and inspect each
-+ * result manually (using sqlite3_column_*). This should only be
-+ * necessary in cases where developers have used manifest typing (test
-+ * to make sure before you decide that you aren't using manifest
-+ * typing!).
-+ *
-+ *
-+ * Caveats
-+ *
-+ * Leaf pages not referenced by interior nodes will not be found.
-+ *
-+ * Leaf pages referenced from interior nodes of other tables will not
-+ * be resolved.
-+ *
-+ * Rows referencing invalid overflow pages will be skipped.
-+ *
-+ * SQlite rows have a header which describes how to interpret the rest
-+ * of the payload. The header can be valid in cases where the rest of
-+ * the record is actually corrupt (in the sense that the data is not
-+ * the intended data). This can especially happen WRT overflow pages,
-+ * as lack of atomic updates between pages is the primary form of
-+ * corruption I have seen in the wild.
-+ */
-+/* The implementation is via a series of cursors. The cursor
-+ * implementations follow the pattern:
-+ *
-+ * // Creates the cursor using various initialization info.
-+ * int cursorCreate(...);
-+ *
-+ * // Returns 1 if there is no more data, 0 otherwise.
-+ * int cursorEOF(Cursor *pCursor);
-+ *
-+ * // Various accessors can be used if not at EOF.
-+ *
-+ * // Move to the next item.
-+ * int cursorNext(Cursor *pCursor);
-+ *
-+ * // Destroy the memory associated with the cursor.
-+ * void cursorDestroy(Cursor *pCursor);
-+ *
-+ * References in the following are to sections at
-+ * http://www.sqlite.org/fileformat2.html .
-+ *
-+ * RecoverLeafCursor iterates the records in a leaf table node
-+ * described in section 1.5 "B-tree Pages". When the node is
-+ * exhausted, an interior cursor is used to get the next leaf node,
-+ * and iteration continues there.
-+ *
-+ * RecoverInteriorCursor iterates the child pages in an interior table
-+ * node described in section 1.5 "B-tree Pages". When the node is
-+ * exhausted, a parent interior cursor is used to get the next
-+ * interior node at the same level, and iteration continues there.
-+ *
-+ * Together these record the path from the leaf level to the root of
-+ * the tree. Iteration happens from the leaves rather than the root
-+ * both for efficiency and putting the special case at the front of
-+ * the list is easier to implement.
-+ *
-+ * RecoverCursor uses a RecoverLeafCursor to iterate the rows of a
-+ * table, returning results via the SQLite virtual table interface.
-+ */
-+/* TODO(shess): It might be useful to allow DEFAULT in types to
-+ * specify what to do for NULL when an ALTER TABLE case comes up.
-+ * Unfortunately, simply adding it to the exposed schema and using
-+ * sqlite3_result_null() does not cause the default to be generate.
-+ * Handling it ourselves seems hard, unfortunately.
-+ */
-+
-+#include <assert.h>
-+#include <ctype.h>
-+#include <stdio.h>
-+#include <string.h>
-+
-+/* Internal SQLite things that are used:
-+ * u32, u64, i64 types.
-+ * Btree, Pager, and DbPage structs.
-+ * DbPage.pData, .pPager, and .pgno
-+ * sqlite3 struct.
-+ * sqlite3BtreePager() and sqlite3BtreeGetPageSize()
-+ * sqlite3PagerAcquire() and sqlite3PagerUnref()
-+ * getVarint().
-+ */
-+#include "sqliteInt.h"
-+
-+/* For debugging. */
-+#if 0
-+#define FNENTRY() fprintf(stderr, "In %s\n", __FUNCTION__)
-+#else
-+#define FNENTRY()
-+#endif
-+
-+/* Generic constants and helper functions. */
-+
-+static const unsigned char kTableLeafPage = 0x0D;
-+static const unsigned char kTableInteriorPage = 0x05;
-+
-+/* From section 1.5. */
-+static const unsigned kiPageTypeOffset = 0;
-+static const unsigned kiPageFreeBlockOffset = 1;
-+static const unsigned kiPageCellCountOffset = 3;
-+static const unsigned kiPageCellContentOffset = 5;
-+static const unsigned kiPageFragmentedBytesOffset = 7;
-+static const unsigned knPageLeafHeaderBytes = 8;
-+/* Interior pages contain an additional field. */
-+static const unsigned kiPageRightChildOffset = 8;
-+static const unsigned kiPageInteriorHeaderBytes = 12;
-+
-+/* Accepted types are specified by a mask. */
-+#define MASK_ROWID (1<<0)
-+#define MASK_INTEGER (1<<1)
-+#define MASK_FLOAT (1<<2)
-+#define MASK_TEXT (1<<3)
-+#define MASK_BLOB (1<<4)
-+#define MASK_NULL (1<<5)
-+
-+/* Helpers to decode fixed-size fields. */
-+static u32 decodeUnsigned16(const unsigned char *pData){
-+ return (pData[0]<<8) + pData[1];
-+}
-+static u32 decodeUnsigned32(const unsigned char *pData){
-+ return (decodeUnsigned16(pData)<<16) + decodeUnsigned16(pData+2);
-+}
-+static i64 decodeSigned(const unsigned char *pData, unsigned nBytes){
-+ i64 r = (char)(*pData);
-+ while( --nBytes ){
-+ r <<= 8;
-+ r += *(++pData);
-+ }
-+ return r;
-+}
-+/* Derived from vdbeaux.c, sqlite3VdbeSerialGet(), case 7. */
-+/* TODO(shess): Determine if swapMixedEndianFloat() applies. */
-+static double decodeFloat64(const unsigned char *pData){
-+#if !defined(NDEBUG)
-+ static const u64 t1 = ((u64)0x3ff00000)<<32;
-+ static const double r1 = 1.0;
-+ u64 t2 = t1;
-+ assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
-+#endif
-+ i64 x = decodeSigned(pData, 8);
-+ double d;
-+ memcpy(&d, &x, sizeof(x));
-+ return d;
-+}
-+
-+/* Return true if a varint can safely be read from pData/nData. */
-+/* TODO(shess): DbPage points into the middle of a buffer which
-+ * contains the page data before DbPage. So code should always be
-+ * able to read a small number of varints safely. Consider whether to
-+ * trust that or not.
-+ */
-+static int checkVarint(const unsigned char *pData, unsigned nData){
-+ unsigned i;
-+
-+ /* In the worst case the decoder takes all 8 bits of the 9th byte. */
-+ if( nData>=9 ){
-+ return 1;
-+ }
-+
-+ /* Look for a high-bit-clear byte in what's left. */
-+ for( i=0; i<nData; ++i ){
-+ if( !(pData[i]&0x80) ){
-+ return 1;
-+ }
-+ }
-+
-+ /* Cannot decode in the space given. */
-+ return 0;
-+}
-+
-+/* Return 1 if n varints can be read from pData/nData. */
-+static int checkVarints(const unsigned char *pData, unsigned nData,
-+ unsigned n){
-+ unsigned nCur = 0; /* Byte offset within current varint. */
-+ unsigned nFound = 0; /* Number of varints found. */
-+ unsigned i;
-+
-+ /* In the worst case the decoder takes all 8 bits of the 9th byte. */
-+ if( nData>=9*n ){
-+ return 1;
-+ }
-+
-+ for( i=0; nFound<n && i<nData; ++i ){
-+ nCur++;
-+ if( nCur==9 || !(pData[i]&0x80) ){
-+ nFound++;
-+ nCur = 0;
-+ }
-+ }
-+
-+ return nFound==n;
-+}
-+
-+/* ctype and str[n]casecmp() can be affected by locale (eg, tr_TR).
-+ * These versions consider only the ASCII space.
-+ */
-+/* TODO(shess): It may be reasonable to just remove the need for these
-+ * entirely. The module could require "TEXT STRICT NOT NULL", not
-+ * "Text Strict Not Null" or whatever the developer felt like typing
-+ * that day. Handling corrupt data is a PERFECT place to be pedantic.
-+ */
-+static int ascii_isspace(char c){
-+ /* From fts3_expr.c */
-+ return c==' ' || c=='\t' || c=='\n' || c=='\r' || c=='\v' || c=='\f';
-+}
-+static int ascii_isalnum(int x){
-+ /* From fts3_tokenizer1.c */
-+ return (x>='0' && x<='9') || (x>='A' && x<='Z') || (x>='a' && x<='z');
-+}
-+static int ascii_tolower(int x){
-+ /* From fts3_tokenizer1.c */
-+ return (x>='A' && x<='Z') ? x-'A'+'a' : x;
-+}
-+/* TODO(shess): Consider sqlite3_strnicmp() */
-+static int ascii_strncasecmp(const char *s1, const char *s2, size_t n){
-+ const unsigned char *us1 = (const unsigned char *)s1;
-+ const unsigned char *us2 = (const unsigned char *)s2;
-+ while( *us1 && *us2 && n && ascii_tolower(*us1)==ascii_tolower(*us2) ){
-+ us1++, us2++, n--;
-+ }
-+ return n ? ascii_tolower(*us1)-ascii_tolower(*us2) : 0;
-+}
-+static int ascii_strcasecmp(const char *s1, const char *s2){
-+ /* If s2 is equal through strlen(s1), will exit while() due to s1's
-+ * trailing NUL, and return NUL-s2[strlen(s1)].
-+ */
-+ return ascii_strncasecmp(s1, s2, strlen(s1)+1);
-+}
-+
-+/* For some reason I kept making mistakes with offset calculations. */
-+static const unsigned char *PageData(DbPage *pPage, unsigned iOffset){
-+ assert( iOffset<=pPage->nPageSize );
-+ return (unsigned char *)pPage->pData + iOffset;
-+}
-+
-+/* The first page in the file contains a file header in the first 100
-+ * bytes. The page's header information comes after that. Note that
-+ * the offsets in the page's header information are relative to the
-+ * beginning of the page, NOT the end of the page header.
-+ */
-+static const unsigned char *PageHeader(DbPage *pPage){
-+ if( pPage->pgno==1 ){
-+ const unsigned nDatabaseHeader = 100;
-+ return PageData(pPage, nDatabaseHeader);
-+ }else{
-+ return PageData(pPage, 0);
-+ }
-+}
-+
-+/* Helper to fetch the pager and page size for the named database. */
-+static int GetPager(sqlite3 *db, const char *zName,
-+ Pager **pPager, unsigned *pnPageSize){
-+ Btree *pBt = NULL;
-+ int i;
-+ for( i=0; i<db->nDb; ++i ){
-+ if( ascii_strcasecmp(db->aDb[i].zName, zName)==0 ){
-+ pBt = db->aDb[i].pBt;
-+ break;
-+ }
-+ }
-+ if( !pBt ){
-+ return SQLITE_ERROR;
-+ }
-+
-+ *pPager = sqlite3BtreePager(pBt);
-+ *pnPageSize = sqlite3BtreeGetPageSize(pBt) - sqlite3BtreeGetReserve(pBt);
-+ return SQLITE_OK;
-+}
-+
-+/* iSerialType is a type read from a record header. See "2.1 Record Format".
-+ */
-+
-+/* Storage size of iSerialType in bytes. My interpretation of SQLite
-+ * documentation is that text and blob fields can have 32-bit length.
-+ * Values past 2^31-12 will need more than 32 bits to encode, which is
-+ * why iSerialType is u64.
-+ */
-+static u32 SerialTypeLength(u64 iSerialType){
-+ switch( iSerialType ){
-+ case 0 : return 0; /* NULL */
-+ case 1 : return 1; /* Various integers. */
-+ case 2 : return 2;
-+ case 3 : return 3;
-+ case 4 : return 4;
-+ case 5 : return 6;
-+ case 6 : return 8;
-+ case 7 : return 8; /* 64-bit float. */
-+ case 8 : return 0; /* Constant 0. */
-+ case 9 : return 0; /* Constant 1. */
-+ case 10 : case 11 : assert( !"RESERVED TYPE"); return 0;
-+ }
-+ return (u32)((iSerialType>>1) - 6);
-+}
-+
-+/* True if iSerialType refers to a blob. */
-+static int SerialTypeIsBlob(u64 iSerialType){
-+ assert( iSerialType>=12 );
-+ return (iSerialType%2)==0;
-+}
-+
-+/* Returns true if the serialized type represented by iSerialType is
-+ * compatible with the given type mask.
-+ */
-+static int SerialTypeIsCompatible(u64 iSerialType, unsigned char mask){
-+ switch( iSerialType ){
-+ case 0 : return (mask&MASK_NULL)!=0;
-+ case 1 : return (mask&MASK_INTEGER)!=0;
-+ case 2 : return (mask&MASK_INTEGER)!=0;
-+ case 3 : return (mask&MASK_INTEGER)!=0;
-+ case 4 : return (mask&MASK_INTEGER)!=0;
-+ case 5 : return (mask&MASK_INTEGER)!=0;
-+ case 6 : return (mask&MASK_INTEGER)!=0;
-+ case 7 : return (mask&MASK_FLOAT)!=0;
-+ case 8 : return (mask&MASK_INTEGER)!=0;
-+ case 9 : return (mask&MASK_INTEGER)!=0;
-+ case 10 : assert( !"RESERVED TYPE"); return 0;
-+ case 11 : assert( !"RESERVED TYPE"); return 0;
-+ }
-+ return (mask&(SerialTypeIsBlob(iSerialType) ? MASK_BLOB : MASK_TEXT));
-+}
-+
-+/* Versions of strdup() with return values appropriate for
-+ * sqlite3_free(). malloc.c has sqlite3DbStrDup()/NDup(), but those
-+ * need sqlite3DbFree(), which seems intrusive.
-+ */
-+static char *sqlite3_strndup(const char *z, unsigned n){
-+ char *zNew;
-+
-+ if( z==NULL ){
-+ return NULL;
-+ }
-+
-+ zNew = sqlite3_malloc(n+1);
-+ if( zNew!=NULL ){
-+ memcpy(zNew, z, n);
-+ zNew[n] = '\0';
-+ }
-+ return zNew;
-+}
-+static char *sqlite3_strdup(const char *z){
-+ if( z==NULL ){
-+ return NULL;
-+ }
-+ return sqlite3_strndup(z, strlen(z));
-+}
-+
-+/* Fetch the page number of zTable in zDb from sqlite_master in zDb,
-+ * and put it in *piRootPage.
-+ */
-+static int getRootPage(sqlite3 *db, const char *zDb, const char *zTable,
-+ u32 *piRootPage){
-+ char *zSql; /* SQL selecting root page of named element. */
-+ sqlite3_stmt *pStmt;
-+ int rc;
-+
-+ if( strcmp(zTable, "sqlite_master")==0 ){
-+ *piRootPage = 1;
-+ return SQLITE_OK;
-+ }
-+
-+ zSql = sqlite3_mprintf("SELECT rootpage FROM %s.sqlite_master "
-+ "WHERE type = 'table' AND tbl_name = %Q",
-+ zDb, zTable);
-+ if( !zSql ){
-+ return SQLITE_NOMEM;
-+ }
-+
-+ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
-+ sqlite3_free(zSql);
-+ if( rc!=SQLITE_OK ){
-+ return rc;
-+ }
-+
-+ /* Require a result. */
-+ rc = sqlite3_step(pStmt);
-+ if( rc==SQLITE_DONE ){
-+ rc = SQLITE_CORRUPT;
-+ }else if( rc==SQLITE_ROW ){
-+ *piRootPage = sqlite3_column_int(pStmt, 0);
-+
-+ /* Require only one result. */
-+ rc = sqlite3_step(pStmt);
-+ if( rc==SQLITE_DONE ){
-+ rc = SQLITE_OK;
-+ }else if( rc==SQLITE_ROW ){
-+ rc = SQLITE_CORRUPT;
-+ }
-+ }
-+ sqlite3_finalize(pStmt);
-+ return rc;
-+}
-+
-+static int getEncoding(sqlite3 *db, const char *zDb, int* piEncoding){
-+ sqlite3_stmt *pStmt;
-+ int rc;
-+ char *zSql = sqlite3_mprintf("PRAGMA %s.encoding", zDb);
-+ if( !zSql ){
-+ return SQLITE_NOMEM;
-+ }
-+
-+ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
-+ sqlite3_free(zSql);
-+ if( rc!=SQLITE_OK ){
-+ return rc;
-+ }
-+
-+ /* Require a result. */
-+ rc = sqlite3_step(pStmt);
-+ if( rc==SQLITE_DONE ){
-+ /* This case should not be possible. */
-+ rc = SQLITE_CORRUPT;
-+ }else if( rc==SQLITE_ROW ){
-+ if( sqlite3_column_type(pStmt, 0)==SQLITE_TEXT ){
-+ const char* z = (const char *)sqlite3_column_text(pStmt, 0);
-+ /* These strings match the literals in pragma.c. */
-+ if( !strcmp(z, "UTF-16le") ){
-+ *piEncoding = SQLITE_UTF16LE;
-+ }else if( !strcmp(z, "UTF-16be") ){
-+ *piEncoding = SQLITE_UTF16BE;
-+ }else if( !strcmp(z, "UTF-8") ){
-+ *piEncoding = SQLITE_UTF8;
-+ }else{
-+ /* This case should not be possible. */
-+ *piEncoding = SQLITE_UTF8;
-+ }
-+ }else{
-+ /* This case should not be possible. */
-+ *piEncoding = SQLITE_UTF8;
-+ }
-+
-+ /* Require only one result. */
-+ rc = sqlite3_step(pStmt);
-+ if( rc==SQLITE_DONE ){
-+ rc = SQLITE_OK;
-+ }else if( rc==SQLITE_ROW ){
-+ /* This case should not be possible. */
-+ rc = SQLITE_CORRUPT;
-+ }
-+ }
-+ sqlite3_finalize(pStmt);
-+ return rc;
-+}
-+
-+/* Cursor for iterating interior nodes. Interior page cells contain a
-+ * child page number and a rowid. The child page contains items left
-+ * of the rowid (less than). The rightmost page of the subtree is
-+ * stored in the page header.
-+ *
-+ * interiorCursorDestroy - release all resources associated with the
-+ * cursor and any parent cursors.
-+ * interiorCursorCreate - create a cursor with the given parent and page.
-+ * interiorCursorEOF - returns true if neither the cursor nor the
-+ * parent cursors can return any more data.
-+ * interiorCursorNextPage - fetch the next child page from the cursor.
-+ *
-+ * Logically, interiorCursorNextPage() returns the next child page
-+ * number from the page the cursor is currently reading, calling the
-+ * parent cursor as necessary to get new pages to read, until done.
-+ * SQLITE_ROW if a page is returned, SQLITE_DONE if out of pages,
-+ * error otherwise. Unfortunately, if the table is corrupted
-+ * unexpected pages can be returned. If any unexpected page is found,
-+ * leaf or otherwise, it is returned to the caller for processing,
-+ * with the interior cursor left empty. The next call to
-+ * interiorCursorNextPage() will recurse to the parent cursor until an
-+ * interior page to iterate is returned.
-+ *
-+ * Note that while interiorCursorNextPage() will refuse to follow
-+ * loops, it does not keep track of pages returned for purposes of
-+ * preventing duplication.
-+ *
-+ * Note that interiorCursorEOF() could return false (not at EOF), and
-+ * interiorCursorNextPage() could still return SQLITE_DONE. This
-+ * could happen if there are more cells to iterate in an interior
-+ * page, but those cells refer to invalid pages.
-+ */
-+typedef struct RecoverInteriorCursor RecoverInteriorCursor;
-+struct RecoverInteriorCursor {
-+ RecoverInteriorCursor *pParent; /* Parent node to this node. */
-+ DbPage *pPage; /* Reference to leaf page. */
-+ unsigned nPageSize; /* Size of page. */
-+ unsigned nChildren; /* Number of children on the page. */
-+ unsigned iChild; /* Index of next child to return. */
-+};
-+
-+static void interiorCursorDestroy(RecoverInteriorCursor *pCursor){
-+ /* Destroy all the cursors to the root. */
-+ while( pCursor ){
-+ RecoverInteriorCursor *p = pCursor;
-+ pCursor = pCursor->pParent;
-+
-+ if( p->pPage ){
-+ sqlite3PagerUnref(p->pPage);
-+ p->pPage = NULL;
-+ }
-+
-+ memset(p, 0xA5, sizeof(*p));
-+ sqlite3_free(p);
-+ }
-+}
-+
-+/* Internal helper. Reset storage in preparation for iterating pPage. */
-+static void interiorCursorSetPage(RecoverInteriorCursor *pCursor,
-+ DbPage *pPage){
-+ assert( PageHeader(pPage)[kiPageTypeOffset]==kTableInteriorPage );
-+
-+ if( pCursor->pPage ){
-+ sqlite3PagerUnref(pCursor->pPage);
-+ pCursor->pPage = NULL;
-+ }
-+ pCursor->pPage = pPage;
-+ pCursor->iChild = 0;
-+
-+ /* A child for each cell, plus one in the header. */
-+ /* TODO(shess): Sanity-check the count? Page header plus per-cell
-+ * cost of 16-bit offset, 32-bit page number, and one varint
-+ * (minimum 1 byte).
-+ */
-+ pCursor->nChildren = decodeUnsigned16(PageHeader(pPage) +
-+ kiPageCellCountOffset) + 1;
-+}
-+
-+static int interiorCursorCreate(RecoverInteriorCursor *pParent,
-+ DbPage *pPage, int nPageSize,
-+ RecoverInteriorCursor **ppCursor){
-+ RecoverInteriorCursor *pCursor =
-+ sqlite3_malloc(sizeof(RecoverInteriorCursor));
-+ if( !pCursor ){
-+ return SQLITE_NOMEM;
-+ }
-+
-+ memset(pCursor, 0, sizeof(*pCursor));
-+ pCursor->pParent = pParent;
-+ pCursor->nPageSize = nPageSize;
-+ interiorCursorSetPage(pCursor, pPage);
-+ *ppCursor = pCursor;
-+ return SQLITE_OK;
-+}
-+
-+/* Internal helper. Return the child page number at iChild. */
-+static unsigned interiorCursorChildPage(RecoverInteriorCursor *pCursor){
-+ const unsigned char *pPageHeader; /* Header of the current page. */
-+ const unsigned char *pCellOffsets; /* Offset to page's cell offsets. */
-+ unsigned iCellOffset; /* Offset of target cell. */
-+
-+ assert( pCursor->iChild<pCursor->nChildren );
-+
-+ /* Rightmost child is in the header. */
-+ pPageHeader = PageHeader(pCursor->pPage);
-+ if( pCursor->iChild==pCursor->nChildren-1 ){
-+ return decodeUnsigned32(pPageHeader + kiPageRightChildOffset);
-+ }
-+
-+ /* Each cell is a 4-byte integer page number and a varint rowid
-+ * which is greater than the rowid of items in that sub-tree (this
-+ * module ignores ordering). The offset is from the beginning of the
-+ * page, not from the page header.
-+ */
-+ pCellOffsets = pPageHeader + kiPageInteriorHeaderBytes;
-+ iCellOffset = decodeUnsigned16(pCellOffsets + pCursor->iChild*2);
-+ if( iCellOffset<=pCursor->nPageSize-4 ){
-+ return decodeUnsigned32(PageData(pCursor->pPage, iCellOffset));
-+ }
-+
-+ /* TODO(shess): Check for cell overlaps? Cells require 4 bytes plus
-+ * a varint. Check could be identical to leaf check (or even a
-+ * shared helper testing for "Cells starting in this range"?).
-+ */
-+
-+ /* If the offset is broken, return an invalid page number. */
-+ return 0;
-+}
-+
-+static int interiorCursorEOF(RecoverInteriorCursor *pCursor){
-+ /* Find a parent with remaining children. EOF if none found. */
-+ while( pCursor && pCursor->iChild>=pCursor->nChildren ){
-+ pCursor = pCursor->pParent;
-+ }
-+ return pCursor==NULL;
-+}
-+
-+/* Internal helper. Used to detect if iPage would cause a loop. */
-+static int interiorCursorPageInUse(RecoverInteriorCursor *pCursor,
-+ unsigned iPage){
-+ /* Find any parent using the indicated page. */
-+ while( pCursor && pCursor->pPage->pgno!=iPage ){
-+ pCursor = pCursor->pParent;
-+ }
-+ return pCursor!=NULL;
-+}
-+
-+/* Get the next page from the interior cursor at *ppCursor. Returns
-+ * SQLITE_ROW with the page in *ppPage, or SQLITE_DONE if out of
-+ * pages, or the error SQLite returned.
-+ *
-+ * If the tree is uneven, then when the cursor attempts to get a new
-+ * interior page from the parent cursor, it may get a non-interior
-+ * page. In that case, the new page is returned, and *ppCursor is
-+ * updated to point to the parent cursor (this cursor is freed).
-+ */
-+/* TODO(shess): I've tried to avoid recursion in most of this code,
-+ * but this case is more challenging because the recursive call is in
-+ * the middle of operation. One option for converting it without
-+ * adding memory management would be to retain the head pointer and
-+ * use a helper to "back up" as needed. Another option would be to
-+ * reverse the list during traversal.
-+ */
-+static int interiorCursorNextPage(RecoverInteriorCursor **ppCursor,
-+ DbPage **ppPage){
-+ RecoverInteriorCursor *pCursor = *ppCursor;
-+ while( 1 ){
-+ int rc;
-+ const unsigned char *pPageHeader; /* Header of found page. */
-+
-+ /* Find a valid child page which isn't on the stack. */
-+ while( pCursor->iChild<pCursor->nChildren ){
-+ const unsigned iPage = interiorCursorChildPage(pCursor);
-+ pCursor->iChild++;
-+ if( interiorCursorPageInUse(pCursor, iPage) ){
-+ fprintf(stderr, "Loop detected at %d\n", iPage);
-+ }else{
-+ int rc = sqlite3PagerAcquire(pCursor->pPage->pPager, iPage, ppPage, 0);
-+ if( rc==SQLITE_OK ){
-+ return SQLITE_ROW;
-+ }
-+ }
-+ }
-+
-+ /* This page has no more children. Get next page from parent. */
-+ if( !pCursor->pParent ){
-+ return SQLITE_DONE;
-+ }
-+ rc = interiorCursorNextPage(&pCursor->pParent, ppPage);
-+ if( rc!=SQLITE_ROW ){
-+ return rc;
-+ }
-+
-+ /* If a non-interior page is received, that either means that the
-+ * tree is uneven, or that a child was re-used (say as an overflow
-+ * page). Remove this cursor and let the caller handle the page.
-+ */
-+ pPageHeader = PageHeader(*ppPage);
-+ if( pPageHeader[kiPageTypeOffset]!=kTableInteriorPage ){
-+ *ppCursor = pCursor->pParent;
-+ pCursor->pParent = NULL;
-+ interiorCursorDestroy(pCursor);
-+ return SQLITE_ROW;
-+ }
-+
-+ /* Iterate the new page. */
-+ interiorCursorSetPage(pCursor, *ppPage);
-+ *ppPage = NULL;
-+ }
-+
-+ assert(NULL); /* NOTREACHED() */
-+ return SQLITE_CORRUPT;
-+}
-+
-+/* Large rows are spilled to overflow pages. The row's main page
-+ * stores the overflow page number after the local payload, with a
-+ * linked list forward from there as necessary. overflowMaybeCreate()
-+ * and overflowGetSegment() provide an abstraction for accessing such
-+ * data while centralizing the code.
-+ *
-+ * overflowDestroy - releases all resources associated with the structure.
-+ * overflowMaybeCreate - create the overflow structure if it is needed
-+ * to represent the given record. See function comment.
-+ * overflowGetSegment - fetch a segment from the record, accounting
-+ * for overflow pages. Segments which are not
-+ * entirely contained with a page are constructed
-+ * into a buffer which is returned. See function comment.
-+ */
-+typedef struct RecoverOverflow RecoverOverflow;
-+struct RecoverOverflow {
-+ RecoverOverflow *pNextOverflow;
-+ DbPage *pPage;
-+ unsigned nPageSize;
-+};
-+
-+static void overflowDestroy(RecoverOverflow *pOverflow){
-+ while( pOverflow ){
-+ RecoverOverflow *p = pOverflow;
-+ pOverflow = p->pNextOverflow;
-+
-+ if( p->pPage ){
-+ sqlite3PagerUnref(p->pPage);
-+ p->pPage = NULL;
-+ }
-+
-+ memset(p, 0xA5, sizeof(*p));
-+ sqlite3_free(p);
-+ }
-+}
-+
-+/* Internal helper. Used to detect if iPage would cause a loop. */
-+static int overflowPageInUse(RecoverOverflow *pOverflow, unsigned iPage){
-+ while( pOverflow && pOverflow->pPage->pgno!=iPage ){
-+ pOverflow = pOverflow->pNextOverflow;
-+ }
-+ return pOverflow!=NULL;
-+}
-+
-+/* Setup to access an nRecordBytes record beginning at iRecordOffset
-+ * in pPage. If nRecordBytes can be satisfied entirely from pPage,
-+ * then no overflow pages are needed an *pnLocalRecordBytes is set to
-+ * nRecordBytes. Otherwise, *ppOverflow is set to the head of a list
-+ * of overflow pages, and *pnLocalRecordBytes is set to the number of
-+ * bytes local to pPage.
-+ *
-+ * overflowGetSegment() will do the right thing regardless of whether
-+ * those values are set to be in-page or not.
-+ */
-+static int overflowMaybeCreate(DbPage *pPage, unsigned nPageSize,
-+ unsigned iRecordOffset, unsigned nRecordBytes,
-+ unsigned *pnLocalRecordBytes,
-+ RecoverOverflow **ppOverflow){
-+ unsigned nLocalRecordBytes; /* Record bytes in the leaf page. */
-+ unsigned iNextPage; /* Next page number for record data. */
-+ unsigned nBytes; /* Maximum record bytes as of current page. */
-+ int rc;
-+ RecoverOverflow *pFirstOverflow; /* First in linked list of pages. */
-+ RecoverOverflow *pLastOverflow; /* End of linked list. */
-+
-+ /* Calculations from the "Table B-Tree Leaf Cell" part of section
-+ * 1.5 of http://www.sqlite.org/fileformat2.html . maxLocal and
-+ * minLocal to match naming in btree.c.
-+ */
-+ const unsigned maxLocal = nPageSize - 35;
-+ const unsigned minLocal = ((nPageSize-12)*32/255)-23; /* m */
-+
-+ /* Always fit anything smaller than maxLocal. */
-+ if( nRecordBytes<=maxLocal ){
-+ *pnLocalRecordBytes = nRecordBytes;
-+ *ppOverflow = NULL;
-+ return SQLITE_OK;
-+ }
-+
-+ /* Calculate the remainder after accounting for minLocal on the leaf
-+ * page and what packs evenly into overflow pages. If the remainder
-+ * does not fit into maxLocal, then a partially-full overflow page
-+ * will be required in any case, so store as little as possible locally.
-+ */
-+ nLocalRecordBytes = minLocal+((nRecordBytes-minLocal)%(nPageSize-4));
-+ if( maxLocal<nLocalRecordBytes ){
-+ nLocalRecordBytes = minLocal;
-+ }
-+
-+ /* Don't read off the end of the page. */
-+ if( iRecordOffset+nLocalRecordBytes+4>nPageSize ){
-+ return SQLITE_CORRUPT;
-+ }
-+
-+ /* First overflow page number is after the local bytes. */
-+ iNextPage =
-+ decodeUnsigned32(PageData(pPage, iRecordOffset + nLocalRecordBytes));
-+ nBytes = nLocalRecordBytes;
-+
-+ /* While there are more pages to read, and more bytes are needed,
-+ * get another page.
-+ */
-+ pFirstOverflow = pLastOverflow = NULL;
-+ rc = SQLITE_OK;
-+ while( iNextPage && nBytes<nRecordBytes ){
-+ RecoverOverflow *pOverflow; /* New overflow page for the list. */
-+
-+ rc = sqlite3PagerAcquire(pPage->pPager, iNextPage, &pPage, 0);
-+ if( rc!=SQLITE_OK ){
-+ break;
-+ }
-+
-+ pOverflow = sqlite3_malloc(sizeof(RecoverOverflow));
-+ if( !pOverflow ){
-+ sqlite3PagerUnref(pPage);
-+ rc = SQLITE_NOMEM;
-+ break;
-+ }
-+ memset(pOverflow, 0, sizeof(*pOverflow));
-+ pOverflow->pPage = pPage;
-+ pOverflow->nPageSize = nPageSize;
-+
-+ if( !pFirstOverflow ){
-+ pFirstOverflow = pOverflow;
-+ }else{
-+ pLastOverflow->pNextOverflow = pOverflow;
-+ }
-+ pLastOverflow = pOverflow;
-+
-+ iNextPage = decodeUnsigned32(pPage->pData);
-+ nBytes += nPageSize-4;
-+
-+ /* Avoid loops. */
-+ if( overflowPageInUse(pFirstOverflow, iNextPage) ){
-+ fprintf(stderr, "Overflow loop detected at %d\n", iNextPage);
-+ rc = SQLITE_CORRUPT;
-+ break;
-+ }
-+ }
-+
-+ /* If there were not enough pages, or too many, things are corrupt.
-+ * Not having enough pages is an obvious problem, all the data
-+ * cannot be read. Too many pages means that the contents of the
-+ * row between the main page and the overflow page(s) is
-+ * inconsistent (most likely one or more of the overflow pages does
-+ * not really belong to this row).
-+ */
-+ if( rc==SQLITE_OK && (nBytes<nRecordBytes || iNextPage) ){
-+ rc = SQLITE_CORRUPT;
-+ }
-+
-+ if( rc==SQLITE_OK ){
-+ *ppOverflow = pFirstOverflow;
-+ *pnLocalRecordBytes = nLocalRecordBytes;
-+ }else if( pFirstOverflow ){
-+ overflowDestroy(pFirstOverflow);
-+ }
-+ return rc;
-+}
-+
-+/* Use in concert with overflowMaybeCreate() to efficiently read parts
-+ * of a potentially-overflowing record. pPage and iRecordOffset are
-+ * the values passed into overflowMaybeCreate(), nLocalRecordBytes and
-+ * pOverflow are the values returned by that call.
-+ *
-+ * On SQLITE_OK, *ppBase points to nRequestBytes of data at
-+ * iRequestOffset within the record. If the data exists contiguously
-+ * in a page, a direct pointer is returned, otherwise a buffer from
-+ * sqlite3_malloc() is returned with the data. *pbFree is set true if
-+ * sqlite3_free() should be called on *ppBase.
-+ */
-+/* Operation of this function is subtle. At any time, pPage is the
-+ * current page, with iRecordOffset and nLocalRecordBytes being record
-+ * data within pPage, and pOverflow being the overflow page after
-+ * pPage. This allows the code to handle both the initial leaf page
-+ * and overflow pages consistently by adjusting the values
-+ * appropriately.
-+ */
-+static int overflowGetSegment(DbPage *pPage, unsigned iRecordOffset,
-+ unsigned nLocalRecordBytes,
-+ RecoverOverflow *pOverflow,
-+ unsigned iRequestOffset, unsigned nRequestBytes,
-+ unsigned char **ppBase, int *pbFree){
-+ unsigned nBase; /* Amount of data currently collected. */
-+ unsigned char *pBase; /* Buffer to collect record data into. */
-+
-+ /* Skip to the page containing the start of the data. */
-+ while( iRequestOffset>=nLocalRecordBytes && pOverflow ){
-+ /* Factor out current page's contribution. */
-+ iRequestOffset -= nLocalRecordBytes;
-+
-+ /* Move forward to the next page in the list. */
-+ pPage = pOverflow->pPage;
-+ iRecordOffset = 4;
-+ nLocalRecordBytes = pOverflow->nPageSize - iRecordOffset;
-+ pOverflow = pOverflow->pNextOverflow;
-+ }
-+
-+ /* If the requested data is entirely within this page, return a
-+ * pointer into the page.
-+ */
-+ if( iRequestOffset+nRequestBytes<=nLocalRecordBytes ){
-+ /* TODO(shess): "assignment discards qualifiers from pointer target type"
-+ * Having ppBase be const makes sense, but sqlite3_free() takes non-const.
-+ */
-+ *ppBase = (unsigned char *)PageData(pPage, iRecordOffset + iRequestOffset);
-+ *pbFree = 0;
-+ return SQLITE_OK;
-+ }
-+
-+ /* The data range would require additional pages. */
-+ if( !pOverflow ){
-+ /* Should never happen, the range is outside the nRecordBytes
-+ * passed to overflowMaybeCreate().
-+ */
-+ assert(NULL); /* NOTREACHED */
-+ return SQLITE_ERROR;
-+ }
-+
-+ /* Get a buffer to construct into. */
-+ nBase = 0;
-+ pBase = sqlite3_malloc(nRequestBytes);
-+ if( !pBase ){
-+ return SQLITE_NOMEM;
-+ }
-+ while( nBase<nRequestBytes ){
-+ /* Copy over data present on this page. */
-+ unsigned nCopyBytes = nRequestBytes - nBase;
-+ if( nLocalRecordBytes-iRequestOffset<nCopyBytes ){
-+ nCopyBytes = nLocalRecordBytes - iRequestOffset;
-+ }
-+ memcpy(pBase + nBase, PageData(pPage, iRecordOffset + iRequestOffset),
-+ nCopyBytes);
-+ nBase += nCopyBytes;
-+
-+ if( pOverflow ){
-+ /* Copy from start of record data in future pages. */
-+ iRequestOffset = 0;
-+
-+ /* Move forward to the next page in the list. Should match
-+ * first while() loop.
-+ */
-+ pPage = pOverflow->pPage;
-+ iRecordOffset = 4;
-+ nLocalRecordBytes = pOverflow->nPageSize - iRecordOffset;
-+ pOverflow = pOverflow->pNextOverflow;
-+ }else if( nBase<nRequestBytes ){
-+ /* Ran out of overflow pages with data left to deliver. Not
-+ * possible if the requested range fits within nRecordBytes
-+ * passed to overflowMaybeCreate() when creating pOverflow.
-+ */
-+ assert(NULL); /* NOTREACHED */
-+ sqlite3_free(pBase);
-+ return SQLITE_ERROR;
-+ }
-+ }
-+ assert( nBase==nRequestBytes );
-+ *ppBase = pBase;
-+ *pbFree = 1;
-+ return SQLITE_OK;
-+}
-+
-+/* Primary structure for iterating the contents of a table.
-+ *
-+ * leafCursorDestroy - release all resources associated with the cursor.
-+ * leafCursorCreate - create a cursor to iterate items from tree at
-+ * the provided root page.
-+ * leafCursorNextValidCell - get the cursor ready to access data from
-+ * the next valid cell in the table.
-+ * leafCursorCellRowid - get the current cell's rowid.
-+ * leafCursorCellColumns - get current cell's column count.
-+ * leafCursorCellColInfo - get type and data for a column in current cell.
-+ *
-+ * leafCursorNextValidCell skips cells which fail simple integrity
-+ * checks, such as overlapping other cells, or being located at
-+ * impossible offsets, or where header data doesn't correctly describe
-+ * payload data. Returns SQLITE_ROW if a valid cell is found,
-+ * SQLITE_DONE if all pages in the tree were exhausted.
-+ *
-+ * leafCursorCellColInfo() accounts for overflow pages in the style of
-+ * overflowGetSegment().
-+ */
-+typedef struct RecoverLeafCursor RecoverLeafCursor;
-+struct RecoverLeafCursor {
-+ RecoverInteriorCursor *pParent; /* Parent node to this node. */
-+ DbPage *pPage; /* Reference to leaf page. */
-+ unsigned nPageSize; /* Size of pPage. */
-+ unsigned nCells; /* Number of cells in pPage. */
-+ unsigned iCell; /* Current cell. */
-+
-+ /* Info parsed from data in iCell. */
-+ i64 iRowid; /* rowid parsed. */
-+ unsigned nRecordCols; /* how many items in the record. */
-+ u64 iRecordOffset; /* offset to record data. */
-+ /* TODO(shess): nRecordBytes and nRecordHeaderBytes are used in
-+ * leafCursorCellColInfo() to prevent buffer overruns.
-+ * leafCursorCellDecode() already verified that the cell is valid, so
-+ * those checks should be redundant.
-+ */
-+ u64 nRecordBytes; /* Size of record data. */
-+ unsigned nLocalRecordBytes; /* Amount of record data in-page. */
-+ unsigned nRecordHeaderBytes; /* Size of record header data. */
-+ unsigned char *pRecordHeader; /* Pointer to record header data. */
-+ int bFreeRecordHeader; /* True if record header requires free. */
-+ RecoverOverflow *pOverflow; /* Cell overflow info, if needed. */
-+};
-+
-+/* Internal helper shared between next-page and create-cursor. If
-+ * pPage is a leaf page, it will be stored in the cursor and state
-+ * initialized for reading cells.
-+ *
-+ * If pPage is an interior page, a new parent cursor is created and
-+ * injected on the stack. This is necessary to handle trees with
-+ * uneven depth, but also is used during initial setup.
-+ *
-+ * If pPage is not a table page at all, it is discarded.
-+ *
-+ * If SQLITE_OK is returned, the caller no longer owns pPage,
-+ * otherwise the caller is responsible for discarding it.
-+ */
-+static int leafCursorLoadPage(RecoverLeafCursor *pCursor, DbPage *pPage){
-+ const unsigned char *pPageHeader; /* Header of *pPage */
-+
-+ /* Release the current page. */
-+ if( pCursor->pPage ){
-+ sqlite3PagerUnref(pCursor->pPage);
-+ pCursor->pPage = NULL;
-+ pCursor->iCell = pCursor->nCells = 0;
-+ }
-+
-+ /* If the page is an unexpected interior node, inject a new stack
-+ * layer and try again from there.
-+ */
-+ pPageHeader = PageHeader(pPage);
-+ if( pPageHeader[kiPageTypeOffset]==kTableInteriorPage ){
-+ RecoverInteriorCursor *pParent;
-+ int rc = interiorCursorCreate(pCursor->pParent, pPage, pCursor->nPageSize,
-+ &pParent);
-+ if( rc!=SQLITE_OK ){
-+ return rc;
-+ }
-+ pCursor->pParent = pParent;
-+ return SQLITE_OK;
-+ }
-+
-+ /* Not a leaf page, skip it. */
-+ if( pPageHeader[kiPageTypeOffset]!=kTableLeafPage ){
-+ sqlite3PagerUnref(pPage);
-+ return SQLITE_OK;
-+ }
-+
-+ /* Take ownership of the page and start decoding. */
-+ pCursor->pPage = pPage;
-+ pCursor->iCell = 0;
-+ pCursor->nCells = decodeUnsigned16(pPageHeader + kiPageCellCountOffset);
-+ return SQLITE_OK;
-+}
-+
-+/* Get the next leaf-level page in the tree. Returns SQLITE_ROW when
-+ * a leaf page is found, SQLITE_DONE when no more leaves exist, or any
-+ * error which occurred.
-+ */
-+static int leafCursorNextPage(RecoverLeafCursor *pCursor){
-+ if( !pCursor->pParent ){
-+ return SQLITE_DONE;
-+ }
-+
-+ /* Repeatedly load the parent's next child page until a leaf is found. */
-+ do {
-+ DbPage *pNextPage;
-+ int rc = interiorCursorNextPage(&pCursor->pParent, &pNextPage);
-+ if( rc!=SQLITE_ROW ){
-+ assert( rc==SQLITE_DONE );
-+ return rc;
-+ }
-+
-+ rc = leafCursorLoadPage(pCursor, pNextPage);
-+ if( rc!=SQLITE_OK ){
-+ sqlite3PagerUnref(pNextPage);
-+ return rc;
-+ }
-+ } while( !pCursor->pPage );
-+
-+ return SQLITE_ROW;
-+}
-+
-+static void leafCursorDestroyCellData(RecoverLeafCursor *pCursor){
-+ if( pCursor->bFreeRecordHeader ){
-+ sqlite3_free(pCursor->pRecordHeader);
-+ }
-+ pCursor->bFreeRecordHeader = 0;
-+ pCursor->pRecordHeader = NULL;
-+
-+ if( pCursor->pOverflow ){
-+ overflowDestroy(pCursor->pOverflow);
-+ pCursor->pOverflow = NULL;
-+ }
-+}
-+
-+static void leafCursorDestroy(RecoverLeafCursor *pCursor){
-+ leafCursorDestroyCellData(pCursor);
-+
-+ if( pCursor->pParent ){
-+ interiorCursorDestroy(pCursor->pParent);
-+ pCursor->pParent = NULL;
-+ }
-+
-+ if( pCursor->pPage ){
-+ sqlite3PagerUnref(pCursor->pPage);
-+ pCursor->pPage = NULL;
-+ }
-+
-+ memset(pCursor, 0xA5, sizeof(*pCursor));
-+ sqlite3_free(pCursor);
-+}
-+
-+/* Create a cursor to iterate the rows from the leaf pages of a table
-+ * rooted at iRootPage.
-+ */
-+/* TODO(shess): recoverOpen() calls this to setup the cursor, and I
-+ * think that recoverFilter() may make a hard assumption that the
-+ * cursor returned will turn up at least one valid cell.
-+ *
-+ * The cases I can think of which break this assumption are:
-+ * - pPage is a valid leaf page with no valid cells.
-+ * - pPage is a valid interior page with no valid leaves.
-+ * - pPage is a valid interior page who's leaves contain no valid cells.
-+ * - pPage is not a valid leaf or interior page.
-+ */
-+static int leafCursorCreate(Pager *pPager, unsigned nPageSize,
-+ u32 iRootPage, RecoverLeafCursor **ppCursor){
-+ DbPage *pPage; /* Reference to page at iRootPage. */
-+ RecoverLeafCursor *pCursor; /* Leaf cursor being constructed. */
-+ int rc;
-+
-+ /* Start out with the root page. */
-+ rc = sqlite3PagerAcquire(pPager, iRootPage, &pPage, 0);
-+ if( rc!=SQLITE_OK ){
-+ return rc;
-+ }
-+
-+ pCursor = sqlite3_malloc(sizeof(RecoverLeafCursor));
-+ if( !pCursor ){
-+ sqlite3PagerUnref(pPage);
-+ return SQLITE_NOMEM;
-+ }
-+ memset(pCursor, 0, sizeof(*pCursor));
-+
-+ pCursor->nPageSize = nPageSize;
-+
-+ rc = leafCursorLoadPage(pCursor, pPage);
-+ if( rc!=SQLITE_OK ){
-+ sqlite3PagerUnref(pPage);
-+ leafCursorDestroy(pCursor);
-+ return rc;
-+ }
-+
-+ /* pPage wasn't a leaf page, find the next leaf page. */
-+ if( !pCursor->pPage ){
-+ rc = leafCursorNextPage(pCursor);
-+ if( rc!=SQLITE_DONE && rc!=SQLITE_ROW ){
-+ leafCursorDestroy(pCursor);
-+ return rc;
-+ }
-+ }
-+
-+ *ppCursor = pCursor;
-+ return SQLITE_OK;
-+}
-+
-+/* Useful for setting breakpoints. */
-+static int ValidateError(){
-+ return SQLITE_ERROR;
-+}
-+
-+/* Setup the cursor for reading the information from cell iCell. */
-+static int leafCursorCellDecode(RecoverLeafCursor *pCursor){
-+ const unsigned char *pPageHeader; /* Header of current page. */
-+ const unsigned char *pCellOffsets; /* Pointer to page's cell offsets. */
-+ unsigned iCellOffset; /* Offset of current cell (iCell). */
-+ const unsigned char *pCell; /* Pointer to data at iCellOffset. */
-+ unsigned nCellMaxBytes; /* Maximum local size of iCell. */
-+ unsigned iEndOffset; /* End of iCell's in-page data. */
-+ u64 nRecordBytes; /* Expected size of cell, w/overflow. */
-+ u64 iRowid; /* iCell's rowid (in table). */
-+ unsigned nRead; /* Amount of cell read. */
-+ unsigned nRecordHeaderRead; /* Header data read. */
-+ u64 nRecordHeaderBytes; /* Header size expected. */
-+ unsigned nRecordCols; /* Columns read from header. */
-+ u64 nRecordColBytes; /* Bytes in payload for those columns. */
-+ unsigned i;
-+ int rc;
-+
-+ assert( pCursor->iCell<pCursor->nCells );
-+
-+ leafCursorDestroyCellData(pCursor);
-+
-+ /* Find the offset to the row. */
-+ pPageHeader = PageHeader(pCursor->pPage);
-+ pCellOffsets = pPageHeader + knPageLeafHeaderBytes;
-+ iCellOffset = decodeUnsigned16(pCellOffsets + pCursor->iCell*2);
-+ if( iCellOffset>=pCursor->nPageSize ){
-+ return ValidateError();
-+ }
-+
-+ pCell = PageData(pCursor->pPage, iCellOffset);
-+ nCellMaxBytes = pCursor->nPageSize - iCellOffset;
-+
-+ /* B-tree leaf cells lead with varint record size, varint rowid and
-+ * varint header size.
-+ */
-+ /* TODO(shess): The smallest page size is 512 bytes, which has an m
-+ * of 39. Three varints need at most 27 bytes to encode. I think.
-+ */
-+ if( !checkVarints(pCell, nCellMaxBytes, 3) ){
-+ return ValidateError();
-+ }
-+
-+ nRead = getVarint(pCell, &nRecordBytes);
-+ assert( iCellOffset+nRead<=pCursor->nPageSize );
-+ pCursor->nRecordBytes = nRecordBytes;
-+
-+ nRead += getVarint(pCell + nRead, &iRowid);
-+ assert( iCellOffset+nRead<=pCursor->nPageSize );
-+ pCursor->iRowid = (i64)iRowid;
-+
-+ pCursor->iRecordOffset = iCellOffset + nRead;
-+
-+ /* Start overflow setup here because nLocalRecordBytes is needed to
-+ * check cell overlap.
-+ */
-+ rc = overflowMaybeCreate(pCursor->pPage, pCursor->nPageSize,
-+ pCursor->iRecordOffset, pCursor->nRecordBytes,
-+ &pCursor->nLocalRecordBytes,
-+ &pCursor->pOverflow);
-+ if( rc!=SQLITE_OK ){
-+ return ValidateError();
-+ }
-+
-+ /* Check that no other cell starts within this cell. */
-+ iEndOffset = pCursor->iRecordOffset + pCursor->nLocalRecordBytes;
-+ for( i=0; i<pCursor->nCells; ++i ){
-+ const unsigned iOtherOffset = decodeUnsigned16(pCellOffsets + i*2);
-+ if( iOtherOffset>iCellOffset && iOtherOffset<iEndOffset ){
-+ return ValidateError();
-+ }
-+ }
-+
-+ nRecordHeaderRead = getVarint(pCell + nRead, &nRecordHeaderBytes);
-+ assert( nRecordHeaderBytes<=nRecordBytes );
-+ pCursor->nRecordHeaderBytes = nRecordHeaderBytes;
-+
-+ /* Large headers could overflow if pages are small. */
-+ rc = overflowGetSegment(pCursor->pPage,
-+ pCursor->iRecordOffset, pCursor->nLocalRecordBytes,
-+ pCursor->pOverflow, 0, nRecordHeaderBytes,
-+ &pCursor->pRecordHeader, &pCursor->bFreeRecordHeader);
-+ if( rc!=SQLITE_OK ){
-+ return ValidateError();
-+ }
-+
-+ /* Tally up the column count and size of data. */
-+ nRecordCols = 0;
-+ nRecordColBytes = 0;
-+ while( nRecordHeaderRead<nRecordHeaderBytes ){
-+ u64 iSerialType; /* Type descriptor for current column. */
-+ if( !checkVarint(pCursor->pRecordHeader + nRecordHeaderRead,
-+ nRecordHeaderBytes - nRecordHeaderRead) ){
-+ return ValidateError();
-+ }
-+ nRecordHeaderRead += getVarint(pCursor->pRecordHeader + nRecordHeaderRead,
-+ &iSerialType);
-+ if( iSerialType==10 || iSerialType==11 ){
-+ return ValidateError();
-+ }
-+ nRecordColBytes += SerialTypeLength(iSerialType);
-+ nRecordCols++;
-+ }
-+ pCursor->nRecordCols = nRecordCols;
-+
-+ /* Parsing the header used as many bytes as expected. */
-+ if( nRecordHeaderRead!=nRecordHeaderBytes ){
-+ return ValidateError();
-+ }
-+
-+ /* Calculated record is size of expected record. */
-+ if( nRecordHeaderBytes+nRecordColBytes!=nRecordBytes ){
-+ return ValidateError();
-+ }
-+
-+ return SQLITE_OK;
-+}
-+
-+static i64 leafCursorCellRowid(RecoverLeafCursor *pCursor){
-+ return pCursor->iRowid;
-+}
-+
-+static unsigned leafCursorCellColumns(RecoverLeafCursor *pCursor){
-+ return pCursor->nRecordCols;
-+}
-+
-+/* Get the column info for the cell. Pass NULL for ppBase to prevent
-+ * retrieving the data segment. If *pbFree is true, *ppBase must be
-+ * freed by the caller using sqlite3_free().
-+ */
-+static int leafCursorCellColInfo(RecoverLeafCursor *pCursor,
-+ unsigned iCol, u64 *piColType,
-+ unsigned char **ppBase, int *pbFree){
-+ const unsigned char *pRecordHeader; /* Current cell's header. */
-+ u64 nRecordHeaderBytes; /* Bytes in pRecordHeader. */
-+ unsigned nRead; /* Bytes read from header. */
-+ u64 iColEndOffset; /* Offset to end of column in cell. */
-+ unsigned nColsSkipped; /* Count columns as procesed. */
-+ u64 iSerialType; /* Type descriptor for current column. */
-+
-+ /* Implicit NULL for columns past the end. This case happens when
-+ * rows have not been updated since an ALTER TABLE added columns.
-+ * It is more convenient to address here than in callers.
-+ */
-+ if( iCol>=pCursor->nRecordCols ){
-+ *piColType = 0;
-+ if( ppBase ){
-+ *ppBase = 0;
-+ *pbFree = 0;
-+ }
-+ return SQLITE_OK;
-+ }
-+
-+ /* Must be able to decode header size. */
-+ pRecordHeader = pCursor->pRecordHeader;
-+ if( !checkVarint(pRecordHeader, pCursor->nRecordHeaderBytes) ){
-+ return SQLITE_CORRUPT;
-+ }
-+
-+ /* Rather than caching the header size and how many bytes it took,
-+ * decode it every time.
-+ */
-+ nRead = getVarint(pRecordHeader, &nRecordHeaderBytes);
-+ assert( nRecordHeaderBytes==pCursor->nRecordHeaderBytes );
-+
-+ /* Scan forward to the indicated column. Scans to _after_ column
-+ * for later range checking.
-+ */
-+ /* TODO(shess): This could get expensive for very wide tables. An
-+ * array of iSerialType could be built in leafCursorCellDecode(), but
-+ * the number of columns is dynamic per row, so it would add memory
-+ * management complexity. Enough info to efficiently forward
-+ * iterate could be kept, if all clients forward iterate
-+ * (recoverColumn() may not).
-+ */
-+ iColEndOffset = 0;
-+ nColsSkipped = 0;
-+ while( nColsSkipped<=iCol && nRead<nRecordHeaderBytes ){
-+ if( !checkVarint(pRecordHeader + nRead, nRecordHeaderBytes - nRead) ){
-+ return SQLITE_CORRUPT;
-+ }
-+ nRead += getVarint(pRecordHeader + nRead, &iSerialType);
-+ iColEndOffset += SerialTypeLength(iSerialType);
-+ nColsSkipped++;
-+ }
-+
-+ /* Column's data extends past record's end. */
-+ if( nRecordHeaderBytes+iColEndOffset>pCursor->nRecordBytes ){
-+ return SQLITE_CORRUPT;
-+ }
-+
-+ *piColType = iSerialType;
-+ if( ppBase ){
-+ const u32 nColBytes = SerialTypeLength(iSerialType);
-+
-+ /* Offset from start of record to beginning of column. */
-+ const unsigned iColOffset = nRecordHeaderBytes+iColEndOffset-nColBytes;
-+
-+ return overflowGetSegment(pCursor->pPage, pCursor->iRecordOffset,
-+ pCursor->nLocalRecordBytes, pCursor->pOverflow,
-+ iColOffset, nColBytes, ppBase, pbFree);
-+ }
-+ return SQLITE_OK;
-+}
-+
-+static int leafCursorNextValidCell(RecoverLeafCursor *pCursor){
-+ while( 1 ){
-+ int rc;
-+
-+ /* Move to the next cell. */
-+ pCursor->iCell++;
-+
-+ /* No more cells, get the next leaf. */
-+ if( pCursor->iCell>=pCursor->nCells ){
-+ rc = leafCursorNextPage(pCursor);
-+ if( rc!=SQLITE_ROW ){
-+ return rc;
-+ }
-+ assert( pCursor->iCell==0 );
-+ }
-+
-+ /* If the cell is valid, indicate that a row is available. */
-+ rc = leafCursorCellDecode(pCursor);
-+ if( rc==SQLITE_OK ){
-+ return SQLITE_ROW;
-+ }
-+
-+ /* Iterate until done or a valid row is found. */
-+ /* TODO(shess): Remove debugging output. */
-+ fprintf(stderr, "Skipping invalid cell\n");
-+ }
-+ return SQLITE_ERROR;
-+}
-+
-+typedef struct Recover Recover;
-+struct Recover {
-+ sqlite3_vtab base;
-+ sqlite3 *db; /* Host database connection */
-+ char *zDb; /* Database containing target table */
-+ char *zTable; /* Target table */
-+ unsigned nCols; /* Number of columns in target table */
-+ unsigned char *pTypes; /* Types of columns in target table */
-+};
-+
-+/* Internal helper for deleting the module. */
-+static void recoverRelease(Recover *pRecover){
-+ sqlite3_free(pRecover->zDb);
-+ sqlite3_free(pRecover->zTable);
-+ sqlite3_free(pRecover->pTypes);
-+ memset(pRecover, 0xA5, sizeof(*pRecover));
-+ sqlite3_free(pRecover);
-+}
-+
-+/* Helper function for initializing the module. Forward-declared so
-+ * recoverCreate() and recoverConnect() can see it.
-+ */
-+static int recoverInit(
-+ sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char **
-+);
-+
-+static int recoverCreate(
-+ sqlite3 *db,
-+ void *pAux,
-+ int argc, const char *const*argv,
-+ sqlite3_vtab **ppVtab,
-+ char **pzErr
-+){
-+ FNENTRY();
-+ return recoverInit(db, pAux, argc, argv, ppVtab, pzErr);
-+}
-+
-+/* This should never be called. */
-+static int recoverConnect(
-+ sqlite3 *db,
-+ void *pAux,
-+ int argc, const char *const*argv,
-+ sqlite3_vtab **ppVtab,
-+ char **pzErr
-+){
-+ FNENTRY();
-+ return recoverInit(db, pAux, argc, argv, ppVtab, pzErr);
-+}
-+
-+/* No indices supported. */
-+static int recoverBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
-+ FNENTRY();
-+ return SQLITE_OK;
-+}
-+
-+/* Logically, this should never be called. */
-+static int recoverDisconnect(sqlite3_vtab *pVtab){
-+ FNENTRY();
-+ recoverRelease((Recover*)pVtab);
-+ return SQLITE_OK;
-+}
-+
-+static int recoverDestroy(sqlite3_vtab *pVtab){
-+ FNENTRY();
-+ recoverRelease((Recover*)pVtab);
-+ return SQLITE_OK;
-+}
-+
-+typedef struct RecoverCursor RecoverCursor;
-+struct RecoverCursor {
-+ sqlite3_vtab_cursor base;
-+ RecoverLeafCursor *pLeafCursor;
-+ int iEncoding;
-+ int bEOF;
-+};
-+
-+static int recoverOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
-+ Recover *pRecover = (Recover*)pVTab;
-+ u32 iRootPage; /* Root page of the backing table. */
-+ int iEncoding; /* UTF encoding for backing database. */
-+ unsigned nPageSize; /* Size of pages in backing database. */
-+ Pager *pPager; /* Backing database pager. */
-+ RecoverLeafCursor *pLeafCursor; /* Cursor to read table's leaf pages. */
-+ RecoverCursor *pCursor; /* Cursor to read rows from leaves. */
-+ int rc;
-+
-+ FNENTRY();
-+
-+ iRootPage = 0;
-+ rc = getRootPage(pRecover->db, pRecover->zDb, pRecover->zTable,
-+ &iRootPage);
-+ if( rc!=SQLITE_OK ){
-+ return rc;
-+ }
-+
-+ iEncoding = 0;
-+ rc = getEncoding(pRecover->db, pRecover->zDb, &iEncoding);
-+ if( rc!=SQLITE_OK ){
-+ return rc;
-+ }
-+
-+ rc = GetPager(pRecover->db, pRecover->zDb, &pPager, &nPageSize);
-+ if( rc!=SQLITE_OK ){
-+ return rc;
-+ }
-+
-+ rc = leafCursorCreate(pPager, nPageSize, iRootPage, &pLeafCursor);
-+ if( rc!=SQLITE_OK ){
-+ return rc;
-+ }
-+
-+ pCursor = sqlite3_malloc(sizeof(RecoverCursor));
-+ if( !pCursor ){
-+ leafCursorDestroy(pLeafCursor);
-+ return SQLITE_NOMEM;
-+ }
-+ memset(pCursor, 0, sizeof(*pCursor));
-+ pCursor->base.pVtab = pVTab;
-+ pCursor->pLeafCursor = pLeafCursor;
-+ pCursor->iEncoding = iEncoding;
-+
-+ *ppCursor = (sqlite3_vtab_cursor*)pCursor;
-+ return SQLITE_OK;
-+}
-+
-+static int recoverClose(sqlite3_vtab_cursor *cur){
-+ RecoverCursor *pCursor = (RecoverCursor*)cur;
-+ FNENTRY();
-+ if( pCursor->pLeafCursor ){
-+ leafCursorDestroy(pCursor->pLeafCursor);
-+ pCursor->pLeafCursor = NULL;
-+ }
-+ memset(pCursor, 0xA5, sizeof(*pCursor));
-+ sqlite3_free(cur);
-+ return SQLITE_OK;
-+}
-+
-+/* Helpful place to set a breakpoint. */
-+static int RecoverInvalidCell(){
-+ return SQLITE_ERROR;
-+}
-+
-+/* Returns SQLITE_OK if the cell has an appropriate number of columns
-+ * with the appropriate types of data.
-+ */
-+static int recoverValidateLeafCell(Recover *pRecover, RecoverCursor *pCursor){
-+ unsigned i;
-+
-+ /* If the row's storage has too many columns, skip it. */
-+ if( leafCursorCellColumns(pCursor->pLeafCursor)>pRecover->nCols ){
-+ return RecoverInvalidCell();
-+ }
-+
-+ /* Skip rows with unexpected types. */
-+ for( i=0; i<pRecover->nCols; ++i ){
-+ u64 iType; /* Storage type of column i. */
-+ int rc;
-+
-+ /* ROWID alias. */
-+ if( (pRecover->pTypes[i]&MASK_ROWID) ){
-+ continue;
-+ }
-+
-+ rc = leafCursorCellColInfo(pCursor->pLeafCursor, i, &iType, NULL, NULL);
-+ assert( rc==SQLITE_OK );
-+ if( rc!=SQLITE_OK || !SerialTypeIsCompatible(iType, pRecover->pTypes[i]) ){
-+ return RecoverInvalidCell();
-+ }
-+ }
-+
-+ return SQLITE_OK;
-+}
-+
-+static int recoverNext(sqlite3_vtab_cursor *pVtabCursor){
-+ RecoverCursor *pCursor = (RecoverCursor*)pVtabCursor;
-+ Recover *pRecover = (Recover*)pCursor->base.pVtab;
-+ int rc;
-+
-+ FNENTRY();
-+
-+ /* Scan forward to the next cell with valid storage, then check that
-+ * the stored data matches the schema.
-+ */
-+ while( (rc = leafCursorNextValidCell(pCursor->pLeafCursor))==SQLITE_ROW ){
-+ if( recoverValidateLeafCell(pRecover, pCursor)==SQLITE_OK ){
-+ return SQLITE_OK;
-+ }
-+ }
-+
-+ if( rc==SQLITE_DONE ){
-+ pCursor->bEOF = 1;
-+ return SQLITE_OK;
-+ }
-+
-+ assert( rc!=SQLITE_OK );
-+ return rc;
-+}
-+
-+static int recoverFilter(
-+ sqlite3_vtab_cursor *pVtabCursor,
-+ int idxNum, const char *idxStr,
-+ int argc, sqlite3_value **argv
-+){
-+ RecoverCursor *pCursor = (RecoverCursor*)pVtabCursor;
-+ Recover *pRecover = (Recover*)pCursor->base.pVtab;
-+ int rc;
-+
-+ FNENTRY();
-+
-+ /* Load the first cell, and iterate forward if it's not valid. */
-+ /* TODO(shess): What happens if no cells at all are valid? */
-+ rc = leafCursorCellDecode(pCursor->pLeafCursor);
-+ if( rc!=SQLITE_OK || recoverValidateLeafCell(pRecover, pCursor)!=SQLITE_OK ){
-+ return recoverNext(pVtabCursor);
-+ }
-+
-+ return SQLITE_OK;
-+}
-+
-+static int recoverEof(sqlite3_vtab_cursor *pVtabCursor){
-+ RecoverCursor *pCursor = (RecoverCursor*)pVtabCursor;
-+ FNENTRY();
-+ return pCursor->bEOF;
-+}
-+
-+static int recoverColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
-+ RecoverCursor *pCursor = (RecoverCursor*)cur;
-+ Recover *pRecover = (Recover*)pCursor->base.pVtab;
-+ u64 iColType; /* Storage type of column i. */
-+ unsigned char *pColData; /* Column i's data. */
-+ int shouldFree; /* Non-zero if pColData should be freed. */
-+ int rc;
-+
-+ FNENTRY();
-+
-+ if( i>=pRecover->nCols ){
-+ return SQLITE_ERROR;
-+ }
-+
-+ /* ROWID alias. */
-+ if( (pRecover->pTypes[i]&MASK_ROWID) ){
-+ sqlite3_result_int64(ctx, leafCursorCellRowid(pCursor->pLeafCursor));
-+ return SQLITE_OK;
-+ }
-+
-+ pColData = NULL;
-+ shouldFree = 0;
-+ rc = leafCursorCellColInfo(pCursor->pLeafCursor, i, &iColType,
-+ &pColData, &shouldFree);
-+ if( rc!=SQLITE_OK ){
-+ return rc;
-+ }
-+ /* recoverValidateLeafCell() should guarantee that this will never
-+ * occur.
-+ */
-+ if( !SerialTypeIsCompatible(iColType, pRecover->pTypes[i]) ){
-+ if( shouldFree ){
-+ sqlite3_free(pColData);
-+ }
-+ return SQLITE_ERROR;
-+ }
-+
-+ switch( iColType ){
-+ case 0 : sqlite3_result_null(ctx); break;
-+ case 1 : sqlite3_result_int64(ctx, decodeSigned(pColData, 1)); break;
-+ case 2 : sqlite3_result_int64(ctx, decodeSigned(pColData, 2)); break;
-+ case 3 : sqlite3_result_int64(ctx, decodeSigned(pColData, 3)); break;
-+ case 4 : sqlite3_result_int64(ctx, decodeSigned(pColData, 4)); break;
-+ case 5 : sqlite3_result_int64(ctx, decodeSigned(pColData, 6)); break;
-+ case 6 : sqlite3_result_int64(ctx, decodeSigned(pColData, 8)); break;
-+ case 7 : sqlite3_result_double(ctx, decodeFloat64(pColData)); break;
-+ case 8 : sqlite3_result_int(ctx, 0); break;
-+ case 9 : sqlite3_result_int(ctx, 1); break;
-+ case 10 : assert( iColType!=10 ); break;
-+ case 11 : assert( iColType!=11 ); break;
-+
-+ default : {
-+ u32 l = SerialTypeLength(iColType);
-+
-+ /* If pColData was already allocated, arrange to pass ownership. */
-+ sqlite3_destructor_type pFn = SQLITE_TRANSIENT;
-+ if( shouldFree ){
-+ pFn = sqlite3_free;
-+ shouldFree = 0;
-+ }
-+
-+ if( SerialTypeIsBlob(iColType) ){
-+ sqlite3_result_blob(ctx, pColData, l, pFn);
-+ }else{
-+ if( pCursor->iEncoding==SQLITE_UTF16LE ){
-+ sqlite3_result_text16le(ctx, (const void*)pColData, l, pFn);
-+ }else if( pCursor->iEncoding==SQLITE_UTF16BE ){
-+ sqlite3_result_text16be(ctx, (const void*)pColData, l, pFn);
-+ }else{
-+ sqlite3_result_text(ctx, (const char*)pColData, l, pFn);
-+ }
-+ }
-+ } break;
-+ }
-+ if( shouldFree ){
-+ sqlite3_free(pColData);
-+ }
-+ return SQLITE_OK;
-+}
-+
-+static int recoverRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){
-+ RecoverCursor *pCursor = (RecoverCursor*)pVtabCursor;
-+ FNENTRY();
-+ *pRowid = leafCursorCellRowid(pCursor->pLeafCursor);
-+ return SQLITE_OK;
-+}
-+
-+static sqlite3_module recoverModule = {
-+ 0, /* iVersion */
-+ recoverCreate, /* xCreate - create a table */
-+ recoverConnect, /* xConnect - connect to an existing table */
-+ recoverBestIndex, /* xBestIndex - Determine search strategy */
-+ recoverDisconnect, /* xDisconnect - Disconnect from a table */
-+ recoverDestroy, /* xDestroy - Drop a table */
-+ recoverOpen, /* xOpen - open a cursor */
-+ recoverClose, /* xClose - close a cursor */
-+ recoverFilter, /* xFilter - configure scan constraints */
-+ recoverNext, /* xNext - advance a cursor */
-+ recoverEof, /* xEof */
-+ recoverColumn, /* xColumn - read data */
-+ recoverRowid, /* xRowid - read data */
-+ 0, /* xUpdate - write data */
-+ 0, /* xBegin - begin transaction */
-+ 0, /* xSync - sync transaction */
-+ 0, /* xCommit - commit transaction */
-+ 0, /* xRollback - rollback transaction */
-+ 0, /* xFindFunction - function overloading */
-+ 0, /* xRename - rename the table */
-+};
-+
-+int recoverVtableInit(sqlite3 *db){
-+ return sqlite3_create_module_v2(db, "recover", &recoverModule, NULL, 0);
-+}
-+
-+/* This section of code is for parsing the create input and
-+ * initializing the module.
-+ */
-+
-+/* Find the next word in zText and place the endpoints in pzWord*.
-+ * Returns true if the word is non-empty. "Word" is defined as
-+ * ASCII alphanumeric plus '_' at this time.
-+ */
-+static int findWord(const char *zText,
-+ const char **pzWordStart, const char **pzWordEnd){
-+ int r;
-+ while( ascii_isspace(*zText) ){
-+ zText++;
-+ }
-+ *pzWordStart = zText;
-+ while( ascii_isalnum(*zText) || *zText=='_' ){
-+ zText++;
-+ }
-+ r = zText>*pzWordStart; /* In case pzWordStart==pzWordEnd */
-+ *pzWordEnd = zText;
-+ return r;
-+}
-+
-+/* Return true if the next word in zText is zWord, also setting
-+ * *pzContinue to the character after the word.
-+ */
-+static int expectWord(const char *zText, const char *zWord,
-+ const char **pzContinue){
-+ const char *zWordStart, *zWordEnd;
-+ if( findWord(zText, &zWordStart, &zWordEnd) &&
-+ ascii_strncasecmp(zWord, zWordStart, zWordEnd - zWordStart)==0 ){
-+ *pzContinue = zWordEnd;
-+ return 1;
-+ }
-+ return 0;
-+}
-+
-+/* Parse the name and type information out of parameter. In case of
-+ * success, *pzNameStart/End contain the name of the column,
-+ * *pzTypeStart/End contain the top-level type, and *pTypeMask has the
-+ * type mask to use for the column.
-+ */
-+static int findNameAndType(const char *parameter,
-+ const char **pzNameStart, const char **pzNameEnd,
-+ const char **pzTypeStart, const char **pzTypeEnd,
-+ unsigned char *pTypeMask){
-+ unsigned nNameLen; /* Length of found name. */
-+ const char *zEnd; /* Current end of parsed column information. */
-+ int bNotNull; /* Non-zero if NULL is not allowed for name. */
-+ int bStrict; /* Non-zero if column requires exact type match. */
-+ const char *zDummy; /* Dummy parameter, result unused. */
-+ unsigned i;
-+
-+ /* strictMask is used for STRICT, strictMask|otherMask if STRICT is
-+ * not supplied. zReplace provides an alternate type to expose to
-+ * the caller.
-+ */
-+ static struct {
-+ const char *zName;
-+ unsigned char strictMask;
-+ unsigned char otherMask;
-+ const char *zReplace;
-+ } kTypeInfo[] = {
-+ { "ANY",
-+ MASK_INTEGER | MASK_FLOAT | MASK_BLOB | MASK_TEXT | MASK_NULL,
-+ 0, "",
-+ },
-+ { "ROWID", MASK_INTEGER | MASK_ROWID, 0, "INTEGER", },
-+ { "INTEGER", MASK_INTEGER | MASK_NULL, 0, NULL, },
-+ { "FLOAT", MASK_FLOAT | MASK_NULL, MASK_INTEGER, NULL, },
-+ { "NUMERIC", MASK_INTEGER | MASK_FLOAT | MASK_NULL, MASK_TEXT, NULL, },
-+ { "TEXT", MASK_TEXT | MASK_NULL, MASK_BLOB, NULL, },
-+ { "BLOB", MASK_BLOB | MASK_NULL, 0, NULL, },
-+ };
-+
-+ if( !findWord(parameter, pzNameStart, pzNameEnd) ){
-+ return SQLITE_MISUSE;
-+ }
-+
-+ /* Manifest typing, accept any storage type. */
-+ if( !findWord(*pzNameEnd, pzTypeStart, pzTypeEnd) ){
-+ *pzTypeEnd = *pzTypeStart = "";
-+ *pTypeMask = MASK_INTEGER | MASK_FLOAT | MASK_BLOB | MASK_TEXT | MASK_NULL;
-+ return SQLITE_OK;
-+ }
-+
-+ nNameLen = *pzTypeEnd - *pzTypeStart;
-+ for( i=0; i<ArraySize(kTypeInfo); ++i ){
-+ if( ascii_strncasecmp(kTypeInfo[i].zName, *pzTypeStart, nNameLen)==0 ){
-+ break;
-+ }
-+ }
-+ if( i==ArraySize(kTypeInfo) ){
-+ return SQLITE_MISUSE;
-+ }
-+
-+ zEnd = *pzTypeEnd;
-+ bStrict = 0;
-+ if( expectWord(zEnd, "STRICT", &zEnd) ){
-+ /* TODO(shess): Ick. But I don't want another single-purpose
-+ * flag, either.
-+ */
-+ if( kTypeInfo[i].zReplace && !kTypeInfo[i].zReplace[0] ){
-+ return SQLITE_MISUSE;
-+ }
-+ bStrict = 1;
-+ }
-+
-+ bNotNull = 0;
-+ if( expectWord(zEnd, "NOT", &zEnd) ){
-+ if( expectWord(zEnd, "NULL", &zEnd) ){
-+ bNotNull = 1;
-+ }else{
-+ /* Anything other than NULL after NOT is an error. */
-+ return SQLITE_MISUSE;
-+ }
-+ }
-+
-+ /* Anything else is an error. */
-+ if( findWord(zEnd, &zDummy, &zDummy) ){
-+ return SQLITE_MISUSE;
-+ }
-+
-+ *pTypeMask = kTypeInfo[i].strictMask;
-+ if( !bStrict ){
-+ *pTypeMask |= kTypeInfo[i].otherMask;
-+ }
-+ if( bNotNull ){
-+ *pTypeMask &= ~MASK_NULL;
-+ }
-+ if( kTypeInfo[i].zReplace ){
-+ *pzTypeStart = kTypeInfo[i].zReplace;
-+ *pzTypeEnd = *pzTypeStart + strlen(*pzTypeStart);
-+ }
-+ return SQLITE_OK;
-+}
-+
-+/* Parse the arguments, placing type masks in *pTypes and the exposed
-+ * schema in *pzCreateSql (for sqlite3_declare_vtab).
-+ */
-+static int ParseColumnsAndGenerateCreate(unsigned nCols,
-+ const char *const *pCols,
-+ char **pzCreateSql,
-+ unsigned char *pTypes,
-+ char **pzErr){
-+ unsigned i;
-+ char *zCreateSql = sqlite3_mprintf("CREATE TABLE x(");
-+ if( !zCreateSql ){
-+ return SQLITE_NOMEM;
-+ }
-+
-+ for( i=0; i<nCols; i++ ){
-+ const char *zSep = (i < nCols - 1 ? ", " : ")");
-+ const char *zNotNull = "";
-+ const char *zNameStart, *zNameEnd;
-+ const char *zTypeStart, *zTypeEnd;
-+ int rc = findNameAndType(pCols[i],
-+ &zNameStart, &zNameEnd,
-+ &zTypeStart, &zTypeEnd,
-+ &pTypes[i]);
-+ if( rc!=SQLITE_OK ){
-+ *pzErr = sqlite3_mprintf("unable to parse column %d", i);
-+ sqlite3_free(zCreateSql);
-+ return rc;
-+ }
-+
-+ if( !(pTypes[i]&MASK_NULL) ){
-+ zNotNull = " NOT NULL";
-+ }
-+
-+ /* Add name and type to the create statement. */
-+ zCreateSql = sqlite3_mprintf("%z%.*s %.*s%s%s",
-+ zCreateSql,
-+ zNameEnd - zNameStart, zNameStart,
-+ zTypeEnd - zTypeStart, zTypeStart,
-+ zNotNull, zSep);
-+ if( !zCreateSql ){
-+ return SQLITE_NOMEM;
-+ }
-+ }
-+
-+ *pzCreateSql = zCreateSql;
-+ return SQLITE_OK;
-+}
-+
-+/* Helper function for initializing the module. */
-+/* argv[0] module name
-+ * argv[1] db name for virtual table
-+ * argv[2] virtual table name
-+ * argv[3] backing table name
-+ * argv[4] columns
-+ */
-+/* TODO(shess): Since connect isn't supported, could inline into
-+ * recoverCreate().
-+ */
-+/* TODO(shess): Explore cases where it would make sense to set *pzErr. */
-+static int recoverInit(
-+ sqlite3 *db, /* Database connection */
-+ void *pAux, /* unused */
-+ int argc, const char *const*argv, /* Parameters to CREATE TABLE statement */
-+ sqlite3_vtab **ppVtab, /* OUT: New virtual table */
-+ char **pzErr /* OUT: Error message, if any */
-+){
-+ const unsigned kTypeCol = 4; /* First argument with column type info. */
-+ Recover *pRecover; /* Virtual table structure being created. */
-+ char *zDot; /* Any dot found in "db.table" backing. */
-+ u32 iRootPage; /* Root page of backing table. */
-+ char *zCreateSql; /* Schema of created virtual table. */
-+ int rc;
-+
-+ /* Require to be in the temp database. */
-+ if( ascii_strcasecmp(argv[1], "temp")!=0 ){
-+ *pzErr = sqlite3_mprintf("recover table must be in temp database");
-+ return SQLITE_MISUSE;
-+ }
-+
-+ /* Need the backing table and at least one column. */
-+ if( argc<=kTypeCol ){
-+ *pzErr = sqlite3_mprintf("no columns specified");
-+ return SQLITE_MISUSE;
-+ }
-+
-+ pRecover = sqlite3_malloc(sizeof(Recover));
-+ if( !pRecover ){
-+ return SQLITE_NOMEM;
-+ }
-+ memset(pRecover, 0, sizeof(*pRecover));
-+ pRecover->base.pModule = &recoverModule;
-+ pRecover->db = db;
-+
-+ /* Parse out db.table, assuming main if no dot. */
-+ zDot = strchr(argv[3], '.');
-+ if( !zDot ){
-+ pRecover->zDb = sqlite3_strdup(db->aDb[0].zName);
-+ pRecover->zTable = sqlite3_strdup(argv[3]);
-+ }else if( zDot>argv[3] && zDot[1]!='\0' ){
-+ pRecover->zDb = sqlite3_strndup(argv[3], zDot - argv[3]);
-+ pRecover->zTable = sqlite3_strdup(zDot + 1);
-+ }else{
-+ /* ".table" or "db." not allowed. */
-+ *pzErr = sqlite3_mprintf("ill-formed table specifier");
-+ recoverRelease(pRecover);
-+ return SQLITE_ERROR;
-+ }
-+
-+ pRecover->nCols = argc - kTypeCol;
-+ pRecover->pTypes = sqlite3_malloc(pRecover->nCols);
-+ if( !pRecover->zDb || !pRecover->zTable || !pRecover->pTypes ){
-+ recoverRelease(pRecover);
-+ return SQLITE_NOMEM;
-+ }
-+
-+ /* Require the backing table to exist. */
-+ /* TODO(shess): Be more pedantic about the form of the descriptor
-+ * string. This already fails for poorly-formed strings, simply
-+ * because there won't be a root page, but it would make more sense
-+ * to be explicit.
-+ */
-+ rc = getRootPage(pRecover->db, pRecover->zDb, pRecover->zTable, &iRootPage);
-+ if( rc!=SQLITE_OK ){
-+ *pzErr = sqlite3_mprintf("unable to find backing table");
-+ recoverRelease(pRecover);
-+ return rc;
-+ }
-+
-+ /* Parse the column definitions. */
-+ rc = ParseColumnsAndGenerateCreate(pRecover->nCols, argv + kTypeCol,
-+ &zCreateSql, pRecover->pTypes, pzErr);
-+ if( rc!=SQLITE_OK ){
-+ recoverRelease(pRecover);
-+ return rc;
-+ }
-+
-+ rc = sqlite3_declare_vtab(db, zCreateSql);
-+ sqlite3_free(zCreateSql);
-+ if( rc!=SQLITE_OK ){
-+ recoverRelease(pRecover);
-+ return rc;
-+ }
-+
-+ *ppVtab = (sqlite3_vtab *)pRecover;
-+ return SQLITE_OK;
-+}

Powered by Google App Engine
This is Rietveld 408576698