Index: third_party/sqlite/sqlite-src-3080704/src/insert.c |
diff --git a/third_party/sqlite/sqlite-src-3080704/src/insert.c b/third_party/sqlite/sqlite-src-3080704/src/insert.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..a5c3f3e92d437dcb0bd349017afae3e5e4c00843 |
--- /dev/null |
+++ b/third_party/sqlite/sqlite-src-3080704/src/insert.c |
@@ -0,0 +1,2021 @@ |
+/* |
+** 2001 September 15 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+************************************************************************* |
+** This file contains C code routines that are called by the parser |
+** to handle INSERT statements in SQLite. |
+*/ |
+#include "sqliteInt.h" |
+ |
+/* |
+** Generate code that will |
+** |
+** (1) acquire a lock for table pTab then |
+** (2) open pTab as cursor iCur. |
+** |
+** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index |
+** for that table that is actually opened. |
+*/ |
+void sqlite3OpenTable( |
+ Parse *pParse, /* Generate code into this VDBE */ |
+ int iCur, /* The cursor number of the table */ |
+ int iDb, /* The database index in sqlite3.aDb[] */ |
+ Table *pTab, /* The table to be opened */ |
+ int opcode /* OP_OpenRead or OP_OpenWrite */ |
+){ |
+ Vdbe *v; |
+ assert( !IsVirtual(pTab) ); |
+ v = sqlite3GetVdbe(pParse); |
+ assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); |
+ sqlite3TableLock(pParse, iDb, pTab->tnum, |
+ (opcode==OP_OpenWrite)?1:0, pTab->zName); |
+ if( HasRowid(pTab) ){ |
+ sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol); |
+ VdbeComment((v, "%s", pTab->zName)); |
+ }else{ |
+ Index *pPk = sqlite3PrimaryKeyIndex(pTab); |
+ assert( pPk!=0 ); |
+ assert( pPk->tnum=pTab->tnum ); |
+ sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); |
+ sqlite3VdbeSetP4KeyInfo(pParse, pPk); |
+ VdbeComment((v, "%s", pTab->zName)); |
+ } |
+} |
+ |
+/* |
+** Return a pointer to the column affinity string associated with index |
+** pIdx. A column affinity string has one character for each column in |
+** the table, according to the affinity of the column: |
+** |
+** Character Column affinity |
+** ------------------------------ |
+** 'A' NONE |
+** 'B' TEXT |
+** 'C' NUMERIC |
+** 'D' INTEGER |
+** 'F' REAL |
+** |
+** An extra 'D' is appended to the end of the string to cover the |
+** rowid that appears as the last column in every index. |
+** |
+** Memory for the buffer containing the column index affinity string |
+** is managed along with the rest of the Index structure. It will be |
+** released when sqlite3DeleteIndex() is called. |
+*/ |
+const char *sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){ |
+ if( !pIdx->zColAff ){ |
+ /* The first time a column affinity string for a particular index is |
+ ** required, it is allocated and populated here. It is then stored as |
+ ** a member of the Index structure for subsequent use. |
+ ** |
+ ** The column affinity string will eventually be deleted by |
+ ** sqliteDeleteIndex() when the Index structure itself is cleaned |
+ ** up. |
+ */ |
+ int n; |
+ Table *pTab = pIdx->pTable; |
+ sqlite3 *db = sqlite3VdbeDb(v); |
+ pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); |
+ if( !pIdx->zColAff ){ |
+ db->mallocFailed = 1; |
+ return 0; |
+ } |
+ for(n=0; n<pIdx->nColumn; n++){ |
+ i16 x = pIdx->aiColumn[n]; |
+ pIdx->zColAff[n] = x<0 ? SQLITE_AFF_INTEGER : pTab->aCol[x].affinity; |
+ } |
+ pIdx->zColAff[n] = 0; |
+ } |
+ |
+ return pIdx->zColAff; |
+} |
+ |
+/* |
+** Compute the affinity string for table pTab, if it has not already been |
+** computed. As an optimization, omit trailing SQLITE_AFF_NONE affinities. |
+** |
+** If the affinity exists (if it is no entirely SQLITE_AFF_NONE values) and |
+** if iReg>0 then code an OP_Affinity opcode that will set the affinities |
+** for register iReg and following. Or if affinities exists and iReg==0, |
+** then just set the P4 operand of the previous opcode (which should be |
+** an OP_MakeRecord) to the affinity string. |
+** |
+** A column affinity string has one character per column: |
+** |
+** Character Column affinity |
+** ------------------------------ |
+** 'A' NONE |
+** 'B' TEXT |
+** 'C' NUMERIC |
+** 'D' INTEGER |
+** 'E' REAL |
+*/ |
+void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ |
+ int i; |
+ char *zColAff = pTab->zColAff; |
+ if( zColAff==0 ){ |
+ sqlite3 *db = sqlite3VdbeDb(v); |
+ zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); |
+ if( !zColAff ){ |
+ db->mallocFailed = 1; |
+ return; |
+ } |
+ |
+ for(i=0; i<pTab->nCol; i++){ |
+ zColAff[i] = pTab->aCol[i].affinity; |
+ } |
+ do{ |
+ zColAff[i--] = 0; |
+ }while( i>=0 && zColAff[i]==SQLITE_AFF_NONE ); |
+ pTab->zColAff = zColAff; |
+ } |
+ i = sqlite3Strlen30(zColAff); |
+ if( i ){ |
+ if( iReg ){ |
+ sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); |
+ }else{ |
+ sqlite3VdbeChangeP4(v, -1, zColAff, i); |
+ } |
+ } |
+} |
+ |
+/* |
+** Return non-zero if the table pTab in database iDb or any of its indices |
+** have been opened at any point in the VDBE program. This is used to see if |
+** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can |
+** run without using a temporary table for the results of the SELECT. |
+*/ |
+static int readsTable(Parse *p, int iDb, Table *pTab){ |
+ Vdbe *v = sqlite3GetVdbe(p); |
+ int i; |
+ int iEnd = sqlite3VdbeCurrentAddr(v); |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; |
+#endif |
+ |
+ for(i=1; i<iEnd; i++){ |
+ VdbeOp *pOp = sqlite3VdbeGetOp(v, i); |
+ assert( pOp!=0 ); |
+ if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ |
+ Index *pIndex; |
+ int tnum = pOp->p2; |
+ if( tnum==pTab->tnum ){ |
+ return 1; |
+ } |
+ for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ |
+ if( tnum==pIndex->tnum ){ |
+ return 1; |
+ } |
+ } |
+ } |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ |
+ assert( pOp->p4.pVtab!=0 ); |
+ assert( pOp->p4type==P4_VTAB ); |
+ return 1; |
+ } |
+#endif |
+ } |
+ return 0; |
+} |
+ |
+#ifndef SQLITE_OMIT_AUTOINCREMENT |
+/* |
+** Locate or create an AutoincInfo structure associated with table pTab |
+** which is in database iDb. Return the register number for the register |
+** that holds the maximum rowid. |
+** |
+** There is at most one AutoincInfo structure per table even if the |
+** same table is autoincremented multiple times due to inserts within |
+** triggers. A new AutoincInfo structure is created if this is the |
+** first use of table pTab. On 2nd and subsequent uses, the original |
+** AutoincInfo structure is used. |
+** |
+** Three memory locations are allocated: |
+** |
+** (1) Register to hold the name of the pTab table. |
+** (2) Register to hold the maximum ROWID of pTab. |
+** (3) Register to hold the rowid in sqlite_sequence of pTab |
+** |
+** The 2nd register is the one that is returned. That is all the |
+** insert routine needs to know about. |
+*/ |
+static int autoIncBegin( |
+ Parse *pParse, /* Parsing context */ |
+ int iDb, /* Index of the database holding pTab */ |
+ Table *pTab /* The table we are writing to */ |
+){ |
+ int memId = 0; /* Register holding maximum rowid */ |
+ if( pTab->tabFlags & TF_Autoincrement ){ |
+ Parse *pToplevel = sqlite3ParseToplevel(pParse); |
+ AutoincInfo *pInfo; |
+ |
+ pInfo = pToplevel->pAinc; |
+ while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } |
+ if( pInfo==0 ){ |
+ pInfo = sqlite3DbMallocRaw(pParse->db, sizeof(*pInfo)); |
+ if( pInfo==0 ) return 0; |
+ pInfo->pNext = pToplevel->pAinc; |
+ pToplevel->pAinc = pInfo; |
+ pInfo->pTab = pTab; |
+ pInfo->iDb = iDb; |
+ pToplevel->nMem++; /* Register to hold name of table */ |
+ pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ |
+ pToplevel->nMem++; /* Rowid in sqlite_sequence */ |
+ } |
+ memId = pInfo->regCtr; |
+ } |
+ return memId; |
+} |
+ |
+/* |
+** This routine generates code that will initialize all of the |
+** register used by the autoincrement tracker. |
+*/ |
+void sqlite3AutoincrementBegin(Parse *pParse){ |
+ AutoincInfo *p; /* Information about an AUTOINCREMENT */ |
+ sqlite3 *db = pParse->db; /* The database connection */ |
+ Db *pDb; /* Database only autoinc table */ |
+ int memId; /* Register holding max rowid */ |
+ int addr; /* A VDBE address */ |
+ Vdbe *v = pParse->pVdbe; /* VDBE under construction */ |
+ |
+ /* This routine is never called during trigger-generation. It is |
+ ** only called from the top-level */ |
+ assert( pParse->pTriggerTab==0 ); |
+ assert( pParse==sqlite3ParseToplevel(pParse) ); |
+ |
+ assert( v ); /* We failed long ago if this is not so */ |
+ for(p = pParse->pAinc; p; p = p->pNext){ |
+ pDb = &db->aDb[p->iDb]; |
+ memId = p->regCtr; |
+ assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); |
+ sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); |
+ sqlite3VdbeAddOp3(v, OP_Null, 0, memId, memId+1); |
+ addr = sqlite3VdbeCurrentAddr(v); |
+ sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0); |
+ sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9); VdbeCoverage(v); |
+ sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId); |
+ sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId); VdbeCoverage(v); |
+ sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); |
+ sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1); |
+ sqlite3VdbeAddOp3(v, OP_Column, 0, 1, memId); |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9); |
+ sqlite3VdbeAddOp2(v, OP_Next, 0, addr+2); VdbeCoverage(v); |
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, memId); |
+ sqlite3VdbeAddOp0(v, OP_Close); |
+ } |
+} |
+ |
+/* |
+** Update the maximum rowid for an autoincrement calculation. |
+** |
+** This routine should be called when the top of the stack holds a |
+** new rowid that is about to be inserted. If that new rowid is |
+** larger than the maximum rowid in the memId memory cell, then the |
+** memory cell is updated. The stack is unchanged. |
+*/ |
+static void autoIncStep(Parse *pParse, int memId, int regRowid){ |
+ if( memId>0 ){ |
+ sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); |
+ } |
+} |
+ |
+/* |
+** This routine generates the code needed to write autoincrement |
+** maximum rowid values back into the sqlite_sequence register. |
+** Every statement that might do an INSERT into an autoincrement |
+** table (either directly or through triggers) needs to call this |
+** routine just before the "exit" code. |
+*/ |
+void sqlite3AutoincrementEnd(Parse *pParse){ |
+ AutoincInfo *p; |
+ Vdbe *v = pParse->pVdbe; |
+ sqlite3 *db = pParse->db; |
+ |
+ assert( v ); |
+ for(p = pParse->pAinc; p; p = p->pNext){ |
+ Db *pDb = &db->aDb[p->iDb]; |
+ int j1; |
+ int iRec; |
+ int memId = p->regCtr; |
+ |
+ iRec = sqlite3GetTempReg(pParse); |
+ assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); |
+ sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); |
+ j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1); VdbeCoverage(v); |
+ sqlite3VdbeAddOp2(v, OP_NewRowid, 0, memId+1); |
+ sqlite3VdbeJumpHere(v, j1); |
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec); |
+ sqlite3VdbeAddOp3(v, OP_Insert, 0, iRec, memId+1); |
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND); |
+ sqlite3VdbeAddOp0(v, OP_Close); |
+ sqlite3ReleaseTempReg(pParse, iRec); |
+ } |
+} |
+#else |
+/* |
+** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines |
+** above are all no-ops |
+*/ |
+# define autoIncBegin(A,B,C) (0) |
+# define autoIncStep(A,B,C) |
+#endif /* SQLITE_OMIT_AUTOINCREMENT */ |
+ |
+ |
+/* Forward declaration */ |
+static int xferOptimization( |
+ Parse *pParse, /* Parser context */ |
+ Table *pDest, /* The table we are inserting into */ |
+ Select *pSelect, /* A SELECT statement to use as the data source */ |
+ int onError, /* How to handle constraint errors */ |
+ int iDbDest /* The database of pDest */ |
+); |
+ |
+/* |
+** This routine is called to handle SQL of the following forms: |
+** |
+** insert into TABLE (IDLIST) values(EXPRLIST) |
+** insert into TABLE (IDLIST) select |
+** |
+** The IDLIST following the table name is always optional. If omitted, |
+** then a list of all columns for the table is substituted. The IDLIST |
+** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted. |
+** |
+** The pList parameter holds EXPRLIST in the first form of the INSERT |
+** statement above, and pSelect is NULL. For the second form, pList is |
+** NULL and pSelect is a pointer to the select statement used to generate |
+** data for the insert. |
+** |
+** The code generated follows one of four templates. For a simple |
+** insert with data coming from a VALUES clause, the code executes |
+** once straight down through. Pseudo-code follows (we call this |
+** the "1st template"): |
+** |
+** open write cursor to <table> and its indices |
+** put VALUES clause expressions into registers |
+** write the resulting record into <table> |
+** cleanup |
+** |
+** The three remaining templates assume the statement is of the form |
+** |
+** INSERT INTO <table> SELECT ... |
+** |
+** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - |
+** in other words if the SELECT pulls all columns from a single table |
+** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and |
+** if <table2> and <table1> are distinct tables but have identical |
+** schemas, including all the same indices, then a special optimization |
+** is invoked that copies raw records from <table2> over to <table1>. |
+** See the xferOptimization() function for the implementation of this |
+** template. This is the 2nd template. |
+** |
+** open a write cursor to <table> |
+** open read cursor on <table2> |
+** transfer all records in <table2> over to <table> |
+** close cursors |
+** foreach index on <table> |
+** open a write cursor on the <table> index |
+** open a read cursor on the corresponding <table2> index |
+** transfer all records from the read to the write cursors |
+** close cursors |
+** end foreach |
+** |
+** The 3rd template is for when the second template does not apply |
+** and the SELECT clause does not read from <table> at any time. |
+** The generated code follows this template: |
+** |
+** X <- A |
+** goto B |
+** A: setup for the SELECT |
+** loop over the rows in the SELECT |
+** load values into registers R..R+n |
+** yield X |
+** end loop |
+** cleanup after the SELECT |
+** end-coroutine X |
+** B: open write cursor to <table> and its indices |
+** C: yield X, at EOF goto D |
+** insert the select result into <table> from R..R+n |
+** goto C |
+** D: cleanup |
+** |
+** The 4th template is used if the insert statement takes its |
+** values from a SELECT but the data is being inserted into a table |
+** that is also read as part of the SELECT. In the third form, |
+** we have to use an intermediate table to store the results of |
+** the select. The template is like this: |
+** |
+** X <- A |
+** goto B |
+** A: setup for the SELECT |
+** loop over the tables in the SELECT |
+** load value into register R..R+n |
+** yield X |
+** end loop |
+** cleanup after the SELECT |
+** end co-routine R |
+** B: open temp table |
+** L: yield X, at EOF goto M |
+** insert row from R..R+n into temp table |
+** goto L |
+** M: open write cursor to <table> and its indices |
+** rewind temp table |
+** C: loop over rows of intermediate table |
+** transfer values form intermediate table into <table> |
+** end loop |
+** D: cleanup |
+*/ |
+void sqlite3Insert( |
+ Parse *pParse, /* Parser context */ |
+ SrcList *pTabList, /* Name of table into which we are inserting */ |
+ Select *pSelect, /* A SELECT statement to use as the data source */ |
+ IdList *pColumn, /* Column names corresponding to IDLIST. */ |
+ int onError /* How to handle constraint errors */ |
+){ |
+ sqlite3 *db; /* The main database structure */ |
+ Table *pTab; /* The table to insert into. aka TABLE */ |
+ char *zTab; /* Name of the table into which we are inserting */ |
+ const char *zDb; /* Name of the database holding this table */ |
+ int i, j, idx; /* Loop counters */ |
+ Vdbe *v; /* Generate code into this virtual machine */ |
+ Index *pIdx; /* For looping over indices of the table */ |
+ int nColumn; /* Number of columns in the data */ |
+ int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ |
+ int iDataCur = 0; /* VDBE cursor that is the main data repository */ |
+ int iIdxCur = 0; /* First index cursor */ |
+ int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ |
+ int endOfLoop; /* Label for the end of the insertion loop */ |
+ int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ |
+ int addrInsTop = 0; /* Jump to label "D" */ |
+ int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ |
+ SelectDest dest; /* Destination for SELECT on rhs of INSERT */ |
+ int iDb; /* Index of database holding TABLE */ |
+ Db *pDb; /* The database containing table being inserted into */ |
+ u8 useTempTable = 0; /* Store SELECT results in intermediate table */ |
+ u8 appendFlag = 0; /* True if the insert is likely to be an append */ |
+ u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ |
+ u8 bIdListInOrder = 1; /* True if IDLIST is in table order */ |
+ ExprList *pList = 0; /* List of VALUES() to be inserted */ |
+ |
+ /* Register allocations */ |
+ int regFromSelect = 0;/* Base register for data coming from SELECT */ |
+ int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ |
+ int regRowCount = 0; /* Memory cell used for the row counter */ |
+ int regIns; /* Block of regs holding rowid+data being inserted */ |
+ int regRowid; /* registers holding insert rowid */ |
+ int regData; /* register holding first column to insert */ |
+ int *aRegIdx = 0; /* One register allocated to each index */ |
+ |
+#ifndef SQLITE_OMIT_TRIGGER |
+ int isView; /* True if attempting to insert into a view */ |
+ Trigger *pTrigger; /* List of triggers on pTab, if required */ |
+ int tmask; /* Mask of trigger times */ |
+#endif |
+ |
+ db = pParse->db; |
+ memset(&dest, 0, sizeof(dest)); |
+ if( pParse->nErr || db->mallocFailed ){ |
+ goto insert_cleanup; |
+ } |
+ |
+ /* If the Select object is really just a simple VALUES() list with a |
+ ** single row values (the common case) then keep that one row of values |
+ ** and go ahead and discard the Select object |
+ */ |
+ if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ |
+ pList = pSelect->pEList; |
+ pSelect->pEList = 0; |
+ sqlite3SelectDelete(db, pSelect); |
+ pSelect = 0; |
+ } |
+ |
+ /* Locate the table into which we will be inserting new information. |
+ */ |
+ assert( pTabList->nSrc==1 ); |
+ zTab = pTabList->a[0].zName; |
+ if( NEVER(zTab==0) ) goto insert_cleanup; |
+ pTab = sqlite3SrcListLookup(pParse, pTabList); |
+ if( pTab==0 ){ |
+ goto insert_cleanup; |
+ } |
+ iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
+ assert( iDb<db->nDb ); |
+ pDb = &db->aDb[iDb]; |
+ zDb = pDb->zName; |
+ if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){ |
+ goto insert_cleanup; |
+ } |
+ withoutRowid = !HasRowid(pTab); |
+ |
+ /* Figure out if we have any triggers and if the table being |
+ ** inserted into is a view |
+ */ |
+#ifndef SQLITE_OMIT_TRIGGER |
+ pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); |
+ isView = pTab->pSelect!=0; |
+#else |
+# define pTrigger 0 |
+# define tmask 0 |
+# define isView 0 |
+#endif |
+#ifdef SQLITE_OMIT_VIEW |
+# undef isView |
+# define isView 0 |
+#endif |
+ assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); |
+ |
+ /* If pTab is really a view, make sure it has been initialized. |
+ ** ViewGetColumnNames() is a no-op if pTab is not a view. |
+ */ |
+ if( sqlite3ViewGetColumnNames(pParse, pTab) ){ |
+ goto insert_cleanup; |
+ } |
+ |
+ /* Cannot insert into a read-only table. |
+ */ |
+ if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ |
+ goto insert_cleanup; |
+ } |
+ |
+ /* Allocate a VDBE |
+ */ |
+ v = sqlite3GetVdbe(pParse); |
+ if( v==0 ) goto insert_cleanup; |
+ if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); |
+ sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); |
+ |
+#ifndef SQLITE_OMIT_XFER_OPT |
+ /* If the statement is of the form |
+ ** |
+ ** INSERT INTO <table1> SELECT * FROM <table2>; |
+ ** |
+ ** Then special optimizations can be applied that make the transfer |
+ ** very fast and which reduce fragmentation of indices. |
+ ** |
+ ** This is the 2nd template. |
+ */ |
+ if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ |
+ assert( !pTrigger ); |
+ assert( pList==0 ); |
+ goto insert_end; |
+ } |
+#endif /* SQLITE_OMIT_XFER_OPT */ |
+ |
+ /* If this is an AUTOINCREMENT table, look up the sequence number in the |
+ ** sqlite_sequence table and store it in memory cell regAutoinc. |
+ */ |
+ regAutoinc = autoIncBegin(pParse, iDb, pTab); |
+ |
+ /* Allocate registers for holding the rowid of the new row, |
+ ** the content of the new row, and the assembled row record. |
+ */ |
+ regRowid = regIns = pParse->nMem+1; |
+ pParse->nMem += pTab->nCol + 1; |
+ if( IsVirtual(pTab) ){ |
+ regRowid++; |
+ pParse->nMem++; |
+ } |
+ regData = regRowid+1; |
+ |
+ /* If the INSERT statement included an IDLIST term, then make sure |
+ ** all elements of the IDLIST really are columns of the table and |
+ ** remember the column indices. |
+ ** |
+ ** If the table has an INTEGER PRIMARY KEY column and that column |
+ ** is named in the IDLIST, then record in the ipkColumn variable |
+ ** the index into IDLIST of the primary key column. ipkColumn is |
+ ** the index of the primary key as it appears in IDLIST, not as |
+ ** is appears in the original table. (The index of the INTEGER |
+ ** PRIMARY KEY in the original table is pTab->iPKey.) |
+ */ |
+ if( pColumn ){ |
+ for(i=0; i<pColumn->nId; i++){ |
+ pColumn->a[i].idx = -1; |
+ } |
+ for(i=0; i<pColumn->nId; i++){ |
+ for(j=0; j<pTab->nCol; j++){ |
+ if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ |
+ pColumn->a[i].idx = j; |
+ if( i!=j ) bIdListInOrder = 0; |
+ if( j==pTab->iPKey ){ |
+ ipkColumn = i; assert( !withoutRowid ); |
+ } |
+ break; |
+ } |
+ } |
+ if( j>=pTab->nCol ){ |
+ if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ |
+ ipkColumn = i; |
+ bIdListInOrder = 0; |
+ }else{ |
+ sqlite3ErrorMsg(pParse, "table %S has no column named %s", |
+ pTabList, 0, pColumn->a[i].zName); |
+ pParse->checkSchema = 1; |
+ goto insert_cleanup; |
+ } |
+ } |
+ } |
+ } |
+ |
+ /* Figure out how many columns of data are supplied. If the data |
+ ** is coming from a SELECT statement, then generate a co-routine that |
+ ** produces a single row of the SELECT on each invocation. The |
+ ** co-routine is the common header to the 3rd and 4th templates. |
+ */ |
+ if( pSelect ){ |
+ /* Data is coming from a SELECT. Generate a co-routine to run the SELECT */ |
+ int regYield; /* Register holding co-routine entry-point */ |
+ int addrTop; /* Top of the co-routine */ |
+ int rc; /* Result code */ |
+ |
+ regYield = ++pParse->nMem; |
+ addrTop = sqlite3VdbeCurrentAddr(v) + 1; |
+ sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); |
+ sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); |
+ dest.iSdst = bIdListInOrder ? regData : 0; |
+ dest.nSdst = pTab->nCol; |
+ rc = sqlite3Select(pParse, pSelect, &dest); |
+ regFromSelect = dest.iSdst; |
+ assert( pParse->nErr==0 || rc ); |
+ if( rc || db->mallocFailed ) goto insert_cleanup; |
+ sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); |
+ sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ |
+ assert( pSelect->pEList ); |
+ nColumn = pSelect->pEList->nExpr; |
+ |
+ /* Set useTempTable to TRUE if the result of the SELECT statement |
+ ** should be written into a temporary table (template 4). Set to |
+ ** FALSE if each output row of the SELECT can be written directly into |
+ ** the destination table (template 3). |
+ ** |
+ ** A temp table must be used if the table being updated is also one |
+ ** of the tables being read by the SELECT statement. Also use a |
+ ** temp table in the case of row triggers. |
+ */ |
+ if( pTrigger || readsTable(pParse, iDb, pTab) ){ |
+ useTempTable = 1; |
+ } |
+ |
+ if( useTempTable ){ |
+ /* Invoke the coroutine to extract information from the SELECT |
+ ** and add it to a transient table srcTab. The code generated |
+ ** here is from the 4th template: |
+ ** |
+ ** B: open temp table |
+ ** L: yield X, goto M at EOF |
+ ** insert row from R..R+n into temp table |
+ ** goto L |
+ ** M: ... |
+ */ |
+ int regRec; /* Register to hold packed record */ |
+ int regTempRowid; /* Register to hold temp table ROWID */ |
+ int addrL; /* Label "L" */ |
+ |
+ srcTab = pParse->nTab++; |
+ regRec = sqlite3GetTempReg(pParse); |
+ regTempRowid = sqlite3GetTempReg(pParse); |
+ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); |
+ addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); |
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); |
+ sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); |
+ sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrL); |
+ sqlite3VdbeJumpHere(v, addrL); |
+ sqlite3ReleaseTempReg(pParse, regRec); |
+ sqlite3ReleaseTempReg(pParse, regTempRowid); |
+ } |
+ }else{ |
+ /* This is the case if the data for the INSERT is coming from a VALUES |
+ ** clause |
+ */ |
+ NameContext sNC; |
+ memset(&sNC, 0, sizeof(sNC)); |
+ sNC.pParse = pParse; |
+ srcTab = -1; |
+ assert( useTempTable==0 ); |
+ nColumn = pList ? pList->nExpr : 0; |
+ for(i=0; i<nColumn; i++){ |
+ if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){ |
+ goto insert_cleanup; |
+ } |
+ } |
+ } |
+ |
+ /* If there is no IDLIST term but the table has an integer primary |
+ ** key, the set the ipkColumn variable to the integer primary key |
+ ** column index in the original table definition. |
+ */ |
+ if( pColumn==0 && nColumn>0 ){ |
+ ipkColumn = pTab->iPKey; |
+ } |
+ |
+ /* Make sure the number of columns in the source data matches the number |
+ ** of columns to be inserted into the table. |
+ */ |
+ if( IsVirtual(pTab) ){ |
+ for(i=0; i<pTab->nCol; i++){ |
+ nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); |
+ } |
+ } |
+ if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ |
+ sqlite3ErrorMsg(pParse, |
+ "table %S has %d columns but %d values were supplied", |
+ pTabList, 0, pTab->nCol-nHidden, nColumn); |
+ goto insert_cleanup; |
+ } |
+ if( pColumn!=0 && nColumn!=pColumn->nId ){ |
+ sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); |
+ goto insert_cleanup; |
+ } |
+ |
+ /* Initialize the count of rows to be inserted |
+ */ |
+ if( db->flags & SQLITE_CountRows ){ |
+ regRowCount = ++pParse->nMem; |
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); |
+ } |
+ |
+ /* If this is not a view, open the table and and all indices */ |
+ if( !isView ){ |
+ int nIdx; |
+ nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, -1, 0, |
+ &iDataCur, &iIdxCur); |
+ aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1)); |
+ if( aRegIdx==0 ){ |
+ goto insert_cleanup; |
+ } |
+ for(i=0; i<nIdx; i++){ |
+ aRegIdx[i] = ++pParse->nMem; |
+ } |
+ } |
+ |
+ /* This is the top of the main insertion loop */ |
+ if( useTempTable ){ |
+ /* This block codes the top of loop only. The complete loop is the |
+ ** following pseudocode (template 4): |
+ ** |
+ ** rewind temp table, if empty goto D |
+ ** C: loop over rows of intermediate table |
+ ** transfer values form intermediate table into <table> |
+ ** end loop |
+ ** D: ... |
+ */ |
+ addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); |
+ addrCont = sqlite3VdbeCurrentAddr(v); |
+ }else if( pSelect ){ |
+ /* This block codes the top of loop only. The complete loop is the |
+ ** following pseudocode (template 3): |
+ ** |
+ ** C: yield X, at EOF goto D |
+ ** insert the select result into <table> from R..R+n |
+ ** goto C |
+ ** D: ... |
+ */ |
+ addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); |
+ VdbeCoverage(v); |
+ } |
+ |
+ /* Run the BEFORE and INSTEAD OF triggers, if there are any |
+ */ |
+ endOfLoop = sqlite3VdbeMakeLabel(v); |
+ if( tmask & TRIGGER_BEFORE ){ |
+ int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); |
+ |
+ /* build the NEW.* reference row. Note that if there is an INTEGER |
+ ** PRIMARY KEY into which a NULL is being inserted, that NULL will be |
+ ** translated into a unique ID for the row. But on a BEFORE trigger, |
+ ** we do not know what the unique ID will be (because the insert has |
+ ** not happened yet) so we substitute a rowid of -1 |
+ */ |
+ if( ipkColumn<0 ){ |
+ sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); |
+ }else{ |
+ int j1; |
+ assert( !withoutRowid ); |
+ if( useTempTable ){ |
+ sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); |
+ }else{ |
+ assert( pSelect==0 ); /* Otherwise useTempTable is true */ |
+ sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); |
+ } |
+ j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); |
+ sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); |
+ sqlite3VdbeJumpHere(v, j1); |
+ sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); |
+ } |
+ |
+ /* Cannot have triggers on a virtual table. If it were possible, |
+ ** this block would have to account for hidden column. |
+ */ |
+ assert( !IsVirtual(pTab) ); |
+ |
+ /* Create the new column data |
+ */ |
+ for(i=0; i<pTab->nCol; i++){ |
+ if( pColumn==0 ){ |
+ j = i; |
+ }else{ |
+ for(j=0; j<pColumn->nId; j++){ |
+ if( pColumn->a[j].idx==i ) break; |
+ } |
+ } |
+ if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId) ){ |
+ sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1); |
+ }else if( useTempTable ){ |
+ sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1); |
+ }else{ |
+ assert( pSelect==0 ); /* Otherwise useTempTable is true */ |
+ sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1); |
+ } |
+ } |
+ |
+ /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, |
+ ** do not attempt any conversions before assembling the record. |
+ ** If this is a real table, attempt conversions as required by the |
+ ** table column affinities. |
+ */ |
+ if( !isView ){ |
+ sqlite3TableAffinity(v, pTab, regCols+1); |
+ } |
+ |
+ /* Fire BEFORE or INSTEAD OF triggers */ |
+ sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, |
+ pTab, regCols-pTab->nCol-1, onError, endOfLoop); |
+ |
+ sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); |
+ } |
+ |
+ /* Compute the content of the next row to insert into a range of |
+ ** registers beginning at regIns. |
+ */ |
+ if( !isView ){ |
+ if( IsVirtual(pTab) ){ |
+ /* The row that the VUpdate opcode will delete: none */ |
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); |
+ } |
+ if( ipkColumn>=0 ){ |
+ if( useTempTable ){ |
+ sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); |
+ }else if( pSelect ){ |
+ sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); |
+ }else{ |
+ VdbeOp *pOp; |
+ sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); |
+ pOp = sqlite3VdbeGetOp(v, -1); |
+ if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){ |
+ appendFlag = 1; |
+ pOp->opcode = OP_NewRowid; |
+ pOp->p1 = iDataCur; |
+ pOp->p2 = regRowid; |
+ pOp->p3 = regAutoinc; |
+ } |
+ } |
+ /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid |
+ ** to generate a unique primary key value. |
+ */ |
+ if( !appendFlag ){ |
+ int j1; |
+ if( !IsVirtual(pTab) ){ |
+ j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); |
+ sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); |
+ sqlite3VdbeJumpHere(v, j1); |
+ }else{ |
+ j1 = sqlite3VdbeCurrentAddr(v); |
+ sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2); VdbeCoverage(v); |
+ } |
+ sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); |
+ } |
+ }else if( IsVirtual(pTab) || withoutRowid ){ |
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); |
+ }else{ |
+ sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); |
+ appendFlag = 1; |
+ } |
+ autoIncStep(pParse, regAutoinc, regRowid); |
+ |
+ /* Compute data for all columns of the new entry, beginning |
+ ** with the first column. |
+ */ |
+ nHidden = 0; |
+ for(i=0; i<pTab->nCol; i++){ |
+ int iRegStore = regRowid+1+i; |
+ if( i==pTab->iPKey ){ |
+ /* The value of the INTEGER PRIMARY KEY column is always a NULL. |
+ ** Whenever this column is read, the rowid will be substituted |
+ ** in its place. Hence, fill this column with a NULL to avoid |
+ ** taking up data space with information that will never be used. |
+ ** As there may be shallow copies of this value, make it a soft-NULL */ |
+ sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); |
+ continue; |
+ } |
+ if( pColumn==0 ){ |
+ if( IsHiddenColumn(&pTab->aCol[i]) ){ |
+ assert( IsVirtual(pTab) ); |
+ j = -1; |
+ nHidden++; |
+ }else{ |
+ j = i - nHidden; |
+ } |
+ }else{ |
+ for(j=0; j<pColumn->nId; j++){ |
+ if( pColumn->a[j].idx==i ) break; |
+ } |
+ } |
+ if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){ |
+ sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore); |
+ }else if( useTempTable ){ |
+ sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore); |
+ }else if( pSelect ){ |
+ if( regFromSelect!=regData ){ |
+ sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore); |
+ } |
+ }else{ |
+ sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore); |
+ } |
+ } |
+ |
+ /* Generate code to check constraints and generate index keys and |
+ ** do the insertion. |
+ */ |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ if( IsVirtual(pTab) ){ |
+ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); |
+ sqlite3VtabMakeWritable(pParse, pTab); |
+ sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); |
+ sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); |
+ sqlite3MayAbort(pParse); |
+ }else |
+#endif |
+ { |
+ int isReplace; /* Set to true if constraints may cause a replace */ |
+ sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, |
+ regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace |
+ ); |
+ sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); |
+ sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, |
+ regIns, aRegIdx, 0, appendFlag, isReplace==0); |
+ } |
+ } |
+ |
+ /* Update the count of rows that are inserted |
+ */ |
+ if( (db->flags & SQLITE_CountRows)!=0 ){ |
+ sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); |
+ } |
+ |
+ if( pTrigger ){ |
+ /* Code AFTER triggers */ |
+ sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, |
+ pTab, regData-2-pTab->nCol, onError, endOfLoop); |
+ } |
+ |
+ /* The bottom of the main insertion loop, if the data source |
+ ** is a SELECT statement. |
+ */ |
+ sqlite3VdbeResolveLabel(v, endOfLoop); |
+ if( useTempTable ){ |
+ sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); |
+ sqlite3VdbeJumpHere(v, addrInsTop); |
+ sqlite3VdbeAddOp1(v, OP_Close, srcTab); |
+ }else if( pSelect ){ |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont); |
+ sqlite3VdbeJumpHere(v, addrInsTop); |
+ } |
+ |
+ if( !IsVirtual(pTab) && !isView ){ |
+ /* Close all tables opened */ |
+ if( iDataCur<iIdxCur ) sqlite3VdbeAddOp1(v, OP_Close, iDataCur); |
+ for(idx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ |
+ sqlite3VdbeAddOp1(v, OP_Close, idx+iIdxCur); |
+ } |
+ } |
+ |
+insert_end: |
+ /* Update the sqlite_sequence table by storing the content of the |
+ ** maximum rowid counter values recorded while inserting into |
+ ** autoincrement tables. |
+ */ |
+ if( pParse->nested==0 && pParse->pTriggerTab==0 ){ |
+ sqlite3AutoincrementEnd(pParse); |
+ } |
+ |
+ /* |
+ ** Return the number of rows inserted. If this routine is |
+ ** generating code because of a call to sqlite3NestedParse(), do not |
+ ** invoke the callback function. |
+ */ |
+ if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){ |
+ sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); |
+ sqlite3VdbeSetNumCols(v, 1); |
+ sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC); |
+ } |
+ |
+insert_cleanup: |
+ sqlite3SrcListDelete(db, pTabList); |
+ sqlite3ExprListDelete(db, pList); |
+ sqlite3SelectDelete(db, pSelect); |
+ sqlite3IdListDelete(db, pColumn); |
+ sqlite3DbFree(db, aRegIdx); |
+} |
+ |
+/* Make sure "isView" and other macros defined above are undefined. Otherwise |
+** they may interfere with compilation of other functions in this file |
+** (or in another file, if this file becomes part of the amalgamation). */ |
+#ifdef isView |
+ #undef isView |
+#endif |
+#ifdef pTrigger |
+ #undef pTrigger |
+#endif |
+#ifdef tmask |
+ #undef tmask |
+#endif |
+ |
+/* |
+** Generate code to do constraint checks prior to an INSERT or an UPDATE |
+** on table pTab. |
+** |
+** The regNewData parameter is the first register in a range that contains |
+** the data to be inserted or the data after the update. There will be |
+** pTab->nCol+1 registers in this range. The first register (the one |
+** that regNewData points to) will contain the new rowid, or NULL in the |
+** case of a WITHOUT ROWID table. The second register in the range will |
+** contain the content of the first table column. The third register will |
+** contain the content of the second table column. And so forth. |
+** |
+** The regOldData parameter is similar to regNewData except that it contains |
+** the data prior to an UPDATE rather than afterwards. regOldData is zero |
+** for an INSERT. This routine can distinguish between UPDATE and INSERT by |
+** checking regOldData for zero. |
+** |
+** For an UPDATE, the pkChng boolean is true if the true primary key (the |
+** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) |
+** might be modified by the UPDATE. If pkChng is false, then the key of |
+** the iDataCur content table is guaranteed to be unchanged by the UPDATE. |
+** |
+** For an INSERT, the pkChng boolean indicates whether or not the rowid |
+** was explicitly specified as part of the INSERT statement. If pkChng |
+** is zero, it means that the either rowid is computed automatically or |
+** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, |
+** pkChng will only be true if the INSERT statement provides an integer |
+** value for either the rowid column or its INTEGER PRIMARY KEY alias. |
+** |
+** The code generated by this routine will store new index entries into |
+** registers identified by aRegIdx[]. No index entry is created for |
+** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is |
+** the same as the order of indices on the linked list of indices |
+** at pTab->pIndex. |
+** |
+** The caller must have already opened writeable cursors on the main |
+** table and all applicable indices (that is to say, all indices for which |
+** aRegIdx[] is not zero). iDataCur is the cursor for the main table when |
+** inserting or updating a rowid table, or the cursor for the PRIMARY KEY |
+** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor |
+** for the first index in the pTab->pIndex list. Cursors for other indices |
+** are at iIdxCur+N for the N-th element of the pTab->pIndex list. |
+** |
+** This routine also generates code to check constraints. NOT NULL, |
+** CHECK, and UNIQUE constraints are all checked. If a constraint fails, |
+** then the appropriate action is performed. There are five possible |
+** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. |
+** |
+** Constraint type Action What Happens |
+** --------------- ---------- ---------------------------------------- |
+** any ROLLBACK The current transaction is rolled back and |
+** sqlite3_step() returns immediately with a |
+** return code of SQLITE_CONSTRAINT. |
+** |
+** any ABORT Back out changes from the current command |
+** only (do not do a complete rollback) then |
+** cause sqlite3_step() to return immediately |
+** with SQLITE_CONSTRAINT. |
+** |
+** any FAIL Sqlite3_step() returns immediately with a |
+** return code of SQLITE_CONSTRAINT. The |
+** transaction is not rolled back and any |
+** changes to prior rows are retained. |
+** |
+** any IGNORE The attempt in insert or update the current |
+** row is skipped, without throwing an error. |
+** Processing continues with the next row. |
+** (There is an immediate jump to ignoreDest.) |
+** |
+** NOT NULL REPLACE The NULL value is replace by the default |
+** value for that column. If the default value |
+** is NULL, the action is the same as ABORT. |
+** |
+** UNIQUE REPLACE The other row that conflicts with the row |
+** being inserted is removed. |
+** |
+** CHECK REPLACE Illegal. The results in an exception. |
+** |
+** Which action to take is determined by the overrideError parameter. |
+** Or if overrideError==OE_Default, then the pParse->onError parameter |
+** is used. Or if pParse->onError==OE_Default then the onError value |
+** for the constraint is used. |
+*/ |
+void sqlite3GenerateConstraintChecks( |
+ Parse *pParse, /* The parser context */ |
+ Table *pTab, /* The table being inserted or updated */ |
+ int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ |
+ int iDataCur, /* Canonical data cursor (main table or PK index) */ |
+ int iIdxCur, /* First index cursor */ |
+ int regNewData, /* First register in a range holding values to insert */ |
+ int regOldData, /* Previous content. 0 for INSERTs */ |
+ u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ |
+ u8 overrideError, /* Override onError to this if not OE_Default */ |
+ int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ |
+ int *pbMayReplace /* OUT: Set to true if constraint may cause a replace */ |
+){ |
+ Vdbe *v; /* VDBE under constrution */ |
+ Index *pIdx; /* Pointer to one of the indices */ |
+ Index *pPk = 0; /* The PRIMARY KEY index */ |
+ sqlite3 *db; /* Database connection */ |
+ int i; /* loop counter */ |
+ int ix; /* Index loop counter */ |
+ int nCol; /* Number of columns */ |
+ int onError; /* Conflict resolution strategy */ |
+ int j1; /* Address of jump instruction */ |
+ int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ |
+ int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ |
+ int ipkTop = 0; /* Top of the rowid change constraint check */ |
+ int ipkBottom = 0; /* Bottom of the rowid change constraint check */ |
+ u8 isUpdate; /* True if this is an UPDATE operation */ |
+ u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ |
+ int regRowid = -1; /* Register holding ROWID value */ |
+ |
+ isUpdate = regOldData!=0; |
+ db = pParse->db; |
+ v = sqlite3GetVdbe(pParse); |
+ assert( v!=0 ); |
+ assert( pTab->pSelect==0 ); /* This table is not a VIEW */ |
+ nCol = pTab->nCol; |
+ |
+ /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for |
+ ** normal rowid tables. nPkField is the number of key fields in the |
+ ** pPk index or 1 for a rowid table. In other words, nPkField is the |
+ ** number of fields in the true primary key of the table. */ |
+ if( HasRowid(pTab) ){ |
+ pPk = 0; |
+ nPkField = 1; |
+ }else{ |
+ pPk = sqlite3PrimaryKeyIndex(pTab); |
+ nPkField = pPk->nKeyCol; |
+ } |
+ |
+ /* Record that this module has started */ |
+ VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", |
+ iDataCur, iIdxCur, regNewData, regOldData, pkChng)); |
+ |
+ /* Test all NOT NULL constraints. |
+ */ |
+ for(i=0; i<nCol; i++){ |
+ if( i==pTab->iPKey ){ |
+ continue; |
+ } |
+ onError = pTab->aCol[i].notNull; |
+ if( onError==OE_None ) continue; |
+ if( overrideError!=OE_Default ){ |
+ onError = overrideError; |
+ }else if( onError==OE_Default ){ |
+ onError = OE_Abort; |
+ } |
+ if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ |
+ onError = OE_Abort; |
+ } |
+ assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail |
+ || onError==OE_Ignore || onError==OE_Replace ); |
+ switch( onError ){ |
+ case OE_Abort: |
+ sqlite3MayAbort(pParse); |
+ /* Fall through */ |
+ case OE_Rollback: |
+ case OE_Fail: { |
+ char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, |
+ pTab->aCol[i].zName); |
+ sqlite3VdbeAddOp4(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError, |
+ regNewData+1+i, zMsg, P4_DYNAMIC); |
+ sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); |
+ VdbeCoverage(v); |
+ break; |
+ } |
+ case OE_Ignore: { |
+ sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest); |
+ VdbeCoverage(v); |
+ break; |
+ } |
+ default: { |
+ assert( onError==OE_Replace ); |
+ j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regNewData+1+i); VdbeCoverage(v); |
+ sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i); |
+ sqlite3VdbeJumpHere(v, j1); |
+ break; |
+ } |
+ } |
+ } |
+ |
+ /* Test all CHECK constraints |
+ */ |
+#ifndef SQLITE_OMIT_CHECK |
+ if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ |
+ ExprList *pCheck = pTab->pCheck; |
+ pParse->ckBase = regNewData+1; |
+ onError = overrideError!=OE_Default ? overrideError : OE_Abort; |
+ for(i=0; i<pCheck->nExpr; i++){ |
+ int allOk = sqlite3VdbeMakeLabel(v); |
+ sqlite3ExprIfTrue(pParse, pCheck->a[i].pExpr, allOk, SQLITE_JUMPIFNULL); |
+ if( onError==OE_Ignore ){ |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); |
+ }else{ |
+ char *zName = pCheck->a[i].zName; |
+ if( zName==0 ) zName = pTab->zName; |
+ if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */ |
+ sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, |
+ onError, zName, P4_TRANSIENT, |
+ P5_ConstraintCheck); |
+ } |
+ sqlite3VdbeResolveLabel(v, allOk); |
+ } |
+ } |
+#endif /* !defined(SQLITE_OMIT_CHECK) */ |
+ |
+ /* If rowid is changing, make sure the new rowid does not previously |
+ ** exist in the table. |
+ */ |
+ if( pkChng && pPk==0 ){ |
+ int addrRowidOk = sqlite3VdbeMakeLabel(v); |
+ |
+ /* Figure out what action to take in case of a rowid collision */ |
+ onError = pTab->keyConf; |
+ if( overrideError!=OE_Default ){ |
+ onError = overrideError; |
+ }else if( onError==OE_Default ){ |
+ onError = OE_Abort; |
+ } |
+ |
+ if( isUpdate ){ |
+ /* pkChng!=0 does not mean that the rowid has change, only that |
+ ** it might have changed. Skip the conflict logic below if the rowid |
+ ** is unchanged. */ |
+ sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); |
+ sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); |
+ VdbeCoverage(v); |
+ } |
+ |
+ /* If the response to a rowid conflict is REPLACE but the response |
+ ** to some other UNIQUE constraint is FAIL or IGNORE, then we need |
+ ** to defer the running of the rowid conflict checking until after |
+ ** the UNIQUE constraints have run. |
+ */ |
+ if( onError==OE_Replace && overrideError!=OE_Replace ){ |
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
+ if( pIdx->onError==OE_Ignore || pIdx->onError==OE_Fail ){ |
+ ipkTop = sqlite3VdbeAddOp0(v, OP_Goto); |
+ break; |
+ } |
+ } |
+ } |
+ |
+ /* Check to see if the new rowid already exists in the table. Skip |
+ ** the following conflict logic if it does not. */ |
+ sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); |
+ VdbeCoverage(v); |
+ |
+ /* Generate code that deals with a rowid collision */ |
+ switch( onError ){ |
+ default: { |
+ onError = OE_Abort; |
+ /* Fall thru into the next case */ |
+ } |
+ case OE_Rollback: |
+ case OE_Abort: |
+ case OE_Fail: { |
+ sqlite3RowidConstraint(pParse, onError, pTab); |
+ break; |
+ } |
+ case OE_Replace: { |
+ /* If there are DELETE triggers on this table and the |
+ ** recursive-triggers flag is set, call GenerateRowDelete() to |
+ ** remove the conflicting row from the table. This will fire |
+ ** the triggers and remove both the table and index b-tree entries. |
+ ** |
+ ** Otherwise, if there are no triggers or the recursive-triggers |
+ ** flag is not set, but the table has one or more indexes, call |
+ ** GenerateRowIndexDelete(). This removes the index b-tree entries |
+ ** only. The table b-tree entry will be replaced by the new entry |
+ ** when it is inserted. |
+ ** |
+ ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, |
+ ** also invoke MultiWrite() to indicate that this VDBE may require |
+ ** statement rollback (if the statement is aborted after the delete |
+ ** takes place). Earlier versions called sqlite3MultiWrite() regardless, |
+ ** but being more selective here allows statements like: |
+ ** |
+ ** REPLACE INTO t(rowid) VALUES($newrowid) |
+ ** |
+ ** to run without a statement journal if there are no indexes on the |
+ ** table. |
+ */ |
+ Trigger *pTrigger = 0; |
+ if( db->flags&SQLITE_RecTriggers ){ |
+ pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); |
+ } |
+ if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ |
+ sqlite3MultiWrite(pParse); |
+ sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, |
+ regNewData, 1, 0, OE_Replace, 1); |
+ }else if( pTab->pIndex ){ |
+ sqlite3MultiWrite(pParse); |
+ sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur, 0); |
+ } |
+ seenReplace = 1; |
+ break; |
+ } |
+ case OE_Ignore: { |
+ /*assert( seenReplace==0 );*/ |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); |
+ break; |
+ } |
+ } |
+ sqlite3VdbeResolveLabel(v, addrRowidOk); |
+ if( ipkTop ){ |
+ ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); |
+ sqlite3VdbeJumpHere(v, ipkTop); |
+ } |
+ } |
+ |
+ /* Test all UNIQUE constraints by creating entries for each UNIQUE |
+ ** index and making sure that duplicate entries do not already exist. |
+ ** Compute the revised record entries for indices as we go. |
+ ** |
+ ** This loop also handles the case of the PRIMARY KEY index for a |
+ ** WITHOUT ROWID table. |
+ */ |
+ for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){ |
+ int regIdx; /* Range of registers hold conent for pIdx */ |
+ int regR; /* Range of registers holding conflicting PK */ |
+ int iThisCur; /* Cursor for this UNIQUE index */ |
+ int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ |
+ |
+ if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ |
+ if( bAffinityDone==0 ){ |
+ sqlite3TableAffinity(v, pTab, regNewData+1); |
+ bAffinityDone = 1; |
+ } |
+ iThisCur = iIdxCur+ix; |
+ addrUniqueOk = sqlite3VdbeMakeLabel(v); |
+ |
+ /* Skip partial indices for which the WHERE clause is not true */ |
+ if( pIdx->pPartIdxWhere ){ |
+ sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); |
+ pParse->ckBase = regNewData+1; |
+ sqlite3ExprIfFalse(pParse, pIdx->pPartIdxWhere, addrUniqueOk, |
+ SQLITE_JUMPIFNULL); |
+ pParse->ckBase = 0; |
+ } |
+ |
+ /* Create a record for this index entry as it should appear after |
+ ** the insert or update. Store that record in the aRegIdx[ix] register |
+ */ |
+ regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn); |
+ for(i=0; i<pIdx->nColumn; i++){ |
+ int iField = pIdx->aiColumn[i]; |
+ int x; |
+ if( iField<0 || iField==pTab->iPKey ){ |
+ if( regRowid==regIdx+i ) continue; /* ROWID already in regIdx+i */ |
+ x = regNewData; |
+ regRowid = pIdx->pPartIdxWhere ? -1 : regIdx+i; |
+ }else{ |
+ x = iField + regNewData + 1; |
+ } |
+ sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); |
+ VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName)); |
+ } |
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); |
+ VdbeComment((v, "for %s", pIdx->zName)); |
+ sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn); |
+ |
+ /* In an UPDATE operation, if this index is the PRIMARY KEY index |
+ ** of a WITHOUT ROWID table and there has been no change the |
+ ** primary key, then no collision is possible. The collision detection |
+ ** logic below can all be skipped. */ |
+ if( isUpdate && pPk==pIdx && pkChng==0 ){ |
+ sqlite3VdbeResolveLabel(v, addrUniqueOk); |
+ continue; |
+ } |
+ |
+ /* Find out what action to take in case there is a uniqueness conflict */ |
+ onError = pIdx->onError; |
+ if( onError==OE_None ){ |
+ sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn); |
+ sqlite3VdbeResolveLabel(v, addrUniqueOk); |
+ continue; /* pIdx is not a UNIQUE index */ |
+ } |
+ if( overrideError!=OE_Default ){ |
+ onError = overrideError; |
+ }else if( onError==OE_Default ){ |
+ onError = OE_Abort; |
+ } |
+ |
+ /* Check to see if the new index entry will be unique */ |
+ sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, |
+ regIdx, pIdx->nKeyCol); VdbeCoverage(v); |
+ |
+ /* Generate code to handle collisions */ |
+ regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField); |
+ if( isUpdate || onError==OE_Replace ){ |
+ if( HasRowid(pTab) ){ |
+ sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); |
+ /* Conflict only if the rowid of the existing index entry |
+ ** is different from old-rowid */ |
+ if( isUpdate ){ |
+ sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); |
+ sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); |
+ VdbeCoverage(v); |
+ } |
+ }else{ |
+ int x; |
+ /* Extract the PRIMARY KEY from the end of the index entry and |
+ ** store it in registers regR..regR+nPk-1 */ |
+ if( pIdx!=pPk ){ |
+ for(i=0; i<pPk->nKeyCol; i++){ |
+ x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]); |
+ sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); |
+ VdbeComment((v, "%s.%s", pTab->zName, |
+ pTab->aCol[pPk->aiColumn[i]].zName)); |
+ } |
+ } |
+ if( isUpdate ){ |
+ /* If currently processing the PRIMARY KEY of a WITHOUT ROWID |
+ ** table, only conflict if the new PRIMARY KEY values are actually |
+ ** different from the old. |
+ ** |
+ ** For a UNIQUE index, only conflict if the PRIMARY KEY values |
+ ** of the matched index row are different from the original PRIMARY |
+ ** KEY values of this row before the update. */ |
+ int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; |
+ int op = OP_Ne; |
+ int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); |
+ |
+ for(i=0; i<pPk->nKeyCol; i++){ |
+ char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); |
+ x = pPk->aiColumn[i]; |
+ if( i==(pPk->nKeyCol-1) ){ |
+ addrJump = addrUniqueOk; |
+ op = OP_Eq; |
+ } |
+ sqlite3VdbeAddOp4(v, op, |
+ regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ |
+ ); |
+ sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); |
+ VdbeCoverageIf(v, op==OP_Eq); |
+ VdbeCoverageIf(v, op==OP_Ne); |
+ } |
+ } |
+ } |
+ } |
+ |
+ /* Generate code that executes if the new index entry is not unique */ |
+ assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail |
+ || onError==OE_Ignore || onError==OE_Replace ); |
+ switch( onError ){ |
+ case OE_Rollback: |
+ case OE_Abort: |
+ case OE_Fail: { |
+ sqlite3UniqueConstraint(pParse, onError, pIdx); |
+ break; |
+ } |
+ case OE_Ignore: { |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); |
+ break; |
+ } |
+ default: { |
+ Trigger *pTrigger = 0; |
+ assert( onError==OE_Replace ); |
+ sqlite3MultiWrite(pParse); |
+ if( db->flags&SQLITE_RecTriggers ){ |
+ pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); |
+ } |
+ sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, |
+ regR, nPkField, 0, OE_Replace, pIdx==pPk); |
+ seenReplace = 1; |
+ break; |
+ } |
+ } |
+ sqlite3VdbeResolveLabel(v, addrUniqueOk); |
+ sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn); |
+ if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); |
+ } |
+ if( ipkTop ){ |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, ipkTop+1); |
+ sqlite3VdbeJumpHere(v, ipkBottom); |
+ } |
+ |
+ *pbMayReplace = seenReplace; |
+ VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); |
+} |
+ |
+/* |
+** This routine generates code to finish the INSERT or UPDATE operation |
+** that was started by a prior call to sqlite3GenerateConstraintChecks. |
+** A consecutive range of registers starting at regNewData contains the |
+** rowid and the content to be inserted. |
+** |
+** The arguments to this routine should be the same as the first six |
+** arguments to sqlite3GenerateConstraintChecks. |
+*/ |
+void sqlite3CompleteInsertion( |
+ Parse *pParse, /* The parser context */ |
+ Table *pTab, /* the table into which we are inserting */ |
+ int iDataCur, /* Cursor of the canonical data source */ |
+ int iIdxCur, /* First index cursor */ |
+ int regNewData, /* Range of content */ |
+ int *aRegIdx, /* Register used by each index. 0 for unused indices */ |
+ int isUpdate, /* True for UPDATE, False for INSERT */ |
+ int appendBias, /* True if this is likely to be an append */ |
+ int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ |
+){ |
+ Vdbe *v; /* Prepared statements under construction */ |
+ Index *pIdx; /* An index being inserted or updated */ |
+ u8 pik_flags; /* flag values passed to the btree insert */ |
+ int regData; /* Content registers (after the rowid) */ |
+ int regRec; /* Register holding assembled record for the table */ |
+ int i; /* Loop counter */ |
+ u8 bAffinityDone = 0; /* True if OP_Affinity has been run already */ |
+ |
+ v = sqlite3GetVdbe(pParse); |
+ assert( v!=0 ); |
+ assert( pTab->pSelect==0 ); /* This table is not a VIEW */ |
+ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ |
+ if( aRegIdx[i]==0 ) continue; |
+ bAffinityDone = 1; |
+ if( pIdx->pPartIdxWhere ){ |
+ sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); |
+ VdbeCoverage(v); |
+ } |
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i]); |
+ pik_flags = 0; |
+ if( useSeekResult ) pik_flags = OPFLAG_USESEEKRESULT; |
+ if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ |
+ assert( pParse->nested==0 ); |
+ pik_flags |= OPFLAG_NCHANGE; |
+ } |
+ if( pik_flags ) sqlite3VdbeChangeP5(v, pik_flags); |
+ } |
+ if( !HasRowid(pTab) ) return; |
+ regData = regNewData + 1; |
+ regRec = sqlite3GetTempReg(pParse); |
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec); |
+ if( !bAffinityDone ) sqlite3TableAffinity(v, pTab, 0); |
+ sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol); |
+ if( pParse->nested ){ |
+ pik_flags = 0; |
+ }else{ |
+ pik_flags = OPFLAG_NCHANGE; |
+ pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID); |
+ } |
+ if( appendBias ){ |
+ pik_flags |= OPFLAG_APPEND; |
+ } |
+ if( useSeekResult ){ |
+ pik_flags |= OPFLAG_USESEEKRESULT; |
+ } |
+ sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, regRec, regNewData); |
+ if( !pParse->nested ){ |
+ sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_TRANSIENT); |
+ } |
+ sqlite3VdbeChangeP5(v, pik_flags); |
+} |
+ |
+/* |
+** Allocate cursors for the pTab table and all its indices and generate |
+** code to open and initialized those cursors. |
+** |
+** The cursor for the object that contains the complete data (normally |
+** the table itself, but the PRIMARY KEY index in the case of a WITHOUT |
+** ROWID table) is returned in *piDataCur. The first index cursor is |
+** returned in *piIdxCur. The number of indices is returned. |
+** |
+** Use iBase as the first cursor (either the *piDataCur for rowid tables |
+** or the first index for WITHOUT ROWID tables) if it is non-negative. |
+** If iBase is negative, then allocate the next available cursor. |
+** |
+** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. |
+** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range |
+** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the |
+** pTab->pIndex list. |
+** |
+** If pTab is a virtual table, then this routine is a no-op and the |
+** *piDataCur and *piIdxCur values are left uninitialized. |
+*/ |
+int sqlite3OpenTableAndIndices( |
+ Parse *pParse, /* Parsing context */ |
+ Table *pTab, /* Table to be opened */ |
+ int op, /* OP_OpenRead or OP_OpenWrite */ |
+ int iBase, /* Use this for the table cursor, if there is one */ |
+ u8 *aToOpen, /* If not NULL: boolean for each table and index */ |
+ int *piDataCur, /* Write the database source cursor number here */ |
+ int *piIdxCur /* Write the first index cursor number here */ |
+){ |
+ int i; |
+ int iDb; |
+ int iDataCur; |
+ Index *pIdx; |
+ Vdbe *v; |
+ |
+ assert( op==OP_OpenRead || op==OP_OpenWrite ); |
+ if( IsVirtual(pTab) ){ |
+ /* This routine is a no-op for virtual tables. Leave the output |
+ ** variables *piDataCur and *piIdxCur uninitialized so that valgrind |
+ ** can detect if they are used by mistake in the caller. */ |
+ return 0; |
+ } |
+ iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
+ v = sqlite3GetVdbe(pParse); |
+ assert( v!=0 ); |
+ if( iBase<0 ) iBase = pParse->nTab; |
+ iDataCur = iBase++; |
+ if( piDataCur ) *piDataCur = iDataCur; |
+ if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ |
+ sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); |
+ }else{ |
+ sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); |
+ } |
+ if( piIdxCur ) *piIdxCur = iBase; |
+ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ |
+ int iIdxCur = iBase++; |
+ assert( pIdx->pSchema==pTab->pSchema ); |
+ if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) && piDataCur ){ |
+ *piDataCur = iIdxCur; |
+ } |
+ if( aToOpen==0 || aToOpen[i+1] ){ |
+ sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); |
+ sqlite3VdbeSetP4KeyInfo(pParse, pIdx); |
+ VdbeComment((v, "%s", pIdx->zName)); |
+ } |
+ } |
+ if( iBase>pParse->nTab ) pParse->nTab = iBase; |
+ return i; |
+} |
+ |
+ |
+#ifdef SQLITE_TEST |
+/* |
+** The following global variable is incremented whenever the |
+** transfer optimization is used. This is used for testing |
+** purposes only - to make sure the transfer optimization really |
+** is happening when it is supposed to. |
+*/ |
+int sqlite3_xferopt_count; |
+#endif /* SQLITE_TEST */ |
+ |
+ |
+#ifndef SQLITE_OMIT_XFER_OPT |
+/* |
+** Check to collation names to see if they are compatible. |
+*/ |
+static int xferCompatibleCollation(const char *z1, const char *z2){ |
+ if( z1==0 ){ |
+ return z2==0; |
+ } |
+ if( z2==0 ){ |
+ return 0; |
+ } |
+ return sqlite3StrICmp(z1, z2)==0; |
+} |
+ |
+ |
+/* |
+** Check to see if index pSrc is compatible as a source of data |
+** for index pDest in an insert transfer optimization. The rules |
+** for a compatible index: |
+** |
+** * The index is over the same set of columns |
+** * The same DESC and ASC markings occurs on all columns |
+** * The same onError processing (OE_Abort, OE_Ignore, etc) |
+** * The same collating sequence on each column |
+** * The index has the exact same WHERE clause |
+*/ |
+static int xferCompatibleIndex(Index *pDest, Index *pSrc){ |
+ int i; |
+ assert( pDest && pSrc ); |
+ assert( pDest->pTable!=pSrc->pTable ); |
+ if( pDest->nKeyCol!=pSrc->nKeyCol ){ |
+ return 0; /* Different number of columns */ |
+ } |
+ if( pDest->onError!=pSrc->onError ){ |
+ return 0; /* Different conflict resolution strategies */ |
+ } |
+ for(i=0; i<pSrc->nKeyCol; i++){ |
+ if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ |
+ return 0; /* Different columns indexed */ |
+ } |
+ if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ |
+ return 0; /* Different sort orders */ |
+ } |
+ if( !xferCompatibleCollation(pSrc->azColl[i],pDest->azColl[i]) ){ |
+ return 0; /* Different collating sequences */ |
+ } |
+ } |
+ if( sqlite3ExprCompare(pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ |
+ return 0; /* Different WHERE clauses */ |
+ } |
+ |
+ /* If no test above fails then the indices must be compatible */ |
+ return 1; |
+} |
+ |
+/* |
+** Attempt the transfer optimization on INSERTs of the form |
+** |
+** INSERT INTO tab1 SELECT * FROM tab2; |
+** |
+** The xfer optimization transfers raw records from tab2 over to tab1. |
+** Columns are not decoded and reassembled, which greatly improves |
+** performance. Raw index records are transferred in the same way. |
+** |
+** The xfer optimization is only attempted if tab1 and tab2 are compatible. |
+** There are lots of rules for determining compatibility - see comments |
+** embedded in the code for details. |
+** |
+** This routine returns TRUE if the optimization is guaranteed to be used. |
+** Sometimes the xfer optimization will only work if the destination table |
+** is empty - a factor that can only be determined at run-time. In that |
+** case, this routine generates code for the xfer optimization but also |
+** does a test to see if the destination table is empty and jumps over the |
+** xfer optimization code if the test fails. In that case, this routine |
+** returns FALSE so that the caller will know to go ahead and generate |
+** an unoptimized transfer. This routine also returns FALSE if there |
+** is no chance that the xfer optimization can be applied. |
+** |
+** This optimization is particularly useful at making VACUUM run faster. |
+*/ |
+static int xferOptimization( |
+ Parse *pParse, /* Parser context */ |
+ Table *pDest, /* The table we are inserting into */ |
+ Select *pSelect, /* A SELECT statement to use as the data source */ |
+ int onError, /* How to handle constraint errors */ |
+ int iDbDest /* The database of pDest */ |
+){ |
+ ExprList *pEList; /* The result set of the SELECT */ |
+ Table *pSrc; /* The table in the FROM clause of SELECT */ |
+ Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ |
+ struct SrcList_item *pItem; /* An element of pSelect->pSrc */ |
+ int i; /* Loop counter */ |
+ int iDbSrc; /* The database of pSrc */ |
+ int iSrc, iDest; /* Cursors from source and destination */ |
+ int addr1, addr2; /* Loop addresses */ |
+ int emptyDestTest = 0; /* Address of test for empty pDest */ |
+ int emptySrcTest = 0; /* Address of test for empty pSrc */ |
+ Vdbe *v; /* The VDBE we are building */ |
+ int regAutoinc; /* Memory register used by AUTOINC */ |
+ int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ |
+ int regData, regRowid; /* Registers holding data and rowid */ |
+ |
+ if( pSelect==0 ){ |
+ return 0; /* Must be of the form INSERT INTO ... SELECT ... */ |
+ } |
+ if( pParse->pWith || pSelect->pWith ){ |
+ /* Do not attempt to process this query if there are an WITH clauses |
+ ** attached to it. Proceeding may generate a false "no such table: xxx" |
+ ** error if pSelect reads from a CTE named "xxx". */ |
+ return 0; |
+ } |
+ if( sqlite3TriggerList(pParse, pDest) ){ |
+ return 0; /* tab1 must not have triggers */ |
+ } |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ if( pDest->tabFlags & TF_Virtual ){ |
+ return 0; /* tab1 must not be a virtual table */ |
+ } |
+#endif |
+ if( onError==OE_Default ){ |
+ if( pDest->iPKey>=0 ) onError = pDest->keyConf; |
+ if( onError==OE_Default ) onError = OE_Abort; |
+ } |
+ assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ |
+ if( pSelect->pSrc->nSrc!=1 ){ |
+ return 0; /* FROM clause must have exactly one term */ |
+ } |
+ if( pSelect->pSrc->a[0].pSelect ){ |
+ return 0; /* FROM clause cannot contain a subquery */ |
+ } |
+ if( pSelect->pWhere ){ |
+ return 0; /* SELECT may not have a WHERE clause */ |
+ } |
+ if( pSelect->pOrderBy ){ |
+ return 0; /* SELECT may not have an ORDER BY clause */ |
+ } |
+ /* Do not need to test for a HAVING clause. If HAVING is present but |
+ ** there is no ORDER BY, we will get an error. */ |
+ if( pSelect->pGroupBy ){ |
+ return 0; /* SELECT may not have a GROUP BY clause */ |
+ } |
+ if( pSelect->pLimit ){ |
+ return 0; /* SELECT may not have a LIMIT clause */ |
+ } |
+ assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */ |
+ if( pSelect->pPrior ){ |
+ return 0; /* SELECT may not be a compound query */ |
+ } |
+ if( pSelect->selFlags & SF_Distinct ){ |
+ return 0; /* SELECT may not be DISTINCT */ |
+ } |
+ pEList = pSelect->pEList; |
+ assert( pEList!=0 ); |
+ if( pEList->nExpr!=1 ){ |
+ return 0; /* The result set must have exactly one column */ |
+ } |
+ assert( pEList->a[0].pExpr ); |
+ if( pEList->a[0].pExpr->op!=TK_ALL ){ |
+ return 0; /* The result set must be the special operator "*" */ |
+ } |
+ |
+ /* At this point we have established that the statement is of the |
+ ** correct syntactic form to participate in this optimization. Now |
+ ** we have to check the semantics. |
+ */ |
+ pItem = pSelect->pSrc->a; |
+ pSrc = sqlite3LocateTableItem(pParse, 0, pItem); |
+ if( pSrc==0 ){ |
+ return 0; /* FROM clause does not contain a real table */ |
+ } |
+ if( pSrc==pDest ){ |
+ return 0; /* tab1 and tab2 may not be the same table */ |
+ } |
+ if( HasRowid(pDest)!=HasRowid(pSrc) ){ |
+ return 0; /* source and destination must both be WITHOUT ROWID or not */ |
+ } |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ if( pSrc->tabFlags & TF_Virtual ){ |
+ return 0; /* tab2 must not be a virtual table */ |
+ } |
+#endif |
+ if( pSrc->pSelect ){ |
+ return 0; /* tab2 may not be a view */ |
+ } |
+ if( pDest->nCol!=pSrc->nCol ){ |
+ return 0; /* Number of columns must be the same in tab1 and tab2 */ |
+ } |
+ if( pDest->iPKey!=pSrc->iPKey ){ |
+ return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ |
+ } |
+ for(i=0; i<pDest->nCol; i++){ |
+ Column *pDestCol = &pDest->aCol[i]; |
+ Column *pSrcCol = &pSrc->aCol[i]; |
+ if( pDestCol->affinity!=pSrcCol->affinity ){ |
+ return 0; /* Affinity must be the same on all columns */ |
+ } |
+ if( !xferCompatibleCollation(pDestCol->zColl, pSrcCol->zColl) ){ |
+ return 0; /* Collating sequence must be the same on all columns */ |
+ } |
+ if( pDestCol->notNull && !pSrcCol->notNull ){ |
+ return 0; /* tab2 must be NOT NULL if tab1 is */ |
+ } |
+ /* Default values for second and subsequent columns need to match. */ |
+ if( i>0 |
+ && ((pDestCol->zDflt==0)!=(pSrcCol->zDflt==0) |
+ || (pDestCol->zDflt && strcmp(pDestCol->zDflt, pSrcCol->zDflt)!=0)) |
+ ){ |
+ return 0; /* Default values must be the same for all columns */ |
+ } |
+ } |
+ for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ |
+ if( IsUniqueIndex(pDestIdx) ){ |
+ destHasUniqueIdx = 1; |
+ } |
+ for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ |
+ if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; |
+ } |
+ if( pSrcIdx==0 ){ |
+ return 0; /* pDestIdx has no corresponding index in pSrc */ |
+ } |
+ } |
+#ifndef SQLITE_OMIT_CHECK |
+ if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ |
+ return 0; /* Tables have different CHECK constraints. Ticket #2252 */ |
+ } |
+#endif |
+#ifndef SQLITE_OMIT_FOREIGN_KEY |
+ /* Disallow the transfer optimization if the destination table constains |
+ ** any foreign key constraints. This is more restrictive than necessary. |
+ ** But the main beneficiary of the transfer optimization is the VACUUM |
+ ** command, and the VACUUM command disables foreign key constraints. So |
+ ** the extra complication to make this rule less restrictive is probably |
+ ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] |
+ */ |
+ if( (pParse->db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){ |
+ return 0; |
+ } |
+#endif |
+ if( (pParse->db->flags & SQLITE_CountRows)!=0 ){ |
+ return 0; /* xfer opt does not play well with PRAGMA count_changes */ |
+ } |
+ |
+ /* If we get this far, it means that the xfer optimization is at |
+ ** least a possibility, though it might only work if the destination |
+ ** table (tab1) is initially empty. |
+ */ |
+#ifdef SQLITE_TEST |
+ sqlite3_xferopt_count++; |
+#endif |
+ iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema); |
+ v = sqlite3GetVdbe(pParse); |
+ sqlite3CodeVerifySchema(pParse, iDbSrc); |
+ iSrc = pParse->nTab++; |
+ iDest = pParse->nTab++; |
+ regAutoinc = autoIncBegin(pParse, iDbDest, pDest); |
+ regData = sqlite3GetTempReg(pParse); |
+ regRowid = sqlite3GetTempReg(pParse); |
+ sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); |
+ assert( HasRowid(pDest) || destHasUniqueIdx ); |
+ if( (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ |
+ || destHasUniqueIdx /* (2) */ |
+ || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ |
+ ){ |
+ /* In some circumstances, we are able to run the xfer optimization |
+ ** only if the destination table is initially empty. This code makes |
+ ** that determination. Conditions under which the destination must |
+ ** be empty: |
+ ** |
+ ** (1) There is no INTEGER PRIMARY KEY but there are indices. |
+ ** (If the destination is not initially empty, the rowid fields |
+ ** of index entries might need to change.) |
+ ** |
+ ** (2) The destination has a unique index. (The xfer optimization |
+ ** is unable to test uniqueness.) |
+ ** |
+ ** (3) onError is something other than OE_Abort and OE_Rollback. |
+ */ |
+ addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); |
+ emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); |
+ sqlite3VdbeJumpHere(v, addr1); |
+ } |
+ if( HasRowid(pSrc) ){ |
+ sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); |
+ emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); |
+ if( pDest->iPKey>=0 ){ |
+ addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); |
+ addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); |
+ VdbeCoverage(v); |
+ sqlite3RowidConstraint(pParse, onError, pDest); |
+ sqlite3VdbeJumpHere(v, addr2); |
+ autoIncStep(pParse, regAutoinc, regRowid); |
+ }else if( pDest->pIndex==0 ){ |
+ addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); |
+ }else{ |
+ addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); |
+ assert( (pDest->tabFlags & TF_Autoincrement)==0 ); |
+ } |
+ sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData); |
+ sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); |
+ sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND); |
+ sqlite3VdbeChangeP4(v, -1, pDest->zName, 0); |
+ sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); |
+ sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); |
+ sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); |
+ }else{ |
+ sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); |
+ sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); |
+ } |
+ for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ |
+ for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ |
+ if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; |
+ } |
+ assert( pSrcIdx ); |
+ sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); |
+ sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); |
+ VdbeComment((v, "%s", pSrcIdx->zName)); |
+ sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); |
+ sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); |
+ sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); |
+ VdbeComment((v, "%s", pDestIdx->zName)); |
+ addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); |
+ sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData); |
+ sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1); |
+ sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); |
+ sqlite3VdbeJumpHere(v, addr1); |
+ sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); |
+ sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); |
+ } |
+ if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); |
+ sqlite3ReleaseTempReg(pParse, regRowid); |
+ sqlite3ReleaseTempReg(pParse, regData); |
+ if( emptyDestTest ){ |
+ sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); |
+ sqlite3VdbeJumpHere(v, emptyDestTest); |
+ sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); |
+ return 0; |
+ }else{ |
+ return 1; |
+ } |
+} |
+#endif /* SQLITE_OMIT_XFER_OPT */ |