Index: third_party/sqlite/src/src/vdbemem.c |
diff --git a/third_party/sqlite/src/src/vdbemem.c b/third_party/sqlite/src/src/vdbemem.c |
index 882c686334a1b17fc02988765a3d83018b2dd919..870fb5bd891c2c83ae8c8683afa5ceca93b99649 100644 |
--- a/third_party/sqlite/src/src/vdbemem.c |
+++ b/third_party/sqlite/src/src/vdbemem.c |
@@ -18,11 +18,52 @@ |
#include "sqliteInt.h" |
#include "vdbeInt.h" |
+#ifdef SQLITE_DEBUG |
/* |
-** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*) |
-** P if required. |
+** Check invariants on a Mem object. |
+** |
+** This routine is intended for use inside of assert() statements, like |
+** this: assert( sqlite3VdbeCheckMemInvariants(pMem) ); |
*/ |
-#define expandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0) |
+int sqlite3VdbeCheckMemInvariants(Mem *p){ |
+ /* If MEM_Dyn is set then Mem.xDel!=0. |
+ ** Mem.xDel is might not be initialized if MEM_Dyn is clear. |
+ */ |
+ assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 ); |
+ |
+ /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we |
+ ** ensure that if Mem.szMalloc>0 then it is safe to do |
+ ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn. |
+ ** That saves a few cycles in inner loops. */ |
+ assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 ); |
+ |
+ /* Cannot be both MEM_Int and MEM_Real at the same time */ |
+ assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) ); |
+ |
+ /* The szMalloc field holds the correct memory allocation size */ |
+ assert( p->szMalloc==0 |
+ || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) ); |
+ |
+ /* If p holds a string or blob, the Mem.z must point to exactly |
+ ** one of the following: |
+ ** |
+ ** (1) Memory in Mem.zMalloc and managed by the Mem object |
+ ** (2) Memory to be freed using Mem.xDel |
+ ** (3) An ephemeral string or blob |
+ ** (4) A static string or blob |
+ */ |
+ if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){ |
+ assert( |
+ ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) + |
+ ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + |
+ ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + |
+ ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1 |
+ ); |
+ } |
+ return 1; |
+} |
+#endif |
+ |
/* |
** If pMem is an object with a valid string representation, this routine |
@@ -38,7 +79,9 @@ |
** between formats. |
*/ |
int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ |
+#ifndef SQLITE_OMIT_UTF16 |
int rc; |
+#endif |
assert( (pMem->flags&MEM_RowSet)==0 ); |
assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE |
|| desiredEnc==SQLITE_UTF16BE ); |
@@ -63,59 +106,84 @@ int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ |
/* |
** Make sure pMem->z points to a writable allocation of at least |
-** n bytes. |
-** |
-** If the memory cell currently contains string or blob data |
-** and the third argument passed to this function is true, the |
-** current content of the cell is preserved. Otherwise, it may |
-** be discarded. |
+** min(n,32) bytes. |
** |
-** This function sets the MEM_Dyn flag and clears any xDel callback. |
-** It also clears MEM_Ephem and MEM_Static. If the preserve flag is |
-** not set, Mem.n is zeroed. |
+** If the bPreserve argument is true, then copy of the content of |
+** pMem->z into the new allocation. pMem must be either a string or |
+** blob if bPreserve is true. If bPreserve is false, any prior content |
+** in pMem->z is discarded. |
*/ |
-int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve){ |
- assert( 1 >= |
- ((pMem->zMalloc && pMem->zMalloc==pMem->z) ? 1 : 0) + |
- (((pMem->flags&MEM_Dyn)&&pMem->xDel) ? 1 : 0) + |
- ((pMem->flags&MEM_Ephem) ? 1 : 0) + |
- ((pMem->flags&MEM_Static) ? 1 : 0) |
- ); |
+SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){ |
+ assert( sqlite3VdbeCheckMemInvariants(pMem) ); |
assert( (pMem->flags&MEM_RowSet)==0 ); |
- if( n<32 ) n = 32; |
- if( sqlite3DbMallocSize(pMem->db, pMem->zMalloc)<n ){ |
- if( preserve && pMem->z==pMem->zMalloc ){ |
+ /* If the bPreserve flag is set to true, then the memory cell must already |
+ ** contain a valid string or blob value. */ |
+ assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) ); |
+ testcase( bPreserve && pMem->z==0 ); |
+ |
+ assert( pMem->szMalloc==0 |
+ || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) ); |
+ if( pMem->szMalloc<n ){ |
+ if( n<32 ) n = 32; |
+ if( bPreserve && pMem->szMalloc>0 && pMem->z==pMem->zMalloc ){ |
pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); |
- preserve = 0; |
+ bPreserve = 0; |
}else{ |
- sqlite3DbFree(pMem->db, pMem->zMalloc); |
+ if( pMem->szMalloc>0 ) sqlite3DbFree(pMem->db, pMem->zMalloc); |
pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); |
} |
+ if( pMem->zMalloc==0 ){ |
+ sqlite3VdbeMemSetNull(pMem); |
+ pMem->z = 0; |
+ pMem->szMalloc = 0; |
+ return SQLITE_NOMEM; |
+ }else{ |
+ pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); |
+ } |
} |
- if( pMem->z && preserve && pMem->zMalloc && pMem->z!=pMem->zMalloc ){ |
+ if( bPreserve && pMem->z && pMem->z!=pMem->zMalloc ){ |
memcpy(pMem->zMalloc, pMem->z, pMem->n); |
} |
- if( pMem->flags&MEM_Dyn && pMem->xDel ){ |
+ if( (pMem->flags&MEM_Dyn)!=0 ){ |
+ assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC ); |
pMem->xDel((void *)(pMem->z)); |
} |
pMem->z = pMem->zMalloc; |
- if( pMem->z==0 ){ |
- pMem->flags = MEM_Null; |
- }else{ |
- pMem->flags &= ~(MEM_Ephem|MEM_Static); |
+ pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Change the pMem->zMalloc allocation to be at least szNew bytes. |
+** If pMem->zMalloc already meets or exceeds the requested size, this |
+** routine is a no-op. |
+** |
+** Any prior string or blob content in the pMem object may be discarded. |
+** The pMem->xDel destructor is called, if it exists. Though MEM_Str |
+** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, and MEM_Null |
+** values are preserved. |
+** |
+** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM) |
+** if unable to complete the resizing. |
+*/ |
+int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){ |
+ assert( szNew>0 ); |
+ assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 ); |
+ if( pMem->szMalloc<szNew ){ |
+ return sqlite3VdbeMemGrow(pMem, szNew, 0); |
} |
- pMem->xDel = 0; |
- return (pMem->z ? SQLITE_OK : SQLITE_NOMEM); |
+ assert( (pMem->flags & MEM_Dyn)==0 ); |
+ pMem->z = pMem->zMalloc; |
+ pMem->flags &= (MEM_Null|MEM_Int|MEM_Real); |
+ return SQLITE_OK; |
} |
/* |
-** Make the given Mem object MEM_Dyn. In other words, make it so |
-** that any TEXT or BLOB content is stored in memory obtained from |
-** malloc(). In this way, we know that the memory is safe to be |
-** overwritten or altered. |
+** Change pMem so that its MEM_Str or MEM_Blob value is stored in |
+** MEM.zMalloc, where it can be safely written. |
** |
** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. |
*/ |
@@ -123,9 +191,9 @@ int sqlite3VdbeMemMakeWriteable(Mem *pMem){ |
int f; |
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
assert( (pMem->flags&MEM_RowSet)==0 ); |
- expandBlob(pMem); |
+ ExpandBlob(pMem); |
f = pMem->flags; |
- if( (f&(MEM_Str|MEM_Blob)) && pMem->z!=pMem->zMalloc ){ |
+ if( (f&(MEM_Str|MEM_Blob)) && (pMem->szMalloc==0 || pMem->z!=pMem->zMalloc) ){ |
if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){ |
return SQLITE_NOMEM; |
} |
@@ -169,15 +237,11 @@ int sqlite3VdbeMemExpandBlob(Mem *pMem){ |
} |
#endif |
- |
/* |
-** Make sure the given Mem is \u0000 terminated. |
+** It is already known that pMem contains an unterminated string. |
+** Add the zero terminator. |
*/ |
-int sqlite3VdbeMemNulTerminate(Mem *pMem){ |
- assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
- if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){ |
- return SQLITE_OK; /* Nothing to do */ |
- } |
+static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){ |
if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){ |
return SQLITE_NOMEM; |
} |
@@ -188,20 +252,34 @@ int sqlite3VdbeMemNulTerminate(Mem *pMem){ |
} |
/* |
+** Make sure the given Mem is \u0000 terminated. |
+*/ |
+int sqlite3VdbeMemNulTerminate(Mem *pMem){ |
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
+ testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) ); |
+ testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 ); |
+ if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){ |
+ return SQLITE_OK; /* Nothing to do */ |
+ }else{ |
+ return vdbeMemAddTerminator(pMem); |
+ } |
+} |
+ |
+/* |
** Add MEM_Str to the set of representations for the given Mem. Numbers |
** are converted using sqlite3_snprintf(). Converting a BLOB to a string |
** is a no-op. |
** |
-** Existing representations MEM_Int and MEM_Real are *not* invalidated. |
+** Existing representations MEM_Int and MEM_Real are invalidated if |
+** bForce is true but are retained if bForce is false. |
** |
** A MEM_Null value will never be passed to this function. This function is |
** used for converting values to text for returning to the user (i.e. via |
** sqlite3_value_text()), or for ensuring that values to be used as btree |
** keys are strings. In the former case a NULL pointer is returned the |
-** user and the later is an internal programming error. |
+** user and the latter is an internal programming error. |
*/ |
-int sqlite3VdbeMemStringify(Mem *pMem, int enc){ |
- int rc = SQLITE_OK; |
+int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){ |
int fg = pMem->flags; |
const int nByte = 32; |
@@ -213,11 +291,11 @@ int sqlite3VdbeMemStringify(Mem *pMem, int enc){ |
assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
- if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){ |
+ if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){ |
return SQLITE_NOMEM; |
} |
- /* For a Real or Integer, use sqlite3_mprintf() to produce the UTF-8 |
+ /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8 |
** string representation of the value. Then, if the required encoding |
** is UTF-16le or UTF-16be do a translation. |
** |
@@ -227,13 +305,14 @@ int sqlite3VdbeMemStringify(Mem *pMem, int enc){ |
sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i); |
}else{ |
assert( fg & MEM_Real ); |
- sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->r); |
+ sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->u.r); |
} |
pMem->n = sqlite3Strlen30(pMem->z); |
pMem->enc = SQLITE_UTF8; |
pMem->flags |= MEM_Str|MEM_Term; |
+ if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real); |
sqlite3VdbeChangeEncoding(pMem, enc); |
- return rc; |
+ return SQLITE_OK; |
} |
/* |
@@ -248,74 +327,96 @@ int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ |
int rc = SQLITE_OK; |
if( ALWAYS(pFunc && pFunc->xFinalize) ){ |
sqlite3_context ctx; |
+ Mem t; |
assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); |
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
memset(&ctx, 0, sizeof(ctx)); |
- ctx.s.flags = MEM_Null; |
- ctx.s.db = pMem->db; |
+ memset(&t, 0, sizeof(t)); |
+ t.flags = MEM_Null; |
+ t.db = pMem->db; |
+ ctx.pOut = &t; |
ctx.pMem = pMem; |
ctx.pFunc = pFunc; |
pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */ |
- assert( 0==(pMem->flags&MEM_Dyn) && !pMem->xDel ); |
- sqlite3DbFree(pMem->db, pMem->zMalloc); |
- memcpy(pMem, &ctx.s, sizeof(ctx.s)); |
+ assert( (pMem->flags & MEM_Dyn)==0 ); |
+ if( pMem->szMalloc>0 ) sqlite3DbFree(pMem->db, pMem->zMalloc); |
+ memcpy(pMem, &t, sizeof(t)); |
rc = ctx.isError; |
} |
return rc; |
} |
/* |
-** If the memory cell contains a string value that must be freed by |
-** invoking an external callback, free it now. Calling this function |
-** does not free any Mem.zMalloc buffer. |
+** If the memory cell contains a value that must be freed by |
+** invoking the external callback in Mem.xDel, then this routine |
+** will free that value. It also sets Mem.flags to MEM_Null. |
+** |
+** This is a helper routine for sqlite3VdbeMemSetNull() and |
+** for sqlite3VdbeMemRelease(). Use those other routines as the |
+** entry point for releasing Mem resources. |
*/ |
-void sqlite3VdbeMemReleaseExternal(Mem *p){ |
+static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){ |
assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); |
- testcase( p->flags & MEM_Agg ); |
- testcase( p->flags & MEM_Dyn ); |
- testcase( p->flags & MEM_RowSet ); |
- testcase( p->flags & MEM_Frame ); |
- if( p->flags&(MEM_Agg|MEM_Dyn|MEM_RowSet|MEM_Frame) ){ |
- if( p->flags&MEM_Agg ){ |
- sqlite3VdbeMemFinalize(p, p->u.pDef); |
- assert( (p->flags & MEM_Agg)==0 ); |
- sqlite3VdbeMemRelease(p); |
- }else if( p->flags&MEM_Dyn && p->xDel ){ |
- assert( (p->flags&MEM_RowSet)==0 ); |
- p->xDel((void *)p->z); |
- p->xDel = 0; |
- }else if( p->flags&MEM_RowSet ){ |
- sqlite3RowSetClear(p->u.pRowSet); |
- }else if( p->flags&MEM_Frame ){ |
- sqlite3VdbeMemSetNull(p); |
- } |
+ assert( VdbeMemDynamic(p) ); |
+ if( p->flags&MEM_Agg ){ |
+ sqlite3VdbeMemFinalize(p, p->u.pDef); |
+ assert( (p->flags & MEM_Agg)==0 ); |
+ testcase( p->flags & MEM_Dyn ); |
} |
+ if( p->flags&MEM_Dyn ){ |
+ assert( (p->flags&MEM_RowSet)==0 ); |
+ assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 ); |
+ p->xDel((void *)p->z); |
+ }else if( p->flags&MEM_RowSet ){ |
+ sqlite3RowSetClear(p->u.pRowSet); |
+ }else if( p->flags&MEM_Frame ){ |
+ VdbeFrame *pFrame = p->u.pFrame; |
+ pFrame->pParent = pFrame->v->pDelFrame; |
+ pFrame->v->pDelFrame = pFrame; |
+ } |
+ p->flags = MEM_Null; |
} |
/* |
-** Release any memory held by the Mem. This may leave the Mem in an |
-** inconsistent state, for example with (Mem.z==0) and |
-** (Mem.type==SQLITE_TEXT). |
+** Release memory held by the Mem p, both external memory cleared |
+** by p->xDel and memory in p->zMalloc. |
+** |
+** This is a helper routine invoked by sqlite3VdbeMemRelease() in |
+** the unusual case where there really is memory in p that needs |
+** to be freed. |
*/ |
-void sqlite3VdbeMemRelease(Mem *p){ |
- sqlite3VdbeMemReleaseExternal(p); |
- sqlite3DbFree(p->db, p->zMalloc); |
+static SQLITE_NOINLINE void vdbeMemClear(Mem *p){ |
+ if( VdbeMemDynamic(p) ){ |
+ vdbeMemClearExternAndSetNull(p); |
+ } |
+ if( p->szMalloc ){ |
+ sqlite3DbFree(p->db, p->zMalloc); |
+ p->szMalloc = 0; |
+ } |
p->z = 0; |
- p->zMalloc = 0; |
- p->xDel = 0; |
} |
/* |
-** Convert a 64-bit IEEE double into a 64-bit signed integer. |
-** If the double is too large, return 0x8000000000000000. |
+** Release any memory resources held by the Mem. Both the memory that is |
+** free by Mem.xDel and the Mem.zMalloc allocation are freed. |
** |
-** Most systems appear to do this simply by assigning |
-** variables and without the extra range tests. But |
-** there are reports that windows throws an expection |
-** if the floating point value is out of range. (See ticket #2880.) |
-** Because we do not completely understand the problem, we will |
-** take the conservative approach and always do range tests |
-** before attempting the conversion. |
+** Use this routine prior to clean up prior to abandoning a Mem, or to |
+** reset a Mem back to its minimum memory utilization. |
+** |
+** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space |
+** prior to inserting new content into the Mem. |
+*/ |
+void sqlite3VdbeMemRelease(Mem *p){ |
+ assert( sqlite3VdbeCheckMemInvariants(p) ); |
+ if( VdbeMemDynamic(p) || p->szMalloc ){ |
+ vdbeMemClear(p); |
+ } |
+} |
+ |
+/* |
+** Convert a 64-bit IEEE double into a 64-bit signed integer. |
+** If the double is out of range of a 64-bit signed integer then |
+** return the closest available 64-bit signed integer. |
*/ |
static i64 doubleToInt64(double r){ |
#ifdef SQLITE_OMIT_FLOATING_POINT |
@@ -332,14 +433,10 @@ static i64 doubleToInt64(double r){ |
static const i64 maxInt = LARGEST_INT64; |
static const i64 minInt = SMALLEST_INT64; |
- if( r<(double)minInt ){ |
- return minInt; |
- }else if( r>(double)maxInt ){ |
- /* minInt is correct here - not maxInt. It turns out that assigning |
- ** a very large positive number to an integer results in a very large |
- ** negative integer. This makes no sense, but it is what x86 hardware |
- ** does so for compatibility we will do the same in software. */ |
+ if( r<=(double)minInt ){ |
return minInt; |
+ }else if( r>=(double)maxInt ){ |
+ return maxInt; |
}else{ |
return (i64)r; |
} |
@@ -352,7 +449,7 @@ static i64 doubleToInt64(double r){ |
** If pMem is an integer, then the value is exact. If pMem is |
** a floating-point then the value returned is the integer part. |
** If pMem is a string or blob, then we make an attempt to convert |
-** it into a integer and return that. If pMem represents an |
+** it into an integer and return that. If pMem represents an |
** an SQL-NULL value, return 0. |
** |
** If pMem represents a string value, its encoding might be changed. |
@@ -365,11 +462,10 @@ i64 sqlite3VdbeIntValue(Mem *pMem){ |
if( flags & MEM_Int ){ |
return pMem->u.i; |
}else if( flags & MEM_Real ){ |
- return doubleToInt64(pMem->r); |
+ return doubleToInt64(pMem->u.r); |
}else if( flags & (MEM_Str|MEM_Blob) ){ |
i64 value = 0; |
assert( pMem->z || pMem->n==0 ); |
- testcase( pMem->z==0 ); |
sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc); |
return value; |
}else{ |
@@ -387,7 +483,7 @@ double sqlite3VdbeRealValue(Mem *pMem){ |
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
if( pMem->flags & MEM_Real ){ |
- return pMem->r; |
+ return pMem->u.r; |
}else if( pMem->flags & MEM_Int ){ |
return (double)pMem->u.i; |
}else if( pMem->flags & (MEM_Str|MEM_Blob) ){ |
@@ -406,12 +502,13 @@ double sqlite3VdbeRealValue(Mem *pMem){ |
** MEM_Int if we can. |
*/ |
void sqlite3VdbeIntegerAffinity(Mem *pMem){ |
+ i64 ix; |
assert( pMem->flags & MEM_Real ); |
assert( (pMem->flags & MEM_RowSet)==0 ); |
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
- pMem->u.i = doubleToInt64(pMem->r); |
+ ix = doubleToInt64(pMem->u.r); |
/* Only mark the value as an integer if |
** |
@@ -421,13 +518,11 @@ void sqlite3VdbeIntegerAffinity(Mem *pMem){ |
** |
** The second and third terms in the following conditional enforces |
** the second condition under the assumption that addition overflow causes |
- ** values to wrap around. On x86 hardware, the third term is always |
- ** true and could be omitted. But we leave it in because other |
- ** architectures might behave differently. |
+ ** values to wrap around. |
*/ |
- if( pMem->r==(double)pMem->u.i && pMem->u.i>SMALLEST_INT64 |
- && ALWAYS(pMem->u.i<LARGEST_INT64) ){ |
- pMem->flags |= MEM_Int; |
+ if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){ |
+ pMem->u.i = ix; |
+ MemSetTypeFlag(pMem, MEM_Int); |
} |
} |
@@ -452,7 +547,7 @@ int sqlite3VdbeMemRealify(Mem *pMem){ |
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
- pMem->r = sqlite3VdbeRealValue(pMem); |
+ pMem->u.r = sqlite3VdbeRealValue(pMem); |
MemSetTypeFlag(pMem, MEM_Real); |
return SQLITE_OK; |
} |
@@ -472,7 +567,7 @@ int sqlite3VdbeMemNumerify(Mem *pMem){ |
if( 0==sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc) ){ |
MemSetTypeFlag(pMem, MEM_Int); |
}else{ |
- pMem->r = sqlite3VdbeRealValue(pMem); |
+ pMem->u.r = sqlite3VdbeRealValue(pMem); |
MemSetTypeFlag(pMem, MEM_Real); |
sqlite3VdbeIntegerAffinity(pMem); |
} |
@@ -483,19 +578,83 @@ int sqlite3VdbeMemNumerify(Mem *pMem){ |
} |
/* |
+** Cast the datatype of the value in pMem according to the affinity |
+** "aff". Casting is different from applying affinity in that a cast |
+** is forced. In other words, the value is converted into the desired |
+** affinity even if that results in loss of data. This routine is |
+** used (for example) to implement the SQL "cast()" operator. |
+*/ |
+void sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){ |
+ if( pMem->flags & MEM_Null ) return; |
+ switch( aff ){ |
+ case SQLITE_AFF_NONE: { /* Really a cast to BLOB */ |
+ if( (pMem->flags & MEM_Blob)==0 ){ |
+ sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); |
+ assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); |
+ MemSetTypeFlag(pMem, MEM_Blob); |
+ }else{ |
+ pMem->flags &= ~(MEM_TypeMask&~MEM_Blob); |
+ } |
+ break; |
+ } |
+ case SQLITE_AFF_NUMERIC: { |
+ sqlite3VdbeMemNumerify(pMem); |
+ break; |
+ } |
+ case SQLITE_AFF_INTEGER: { |
+ sqlite3VdbeMemIntegerify(pMem); |
+ break; |
+ } |
+ case SQLITE_AFF_REAL: { |
+ sqlite3VdbeMemRealify(pMem); |
+ break; |
+ } |
+ default: { |
+ assert( aff==SQLITE_AFF_TEXT ); |
+ assert( MEM_Str==(MEM_Blob>>3) ); |
+ pMem->flags |= (pMem->flags&MEM_Blob)>>3; |
+ sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); |
+ assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); |
+ pMem->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero); |
+ break; |
+ } |
+ } |
+} |
+ |
+/* |
+** Initialize bulk memory to be a consistent Mem object. |
+** |
+** The minimum amount of initialization feasible is performed. |
+*/ |
+void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){ |
+ assert( (flags & ~MEM_TypeMask)==0 ); |
+ pMem->flags = flags; |
+ pMem->db = db; |
+ pMem->szMalloc = 0; |
+} |
+ |
+ |
+/* |
** Delete any previous value and set the value stored in *pMem to NULL. |
+** |
+** This routine calls the Mem.xDel destructor to dispose of values that |
+** require the destructor. But it preserves the Mem.zMalloc memory allocation. |
+** To free all resources, use sqlite3VdbeMemRelease(), which both calls this |
+** routine to invoke the destructor and deallocates Mem.zMalloc. |
+** |
+** Use this routine to reset the Mem prior to insert a new value. |
+** |
+** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it. |
*/ |
void sqlite3VdbeMemSetNull(Mem *pMem){ |
- if( pMem->flags & MEM_Frame ){ |
- VdbeFrame *pFrame = pMem->u.pFrame; |
- pFrame->pParent = pFrame->v->pDelFrame; |
- pFrame->v->pDelFrame = pFrame; |
- } |
- if( pMem->flags & MEM_RowSet ){ |
- sqlite3RowSetClear(pMem->u.pRowSet); |
+ if( VdbeMemDynamic(pMem) ){ |
+ vdbeMemClearExternAndSetNull(pMem); |
+ }else{ |
+ pMem->flags = MEM_Null; |
} |
- MemSetTypeFlag(pMem, MEM_Null); |
- pMem->type = SQLITE_NULL; |
+} |
+void sqlite3ValueSetNull(sqlite3_value *p){ |
+ sqlite3VdbeMemSetNull((Mem*)p); |
} |
/* |
@@ -505,19 +664,22 @@ void sqlite3VdbeMemSetNull(Mem *pMem){ |
void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ |
sqlite3VdbeMemRelease(pMem); |
pMem->flags = MEM_Blob|MEM_Zero; |
- pMem->type = SQLITE_BLOB; |
pMem->n = 0; |
if( n<0 ) n = 0; |
pMem->u.nZero = n; |
pMem->enc = SQLITE_UTF8; |
+ pMem->z = 0; |
+} |
-#ifdef SQLITE_OMIT_INCRBLOB |
- sqlite3VdbeMemGrow(pMem, n, 0); |
- if( pMem->z ){ |
- pMem->n = n; |
- memset(pMem->z, 0, n); |
- } |
-#endif |
+/* |
+** The pMem is known to contain content that needs to be destroyed prior |
+** to a value change. So invoke the destructor, then set the value to |
+** a 64-bit integer. |
+*/ |
+static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){ |
+ sqlite3VdbeMemSetNull(pMem); |
+ pMem->u.i = val; |
+ pMem->flags = MEM_Int; |
} |
/* |
@@ -525,10 +687,12 @@ void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ |
** manifest type INTEGER. |
*/ |
void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ |
- sqlite3VdbeMemRelease(pMem); |
- pMem->u.i = val; |
- pMem->flags = MEM_Int; |
- pMem->type = SQLITE_INTEGER; |
+ if( VdbeMemDynamic(pMem) ){ |
+ vdbeReleaseAndSetInt64(pMem, val); |
+ }else{ |
+ pMem->u.i = val; |
+ pMem->flags = MEM_Int; |
+ } |
} |
#ifndef SQLITE_OMIT_FLOATING_POINT |
@@ -537,13 +701,10 @@ void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ |
** manifest type REAL. |
*/ |
void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ |
- if( sqlite3IsNaN(val) ){ |
- sqlite3VdbeMemSetNull(pMem); |
- }else{ |
- sqlite3VdbeMemRelease(pMem); |
- pMem->r = val; |
+ sqlite3VdbeMemSetNull(pMem); |
+ if( !sqlite3IsNaN(val) ){ |
+ pMem->u.r = val; |
pMem->flags = MEM_Real; |
- pMem->type = SQLITE_FLOAT; |
} |
} |
#endif |
@@ -560,10 +721,11 @@ void sqlite3VdbeMemSetRowSet(Mem *pMem){ |
pMem->zMalloc = sqlite3DbMallocRaw(db, 64); |
if( db->mallocFailed ){ |
pMem->flags = MEM_Null; |
+ pMem->szMalloc = 0; |
}else{ |
assert( pMem->zMalloc ); |
- pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, |
- sqlite3DbMallocSize(db, pMem->zMalloc)); |
+ pMem->szMalloc = sqlite3DbMallocSize(db, pMem->zMalloc); |
+ pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, pMem->szMalloc); |
assert( pMem->u.pRowSet!=0 ); |
pMem->flags = MEM_RowSet; |
} |
@@ -587,19 +749,19 @@ int sqlite3VdbeMemTooBig(Mem *p){ |
#ifdef SQLITE_DEBUG |
/* |
-** This routine prepares a memory cell for modication by breaking |
+** This routine prepares a memory cell for modification by breaking |
** its link to a shallow copy and by marking any current shallow |
** copies of this cell as invalid. |
** |
** This is used for testing and debugging only - to make sure shallow |
** copies are not misused. |
*/ |
-void sqlite3VdbeMemPrepareToChange(Vdbe *pVdbe, Mem *pMem){ |
+void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){ |
int i; |
Mem *pX; |
for(i=1, pX=&pVdbe->aMem[1]; i<=pVdbe->nMem; i++, pX++){ |
if( pX->pScopyFrom==pMem ){ |
- pX->flags |= MEM_Invalid; |
+ pX->flags |= MEM_Undefined; |
pX->pScopyFrom = 0; |
} |
} |
@@ -610,7 +772,7 @@ void sqlite3VdbeMemPrepareToChange(Vdbe *pVdbe, Mem *pMem){ |
/* |
** Size of struct Mem not including the Mem.zMalloc member. |
*/ |
-#define MEMCELLSIZE (size_t)(&(((Mem *)0)->zMalloc)) |
+#define MEMCELLSIZE offsetof(Mem,zMalloc) |
/* |
** Make an shallow copy of pFrom into pTo. Prior contents of |
@@ -620,9 +782,9 @@ void sqlite3VdbeMemPrepareToChange(Vdbe *pVdbe, Mem *pMem){ |
*/ |
void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ |
assert( (pFrom->flags & MEM_RowSet)==0 ); |
- sqlite3VdbeMemReleaseExternal(pTo); |
+ assert( pTo->db==pFrom->db ); |
+ if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo); |
memcpy(pTo, pFrom, MEMCELLSIZE); |
- pTo->xDel = 0; |
if( (pFrom->flags&MEM_Static)==0 ){ |
pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); |
assert( srcType==MEM_Ephem || srcType==MEM_Static ); |
@@ -637,11 +799,11 @@ void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ |
int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ |
int rc = SQLITE_OK; |
+ assert( pTo->db==pFrom->db ); |
assert( (pFrom->flags & MEM_RowSet)==0 ); |
- sqlite3VdbeMemReleaseExternal(pTo); |
+ if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo); |
memcpy(pTo, pFrom, MEMCELLSIZE); |
pTo->flags &= ~MEM_Dyn; |
- |
if( pTo->flags&(MEM_Str|MEM_Blob) ){ |
if( 0==(pFrom->flags&MEM_Static) ){ |
pTo->flags |= MEM_Ephem; |
@@ -666,8 +828,7 @@ void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ |
sqlite3VdbeMemRelease(pTo); |
memcpy(pTo, pFrom, sizeof(Mem)); |
pFrom->flags = MEM_Null; |
- pFrom->xDel = 0; |
- pFrom->zMalloc = 0; |
+ pFrom->szMalloc = 0; |
} |
/* |
@@ -714,7 +875,8 @@ int sqlite3VdbeMemSetStr( |
if( nByte<0 ){ |
assert( enc!=0 ); |
if( enc==SQLITE_UTF8 ){ |
- for(nByte=0; nByte<=iLimit && z[nByte]; nByte++){} |
+ nByte = sqlite3Strlen30(z); |
+ if( nByte>iLimit ) nByte = iLimit+1; |
}else{ |
for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){} |
} |
@@ -733,14 +895,17 @@ int sqlite3VdbeMemSetStr( |
if( nByte>iLimit ){ |
return SQLITE_TOOBIG; |
} |
- if( sqlite3VdbeMemGrow(pMem, nAlloc, 0) ){ |
+ testcase( nAlloc==0 ); |
+ testcase( nAlloc==31 ); |
+ testcase( nAlloc==32 ); |
+ if( sqlite3VdbeMemClearAndResize(pMem, MAX(nAlloc,32)) ){ |
return SQLITE_NOMEM; |
} |
memcpy(pMem->z, z, nAlloc); |
}else if( xDel==SQLITE_DYNAMIC ){ |
sqlite3VdbeMemRelease(pMem); |
pMem->zMalloc = pMem->z = (char *)z; |
- pMem->xDel = 0; |
+ pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); |
}else{ |
sqlite3VdbeMemRelease(pMem); |
pMem->z = (char *)z; |
@@ -751,7 +916,6 @@ int sqlite3VdbeMemSetStr( |
pMem->n = nByte; |
pMem->flags = flags; |
pMem->enc = (enc==0 ? SQLITE_UTF8 : enc); |
- pMem->type = (enc==0 ? SQLITE_BLOB : SQLITE_TEXT); |
#ifndef SQLITE_OMIT_UTF16 |
if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){ |
@@ -767,148 +931,34 @@ int sqlite3VdbeMemSetStr( |
} |
/* |
-** Compare the values contained by the two memory cells, returning |
-** negative, zero or positive if pMem1 is less than, equal to, or greater |
-** than pMem2. Sorting order is NULL's first, followed by numbers (integers |
-** and reals) sorted numerically, followed by text ordered by the collating |
-** sequence pColl and finally blob's ordered by memcmp(). |
-** |
-** Two NULL values are considered equal by this function. |
-*/ |
-int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ |
- int rc; |
- int f1, f2; |
- int combined_flags; |
- |
- f1 = pMem1->flags; |
- f2 = pMem2->flags; |
- combined_flags = f1|f2; |
- assert( (combined_flags & MEM_RowSet)==0 ); |
- |
- /* If one value is NULL, it is less than the other. If both values |
- ** are NULL, return 0. |
- */ |
- if( combined_flags&MEM_Null ){ |
- return (f2&MEM_Null) - (f1&MEM_Null); |
- } |
- |
- /* If one value is a number and the other is not, the number is less. |
- ** If both are numbers, compare as reals if one is a real, or as integers |
- ** if both values are integers. |
- */ |
- if( combined_flags&(MEM_Int|MEM_Real) ){ |
- if( !(f1&(MEM_Int|MEM_Real)) ){ |
- return 1; |
- } |
- if( !(f2&(MEM_Int|MEM_Real)) ){ |
- return -1; |
- } |
- if( (f1 & f2 & MEM_Int)==0 ){ |
- double r1, r2; |
- if( (f1&MEM_Real)==0 ){ |
- r1 = (double)pMem1->u.i; |
- }else{ |
- r1 = pMem1->r; |
- } |
- if( (f2&MEM_Real)==0 ){ |
- r2 = (double)pMem2->u.i; |
- }else{ |
- r2 = pMem2->r; |
- } |
- if( r1<r2 ) return -1; |
- if( r1>r2 ) return 1; |
- return 0; |
- }else{ |
- assert( f1&MEM_Int ); |
- assert( f2&MEM_Int ); |
- if( pMem1->u.i < pMem2->u.i ) return -1; |
- if( pMem1->u.i > pMem2->u.i ) return 1; |
- return 0; |
- } |
- } |
- |
- /* If one value is a string and the other is a blob, the string is less. |
- ** If both are strings, compare using the collating functions. |
- */ |
- if( combined_flags&MEM_Str ){ |
- if( (f1 & MEM_Str)==0 ){ |
- return 1; |
- } |
- if( (f2 & MEM_Str)==0 ){ |
- return -1; |
- } |
- |
- assert( pMem1->enc==pMem2->enc ); |
- assert( pMem1->enc==SQLITE_UTF8 || |
- pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); |
- |
- /* The collation sequence must be defined at this point, even if |
- ** the user deletes the collation sequence after the vdbe program is |
- ** compiled (this was not always the case). |
- */ |
- assert( !pColl || pColl->xCmp ); |
- |
- if( pColl ){ |
- if( pMem1->enc==pColl->enc ){ |
- /* The strings are already in the correct encoding. Call the |
- ** comparison function directly */ |
- return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); |
- }else{ |
- const void *v1, *v2; |
- int n1, n2; |
- Mem c1; |
- Mem c2; |
- memset(&c1, 0, sizeof(c1)); |
- memset(&c2, 0, sizeof(c2)); |
- sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); |
- sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); |
- v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); |
- n1 = v1==0 ? 0 : c1.n; |
- v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); |
- n2 = v2==0 ? 0 : c2.n; |
- rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2); |
- sqlite3VdbeMemRelease(&c1); |
- sqlite3VdbeMemRelease(&c2); |
- return rc; |
- } |
- } |
- /* If a NULL pointer was passed as the collate function, fall through |
- ** to the blob case and use memcmp(). */ |
- } |
- |
- /* Both values must be blobs. Compare using memcmp(). */ |
- rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n); |
- if( rc==0 ){ |
- rc = pMem1->n - pMem2->n; |
- } |
- return rc; |
-} |
- |
-/* |
** Move data out of a btree key or data field and into a Mem structure. |
** The data or key is taken from the entry that pCur is currently pointing |
** to. offset and amt determine what portion of the data or key to retrieve. |
** key is true to get the key or false to get data. The result is written |
** into the pMem element. |
** |
-** The pMem structure is assumed to be uninitialized. Any prior content |
-** is overwritten without being freed. |
+** The pMem object must have been initialized. This routine will use |
+** pMem->zMalloc to hold the content from the btree, if possible. New |
+** pMem->zMalloc space will be allocated if necessary. The calling routine |
+** is responsible for making sure that the pMem object is eventually |
+** destroyed. |
** |
** If this routine fails for any reason (malloc returns NULL or unable |
** to read from the disk) then the pMem is left in an inconsistent state. |
*/ |
int sqlite3VdbeMemFromBtree( |
BtCursor *pCur, /* Cursor pointing at record to retrieve. */ |
- int offset, /* Offset from the start of data to return bytes from. */ |
- int amt, /* Number of bytes to return. */ |
+ u32 offset, /* Offset from the start of data to return bytes from. */ |
+ u32 amt, /* Number of bytes to return. */ |
int key, /* If true, retrieve from the btree key, not data. */ |
Mem *pMem /* OUT: Return data in this Mem structure. */ |
){ |
char *zData; /* Data from the btree layer */ |
- int available = 0; /* Number of bytes available on the local btree page */ |
+ u32 available = 0; /* Number of bytes available on the local btree page */ |
int rc = SQLITE_OK; /* Return code */ |
assert( sqlite3BtreeCursorIsValid(pCur) ); |
+ assert( !VdbeMemDynamic(pMem) ); |
/* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() |
** that both the BtShared and database handle mutexes are held. */ |
@@ -920,65 +970,60 @@ int sqlite3VdbeMemFromBtree( |
} |
assert( zData!=0 ); |
- if( offset+amt<=available && (pMem->flags&MEM_Dyn)==0 ){ |
- sqlite3VdbeMemRelease(pMem); |
+ if( offset+amt<=available ){ |
pMem->z = &zData[offset]; |
pMem->flags = MEM_Blob|MEM_Ephem; |
- }else if( SQLITE_OK==(rc = sqlite3VdbeMemGrow(pMem, amt+2, 0)) ){ |
- pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term; |
- pMem->enc = 0; |
- pMem->type = SQLITE_BLOB; |
- if( key ){ |
- rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z); |
- }else{ |
- rc = sqlite3BtreeData(pCur, offset, amt, pMem->z); |
- } |
- pMem->z[amt] = 0; |
- pMem->z[amt+1] = 0; |
- if( rc!=SQLITE_OK ){ |
- sqlite3VdbeMemRelease(pMem); |
+ pMem->n = (int)amt; |
+ }else{ |
+ pMem->flags = MEM_Null; |
+ if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+2)) ){ |
+ if( key ){ |
+ rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z); |
+ }else{ |
+ rc = sqlite3BtreeData(pCur, offset, amt, pMem->z); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ pMem->z[amt] = 0; |
+ pMem->z[amt+1] = 0; |
+ pMem->flags = MEM_Blob|MEM_Term; |
+ pMem->n = (int)amt; |
+ }else{ |
+ sqlite3VdbeMemRelease(pMem); |
+ } |
} |
} |
- pMem->n = amt; |
return rc; |
} |
-/* This function is only available internally, it is not part of the |
-** external API. It works in a similar way to sqlite3_value_text(), |
-** except the data returned is in the encoding specified by the second |
-** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or |
-** SQLITE_UTF8. |
-** |
-** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. |
-** If that is the case, then the result must be aligned on an even byte |
-** boundary. |
+/* |
+** The pVal argument is known to be a value other than NULL. |
+** Convert it into a string with encoding enc and return a pointer |
+** to a zero-terminated version of that string. |
*/ |
-const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ |
- if( !pVal ) return 0; |
- |
+static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){ |
+ assert( pVal!=0 ); |
assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); |
assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); |
assert( (pVal->flags & MEM_RowSet)==0 ); |
- |
- if( pVal->flags&MEM_Null ){ |
- return 0; |
- } |
- assert( (MEM_Blob>>3) == MEM_Str ); |
- pVal->flags |= (pVal->flags & MEM_Blob)>>3; |
- expandBlob(pVal); |
- if( pVal->flags&MEM_Str ){ |
- sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); |
+ assert( (pVal->flags & (MEM_Null))==0 ); |
+ if( pVal->flags & (MEM_Blob|MEM_Str) ){ |
+ pVal->flags |= MEM_Str; |
+ if( pVal->flags & MEM_Zero ){ |
+ sqlite3VdbeMemExpandBlob(pVal); |
+ } |
+ if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){ |
+ sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); |
+ } |
if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){ |
assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); |
if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ |
return 0; |
} |
} |
- sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-59893-45467 */ |
+ sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */ |
}else{ |
- assert( (pVal->flags&MEM_Blob)==0 ); |
- sqlite3VdbeMemStringify(pVal, enc); |
+ sqlite3VdbeMemStringify(pVal, enc, 0); |
assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) ); |
} |
assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 |
@@ -990,6 +1035,30 @@ const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ |
} |
} |
+/* This function is only available internally, it is not part of the |
+** external API. It works in a similar way to sqlite3_value_text(), |
+** except the data returned is in the encoding specified by the second |
+** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or |
+** SQLITE_UTF8. |
+** |
+** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. |
+** If that is the case, then the result must be aligned on an even byte |
+** boundary. |
+*/ |
+const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ |
+ if( !pVal ) return 0; |
+ assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); |
+ assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); |
+ assert( (pVal->flags & MEM_RowSet)==0 ); |
+ if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){ |
+ return pVal->z; |
+ } |
+ if( pVal->flags&MEM_Null ){ |
+ return 0; |
+ } |
+ return valueToText(pVal, enc); |
+} |
+ |
/* |
** Create a new sqlite3_value object. |
*/ |
@@ -997,50 +1066,116 @@ sqlite3_value *sqlite3ValueNew(sqlite3 *db){ |
Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); |
if( p ){ |
p->flags = MEM_Null; |
- p->type = SQLITE_NULL; |
p->db = db; |
} |
return p; |
} |
/* |
-** Create a new sqlite3_value object, containing the value of pExpr. |
+** Context object passed by sqlite3Stat4ProbeSetValue() through to |
+** valueNew(). See comments above valueNew() for details. |
+*/ |
+struct ValueNewStat4Ctx { |
+ Parse *pParse; |
+ Index *pIdx; |
+ UnpackedRecord **ppRec; |
+ int iVal; |
+}; |
+ |
+/* |
+** Allocate and return a pointer to a new sqlite3_value object. If |
+** the second argument to this function is NULL, the object is allocated |
+** by calling sqlite3ValueNew(). |
** |
-** This only works for very simple expressions that consist of one constant |
-** token (i.e. "5", "5.1", "'a string'"). If the expression can |
-** be converted directly into a value, then the value is allocated and |
-** a pointer written to *ppVal. The caller is responsible for deallocating |
-** the value by passing it to sqlite3ValueFree() later on. If the expression |
-** cannot be converted to a value, then *ppVal is set to NULL. |
+** Otherwise, if the second argument is non-zero, then this function is |
+** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not |
+** already been allocated, allocate the UnpackedRecord structure that |
+** that function will return to its caller here. Then return a pointer |
+** an sqlite3_value within the UnpackedRecord.a[] array. |
*/ |
-int sqlite3ValueFromExpr( |
- sqlite3 *db, /* The database connection */ |
- Expr *pExpr, /* The expression to evaluate */ |
- u8 enc, /* Encoding to use */ |
- u8 affinity, /* Affinity to use */ |
- sqlite3_value **ppVal /* Write the new value here */ |
+static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){ |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+ if( p ){ |
+ UnpackedRecord *pRec = p->ppRec[0]; |
+ |
+ if( pRec==0 ){ |
+ Index *pIdx = p->pIdx; /* Index being probed */ |
+ int nByte; /* Bytes of space to allocate */ |
+ int i; /* Counter variable */ |
+ int nCol = pIdx->nColumn; /* Number of index columns including rowid */ |
+ |
+ nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord)); |
+ pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte); |
+ if( pRec ){ |
+ pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx); |
+ if( pRec->pKeyInfo ){ |
+ assert( pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField==nCol ); |
+ assert( pRec->pKeyInfo->enc==ENC(db) ); |
+ pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord))); |
+ for(i=0; i<nCol; i++){ |
+ pRec->aMem[i].flags = MEM_Null; |
+ pRec->aMem[i].db = db; |
+ } |
+ }else{ |
+ sqlite3DbFree(db, pRec); |
+ pRec = 0; |
+ } |
+ } |
+ if( pRec==0 ) return 0; |
+ p->ppRec[0] = pRec; |
+ } |
+ |
+ pRec->nField = p->iVal+1; |
+ return &pRec->aMem[p->iVal]; |
+ } |
+#else |
+ UNUSED_PARAMETER(p); |
+#endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */ |
+ return sqlite3ValueNew(db); |
+} |
+ |
+/* |
+** Extract a value from the supplied expression in the manner described |
+** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object |
+** using valueNew(). |
+** |
+** If pCtx is NULL and an error occurs after the sqlite3_value object |
+** has been allocated, it is freed before returning. Or, if pCtx is not |
+** NULL, it is assumed that the caller will free any allocated object |
+** in all cases. |
+*/ |
+static int valueFromExpr( |
+ sqlite3 *db, /* The database connection */ |
+ Expr *pExpr, /* The expression to evaluate */ |
+ u8 enc, /* Encoding to use */ |
+ u8 affinity, /* Affinity to use */ |
+ sqlite3_value **ppVal, /* Write the new value here */ |
+ struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ |
){ |
int op; |
char *zVal = 0; |
sqlite3_value *pVal = 0; |
int negInt = 1; |
const char *zNeg = ""; |
+ int rc = SQLITE_OK; |
if( !pExpr ){ |
*ppVal = 0; |
return SQLITE_OK; |
} |
- op = pExpr->op; |
- |
- /* op can only be TK_REGISTER if we have compiled with SQLITE_ENABLE_STAT2. |
- ** The ifdef here is to enable us to achieve 100% branch test coverage even |
- ** when SQLITE_ENABLE_STAT2 is omitted. |
- */ |
-#ifdef SQLITE_ENABLE_STAT2 |
- if( op==TK_REGISTER ) op = pExpr->op2; |
-#else |
+ while( (op = pExpr->op)==TK_UPLUS ) pExpr = pExpr->pLeft; |
if( NEVER(op==TK_REGISTER) ) op = pExpr->op2; |
-#endif |
+ |
+ if( op==TK_CAST ){ |
+ u8 aff = sqlite3AffinityType(pExpr->u.zToken,0); |
+ rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx); |
+ testcase( rc!=SQLITE_OK ); |
+ if( *ppVal ){ |
+ sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8); |
+ sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8); |
+ } |
+ return rc; |
+ } |
/* Handle negative integers in a single step. This is needed in the |
** case when the value is -9223372036854775808. |
@@ -1054,7 +1189,7 @@ int sqlite3ValueFromExpr( |
} |
if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ |
- pVal = sqlite3ValueNew(db); |
+ pVal = valueNew(db, pCtx); |
if( pVal==0 ) goto no_mem; |
if( ExprHasProperty(pExpr, EP_IntValue) ){ |
sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt); |
@@ -1062,7 +1197,6 @@ int sqlite3ValueFromExpr( |
zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken); |
if( zVal==0 ) goto no_mem; |
sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); |
- if( op==TK_FLOAT ) pVal->type = SQLITE_FLOAT; |
} |
if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){ |
sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); |
@@ -1071,24 +1205,26 @@ int sqlite3ValueFromExpr( |
} |
if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str; |
if( enc!=SQLITE_UTF8 ){ |
- sqlite3VdbeChangeEncoding(pVal, enc); |
+ rc = sqlite3VdbeChangeEncoding(pVal, enc); |
} |
}else if( op==TK_UMINUS ) { |
/* This branch happens for multiple negative signs. Ex: -(-5) */ |
- if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){ |
+ if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) |
+ && pVal!=0 |
+ ){ |
sqlite3VdbeMemNumerify(pVal); |
- if( pVal->u.i==SMALLEST_INT64 ){ |
- pVal->flags &= MEM_Int; |
- pVal->flags |= MEM_Real; |
- pVal->r = (double)LARGEST_INT64; |
+ if( pVal->flags & MEM_Real ){ |
+ pVal->u.r = -pVal->u.r; |
+ }else if( pVal->u.i==SMALLEST_INT64 ){ |
+ pVal->u.r = -(double)SMALLEST_INT64; |
+ MemSetTypeFlag(pVal, MEM_Real); |
}else{ |
pVal->u.i = -pVal->u.i; |
} |
- pVal->r = -pVal->r; |
sqlite3ValueApplyAffinity(pVal, affinity, enc); |
} |
}else if( op==TK_NULL ){ |
- pVal = sqlite3ValueNew(db); |
+ pVal = valueNew(db, pCtx); |
if( pVal==0 ) goto no_mem; |
} |
#ifndef SQLITE_OMIT_BLOB_LITERAL |
@@ -1096,7 +1232,7 @@ int sqlite3ValueFromExpr( |
int nVal; |
assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); |
assert( pExpr->u.zToken[1]=='\'' ); |
- pVal = sqlite3ValueNew(db); |
+ pVal = valueNew(db, pCtx); |
if( !pVal ) goto no_mem; |
zVal = &pExpr->u.zToken[2]; |
nVal = sqlite3Strlen30(zVal)-1; |
@@ -1106,21 +1242,301 @@ int sqlite3ValueFromExpr( |
} |
#endif |
- if( pVal ){ |
- sqlite3VdbeMemStoreType(pVal); |
- } |
*ppVal = pVal; |
- return SQLITE_OK; |
+ return rc; |
no_mem: |
db->mallocFailed = 1; |
sqlite3DbFree(db, zVal); |
- sqlite3ValueFree(pVal); |
- *ppVal = 0; |
+ assert( *ppVal==0 ); |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+ if( pCtx==0 ) sqlite3ValueFree(pVal); |
+#else |
+ assert( pCtx==0 ); sqlite3ValueFree(pVal); |
+#endif |
return SQLITE_NOMEM; |
} |
/* |
+** Create a new sqlite3_value object, containing the value of pExpr. |
+** |
+** This only works for very simple expressions that consist of one constant |
+** token (i.e. "5", "5.1", "'a string'"). If the expression can |
+** be converted directly into a value, then the value is allocated and |
+** a pointer written to *ppVal. The caller is responsible for deallocating |
+** the value by passing it to sqlite3ValueFree() later on. If the expression |
+** cannot be converted to a value, then *ppVal is set to NULL. |
+*/ |
+int sqlite3ValueFromExpr( |
+ sqlite3 *db, /* The database connection */ |
+ Expr *pExpr, /* The expression to evaluate */ |
+ u8 enc, /* Encoding to use */ |
+ u8 affinity, /* Affinity to use */ |
+ sqlite3_value **ppVal /* Write the new value here */ |
+){ |
+ return valueFromExpr(db, pExpr, enc, affinity, ppVal, 0); |
+} |
+ |
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
+/* |
+** The implementation of the sqlite_record() function. This function accepts |
+** a single argument of any type. The return value is a formatted database |
+** record (a blob) containing the argument value. |
+** |
+** This is used to convert the value stored in the 'sample' column of the |
+** sqlite_stat3 table to the record format SQLite uses internally. |
+*/ |
+static void recordFunc( |
+ sqlite3_context *context, |
+ int argc, |
+ sqlite3_value **argv |
+){ |
+ const int file_format = 1; |
+ int iSerial; /* Serial type */ |
+ int nSerial; /* Bytes of space for iSerial as varint */ |
+ int nVal; /* Bytes of space required for argv[0] */ |
+ int nRet; |
+ sqlite3 *db; |
+ u8 *aRet; |
+ |
+ UNUSED_PARAMETER( argc ); |
+ iSerial = sqlite3VdbeSerialType(argv[0], file_format); |
+ nSerial = sqlite3VarintLen(iSerial); |
+ nVal = sqlite3VdbeSerialTypeLen(iSerial); |
+ db = sqlite3_context_db_handle(context); |
+ |
+ nRet = 1 + nSerial + nVal; |
+ aRet = sqlite3DbMallocRaw(db, nRet); |
+ if( aRet==0 ){ |
+ sqlite3_result_error_nomem(context); |
+ }else{ |
+ aRet[0] = nSerial+1; |
+ putVarint32(&aRet[1], iSerial); |
+ sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], iSerial); |
+ sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT); |
+ sqlite3DbFree(db, aRet); |
+ } |
+} |
+ |
+/* |
+** Register built-in functions used to help read ANALYZE data. |
+*/ |
+void sqlite3AnalyzeFunctions(void){ |
+ static SQLITE_WSD FuncDef aAnalyzeTableFuncs[] = { |
+ FUNCTION(sqlite_record, 1, 0, 0, recordFunc), |
+ }; |
+ int i; |
+ FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); |
+ FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aAnalyzeTableFuncs); |
+ for(i=0; i<ArraySize(aAnalyzeTableFuncs); i++){ |
+ sqlite3FuncDefInsert(pHash, &aFunc[i]); |
+ } |
+} |
+ |
+/* |
+** Attempt to extract a value from pExpr and use it to construct *ppVal. |
+** |
+** If pAlloc is not NULL, then an UnpackedRecord object is created for |
+** pAlloc if one does not exist and the new value is added to the |
+** UnpackedRecord object. |
+** |
+** A value is extracted in the following cases: |
+** |
+** * (pExpr==0). In this case the value is assumed to be an SQL NULL, |
+** |
+** * The expression is a bound variable, and this is a reprepare, or |
+** |
+** * The expression is a literal value. |
+** |
+** On success, *ppVal is made to point to the extracted value. The caller |
+** is responsible for ensuring that the value is eventually freed. |
+*/ |
+static int stat4ValueFromExpr( |
+ Parse *pParse, /* Parse context */ |
+ Expr *pExpr, /* The expression to extract a value from */ |
+ u8 affinity, /* Affinity to use */ |
+ struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */ |
+ sqlite3_value **ppVal /* OUT: New value object (or NULL) */ |
+){ |
+ int rc = SQLITE_OK; |
+ sqlite3_value *pVal = 0; |
+ sqlite3 *db = pParse->db; |
+ |
+ /* Skip over any TK_COLLATE nodes */ |
+ pExpr = sqlite3ExprSkipCollate(pExpr); |
+ |
+ if( !pExpr ){ |
+ pVal = valueNew(db, pAlloc); |
+ if( pVal ){ |
+ sqlite3VdbeMemSetNull((Mem*)pVal); |
+ } |
+ }else if( pExpr->op==TK_VARIABLE |
+ || NEVER(pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE) |
+ ){ |
+ Vdbe *v; |
+ int iBindVar = pExpr->iColumn; |
+ sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar); |
+ if( (v = pParse->pReprepare)!=0 ){ |
+ pVal = valueNew(db, pAlloc); |
+ if( pVal ){ |
+ rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3ValueApplyAffinity(pVal, affinity, ENC(db)); |
+ } |
+ pVal->db = pParse->db; |
+ } |
+ } |
+ }else{ |
+ rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc); |
+ } |
+ |
+ assert( pVal==0 || pVal->db==db ); |
+ *ppVal = pVal; |
+ return rc; |
+} |
+ |
+/* |
+** This function is used to allocate and populate UnpackedRecord |
+** structures intended to be compared against sample index keys stored |
+** in the sqlite_stat4 table. |
+** |
+** A single call to this function attempts to populates field iVal (leftmost |
+** is 0 etc.) of the unpacked record with a value extracted from expression |
+** pExpr. Extraction of values is possible if: |
+** |
+** * (pExpr==0). In this case the value is assumed to be an SQL NULL, |
+** |
+** * The expression is a bound variable, and this is a reprepare, or |
+** |
+** * The sqlite3ValueFromExpr() function is able to extract a value |
+** from the expression (i.e. the expression is a literal value). |
+** |
+** If a value can be extracted, the affinity passed as the 5th argument |
+** is applied to it before it is copied into the UnpackedRecord. Output |
+** parameter *pbOk is set to true if a value is extracted, or false |
+** otherwise. |
+** |
+** When this function is called, *ppRec must either point to an object |
+** allocated by an earlier call to this function, or must be NULL. If it |
+** is NULL and a value can be successfully extracted, a new UnpackedRecord |
+** is allocated (and *ppRec set to point to it) before returning. |
+** |
+** Unless an error is encountered, SQLITE_OK is returned. It is not an |
+** error if a value cannot be extracted from pExpr. If an error does |
+** occur, an SQLite error code is returned. |
+*/ |
+int sqlite3Stat4ProbeSetValue( |
+ Parse *pParse, /* Parse context */ |
+ Index *pIdx, /* Index being probed */ |
+ UnpackedRecord **ppRec, /* IN/OUT: Probe record */ |
+ Expr *pExpr, /* The expression to extract a value from */ |
+ u8 affinity, /* Affinity to use */ |
+ int iVal, /* Array element to populate */ |
+ int *pbOk /* OUT: True if value was extracted */ |
+){ |
+ int rc; |
+ sqlite3_value *pVal = 0; |
+ struct ValueNewStat4Ctx alloc; |
+ |
+ alloc.pParse = pParse; |
+ alloc.pIdx = pIdx; |
+ alloc.ppRec = ppRec; |
+ alloc.iVal = iVal; |
+ |
+ rc = stat4ValueFromExpr(pParse, pExpr, affinity, &alloc, &pVal); |
+ assert( pVal==0 || pVal->db==pParse->db ); |
+ *pbOk = (pVal!=0); |
+ return rc; |
+} |
+ |
+/* |
+** Attempt to extract a value from expression pExpr using the methods |
+** as described for sqlite3Stat4ProbeSetValue() above. |
+** |
+** If successful, set *ppVal to point to a new value object and return |
+** SQLITE_OK. If no value can be extracted, but no other error occurs |
+** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error |
+** does occur, return an SQLite error code. The final value of *ppVal |
+** is undefined in this case. |
+*/ |
+int sqlite3Stat4ValueFromExpr( |
+ Parse *pParse, /* Parse context */ |
+ Expr *pExpr, /* The expression to extract a value from */ |
+ u8 affinity, /* Affinity to use */ |
+ sqlite3_value **ppVal /* OUT: New value object (or NULL) */ |
+){ |
+ return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal); |
+} |
+ |
+/* |
+** Extract the iCol-th column from the nRec-byte record in pRec. Write |
+** the column value into *ppVal. If *ppVal is initially NULL then a new |
+** sqlite3_value object is allocated. |
+** |
+** If *ppVal is initially NULL then the caller is responsible for |
+** ensuring that the value written into *ppVal is eventually freed. |
+*/ |
+int sqlite3Stat4Column( |
+ sqlite3 *db, /* Database handle */ |
+ const void *pRec, /* Pointer to buffer containing record */ |
+ int nRec, /* Size of buffer pRec in bytes */ |
+ int iCol, /* Column to extract */ |
+ sqlite3_value **ppVal /* OUT: Extracted value */ |
+){ |
+ u32 t; /* a column type code */ |
+ int nHdr; /* Size of the header in the record */ |
+ int iHdr; /* Next unread header byte */ |
+ int iField; /* Next unread data byte */ |
+ int szField; /* Size of the current data field */ |
+ int i; /* Column index */ |
+ u8 *a = (u8*)pRec; /* Typecast byte array */ |
+ Mem *pMem = *ppVal; /* Write result into this Mem object */ |
+ |
+ assert( iCol>0 ); |
+ iHdr = getVarint32(a, nHdr); |
+ if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT; |
+ iField = nHdr; |
+ for(i=0; i<=iCol; i++){ |
+ iHdr += getVarint32(&a[iHdr], t); |
+ testcase( iHdr==nHdr ); |
+ testcase( iHdr==nHdr+1 ); |
+ if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT; |
+ szField = sqlite3VdbeSerialTypeLen(t); |
+ iField += szField; |
+ } |
+ testcase( iField==nRec ); |
+ testcase( iField==nRec+1 ); |
+ if( iField>nRec ) return SQLITE_CORRUPT_BKPT; |
+ if( pMem==0 ){ |
+ pMem = *ppVal = sqlite3ValueNew(db); |
+ if( pMem==0 ) return SQLITE_NOMEM; |
+ } |
+ sqlite3VdbeSerialGet(&a[iField-szField], t, pMem); |
+ pMem->enc = ENC(db); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Unless it is NULL, the argument must be an UnpackedRecord object returned |
+** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes |
+** the object. |
+*/ |
+void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){ |
+ if( pRec ){ |
+ int i; |
+ int nCol = pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField; |
+ Mem *aMem = pRec->aMem; |
+ sqlite3 *db = aMem[0].db; |
+ for(i=0; i<nCol; i++){ |
+ if( aMem[i].szMalloc ) sqlite3DbFree(db, aMem[i].zMalloc); |
+ } |
+ sqlite3KeyInfoUnref(pRec->pKeyInfo); |
+ sqlite3DbFree(db, pRec); |
+ } |
+} |
+#endif /* ifdef SQLITE_ENABLE_STAT4 */ |
+ |
+/* |
** Change the string value of an sqlite3_value object |
*/ |
void sqlite3ValueSetStr( |