Index: third_party/sqlite/sqlite-src-3080704/ext/fts3/fts3_write.c |
diff --git a/third_party/sqlite/sqlite-src-3080704/ext/fts3/fts3_write.c b/third_party/sqlite/sqlite-src-3080704/ext/fts3/fts3_write.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..0da08c62d8bd05f7650b428d254d66369244193b |
--- /dev/null |
+++ b/third_party/sqlite/sqlite-src-3080704/ext/fts3/fts3_write.c |
@@ -0,0 +1,5660 @@ |
+/* |
+** 2009 Oct 23 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+****************************************************************************** |
+** |
+** This file is part of the SQLite FTS3 extension module. Specifically, |
+** this file contains code to insert, update and delete rows from FTS3 |
+** tables. It also contains code to merge FTS3 b-tree segments. Some |
+** of the sub-routines used to merge segments are also used by the query |
+** code in fts3.c. |
+*/ |
+ |
+#include "fts3Int.h" |
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) |
+ |
+#include <string.h> |
+#include <assert.h> |
+#include <stdlib.h> |
+ |
+ |
+#define FTS_MAX_APPENDABLE_HEIGHT 16 |
+ |
+/* |
+** When full-text index nodes are loaded from disk, the buffer that they |
+** are loaded into has the following number of bytes of padding at the end |
+** of it. i.e. if a full-text index node is 900 bytes in size, then a buffer |
+** of 920 bytes is allocated for it. |
+** |
+** This means that if we have a pointer into a buffer containing node data, |
+** it is always safe to read up to two varints from it without risking an |
+** overread, even if the node data is corrupted. |
+*/ |
+#define FTS3_NODE_PADDING (FTS3_VARINT_MAX*2) |
+ |
+/* |
+** Under certain circumstances, b-tree nodes (doclists) can be loaded into |
+** memory incrementally instead of all at once. This can be a big performance |
+** win (reduced IO and CPU) if SQLite stops calling the virtual table xNext() |
+** method before retrieving all query results (as may happen, for example, |
+** if a query has a LIMIT clause). |
+** |
+** Incremental loading is used for b-tree nodes FTS3_NODE_CHUNK_THRESHOLD |
+** bytes and larger. Nodes are loaded in chunks of FTS3_NODE_CHUNKSIZE bytes. |
+** The code is written so that the hard lower-limit for each of these values |
+** is 1. Clearly such small values would be inefficient, but can be useful |
+** for testing purposes. |
+** |
+** If this module is built with SQLITE_TEST defined, these constants may |
+** be overridden at runtime for testing purposes. File fts3_test.c contains |
+** a Tcl interface to read and write the values. |
+*/ |
+#ifdef SQLITE_TEST |
+int test_fts3_node_chunksize = (4*1024); |
+int test_fts3_node_chunk_threshold = (4*1024)*4; |
+# define FTS3_NODE_CHUNKSIZE test_fts3_node_chunksize |
+# define FTS3_NODE_CHUNK_THRESHOLD test_fts3_node_chunk_threshold |
+#else |
+# define FTS3_NODE_CHUNKSIZE (4*1024) |
+# define FTS3_NODE_CHUNK_THRESHOLD (FTS3_NODE_CHUNKSIZE*4) |
+#endif |
+ |
+/* |
+** The two values that may be meaningfully bound to the :1 parameter in |
+** statements SQL_REPLACE_STAT and SQL_SELECT_STAT. |
+*/ |
+#define FTS_STAT_DOCTOTAL 0 |
+#define FTS_STAT_INCRMERGEHINT 1 |
+#define FTS_STAT_AUTOINCRMERGE 2 |
+ |
+/* |
+** If FTS_LOG_MERGES is defined, call sqlite3_log() to report each automatic |
+** and incremental merge operation that takes place. This is used for |
+** debugging FTS only, it should not usually be turned on in production |
+** systems. |
+*/ |
+#ifdef FTS3_LOG_MERGES |
+static void fts3LogMerge(int nMerge, sqlite3_int64 iAbsLevel){ |
+ sqlite3_log(SQLITE_OK, "%d-way merge from level %d", nMerge, (int)iAbsLevel); |
+} |
+#else |
+#define fts3LogMerge(x, y) |
+#endif |
+ |
+ |
+typedef struct PendingList PendingList; |
+typedef struct SegmentNode SegmentNode; |
+typedef struct SegmentWriter SegmentWriter; |
+ |
+/* |
+** An instance of the following data structure is used to build doclists |
+** incrementally. See function fts3PendingListAppend() for details. |
+*/ |
+struct PendingList { |
+ int nData; |
+ char *aData; |
+ int nSpace; |
+ sqlite3_int64 iLastDocid; |
+ sqlite3_int64 iLastCol; |
+ sqlite3_int64 iLastPos; |
+}; |
+ |
+ |
+/* |
+** Each cursor has a (possibly empty) linked list of the following objects. |
+*/ |
+struct Fts3DeferredToken { |
+ Fts3PhraseToken *pToken; /* Pointer to corresponding expr token */ |
+ int iCol; /* Column token must occur in */ |
+ Fts3DeferredToken *pNext; /* Next in list of deferred tokens */ |
+ PendingList *pList; /* Doclist is assembled here */ |
+}; |
+ |
+/* |
+** An instance of this structure is used to iterate through the terms on |
+** a contiguous set of segment b-tree leaf nodes. Although the details of |
+** this structure are only manipulated by code in this file, opaque handles |
+** of type Fts3SegReader* are also used by code in fts3.c to iterate through |
+** terms when querying the full-text index. See functions: |
+** |
+** sqlite3Fts3SegReaderNew() |
+** sqlite3Fts3SegReaderFree() |
+** sqlite3Fts3SegReaderIterate() |
+** |
+** Methods used to manipulate Fts3SegReader structures: |
+** |
+** fts3SegReaderNext() |
+** fts3SegReaderFirstDocid() |
+** fts3SegReaderNextDocid() |
+*/ |
+struct Fts3SegReader { |
+ int iIdx; /* Index within level, or 0x7FFFFFFF for PT */ |
+ u8 bLookup; /* True for a lookup only */ |
+ u8 rootOnly; /* True for a root-only reader */ |
+ |
+ sqlite3_int64 iStartBlock; /* Rowid of first leaf block to traverse */ |
+ sqlite3_int64 iLeafEndBlock; /* Rowid of final leaf block to traverse */ |
+ sqlite3_int64 iEndBlock; /* Rowid of final block in segment (or 0) */ |
+ sqlite3_int64 iCurrentBlock; /* Current leaf block (or 0) */ |
+ |
+ char *aNode; /* Pointer to node data (or NULL) */ |
+ int nNode; /* Size of buffer at aNode (or 0) */ |
+ int nPopulate; /* If >0, bytes of buffer aNode[] loaded */ |
+ sqlite3_blob *pBlob; /* If not NULL, blob handle to read node */ |
+ |
+ Fts3HashElem **ppNextElem; |
+ |
+ /* Variables set by fts3SegReaderNext(). These may be read directly |
+ ** by the caller. They are valid from the time SegmentReaderNew() returns |
+ ** until SegmentReaderNext() returns something other than SQLITE_OK |
+ ** (i.e. SQLITE_DONE). |
+ */ |
+ int nTerm; /* Number of bytes in current term */ |
+ char *zTerm; /* Pointer to current term */ |
+ int nTermAlloc; /* Allocated size of zTerm buffer */ |
+ char *aDoclist; /* Pointer to doclist of current entry */ |
+ int nDoclist; /* Size of doclist in current entry */ |
+ |
+ /* The following variables are used by fts3SegReaderNextDocid() to iterate |
+ ** through the current doclist (aDoclist/nDoclist). |
+ */ |
+ char *pOffsetList; |
+ int nOffsetList; /* For descending pending seg-readers only */ |
+ sqlite3_int64 iDocid; |
+}; |
+ |
+#define fts3SegReaderIsPending(p) ((p)->ppNextElem!=0) |
+#define fts3SegReaderIsRootOnly(p) ((p)->rootOnly!=0) |
+ |
+/* |
+** An instance of this structure is used to create a segment b-tree in the |
+** database. The internal details of this type are only accessed by the |
+** following functions: |
+** |
+** fts3SegWriterAdd() |
+** fts3SegWriterFlush() |
+** fts3SegWriterFree() |
+*/ |
+struct SegmentWriter { |
+ SegmentNode *pTree; /* Pointer to interior tree structure */ |
+ sqlite3_int64 iFirst; /* First slot in %_segments written */ |
+ sqlite3_int64 iFree; /* Next free slot in %_segments */ |
+ char *zTerm; /* Pointer to previous term buffer */ |
+ int nTerm; /* Number of bytes in zTerm */ |
+ int nMalloc; /* Size of malloc'd buffer at zMalloc */ |
+ char *zMalloc; /* Malloc'd space (possibly) used for zTerm */ |
+ int nSize; /* Size of allocation at aData */ |
+ int nData; /* Bytes of data in aData */ |
+ char *aData; /* Pointer to block from malloc() */ |
+ i64 nLeafData; /* Number of bytes of leaf data written */ |
+}; |
+ |
+/* |
+** Type SegmentNode is used by the following three functions to create |
+** the interior part of the segment b+-tree structures (everything except |
+** the leaf nodes). These functions and type are only ever used by code |
+** within the fts3SegWriterXXX() family of functions described above. |
+** |
+** fts3NodeAddTerm() |
+** fts3NodeWrite() |
+** fts3NodeFree() |
+** |
+** When a b+tree is written to the database (either as a result of a merge |
+** or the pending-terms table being flushed), leaves are written into the |
+** database file as soon as they are completely populated. The interior of |
+** the tree is assembled in memory and written out only once all leaves have |
+** been populated and stored. This is Ok, as the b+-tree fanout is usually |
+** very large, meaning that the interior of the tree consumes relatively |
+** little memory. |
+*/ |
+struct SegmentNode { |
+ SegmentNode *pParent; /* Parent node (or NULL for root node) */ |
+ SegmentNode *pRight; /* Pointer to right-sibling */ |
+ SegmentNode *pLeftmost; /* Pointer to left-most node of this depth */ |
+ int nEntry; /* Number of terms written to node so far */ |
+ char *zTerm; /* Pointer to previous term buffer */ |
+ int nTerm; /* Number of bytes in zTerm */ |
+ int nMalloc; /* Size of malloc'd buffer at zMalloc */ |
+ char *zMalloc; /* Malloc'd space (possibly) used for zTerm */ |
+ int nData; /* Bytes of valid data so far */ |
+ char *aData; /* Node data */ |
+}; |
+ |
+/* |
+** Valid values for the second argument to fts3SqlStmt(). |
+*/ |
+#define SQL_DELETE_CONTENT 0 |
+#define SQL_IS_EMPTY 1 |
+#define SQL_DELETE_ALL_CONTENT 2 |
+#define SQL_DELETE_ALL_SEGMENTS 3 |
+#define SQL_DELETE_ALL_SEGDIR 4 |
+#define SQL_DELETE_ALL_DOCSIZE 5 |
+#define SQL_DELETE_ALL_STAT 6 |
+#define SQL_SELECT_CONTENT_BY_ROWID 7 |
+#define SQL_NEXT_SEGMENT_INDEX 8 |
+#define SQL_INSERT_SEGMENTS 9 |
+#define SQL_NEXT_SEGMENTS_ID 10 |
+#define SQL_INSERT_SEGDIR 11 |
+#define SQL_SELECT_LEVEL 12 |
+#define SQL_SELECT_LEVEL_RANGE 13 |
+#define SQL_SELECT_LEVEL_COUNT 14 |
+#define SQL_SELECT_SEGDIR_MAX_LEVEL 15 |
+#define SQL_DELETE_SEGDIR_LEVEL 16 |
+#define SQL_DELETE_SEGMENTS_RANGE 17 |
+#define SQL_CONTENT_INSERT 18 |
+#define SQL_DELETE_DOCSIZE 19 |
+#define SQL_REPLACE_DOCSIZE 20 |
+#define SQL_SELECT_DOCSIZE 21 |
+#define SQL_SELECT_STAT 22 |
+#define SQL_REPLACE_STAT 23 |
+ |
+#define SQL_SELECT_ALL_PREFIX_LEVEL 24 |
+#define SQL_DELETE_ALL_TERMS_SEGDIR 25 |
+#define SQL_DELETE_SEGDIR_RANGE 26 |
+#define SQL_SELECT_ALL_LANGID 27 |
+#define SQL_FIND_MERGE_LEVEL 28 |
+#define SQL_MAX_LEAF_NODE_ESTIMATE 29 |
+#define SQL_DELETE_SEGDIR_ENTRY 30 |
+#define SQL_SHIFT_SEGDIR_ENTRY 31 |
+#define SQL_SELECT_SEGDIR 32 |
+#define SQL_CHOMP_SEGDIR 33 |
+#define SQL_SEGMENT_IS_APPENDABLE 34 |
+#define SQL_SELECT_INDEXES 35 |
+#define SQL_SELECT_MXLEVEL 36 |
+ |
+#define SQL_SELECT_LEVEL_RANGE2 37 |
+#define SQL_UPDATE_LEVEL_IDX 38 |
+#define SQL_UPDATE_LEVEL 39 |
+ |
+/* |
+** This function is used to obtain an SQLite prepared statement handle |
+** for the statement identified by the second argument. If successful, |
+** *pp is set to the requested statement handle and SQLITE_OK returned. |
+** Otherwise, an SQLite error code is returned and *pp is set to 0. |
+** |
+** If argument apVal is not NULL, then it must point to an array with |
+** at least as many entries as the requested statement has bound |
+** parameters. The values are bound to the statements parameters before |
+** returning. |
+*/ |
+static int fts3SqlStmt( |
+ Fts3Table *p, /* Virtual table handle */ |
+ int eStmt, /* One of the SQL_XXX constants above */ |
+ sqlite3_stmt **pp, /* OUT: Statement handle */ |
+ sqlite3_value **apVal /* Values to bind to statement */ |
+){ |
+ const char *azSql[] = { |
+/* 0 */ "DELETE FROM %Q.'%q_content' WHERE rowid = ?", |
+/* 1 */ "SELECT NOT EXISTS(SELECT docid FROM %Q.'%q_content' WHERE rowid!=?)", |
+/* 2 */ "DELETE FROM %Q.'%q_content'", |
+/* 3 */ "DELETE FROM %Q.'%q_segments'", |
+/* 4 */ "DELETE FROM %Q.'%q_segdir'", |
+/* 5 */ "DELETE FROM %Q.'%q_docsize'", |
+/* 6 */ "DELETE FROM %Q.'%q_stat'", |
+/* 7 */ "SELECT %s WHERE rowid=?", |
+/* 8 */ "SELECT (SELECT max(idx) FROM %Q.'%q_segdir' WHERE level = ?) + 1", |
+/* 9 */ "REPLACE INTO %Q.'%q_segments'(blockid, block) VALUES(?, ?)", |
+/* 10 */ "SELECT coalesce((SELECT max(blockid) FROM %Q.'%q_segments') + 1, 1)", |
+/* 11 */ "REPLACE INTO %Q.'%q_segdir' VALUES(?,?,?,?,?,?)", |
+ |
+ /* Return segments in order from oldest to newest.*/ |
+/* 12 */ "SELECT idx, start_block, leaves_end_block, end_block, root " |
+ "FROM %Q.'%q_segdir' WHERE level = ? ORDER BY idx ASC", |
+/* 13 */ "SELECT idx, start_block, leaves_end_block, end_block, root " |
+ "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?" |
+ "ORDER BY level DESC, idx ASC", |
+ |
+/* 14 */ "SELECT count(*) FROM %Q.'%q_segdir' WHERE level = ?", |
+/* 15 */ "SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?", |
+ |
+/* 16 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ?", |
+/* 17 */ "DELETE FROM %Q.'%q_segments' WHERE blockid BETWEEN ? AND ?", |
+/* 18 */ "INSERT INTO %Q.'%q_content' VALUES(%s)", |
+/* 19 */ "DELETE FROM %Q.'%q_docsize' WHERE docid = ?", |
+/* 20 */ "REPLACE INTO %Q.'%q_docsize' VALUES(?,?)", |
+/* 21 */ "SELECT size FROM %Q.'%q_docsize' WHERE docid=?", |
+/* 22 */ "SELECT value FROM %Q.'%q_stat' WHERE id=?", |
+/* 23 */ "REPLACE INTO %Q.'%q_stat' VALUES(?,?)", |
+/* 24 */ "", |
+/* 25 */ "", |
+ |
+/* 26 */ "DELETE FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?", |
+/* 27 */ "SELECT DISTINCT level / (1024 * ?) FROM %Q.'%q_segdir'", |
+ |
+/* This statement is used to determine which level to read the input from |
+** when performing an incremental merge. It returns the absolute level number |
+** of the oldest level in the db that contains at least ? segments. Or, |
+** if no level in the FTS index contains more than ? segments, the statement |
+** returns zero rows. */ |
+/* 28 */ "SELECT level FROM %Q.'%q_segdir' GROUP BY level HAVING count(*)>=?" |
+ " ORDER BY (level %% 1024) ASC LIMIT 1", |
+ |
+/* Estimate the upper limit on the number of leaf nodes in a new segment |
+** created by merging the oldest :2 segments from absolute level :1. See |
+** function sqlite3Fts3Incrmerge() for details. */ |
+/* 29 */ "SELECT 2 * total(1 + leaves_end_block - start_block) " |
+ " FROM %Q.'%q_segdir' WHERE level = ? AND idx < ?", |
+ |
+/* SQL_DELETE_SEGDIR_ENTRY |
+** Delete the %_segdir entry on absolute level :1 with index :2. */ |
+/* 30 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?", |
+ |
+/* SQL_SHIFT_SEGDIR_ENTRY |
+** Modify the idx value for the segment with idx=:3 on absolute level :2 |
+** to :1. */ |
+/* 31 */ "UPDATE %Q.'%q_segdir' SET idx = ? WHERE level=? AND idx=?", |
+ |
+/* SQL_SELECT_SEGDIR |
+** Read a single entry from the %_segdir table. The entry from absolute |
+** level :1 with index value :2. */ |
+/* 32 */ "SELECT idx, start_block, leaves_end_block, end_block, root " |
+ "FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?", |
+ |
+/* SQL_CHOMP_SEGDIR |
+** Update the start_block (:1) and root (:2) fields of the %_segdir |
+** entry located on absolute level :3 with index :4. */ |
+/* 33 */ "UPDATE %Q.'%q_segdir' SET start_block = ?, root = ?" |
+ "WHERE level = ? AND idx = ?", |
+ |
+/* SQL_SEGMENT_IS_APPENDABLE |
+** Return a single row if the segment with end_block=? is appendable. Or |
+** no rows otherwise. */ |
+/* 34 */ "SELECT 1 FROM %Q.'%q_segments' WHERE blockid=? AND block IS NULL", |
+ |
+/* SQL_SELECT_INDEXES |
+** Return the list of valid segment indexes for absolute level ? */ |
+/* 35 */ "SELECT idx FROM %Q.'%q_segdir' WHERE level=? ORDER BY 1 ASC", |
+ |
+/* SQL_SELECT_MXLEVEL |
+** Return the largest relative level in the FTS index or indexes. */ |
+/* 36 */ "SELECT max( level %% 1024 ) FROM %Q.'%q_segdir'", |
+ |
+ /* Return segments in order from oldest to newest.*/ |
+/* 37 */ "SELECT level, idx, end_block " |
+ "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ? " |
+ "ORDER BY level DESC, idx ASC", |
+ |
+ /* Update statements used while promoting segments */ |
+/* 38 */ "UPDATE OR FAIL %Q.'%q_segdir' SET level=-1,idx=? " |
+ "WHERE level=? AND idx=?", |
+/* 39 */ "UPDATE OR FAIL %Q.'%q_segdir' SET level=? WHERE level=-1" |
+ |
+ }; |
+ int rc = SQLITE_OK; |
+ sqlite3_stmt *pStmt; |
+ |
+ assert( SizeofArray(azSql)==SizeofArray(p->aStmt) ); |
+ assert( eStmt<SizeofArray(azSql) && eStmt>=0 ); |
+ |
+ pStmt = p->aStmt[eStmt]; |
+ if( !pStmt ){ |
+ char *zSql; |
+ if( eStmt==SQL_CONTENT_INSERT ){ |
+ zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName, p->zWriteExprlist); |
+ }else if( eStmt==SQL_SELECT_CONTENT_BY_ROWID ){ |
+ zSql = sqlite3_mprintf(azSql[eStmt], p->zReadExprlist); |
+ }else{ |
+ zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName); |
+ } |
+ if( !zSql ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, NULL); |
+ sqlite3_free(zSql); |
+ assert( rc==SQLITE_OK || pStmt==0 ); |
+ p->aStmt[eStmt] = pStmt; |
+ } |
+ } |
+ if( apVal ){ |
+ int i; |
+ int nParam = sqlite3_bind_parameter_count(pStmt); |
+ for(i=0; rc==SQLITE_OK && i<nParam; i++){ |
+ rc = sqlite3_bind_value(pStmt, i+1, apVal[i]); |
+ } |
+ } |
+ *pp = pStmt; |
+ return rc; |
+} |
+ |
+ |
+static int fts3SelectDocsize( |
+ Fts3Table *pTab, /* FTS3 table handle */ |
+ sqlite3_int64 iDocid, /* Docid to bind for SQL_SELECT_DOCSIZE */ |
+ sqlite3_stmt **ppStmt /* OUT: Statement handle */ |
+){ |
+ sqlite3_stmt *pStmt = 0; /* Statement requested from fts3SqlStmt() */ |
+ int rc; /* Return code */ |
+ |
+ rc = fts3SqlStmt(pTab, SQL_SELECT_DOCSIZE, &pStmt, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int64(pStmt, 1, iDocid); |
+ rc = sqlite3_step(pStmt); |
+ if( rc!=SQLITE_ROW || sqlite3_column_type(pStmt, 0)!=SQLITE_BLOB ){ |
+ rc = sqlite3_reset(pStmt); |
+ if( rc==SQLITE_OK ) rc = FTS_CORRUPT_VTAB; |
+ pStmt = 0; |
+ }else{ |
+ rc = SQLITE_OK; |
+ } |
+ } |
+ |
+ *ppStmt = pStmt; |
+ return rc; |
+} |
+ |
+int sqlite3Fts3SelectDoctotal( |
+ Fts3Table *pTab, /* Fts3 table handle */ |
+ sqlite3_stmt **ppStmt /* OUT: Statement handle */ |
+){ |
+ sqlite3_stmt *pStmt = 0; |
+ int rc; |
+ rc = fts3SqlStmt(pTab, SQL_SELECT_STAT, &pStmt, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL); |
+ if( sqlite3_step(pStmt)!=SQLITE_ROW |
+ || sqlite3_column_type(pStmt, 0)!=SQLITE_BLOB |
+ ){ |
+ rc = sqlite3_reset(pStmt); |
+ if( rc==SQLITE_OK ) rc = FTS_CORRUPT_VTAB; |
+ pStmt = 0; |
+ } |
+ } |
+ *ppStmt = pStmt; |
+ return rc; |
+} |
+ |
+int sqlite3Fts3SelectDocsize( |
+ Fts3Table *pTab, /* Fts3 table handle */ |
+ sqlite3_int64 iDocid, /* Docid to read size data for */ |
+ sqlite3_stmt **ppStmt /* OUT: Statement handle */ |
+){ |
+ return fts3SelectDocsize(pTab, iDocid, ppStmt); |
+} |
+ |
+/* |
+** Similar to fts3SqlStmt(). Except, after binding the parameters in |
+** array apVal[] to the SQL statement identified by eStmt, the statement |
+** is executed. |
+** |
+** Returns SQLITE_OK if the statement is successfully executed, or an |
+** SQLite error code otherwise. |
+*/ |
+static void fts3SqlExec( |
+ int *pRC, /* Result code */ |
+ Fts3Table *p, /* The FTS3 table */ |
+ int eStmt, /* Index of statement to evaluate */ |
+ sqlite3_value **apVal /* Parameters to bind */ |
+){ |
+ sqlite3_stmt *pStmt; |
+ int rc; |
+ if( *pRC ) return; |
+ rc = fts3SqlStmt(p, eStmt, &pStmt, apVal); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_step(pStmt); |
+ rc = sqlite3_reset(pStmt); |
+ } |
+ *pRC = rc; |
+} |
+ |
+ |
+/* |
+** This function ensures that the caller has obtained an exclusive |
+** shared-cache table-lock on the %_segdir table. This is required before |
+** writing data to the fts3 table. If this lock is not acquired first, then |
+** the caller may end up attempting to take this lock as part of committing |
+** a transaction, causing SQLite to return SQLITE_LOCKED or |
+** LOCKED_SHAREDCACHEto a COMMIT command. |
+** |
+** It is best to avoid this because if FTS3 returns any error when |
+** committing a transaction, the whole transaction will be rolled back. |
+** And this is not what users expect when they get SQLITE_LOCKED_SHAREDCACHE. |
+** It can still happen if the user locks the underlying tables directly |
+** instead of accessing them via FTS. |
+*/ |
+static int fts3Writelock(Fts3Table *p){ |
+ int rc = SQLITE_OK; |
+ |
+ if( p->nPendingData==0 ){ |
+ sqlite3_stmt *pStmt; |
+ rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pStmt, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_null(pStmt, 1); |
+ sqlite3_step(pStmt); |
+ rc = sqlite3_reset(pStmt); |
+ } |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** FTS maintains a separate indexes for each language-id (a 32-bit integer). |
+** Within each language id, a separate index is maintained to store the |
+** document terms, and each configured prefix size (configured the FTS |
+** "prefix=" option). And each index consists of multiple levels ("relative |
+** levels"). |
+** |
+** All three of these values (the language id, the specific index and the |
+** level within the index) are encoded in 64-bit integer values stored |
+** in the %_segdir table on disk. This function is used to convert three |
+** separate component values into the single 64-bit integer value that |
+** can be used to query the %_segdir table. |
+** |
+** Specifically, each language-id/index combination is allocated 1024 |
+** 64-bit integer level values ("absolute levels"). The main terms index |
+** for language-id 0 is allocate values 0-1023. The first prefix index |
+** (if any) for language-id 0 is allocated values 1024-2047. And so on. |
+** Language 1 indexes are allocated immediately following language 0. |
+** |
+** So, for a system with nPrefix prefix indexes configured, the block of |
+** absolute levels that corresponds to language-id iLangid and index |
+** iIndex starts at absolute level ((iLangid * (nPrefix+1) + iIndex) * 1024). |
+*/ |
+static sqlite3_int64 getAbsoluteLevel( |
+ Fts3Table *p, /* FTS3 table handle */ |
+ int iLangid, /* Language id */ |
+ int iIndex, /* Index in p->aIndex[] */ |
+ int iLevel /* Level of segments */ |
+){ |
+ sqlite3_int64 iBase; /* First absolute level for iLangid/iIndex */ |
+ assert( iLangid>=0 ); |
+ assert( p->nIndex>0 ); |
+ assert( iIndex>=0 && iIndex<p->nIndex ); |
+ |
+ iBase = ((sqlite3_int64)iLangid * p->nIndex + iIndex) * FTS3_SEGDIR_MAXLEVEL; |
+ return iBase + iLevel; |
+} |
+ |
+/* |
+** Set *ppStmt to a statement handle that may be used to iterate through |
+** all rows in the %_segdir table, from oldest to newest. If successful, |
+** return SQLITE_OK. If an error occurs while preparing the statement, |
+** return an SQLite error code. |
+** |
+** There is only ever one instance of this SQL statement compiled for |
+** each FTS3 table. |
+** |
+** The statement returns the following columns from the %_segdir table: |
+** |
+** 0: idx |
+** 1: start_block |
+** 2: leaves_end_block |
+** 3: end_block |
+** 4: root |
+*/ |
+int sqlite3Fts3AllSegdirs( |
+ Fts3Table *p, /* FTS3 table */ |
+ int iLangid, /* Language being queried */ |
+ int iIndex, /* Index for p->aIndex[] */ |
+ int iLevel, /* Level to select (relative level) */ |
+ sqlite3_stmt **ppStmt /* OUT: Compiled statement */ |
+){ |
+ int rc; |
+ sqlite3_stmt *pStmt = 0; |
+ |
+ assert( iLevel==FTS3_SEGCURSOR_ALL || iLevel>=0 ); |
+ assert( iLevel<FTS3_SEGDIR_MAXLEVEL ); |
+ assert( iIndex>=0 && iIndex<p->nIndex ); |
+ |
+ if( iLevel<0 ){ |
+ /* "SELECT * FROM %_segdir WHERE level BETWEEN ? AND ? ORDER BY ..." */ |
+ rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE, &pStmt, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0)); |
+ sqlite3_bind_int64(pStmt, 2, |
+ getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1) |
+ ); |
+ } |
+ }else{ |
+ /* "SELECT * FROM %_segdir WHERE level = ? ORDER BY ..." */ |
+ rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex,iLevel)); |
+ } |
+ } |
+ *ppStmt = pStmt; |
+ return rc; |
+} |
+ |
+ |
+/* |
+** Append a single varint to a PendingList buffer. SQLITE_OK is returned |
+** if successful, or an SQLite error code otherwise. |
+** |
+** This function also serves to allocate the PendingList structure itself. |
+** For example, to create a new PendingList structure containing two |
+** varints: |
+** |
+** PendingList *p = 0; |
+** fts3PendingListAppendVarint(&p, 1); |
+** fts3PendingListAppendVarint(&p, 2); |
+*/ |
+static int fts3PendingListAppendVarint( |
+ PendingList **pp, /* IN/OUT: Pointer to PendingList struct */ |
+ sqlite3_int64 i /* Value to append to data */ |
+){ |
+ PendingList *p = *pp; |
+ |
+ /* Allocate or grow the PendingList as required. */ |
+ if( !p ){ |
+ p = sqlite3_malloc(sizeof(*p) + 100); |
+ if( !p ){ |
+ return SQLITE_NOMEM; |
+ } |
+ p->nSpace = 100; |
+ p->aData = (char *)&p[1]; |
+ p->nData = 0; |
+ } |
+ else if( p->nData+FTS3_VARINT_MAX+1>p->nSpace ){ |
+ int nNew = p->nSpace * 2; |
+ p = sqlite3_realloc(p, sizeof(*p) + nNew); |
+ if( !p ){ |
+ sqlite3_free(*pp); |
+ *pp = 0; |
+ return SQLITE_NOMEM; |
+ } |
+ p->nSpace = nNew; |
+ p->aData = (char *)&p[1]; |
+ } |
+ |
+ /* Append the new serialized varint to the end of the list. */ |
+ p->nData += sqlite3Fts3PutVarint(&p->aData[p->nData], i); |
+ p->aData[p->nData] = '\0'; |
+ *pp = p; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Add a docid/column/position entry to a PendingList structure. Non-zero |
+** is returned if the structure is sqlite3_realloced as part of adding |
+** the entry. Otherwise, zero. |
+** |
+** If an OOM error occurs, *pRc is set to SQLITE_NOMEM before returning. |
+** Zero is always returned in this case. Otherwise, if no OOM error occurs, |
+** it is set to SQLITE_OK. |
+*/ |
+static int fts3PendingListAppend( |
+ PendingList **pp, /* IN/OUT: PendingList structure */ |
+ sqlite3_int64 iDocid, /* Docid for entry to add */ |
+ sqlite3_int64 iCol, /* Column for entry to add */ |
+ sqlite3_int64 iPos, /* Position of term for entry to add */ |
+ int *pRc /* OUT: Return code */ |
+){ |
+ PendingList *p = *pp; |
+ int rc = SQLITE_OK; |
+ |
+ assert( !p || p->iLastDocid<=iDocid ); |
+ |
+ if( !p || p->iLastDocid!=iDocid ){ |
+ sqlite3_int64 iDelta = iDocid - (p ? p->iLastDocid : 0); |
+ if( p ){ |
+ assert( p->nData<p->nSpace ); |
+ assert( p->aData[p->nData]==0 ); |
+ p->nData++; |
+ } |
+ if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iDelta)) ){ |
+ goto pendinglistappend_out; |
+ } |
+ p->iLastCol = -1; |
+ p->iLastPos = 0; |
+ p->iLastDocid = iDocid; |
+ } |
+ if( iCol>0 && p->iLastCol!=iCol ){ |
+ if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, 1)) |
+ || SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iCol)) |
+ ){ |
+ goto pendinglistappend_out; |
+ } |
+ p->iLastCol = iCol; |
+ p->iLastPos = 0; |
+ } |
+ if( iCol>=0 ){ |
+ assert( iPos>p->iLastPos || (iPos==0 && p->iLastPos==0) ); |
+ rc = fts3PendingListAppendVarint(&p, 2+iPos-p->iLastPos); |
+ if( rc==SQLITE_OK ){ |
+ p->iLastPos = iPos; |
+ } |
+ } |
+ |
+ pendinglistappend_out: |
+ *pRc = rc; |
+ if( p!=*pp ){ |
+ *pp = p; |
+ return 1; |
+ } |
+ return 0; |
+} |
+ |
+/* |
+** Free a PendingList object allocated by fts3PendingListAppend(). |
+*/ |
+static void fts3PendingListDelete(PendingList *pList){ |
+ sqlite3_free(pList); |
+} |
+ |
+/* |
+** Add an entry to one of the pending-terms hash tables. |
+*/ |
+static int fts3PendingTermsAddOne( |
+ Fts3Table *p, |
+ int iCol, |
+ int iPos, |
+ Fts3Hash *pHash, /* Pending terms hash table to add entry to */ |
+ const char *zToken, |
+ int nToken |
+){ |
+ PendingList *pList; |
+ int rc = SQLITE_OK; |
+ |
+ pList = (PendingList *)fts3HashFind(pHash, zToken, nToken); |
+ if( pList ){ |
+ p->nPendingData -= (pList->nData + nToken + sizeof(Fts3HashElem)); |
+ } |
+ if( fts3PendingListAppend(&pList, p->iPrevDocid, iCol, iPos, &rc) ){ |
+ if( pList==fts3HashInsert(pHash, zToken, nToken, pList) ){ |
+ /* Malloc failed while inserting the new entry. This can only |
+ ** happen if there was no previous entry for this token. |
+ */ |
+ assert( 0==fts3HashFind(pHash, zToken, nToken) ); |
+ sqlite3_free(pList); |
+ rc = SQLITE_NOMEM; |
+ } |
+ } |
+ if( rc==SQLITE_OK ){ |
+ p->nPendingData += (pList->nData + nToken + sizeof(Fts3HashElem)); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Tokenize the nul-terminated string zText and add all tokens to the |
+** pending-terms hash-table. The docid used is that currently stored in |
+** p->iPrevDocid, and the column is specified by argument iCol. |
+** |
+** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code. |
+*/ |
+static int fts3PendingTermsAdd( |
+ Fts3Table *p, /* Table into which text will be inserted */ |
+ int iLangid, /* Language id to use */ |
+ const char *zText, /* Text of document to be inserted */ |
+ int iCol, /* Column into which text is being inserted */ |
+ u32 *pnWord /* IN/OUT: Incr. by number tokens inserted */ |
+){ |
+ int rc; |
+ int iStart = 0; |
+ int iEnd = 0; |
+ int iPos = 0; |
+ int nWord = 0; |
+ |
+ char const *zToken; |
+ int nToken = 0; |
+ |
+ sqlite3_tokenizer *pTokenizer = p->pTokenizer; |
+ sqlite3_tokenizer_module const *pModule = pTokenizer->pModule; |
+ sqlite3_tokenizer_cursor *pCsr; |
+ int (*xNext)(sqlite3_tokenizer_cursor *pCursor, |
+ const char**,int*,int*,int*,int*); |
+ |
+ assert( pTokenizer && pModule ); |
+ |
+ /* If the user has inserted a NULL value, this function may be called with |
+ ** zText==0. In this case, add zero token entries to the hash table and |
+ ** return early. */ |
+ if( zText==0 ){ |
+ *pnWord = 0; |
+ return SQLITE_OK; |
+ } |
+ |
+ rc = sqlite3Fts3OpenTokenizer(pTokenizer, iLangid, zText, -1, &pCsr); |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ |
+ xNext = pModule->xNext; |
+ while( SQLITE_OK==rc |
+ && SQLITE_OK==(rc = xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos)) |
+ ){ |
+ int i; |
+ if( iPos>=nWord ) nWord = iPos+1; |
+ |
+ /* Positions cannot be negative; we use -1 as a terminator internally. |
+ ** Tokens must have a non-zero length. |
+ */ |
+ if( iPos<0 || !zToken || nToken<=0 ){ |
+ rc = SQLITE_ERROR; |
+ break; |
+ } |
+ |
+ /* Add the term to the terms index */ |
+ rc = fts3PendingTermsAddOne( |
+ p, iCol, iPos, &p->aIndex[0].hPending, zToken, nToken |
+ ); |
+ |
+ /* Add the term to each of the prefix indexes that it is not too |
+ ** short for. */ |
+ for(i=1; rc==SQLITE_OK && i<p->nIndex; i++){ |
+ struct Fts3Index *pIndex = &p->aIndex[i]; |
+ if( nToken<pIndex->nPrefix ) continue; |
+ rc = fts3PendingTermsAddOne( |
+ p, iCol, iPos, &pIndex->hPending, zToken, pIndex->nPrefix |
+ ); |
+ } |
+ } |
+ |
+ pModule->xClose(pCsr); |
+ *pnWord += nWord; |
+ return (rc==SQLITE_DONE ? SQLITE_OK : rc); |
+} |
+ |
+/* |
+** Calling this function indicates that subsequent calls to |
+** fts3PendingTermsAdd() are to add term/position-list pairs for the |
+** contents of the document with docid iDocid. |
+*/ |
+static int fts3PendingTermsDocid( |
+ Fts3Table *p, /* Full-text table handle */ |
+ int iLangid, /* Language id of row being written */ |
+ sqlite_int64 iDocid /* Docid of row being written */ |
+){ |
+ assert( iLangid>=0 ); |
+ |
+ /* TODO(shess) Explore whether partially flushing the buffer on |
+ ** forced-flush would provide better performance. I suspect that if |
+ ** we ordered the doclists by size and flushed the largest until the |
+ ** buffer was half empty, that would let the less frequent terms |
+ ** generate longer doclists. |
+ */ |
+ if( iDocid<=p->iPrevDocid |
+ || p->iPrevLangid!=iLangid |
+ || p->nPendingData>p->nMaxPendingData |
+ ){ |
+ int rc = sqlite3Fts3PendingTermsFlush(p); |
+ if( rc!=SQLITE_OK ) return rc; |
+ } |
+ p->iPrevDocid = iDocid; |
+ p->iPrevLangid = iLangid; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Discard the contents of the pending-terms hash tables. |
+*/ |
+void sqlite3Fts3PendingTermsClear(Fts3Table *p){ |
+ int i; |
+ for(i=0; i<p->nIndex; i++){ |
+ Fts3HashElem *pElem; |
+ Fts3Hash *pHash = &p->aIndex[i].hPending; |
+ for(pElem=fts3HashFirst(pHash); pElem; pElem=fts3HashNext(pElem)){ |
+ PendingList *pList = (PendingList *)fts3HashData(pElem); |
+ fts3PendingListDelete(pList); |
+ } |
+ fts3HashClear(pHash); |
+ } |
+ p->nPendingData = 0; |
+} |
+ |
+/* |
+** This function is called by the xUpdate() method as part of an INSERT |
+** operation. It adds entries for each term in the new record to the |
+** pendingTerms hash table. |
+** |
+** Argument apVal is the same as the similarly named argument passed to |
+** fts3InsertData(). Parameter iDocid is the docid of the new row. |
+*/ |
+static int fts3InsertTerms( |
+ Fts3Table *p, |
+ int iLangid, |
+ sqlite3_value **apVal, |
+ u32 *aSz |
+){ |
+ int i; /* Iterator variable */ |
+ for(i=2; i<p->nColumn+2; i++){ |
+ int iCol = i-2; |
+ if( p->abNotindexed[iCol]==0 ){ |
+ const char *zText = (const char *)sqlite3_value_text(apVal[i]); |
+ int rc = fts3PendingTermsAdd(p, iLangid, zText, iCol, &aSz[iCol]); |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ aSz[p->nColumn] += sqlite3_value_bytes(apVal[i]); |
+ } |
+ } |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** This function is called by the xUpdate() method for an INSERT operation. |
+** The apVal parameter is passed a copy of the apVal argument passed by |
+** SQLite to the xUpdate() method. i.e: |
+** |
+** apVal[0] Not used for INSERT. |
+** apVal[1] rowid |
+** apVal[2] Left-most user-defined column |
+** ... |
+** apVal[p->nColumn+1] Right-most user-defined column |
+** apVal[p->nColumn+2] Hidden column with same name as table |
+** apVal[p->nColumn+3] Hidden "docid" column (alias for rowid) |
+** apVal[p->nColumn+4] Hidden languageid column |
+*/ |
+static int fts3InsertData( |
+ Fts3Table *p, /* Full-text table */ |
+ sqlite3_value **apVal, /* Array of values to insert */ |
+ sqlite3_int64 *piDocid /* OUT: Docid for row just inserted */ |
+){ |
+ int rc; /* Return code */ |
+ sqlite3_stmt *pContentInsert; /* INSERT INTO %_content VALUES(...) */ |
+ |
+ if( p->zContentTbl ){ |
+ sqlite3_value *pRowid = apVal[p->nColumn+3]; |
+ if( sqlite3_value_type(pRowid)==SQLITE_NULL ){ |
+ pRowid = apVal[1]; |
+ } |
+ if( sqlite3_value_type(pRowid)!=SQLITE_INTEGER ){ |
+ return SQLITE_CONSTRAINT; |
+ } |
+ *piDocid = sqlite3_value_int64(pRowid); |
+ return SQLITE_OK; |
+ } |
+ |
+ /* Locate the statement handle used to insert data into the %_content |
+ ** table. The SQL for this statement is: |
+ ** |
+ ** INSERT INTO %_content VALUES(?, ?, ?, ...) |
+ ** |
+ ** The statement features N '?' variables, where N is the number of user |
+ ** defined columns in the FTS3 table, plus one for the docid field. |
+ */ |
+ rc = fts3SqlStmt(p, SQL_CONTENT_INSERT, &pContentInsert, &apVal[1]); |
+ if( rc==SQLITE_OK && p->zLanguageid ){ |
+ rc = sqlite3_bind_int( |
+ pContentInsert, p->nColumn+2, |
+ sqlite3_value_int(apVal[p->nColumn+4]) |
+ ); |
+ } |
+ if( rc!=SQLITE_OK ) return rc; |
+ |
+ /* There is a quirk here. The users INSERT statement may have specified |
+ ** a value for the "rowid" field, for the "docid" field, or for both. |
+ ** Which is a problem, since "rowid" and "docid" are aliases for the |
+ ** same value. For example: |
+ ** |
+ ** INSERT INTO fts3tbl(rowid, docid) VALUES(1, 2); |
+ ** |
+ ** In FTS3, this is an error. It is an error to specify non-NULL values |
+ ** for both docid and some other rowid alias. |
+ */ |
+ if( SQLITE_NULL!=sqlite3_value_type(apVal[3+p->nColumn]) ){ |
+ if( SQLITE_NULL==sqlite3_value_type(apVal[0]) |
+ && SQLITE_NULL!=sqlite3_value_type(apVal[1]) |
+ ){ |
+ /* A rowid/docid conflict. */ |
+ return SQLITE_ERROR; |
+ } |
+ rc = sqlite3_bind_value(pContentInsert, 1, apVal[3+p->nColumn]); |
+ if( rc!=SQLITE_OK ) return rc; |
+ } |
+ |
+ /* Execute the statement to insert the record. Set *piDocid to the |
+ ** new docid value. |
+ */ |
+ sqlite3_step(pContentInsert); |
+ rc = sqlite3_reset(pContentInsert); |
+ |
+ *piDocid = sqlite3_last_insert_rowid(p->db); |
+ return rc; |
+} |
+ |
+ |
+ |
+/* |
+** Remove all data from the FTS3 table. Clear the hash table containing |
+** pending terms. |
+*/ |
+static int fts3DeleteAll(Fts3Table *p, int bContent){ |
+ int rc = SQLITE_OK; /* Return code */ |
+ |
+ /* Discard the contents of the pending-terms hash table. */ |
+ sqlite3Fts3PendingTermsClear(p); |
+ |
+ /* Delete everything from the shadow tables. Except, leave %_content as |
+ ** is if bContent is false. */ |
+ assert( p->zContentTbl==0 || bContent==0 ); |
+ if( bContent ) fts3SqlExec(&rc, p, SQL_DELETE_ALL_CONTENT, 0); |
+ fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGMENTS, 0); |
+ fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGDIR, 0); |
+ if( p->bHasDocsize ){ |
+ fts3SqlExec(&rc, p, SQL_DELETE_ALL_DOCSIZE, 0); |
+ } |
+ if( p->bHasStat ){ |
+ fts3SqlExec(&rc, p, SQL_DELETE_ALL_STAT, 0); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** |
+*/ |
+static int langidFromSelect(Fts3Table *p, sqlite3_stmt *pSelect){ |
+ int iLangid = 0; |
+ if( p->zLanguageid ) iLangid = sqlite3_column_int(pSelect, p->nColumn+1); |
+ return iLangid; |
+} |
+ |
+/* |
+** The first element in the apVal[] array is assumed to contain the docid |
+** (an integer) of a row about to be deleted. Remove all terms from the |
+** full-text index. |
+*/ |
+static void fts3DeleteTerms( |
+ int *pRC, /* Result code */ |
+ Fts3Table *p, /* The FTS table to delete from */ |
+ sqlite3_value *pRowid, /* The docid to be deleted */ |
+ u32 *aSz, /* Sizes of deleted document written here */ |
+ int *pbFound /* OUT: Set to true if row really does exist */ |
+){ |
+ int rc; |
+ sqlite3_stmt *pSelect; |
+ |
+ assert( *pbFound==0 ); |
+ if( *pRC ) return; |
+ rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pSelect, &pRowid); |
+ if( rc==SQLITE_OK ){ |
+ if( SQLITE_ROW==sqlite3_step(pSelect) ){ |
+ int i; |
+ int iLangid = langidFromSelect(p, pSelect); |
+ rc = fts3PendingTermsDocid(p, iLangid, sqlite3_column_int64(pSelect, 0)); |
+ for(i=1; rc==SQLITE_OK && i<=p->nColumn; i++){ |
+ int iCol = i-1; |
+ if( p->abNotindexed[iCol]==0 ){ |
+ const char *zText = (const char *)sqlite3_column_text(pSelect, i); |
+ rc = fts3PendingTermsAdd(p, iLangid, zText, -1, &aSz[iCol]); |
+ aSz[p->nColumn] += sqlite3_column_bytes(pSelect, i); |
+ } |
+ } |
+ if( rc!=SQLITE_OK ){ |
+ sqlite3_reset(pSelect); |
+ *pRC = rc; |
+ return; |
+ } |
+ *pbFound = 1; |
+ } |
+ rc = sqlite3_reset(pSelect); |
+ }else{ |
+ sqlite3_reset(pSelect); |
+ } |
+ *pRC = rc; |
+} |
+ |
+/* |
+** Forward declaration to account for the circular dependency between |
+** functions fts3SegmentMerge() and fts3AllocateSegdirIdx(). |
+*/ |
+static int fts3SegmentMerge(Fts3Table *, int, int, int); |
+ |
+/* |
+** This function allocates a new level iLevel index in the segdir table. |
+** Usually, indexes are allocated within a level sequentially starting |
+** with 0, so the allocated index is one greater than the value returned |
+** by: |
+** |
+** SELECT max(idx) FROM %_segdir WHERE level = :iLevel |
+** |
+** However, if there are already FTS3_MERGE_COUNT indexes at the requested |
+** level, they are merged into a single level (iLevel+1) segment and the |
+** allocated index is 0. |
+** |
+** If successful, *piIdx is set to the allocated index slot and SQLITE_OK |
+** returned. Otherwise, an SQLite error code is returned. |
+*/ |
+static int fts3AllocateSegdirIdx( |
+ Fts3Table *p, |
+ int iLangid, /* Language id */ |
+ int iIndex, /* Index for p->aIndex */ |
+ int iLevel, |
+ int *piIdx |
+){ |
+ int rc; /* Return Code */ |
+ sqlite3_stmt *pNextIdx; /* Query for next idx at level iLevel */ |
+ int iNext = 0; /* Result of query pNextIdx */ |
+ |
+ assert( iLangid>=0 ); |
+ assert( p->nIndex>=1 ); |
+ |
+ /* Set variable iNext to the next available segdir index at level iLevel. */ |
+ rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pNextIdx, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int64( |
+ pNextIdx, 1, getAbsoluteLevel(p, iLangid, iIndex, iLevel) |
+ ); |
+ if( SQLITE_ROW==sqlite3_step(pNextIdx) ){ |
+ iNext = sqlite3_column_int(pNextIdx, 0); |
+ } |
+ rc = sqlite3_reset(pNextIdx); |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ /* If iNext is FTS3_MERGE_COUNT, indicating that level iLevel is already |
+ ** full, merge all segments in level iLevel into a single iLevel+1 |
+ ** segment and allocate (newly freed) index 0 at level iLevel. Otherwise, |
+ ** if iNext is less than FTS3_MERGE_COUNT, allocate index iNext. |
+ */ |
+ if( iNext>=FTS3_MERGE_COUNT ){ |
+ fts3LogMerge(16, getAbsoluteLevel(p, iLangid, iIndex, iLevel)); |
+ rc = fts3SegmentMerge(p, iLangid, iIndex, iLevel); |
+ *piIdx = 0; |
+ }else{ |
+ *piIdx = iNext; |
+ } |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** The %_segments table is declared as follows: |
+** |
+** CREATE TABLE %_segments(blockid INTEGER PRIMARY KEY, block BLOB) |
+** |
+** This function reads data from a single row of the %_segments table. The |
+** specific row is identified by the iBlockid parameter. If paBlob is not |
+** NULL, then a buffer is allocated using sqlite3_malloc() and populated |
+** with the contents of the blob stored in the "block" column of the |
+** identified table row is. Whether or not paBlob is NULL, *pnBlob is set |
+** to the size of the blob in bytes before returning. |
+** |
+** If an error occurs, or the table does not contain the specified row, |
+** an SQLite error code is returned. Otherwise, SQLITE_OK is returned. If |
+** paBlob is non-NULL, then it is the responsibility of the caller to |
+** eventually free the returned buffer. |
+** |
+** This function may leave an open sqlite3_blob* handle in the |
+** Fts3Table.pSegments variable. This handle is reused by subsequent calls |
+** to this function. The handle may be closed by calling the |
+** sqlite3Fts3SegmentsClose() function. Reusing a blob handle is a handy |
+** performance improvement, but the blob handle should always be closed |
+** before control is returned to the user (to prevent a lock being held |
+** on the database file for longer than necessary). Thus, any virtual table |
+** method (xFilter etc.) that may directly or indirectly call this function |
+** must call sqlite3Fts3SegmentsClose() before returning. |
+*/ |
+int sqlite3Fts3ReadBlock( |
+ Fts3Table *p, /* FTS3 table handle */ |
+ sqlite3_int64 iBlockid, /* Access the row with blockid=$iBlockid */ |
+ char **paBlob, /* OUT: Blob data in malloc'd buffer */ |
+ int *pnBlob, /* OUT: Size of blob data */ |
+ int *pnLoad /* OUT: Bytes actually loaded */ |
+){ |
+ int rc; /* Return code */ |
+ |
+ /* pnBlob must be non-NULL. paBlob may be NULL or non-NULL. */ |
+ assert( pnBlob ); |
+ |
+ if( p->pSegments ){ |
+ rc = sqlite3_blob_reopen(p->pSegments, iBlockid); |
+ }else{ |
+ if( 0==p->zSegmentsTbl ){ |
+ p->zSegmentsTbl = sqlite3_mprintf("%s_segments", p->zName); |
+ if( 0==p->zSegmentsTbl ) return SQLITE_NOMEM; |
+ } |
+ rc = sqlite3_blob_open( |
+ p->db, p->zDb, p->zSegmentsTbl, "block", iBlockid, 0, &p->pSegments |
+ ); |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ int nByte = sqlite3_blob_bytes(p->pSegments); |
+ *pnBlob = nByte; |
+ if( paBlob ){ |
+ char *aByte = sqlite3_malloc(nByte + FTS3_NODE_PADDING); |
+ if( !aByte ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ if( pnLoad && nByte>(FTS3_NODE_CHUNK_THRESHOLD) ){ |
+ nByte = FTS3_NODE_CHUNKSIZE; |
+ *pnLoad = nByte; |
+ } |
+ rc = sqlite3_blob_read(p->pSegments, aByte, nByte, 0); |
+ memset(&aByte[nByte], 0, FTS3_NODE_PADDING); |
+ if( rc!=SQLITE_OK ){ |
+ sqlite3_free(aByte); |
+ aByte = 0; |
+ } |
+ } |
+ *paBlob = aByte; |
+ } |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** Close the blob handle at p->pSegments, if it is open. See comments above |
+** the sqlite3Fts3ReadBlock() function for details. |
+*/ |
+void sqlite3Fts3SegmentsClose(Fts3Table *p){ |
+ sqlite3_blob_close(p->pSegments); |
+ p->pSegments = 0; |
+} |
+ |
+static int fts3SegReaderIncrRead(Fts3SegReader *pReader){ |
+ int nRead; /* Number of bytes to read */ |
+ int rc; /* Return code */ |
+ |
+ nRead = MIN(pReader->nNode - pReader->nPopulate, FTS3_NODE_CHUNKSIZE); |
+ rc = sqlite3_blob_read( |
+ pReader->pBlob, |
+ &pReader->aNode[pReader->nPopulate], |
+ nRead, |
+ pReader->nPopulate |
+ ); |
+ |
+ if( rc==SQLITE_OK ){ |
+ pReader->nPopulate += nRead; |
+ memset(&pReader->aNode[pReader->nPopulate], 0, FTS3_NODE_PADDING); |
+ if( pReader->nPopulate==pReader->nNode ){ |
+ sqlite3_blob_close(pReader->pBlob); |
+ pReader->pBlob = 0; |
+ pReader->nPopulate = 0; |
+ } |
+ } |
+ return rc; |
+} |
+ |
+static int fts3SegReaderRequire(Fts3SegReader *pReader, char *pFrom, int nByte){ |
+ int rc = SQLITE_OK; |
+ assert( !pReader->pBlob |
+ || (pFrom>=pReader->aNode && pFrom<&pReader->aNode[pReader->nNode]) |
+ ); |
+ while( pReader->pBlob && rc==SQLITE_OK |
+ && (pFrom - pReader->aNode + nByte)>pReader->nPopulate |
+ ){ |
+ rc = fts3SegReaderIncrRead(pReader); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Set an Fts3SegReader cursor to point at EOF. |
+*/ |
+static void fts3SegReaderSetEof(Fts3SegReader *pSeg){ |
+ if( !fts3SegReaderIsRootOnly(pSeg) ){ |
+ sqlite3_free(pSeg->aNode); |
+ sqlite3_blob_close(pSeg->pBlob); |
+ pSeg->pBlob = 0; |
+ } |
+ pSeg->aNode = 0; |
+} |
+ |
+/* |
+** Move the iterator passed as the first argument to the next term in the |
+** segment. If successful, SQLITE_OK is returned. If there is no next term, |
+** SQLITE_DONE. Otherwise, an SQLite error code. |
+*/ |
+static int fts3SegReaderNext( |
+ Fts3Table *p, |
+ Fts3SegReader *pReader, |
+ int bIncr |
+){ |
+ int rc; /* Return code of various sub-routines */ |
+ char *pNext; /* Cursor variable */ |
+ int nPrefix; /* Number of bytes in term prefix */ |
+ int nSuffix; /* Number of bytes in term suffix */ |
+ |
+ if( !pReader->aDoclist ){ |
+ pNext = pReader->aNode; |
+ }else{ |
+ pNext = &pReader->aDoclist[pReader->nDoclist]; |
+ } |
+ |
+ if( !pNext || pNext>=&pReader->aNode[pReader->nNode] ){ |
+ |
+ if( fts3SegReaderIsPending(pReader) ){ |
+ Fts3HashElem *pElem = *(pReader->ppNextElem); |
+ if( pElem==0 ){ |
+ pReader->aNode = 0; |
+ }else{ |
+ PendingList *pList = (PendingList *)fts3HashData(pElem); |
+ pReader->zTerm = (char *)fts3HashKey(pElem); |
+ pReader->nTerm = fts3HashKeysize(pElem); |
+ pReader->nNode = pReader->nDoclist = pList->nData + 1; |
+ pReader->aNode = pReader->aDoclist = pList->aData; |
+ pReader->ppNextElem++; |
+ assert( pReader->aNode ); |
+ } |
+ return SQLITE_OK; |
+ } |
+ |
+ fts3SegReaderSetEof(pReader); |
+ |
+ /* If iCurrentBlock>=iLeafEndBlock, this is an EOF condition. All leaf |
+ ** blocks have already been traversed. */ |
+ assert( pReader->iCurrentBlock<=pReader->iLeafEndBlock ); |
+ if( pReader->iCurrentBlock>=pReader->iLeafEndBlock ){ |
+ return SQLITE_OK; |
+ } |
+ |
+ rc = sqlite3Fts3ReadBlock( |
+ p, ++pReader->iCurrentBlock, &pReader->aNode, &pReader->nNode, |
+ (bIncr ? &pReader->nPopulate : 0) |
+ ); |
+ if( rc!=SQLITE_OK ) return rc; |
+ assert( pReader->pBlob==0 ); |
+ if( bIncr && pReader->nPopulate<pReader->nNode ){ |
+ pReader->pBlob = p->pSegments; |
+ p->pSegments = 0; |
+ } |
+ pNext = pReader->aNode; |
+ } |
+ |
+ assert( !fts3SegReaderIsPending(pReader) ); |
+ |
+ rc = fts3SegReaderRequire(pReader, pNext, FTS3_VARINT_MAX*2); |
+ if( rc!=SQLITE_OK ) return rc; |
+ |
+ /* Because of the FTS3_NODE_PADDING bytes of padding, the following is |
+ ** safe (no risk of overread) even if the node data is corrupted. */ |
+ pNext += fts3GetVarint32(pNext, &nPrefix); |
+ pNext += fts3GetVarint32(pNext, &nSuffix); |
+ if( nPrefix<0 || nSuffix<=0 |
+ || &pNext[nSuffix]>&pReader->aNode[pReader->nNode] |
+ ){ |
+ return FTS_CORRUPT_VTAB; |
+ } |
+ |
+ if( nPrefix+nSuffix>pReader->nTermAlloc ){ |
+ int nNew = (nPrefix+nSuffix)*2; |
+ char *zNew = sqlite3_realloc(pReader->zTerm, nNew); |
+ if( !zNew ){ |
+ return SQLITE_NOMEM; |
+ } |
+ pReader->zTerm = zNew; |
+ pReader->nTermAlloc = nNew; |
+ } |
+ |
+ rc = fts3SegReaderRequire(pReader, pNext, nSuffix+FTS3_VARINT_MAX); |
+ if( rc!=SQLITE_OK ) return rc; |
+ |
+ memcpy(&pReader->zTerm[nPrefix], pNext, nSuffix); |
+ pReader->nTerm = nPrefix+nSuffix; |
+ pNext += nSuffix; |
+ pNext += fts3GetVarint32(pNext, &pReader->nDoclist); |
+ pReader->aDoclist = pNext; |
+ pReader->pOffsetList = 0; |
+ |
+ /* Check that the doclist does not appear to extend past the end of the |
+ ** b-tree node. And that the final byte of the doclist is 0x00. If either |
+ ** of these statements is untrue, then the data structure is corrupt. |
+ */ |
+ if( &pReader->aDoclist[pReader->nDoclist]>&pReader->aNode[pReader->nNode] |
+ || (pReader->nPopulate==0 && pReader->aDoclist[pReader->nDoclist-1]) |
+ ){ |
+ return FTS_CORRUPT_VTAB; |
+ } |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Set the SegReader to point to the first docid in the doclist associated |
+** with the current term. |
+*/ |
+static int fts3SegReaderFirstDocid(Fts3Table *pTab, Fts3SegReader *pReader){ |
+ int rc = SQLITE_OK; |
+ assert( pReader->aDoclist ); |
+ assert( !pReader->pOffsetList ); |
+ if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){ |
+ u8 bEof = 0; |
+ pReader->iDocid = 0; |
+ pReader->nOffsetList = 0; |
+ sqlite3Fts3DoclistPrev(0, |
+ pReader->aDoclist, pReader->nDoclist, &pReader->pOffsetList, |
+ &pReader->iDocid, &pReader->nOffsetList, &bEof |
+ ); |
+ }else{ |
+ rc = fts3SegReaderRequire(pReader, pReader->aDoclist, FTS3_VARINT_MAX); |
+ if( rc==SQLITE_OK ){ |
+ int n = sqlite3Fts3GetVarint(pReader->aDoclist, &pReader->iDocid); |
+ pReader->pOffsetList = &pReader->aDoclist[n]; |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Advance the SegReader to point to the next docid in the doclist |
+** associated with the current term. |
+** |
+** If arguments ppOffsetList and pnOffsetList are not NULL, then |
+** *ppOffsetList is set to point to the first column-offset list |
+** in the doclist entry (i.e. immediately past the docid varint). |
+** *pnOffsetList is set to the length of the set of column-offset |
+** lists, not including the nul-terminator byte. For example: |
+*/ |
+static int fts3SegReaderNextDocid( |
+ Fts3Table *pTab, |
+ Fts3SegReader *pReader, /* Reader to advance to next docid */ |
+ char **ppOffsetList, /* OUT: Pointer to current position-list */ |
+ int *pnOffsetList /* OUT: Length of *ppOffsetList in bytes */ |
+){ |
+ int rc = SQLITE_OK; |
+ char *p = pReader->pOffsetList; |
+ char c = 0; |
+ |
+ assert( p ); |
+ |
+ if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){ |
+ /* A pending-terms seg-reader for an FTS4 table that uses order=desc. |
+ ** Pending-terms doclists are always built up in ascending order, so |
+ ** we have to iterate through them backwards here. */ |
+ u8 bEof = 0; |
+ if( ppOffsetList ){ |
+ *ppOffsetList = pReader->pOffsetList; |
+ *pnOffsetList = pReader->nOffsetList - 1; |
+ } |
+ sqlite3Fts3DoclistPrev(0, |
+ pReader->aDoclist, pReader->nDoclist, &p, &pReader->iDocid, |
+ &pReader->nOffsetList, &bEof |
+ ); |
+ if( bEof ){ |
+ pReader->pOffsetList = 0; |
+ }else{ |
+ pReader->pOffsetList = p; |
+ } |
+ }else{ |
+ char *pEnd = &pReader->aDoclist[pReader->nDoclist]; |
+ |
+ /* Pointer p currently points at the first byte of an offset list. The |
+ ** following block advances it to point one byte past the end of |
+ ** the same offset list. */ |
+ while( 1 ){ |
+ |
+ /* The following line of code (and the "p++" below the while() loop) is |
+ ** normally all that is required to move pointer p to the desired |
+ ** position. The exception is if this node is being loaded from disk |
+ ** incrementally and pointer "p" now points to the first byte past |
+ ** the populated part of pReader->aNode[]. |
+ */ |
+ while( *p | c ) c = *p++ & 0x80; |
+ assert( *p==0 ); |
+ |
+ if( pReader->pBlob==0 || p<&pReader->aNode[pReader->nPopulate] ) break; |
+ rc = fts3SegReaderIncrRead(pReader); |
+ if( rc!=SQLITE_OK ) return rc; |
+ } |
+ p++; |
+ |
+ /* If required, populate the output variables with a pointer to and the |
+ ** size of the previous offset-list. |
+ */ |
+ if( ppOffsetList ){ |
+ *ppOffsetList = pReader->pOffsetList; |
+ *pnOffsetList = (int)(p - pReader->pOffsetList - 1); |
+ } |
+ |
+ /* List may have been edited in place by fts3EvalNearTrim() */ |
+ while( p<pEnd && *p==0 ) p++; |
+ |
+ /* If there are no more entries in the doclist, set pOffsetList to |
+ ** NULL. Otherwise, set Fts3SegReader.iDocid to the next docid and |
+ ** Fts3SegReader.pOffsetList to point to the next offset list before |
+ ** returning. |
+ */ |
+ if( p>=pEnd ){ |
+ pReader->pOffsetList = 0; |
+ }else{ |
+ rc = fts3SegReaderRequire(pReader, p, FTS3_VARINT_MAX); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_int64 iDelta; |
+ pReader->pOffsetList = p + sqlite3Fts3GetVarint(p, &iDelta); |
+ if( pTab->bDescIdx ){ |
+ pReader->iDocid -= iDelta; |
+ }else{ |
+ pReader->iDocid += iDelta; |
+ } |
+ } |
+ } |
+ } |
+ |
+ return SQLITE_OK; |
+} |
+ |
+ |
+int sqlite3Fts3MsrOvfl( |
+ Fts3Cursor *pCsr, |
+ Fts3MultiSegReader *pMsr, |
+ int *pnOvfl |
+){ |
+ Fts3Table *p = (Fts3Table*)pCsr->base.pVtab; |
+ int nOvfl = 0; |
+ int ii; |
+ int rc = SQLITE_OK; |
+ int pgsz = p->nPgsz; |
+ |
+ assert( p->bFts4 ); |
+ assert( pgsz>0 ); |
+ |
+ for(ii=0; rc==SQLITE_OK && ii<pMsr->nSegment; ii++){ |
+ Fts3SegReader *pReader = pMsr->apSegment[ii]; |
+ if( !fts3SegReaderIsPending(pReader) |
+ && !fts3SegReaderIsRootOnly(pReader) |
+ ){ |
+ sqlite3_int64 jj; |
+ for(jj=pReader->iStartBlock; jj<=pReader->iLeafEndBlock; jj++){ |
+ int nBlob; |
+ rc = sqlite3Fts3ReadBlock(p, jj, 0, &nBlob, 0); |
+ if( rc!=SQLITE_OK ) break; |
+ if( (nBlob+35)>pgsz ){ |
+ nOvfl += (nBlob + 34)/pgsz; |
+ } |
+ } |
+ } |
+ } |
+ *pnOvfl = nOvfl; |
+ return rc; |
+} |
+ |
+/* |
+** Free all allocations associated with the iterator passed as the |
+** second argument. |
+*/ |
+void sqlite3Fts3SegReaderFree(Fts3SegReader *pReader){ |
+ if( pReader && !fts3SegReaderIsPending(pReader) ){ |
+ sqlite3_free(pReader->zTerm); |
+ if( !fts3SegReaderIsRootOnly(pReader) ){ |
+ sqlite3_free(pReader->aNode); |
+ sqlite3_blob_close(pReader->pBlob); |
+ } |
+ } |
+ sqlite3_free(pReader); |
+} |
+ |
+/* |
+** Allocate a new SegReader object. |
+*/ |
+int sqlite3Fts3SegReaderNew( |
+ int iAge, /* Segment "age". */ |
+ int bLookup, /* True for a lookup only */ |
+ sqlite3_int64 iStartLeaf, /* First leaf to traverse */ |
+ sqlite3_int64 iEndLeaf, /* Final leaf to traverse */ |
+ sqlite3_int64 iEndBlock, /* Final block of segment */ |
+ const char *zRoot, /* Buffer containing root node */ |
+ int nRoot, /* Size of buffer containing root node */ |
+ Fts3SegReader **ppReader /* OUT: Allocated Fts3SegReader */ |
+){ |
+ Fts3SegReader *pReader; /* Newly allocated SegReader object */ |
+ int nExtra = 0; /* Bytes to allocate segment root node */ |
+ |
+ assert( iStartLeaf<=iEndLeaf ); |
+ if( iStartLeaf==0 ){ |
+ nExtra = nRoot + FTS3_NODE_PADDING; |
+ } |
+ |
+ pReader = (Fts3SegReader *)sqlite3_malloc(sizeof(Fts3SegReader) + nExtra); |
+ if( !pReader ){ |
+ return SQLITE_NOMEM; |
+ } |
+ memset(pReader, 0, sizeof(Fts3SegReader)); |
+ pReader->iIdx = iAge; |
+ pReader->bLookup = bLookup!=0; |
+ pReader->iStartBlock = iStartLeaf; |
+ pReader->iLeafEndBlock = iEndLeaf; |
+ pReader->iEndBlock = iEndBlock; |
+ |
+ if( nExtra ){ |
+ /* The entire segment is stored in the root node. */ |
+ pReader->aNode = (char *)&pReader[1]; |
+ pReader->rootOnly = 1; |
+ pReader->nNode = nRoot; |
+ memcpy(pReader->aNode, zRoot, nRoot); |
+ memset(&pReader->aNode[nRoot], 0, FTS3_NODE_PADDING); |
+ }else{ |
+ pReader->iCurrentBlock = iStartLeaf-1; |
+ } |
+ *ppReader = pReader; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** This is a comparison function used as a qsort() callback when sorting |
+** an array of pending terms by term. This occurs as part of flushing |
+** the contents of the pending-terms hash table to the database. |
+*/ |
+static int fts3CompareElemByTerm(const void *lhs, const void *rhs){ |
+ char *z1 = fts3HashKey(*(Fts3HashElem **)lhs); |
+ char *z2 = fts3HashKey(*(Fts3HashElem **)rhs); |
+ int n1 = fts3HashKeysize(*(Fts3HashElem **)lhs); |
+ int n2 = fts3HashKeysize(*(Fts3HashElem **)rhs); |
+ |
+ int n = (n1<n2 ? n1 : n2); |
+ int c = memcmp(z1, z2, n); |
+ if( c==0 ){ |
+ c = n1 - n2; |
+ } |
+ return c; |
+} |
+ |
+/* |
+** This function is used to allocate an Fts3SegReader that iterates through |
+** a subset of the terms stored in the Fts3Table.pendingTerms array. |
+** |
+** If the isPrefixIter parameter is zero, then the returned SegReader iterates |
+** through each term in the pending-terms table. Or, if isPrefixIter is |
+** non-zero, it iterates through each term and its prefixes. For example, if |
+** the pending terms hash table contains the terms "sqlite", "mysql" and |
+** "firebird", then the iterator visits the following 'terms' (in the order |
+** shown): |
+** |
+** f fi fir fire fireb firebi firebir firebird |
+** m my mys mysq mysql |
+** s sq sql sqli sqlit sqlite |
+** |
+** Whereas if isPrefixIter is zero, the terms visited are: |
+** |
+** firebird mysql sqlite |
+*/ |
+int sqlite3Fts3SegReaderPending( |
+ Fts3Table *p, /* Virtual table handle */ |
+ int iIndex, /* Index for p->aIndex */ |
+ const char *zTerm, /* Term to search for */ |
+ int nTerm, /* Size of buffer zTerm */ |
+ int bPrefix, /* True for a prefix iterator */ |
+ Fts3SegReader **ppReader /* OUT: SegReader for pending-terms */ |
+){ |
+ Fts3SegReader *pReader = 0; /* Fts3SegReader object to return */ |
+ Fts3HashElem *pE; /* Iterator variable */ |
+ Fts3HashElem **aElem = 0; /* Array of term hash entries to scan */ |
+ int nElem = 0; /* Size of array at aElem */ |
+ int rc = SQLITE_OK; /* Return Code */ |
+ Fts3Hash *pHash; |
+ |
+ pHash = &p->aIndex[iIndex].hPending; |
+ if( bPrefix ){ |
+ int nAlloc = 0; /* Size of allocated array at aElem */ |
+ |
+ for(pE=fts3HashFirst(pHash); pE; pE=fts3HashNext(pE)){ |
+ char *zKey = (char *)fts3HashKey(pE); |
+ int nKey = fts3HashKeysize(pE); |
+ if( nTerm==0 || (nKey>=nTerm && 0==memcmp(zKey, zTerm, nTerm)) ){ |
+ if( nElem==nAlloc ){ |
+ Fts3HashElem **aElem2; |
+ nAlloc += 16; |
+ aElem2 = (Fts3HashElem **)sqlite3_realloc( |
+ aElem, nAlloc*sizeof(Fts3HashElem *) |
+ ); |
+ if( !aElem2 ){ |
+ rc = SQLITE_NOMEM; |
+ nElem = 0; |
+ break; |
+ } |
+ aElem = aElem2; |
+ } |
+ |
+ aElem[nElem++] = pE; |
+ } |
+ } |
+ |
+ /* If more than one term matches the prefix, sort the Fts3HashElem |
+ ** objects in term order using qsort(). This uses the same comparison |
+ ** callback as is used when flushing terms to disk. |
+ */ |
+ if( nElem>1 ){ |
+ qsort(aElem, nElem, sizeof(Fts3HashElem *), fts3CompareElemByTerm); |
+ } |
+ |
+ }else{ |
+ /* The query is a simple term lookup that matches at most one term in |
+ ** the index. All that is required is a straight hash-lookup. |
+ ** |
+ ** Because the stack address of pE may be accessed via the aElem pointer |
+ ** below, the "Fts3HashElem *pE" must be declared so that it is valid |
+ ** within this entire function, not just this "else{...}" block. |
+ */ |
+ pE = fts3HashFindElem(pHash, zTerm, nTerm); |
+ if( pE ){ |
+ aElem = &pE; |
+ nElem = 1; |
+ } |
+ } |
+ |
+ if( nElem>0 ){ |
+ int nByte = sizeof(Fts3SegReader) + (nElem+1)*sizeof(Fts3HashElem *); |
+ pReader = (Fts3SegReader *)sqlite3_malloc(nByte); |
+ if( !pReader ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ memset(pReader, 0, nByte); |
+ pReader->iIdx = 0x7FFFFFFF; |
+ pReader->ppNextElem = (Fts3HashElem **)&pReader[1]; |
+ memcpy(pReader->ppNextElem, aElem, nElem*sizeof(Fts3HashElem *)); |
+ } |
+ } |
+ |
+ if( bPrefix ){ |
+ sqlite3_free(aElem); |
+ } |
+ *ppReader = pReader; |
+ return rc; |
+} |
+ |
+/* |
+** Compare the entries pointed to by two Fts3SegReader structures. |
+** Comparison is as follows: |
+** |
+** 1) EOF is greater than not EOF. |
+** |
+** 2) The current terms (if any) are compared using memcmp(). If one |
+** term is a prefix of another, the longer term is considered the |
+** larger. |
+** |
+** 3) By segment age. An older segment is considered larger. |
+*/ |
+static int fts3SegReaderCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){ |
+ int rc; |
+ if( pLhs->aNode && pRhs->aNode ){ |
+ int rc2 = pLhs->nTerm - pRhs->nTerm; |
+ if( rc2<0 ){ |
+ rc = memcmp(pLhs->zTerm, pRhs->zTerm, pLhs->nTerm); |
+ }else{ |
+ rc = memcmp(pLhs->zTerm, pRhs->zTerm, pRhs->nTerm); |
+ } |
+ if( rc==0 ){ |
+ rc = rc2; |
+ } |
+ }else{ |
+ rc = (pLhs->aNode==0) - (pRhs->aNode==0); |
+ } |
+ if( rc==0 ){ |
+ rc = pRhs->iIdx - pLhs->iIdx; |
+ } |
+ assert( rc!=0 ); |
+ return rc; |
+} |
+ |
+/* |
+** A different comparison function for SegReader structures. In this |
+** version, it is assumed that each SegReader points to an entry in |
+** a doclist for identical terms. Comparison is made as follows: |
+** |
+** 1) EOF (end of doclist in this case) is greater than not EOF. |
+** |
+** 2) By current docid. |
+** |
+** 3) By segment age. An older segment is considered larger. |
+*/ |
+static int fts3SegReaderDoclistCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){ |
+ int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0); |
+ if( rc==0 ){ |
+ if( pLhs->iDocid==pRhs->iDocid ){ |
+ rc = pRhs->iIdx - pLhs->iIdx; |
+ }else{ |
+ rc = (pLhs->iDocid > pRhs->iDocid) ? 1 : -1; |
+ } |
+ } |
+ assert( pLhs->aNode && pRhs->aNode ); |
+ return rc; |
+} |
+static int fts3SegReaderDoclistCmpRev(Fts3SegReader *pLhs, Fts3SegReader *pRhs){ |
+ int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0); |
+ if( rc==0 ){ |
+ if( pLhs->iDocid==pRhs->iDocid ){ |
+ rc = pRhs->iIdx - pLhs->iIdx; |
+ }else{ |
+ rc = (pLhs->iDocid < pRhs->iDocid) ? 1 : -1; |
+ } |
+ } |
+ assert( pLhs->aNode && pRhs->aNode ); |
+ return rc; |
+} |
+ |
+/* |
+** Compare the term that the Fts3SegReader object passed as the first argument |
+** points to with the term specified by arguments zTerm and nTerm. |
+** |
+** If the pSeg iterator is already at EOF, return 0. Otherwise, return |
+** -ve if the pSeg term is less than zTerm/nTerm, 0 if the two terms are |
+** equal, or +ve if the pSeg term is greater than zTerm/nTerm. |
+*/ |
+static int fts3SegReaderTermCmp( |
+ Fts3SegReader *pSeg, /* Segment reader object */ |
+ const char *zTerm, /* Term to compare to */ |
+ int nTerm /* Size of term zTerm in bytes */ |
+){ |
+ int res = 0; |
+ if( pSeg->aNode ){ |
+ if( pSeg->nTerm>nTerm ){ |
+ res = memcmp(pSeg->zTerm, zTerm, nTerm); |
+ }else{ |
+ res = memcmp(pSeg->zTerm, zTerm, pSeg->nTerm); |
+ } |
+ if( res==0 ){ |
+ res = pSeg->nTerm-nTerm; |
+ } |
+ } |
+ return res; |
+} |
+ |
+/* |
+** Argument apSegment is an array of nSegment elements. It is known that |
+** the final (nSegment-nSuspect) members are already in sorted order |
+** (according to the comparison function provided). This function shuffles |
+** the array around until all entries are in sorted order. |
+*/ |
+static void fts3SegReaderSort( |
+ Fts3SegReader **apSegment, /* Array to sort entries of */ |
+ int nSegment, /* Size of apSegment array */ |
+ int nSuspect, /* Unsorted entry count */ |
+ int (*xCmp)(Fts3SegReader *, Fts3SegReader *) /* Comparison function */ |
+){ |
+ int i; /* Iterator variable */ |
+ |
+ assert( nSuspect<=nSegment ); |
+ |
+ if( nSuspect==nSegment ) nSuspect--; |
+ for(i=nSuspect-1; i>=0; i--){ |
+ int j; |
+ for(j=i; j<(nSegment-1); j++){ |
+ Fts3SegReader *pTmp; |
+ if( xCmp(apSegment[j], apSegment[j+1])<0 ) break; |
+ pTmp = apSegment[j+1]; |
+ apSegment[j+1] = apSegment[j]; |
+ apSegment[j] = pTmp; |
+ } |
+ } |
+ |
+#ifndef NDEBUG |
+ /* Check that the list really is sorted now. */ |
+ for(i=0; i<(nSuspect-1); i++){ |
+ assert( xCmp(apSegment[i], apSegment[i+1])<0 ); |
+ } |
+#endif |
+} |
+ |
+/* |
+** Insert a record into the %_segments table. |
+*/ |
+static int fts3WriteSegment( |
+ Fts3Table *p, /* Virtual table handle */ |
+ sqlite3_int64 iBlock, /* Block id for new block */ |
+ char *z, /* Pointer to buffer containing block data */ |
+ int n /* Size of buffer z in bytes */ |
+){ |
+ sqlite3_stmt *pStmt; |
+ int rc = fts3SqlStmt(p, SQL_INSERT_SEGMENTS, &pStmt, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int64(pStmt, 1, iBlock); |
+ sqlite3_bind_blob(pStmt, 2, z, n, SQLITE_STATIC); |
+ sqlite3_step(pStmt); |
+ rc = sqlite3_reset(pStmt); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Find the largest relative level number in the table. If successful, set |
+** *pnMax to this value and return SQLITE_OK. Otherwise, if an error occurs, |
+** set *pnMax to zero and return an SQLite error code. |
+*/ |
+int sqlite3Fts3MaxLevel(Fts3Table *p, int *pnMax){ |
+ int rc; |
+ int mxLevel = 0; |
+ sqlite3_stmt *pStmt = 0; |
+ |
+ rc = fts3SqlStmt(p, SQL_SELECT_MXLEVEL, &pStmt, 0); |
+ if( rc==SQLITE_OK ){ |
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){ |
+ mxLevel = sqlite3_column_int(pStmt, 0); |
+ } |
+ rc = sqlite3_reset(pStmt); |
+ } |
+ *pnMax = mxLevel; |
+ return rc; |
+} |
+ |
+/* |
+** Insert a record into the %_segdir table. |
+*/ |
+static int fts3WriteSegdir( |
+ Fts3Table *p, /* Virtual table handle */ |
+ sqlite3_int64 iLevel, /* Value for "level" field (absolute level) */ |
+ int iIdx, /* Value for "idx" field */ |
+ sqlite3_int64 iStartBlock, /* Value for "start_block" field */ |
+ sqlite3_int64 iLeafEndBlock, /* Value for "leaves_end_block" field */ |
+ sqlite3_int64 iEndBlock, /* Value for "end_block" field */ |
+ sqlite3_int64 nLeafData, /* Bytes of leaf data in segment */ |
+ char *zRoot, /* Blob value for "root" field */ |
+ int nRoot /* Number of bytes in buffer zRoot */ |
+){ |
+ sqlite3_stmt *pStmt; |
+ int rc = fts3SqlStmt(p, SQL_INSERT_SEGDIR, &pStmt, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int64(pStmt, 1, iLevel); |
+ sqlite3_bind_int(pStmt, 2, iIdx); |
+ sqlite3_bind_int64(pStmt, 3, iStartBlock); |
+ sqlite3_bind_int64(pStmt, 4, iLeafEndBlock); |
+ if( nLeafData==0 ){ |
+ sqlite3_bind_int64(pStmt, 5, iEndBlock); |
+ }else{ |
+ char *zEnd = sqlite3_mprintf("%lld %lld", iEndBlock, nLeafData); |
+ if( !zEnd ) return SQLITE_NOMEM; |
+ sqlite3_bind_text(pStmt, 5, zEnd, -1, sqlite3_free); |
+ } |
+ sqlite3_bind_blob(pStmt, 6, zRoot, nRoot, SQLITE_STATIC); |
+ sqlite3_step(pStmt); |
+ rc = sqlite3_reset(pStmt); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Return the size of the common prefix (if any) shared by zPrev and |
+** zNext, in bytes. For example, |
+** |
+** fts3PrefixCompress("abc", 3, "abcdef", 6) // returns 3 |
+** fts3PrefixCompress("abX", 3, "abcdef", 6) // returns 2 |
+** fts3PrefixCompress("abX", 3, "Xbcdef", 6) // returns 0 |
+*/ |
+static int fts3PrefixCompress( |
+ const char *zPrev, /* Buffer containing previous term */ |
+ int nPrev, /* Size of buffer zPrev in bytes */ |
+ const char *zNext, /* Buffer containing next term */ |
+ int nNext /* Size of buffer zNext in bytes */ |
+){ |
+ int n; |
+ UNUSED_PARAMETER(nNext); |
+ for(n=0; n<nPrev && zPrev[n]==zNext[n]; n++); |
+ return n; |
+} |
+ |
+/* |
+** Add term zTerm to the SegmentNode. It is guaranteed that zTerm is larger |
+** (according to memcmp) than the previous term. |
+*/ |
+static int fts3NodeAddTerm( |
+ Fts3Table *p, /* Virtual table handle */ |
+ SegmentNode **ppTree, /* IN/OUT: SegmentNode handle */ |
+ int isCopyTerm, /* True if zTerm/nTerm is transient */ |
+ const char *zTerm, /* Pointer to buffer containing term */ |
+ int nTerm /* Size of term in bytes */ |
+){ |
+ SegmentNode *pTree = *ppTree; |
+ int rc; |
+ SegmentNode *pNew; |
+ |
+ /* First try to append the term to the current node. Return early if |
+ ** this is possible. |
+ */ |
+ if( pTree ){ |
+ int nData = pTree->nData; /* Current size of node in bytes */ |
+ int nReq = nData; /* Required space after adding zTerm */ |
+ int nPrefix; /* Number of bytes of prefix compression */ |
+ int nSuffix; /* Suffix length */ |
+ |
+ nPrefix = fts3PrefixCompress(pTree->zTerm, pTree->nTerm, zTerm, nTerm); |
+ nSuffix = nTerm-nPrefix; |
+ |
+ nReq += sqlite3Fts3VarintLen(nPrefix)+sqlite3Fts3VarintLen(nSuffix)+nSuffix; |
+ if( nReq<=p->nNodeSize || !pTree->zTerm ){ |
+ |
+ if( nReq>p->nNodeSize ){ |
+ /* An unusual case: this is the first term to be added to the node |
+ ** and the static node buffer (p->nNodeSize bytes) is not large |
+ ** enough. Use a separately malloced buffer instead This wastes |
+ ** p->nNodeSize bytes, but since this scenario only comes about when |
+ ** the database contain two terms that share a prefix of almost 2KB, |
+ ** this is not expected to be a serious problem. |
+ */ |
+ assert( pTree->aData==(char *)&pTree[1] ); |
+ pTree->aData = (char *)sqlite3_malloc(nReq); |
+ if( !pTree->aData ){ |
+ return SQLITE_NOMEM; |
+ } |
+ } |
+ |
+ if( pTree->zTerm ){ |
+ /* There is no prefix-length field for first term in a node */ |
+ nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nPrefix); |
+ } |
+ |
+ nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nSuffix); |
+ memcpy(&pTree->aData[nData], &zTerm[nPrefix], nSuffix); |
+ pTree->nData = nData + nSuffix; |
+ pTree->nEntry++; |
+ |
+ if( isCopyTerm ){ |
+ if( pTree->nMalloc<nTerm ){ |
+ char *zNew = sqlite3_realloc(pTree->zMalloc, nTerm*2); |
+ if( !zNew ){ |
+ return SQLITE_NOMEM; |
+ } |
+ pTree->nMalloc = nTerm*2; |
+ pTree->zMalloc = zNew; |
+ } |
+ pTree->zTerm = pTree->zMalloc; |
+ memcpy(pTree->zTerm, zTerm, nTerm); |
+ pTree->nTerm = nTerm; |
+ }else{ |
+ pTree->zTerm = (char *)zTerm; |
+ pTree->nTerm = nTerm; |
+ } |
+ return SQLITE_OK; |
+ } |
+ } |
+ |
+ /* If control flows to here, it was not possible to append zTerm to the |
+ ** current node. Create a new node (a right-sibling of the current node). |
+ ** If this is the first node in the tree, the term is added to it. |
+ ** |
+ ** Otherwise, the term is not added to the new node, it is left empty for |
+ ** now. Instead, the term is inserted into the parent of pTree. If pTree |
+ ** has no parent, one is created here. |
+ */ |
+ pNew = (SegmentNode *)sqlite3_malloc(sizeof(SegmentNode) + p->nNodeSize); |
+ if( !pNew ){ |
+ return SQLITE_NOMEM; |
+ } |
+ memset(pNew, 0, sizeof(SegmentNode)); |
+ pNew->nData = 1 + FTS3_VARINT_MAX; |
+ pNew->aData = (char *)&pNew[1]; |
+ |
+ if( pTree ){ |
+ SegmentNode *pParent = pTree->pParent; |
+ rc = fts3NodeAddTerm(p, &pParent, isCopyTerm, zTerm, nTerm); |
+ if( pTree->pParent==0 ){ |
+ pTree->pParent = pParent; |
+ } |
+ pTree->pRight = pNew; |
+ pNew->pLeftmost = pTree->pLeftmost; |
+ pNew->pParent = pParent; |
+ pNew->zMalloc = pTree->zMalloc; |
+ pNew->nMalloc = pTree->nMalloc; |
+ pTree->zMalloc = 0; |
+ }else{ |
+ pNew->pLeftmost = pNew; |
+ rc = fts3NodeAddTerm(p, &pNew, isCopyTerm, zTerm, nTerm); |
+ } |
+ |
+ *ppTree = pNew; |
+ return rc; |
+} |
+ |
+/* |
+** Helper function for fts3NodeWrite(). |
+*/ |
+static int fts3TreeFinishNode( |
+ SegmentNode *pTree, |
+ int iHeight, |
+ sqlite3_int64 iLeftChild |
+){ |
+ int nStart; |
+ assert( iHeight>=1 && iHeight<128 ); |
+ nStart = FTS3_VARINT_MAX - sqlite3Fts3VarintLen(iLeftChild); |
+ pTree->aData[nStart] = (char)iHeight; |
+ sqlite3Fts3PutVarint(&pTree->aData[nStart+1], iLeftChild); |
+ return nStart; |
+} |
+ |
+/* |
+** Write the buffer for the segment node pTree and all of its peers to the |
+** database. Then call this function recursively to write the parent of |
+** pTree and its peers to the database. |
+** |
+** Except, if pTree is a root node, do not write it to the database. Instead, |
+** set output variables *paRoot and *pnRoot to contain the root node. |
+** |
+** If successful, SQLITE_OK is returned and output variable *piLast is |
+** set to the largest blockid written to the database (or zero if no |
+** blocks were written to the db). Otherwise, an SQLite error code is |
+** returned. |
+*/ |
+static int fts3NodeWrite( |
+ Fts3Table *p, /* Virtual table handle */ |
+ SegmentNode *pTree, /* SegmentNode handle */ |
+ int iHeight, /* Height of this node in tree */ |
+ sqlite3_int64 iLeaf, /* Block id of first leaf node */ |
+ sqlite3_int64 iFree, /* Block id of next free slot in %_segments */ |
+ sqlite3_int64 *piLast, /* OUT: Block id of last entry written */ |
+ char **paRoot, /* OUT: Data for root node */ |
+ int *pnRoot /* OUT: Size of root node in bytes */ |
+){ |
+ int rc = SQLITE_OK; |
+ |
+ if( !pTree->pParent ){ |
+ /* Root node of the tree. */ |
+ int nStart = fts3TreeFinishNode(pTree, iHeight, iLeaf); |
+ *piLast = iFree-1; |
+ *pnRoot = pTree->nData - nStart; |
+ *paRoot = &pTree->aData[nStart]; |
+ }else{ |
+ SegmentNode *pIter; |
+ sqlite3_int64 iNextFree = iFree; |
+ sqlite3_int64 iNextLeaf = iLeaf; |
+ for(pIter=pTree->pLeftmost; pIter && rc==SQLITE_OK; pIter=pIter->pRight){ |
+ int nStart = fts3TreeFinishNode(pIter, iHeight, iNextLeaf); |
+ int nWrite = pIter->nData - nStart; |
+ |
+ rc = fts3WriteSegment(p, iNextFree, &pIter->aData[nStart], nWrite); |
+ iNextFree++; |
+ iNextLeaf += (pIter->nEntry+1); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ assert( iNextLeaf==iFree ); |
+ rc = fts3NodeWrite( |
+ p, pTree->pParent, iHeight+1, iFree, iNextFree, piLast, paRoot, pnRoot |
+ ); |
+ } |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** Free all memory allocations associated with the tree pTree. |
+*/ |
+static void fts3NodeFree(SegmentNode *pTree){ |
+ if( pTree ){ |
+ SegmentNode *p = pTree->pLeftmost; |
+ fts3NodeFree(p->pParent); |
+ while( p ){ |
+ SegmentNode *pRight = p->pRight; |
+ if( p->aData!=(char *)&p[1] ){ |
+ sqlite3_free(p->aData); |
+ } |
+ assert( pRight==0 || p->zMalloc==0 ); |
+ sqlite3_free(p->zMalloc); |
+ sqlite3_free(p); |
+ p = pRight; |
+ } |
+ } |
+} |
+ |
+/* |
+** Add a term to the segment being constructed by the SegmentWriter object |
+** *ppWriter. When adding the first term to a segment, *ppWriter should |
+** be passed NULL. This function will allocate a new SegmentWriter object |
+** and return it via the input/output variable *ppWriter in this case. |
+** |
+** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code. |
+*/ |
+static int fts3SegWriterAdd( |
+ Fts3Table *p, /* Virtual table handle */ |
+ SegmentWriter **ppWriter, /* IN/OUT: SegmentWriter handle */ |
+ int isCopyTerm, /* True if buffer zTerm must be copied */ |
+ const char *zTerm, /* Pointer to buffer containing term */ |
+ int nTerm, /* Size of term in bytes */ |
+ const char *aDoclist, /* Pointer to buffer containing doclist */ |
+ int nDoclist /* Size of doclist in bytes */ |
+){ |
+ int nPrefix; /* Size of term prefix in bytes */ |
+ int nSuffix; /* Size of term suffix in bytes */ |
+ int nReq; /* Number of bytes required on leaf page */ |
+ int nData; |
+ SegmentWriter *pWriter = *ppWriter; |
+ |
+ if( !pWriter ){ |
+ int rc; |
+ sqlite3_stmt *pStmt; |
+ |
+ /* Allocate the SegmentWriter structure */ |
+ pWriter = (SegmentWriter *)sqlite3_malloc(sizeof(SegmentWriter)); |
+ if( !pWriter ) return SQLITE_NOMEM; |
+ memset(pWriter, 0, sizeof(SegmentWriter)); |
+ *ppWriter = pWriter; |
+ |
+ /* Allocate a buffer in which to accumulate data */ |
+ pWriter->aData = (char *)sqlite3_malloc(p->nNodeSize); |
+ if( !pWriter->aData ) return SQLITE_NOMEM; |
+ pWriter->nSize = p->nNodeSize; |
+ |
+ /* Find the next free blockid in the %_segments table */ |
+ rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pStmt, 0); |
+ if( rc!=SQLITE_OK ) return rc; |
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){ |
+ pWriter->iFree = sqlite3_column_int64(pStmt, 0); |
+ pWriter->iFirst = pWriter->iFree; |
+ } |
+ rc = sqlite3_reset(pStmt); |
+ if( rc!=SQLITE_OK ) return rc; |
+ } |
+ nData = pWriter->nData; |
+ |
+ nPrefix = fts3PrefixCompress(pWriter->zTerm, pWriter->nTerm, zTerm, nTerm); |
+ nSuffix = nTerm-nPrefix; |
+ |
+ /* Figure out how many bytes are required by this new entry */ |
+ nReq = sqlite3Fts3VarintLen(nPrefix) + /* varint containing prefix size */ |
+ sqlite3Fts3VarintLen(nSuffix) + /* varint containing suffix size */ |
+ nSuffix + /* Term suffix */ |
+ sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */ |
+ nDoclist; /* Doclist data */ |
+ |
+ if( nData>0 && nData+nReq>p->nNodeSize ){ |
+ int rc; |
+ |
+ /* The current leaf node is full. Write it out to the database. */ |
+ rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, nData); |
+ if( rc!=SQLITE_OK ) return rc; |
+ p->nLeafAdd++; |
+ |
+ /* Add the current term to the interior node tree. The term added to |
+ ** the interior tree must: |
+ ** |
+ ** a) be greater than the largest term on the leaf node just written |
+ ** to the database (still available in pWriter->zTerm), and |
+ ** |
+ ** b) be less than or equal to the term about to be added to the new |
+ ** leaf node (zTerm/nTerm). |
+ ** |
+ ** In other words, it must be the prefix of zTerm 1 byte longer than |
+ ** the common prefix (if any) of zTerm and pWriter->zTerm. |
+ */ |
+ assert( nPrefix<nTerm ); |
+ rc = fts3NodeAddTerm(p, &pWriter->pTree, isCopyTerm, zTerm, nPrefix+1); |
+ if( rc!=SQLITE_OK ) return rc; |
+ |
+ nData = 0; |
+ pWriter->nTerm = 0; |
+ |
+ nPrefix = 0; |
+ nSuffix = nTerm; |
+ nReq = 1 + /* varint containing prefix size */ |
+ sqlite3Fts3VarintLen(nTerm) + /* varint containing suffix size */ |
+ nTerm + /* Term suffix */ |
+ sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */ |
+ nDoclist; /* Doclist data */ |
+ } |
+ |
+ /* Increase the total number of bytes written to account for the new entry. */ |
+ pWriter->nLeafData += nReq; |
+ |
+ /* If the buffer currently allocated is too small for this entry, realloc |
+ ** the buffer to make it large enough. |
+ */ |
+ if( nReq>pWriter->nSize ){ |
+ char *aNew = sqlite3_realloc(pWriter->aData, nReq); |
+ if( !aNew ) return SQLITE_NOMEM; |
+ pWriter->aData = aNew; |
+ pWriter->nSize = nReq; |
+ } |
+ assert( nData+nReq<=pWriter->nSize ); |
+ |
+ /* Append the prefix-compressed term and doclist to the buffer. */ |
+ nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nPrefix); |
+ nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nSuffix); |
+ memcpy(&pWriter->aData[nData], &zTerm[nPrefix], nSuffix); |
+ nData += nSuffix; |
+ nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nDoclist); |
+ memcpy(&pWriter->aData[nData], aDoclist, nDoclist); |
+ pWriter->nData = nData + nDoclist; |
+ |
+ /* Save the current term so that it can be used to prefix-compress the next. |
+ ** If the isCopyTerm parameter is true, then the buffer pointed to by |
+ ** zTerm is transient, so take a copy of the term data. Otherwise, just |
+ ** store a copy of the pointer. |
+ */ |
+ if( isCopyTerm ){ |
+ if( nTerm>pWriter->nMalloc ){ |
+ char *zNew = sqlite3_realloc(pWriter->zMalloc, nTerm*2); |
+ if( !zNew ){ |
+ return SQLITE_NOMEM; |
+ } |
+ pWriter->nMalloc = nTerm*2; |
+ pWriter->zMalloc = zNew; |
+ pWriter->zTerm = zNew; |
+ } |
+ assert( pWriter->zTerm==pWriter->zMalloc ); |
+ memcpy(pWriter->zTerm, zTerm, nTerm); |
+ }else{ |
+ pWriter->zTerm = (char *)zTerm; |
+ } |
+ pWriter->nTerm = nTerm; |
+ |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Flush all data associated with the SegmentWriter object pWriter to the |
+** database. This function must be called after all terms have been added |
+** to the segment using fts3SegWriterAdd(). If successful, SQLITE_OK is |
+** returned. Otherwise, an SQLite error code. |
+*/ |
+static int fts3SegWriterFlush( |
+ Fts3Table *p, /* Virtual table handle */ |
+ SegmentWriter *pWriter, /* SegmentWriter to flush to the db */ |
+ sqlite3_int64 iLevel, /* Value for 'level' column of %_segdir */ |
+ int iIdx /* Value for 'idx' column of %_segdir */ |
+){ |
+ int rc; /* Return code */ |
+ if( pWriter->pTree ){ |
+ sqlite3_int64 iLast = 0; /* Largest block id written to database */ |
+ sqlite3_int64 iLastLeaf; /* Largest leaf block id written to db */ |
+ char *zRoot = NULL; /* Pointer to buffer containing root node */ |
+ int nRoot = 0; /* Size of buffer zRoot */ |
+ |
+ iLastLeaf = pWriter->iFree; |
+ rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, pWriter->nData); |
+ if( rc==SQLITE_OK ){ |
+ rc = fts3NodeWrite(p, pWriter->pTree, 1, |
+ pWriter->iFirst, pWriter->iFree, &iLast, &zRoot, &nRoot); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ rc = fts3WriteSegdir(p, iLevel, iIdx, |
+ pWriter->iFirst, iLastLeaf, iLast, pWriter->nLeafData, zRoot, nRoot); |
+ } |
+ }else{ |
+ /* The entire tree fits on the root node. Write it to the segdir table. */ |
+ rc = fts3WriteSegdir(p, iLevel, iIdx, |
+ 0, 0, 0, pWriter->nLeafData, pWriter->aData, pWriter->nData); |
+ } |
+ p->nLeafAdd++; |
+ return rc; |
+} |
+ |
+/* |
+** Release all memory held by the SegmentWriter object passed as the |
+** first argument. |
+*/ |
+static void fts3SegWriterFree(SegmentWriter *pWriter){ |
+ if( pWriter ){ |
+ sqlite3_free(pWriter->aData); |
+ sqlite3_free(pWriter->zMalloc); |
+ fts3NodeFree(pWriter->pTree); |
+ sqlite3_free(pWriter); |
+ } |
+} |
+ |
+/* |
+** The first value in the apVal[] array is assumed to contain an integer. |
+** This function tests if there exist any documents with docid values that |
+** are different from that integer. i.e. if deleting the document with docid |
+** pRowid would mean the FTS3 table were empty. |
+** |
+** If successful, *pisEmpty is set to true if the table is empty except for |
+** document pRowid, or false otherwise, and SQLITE_OK is returned. If an |
+** error occurs, an SQLite error code is returned. |
+*/ |
+static int fts3IsEmpty(Fts3Table *p, sqlite3_value *pRowid, int *pisEmpty){ |
+ sqlite3_stmt *pStmt; |
+ int rc; |
+ if( p->zContentTbl ){ |
+ /* If using the content=xxx option, assume the table is never empty */ |
+ *pisEmpty = 0; |
+ rc = SQLITE_OK; |
+ }else{ |
+ rc = fts3SqlStmt(p, SQL_IS_EMPTY, &pStmt, &pRowid); |
+ if( rc==SQLITE_OK ){ |
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){ |
+ *pisEmpty = sqlite3_column_int(pStmt, 0); |
+ } |
+ rc = sqlite3_reset(pStmt); |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Set *pnMax to the largest segment level in the database for the index |
+** iIndex. |
+** |
+** Segment levels are stored in the 'level' column of the %_segdir table. |
+** |
+** Return SQLITE_OK if successful, or an SQLite error code if not. |
+*/ |
+static int fts3SegmentMaxLevel( |
+ Fts3Table *p, |
+ int iLangid, |
+ int iIndex, |
+ sqlite3_int64 *pnMax |
+){ |
+ sqlite3_stmt *pStmt; |
+ int rc; |
+ assert( iIndex>=0 && iIndex<p->nIndex ); |
+ |
+ /* Set pStmt to the compiled version of: |
+ ** |
+ ** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ? |
+ ** |
+ ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR). |
+ */ |
+ rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0); |
+ if( rc!=SQLITE_OK ) return rc; |
+ sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0)); |
+ sqlite3_bind_int64(pStmt, 2, |
+ getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1) |
+ ); |
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){ |
+ *pnMax = sqlite3_column_int64(pStmt, 0); |
+ } |
+ return sqlite3_reset(pStmt); |
+} |
+ |
+/* |
+** iAbsLevel is an absolute level that may be assumed to exist within |
+** the database. This function checks if it is the largest level number |
+** within its index. Assuming no error occurs, *pbMax is set to 1 if |
+** iAbsLevel is indeed the largest level, or 0 otherwise, and SQLITE_OK |
+** is returned. If an error occurs, an error code is returned and the |
+** final value of *pbMax is undefined. |
+*/ |
+static int fts3SegmentIsMaxLevel(Fts3Table *p, i64 iAbsLevel, int *pbMax){ |
+ |
+ /* Set pStmt to the compiled version of: |
+ ** |
+ ** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ? |
+ ** |
+ ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR). |
+ */ |
+ sqlite3_stmt *pStmt; |
+ int rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0); |
+ if( rc!=SQLITE_OK ) return rc; |
+ sqlite3_bind_int64(pStmt, 1, iAbsLevel+1); |
+ sqlite3_bind_int64(pStmt, 2, |
+ ((iAbsLevel/FTS3_SEGDIR_MAXLEVEL)+1) * FTS3_SEGDIR_MAXLEVEL |
+ ); |
+ |
+ *pbMax = 0; |
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){ |
+ *pbMax = sqlite3_column_type(pStmt, 0)==SQLITE_NULL; |
+ } |
+ return sqlite3_reset(pStmt); |
+} |
+ |
+/* |
+** Delete all entries in the %_segments table associated with the segment |
+** opened with seg-reader pSeg. This function does not affect the contents |
+** of the %_segdir table. |
+*/ |
+static int fts3DeleteSegment( |
+ Fts3Table *p, /* FTS table handle */ |
+ Fts3SegReader *pSeg /* Segment to delete */ |
+){ |
+ int rc = SQLITE_OK; /* Return code */ |
+ if( pSeg->iStartBlock ){ |
+ sqlite3_stmt *pDelete; /* SQL statement to delete rows */ |
+ rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDelete, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int64(pDelete, 1, pSeg->iStartBlock); |
+ sqlite3_bind_int64(pDelete, 2, pSeg->iEndBlock); |
+ sqlite3_step(pDelete); |
+ rc = sqlite3_reset(pDelete); |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** This function is used after merging multiple segments into a single large |
+** segment to delete the old, now redundant, segment b-trees. Specifically, |
+** it: |
+** |
+** 1) Deletes all %_segments entries for the segments associated with |
+** each of the SegReader objects in the array passed as the third |
+** argument, and |
+** |
+** 2) deletes all %_segdir entries with level iLevel, or all %_segdir |
+** entries regardless of level if (iLevel<0). |
+** |
+** SQLITE_OK is returned if successful, otherwise an SQLite error code. |
+*/ |
+static int fts3DeleteSegdir( |
+ Fts3Table *p, /* Virtual table handle */ |
+ int iLangid, /* Language id */ |
+ int iIndex, /* Index for p->aIndex */ |
+ int iLevel, /* Level of %_segdir entries to delete */ |
+ Fts3SegReader **apSegment, /* Array of SegReader objects */ |
+ int nReader /* Size of array apSegment */ |
+){ |
+ int rc = SQLITE_OK; /* Return Code */ |
+ int i; /* Iterator variable */ |
+ sqlite3_stmt *pDelete = 0; /* SQL statement to delete rows */ |
+ |
+ for(i=0; rc==SQLITE_OK && i<nReader; i++){ |
+ rc = fts3DeleteSegment(p, apSegment[i]); |
+ } |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ |
+ assert( iLevel>=0 || iLevel==FTS3_SEGCURSOR_ALL ); |
+ if( iLevel==FTS3_SEGCURSOR_ALL ){ |
+ rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_RANGE, &pDelete, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int64(pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, 0)); |
+ sqlite3_bind_int64(pDelete, 2, |
+ getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1) |
+ ); |
+ } |
+ }else{ |
+ rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pDelete, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int64( |
+ pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, iLevel) |
+ ); |
+ } |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_step(pDelete); |
+ rc = sqlite3_reset(pDelete); |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** When this function is called, buffer *ppList (size *pnList bytes) contains |
+** a position list that may (or may not) feature multiple columns. This |
+** function adjusts the pointer *ppList and the length *pnList so that they |
+** identify the subset of the position list that corresponds to column iCol. |
+** |
+** If there are no entries in the input position list for column iCol, then |
+** *pnList is set to zero before returning. |
+** |
+** If parameter bZero is non-zero, then any part of the input list following |
+** the end of the output list is zeroed before returning. |
+*/ |
+static void fts3ColumnFilter( |
+ int iCol, /* Column to filter on */ |
+ int bZero, /* Zero out anything following *ppList */ |
+ char **ppList, /* IN/OUT: Pointer to position list */ |
+ int *pnList /* IN/OUT: Size of buffer *ppList in bytes */ |
+){ |
+ char *pList = *ppList; |
+ int nList = *pnList; |
+ char *pEnd = &pList[nList]; |
+ int iCurrent = 0; |
+ char *p = pList; |
+ |
+ assert( iCol>=0 ); |
+ while( 1 ){ |
+ char c = 0; |
+ while( p<pEnd && (c | *p)&0xFE ) c = *p++ & 0x80; |
+ |
+ if( iCol==iCurrent ){ |
+ nList = (int)(p - pList); |
+ break; |
+ } |
+ |
+ nList -= (int)(p - pList); |
+ pList = p; |
+ if( nList==0 ){ |
+ break; |
+ } |
+ p = &pList[1]; |
+ p += fts3GetVarint32(p, &iCurrent); |
+ } |
+ |
+ if( bZero && &pList[nList]!=pEnd ){ |
+ memset(&pList[nList], 0, pEnd - &pList[nList]); |
+ } |
+ *ppList = pList; |
+ *pnList = nList; |
+} |
+ |
+/* |
+** Cache data in the Fts3MultiSegReader.aBuffer[] buffer (overwriting any |
+** existing data). Grow the buffer if required. |
+** |
+** If successful, return SQLITE_OK. Otherwise, if an OOM error is encountered |
+** trying to resize the buffer, return SQLITE_NOMEM. |
+*/ |
+static int fts3MsrBufferData( |
+ Fts3MultiSegReader *pMsr, /* Multi-segment-reader handle */ |
+ char *pList, |
+ int nList |
+){ |
+ if( nList>pMsr->nBuffer ){ |
+ char *pNew; |
+ pMsr->nBuffer = nList*2; |
+ pNew = (char *)sqlite3_realloc(pMsr->aBuffer, pMsr->nBuffer); |
+ if( !pNew ) return SQLITE_NOMEM; |
+ pMsr->aBuffer = pNew; |
+ } |
+ |
+ memcpy(pMsr->aBuffer, pList, nList); |
+ return SQLITE_OK; |
+} |
+ |
+int sqlite3Fts3MsrIncrNext( |
+ Fts3Table *p, /* Virtual table handle */ |
+ Fts3MultiSegReader *pMsr, /* Multi-segment-reader handle */ |
+ sqlite3_int64 *piDocid, /* OUT: Docid value */ |
+ char **paPoslist, /* OUT: Pointer to position list */ |
+ int *pnPoslist /* OUT: Size of position list in bytes */ |
+){ |
+ int nMerge = pMsr->nAdvance; |
+ Fts3SegReader **apSegment = pMsr->apSegment; |
+ int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = ( |
+ p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp |
+ ); |
+ |
+ if( nMerge==0 ){ |
+ *paPoslist = 0; |
+ return SQLITE_OK; |
+ } |
+ |
+ while( 1 ){ |
+ Fts3SegReader *pSeg; |
+ pSeg = pMsr->apSegment[0]; |
+ |
+ if( pSeg->pOffsetList==0 ){ |
+ *paPoslist = 0; |
+ break; |
+ }else{ |
+ int rc; |
+ char *pList; |
+ int nList; |
+ int j; |
+ sqlite3_int64 iDocid = apSegment[0]->iDocid; |
+ |
+ rc = fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList); |
+ j = 1; |
+ while( rc==SQLITE_OK |
+ && j<nMerge |
+ && apSegment[j]->pOffsetList |
+ && apSegment[j]->iDocid==iDocid |
+ ){ |
+ rc = fts3SegReaderNextDocid(p, apSegment[j], 0, 0); |
+ j++; |
+ } |
+ if( rc!=SQLITE_OK ) return rc; |
+ fts3SegReaderSort(pMsr->apSegment, nMerge, j, xCmp); |
+ |
+ if( nList>0 && fts3SegReaderIsPending(apSegment[0]) ){ |
+ rc = fts3MsrBufferData(pMsr, pList, nList+1); |
+ if( rc!=SQLITE_OK ) return rc; |
+ assert( (pMsr->aBuffer[nList] & 0xFE)==0x00 ); |
+ pList = pMsr->aBuffer; |
+ } |
+ |
+ if( pMsr->iColFilter>=0 ){ |
+ fts3ColumnFilter(pMsr->iColFilter, 1, &pList, &nList); |
+ } |
+ |
+ if( nList>0 ){ |
+ *paPoslist = pList; |
+ *piDocid = iDocid; |
+ *pnPoslist = nList; |
+ break; |
+ } |
+ } |
+ } |
+ |
+ return SQLITE_OK; |
+} |
+ |
+static int fts3SegReaderStart( |
+ Fts3Table *p, /* Virtual table handle */ |
+ Fts3MultiSegReader *pCsr, /* Cursor object */ |
+ const char *zTerm, /* Term searched for (or NULL) */ |
+ int nTerm /* Length of zTerm in bytes */ |
+){ |
+ int i; |
+ int nSeg = pCsr->nSegment; |
+ |
+ /* If the Fts3SegFilter defines a specific term (or term prefix) to search |
+ ** for, then advance each segment iterator until it points to a term of |
+ ** equal or greater value than the specified term. This prevents many |
+ ** unnecessary merge/sort operations for the case where single segment |
+ ** b-tree leaf nodes contain more than one term. |
+ */ |
+ for(i=0; pCsr->bRestart==0 && i<pCsr->nSegment; i++){ |
+ int res = 0; |
+ Fts3SegReader *pSeg = pCsr->apSegment[i]; |
+ do { |
+ int rc = fts3SegReaderNext(p, pSeg, 0); |
+ if( rc!=SQLITE_OK ) return rc; |
+ }while( zTerm && (res = fts3SegReaderTermCmp(pSeg, zTerm, nTerm))<0 ); |
+ |
+ if( pSeg->bLookup && res!=0 ){ |
+ fts3SegReaderSetEof(pSeg); |
+ } |
+ } |
+ fts3SegReaderSort(pCsr->apSegment, nSeg, nSeg, fts3SegReaderCmp); |
+ |
+ return SQLITE_OK; |
+} |
+ |
+int sqlite3Fts3SegReaderStart( |
+ Fts3Table *p, /* Virtual table handle */ |
+ Fts3MultiSegReader *pCsr, /* Cursor object */ |
+ Fts3SegFilter *pFilter /* Restrictions on range of iteration */ |
+){ |
+ pCsr->pFilter = pFilter; |
+ return fts3SegReaderStart(p, pCsr, pFilter->zTerm, pFilter->nTerm); |
+} |
+ |
+int sqlite3Fts3MsrIncrStart( |
+ Fts3Table *p, /* Virtual table handle */ |
+ Fts3MultiSegReader *pCsr, /* Cursor object */ |
+ int iCol, /* Column to match on. */ |
+ const char *zTerm, /* Term to iterate through a doclist for */ |
+ int nTerm /* Number of bytes in zTerm */ |
+){ |
+ int i; |
+ int rc; |
+ int nSegment = pCsr->nSegment; |
+ int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = ( |
+ p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp |
+ ); |
+ |
+ assert( pCsr->pFilter==0 ); |
+ assert( zTerm && nTerm>0 ); |
+ |
+ /* Advance each segment iterator until it points to the term zTerm/nTerm. */ |
+ rc = fts3SegReaderStart(p, pCsr, zTerm, nTerm); |
+ if( rc!=SQLITE_OK ) return rc; |
+ |
+ /* Determine how many of the segments actually point to zTerm/nTerm. */ |
+ for(i=0; i<nSegment; i++){ |
+ Fts3SegReader *pSeg = pCsr->apSegment[i]; |
+ if( !pSeg->aNode || fts3SegReaderTermCmp(pSeg, zTerm, nTerm) ){ |
+ break; |
+ } |
+ } |
+ pCsr->nAdvance = i; |
+ |
+ /* Advance each of the segments to point to the first docid. */ |
+ for(i=0; i<pCsr->nAdvance; i++){ |
+ rc = fts3SegReaderFirstDocid(p, pCsr->apSegment[i]); |
+ if( rc!=SQLITE_OK ) return rc; |
+ } |
+ fts3SegReaderSort(pCsr->apSegment, i, i, xCmp); |
+ |
+ assert( iCol<0 || iCol<p->nColumn ); |
+ pCsr->iColFilter = iCol; |
+ |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** This function is called on a MultiSegReader that has been started using |
+** sqlite3Fts3MsrIncrStart(). One or more calls to MsrIncrNext() may also |
+** have been made. Calling this function puts the MultiSegReader in such |
+** a state that if the next two calls are: |
+** |
+** sqlite3Fts3SegReaderStart() |
+** sqlite3Fts3SegReaderStep() |
+** |
+** then the entire doclist for the term is available in |
+** MultiSegReader.aDoclist/nDoclist. |
+*/ |
+int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader *pCsr){ |
+ int i; /* Used to iterate through segment-readers */ |
+ |
+ assert( pCsr->zTerm==0 ); |
+ assert( pCsr->nTerm==0 ); |
+ assert( pCsr->aDoclist==0 ); |
+ assert( pCsr->nDoclist==0 ); |
+ |
+ pCsr->nAdvance = 0; |
+ pCsr->bRestart = 1; |
+ for(i=0; i<pCsr->nSegment; i++){ |
+ pCsr->apSegment[i]->pOffsetList = 0; |
+ pCsr->apSegment[i]->nOffsetList = 0; |
+ pCsr->apSegment[i]->iDocid = 0; |
+ } |
+ |
+ return SQLITE_OK; |
+} |
+ |
+ |
+int sqlite3Fts3SegReaderStep( |
+ Fts3Table *p, /* Virtual table handle */ |
+ Fts3MultiSegReader *pCsr /* Cursor object */ |
+){ |
+ int rc = SQLITE_OK; |
+ |
+ int isIgnoreEmpty = (pCsr->pFilter->flags & FTS3_SEGMENT_IGNORE_EMPTY); |
+ int isRequirePos = (pCsr->pFilter->flags & FTS3_SEGMENT_REQUIRE_POS); |
+ int isColFilter = (pCsr->pFilter->flags & FTS3_SEGMENT_COLUMN_FILTER); |
+ int isPrefix = (pCsr->pFilter->flags & FTS3_SEGMENT_PREFIX); |
+ int isScan = (pCsr->pFilter->flags & FTS3_SEGMENT_SCAN); |
+ int isFirst = (pCsr->pFilter->flags & FTS3_SEGMENT_FIRST); |
+ |
+ Fts3SegReader **apSegment = pCsr->apSegment; |
+ int nSegment = pCsr->nSegment; |
+ Fts3SegFilter *pFilter = pCsr->pFilter; |
+ int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = ( |
+ p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp |
+ ); |
+ |
+ if( pCsr->nSegment==0 ) return SQLITE_OK; |
+ |
+ do { |
+ int nMerge; |
+ int i; |
+ |
+ /* Advance the first pCsr->nAdvance entries in the apSegment[] array |
+ ** forward. Then sort the list in order of current term again. |
+ */ |
+ for(i=0; i<pCsr->nAdvance; i++){ |
+ Fts3SegReader *pSeg = apSegment[i]; |
+ if( pSeg->bLookup ){ |
+ fts3SegReaderSetEof(pSeg); |
+ }else{ |
+ rc = fts3SegReaderNext(p, pSeg, 0); |
+ } |
+ if( rc!=SQLITE_OK ) return rc; |
+ } |
+ fts3SegReaderSort(apSegment, nSegment, pCsr->nAdvance, fts3SegReaderCmp); |
+ pCsr->nAdvance = 0; |
+ |
+ /* If all the seg-readers are at EOF, we're finished. return SQLITE_OK. */ |
+ assert( rc==SQLITE_OK ); |
+ if( apSegment[0]->aNode==0 ) break; |
+ |
+ pCsr->nTerm = apSegment[0]->nTerm; |
+ pCsr->zTerm = apSegment[0]->zTerm; |
+ |
+ /* If this is a prefix-search, and if the term that apSegment[0] points |
+ ** to does not share a suffix with pFilter->zTerm/nTerm, then all |
+ ** required callbacks have been made. In this case exit early. |
+ ** |
+ ** Similarly, if this is a search for an exact match, and the first term |
+ ** of segment apSegment[0] is not a match, exit early. |
+ */ |
+ if( pFilter->zTerm && !isScan ){ |
+ if( pCsr->nTerm<pFilter->nTerm |
+ || (!isPrefix && pCsr->nTerm>pFilter->nTerm) |
+ || memcmp(pCsr->zTerm, pFilter->zTerm, pFilter->nTerm) |
+ ){ |
+ break; |
+ } |
+ } |
+ |
+ nMerge = 1; |
+ while( nMerge<nSegment |
+ && apSegment[nMerge]->aNode |
+ && apSegment[nMerge]->nTerm==pCsr->nTerm |
+ && 0==memcmp(pCsr->zTerm, apSegment[nMerge]->zTerm, pCsr->nTerm) |
+ ){ |
+ nMerge++; |
+ } |
+ |
+ assert( isIgnoreEmpty || (isRequirePos && !isColFilter) ); |
+ if( nMerge==1 |
+ && !isIgnoreEmpty |
+ && !isFirst |
+ && (p->bDescIdx==0 || fts3SegReaderIsPending(apSegment[0])==0) |
+ ){ |
+ pCsr->nDoclist = apSegment[0]->nDoclist; |
+ if( fts3SegReaderIsPending(apSegment[0]) ){ |
+ rc = fts3MsrBufferData(pCsr, apSegment[0]->aDoclist, pCsr->nDoclist); |
+ pCsr->aDoclist = pCsr->aBuffer; |
+ }else{ |
+ pCsr->aDoclist = apSegment[0]->aDoclist; |
+ } |
+ if( rc==SQLITE_OK ) rc = SQLITE_ROW; |
+ }else{ |
+ int nDoclist = 0; /* Size of doclist */ |
+ sqlite3_int64 iPrev = 0; /* Previous docid stored in doclist */ |
+ |
+ /* The current term of the first nMerge entries in the array |
+ ** of Fts3SegReader objects is the same. The doclists must be merged |
+ ** and a single term returned with the merged doclist. |
+ */ |
+ for(i=0; i<nMerge; i++){ |
+ fts3SegReaderFirstDocid(p, apSegment[i]); |
+ } |
+ fts3SegReaderSort(apSegment, nMerge, nMerge, xCmp); |
+ while( apSegment[0]->pOffsetList ){ |
+ int j; /* Number of segments that share a docid */ |
+ char *pList = 0; |
+ int nList = 0; |
+ int nByte; |
+ sqlite3_int64 iDocid = apSegment[0]->iDocid; |
+ fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList); |
+ j = 1; |
+ while( j<nMerge |
+ && apSegment[j]->pOffsetList |
+ && apSegment[j]->iDocid==iDocid |
+ ){ |
+ fts3SegReaderNextDocid(p, apSegment[j], 0, 0); |
+ j++; |
+ } |
+ |
+ if( isColFilter ){ |
+ fts3ColumnFilter(pFilter->iCol, 0, &pList, &nList); |
+ } |
+ |
+ if( !isIgnoreEmpty || nList>0 ){ |
+ |
+ /* Calculate the 'docid' delta value to write into the merged |
+ ** doclist. */ |
+ sqlite3_int64 iDelta; |
+ if( p->bDescIdx && nDoclist>0 ){ |
+ iDelta = iPrev - iDocid; |
+ }else{ |
+ iDelta = iDocid - iPrev; |
+ } |
+ assert( iDelta>0 || (nDoclist==0 && iDelta==iDocid) ); |
+ assert( nDoclist>0 || iDelta==iDocid ); |
+ |
+ nByte = sqlite3Fts3VarintLen(iDelta) + (isRequirePos?nList+1:0); |
+ if( nDoclist+nByte>pCsr->nBuffer ){ |
+ char *aNew; |
+ pCsr->nBuffer = (nDoclist+nByte)*2; |
+ aNew = sqlite3_realloc(pCsr->aBuffer, pCsr->nBuffer); |
+ if( !aNew ){ |
+ return SQLITE_NOMEM; |
+ } |
+ pCsr->aBuffer = aNew; |
+ } |
+ |
+ if( isFirst ){ |
+ char *a = &pCsr->aBuffer[nDoclist]; |
+ int nWrite; |
+ |
+ nWrite = sqlite3Fts3FirstFilter(iDelta, pList, nList, a); |
+ if( nWrite ){ |
+ iPrev = iDocid; |
+ nDoclist += nWrite; |
+ } |
+ }else{ |
+ nDoclist += sqlite3Fts3PutVarint(&pCsr->aBuffer[nDoclist], iDelta); |
+ iPrev = iDocid; |
+ if( isRequirePos ){ |
+ memcpy(&pCsr->aBuffer[nDoclist], pList, nList); |
+ nDoclist += nList; |
+ pCsr->aBuffer[nDoclist++] = '\0'; |
+ } |
+ } |
+ } |
+ |
+ fts3SegReaderSort(apSegment, nMerge, j, xCmp); |
+ } |
+ if( nDoclist>0 ){ |
+ pCsr->aDoclist = pCsr->aBuffer; |
+ pCsr->nDoclist = nDoclist; |
+ rc = SQLITE_ROW; |
+ } |
+ } |
+ pCsr->nAdvance = nMerge; |
+ }while( rc==SQLITE_OK ); |
+ |
+ return rc; |
+} |
+ |
+ |
+void sqlite3Fts3SegReaderFinish( |
+ Fts3MultiSegReader *pCsr /* Cursor object */ |
+){ |
+ if( pCsr ){ |
+ int i; |
+ for(i=0; i<pCsr->nSegment; i++){ |
+ sqlite3Fts3SegReaderFree(pCsr->apSegment[i]); |
+ } |
+ sqlite3_free(pCsr->apSegment); |
+ sqlite3_free(pCsr->aBuffer); |
+ |
+ pCsr->nSegment = 0; |
+ pCsr->apSegment = 0; |
+ pCsr->aBuffer = 0; |
+ } |
+} |
+ |
+/* |
+** Decode the "end_block" field, selected by column iCol of the SELECT |
+** statement passed as the first argument. |
+** |
+** The "end_block" field may contain either an integer, or a text field |
+** containing the text representation of two non-negative integers separated |
+** by one or more space (0x20) characters. In the first case, set *piEndBlock |
+** to the integer value and *pnByte to zero before returning. In the second, |
+** set *piEndBlock to the first value and *pnByte to the second. |
+*/ |
+static void fts3ReadEndBlockField( |
+ sqlite3_stmt *pStmt, |
+ int iCol, |
+ i64 *piEndBlock, |
+ i64 *pnByte |
+){ |
+ const unsigned char *zText = sqlite3_column_text(pStmt, iCol); |
+ if( zText ){ |
+ int i; |
+ int iMul = 1; |
+ i64 iVal = 0; |
+ for(i=0; zText[i]>='0' && zText[i]<='9'; i++){ |
+ iVal = iVal*10 + (zText[i] - '0'); |
+ } |
+ *piEndBlock = iVal; |
+ while( zText[i]==' ' ) i++; |
+ iVal = 0; |
+ if( zText[i]=='-' ){ |
+ i++; |
+ iMul = -1; |
+ } |
+ for(/* no-op */; zText[i]>='0' && zText[i]<='9'; i++){ |
+ iVal = iVal*10 + (zText[i] - '0'); |
+ } |
+ *pnByte = (iVal * (i64)iMul); |
+ } |
+} |
+ |
+ |
+/* |
+** A segment of size nByte bytes has just been written to absolute level |
+** iAbsLevel. Promote any segments that should be promoted as a result. |
+*/ |
+static int fts3PromoteSegments( |
+ Fts3Table *p, /* FTS table handle */ |
+ sqlite3_int64 iAbsLevel, /* Absolute level just updated */ |
+ sqlite3_int64 nByte /* Size of new segment at iAbsLevel */ |
+){ |
+ int rc = SQLITE_OK; |
+ sqlite3_stmt *pRange; |
+ |
+ rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE2, &pRange, 0); |
+ |
+ if( rc==SQLITE_OK ){ |
+ int bOk = 0; |
+ i64 iLast = (iAbsLevel/FTS3_SEGDIR_MAXLEVEL + 1) * FTS3_SEGDIR_MAXLEVEL - 1; |
+ i64 nLimit = (nByte*3)/2; |
+ |
+ /* Loop through all entries in the %_segdir table corresponding to |
+ ** segments in this index on levels greater than iAbsLevel. If there is |
+ ** at least one such segment, and it is possible to determine that all |
+ ** such segments are smaller than nLimit bytes in size, they will be |
+ ** promoted to level iAbsLevel. */ |
+ sqlite3_bind_int64(pRange, 1, iAbsLevel+1); |
+ sqlite3_bind_int64(pRange, 2, iLast); |
+ while( SQLITE_ROW==sqlite3_step(pRange) ){ |
+ i64 nSize = 0, dummy; |
+ fts3ReadEndBlockField(pRange, 2, &dummy, &nSize); |
+ if( nSize<=0 || nSize>nLimit ){ |
+ /* If nSize==0, then the %_segdir.end_block field does not not |
+ ** contain a size value. This happens if it was written by an |
+ ** old version of FTS. In this case it is not possible to determine |
+ ** the size of the segment, and so segment promotion does not |
+ ** take place. */ |
+ bOk = 0; |
+ break; |
+ } |
+ bOk = 1; |
+ } |
+ rc = sqlite3_reset(pRange); |
+ |
+ if( bOk ){ |
+ int iIdx = 0; |
+ sqlite3_stmt *pUpdate1; |
+ sqlite3_stmt *pUpdate2; |
+ |
+ if( rc==SQLITE_OK ){ |
+ rc = fts3SqlStmt(p, SQL_UPDATE_LEVEL_IDX, &pUpdate1, 0); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ rc = fts3SqlStmt(p, SQL_UPDATE_LEVEL, &pUpdate2, 0); |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ |
+ /* Loop through all %_segdir entries for segments in this index with |
+ ** levels equal to or greater than iAbsLevel. As each entry is visited, |
+ ** updated it to set (level = -1) and (idx = N), where N is 0 for the |
+ ** oldest segment in the range, 1 for the next oldest, and so on. |
+ ** |
+ ** In other words, move all segments being promoted to level -1, |
+ ** setting the "idx" fields as appropriate to keep them in the same |
+ ** order. The contents of level -1 (which is never used, except |
+ ** transiently here), will be moved back to level iAbsLevel below. */ |
+ sqlite3_bind_int64(pRange, 1, iAbsLevel); |
+ while( SQLITE_ROW==sqlite3_step(pRange) ){ |
+ sqlite3_bind_int(pUpdate1, 1, iIdx++); |
+ sqlite3_bind_int(pUpdate1, 2, sqlite3_column_int(pRange, 0)); |
+ sqlite3_bind_int(pUpdate1, 3, sqlite3_column_int(pRange, 1)); |
+ sqlite3_step(pUpdate1); |
+ rc = sqlite3_reset(pUpdate1); |
+ if( rc!=SQLITE_OK ){ |
+ sqlite3_reset(pRange); |
+ break; |
+ } |
+ } |
+ } |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3_reset(pRange); |
+ } |
+ |
+ /* Move level -1 to level iAbsLevel */ |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int64(pUpdate2, 1, iAbsLevel); |
+ sqlite3_step(pUpdate2); |
+ rc = sqlite3_reset(pUpdate2); |
+ } |
+ } |
+ } |
+ |
+ |
+ return rc; |
+} |
+ |
+/* |
+** Merge all level iLevel segments in the database into a single |
+** iLevel+1 segment. Or, if iLevel<0, merge all segments into a |
+** single segment with a level equal to the numerically largest level |
+** currently present in the database. |
+** |
+** If this function is called with iLevel<0, but there is only one |
+** segment in the database, SQLITE_DONE is returned immediately. |
+** Otherwise, if successful, SQLITE_OK is returned. If an error occurs, |
+** an SQLite error code is returned. |
+*/ |
+static int fts3SegmentMerge( |
+ Fts3Table *p, |
+ int iLangid, /* Language id to merge */ |
+ int iIndex, /* Index in p->aIndex[] to merge */ |
+ int iLevel /* Level to merge */ |
+){ |
+ int rc; /* Return code */ |
+ int iIdx = 0; /* Index of new segment */ |
+ sqlite3_int64 iNewLevel = 0; /* Level/index to create new segment at */ |
+ SegmentWriter *pWriter = 0; /* Used to write the new, merged, segment */ |
+ Fts3SegFilter filter; /* Segment term filter condition */ |
+ Fts3MultiSegReader csr; /* Cursor to iterate through level(s) */ |
+ int bIgnoreEmpty = 0; /* True to ignore empty segments */ |
+ i64 iMaxLevel = 0; /* Max level number for this index/langid */ |
+ |
+ assert( iLevel==FTS3_SEGCURSOR_ALL |
+ || iLevel==FTS3_SEGCURSOR_PENDING |
+ || iLevel>=0 |
+ ); |
+ assert( iLevel<FTS3_SEGDIR_MAXLEVEL ); |
+ assert( iIndex>=0 && iIndex<p->nIndex ); |
+ |
+ rc = sqlite3Fts3SegReaderCursor(p, iLangid, iIndex, iLevel, 0, 0, 1, 0, &csr); |
+ if( rc!=SQLITE_OK || csr.nSegment==0 ) goto finished; |
+ |
+ if( iLevel!=FTS3_SEGCURSOR_PENDING ){ |
+ rc = fts3SegmentMaxLevel(p, iLangid, iIndex, &iMaxLevel); |
+ if( rc!=SQLITE_OK ) goto finished; |
+ } |
+ |
+ if( iLevel==FTS3_SEGCURSOR_ALL ){ |
+ /* This call is to merge all segments in the database to a single |
+ ** segment. The level of the new segment is equal to the numerically |
+ ** greatest segment level currently present in the database for this |
+ ** index. The idx of the new segment is always 0. */ |
+ if( csr.nSegment==1 ){ |
+ rc = SQLITE_DONE; |
+ goto finished; |
+ } |
+ iNewLevel = iMaxLevel; |
+ bIgnoreEmpty = 1; |
+ |
+ }else{ |
+ /* This call is to merge all segments at level iLevel. find the next |
+ ** available segment index at level iLevel+1. The call to |
+ ** fts3AllocateSegdirIdx() will merge the segments at level iLevel+1 to |
+ ** a single iLevel+2 segment if necessary. */ |
+ assert( FTS3_SEGCURSOR_PENDING==-1 ); |
+ iNewLevel = getAbsoluteLevel(p, iLangid, iIndex, iLevel+1); |
+ rc = fts3AllocateSegdirIdx(p, iLangid, iIndex, iLevel+1, &iIdx); |
+ bIgnoreEmpty = (iLevel!=FTS3_SEGCURSOR_PENDING) && (iNewLevel>iMaxLevel); |
+ } |
+ if( rc!=SQLITE_OK ) goto finished; |
+ |
+ assert( csr.nSegment>0 ); |
+ assert( iNewLevel>=getAbsoluteLevel(p, iLangid, iIndex, 0) ); |
+ assert( iNewLevel<getAbsoluteLevel(p, iLangid, iIndex,FTS3_SEGDIR_MAXLEVEL) ); |
+ |
+ memset(&filter, 0, sizeof(Fts3SegFilter)); |
+ filter.flags = FTS3_SEGMENT_REQUIRE_POS; |
+ filter.flags |= (bIgnoreEmpty ? FTS3_SEGMENT_IGNORE_EMPTY : 0); |
+ |
+ rc = sqlite3Fts3SegReaderStart(p, &csr, &filter); |
+ while( SQLITE_OK==rc ){ |
+ rc = sqlite3Fts3SegReaderStep(p, &csr); |
+ if( rc!=SQLITE_ROW ) break; |
+ rc = fts3SegWriterAdd(p, &pWriter, 1, |
+ csr.zTerm, csr.nTerm, csr.aDoclist, csr.nDoclist); |
+ } |
+ if( rc!=SQLITE_OK ) goto finished; |
+ assert( pWriter || bIgnoreEmpty ); |
+ |
+ if( iLevel!=FTS3_SEGCURSOR_PENDING ){ |
+ rc = fts3DeleteSegdir( |
+ p, iLangid, iIndex, iLevel, csr.apSegment, csr.nSegment |
+ ); |
+ if( rc!=SQLITE_OK ) goto finished; |
+ } |
+ if( pWriter ){ |
+ rc = fts3SegWriterFlush(p, pWriter, iNewLevel, iIdx); |
+ if( rc==SQLITE_OK ){ |
+ if( iLevel==FTS3_SEGCURSOR_PENDING || iNewLevel<iMaxLevel ){ |
+ rc = fts3PromoteSegments(p, iNewLevel, pWriter->nLeafData); |
+ } |
+ } |
+ } |
+ |
+ finished: |
+ fts3SegWriterFree(pWriter); |
+ sqlite3Fts3SegReaderFinish(&csr); |
+ return rc; |
+} |
+ |
+ |
+/* |
+** Flush the contents of pendingTerms to level 0 segments. |
+*/ |
+int sqlite3Fts3PendingTermsFlush(Fts3Table *p){ |
+ int rc = SQLITE_OK; |
+ int i; |
+ |
+ for(i=0; rc==SQLITE_OK && i<p->nIndex; i++){ |
+ rc = fts3SegmentMerge(p, p->iPrevLangid, i, FTS3_SEGCURSOR_PENDING); |
+ if( rc==SQLITE_DONE ) rc = SQLITE_OK; |
+ } |
+ sqlite3Fts3PendingTermsClear(p); |
+ |
+ /* Determine the auto-incr-merge setting if unknown. If enabled, |
+ ** estimate the number of leaf blocks of content to be written |
+ */ |
+ if( rc==SQLITE_OK && p->bHasStat |
+ && p->nAutoincrmerge==0xff && p->nLeafAdd>0 |
+ ){ |
+ sqlite3_stmt *pStmt = 0; |
+ rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pStmt, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int(pStmt, 1, FTS_STAT_AUTOINCRMERGE); |
+ rc = sqlite3_step(pStmt); |
+ if( rc==SQLITE_ROW ){ |
+ p->nAutoincrmerge = sqlite3_column_int(pStmt, 0); |
+ if( p->nAutoincrmerge==1 ) p->nAutoincrmerge = 8; |
+ }else if( rc==SQLITE_DONE ){ |
+ p->nAutoincrmerge = 0; |
+ } |
+ rc = sqlite3_reset(pStmt); |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Encode N integers as varints into a blob. |
+*/ |
+static void fts3EncodeIntArray( |
+ int N, /* The number of integers to encode */ |
+ u32 *a, /* The integer values */ |
+ char *zBuf, /* Write the BLOB here */ |
+ int *pNBuf /* Write number of bytes if zBuf[] used here */ |
+){ |
+ int i, j; |
+ for(i=j=0; i<N; i++){ |
+ j += sqlite3Fts3PutVarint(&zBuf[j], (sqlite3_int64)a[i]); |
+ } |
+ *pNBuf = j; |
+} |
+ |
+/* |
+** Decode a blob of varints into N integers |
+*/ |
+static void fts3DecodeIntArray( |
+ int N, /* The number of integers to decode */ |
+ u32 *a, /* Write the integer values */ |
+ const char *zBuf, /* The BLOB containing the varints */ |
+ int nBuf /* size of the BLOB */ |
+){ |
+ int i, j; |
+ UNUSED_PARAMETER(nBuf); |
+ for(i=j=0; i<N; i++){ |
+ sqlite3_int64 x; |
+ j += sqlite3Fts3GetVarint(&zBuf[j], &x); |
+ assert(j<=nBuf); |
+ a[i] = (u32)(x & 0xffffffff); |
+ } |
+} |
+ |
+/* |
+** Insert the sizes (in tokens) for each column of the document |
+** with docid equal to p->iPrevDocid. The sizes are encoded as |
+** a blob of varints. |
+*/ |
+static void fts3InsertDocsize( |
+ int *pRC, /* Result code */ |
+ Fts3Table *p, /* Table into which to insert */ |
+ u32 *aSz /* Sizes of each column, in tokens */ |
+){ |
+ char *pBlob; /* The BLOB encoding of the document size */ |
+ int nBlob; /* Number of bytes in the BLOB */ |
+ sqlite3_stmt *pStmt; /* Statement used to insert the encoding */ |
+ int rc; /* Result code from subfunctions */ |
+ |
+ if( *pRC ) return; |
+ pBlob = sqlite3_malloc( 10*p->nColumn ); |
+ if( pBlob==0 ){ |
+ *pRC = SQLITE_NOMEM; |
+ return; |
+ } |
+ fts3EncodeIntArray(p->nColumn, aSz, pBlob, &nBlob); |
+ rc = fts3SqlStmt(p, SQL_REPLACE_DOCSIZE, &pStmt, 0); |
+ if( rc ){ |
+ sqlite3_free(pBlob); |
+ *pRC = rc; |
+ return; |
+ } |
+ sqlite3_bind_int64(pStmt, 1, p->iPrevDocid); |
+ sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, sqlite3_free); |
+ sqlite3_step(pStmt); |
+ *pRC = sqlite3_reset(pStmt); |
+} |
+ |
+/* |
+** Record 0 of the %_stat table contains a blob consisting of N varints, |
+** where N is the number of user defined columns in the fts3 table plus |
+** two. If nCol is the number of user defined columns, then values of the |
+** varints are set as follows: |
+** |
+** Varint 0: Total number of rows in the table. |
+** |
+** Varint 1..nCol: For each column, the total number of tokens stored in |
+** the column for all rows of the table. |
+** |
+** Varint 1+nCol: The total size, in bytes, of all text values in all |
+** columns of all rows of the table. |
+** |
+*/ |
+static void fts3UpdateDocTotals( |
+ int *pRC, /* The result code */ |
+ Fts3Table *p, /* Table being updated */ |
+ u32 *aSzIns, /* Size increases */ |
+ u32 *aSzDel, /* Size decreases */ |
+ int nChng /* Change in the number of documents */ |
+){ |
+ char *pBlob; /* Storage for BLOB written into %_stat */ |
+ int nBlob; /* Size of BLOB written into %_stat */ |
+ u32 *a; /* Array of integers that becomes the BLOB */ |
+ sqlite3_stmt *pStmt; /* Statement for reading and writing */ |
+ int i; /* Loop counter */ |
+ int rc; /* Result code from subfunctions */ |
+ |
+ const int nStat = p->nColumn+2; |
+ |
+ if( *pRC ) return; |
+ a = sqlite3_malloc( (sizeof(u32)+10)*nStat ); |
+ if( a==0 ){ |
+ *pRC = SQLITE_NOMEM; |
+ return; |
+ } |
+ pBlob = (char*)&a[nStat]; |
+ rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pStmt, 0); |
+ if( rc ){ |
+ sqlite3_free(a); |
+ *pRC = rc; |
+ return; |
+ } |
+ sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL); |
+ if( sqlite3_step(pStmt)==SQLITE_ROW ){ |
+ fts3DecodeIntArray(nStat, a, |
+ sqlite3_column_blob(pStmt, 0), |
+ sqlite3_column_bytes(pStmt, 0)); |
+ }else{ |
+ memset(a, 0, sizeof(u32)*(nStat) ); |
+ } |
+ rc = sqlite3_reset(pStmt); |
+ if( rc!=SQLITE_OK ){ |
+ sqlite3_free(a); |
+ *pRC = rc; |
+ return; |
+ } |
+ if( nChng<0 && a[0]<(u32)(-nChng) ){ |
+ a[0] = 0; |
+ }else{ |
+ a[0] += nChng; |
+ } |
+ for(i=0; i<p->nColumn+1; i++){ |
+ u32 x = a[i+1]; |
+ if( x+aSzIns[i] < aSzDel[i] ){ |
+ x = 0; |
+ }else{ |
+ x = x + aSzIns[i] - aSzDel[i]; |
+ } |
+ a[i+1] = x; |
+ } |
+ fts3EncodeIntArray(nStat, a, pBlob, &nBlob); |
+ rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pStmt, 0); |
+ if( rc ){ |
+ sqlite3_free(a); |
+ *pRC = rc; |
+ return; |
+ } |
+ sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL); |
+ sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, SQLITE_STATIC); |
+ sqlite3_step(pStmt); |
+ *pRC = sqlite3_reset(pStmt); |
+ sqlite3_free(a); |
+} |
+ |
+/* |
+** Merge the entire database so that there is one segment for each |
+** iIndex/iLangid combination. |
+*/ |
+static int fts3DoOptimize(Fts3Table *p, int bReturnDone){ |
+ int bSeenDone = 0; |
+ int rc; |
+ sqlite3_stmt *pAllLangid = 0; |
+ |
+ rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0); |
+ if( rc==SQLITE_OK ){ |
+ int rc2; |
+ sqlite3_bind_int(pAllLangid, 1, p->nIndex); |
+ while( sqlite3_step(pAllLangid)==SQLITE_ROW ){ |
+ int i; |
+ int iLangid = sqlite3_column_int(pAllLangid, 0); |
+ for(i=0; rc==SQLITE_OK && i<p->nIndex; i++){ |
+ rc = fts3SegmentMerge(p, iLangid, i, FTS3_SEGCURSOR_ALL); |
+ if( rc==SQLITE_DONE ){ |
+ bSeenDone = 1; |
+ rc = SQLITE_OK; |
+ } |
+ } |
+ } |
+ rc2 = sqlite3_reset(pAllLangid); |
+ if( rc==SQLITE_OK ) rc = rc2; |
+ } |
+ |
+ sqlite3Fts3SegmentsClose(p); |
+ sqlite3Fts3PendingTermsClear(p); |
+ |
+ return (rc==SQLITE_OK && bReturnDone && bSeenDone) ? SQLITE_DONE : rc; |
+} |
+ |
+/* |
+** This function is called when the user executes the following statement: |
+** |
+** INSERT INTO <tbl>(<tbl>) VALUES('rebuild'); |
+** |
+** The entire FTS index is discarded and rebuilt. If the table is one |
+** created using the content=xxx option, then the new index is based on |
+** the current contents of the xxx table. Otherwise, it is rebuilt based |
+** on the contents of the %_content table. |
+*/ |
+static int fts3DoRebuild(Fts3Table *p){ |
+ int rc; /* Return Code */ |
+ |
+ rc = fts3DeleteAll(p, 0); |
+ if( rc==SQLITE_OK ){ |
+ u32 *aSz = 0; |
+ u32 *aSzIns = 0; |
+ u32 *aSzDel = 0; |
+ sqlite3_stmt *pStmt = 0; |
+ int nEntry = 0; |
+ |
+ /* Compose and prepare an SQL statement to loop through the content table */ |
+ char *zSql = sqlite3_mprintf("SELECT %s" , p->zReadExprlist); |
+ if( !zSql ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); |
+ sqlite3_free(zSql); |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ int nByte = sizeof(u32) * (p->nColumn+1)*3; |
+ aSz = (u32 *)sqlite3_malloc(nByte); |
+ if( aSz==0 ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ memset(aSz, 0, nByte); |
+ aSzIns = &aSz[p->nColumn+1]; |
+ aSzDel = &aSzIns[p->nColumn+1]; |
+ } |
+ } |
+ |
+ while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ |
+ int iCol; |
+ int iLangid = langidFromSelect(p, pStmt); |
+ rc = fts3PendingTermsDocid(p, iLangid, sqlite3_column_int64(pStmt, 0)); |
+ memset(aSz, 0, sizeof(aSz[0]) * (p->nColumn+1)); |
+ for(iCol=0; rc==SQLITE_OK && iCol<p->nColumn; iCol++){ |
+ if( p->abNotindexed[iCol]==0 ){ |
+ const char *z = (const char *) sqlite3_column_text(pStmt, iCol+1); |
+ rc = fts3PendingTermsAdd(p, iLangid, z, iCol, &aSz[iCol]); |
+ aSz[p->nColumn] += sqlite3_column_bytes(pStmt, iCol+1); |
+ } |
+ } |
+ if( p->bHasDocsize ){ |
+ fts3InsertDocsize(&rc, p, aSz); |
+ } |
+ if( rc!=SQLITE_OK ){ |
+ sqlite3_finalize(pStmt); |
+ pStmt = 0; |
+ }else{ |
+ nEntry++; |
+ for(iCol=0; iCol<=p->nColumn; iCol++){ |
+ aSzIns[iCol] += aSz[iCol]; |
+ } |
+ } |
+ } |
+ if( p->bFts4 ){ |
+ fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nEntry); |
+ } |
+ sqlite3_free(aSz); |
+ |
+ if( pStmt ){ |
+ int rc2 = sqlite3_finalize(pStmt); |
+ if( rc==SQLITE_OK ){ |
+ rc = rc2; |
+ } |
+ } |
+ } |
+ |
+ return rc; |
+} |
+ |
+ |
+/* |
+** This function opens a cursor used to read the input data for an |
+** incremental merge operation. Specifically, it opens a cursor to scan |
+** the oldest nSeg segments (idx=0 through idx=(nSeg-1)) in absolute |
+** level iAbsLevel. |
+*/ |
+static int fts3IncrmergeCsr( |
+ Fts3Table *p, /* FTS3 table handle */ |
+ sqlite3_int64 iAbsLevel, /* Absolute level to open */ |
+ int nSeg, /* Number of segments to merge */ |
+ Fts3MultiSegReader *pCsr /* Cursor object to populate */ |
+){ |
+ int rc; /* Return Code */ |
+ sqlite3_stmt *pStmt = 0; /* Statement used to read %_segdir entry */ |
+ int nByte; /* Bytes allocated at pCsr->apSegment[] */ |
+ |
+ /* Allocate space for the Fts3MultiSegReader.aCsr[] array */ |
+ memset(pCsr, 0, sizeof(*pCsr)); |
+ nByte = sizeof(Fts3SegReader *) * nSeg; |
+ pCsr->apSegment = (Fts3SegReader **)sqlite3_malloc(nByte); |
+ |
+ if( pCsr->apSegment==0 ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ memset(pCsr->apSegment, 0, nByte); |
+ rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ int i; |
+ int rc2; |
+ sqlite3_bind_int64(pStmt, 1, iAbsLevel); |
+ assert( pCsr->nSegment==0 ); |
+ for(i=0; rc==SQLITE_OK && sqlite3_step(pStmt)==SQLITE_ROW && i<nSeg; i++){ |
+ rc = sqlite3Fts3SegReaderNew(i, 0, |
+ sqlite3_column_int64(pStmt, 1), /* segdir.start_block */ |
+ sqlite3_column_int64(pStmt, 2), /* segdir.leaves_end_block */ |
+ sqlite3_column_int64(pStmt, 3), /* segdir.end_block */ |
+ sqlite3_column_blob(pStmt, 4), /* segdir.root */ |
+ sqlite3_column_bytes(pStmt, 4), /* segdir.root */ |
+ &pCsr->apSegment[i] |
+ ); |
+ pCsr->nSegment++; |
+ } |
+ rc2 = sqlite3_reset(pStmt); |
+ if( rc==SQLITE_OK ) rc = rc2; |
+ } |
+ |
+ return rc; |
+} |
+ |
+typedef struct IncrmergeWriter IncrmergeWriter; |
+typedef struct NodeWriter NodeWriter; |
+typedef struct Blob Blob; |
+typedef struct NodeReader NodeReader; |
+ |
+/* |
+** An instance of the following structure is used as a dynamic buffer |
+** to build up nodes or other blobs of data in. |
+** |
+** The function blobGrowBuffer() is used to extend the allocation. |
+*/ |
+struct Blob { |
+ char *a; /* Pointer to allocation */ |
+ int n; /* Number of valid bytes of data in a[] */ |
+ int nAlloc; /* Allocated size of a[] (nAlloc>=n) */ |
+}; |
+ |
+/* |
+** This structure is used to build up buffers containing segment b-tree |
+** nodes (blocks). |
+*/ |
+struct NodeWriter { |
+ sqlite3_int64 iBlock; /* Current block id */ |
+ Blob key; /* Last key written to the current block */ |
+ Blob block; /* Current block image */ |
+}; |
+ |
+/* |
+** An object of this type contains the state required to create or append |
+** to an appendable b-tree segment. |
+*/ |
+struct IncrmergeWriter { |
+ int nLeafEst; /* Space allocated for leaf blocks */ |
+ int nWork; /* Number of leaf pages flushed */ |
+ sqlite3_int64 iAbsLevel; /* Absolute level of input segments */ |
+ int iIdx; /* Index of *output* segment in iAbsLevel+1 */ |
+ sqlite3_int64 iStart; /* Block number of first allocated block */ |
+ sqlite3_int64 iEnd; /* Block number of last allocated block */ |
+ sqlite3_int64 nLeafData; /* Bytes of leaf page data so far */ |
+ u8 bNoLeafData; /* If true, store 0 for segment size */ |
+ NodeWriter aNodeWriter[FTS_MAX_APPENDABLE_HEIGHT]; |
+}; |
+ |
+/* |
+** An object of the following type is used to read data from a single |
+** FTS segment node. See the following functions: |
+** |
+** nodeReaderInit() |
+** nodeReaderNext() |
+** nodeReaderRelease() |
+*/ |
+struct NodeReader { |
+ const char *aNode; |
+ int nNode; |
+ int iOff; /* Current offset within aNode[] */ |
+ |
+ /* Output variables. Containing the current node entry. */ |
+ sqlite3_int64 iChild; /* Pointer to child node */ |
+ Blob term; /* Current term */ |
+ const char *aDoclist; /* Pointer to doclist */ |
+ int nDoclist; /* Size of doclist in bytes */ |
+}; |
+ |
+/* |
+** If *pRc is not SQLITE_OK when this function is called, it is a no-op. |
+** Otherwise, if the allocation at pBlob->a is not already at least nMin |
+** bytes in size, extend (realloc) it to be so. |
+** |
+** If an OOM error occurs, set *pRc to SQLITE_NOMEM and leave pBlob->a |
+** unmodified. Otherwise, if the allocation succeeds, update pBlob->nAlloc |
+** to reflect the new size of the pBlob->a[] buffer. |
+*/ |
+static void blobGrowBuffer(Blob *pBlob, int nMin, int *pRc){ |
+ if( *pRc==SQLITE_OK && nMin>pBlob->nAlloc ){ |
+ int nAlloc = nMin; |
+ char *a = (char *)sqlite3_realloc(pBlob->a, nAlloc); |
+ if( a ){ |
+ pBlob->nAlloc = nAlloc; |
+ pBlob->a = a; |
+ }else{ |
+ *pRc = SQLITE_NOMEM; |
+ } |
+ } |
+} |
+ |
+/* |
+** Attempt to advance the node-reader object passed as the first argument to |
+** the next entry on the node. |
+** |
+** Return an error code if an error occurs (SQLITE_NOMEM is possible). |
+** Otherwise return SQLITE_OK. If there is no next entry on the node |
+** (e.g. because the current entry is the last) set NodeReader->aNode to |
+** NULL to indicate EOF. Otherwise, populate the NodeReader structure output |
+** variables for the new entry. |
+*/ |
+static int nodeReaderNext(NodeReader *p){ |
+ int bFirst = (p->term.n==0); /* True for first term on the node */ |
+ int nPrefix = 0; /* Bytes to copy from previous term */ |
+ int nSuffix = 0; /* Bytes to append to the prefix */ |
+ int rc = SQLITE_OK; /* Return code */ |
+ |
+ assert( p->aNode ); |
+ if( p->iChild && bFirst==0 ) p->iChild++; |
+ if( p->iOff>=p->nNode ){ |
+ /* EOF */ |
+ p->aNode = 0; |
+ }else{ |
+ if( bFirst==0 ){ |
+ p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nPrefix); |
+ } |
+ p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nSuffix); |
+ |
+ blobGrowBuffer(&p->term, nPrefix+nSuffix, &rc); |
+ if( rc==SQLITE_OK ){ |
+ memcpy(&p->term.a[nPrefix], &p->aNode[p->iOff], nSuffix); |
+ p->term.n = nPrefix+nSuffix; |
+ p->iOff += nSuffix; |
+ if( p->iChild==0 ){ |
+ p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &p->nDoclist); |
+ p->aDoclist = &p->aNode[p->iOff]; |
+ p->iOff += p->nDoclist; |
+ } |
+ } |
+ } |
+ |
+ assert( p->iOff<=p->nNode ); |
+ |
+ return rc; |
+} |
+ |
+/* |
+** Release all dynamic resources held by node-reader object *p. |
+*/ |
+static void nodeReaderRelease(NodeReader *p){ |
+ sqlite3_free(p->term.a); |
+} |
+ |
+/* |
+** Initialize a node-reader object to read the node in buffer aNode/nNode. |
+** |
+** If successful, SQLITE_OK is returned and the NodeReader object set to |
+** point to the first entry on the node (if any). Otherwise, an SQLite |
+** error code is returned. |
+*/ |
+static int nodeReaderInit(NodeReader *p, const char *aNode, int nNode){ |
+ memset(p, 0, sizeof(NodeReader)); |
+ p->aNode = aNode; |
+ p->nNode = nNode; |
+ |
+ /* Figure out if this is a leaf or an internal node. */ |
+ if( p->aNode[0] ){ |
+ /* An internal node. */ |
+ p->iOff = 1 + sqlite3Fts3GetVarint(&p->aNode[1], &p->iChild); |
+ }else{ |
+ p->iOff = 1; |
+ } |
+ |
+ return nodeReaderNext(p); |
+} |
+ |
+/* |
+** This function is called while writing an FTS segment each time a leaf o |
+** node is finished and written to disk. The key (zTerm/nTerm) is guaranteed |
+** to be greater than the largest key on the node just written, but smaller |
+** than or equal to the first key that will be written to the next leaf |
+** node. |
+** |
+** The block id of the leaf node just written to disk may be found in |
+** (pWriter->aNodeWriter[0].iBlock) when this function is called. |
+*/ |
+static int fts3IncrmergePush( |
+ Fts3Table *p, /* Fts3 table handle */ |
+ IncrmergeWriter *pWriter, /* Writer object */ |
+ const char *zTerm, /* Term to write to internal node */ |
+ int nTerm /* Bytes at zTerm */ |
+){ |
+ sqlite3_int64 iPtr = pWriter->aNodeWriter[0].iBlock; |
+ int iLayer; |
+ |
+ assert( nTerm>0 ); |
+ for(iLayer=1; ALWAYS(iLayer<FTS_MAX_APPENDABLE_HEIGHT); iLayer++){ |
+ sqlite3_int64 iNextPtr = 0; |
+ NodeWriter *pNode = &pWriter->aNodeWriter[iLayer]; |
+ int rc = SQLITE_OK; |
+ int nPrefix; |
+ int nSuffix; |
+ int nSpace; |
+ |
+ /* Figure out how much space the key will consume if it is written to |
+ ** the current node of layer iLayer. Due to the prefix compression, |
+ ** the space required changes depending on which node the key is to |
+ ** be added to. */ |
+ nPrefix = fts3PrefixCompress(pNode->key.a, pNode->key.n, zTerm, nTerm); |
+ nSuffix = nTerm - nPrefix; |
+ nSpace = sqlite3Fts3VarintLen(nPrefix); |
+ nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix; |
+ |
+ if( pNode->key.n==0 || (pNode->block.n + nSpace)<=p->nNodeSize ){ |
+ /* If the current node of layer iLayer contains zero keys, or if adding |
+ ** the key to it will not cause it to grow to larger than nNodeSize |
+ ** bytes in size, write the key here. */ |
+ |
+ Blob *pBlk = &pNode->block; |
+ if( pBlk->n==0 ){ |
+ blobGrowBuffer(pBlk, p->nNodeSize, &rc); |
+ if( rc==SQLITE_OK ){ |
+ pBlk->a[0] = (char)iLayer; |
+ pBlk->n = 1 + sqlite3Fts3PutVarint(&pBlk->a[1], iPtr); |
+ } |
+ } |
+ blobGrowBuffer(pBlk, pBlk->n + nSpace, &rc); |
+ blobGrowBuffer(&pNode->key, nTerm, &rc); |
+ |
+ if( rc==SQLITE_OK ){ |
+ if( pNode->key.n ){ |
+ pBlk->n += sqlite3Fts3PutVarint(&pBlk->a[pBlk->n], nPrefix); |
+ } |
+ pBlk->n += sqlite3Fts3PutVarint(&pBlk->a[pBlk->n], nSuffix); |
+ memcpy(&pBlk->a[pBlk->n], &zTerm[nPrefix], nSuffix); |
+ pBlk->n += nSuffix; |
+ |
+ memcpy(pNode->key.a, zTerm, nTerm); |
+ pNode->key.n = nTerm; |
+ } |
+ }else{ |
+ /* Otherwise, flush the current node of layer iLayer to disk. |
+ ** Then allocate a new, empty sibling node. The key will be written |
+ ** into the parent of this node. */ |
+ rc = fts3WriteSegment(p, pNode->iBlock, pNode->block.a, pNode->block.n); |
+ |
+ assert( pNode->block.nAlloc>=p->nNodeSize ); |
+ pNode->block.a[0] = (char)iLayer; |
+ pNode->block.n = 1 + sqlite3Fts3PutVarint(&pNode->block.a[1], iPtr+1); |
+ |
+ iNextPtr = pNode->iBlock; |
+ pNode->iBlock++; |
+ pNode->key.n = 0; |
+ } |
+ |
+ if( rc!=SQLITE_OK || iNextPtr==0 ) return rc; |
+ iPtr = iNextPtr; |
+ } |
+ |
+ assert( 0 ); |
+ return 0; |
+} |
+ |
+/* |
+** Append a term and (optionally) doclist to the FTS segment node currently |
+** stored in blob *pNode. The node need not contain any terms, but the |
+** header must be written before this function is called. |
+** |
+** A node header is a single 0x00 byte for a leaf node, or a height varint |
+** followed by the left-hand-child varint for an internal node. |
+** |
+** The term to be appended is passed via arguments zTerm/nTerm. For a |
+** leaf node, the doclist is passed as aDoclist/nDoclist. For an internal |
+** node, both aDoclist and nDoclist must be passed 0. |
+** |
+** If the size of the value in blob pPrev is zero, then this is the first |
+** term written to the node. Otherwise, pPrev contains a copy of the |
+** previous term. Before this function returns, it is updated to contain a |
+** copy of zTerm/nTerm. |
+** |
+** It is assumed that the buffer associated with pNode is already large |
+** enough to accommodate the new entry. The buffer associated with pPrev |
+** is extended by this function if requrired. |
+** |
+** If an error (i.e. OOM condition) occurs, an SQLite error code is |
+** returned. Otherwise, SQLITE_OK. |
+*/ |
+static int fts3AppendToNode( |
+ Blob *pNode, /* Current node image to append to */ |
+ Blob *pPrev, /* Buffer containing previous term written */ |
+ const char *zTerm, /* New term to write */ |
+ int nTerm, /* Size of zTerm in bytes */ |
+ const char *aDoclist, /* Doclist (or NULL) to write */ |
+ int nDoclist /* Size of aDoclist in bytes */ |
+){ |
+ int rc = SQLITE_OK; /* Return code */ |
+ int bFirst = (pPrev->n==0); /* True if this is the first term written */ |
+ int nPrefix; /* Size of term prefix in bytes */ |
+ int nSuffix; /* Size of term suffix in bytes */ |
+ |
+ /* Node must have already been started. There must be a doclist for a |
+ ** leaf node, and there must not be a doclist for an internal node. */ |
+ assert( pNode->n>0 ); |
+ assert( (pNode->a[0]=='\0')==(aDoclist!=0) ); |
+ |
+ blobGrowBuffer(pPrev, nTerm, &rc); |
+ if( rc!=SQLITE_OK ) return rc; |
+ |
+ nPrefix = fts3PrefixCompress(pPrev->a, pPrev->n, zTerm, nTerm); |
+ nSuffix = nTerm - nPrefix; |
+ memcpy(pPrev->a, zTerm, nTerm); |
+ pPrev->n = nTerm; |
+ |
+ if( bFirst==0 ){ |
+ pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nPrefix); |
+ } |
+ pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nSuffix); |
+ memcpy(&pNode->a[pNode->n], &zTerm[nPrefix], nSuffix); |
+ pNode->n += nSuffix; |
+ |
+ if( aDoclist ){ |
+ pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nDoclist); |
+ memcpy(&pNode->a[pNode->n], aDoclist, nDoclist); |
+ pNode->n += nDoclist; |
+ } |
+ |
+ assert( pNode->n<=pNode->nAlloc ); |
+ |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Append the current term and doclist pointed to by cursor pCsr to the |
+** appendable b-tree segment opened for writing by pWriter. |
+** |
+** Return SQLITE_OK if successful, or an SQLite error code otherwise. |
+*/ |
+static int fts3IncrmergeAppend( |
+ Fts3Table *p, /* Fts3 table handle */ |
+ IncrmergeWriter *pWriter, /* Writer object */ |
+ Fts3MultiSegReader *pCsr /* Cursor containing term and doclist */ |
+){ |
+ const char *zTerm = pCsr->zTerm; |
+ int nTerm = pCsr->nTerm; |
+ const char *aDoclist = pCsr->aDoclist; |
+ int nDoclist = pCsr->nDoclist; |
+ int rc = SQLITE_OK; /* Return code */ |
+ int nSpace; /* Total space in bytes required on leaf */ |
+ int nPrefix; /* Size of prefix shared with previous term */ |
+ int nSuffix; /* Size of suffix (nTerm - nPrefix) */ |
+ NodeWriter *pLeaf; /* Object used to write leaf nodes */ |
+ |
+ pLeaf = &pWriter->aNodeWriter[0]; |
+ nPrefix = fts3PrefixCompress(pLeaf->key.a, pLeaf->key.n, zTerm, nTerm); |
+ nSuffix = nTerm - nPrefix; |
+ |
+ nSpace = sqlite3Fts3VarintLen(nPrefix); |
+ nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix; |
+ nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist; |
+ |
+ /* If the current block is not empty, and if adding this term/doclist |
+ ** to the current block would make it larger than Fts3Table.nNodeSize |
+ ** bytes, write this block out to the database. */ |
+ if( pLeaf->block.n>0 && (pLeaf->block.n + nSpace)>p->nNodeSize ){ |
+ rc = fts3WriteSegment(p, pLeaf->iBlock, pLeaf->block.a, pLeaf->block.n); |
+ pWriter->nWork++; |
+ |
+ /* Add the current term to the parent node. The term added to the |
+ ** parent must: |
+ ** |
+ ** a) be greater than the largest term on the leaf node just written |
+ ** to the database (still available in pLeaf->key), and |
+ ** |
+ ** b) be less than or equal to the term about to be added to the new |
+ ** leaf node (zTerm/nTerm). |
+ ** |
+ ** In other words, it must be the prefix of zTerm 1 byte longer than |
+ ** the common prefix (if any) of zTerm and pWriter->zTerm. |
+ */ |
+ if( rc==SQLITE_OK ){ |
+ rc = fts3IncrmergePush(p, pWriter, zTerm, nPrefix+1); |
+ } |
+ |
+ /* Advance to the next output block */ |
+ pLeaf->iBlock++; |
+ pLeaf->key.n = 0; |
+ pLeaf->block.n = 0; |
+ |
+ nSuffix = nTerm; |
+ nSpace = 1; |
+ nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix; |
+ nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist; |
+ } |
+ |
+ pWriter->nLeafData += nSpace; |
+ blobGrowBuffer(&pLeaf->block, pLeaf->block.n + nSpace, &rc); |
+ if( rc==SQLITE_OK ){ |
+ if( pLeaf->block.n==0 ){ |
+ pLeaf->block.n = 1; |
+ pLeaf->block.a[0] = '\0'; |
+ } |
+ rc = fts3AppendToNode( |
+ &pLeaf->block, &pLeaf->key, zTerm, nTerm, aDoclist, nDoclist |
+ ); |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** This function is called to release all dynamic resources held by the |
+** merge-writer object pWriter, and if no error has occurred, to flush |
+** all outstanding node buffers held by pWriter to disk. |
+** |
+** If *pRc is not SQLITE_OK when this function is called, then no attempt |
+** is made to write any data to disk. Instead, this function serves only |
+** to release outstanding resources. |
+** |
+** Otherwise, if *pRc is initially SQLITE_OK and an error occurs while |
+** flushing buffers to disk, *pRc is set to an SQLite error code before |
+** returning. |
+*/ |
+static void fts3IncrmergeRelease( |
+ Fts3Table *p, /* FTS3 table handle */ |
+ IncrmergeWriter *pWriter, /* Merge-writer object */ |
+ int *pRc /* IN/OUT: Error code */ |
+){ |
+ int i; /* Used to iterate through non-root layers */ |
+ int iRoot; /* Index of root in pWriter->aNodeWriter */ |
+ NodeWriter *pRoot; /* NodeWriter for root node */ |
+ int rc = *pRc; /* Error code */ |
+ |
+ /* Set iRoot to the index in pWriter->aNodeWriter[] of the output segment |
+ ** root node. If the segment fits entirely on a single leaf node, iRoot |
+ ** will be set to 0. If the root node is the parent of the leaves, iRoot |
+ ** will be 1. And so on. */ |
+ for(iRoot=FTS_MAX_APPENDABLE_HEIGHT-1; iRoot>=0; iRoot--){ |
+ NodeWriter *pNode = &pWriter->aNodeWriter[iRoot]; |
+ if( pNode->block.n>0 ) break; |
+ assert( *pRc || pNode->block.nAlloc==0 ); |
+ assert( *pRc || pNode->key.nAlloc==0 ); |
+ sqlite3_free(pNode->block.a); |
+ sqlite3_free(pNode->key.a); |
+ } |
+ |
+ /* Empty output segment. This is a no-op. */ |
+ if( iRoot<0 ) return; |
+ |
+ /* The entire output segment fits on a single node. Normally, this means |
+ ** the node would be stored as a blob in the "root" column of the %_segdir |
+ ** table. However, this is not permitted in this case. The problem is that |
+ ** space has already been reserved in the %_segments table, and so the |
+ ** start_block and end_block fields of the %_segdir table must be populated. |
+ ** And, by design or by accident, released versions of FTS cannot handle |
+ ** segments that fit entirely on the root node with start_block!=0. |
+ ** |
+ ** Instead, create a synthetic root node that contains nothing but a |
+ ** pointer to the single content node. So that the segment consists of a |
+ ** single leaf and a single interior (root) node. |
+ ** |
+ ** Todo: Better might be to defer allocating space in the %_segments |
+ ** table until we are sure it is needed. |
+ */ |
+ if( iRoot==0 ){ |
+ Blob *pBlock = &pWriter->aNodeWriter[1].block; |
+ blobGrowBuffer(pBlock, 1 + FTS3_VARINT_MAX, &rc); |
+ if( rc==SQLITE_OK ){ |
+ pBlock->a[0] = 0x01; |
+ pBlock->n = 1 + sqlite3Fts3PutVarint( |
+ &pBlock->a[1], pWriter->aNodeWriter[0].iBlock |
+ ); |
+ } |
+ iRoot = 1; |
+ } |
+ pRoot = &pWriter->aNodeWriter[iRoot]; |
+ |
+ /* Flush all currently outstanding nodes to disk. */ |
+ for(i=0; i<iRoot; i++){ |
+ NodeWriter *pNode = &pWriter->aNodeWriter[i]; |
+ if( pNode->block.n>0 && rc==SQLITE_OK ){ |
+ rc = fts3WriteSegment(p, pNode->iBlock, pNode->block.a, pNode->block.n); |
+ } |
+ sqlite3_free(pNode->block.a); |
+ sqlite3_free(pNode->key.a); |
+ } |
+ |
+ /* Write the %_segdir record. */ |
+ if( rc==SQLITE_OK ){ |
+ rc = fts3WriteSegdir(p, |
+ pWriter->iAbsLevel+1, /* level */ |
+ pWriter->iIdx, /* idx */ |
+ pWriter->iStart, /* start_block */ |
+ pWriter->aNodeWriter[0].iBlock, /* leaves_end_block */ |
+ pWriter->iEnd, /* end_block */ |
+ (pWriter->bNoLeafData==0 ? pWriter->nLeafData : 0), /* end_block */ |
+ pRoot->block.a, pRoot->block.n /* root */ |
+ ); |
+ } |
+ sqlite3_free(pRoot->block.a); |
+ sqlite3_free(pRoot->key.a); |
+ |
+ *pRc = rc; |
+} |
+ |
+/* |
+** Compare the term in buffer zLhs (size in bytes nLhs) with that in |
+** zRhs (size in bytes nRhs) using memcmp. If one term is a prefix of |
+** the other, it is considered to be smaller than the other. |
+** |
+** Return -ve if zLhs is smaller than zRhs, 0 if it is equal, or +ve |
+** if it is greater. |
+*/ |
+static int fts3TermCmp( |
+ const char *zLhs, int nLhs, /* LHS of comparison */ |
+ const char *zRhs, int nRhs /* RHS of comparison */ |
+){ |
+ int nCmp = MIN(nLhs, nRhs); |
+ int res; |
+ |
+ res = memcmp(zLhs, zRhs, nCmp); |
+ if( res==0 ) res = nLhs - nRhs; |
+ |
+ return res; |
+} |
+ |
+ |
+/* |
+** Query to see if the entry in the %_segments table with blockid iEnd is |
+** NULL. If no error occurs and the entry is NULL, set *pbRes 1 before |
+** returning. Otherwise, set *pbRes to 0. |
+** |
+** Or, if an error occurs while querying the database, return an SQLite |
+** error code. The final value of *pbRes is undefined in this case. |
+** |
+** This is used to test if a segment is an "appendable" segment. If it |
+** is, then a NULL entry has been inserted into the %_segments table |
+** with blockid %_segdir.end_block. |
+*/ |
+static int fts3IsAppendable(Fts3Table *p, sqlite3_int64 iEnd, int *pbRes){ |
+ int bRes = 0; /* Result to set *pbRes to */ |
+ sqlite3_stmt *pCheck = 0; /* Statement to query database with */ |
+ int rc; /* Return code */ |
+ |
+ rc = fts3SqlStmt(p, SQL_SEGMENT_IS_APPENDABLE, &pCheck, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int64(pCheck, 1, iEnd); |
+ if( SQLITE_ROW==sqlite3_step(pCheck) ) bRes = 1; |
+ rc = sqlite3_reset(pCheck); |
+ } |
+ |
+ *pbRes = bRes; |
+ return rc; |
+} |
+ |
+/* |
+** This function is called when initializing an incremental-merge operation. |
+** It checks if the existing segment with index value iIdx at absolute level |
+** (iAbsLevel+1) can be appended to by the incremental merge. If it can, the |
+** merge-writer object *pWriter is initialized to write to it. |
+** |
+** An existing segment can be appended to by an incremental merge if: |
+** |
+** * It was initially created as an appendable segment (with all required |
+** space pre-allocated), and |
+** |
+** * The first key read from the input (arguments zKey and nKey) is |
+** greater than the largest key currently stored in the potential |
+** output segment. |
+*/ |
+static int fts3IncrmergeLoad( |
+ Fts3Table *p, /* Fts3 table handle */ |
+ sqlite3_int64 iAbsLevel, /* Absolute level of input segments */ |
+ int iIdx, /* Index of candidate output segment */ |
+ const char *zKey, /* First key to write */ |
+ int nKey, /* Number of bytes in nKey */ |
+ IncrmergeWriter *pWriter /* Populate this object */ |
+){ |
+ int rc; /* Return code */ |
+ sqlite3_stmt *pSelect = 0; /* SELECT to read %_segdir entry */ |
+ |
+ rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR, &pSelect, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_int64 iStart = 0; /* Value of %_segdir.start_block */ |
+ sqlite3_int64 iLeafEnd = 0; /* Value of %_segdir.leaves_end_block */ |
+ sqlite3_int64 iEnd = 0; /* Value of %_segdir.end_block */ |
+ const char *aRoot = 0; /* Pointer to %_segdir.root buffer */ |
+ int nRoot = 0; /* Size of aRoot[] in bytes */ |
+ int rc2; /* Return code from sqlite3_reset() */ |
+ int bAppendable = 0; /* Set to true if segment is appendable */ |
+ |
+ /* Read the %_segdir entry for index iIdx absolute level (iAbsLevel+1) */ |
+ sqlite3_bind_int64(pSelect, 1, iAbsLevel+1); |
+ sqlite3_bind_int(pSelect, 2, iIdx); |
+ if( sqlite3_step(pSelect)==SQLITE_ROW ){ |
+ iStart = sqlite3_column_int64(pSelect, 1); |
+ iLeafEnd = sqlite3_column_int64(pSelect, 2); |
+ fts3ReadEndBlockField(pSelect, 3, &iEnd, &pWriter->nLeafData); |
+ if( pWriter->nLeafData<0 ){ |
+ pWriter->nLeafData = pWriter->nLeafData * -1; |
+ } |
+ pWriter->bNoLeafData = (pWriter->nLeafData==0); |
+ nRoot = sqlite3_column_bytes(pSelect, 4); |
+ aRoot = sqlite3_column_blob(pSelect, 4); |
+ }else{ |
+ return sqlite3_reset(pSelect); |
+ } |
+ |
+ /* Check for the zero-length marker in the %_segments table */ |
+ rc = fts3IsAppendable(p, iEnd, &bAppendable); |
+ |
+ /* Check that zKey/nKey is larger than the largest key the candidate */ |
+ if( rc==SQLITE_OK && bAppendable ){ |
+ char *aLeaf = 0; |
+ int nLeaf = 0; |
+ |
+ rc = sqlite3Fts3ReadBlock(p, iLeafEnd, &aLeaf, &nLeaf, 0); |
+ if( rc==SQLITE_OK ){ |
+ NodeReader reader; |
+ for(rc = nodeReaderInit(&reader, aLeaf, nLeaf); |
+ rc==SQLITE_OK && reader.aNode; |
+ rc = nodeReaderNext(&reader) |
+ ){ |
+ assert( reader.aNode ); |
+ } |
+ if( fts3TermCmp(zKey, nKey, reader.term.a, reader.term.n)<=0 ){ |
+ bAppendable = 0; |
+ } |
+ nodeReaderRelease(&reader); |
+ } |
+ sqlite3_free(aLeaf); |
+ } |
+ |
+ if( rc==SQLITE_OK && bAppendable ){ |
+ /* It is possible to append to this segment. Set up the IncrmergeWriter |
+ ** object to do so. */ |
+ int i; |
+ int nHeight = (int)aRoot[0]; |
+ NodeWriter *pNode; |
+ |
+ pWriter->nLeafEst = (int)((iEnd - iStart) + 1)/FTS_MAX_APPENDABLE_HEIGHT; |
+ pWriter->iStart = iStart; |
+ pWriter->iEnd = iEnd; |
+ pWriter->iAbsLevel = iAbsLevel; |
+ pWriter->iIdx = iIdx; |
+ |
+ for(i=nHeight+1; i<FTS_MAX_APPENDABLE_HEIGHT; i++){ |
+ pWriter->aNodeWriter[i].iBlock = pWriter->iStart + i*pWriter->nLeafEst; |
+ } |
+ |
+ pNode = &pWriter->aNodeWriter[nHeight]; |
+ pNode->iBlock = pWriter->iStart + pWriter->nLeafEst*nHeight; |
+ blobGrowBuffer(&pNode->block, MAX(nRoot, p->nNodeSize), &rc); |
+ if( rc==SQLITE_OK ){ |
+ memcpy(pNode->block.a, aRoot, nRoot); |
+ pNode->block.n = nRoot; |
+ } |
+ |
+ for(i=nHeight; i>=0 && rc==SQLITE_OK; i--){ |
+ NodeReader reader; |
+ pNode = &pWriter->aNodeWriter[i]; |
+ |
+ rc = nodeReaderInit(&reader, pNode->block.a, pNode->block.n); |
+ while( reader.aNode && rc==SQLITE_OK ) rc = nodeReaderNext(&reader); |
+ blobGrowBuffer(&pNode->key, reader.term.n, &rc); |
+ if( rc==SQLITE_OK ){ |
+ memcpy(pNode->key.a, reader.term.a, reader.term.n); |
+ pNode->key.n = reader.term.n; |
+ if( i>0 ){ |
+ char *aBlock = 0; |
+ int nBlock = 0; |
+ pNode = &pWriter->aNodeWriter[i-1]; |
+ pNode->iBlock = reader.iChild; |
+ rc = sqlite3Fts3ReadBlock(p, reader.iChild, &aBlock, &nBlock, 0); |
+ blobGrowBuffer(&pNode->block, MAX(nBlock, p->nNodeSize), &rc); |
+ if( rc==SQLITE_OK ){ |
+ memcpy(pNode->block.a, aBlock, nBlock); |
+ pNode->block.n = nBlock; |
+ } |
+ sqlite3_free(aBlock); |
+ } |
+ } |
+ nodeReaderRelease(&reader); |
+ } |
+ } |
+ |
+ rc2 = sqlite3_reset(pSelect); |
+ if( rc==SQLITE_OK ) rc = rc2; |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** Determine the largest segment index value that exists within absolute |
+** level iAbsLevel+1. If no error occurs, set *piIdx to this value plus |
+** one before returning SQLITE_OK. Or, if there are no segments at all |
+** within level iAbsLevel, set *piIdx to zero. |
+** |
+** If an error occurs, return an SQLite error code. The final value of |
+** *piIdx is undefined in this case. |
+*/ |
+static int fts3IncrmergeOutputIdx( |
+ Fts3Table *p, /* FTS Table handle */ |
+ sqlite3_int64 iAbsLevel, /* Absolute index of input segments */ |
+ int *piIdx /* OUT: Next free index at iAbsLevel+1 */ |
+){ |
+ int rc; |
+ sqlite3_stmt *pOutputIdx = 0; /* SQL used to find output index */ |
+ |
+ rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pOutputIdx, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int64(pOutputIdx, 1, iAbsLevel+1); |
+ sqlite3_step(pOutputIdx); |
+ *piIdx = sqlite3_column_int(pOutputIdx, 0); |
+ rc = sqlite3_reset(pOutputIdx); |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** Allocate an appendable output segment on absolute level iAbsLevel+1 |
+** with idx value iIdx. |
+** |
+** In the %_segdir table, a segment is defined by the values in three |
+** columns: |
+** |
+** start_block |
+** leaves_end_block |
+** end_block |
+** |
+** When an appendable segment is allocated, it is estimated that the |
+** maximum number of leaf blocks that may be required is the sum of the |
+** number of leaf blocks consumed by the input segments, plus the number |
+** of input segments, multiplied by two. This value is stored in stack |
+** variable nLeafEst. |
+** |
+** A total of 16*nLeafEst blocks are allocated when an appendable segment |
+** is created ((1 + end_block - start_block)==16*nLeafEst). The contiguous |
+** array of leaf nodes starts at the first block allocated. The array |
+** of interior nodes that are parents of the leaf nodes start at block |
+** (start_block + (1 + end_block - start_block) / 16). And so on. |
+** |
+** In the actual code below, the value "16" is replaced with the |
+** pre-processor macro FTS_MAX_APPENDABLE_HEIGHT. |
+*/ |
+static int fts3IncrmergeWriter( |
+ Fts3Table *p, /* Fts3 table handle */ |
+ sqlite3_int64 iAbsLevel, /* Absolute level of input segments */ |
+ int iIdx, /* Index of new output segment */ |
+ Fts3MultiSegReader *pCsr, /* Cursor that data will be read from */ |
+ IncrmergeWriter *pWriter /* Populate this object */ |
+){ |
+ int rc; /* Return Code */ |
+ int i; /* Iterator variable */ |
+ int nLeafEst = 0; /* Blocks allocated for leaf nodes */ |
+ sqlite3_stmt *pLeafEst = 0; /* SQL used to determine nLeafEst */ |
+ sqlite3_stmt *pFirstBlock = 0; /* SQL used to determine first block */ |
+ |
+ /* Calculate nLeafEst. */ |
+ rc = fts3SqlStmt(p, SQL_MAX_LEAF_NODE_ESTIMATE, &pLeafEst, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int64(pLeafEst, 1, iAbsLevel); |
+ sqlite3_bind_int64(pLeafEst, 2, pCsr->nSegment); |
+ if( SQLITE_ROW==sqlite3_step(pLeafEst) ){ |
+ nLeafEst = sqlite3_column_int(pLeafEst, 0); |
+ } |
+ rc = sqlite3_reset(pLeafEst); |
+ } |
+ if( rc!=SQLITE_OK ) return rc; |
+ |
+ /* Calculate the first block to use in the output segment */ |
+ rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pFirstBlock, 0); |
+ if( rc==SQLITE_OK ){ |
+ if( SQLITE_ROW==sqlite3_step(pFirstBlock) ){ |
+ pWriter->iStart = sqlite3_column_int64(pFirstBlock, 0); |
+ pWriter->iEnd = pWriter->iStart - 1; |
+ pWriter->iEnd += nLeafEst * FTS_MAX_APPENDABLE_HEIGHT; |
+ } |
+ rc = sqlite3_reset(pFirstBlock); |
+ } |
+ if( rc!=SQLITE_OK ) return rc; |
+ |
+ /* Insert the marker in the %_segments table to make sure nobody tries |
+ ** to steal the space just allocated. This is also used to identify |
+ ** appendable segments. */ |
+ rc = fts3WriteSegment(p, pWriter->iEnd, 0, 0); |
+ if( rc!=SQLITE_OK ) return rc; |
+ |
+ pWriter->iAbsLevel = iAbsLevel; |
+ pWriter->nLeafEst = nLeafEst; |
+ pWriter->iIdx = iIdx; |
+ |
+ /* Set up the array of NodeWriter objects */ |
+ for(i=0; i<FTS_MAX_APPENDABLE_HEIGHT; i++){ |
+ pWriter->aNodeWriter[i].iBlock = pWriter->iStart + i*pWriter->nLeafEst; |
+ } |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Remove an entry from the %_segdir table. This involves running the |
+** following two statements: |
+** |
+** DELETE FROM %_segdir WHERE level = :iAbsLevel AND idx = :iIdx |
+** UPDATE %_segdir SET idx = idx - 1 WHERE level = :iAbsLevel AND idx > :iIdx |
+** |
+** The DELETE statement removes the specific %_segdir level. The UPDATE |
+** statement ensures that the remaining segments have contiguously allocated |
+** idx values. |
+*/ |
+static int fts3RemoveSegdirEntry( |
+ Fts3Table *p, /* FTS3 table handle */ |
+ sqlite3_int64 iAbsLevel, /* Absolute level to delete from */ |
+ int iIdx /* Index of %_segdir entry to delete */ |
+){ |
+ int rc; /* Return code */ |
+ sqlite3_stmt *pDelete = 0; /* DELETE statement */ |
+ |
+ rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_ENTRY, &pDelete, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int64(pDelete, 1, iAbsLevel); |
+ sqlite3_bind_int(pDelete, 2, iIdx); |
+ sqlite3_step(pDelete); |
+ rc = sqlite3_reset(pDelete); |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** One or more segments have just been removed from absolute level iAbsLevel. |
+** Update the 'idx' values of the remaining segments in the level so that |
+** the idx values are a contiguous sequence starting from 0. |
+*/ |
+static int fts3RepackSegdirLevel( |
+ Fts3Table *p, /* FTS3 table handle */ |
+ sqlite3_int64 iAbsLevel /* Absolute level to repack */ |
+){ |
+ int rc; /* Return code */ |
+ int *aIdx = 0; /* Array of remaining idx values */ |
+ int nIdx = 0; /* Valid entries in aIdx[] */ |
+ int nAlloc = 0; /* Allocated size of aIdx[] */ |
+ int i; /* Iterator variable */ |
+ sqlite3_stmt *pSelect = 0; /* Select statement to read idx values */ |
+ sqlite3_stmt *pUpdate = 0; /* Update statement to modify idx values */ |
+ |
+ rc = fts3SqlStmt(p, SQL_SELECT_INDEXES, &pSelect, 0); |
+ if( rc==SQLITE_OK ){ |
+ int rc2; |
+ sqlite3_bind_int64(pSelect, 1, iAbsLevel); |
+ while( SQLITE_ROW==sqlite3_step(pSelect) ){ |
+ if( nIdx>=nAlloc ){ |
+ int *aNew; |
+ nAlloc += 16; |
+ aNew = sqlite3_realloc(aIdx, nAlloc*sizeof(int)); |
+ if( !aNew ){ |
+ rc = SQLITE_NOMEM; |
+ break; |
+ } |
+ aIdx = aNew; |
+ } |
+ aIdx[nIdx++] = sqlite3_column_int(pSelect, 0); |
+ } |
+ rc2 = sqlite3_reset(pSelect); |
+ if( rc==SQLITE_OK ) rc = rc2; |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ rc = fts3SqlStmt(p, SQL_SHIFT_SEGDIR_ENTRY, &pUpdate, 0); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int64(pUpdate, 2, iAbsLevel); |
+ } |
+ |
+ assert( p->bIgnoreSavepoint==0 ); |
+ p->bIgnoreSavepoint = 1; |
+ for(i=0; rc==SQLITE_OK && i<nIdx; i++){ |
+ if( aIdx[i]!=i ){ |
+ sqlite3_bind_int(pUpdate, 3, aIdx[i]); |
+ sqlite3_bind_int(pUpdate, 1, i); |
+ sqlite3_step(pUpdate); |
+ rc = sqlite3_reset(pUpdate); |
+ } |
+ } |
+ p->bIgnoreSavepoint = 0; |
+ |
+ sqlite3_free(aIdx); |
+ return rc; |
+} |
+ |
+static void fts3StartNode(Blob *pNode, int iHeight, sqlite3_int64 iChild){ |
+ pNode->a[0] = (char)iHeight; |
+ if( iChild ){ |
+ assert( pNode->nAlloc>=1+sqlite3Fts3VarintLen(iChild) ); |
+ pNode->n = 1 + sqlite3Fts3PutVarint(&pNode->a[1], iChild); |
+ }else{ |
+ assert( pNode->nAlloc>=1 ); |
+ pNode->n = 1; |
+ } |
+} |
+ |
+/* |
+** The first two arguments are a pointer to and the size of a segment b-tree |
+** node. The node may be a leaf or an internal node. |
+** |
+** This function creates a new node image in blob object *pNew by copying |
+** all terms that are greater than or equal to zTerm/nTerm (for leaf nodes) |
+** or greater than zTerm/nTerm (for internal nodes) from aNode/nNode. |
+*/ |
+static int fts3TruncateNode( |
+ const char *aNode, /* Current node image */ |
+ int nNode, /* Size of aNode in bytes */ |
+ Blob *pNew, /* OUT: Write new node image here */ |
+ const char *zTerm, /* Omit all terms smaller than this */ |
+ int nTerm, /* Size of zTerm in bytes */ |
+ sqlite3_int64 *piBlock /* OUT: Block number in next layer down */ |
+){ |
+ NodeReader reader; /* Reader object */ |
+ Blob prev = {0, 0, 0}; /* Previous term written to new node */ |
+ int rc = SQLITE_OK; /* Return code */ |
+ int bLeaf = aNode[0]=='\0'; /* True for a leaf node */ |
+ |
+ /* Allocate required output space */ |
+ blobGrowBuffer(pNew, nNode, &rc); |
+ if( rc!=SQLITE_OK ) return rc; |
+ pNew->n = 0; |
+ |
+ /* Populate new node buffer */ |
+ for(rc = nodeReaderInit(&reader, aNode, nNode); |
+ rc==SQLITE_OK && reader.aNode; |
+ rc = nodeReaderNext(&reader) |
+ ){ |
+ if( pNew->n==0 ){ |
+ int res = fts3TermCmp(reader.term.a, reader.term.n, zTerm, nTerm); |
+ if( res<0 || (bLeaf==0 && res==0) ) continue; |
+ fts3StartNode(pNew, (int)aNode[0], reader.iChild); |
+ *piBlock = reader.iChild; |
+ } |
+ rc = fts3AppendToNode( |
+ pNew, &prev, reader.term.a, reader.term.n, |
+ reader.aDoclist, reader.nDoclist |
+ ); |
+ if( rc!=SQLITE_OK ) break; |
+ } |
+ if( pNew->n==0 ){ |
+ fts3StartNode(pNew, (int)aNode[0], reader.iChild); |
+ *piBlock = reader.iChild; |
+ } |
+ assert( pNew->n<=pNew->nAlloc ); |
+ |
+ nodeReaderRelease(&reader); |
+ sqlite3_free(prev.a); |
+ return rc; |
+} |
+ |
+/* |
+** Remove all terms smaller than zTerm/nTerm from segment iIdx in absolute |
+** level iAbsLevel. This may involve deleting entries from the %_segments |
+** table, and modifying existing entries in both the %_segments and %_segdir |
+** tables. |
+** |
+** SQLITE_OK is returned if the segment is updated successfully. Or an |
+** SQLite error code otherwise. |
+*/ |
+static int fts3TruncateSegment( |
+ Fts3Table *p, /* FTS3 table handle */ |
+ sqlite3_int64 iAbsLevel, /* Absolute level of segment to modify */ |
+ int iIdx, /* Index within level of segment to modify */ |
+ const char *zTerm, /* Remove terms smaller than this */ |
+ int nTerm /* Number of bytes in buffer zTerm */ |
+){ |
+ int rc = SQLITE_OK; /* Return code */ |
+ Blob root = {0,0,0}; /* New root page image */ |
+ Blob block = {0,0,0}; /* Buffer used for any other block */ |
+ sqlite3_int64 iBlock = 0; /* Block id */ |
+ sqlite3_int64 iNewStart = 0; /* New value for iStartBlock */ |
+ sqlite3_int64 iOldStart = 0; /* Old value for iStartBlock */ |
+ sqlite3_stmt *pFetch = 0; /* Statement used to fetch segdir */ |
+ |
+ rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR, &pFetch, 0); |
+ if( rc==SQLITE_OK ){ |
+ int rc2; /* sqlite3_reset() return code */ |
+ sqlite3_bind_int64(pFetch, 1, iAbsLevel); |
+ sqlite3_bind_int(pFetch, 2, iIdx); |
+ if( SQLITE_ROW==sqlite3_step(pFetch) ){ |
+ const char *aRoot = sqlite3_column_blob(pFetch, 4); |
+ int nRoot = sqlite3_column_bytes(pFetch, 4); |
+ iOldStart = sqlite3_column_int64(pFetch, 1); |
+ rc = fts3TruncateNode(aRoot, nRoot, &root, zTerm, nTerm, &iBlock); |
+ } |
+ rc2 = sqlite3_reset(pFetch); |
+ if( rc==SQLITE_OK ) rc = rc2; |
+ } |
+ |
+ while( rc==SQLITE_OK && iBlock ){ |
+ char *aBlock = 0; |
+ int nBlock = 0; |
+ iNewStart = iBlock; |
+ |
+ rc = sqlite3Fts3ReadBlock(p, iBlock, &aBlock, &nBlock, 0); |
+ if( rc==SQLITE_OK ){ |
+ rc = fts3TruncateNode(aBlock, nBlock, &block, zTerm, nTerm, &iBlock); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ rc = fts3WriteSegment(p, iNewStart, block.a, block.n); |
+ } |
+ sqlite3_free(aBlock); |
+ } |
+ |
+ /* Variable iNewStart now contains the first valid leaf node. */ |
+ if( rc==SQLITE_OK && iNewStart ){ |
+ sqlite3_stmt *pDel = 0; |
+ rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDel, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int64(pDel, 1, iOldStart); |
+ sqlite3_bind_int64(pDel, 2, iNewStart-1); |
+ sqlite3_step(pDel); |
+ rc = sqlite3_reset(pDel); |
+ } |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_stmt *pChomp = 0; |
+ rc = fts3SqlStmt(p, SQL_CHOMP_SEGDIR, &pChomp, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int64(pChomp, 1, iNewStart); |
+ sqlite3_bind_blob(pChomp, 2, root.a, root.n, SQLITE_STATIC); |
+ sqlite3_bind_int64(pChomp, 3, iAbsLevel); |
+ sqlite3_bind_int(pChomp, 4, iIdx); |
+ sqlite3_step(pChomp); |
+ rc = sqlite3_reset(pChomp); |
+ } |
+ } |
+ |
+ sqlite3_free(root.a); |
+ sqlite3_free(block.a); |
+ return rc; |
+} |
+ |
+/* |
+** This function is called after an incrmental-merge operation has run to |
+** merge (or partially merge) two or more segments from absolute level |
+** iAbsLevel. |
+** |
+** Each input segment is either removed from the db completely (if all of |
+** its data was copied to the output segment by the incrmerge operation) |
+** or modified in place so that it no longer contains those entries that |
+** have been duplicated in the output segment. |
+*/ |
+static int fts3IncrmergeChomp( |
+ Fts3Table *p, /* FTS table handle */ |
+ sqlite3_int64 iAbsLevel, /* Absolute level containing segments */ |
+ Fts3MultiSegReader *pCsr, /* Chomp all segments opened by this cursor */ |
+ int *pnRem /* Number of segments not deleted */ |
+){ |
+ int i; |
+ int nRem = 0; |
+ int rc = SQLITE_OK; |
+ |
+ for(i=pCsr->nSegment-1; i>=0 && rc==SQLITE_OK; i--){ |
+ Fts3SegReader *pSeg = 0; |
+ int j; |
+ |
+ /* Find the Fts3SegReader object with Fts3SegReader.iIdx==i. It is hiding |
+ ** somewhere in the pCsr->apSegment[] array. */ |
+ for(j=0; ALWAYS(j<pCsr->nSegment); j++){ |
+ pSeg = pCsr->apSegment[j]; |
+ if( pSeg->iIdx==i ) break; |
+ } |
+ assert( j<pCsr->nSegment && pSeg->iIdx==i ); |
+ |
+ if( pSeg->aNode==0 ){ |
+ /* Seg-reader is at EOF. Remove the entire input segment. */ |
+ rc = fts3DeleteSegment(p, pSeg); |
+ if( rc==SQLITE_OK ){ |
+ rc = fts3RemoveSegdirEntry(p, iAbsLevel, pSeg->iIdx); |
+ } |
+ *pnRem = 0; |
+ }else{ |
+ /* The incremental merge did not copy all the data from this |
+ ** segment to the upper level. The segment is modified in place |
+ ** so that it contains no keys smaller than zTerm/nTerm. */ |
+ const char *zTerm = pSeg->zTerm; |
+ int nTerm = pSeg->nTerm; |
+ rc = fts3TruncateSegment(p, iAbsLevel, pSeg->iIdx, zTerm, nTerm); |
+ nRem++; |
+ } |
+ } |
+ |
+ if( rc==SQLITE_OK && nRem!=pCsr->nSegment ){ |
+ rc = fts3RepackSegdirLevel(p, iAbsLevel); |
+ } |
+ |
+ *pnRem = nRem; |
+ return rc; |
+} |
+ |
+/* |
+** Store an incr-merge hint in the database. |
+*/ |
+static int fts3IncrmergeHintStore(Fts3Table *p, Blob *pHint){ |
+ sqlite3_stmt *pReplace = 0; |
+ int rc; /* Return code */ |
+ |
+ rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pReplace, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int(pReplace, 1, FTS_STAT_INCRMERGEHINT); |
+ sqlite3_bind_blob(pReplace, 2, pHint->a, pHint->n, SQLITE_STATIC); |
+ sqlite3_step(pReplace); |
+ rc = sqlite3_reset(pReplace); |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** Load an incr-merge hint from the database. The incr-merge hint, if one |
+** exists, is stored in the rowid==1 row of the %_stat table. |
+** |
+** If successful, populate blob *pHint with the value read from the %_stat |
+** table and return SQLITE_OK. Otherwise, if an error occurs, return an |
+** SQLite error code. |
+*/ |
+static int fts3IncrmergeHintLoad(Fts3Table *p, Blob *pHint){ |
+ sqlite3_stmt *pSelect = 0; |
+ int rc; |
+ |
+ pHint->n = 0; |
+ rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pSelect, 0); |
+ if( rc==SQLITE_OK ){ |
+ int rc2; |
+ sqlite3_bind_int(pSelect, 1, FTS_STAT_INCRMERGEHINT); |
+ if( SQLITE_ROW==sqlite3_step(pSelect) ){ |
+ const char *aHint = sqlite3_column_blob(pSelect, 0); |
+ int nHint = sqlite3_column_bytes(pSelect, 0); |
+ if( aHint ){ |
+ blobGrowBuffer(pHint, nHint, &rc); |
+ if( rc==SQLITE_OK ){ |
+ memcpy(pHint->a, aHint, nHint); |
+ pHint->n = nHint; |
+ } |
+ } |
+ } |
+ rc2 = sqlite3_reset(pSelect); |
+ if( rc==SQLITE_OK ) rc = rc2; |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** If *pRc is not SQLITE_OK when this function is called, it is a no-op. |
+** Otherwise, append an entry to the hint stored in blob *pHint. Each entry |
+** consists of two varints, the absolute level number of the input segments |
+** and the number of input segments. |
+** |
+** If successful, leave *pRc set to SQLITE_OK and return. If an error occurs, |
+** set *pRc to an SQLite error code before returning. |
+*/ |
+static void fts3IncrmergeHintPush( |
+ Blob *pHint, /* Hint blob to append to */ |
+ i64 iAbsLevel, /* First varint to store in hint */ |
+ int nInput, /* Second varint to store in hint */ |
+ int *pRc /* IN/OUT: Error code */ |
+){ |
+ blobGrowBuffer(pHint, pHint->n + 2*FTS3_VARINT_MAX, pRc); |
+ if( *pRc==SQLITE_OK ){ |
+ pHint->n += sqlite3Fts3PutVarint(&pHint->a[pHint->n], iAbsLevel); |
+ pHint->n += sqlite3Fts3PutVarint(&pHint->a[pHint->n], (i64)nInput); |
+ } |
+} |
+ |
+/* |
+** Read the last entry (most recently pushed) from the hint blob *pHint |
+** and then remove the entry. Write the two values read to *piAbsLevel and |
+** *pnInput before returning. |
+** |
+** If no error occurs, return SQLITE_OK. If the hint blob in *pHint does |
+** not contain at least two valid varints, return SQLITE_CORRUPT_VTAB. |
+*/ |
+static int fts3IncrmergeHintPop(Blob *pHint, i64 *piAbsLevel, int *pnInput){ |
+ const int nHint = pHint->n; |
+ int i; |
+ |
+ i = pHint->n-2; |
+ while( i>0 && (pHint->a[i-1] & 0x80) ) i--; |
+ while( i>0 && (pHint->a[i-1] & 0x80) ) i--; |
+ |
+ pHint->n = i; |
+ i += sqlite3Fts3GetVarint(&pHint->a[i], piAbsLevel); |
+ i += fts3GetVarint32(&pHint->a[i], pnInput); |
+ if( i!=nHint ) return SQLITE_CORRUPT_VTAB; |
+ |
+ return SQLITE_OK; |
+} |
+ |
+ |
+/* |
+** Attempt an incremental merge that writes nMerge leaf blocks. |
+** |
+** Incremental merges happen nMin segments at a time. The segments |
+** to be merged are the nMin oldest segments (the ones with the smallest |
+** values for the _segdir.idx field) in the highest level that contains |
+** at least nMin segments. Multiple merges might occur in an attempt to |
+** write the quota of nMerge leaf blocks. |
+*/ |
+int sqlite3Fts3Incrmerge(Fts3Table *p, int nMerge, int nMin){ |
+ int rc; /* Return code */ |
+ int nRem = nMerge; /* Number of leaf pages yet to be written */ |
+ Fts3MultiSegReader *pCsr; /* Cursor used to read input data */ |
+ Fts3SegFilter *pFilter; /* Filter used with cursor pCsr */ |
+ IncrmergeWriter *pWriter; /* Writer object */ |
+ int nSeg = 0; /* Number of input segments */ |
+ sqlite3_int64 iAbsLevel = 0; /* Absolute level number to work on */ |
+ Blob hint = {0, 0, 0}; /* Hint read from %_stat table */ |
+ int bDirtyHint = 0; /* True if blob 'hint' has been modified */ |
+ |
+ /* Allocate space for the cursor, filter and writer objects */ |
+ const int nAlloc = sizeof(*pCsr) + sizeof(*pFilter) + sizeof(*pWriter); |
+ pWriter = (IncrmergeWriter *)sqlite3_malloc(nAlloc); |
+ if( !pWriter ) return SQLITE_NOMEM; |
+ pFilter = (Fts3SegFilter *)&pWriter[1]; |
+ pCsr = (Fts3MultiSegReader *)&pFilter[1]; |
+ |
+ rc = fts3IncrmergeHintLoad(p, &hint); |
+ while( rc==SQLITE_OK && nRem>0 ){ |
+ const i64 nMod = FTS3_SEGDIR_MAXLEVEL * p->nIndex; |
+ sqlite3_stmt *pFindLevel = 0; /* SQL used to determine iAbsLevel */ |
+ int bUseHint = 0; /* True if attempting to append */ |
+ int iIdx = 0; /* Largest idx in level (iAbsLevel+1) */ |
+ |
+ /* Search the %_segdir table for the absolute level with the smallest |
+ ** relative level number that contains at least nMin segments, if any. |
+ ** If one is found, set iAbsLevel to the absolute level number and |
+ ** nSeg to nMin. If no level with at least nMin segments can be found, |
+ ** set nSeg to -1. |
+ */ |
+ rc = fts3SqlStmt(p, SQL_FIND_MERGE_LEVEL, &pFindLevel, 0); |
+ sqlite3_bind_int(pFindLevel, 1, nMin); |
+ if( sqlite3_step(pFindLevel)==SQLITE_ROW ){ |
+ iAbsLevel = sqlite3_column_int64(pFindLevel, 0); |
+ nSeg = nMin; |
+ }else{ |
+ nSeg = -1; |
+ } |
+ rc = sqlite3_reset(pFindLevel); |
+ |
+ /* If the hint read from the %_stat table is not empty, check if the |
+ ** last entry in it specifies a relative level smaller than or equal |
+ ** to the level identified by the block above (if any). If so, this |
+ ** iteration of the loop will work on merging at the hinted level. |
+ */ |
+ if( rc==SQLITE_OK && hint.n ){ |
+ int nHint = hint.n; |
+ sqlite3_int64 iHintAbsLevel = 0; /* Hint level */ |
+ int nHintSeg = 0; /* Hint number of segments */ |
+ |
+ rc = fts3IncrmergeHintPop(&hint, &iHintAbsLevel, &nHintSeg); |
+ if( nSeg<0 || (iAbsLevel % nMod) >= (iHintAbsLevel % nMod) ){ |
+ iAbsLevel = iHintAbsLevel; |
+ nSeg = nHintSeg; |
+ bUseHint = 1; |
+ bDirtyHint = 1; |
+ }else{ |
+ /* This undoes the effect of the HintPop() above - so that no entry |
+ ** is removed from the hint blob. */ |
+ hint.n = nHint; |
+ } |
+ } |
+ |
+ /* If nSeg is less that zero, then there is no level with at least |
+ ** nMin segments and no hint in the %_stat table. No work to do. |
+ ** Exit early in this case. */ |
+ if( nSeg<0 ) break; |
+ |
+ /* Open a cursor to iterate through the contents of the oldest nSeg |
+ ** indexes of absolute level iAbsLevel. If this cursor is opened using |
+ ** the 'hint' parameters, it is possible that there are less than nSeg |
+ ** segments available in level iAbsLevel. In this case, no work is |
+ ** done on iAbsLevel - fall through to the next iteration of the loop |
+ ** to start work on some other level. */ |
+ memset(pWriter, 0, nAlloc); |
+ pFilter->flags = FTS3_SEGMENT_REQUIRE_POS; |
+ |
+ if( rc==SQLITE_OK ){ |
+ rc = fts3IncrmergeOutputIdx(p, iAbsLevel, &iIdx); |
+ assert( bUseHint==1 || bUseHint==0 ); |
+ if( iIdx==0 || (bUseHint && iIdx==1) ){ |
+ int bIgnore = 0; |
+ rc = fts3SegmentIsMaxLevel(p, iAbsLevel+1, &bIgnore); |
+ if( bIgnore ){ |
+ pFilter->flags |= FTS3_SEGMENT_IGNORE_EMPTY; |
+ } |
+ } |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ rc = fts3IncrmergeCsr(p, iAbsLevel, nSeg, pCsr); |
+ } |
+ if( SQLITE_OK==rc && pCsr->nSegment==nSeg |
+ && SQLITE_OK==(rc = sqlite3Fts3SegReaderStart(p, pCsr, pFilter)) |
+ && SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pCsr)) |
+ ){ |
+ if( bUseHint && iIdx>0 ){ |
+ const char *zKey = pCsr->zTerm; |
+ int nKey = pCsr->nTerm; |
+ rc = fts3IncrmergeLoad(p, iAbsLevel, iIdx-1, zKey, nKey, pWriter); |
+ }else{ |
+ rc = fts3IncrmergeWriter(p, iAbsLevel, iIdx, pCsr, pWriter); |
+ } |
+ |
+ if( rc==SQLITE_OK && pWriter->nLeafEst ){ |
+ fts3LogMerge(nSeg, iAbsLevel); |
+ do { |
+ rc = fts3IncrmergeAppend(p, pWriter, pCsr); |
+ if( rc==SQLITE_OK ) rc = sqlite3Fts3SegReaderStep(p, pCsr); |
+ if( pWriter->nWork>=nRem && rc==SQLITE_ROW ) rc = SQLITE_OK; |
+ }while( rc==SQLITE_ROW ); |
+ |
+ /* Update or delete the input segments */ |
+ if( rc==SQLITE_OK ){ |
+ nRem -= (1 + pWriter->nWork); |
+ rc = fts3IncrmergeChomp(p, iAbsLevel, pCsr, &nSeg); |
+ if( nSeg!=0 ){ |
+ bDirtyHint = 1; |
+ fts3IncrmergeHintPush(&hint, iAbsLevel, nSeg, &rc); |
+ } |
+ } |
+ } |
+ |
+ if( nSeg!=0 ){ |
+ pWriter->nLeafData = pWriter->nLeafData * -1; |
+ } |
+ fts3IncrmergeRelease(p, pWriter, &rc); |
+ if( nSeg==0 && pWriter->bNoLeafData==0 ){ |
+ fts3PromoteSegments(p, iAbsLevel+1, pWriter->nLeafData); |
+ } |
+ } |
+ |
+ sqlite3Fts3SegReaderFinish(pCsr); |
+ } |
+ |
+ /* Write the hint values into the %_stat table for the next incr-merger */ |
+ if( bDirtyHint && rc==SQLITE_OK ){ |
+ rc = fts3IncrmergeHintStore(p, &hint); |
+ } |
+ |
+ sqlite3_free(pWriter); |
+ sqlite3_free(hint.a); |
+ return rc; |
+} |
+ |
+/* |
+** Convert the text beginning at *pz into an integer and return |
+** its value. Advance *pz to point to the first character past |
+** the integer. |
+*/ |
+static int fts3Getint(const char **pz){ |
+ const char *z = *pz; |
+ int i = 0; |
+ while( (*z)>='0' && (*z)<='9' ) i = 10*i + *(z++) - '0'; |
+ *pz = z; |
+ return i; |
+} |
+ |
+/* |
+** Process statements of the form: |
+** |
+** INSERT INTO table(table) VALUES('merge=A,B'); |
+** |
+** A and B are integers that decode to be the number of leaf pages |
+** written for the merge, and the minimum number of segments on a level |
+** before it will be selected for a merge, respectively. |
+*/ |
+static int fts3DoIncrmerge( |
+ Fts3Table *p, /* FTS3 table handle */ |
+ const char *zParam /* Nul-terminated string containing "A,B" */ |
+){ |
+ int rc; |
+ int nMin = (FTS3_MERGE_COUNT / 2); |
+ int nMerge = 0; |
+ const char *z = zParam; |
+ |
+ /* Read the first integer value */ |
+ nMerge = fts3Getint(&z); |
+ |
+ /* If the first integer value is followed by a ',', read the second |
+ ** integer value. */ |
+ if( z[0]==',' && z[1]!='\0' ){ |
+ z++; |
+ nMin = fts3Getint(&z); |
+ } |
+ |
+ if( z[0]!='\0' || nMin<2 ){ |
+ rc = SQLITE_ERROR; |
+ }else{ |
+ rc = SQLITE_OK; |
+ if( !p->bHasStat ){ |
+ assert( p->bFts4==0 ); |
+ sqlite3Fts3CreateStatTable(&rc, p); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3Fts3Incrmerge(p, nMerge, nMin); |
+ } |
+ sqlite3Fts3SegmentsClose(p); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Process statements of the form: |
+** |
+** INSERT INTO table(table) VALUES('automerge=X'); |
+** |
+** where X is an integer. X==0 means to turn automerge off. X!=0 means |
+** turn it on. The setting is persistent. |
+*/ |
+static int fts3DoAutoincrmerge( |
+ Fts3Table *p, /* FTS3 table handle */ |
+ const char *zParam /* Nul-terminated string containing boolean */ |
+){ |
+ int rc = SQLITE_OK; |
+ sqlite3_stmt *pStmt = 0; |
+ p->nAutoincrmerge = fts3Getint(&zParam); |
+ if( p->nAutoincrmerge==1 || p->nAutoincrmerge>FTS3_MERGE_COUNT ){ |
+ p->nAutoincrmerge = 8; |
+ } |
+ if( !p->bHasStat ){ |
+ assert( p->bFts4==0 ); |
+ sqlite3Fts3CreateStatTable(&rc, p); |
+ if( rc ) return rc; |
+ } |
+ rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pStmt, 0); |
+ if( rc ) return rc; |
+ sqlite3_bind_int(pStmt, 1, FTS_STAT_AUTOINCRMERGE); |
+ sqlite3_bind_int(pStmt, 2, p->nAutoincrmerge); |
+ sqlite3_step(pStmt); |
+ rc = sqlite3_reset(pStmt); |
+ return rc; |
+} |
+ |
+/* |
+** Return a 64-bit checksum for the FTS index entry specified by the |
+** arguments to this function. |
+*/ |
+static u64 fts3ChecksumEntry( |
+ const char *zTerm, /* Pointer to buffer containing term */ |
+ int nTerm, /* Size of zTerm in bytes */ |
+ int iLangid, /* Language id for current row */ |
+ int iIndex, /* Index (0..Fts3Table.nIndex-1) */ |
+ i64 iDocid, /* Docid for current row. */ |
+ int iCol, /* Column number */ |
+ int iPos /* Position */ |
+){ |
+ int i; |
+ u64 ret = (u64)iDocid; |
+ |
+ ret += (ret<<3) + iLangid; |
+ ret += (ret<<3) + iIndex; |
+ ret += (ret<<3) + iCol; |
+ ret += (ret<<3) + iPos; |
+ for(i=0; i<nTerm; i++) ret += (ret<<3) + zTerm[i]; |
+ |
+ return ret; |
+} |
+ |
+/* |
+** Return a checksum of all entries in the FTS index that correspond to |
+** language id iLangid. The checksum is calculated by XORing the checksums |
+** of each individual entry (see fts3ChecksumEntry()) together. |
+** |
+** If successful, the checksum value is returned and *pRc set to SQLITE_OK. |
+** Otherwise, if an error occurs, *pRc is set to an SQLite error code. The |
+** return value is undefined in this case. |
+*/ |
+static u64 fts3ChecksumIndex( |
+ Fts3Table *p, /* FTS3 table handle */ |
+ int iLangid, /* Language id to return cksum for */ |
+ int iIndex, /* Index to cksum (0..p->nIndex-1) */ |
+ int *pRc /* OUT: Return code */ |
+){ |
+ Fts3SegFilter filter; |
+ Fts3MultiSegReader csr; |
+ int rc; |
+ u64 cksum = 0; |
+ |
+ assert( *pRc==SQLITE_OK ); |
+ |
+ memset(&filter, 0, sizeof(filter)); |
+ memset(&csr, 0, sizeof(csr)); |
+ filter.flags = FTS3_SEGMENT_REQUIRE_POS|FTS3_SEGMENT_IGNORE_EMPTY; |
+ filter.flags |= FTS3_SEGMENT_SCAN; |
+ |
+ rc = sqlite3Fts3SegReaderCursor( |
+ p, iLangid, iIndex, FTS3_SEGCURSOR_ALL, 0, 0, 0, 1,&csr |
+ ); |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3Fts3SegReaderStart(p, &csr, &filter); |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ while( SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, &csr)) ){ |
+ char *pCsr = csr.aDoclist; |
+ char *pEnd = &pCsr[csr.nDoclist]; |
+ |
+ i64 iDocid = 0; |
+ i64 iCol = 0; |
+ i64 iPos = 0; |
+ |
+ pCsr += sqlite3Fts3GetVarint(pCsr, &iDocid); |
+ while( pCsr<pEnd ){ |
+ i64 iVal = 0; |
+ pCsr += sqlite3Fts3GetVarint(pCsr, &iVal); |
+ if( pCsr<pEnd ){ |
+ if( iVal==0 || iVal==1 ){ |
+ iCol = 0; |
+ iPos = 0; |
+ if( iVal ){ |
+ pCsr += sqlite3Fts3GetVarint(pCsr, &iCol); |
+ }else{ |
+ pCsr += sqlite3Fts3GetVarint(pCsr, &iVal); |
+ iDocid += iVal; |
+ } |
+ }else{ |
+ iPos += (iVal - 2); |
+ cksum = cksum ^ fts3ChecksumEntry( |
+ csr.zTerm, csr.nTerm, iLangid, iIndex, iDocid, |
+ (int)iCol, (int)iPos |
+ ); |
+ } |
+ } |
+ } |
+ } |
+ } |
+ sqlite3Fts3SegReaderFinish(&csr); |
+ |
+ *pRc = rc; |
+ return cksum; |
+} |
+ |
+/* |
+** Check if the contents of the FTS index match the current contents of the |
+** content table. If no error occurs and the contents do match, set *pbOk |
+** to true and return SQLITE_OK. Or if the contents do not match, set *pbOk |
+** to false before returning. |
+** |
+** If an error occurs (e.g. an OOM or IO error), return an SQLite error |
+** code. The final value of *pbOk is undefined in this case. |
+*/ |
+static int fts3IntegrityCheck(Fts3Table *p, int *pbOk){ |
+ int rc = SQLITE_OK; /* Return code */ |
+ u64 cksum1 = 0; /* Checksum based on FTS index contents */ |
+ u64 cksum2 = 0; /* Checksum based on %_content contents */ |
+ sqlite3_stmt *pAllLangid = 0; /* Statement to return all language-ids */ |
+ |
+ /* This block calculates the checksum according to the FTS index. */ |
+ rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0); |
+ if( rc==SQLITE_OK ){ |
+ int rc2; |
+ sqlite3_bind_int(pAllLangid, 1, p->nIndex); |
+ while( rc==SQLITE_OK && sqlite3_step(pAllLangid)==SQLITE_ROW ){ |
+ int iLangid = sqlite3_column_int(pAllLangid, 0); |
+ int i; |
+ for(i=0; i<p->nIndex; i++){ |
+ cksum1 = cksum1 ^ fts3ChecksumIndex(p, iLangid, i, &rc); |
+ } |
+ } |
+ rc2 = sqlite3_reset(pAllLangid); |
+ if( rc==SQLITE_OK ) rc = rc2; |
+ } |
+ |
+ /* This block calculates the checksum according to the %_content table */ |
+ rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_tokenizer_module const *pModule = p->pTokenizer->pModule; |
+ sqlite3_stmt *pStmt = 0; |
+ char *zSql; |
+ |
+ zSql = sqlite3_mprintf("SELECT %s" , p->zReadExprlist); |
+ if( !zSql ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); |
+ sqlite3_free(zSql); |
+ } |
+ |
+ while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ |
+ i64 iDocid = sqlite3_column_int64(pStmt, 0); |
+ int iLang = langidFromSelect(p, pStmt); |
+ int iCol; |
+ |
+ for(iCol=0; rc==SQLITE_OK && iCol<p->nColumn; iCol++){ |
+ if( p->abNotindexed[iCol]==0 ){ |
+ const char *zText = (const char *)sqlite3_column_text(pStmt, iCol+1); |
+ int nText = sqlite3_column_bytes(pStmt, iCol+1); |
+ sqlite3_tokenizer_cursor *pT = 0; |
+ |
+ rc = sqlite3Fts3OpenTokenizer(p->pTokenizer, iLang, zText, nText,&pT); |
+ while( rc==SQLITE_OK ){ |
+ char const *zToken; /* Buffer containing token */ |
+ int nToken = 0; /* Number of bytes in token */ |
+ int iDum1 = 0, iDum2 = 0; /* Dummy variables */ |
+ int iPos = 0; /* Position of token in zText */ |
+ |
+ rc = pModule->xNext(pT, &zToken, &nToken, &iDum1, &iDum2, &iPos); |
+ if( rc==SQLITE_OK ){ |
+ int i; |
+ cksum2 = cksum2 ^ fts3ChecksumEntry( |
+ zToken, nToken, iLang, 0, iDocid, iCol, iPos |
+ ); |
+ for(i=1; i<p->nIndex; i++){ |
+ if( p->aIndex[i].nPrefix<=nToken ){ |
+ cksum2 = cksum2 ^ fts3ChecksumEntry( |
+ zToken, p->aIndex[i].nPrefix, iLang, i, iDocid, iCol, iPos |
+ ); |
+ } |
+ } |
+ } |
+ } |
+ if( pT ) pModule->xClose(pT); |
+ if( rc==SQLITE_DONE ) rc = SQLITE_OK; |
+ } |
+ } |
+ } |
+ |
+ sqlite3_finalize(pStmt); |
+ } |
+ |
+ *pbOk = (cksum1==cksum2); |
+ return rc; |
+} |
+ |
+/* |
+** Run the integrity-check. If no error occurs and the current contents of |
+** the FTS index are correct, return SQLITE_OK. Or, if the contents of the |
+** FTS index are incorrect, return SQLITE_CORRUPT_VTAB. |
+** |
+** Or, if an error (e.g. an OOM or IO error) occurs, return an SQLite |
+** error code. |
+** |
+** The integrity-check works as follows. For each token and indexed token |
+** prefix in the document set, a 64-bit checksum is calculated (by code |
+** in fts3ChecksumEntry()) based on the following: |
+** |
+** + The index number (0 for the main index, 1 for the first prefix |
+** index etc.), |
+** + The token (or token prefix) text itself, |
+** + The language-id of the row it appears in, |
+** + The docid of the row it appears in, |
+** + The column it appears in, and |
+** + The tokens position within that column. |
+** |
+** The checksums for all entries in the index are XORed together to create |
+** a single checksum for the entire index. |
+** |
+** The integrity-check code calculates the same checksum in two ways: |
+** |
+** 1. By scanning the contents of the FTS index, and |
+** 2. By scanning and tokenizing the content table. |
+** |
+** If the two checksums are identical, the integrity-check is deemed to have |
+** passed. |
+*/ |
+static int fts3DoIntegrityCheck( |
+ Fts3Table *p /* FTS3 table handle */ |
+){ |
+ int rc; |
+ int bOk = 0; |
+ rc = fts3IntegrityCheck(p, &bOk); |
+ if( rc==SQLITE_OK && bOk==0 ) rc = SQLITE_CORRUPT_VTAB; |
+ return rc; |
+} |
+ |
+/* |
+** Handle a 'special' INSERT of the form: |
+** |
+** "INSERT INTO tbl(tbl) VALUES(<expr>)" |
+** |
+** Argument pVal contains the result of <expr>. Currently the only |
+** meaningful value to insert is the text 'optimize'. |
+*/ |
+static int fts3SpecialInsert(Fts3Table *p, sqlite3_value *pVal){ |
+ int rc; /* Return Code */ |
+ const char *zVal = (const char *)sqlite3_value_text(pVal); |
+ int nVal = sqlite3_value_bytes(pVal); |
+ |
+ if( !zVal ){ |
+ return SQLITE_NOMEM; |
+ }else if( nVal==8 && 0==sqlite3_strnicmp(zVal, "optimize", 8) ){ |
+ rc = fts3DoOptimize(p, 0); |
+ }else if( nVal==7 && 0==sqlite3_strnicmp(zVal, "rebuild", 7) ){ |
+ rc = fts3DoRebuild(p); |
+ }else if( nVal==15 && 0==sqlite3_strnicmp(zVal, "integrity-check", 15) ){ |
+ rc = fts3DoIntegrityCheck(p); |
+ }else if( nVal>6 && 0==sqlite3_strnicmp(zVal, "merge=", 6) ){ |
+ rc = fts3DoIncrmerge(p, &zVal[6]); |
+ }else if( nVal>10 && 0==sqlite3_strnicmp(zVal, "automerge=", 10) ){ |
+ rc = fts3DoAutoincrmerge(p, &zVal[10]); |
+#ifdef SQLITE_TEST |
+ }else if( nVal>9 && 0==sqlite3_strnicmp(zVal, "nodesize=", 9) ){ |
+ p->nNodeSize = atoi(&zVal[9]); |
+ rc = SQLITE_OK; |
+ }else if( nVal>11 && 0==sqlite3_strnicmp(zVal, "maxpending=", 9) ){ |
+ p->nMaxPendingData = atoi(&zVal[11]); |
+ rc = SQLITE_OK; |
+ }else if( nVal>21 && 0==sqlite3_strnicmp(zVal, "test-no-incr-doclist=", 21) ){ |
+ p->bNoIncrDoclist = atoi(&zVal[21]); |
+ rc = SQLITE_OK; |
+#endif |
+ }else{ |
+ rc = SQLITE_ERROR; |
+ } |
+ |
+ return rc; |
+} |
+ |
+#ifndef SQLITE_DISABLE_FTS4_DEFERRED |
+/* |
+** Delete all cached deferred doclists. Deferred doclists are cached |
+** (allocated) by the sqlite3Fts3CacheDeferredDoclists() function. |
+*/ |
+void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *pCsr){ |
+ Fts3DeferredToken *pDef; |
+ for(pDef=pCsr->pDeferred; pDef; pDef=pDef->pNext){ |
+ fts3PendingListDelete(pDef->pList); |
+ pDef->pList = 0; |
+ } |
+} |
+ |
+/* |
+** Free all entries in the pCsr->pDeffered list. Entries are added to |
+** this list using sqlite3Fts3DeferToken(). |
+*/ |
+void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *pCsr){ |
+ Fts3DeferredToken *pDef; |
+ Fts3DeferredToken *pNext; |
+ for(pDef=pCsr->pDeferred; pDef; pDef=pNext){ |
+ pNext = pDef->pNext; |
+ fts3PendingListDelete(pDef->pList); |
+ sqlite3_free(pDef); |
+ } |
+ pCsr->pDeferred = 0; |
+} |
+ |
+/* |
+** Generate deferred-doclists for all tokens in the pCsr->pDeferred list |
+** based on the row that pCsr currently points to. |
+** |
+** A deferred-doclist is like any other doclist with position information |
+** included, except that it only contains entries for a single row of the |
+** table, not for all rows. |
+*/ |
+int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *pCsr){ |
+ int rc = SQLITE_OK; /* Return code */ |
+ if( pCsr->pDeferred ){ |
+ int i; /* Used to iterate through table columns */ |
+ sqlite3_int64 iDocid; /* Docid of the row pCsr points to */ |
+ Fts3DeferredToken *pDef; /* Used to iterate through deferred tokens */ |
+ |
+ Fts3Table *p = (Fts3Table *)pCsr->base.pVtab; |
+ sqlite3_tokenizer *pT = p->pTokenizer; |
+ sqlite3_tokenizer_module const *pModule = pT->pModule; |
+ |
+ assert( pCsr->isRequireSeek==0 ); |
+ iDocid = sqlite3_column_int64(pCsr->pStmt, 0); |
+ |
+ for(i=0; i<p->nColumn && rc==SQLITE_OK; i++){ |
+ if( p->abNotindexed[i]==0 ){ |
+ const char *zText = (const char *)sqlite3_column_text(pCsr->pStmt, i+1); |
+ sqlite3_tokenizer_cursor *pTC = 0; |
+ |
+ rc = sqlite3Fts3OpenTokenizer(pT, pCsr->iLangid, zText, -1, &pTC); |
+ while( rc==SQLITE_OK ){ |
+ char const *zToken; /* Buffer containing token */ |
+ int nToken = 0; /* Number of bytes in token */ |
+ int iDum1 = 0, iDum2 = 0; /* Dummy variables */ |
+ int iPos = 0; /* Position of token in zText */ |
+ |
+ rc = pModule->xNext(pTC, &zToken, &nToken, &iDum1, &iDum2, &iPos); |
+ for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){ |
+ Fts3PhraseToken *pPT = pDef->pToken; |
+ if( (pDef->iCol>=p->nColumn || pDef->iCol==i) |
+ && (pPT->bFirst==0 || iPos==0) |
+ && (pPT->n==nToken || (pPT->isPrefix && pPT->n<nToken)) |
+ && (0==memcmp(zToken, pPT->z, pPT->n)) |
+ ){ |
+ fts3PendingListAppend(&pDef->pList, iDocid, i, iPos, &rc); |
+ } |
+ } |
+ } |
+ if( pTC ) pModule->xClose(pTC); |
+ if( rc==SQLITE_DONE ) rc = SQLITE_OK; |
+ } |
+ } |
+ |
+ for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){ |
+ if( pDef->pList ){ |
+ rc = fts3PendingListAppendVarint(&pDef->pList, 0); |
+ } |
+ } |
+ } |
+ |
+ return rc; |
+} |
+ |
+int sqlite3Fts3DeferredTokenList( |
+ Fts3DeferredToken *p, |
+ char **ppData, |
+ int *pnData |
+){ |
+ char *pRet; |
+ int nSkip; |
+ sqlite3_int64 dummy; |
+ |
+ *ppData = 0; |
+ *pnData = 0; |
+ |
+ if( p->pList==0 ){ |
+ return SQLITE_OK; |
+ } |
+ |
+ pRet = (char *)sqlite3_malloc(p->pList->nData); |
+ if( !pRet ) return SQLITE_NOMEM; |
+ |
+ nSkip = sqlite3Fts3GetVarint(p->pList->aData, &dummy); |
+ *pnData = p->pList->nData - nSkip; |
+ *ppData = pRet; |
+ |
+ memcpy(pRet, &p->pList->aData[nSkip], *pnData); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Add an entry for token pToken to the pCsr->pDeferred list. |
+*/ |
+int sqlite3Fts3DeferToken( |
+ Fts3Cursor *pCsr, /* Fts3 table cursor */ |
+ Fts3PhraseToken *pToken, /* Token to defer */ |
+ int iCol /* Column that token must appear in (or -1) */ |
+){ |
+ Fts3DeferredToken *pDeferred; |
+ pDeferred = sqlite3_malloc(sizeof(*pDeferred)); |
+ if( !pDeferred ){ |
+ return SQLITE_NOMEM; |
+ } |
+ memset(pDeferred, 0, sizeof(*pDeferred)); |
+ pDeferred->pToken = pToken; |
+ pDeferred->pNext = pCsr->pDeferred; |
+ pDeferred->iCol = iCol; |
+ pCsr->pDeferred = pDeferred; |
+ |
+ assert( pToken->pDeferred==0 ); |
+ pToken->pDeferred = pDeferred; |
+ |
+ return SQLITE_OK; |
+} |
+#endif |
+ |
+/* |
+** SQLite value pRowid contains the rowid of a row that may or may not be |
+** present in the FTS3 table. If it is, delete it and adjust the contents |
+** of subsiduary data structures accordingly. |
+*/ |
+static int fts3DeleteByRowid( |
+ Fts3Table *p, |
+ sqlite3_value *pRowid, |
+ int *pnChng, /* IN/OUT: Decrement if row is deleted */ |
+ u32 *aSzDel |
+){ |
+ int rc = SQLITE_OK; /* Return code */ |
+ int bFound = 0; /* True if *pRowid really is in the table */ |
+ |
+ fts3DeleteTerms(&rc, p, pRowid, aSzDel, &bFound); |
+ if( bFound && rc==SQLITE_OK ){ |
+ int isEmpty = 0; /* Deleting *pRowid leaves the table empty */ |
+ rc = fts3IsEmpty(p, pRowid, &isEmpty); |
+ if( rc==SQLITE_OK ){ |
+ if( isEmpty ){ |
+ /* Deleting this row means the whole table is empty. In this case |
+ ** delete the contents of all three tables and throw away any |
+ ** data in the pendingTerms hash table. */ |
+ rc = fts3DeleteAll(p, 1); |
+ *pnChng = 0; |
+ memset(aSzDel, 0, sizeof(u32) * (p->nColumn+1) * 2); |
+ }else{ |
+ *pnChng = *pnChng - 1; |
+ if( p->zContentTbl==0 ){ |
+ fts3SqlExec(&rc, p, SQL_DELETE_CONTENT, &pRowid); |
+ } |
+ if( p->bHasDocsize ){ |
+ fts3SqlExec(&rc, p, SQL_DELETE_DOCSIZE, &pRowid); |
+ } |
+ } |
+ } |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** This function does the work for the xUpdate method of FTS3 virtual |
+** tables. The schema of the virtual table being: |
+** |
+** CREATE TABLE <table name>( |
+** <user columns>, |
+** <table name> HIDDEN, |
+** docid HIDDEN, |
+** <langid> HIDDEN |
+** ); |
+** |
+** |
+*/ |
+int sqlite3Fts3UpdateMethod( |
+ sqlite3_vtab *pVtab, /* FTS3 vtab object */ |
+ int nArg, /* Size of argument array */ |
+ sqlite3_value **apVal, /* Array of arguments */ |
+ sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */ |
+){ |
+ Fts3Table *p = (Fts3Table *)pVtab; |
+ int rc = SQLITE_OK; /* Return Code */ |
+ int isRemove = 0; /* True for an UPDATE or DELETE */ |
+ u32 *aSzIns = 0; /* Sizes of inserted documents */ |
+ u32 *aSzDel = 0; /* Sizes of deleted documents */ |
+ int nChng = 0; /* Net change in number of documents */ |
+ int bInsertDone = 0; |
+ |
+ /* At this point it must be known if the %_stat table exists or not. |
+ ** So bHasStat may not be 2. */ |
+ assert( p->bHasStat==0 || p->bHasStat==1 ); |
+ |
+ assert( p->pSegments==0 ); |
+ assert( |
+ nArg==1 /* DELETE operations */ |
+ || nArg==(2 + p->nColumn + 3) /* INSERT or UPDATE operations */ |
+ ); |
+ |
+ /* Check for a "special" INSERT operation. One of the form: |
+ ** |
+ ** INSERT INTO xyz(xyz) VALUES('command'); |
+ */ |
+ if( nArg>1 |
+ && sqlite3_value_type(apVal[0])==SQLITE_NULL |
+ && sqlite3_value_type(apVal[p->nColumn+2])!=SQLITE_NULL |
+ ){ |
+ rc = fts3SpecialInsert(p, apVal[p->nColumn+2]); |
+ goto update_out; |
+ } |
+ |
+ if( nArg>1 && sqlite3_value_int(apVal[2 + p->nColumn + 2])<0 ){ |
+ rc = SQLITE_CONSTRAINT; |
+ goto update_out; |
+ } |
+ |
+ /* Allocate space to hold the change in document sizes */ |
+ aSzDel = sqlite3_malloc( sizeof(aSzDel[0])*(p->nColumn+1)*2 ); |
+ if( aSzDel==0 ){ |
+ rc = SQLITE_NOMEM; |
+ goto update_out; |
+ } |
+ aSzIns = &aSzDel[p->nColumn+1]; |
+ memset(aSzDel, 0, sizeof(aSzDel[0])*(p->nColumn+1)*2); |
+ |
+ rc = fts3Writelock(p); |
+ if( rc!=SQLITE_OK ) goto update_out; |
+ |
+ /* If this is an INSERT operation, or an UPDATE that modifies the rowid |
+ ** value, then this operation requires constraint handling. |
+ ** |
+ ** If the on-conflict mode is REPLACE, this means that the existing row |
+ ** should be deleted from the database before inserting the new row. Or, |
+ ** if the on-conflict mode is other than REPLACE, then this method must |
+ ** detect the conflict and return SQLITE_CONSTRAINT before beginning to |
+ ** modify the database file. |
+ */ |
+ if( nArg>1 && p->zContentTbl==0 ){ |
+ /* Find the value object that holds the new rowid value. */ |
+ sqlite3_value *pNewRowid = apVal[3+p->nColumn]; |
+ if( sqlite3_value_type(pNewRowid)==SQLITE_NULL ){ |
+ pNewRowid = apVal[1]; |
+ } |
+ |
+ if( sqlite3_value_type(pNewRowid)!=SQLITE_NULL && ( |
+ sqlite3_value_type(apVal[0])==SQLITE_NULL |
+ || sqlite3_value_int64(apVal[0])!=sqlite3_value_int64(pNewRowid) |
+ )){ |
+ /* The new rowid is not NULL (in this case the rowid will be |
+ ** automatically assigned and there is no chance of a conflict), and |
+ ** the statement is either an INSERT or an UPDATE that modifies the |
+ ** rowid column. So if the conflict mode is REPLACE, then delete any |
+ ** existing row with rowid=pNewRowid. |
+ ** |
+ ** Or, if the conflict mode is not REPLACE, insert the new record into |
+ ** the %_content table. If we hit the duplicate rowid constraint (or any |
+ ** other error) while doing so, return immediately. |
+ ** |
+ ** This branch may also run if pNewRowid contains a value that cannot |
+ ** be losslessly converted to an integer. In this case, the eventual |
+ ** call to fts3InsertData() (either just below or further on in this |
+ ** function) will return SQLITE_MISMATCH. If fts3DeleteByRowid is |
+ ** invoked, it will delete zero rows (since no row will have |
+ ** docid=$pNewRowid if $pNewRowid is not an integer value). |
+ */ |
+ if( sqlite3_vtab_on_conflict(p->db)==SQLITE_REPLACE ){ |
+ rc = fts3DeleteByRowid(p, pNewRowid, &nChng, aSzDel); |
+ }else{ |
+ rc = fts3InsertData(p, apVal, pRowid); |
+ bInsertDone = 1; |
+ } |
+ } |
+ } |
+ if( rc!=SQLITE_OK ){ |
+ goto update_out; |
+ } |
+ |
+ /* If this is a DELETE or UPDATE operation, remove the old record. */ |
+ if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){ |
+ assert( sqlite3_value_type(apVal[0])==SQLITE_INTEGER ); |
+ rc = fts3DeleteByRowid(p, apVal[0], &nChng, aSzDel); |
+ isRemove = 1; |
+ } |
+ |
+ /* If this is an INSERT or UPDATE operation, insert the new record. */ |
+ if( nArg>1 && rc==SQLITE_OK ){ |
+ int iLangid = sqlite3_value_int(apVal[2 + p->nColumn + 2]); |
+ if( bInsertDone==0 ){ |
+ rc = fts3InsertData(p, apVal, pRowid); |
+ if( rc==SQLITE_CONSTRAINT && p->zContentTbl==0 ){ |
+ rc = FTS_CORRUPT_VTAB; |
+ } |
+ } |
+ if( rc==SQLITE_OK && (!isRemove || *pRowid!=p->iPrevDocid ) ){ |
+ rc = fts3PendingTermsDocid(p, iLangid, *pRowid); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ assert( p->iPrevDocid==*pRowid ); |
+ rc = fts3InsertTerms(p, iLangid, apVal, aSzIns); |
+ } |
+ if( p->bHasDocsize ){ |
+ fts3InsertDocsize(&rc, p, aSzIns); |
+ } |
+ nChng++; |
+ } |
+ |
+ if( p->bFts4 ){ |
+ fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nChng); |
+ } |
+ |
+ update_out: |
+ sqlite3_free(aSzDel); |
+ sqlite3Fts3SegmentsClose(p); |
+ return rc; |
+} |
+ |
+/* |
+** Flush any data in the pending-terms hash table to disk. If successful, |
+** merge all segments in the database (including the new segment, if |
+** there was any data to flush) into a single segment. |
+*/ |
+int sqlite3Fts3Optimize(Fts3Table *p){ |
+ int rc; |
+ rc = sqlite3_exec(p->db, "SAVEPOINT fts3", 0, 0, 0); |
+ if( rc==SQLITE_OK ){ |
+ rc = fts3DoOptimize(p, 1); |
+ if( rc==SQLITE_OK || rc==SQLITE_DONE ){ |
+ int rc2 = sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0); |
+ if( rc2!=SQLITE_OK ) rc = rc2; |
+ }else{ |
+ sqlite3_exec(p->db, "ROLLBACK TO fts3", 0, 0, 0); |
+ sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0); |
+ } |
+ } |
+ sqlite3Fts3SegmentsClose(p); |
+ return rc; |
+} |
+ |
+#endif |