Index: third_party/sqlite/sqlite-src-3080704/ext/async/sqlite3async.c |
diff --git a/third_party/sqlite/sqlite-src-3080704/ext/async/sqlite3async.c b/third_party/sqlite/sqlite-src-3080704/ext/async/sqlite3async.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..4ab39cac351ace28e1f59e7ceeb3bc570234e655 |
--- /dev/null |
+++ b/third_party/sqlite/sqlite-src-3080704/ext/async/sqlite3async.c |
@@ -0,0 +1,1701 @@ |
+/* |
+** 2005 December 14 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+************************************************************************* |
+** |
+** $Id: sqlite3async.c,v 1.7 2009/07/18 11:52:04 danielk1977 Exp $ |
+** |
+** This file contains the implementation of an asynchronous IO backend |
+** for SQLite. |
+*/ |
+ |
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ASYNCIO) |
+ |
+#include "sqlite3async.h" |
+#include "sqlite3.h" |
+#include <stdarg.h> |
+#include <string.h> |
+#include <assert.h> |
+ |
+/* Useful macros used in several places */ |
+#define MIN(x,y) ((x)<(y)?(x):(y)) |
+#define MAX(x,y) ((x)>(y)?(x):(y)) |
+ |
+#ifndef SQLITE_AMALGAMATION |
+/* Macro to mark parameters as unused and silence compiler warnings. */ |
+#define UNUSED_PARAMETER(x) (void)(x) |
+#endif |
+ |
+/* Forward references */ |
+typedef struct AsyncWrite AsyncWrite; |
+typedef struct AsyncFile AsyncFile; |
+typedef struct AsyncFileData AsyncFileData; |
+typedef struct AsyncFileLock AsyncFileLock; |
+typedef struct AsyncLock AsyncLock; |
+ |
+/* Enable for debugging */ |
+#ifndef NDEBUG |
+#include <stdio.h> |
+static int sqlite3async_trace = 0; |
+# define ASYNC_TRACE(X) if( sqlite3async_trace ) asyncTrace X |
+static void asyncTrace(const char *zFormat, ...){ |
+ char *z; |
+ va_list ap; |
+ va_start(ap, zFormat); |
+ z = sqlite3_vmprintf(zFormat, ap); |
+ va_end(ap); |
+ fprintf(stderr, "[%d] %s", 0 /* (int)pthread_self() */, z); |
+ sqlite3_free(z); |
+} |
+#else |
+# define ASYNC_TRACE(X) |
+#endif |
+ |
+/* |
+** THREAD SAFETY NOTES |
+** |
+** Basic rules: |
+** |
+** * Both read and write access to the global write-op queue must be |
+** protected by the async.queueMutex. As are the async.ioError and |
+** async.nFile variables. |
+** |
+** * The async.pLock list and all AsyncLock and AsyncFileLock |
+** structures must be protected by the async.lockMutex mutex. |
+** |
+** * The file handles from the underlying system are not assumed to |
+** be thread safe. |
+** |
+** * See the last two paragraphs under "The Writer Thread" for |
+** an assumption to do with file-handle synchronization by the Os. |
+** |
+** Deadlock prevention: |
+** |
+** There are three mutex used by the system: the "writer" mutex, |
+** the "queue" mutex and the "lock" mutex. Rules are: |
+** |
+** * It is illegal to block on the writer mutex when any other mutex |
+** are held, and |
+** |
+** * It is illegal to block on the queue mutex when the lock mutex |
+** is held. |
+** |
+** i.e. mutex's must be grabbed in the order "writer", "queue", "lock". |
+** |
+** File system operations (invoked by SQLite thread): |
+** |
+** xOpen |
+** xDelete |
+** xFileExists |
+** |
+** File handle operations (invoked by SQLite thread): |
+** |
+** asyncWrite, asyncClose, asyncTruncate, asyncSync |
+** |
+** The operations above add an entry to the global write-op list. They |
+** prepare the entry, acquire the async.queueMutex momentarily while |
+** list pointers are manipulated to insert the new entry, then release |
+** the mutex and signal the writer thread to wake up in case it happens |
+** to be asleep. |
+** |
+** |
+** asyncRead, asyncFileSize. |
+** |
+** Read operations. Both of these read from both the underlying file |
+** first then adjust their result based on pending writes in the |
+** write-op queue. So async.queueMutex is held for the duration |
+** of these operations to prevent other threads from changing the |
+** queue in mid operation. |
+** |
+** |
+** asyncLock, asyncUnlock, asyncCheckReservedLock |
+** |
+** These primitives implement in-process locking using a hash table |
+** on the file name. Files are locked correctly for connections coming |
+** from the same process. But other processes cannot see these locks |
+** and will therefore not honor them. |
+** |
+** |
+** The writer thread: |
+** |
+** The async.writerMutex is used to make sure only there is only |
+** a single writer thread running at a time. |
+** |
+** Inside the writer thread is a loop that works like this: |
+** |
+** WHILE (write-op list is not empty) |
+** Do IO operation at head of write-op list |
+** Remove entry from head of write-op list |
+** END WHILE |
+** |
+** The async.queueMutex is always held during the <write-op list is |
+** not empty> test, and when the entry is removed from the head |
+** of the write-op list. Sometimes it is held for the interim |
+** period (while the IO is performed), and sometimes it is |
+** relinquished. It is relinquished if (a) the IO op is an |
+** ASYNC_CLOSE or (b) when the file handle was opened, two of |
+** the underlying systems handles were opened on the same |
+** file-system entry. |
+** |
+** If condition (b) above is true, then one file-handle |
+** (AsyncFile.pBaseRead) is used exclusively by sqlite threads to read the |
+** file, the other (AsyncFile.pBaseWrite) by sqlite3_async_flush() |
+** threads to perform write() operations. This means that read |
+** operations are not blocked by asynchronous writes (although |
+** asynchronous writes may still be blocked by reads). |
+** |
+** This assumes that the OS keeps two handles open on the same file |
+** properly in sync. That is, any read operation that starts after a |
+** write operation on the same file system entry has completed returns |
+** data consistent with the write. We also assume that if one thread |
+** reads a file while another is writing it all bytes other than the |
+** ones actually being written contain valid data. |
+** |
+** If the above assumptions are not true, set the preprocessor symbol |
+** SQLITE_ASYNC_TWO_FILEHANDLES to 0. |
+*/ |
+ |
+ |
+#ifndef NDEBUG |
+# define TESTONLY( X ) X |
+#else |
+# define TESTONLY( X ) |
+#endif |
+ |
+/* |
+** PORTING FUNCTIONS |
+** |
+** There are two definitions of the following functions. One for pthreads |
+** compatible systems and one for Win32. These functions isolate the OS |
+** specific code required by each platform. |
+** |
+** The system uses three mutexes and a single condition variable. To |
+** block on a mutex, async_mutex_enter() is called. The parameter passed |
+** to async_mutex_enter(), which must be one of ASYNC_MUTEX_LOCK, |
+** ASYNC_MUTEX_QUEUE or ASYNC_MUTEX_WRITER, identifies which of the three |
+** mutexes to lock. Similarly, to unlock a mutex, async_mutex_leave() is |
+** called with a parameter identifying the mutex being unlocked. Mutexes |
+** are not recursive - it is an error to call async_mutex_enter() to |
+** lock a mutex that is already locked, or to call async_mutex_leave() |
+** to unlock a mutex that is not currently locked. |
+** |
+** The async_cond_wait() and async_cond_signal() functions are modelled |
+** on the pthreads functions with similar names. The first parameter to |
+** both functions is always ASYNC_COND_QUEUE. When async_cond_wait() |
+** is called the mutex identified by the second parameter must be held. |
+** The mutex is unlocked, and the calling thread simultaneously begins |
+** waiting for the condition variable to be signalled by another thread. |
+** After another thread signals the condition variable, the calling |
+** thread stops waiting, locks mutex eMutex and returns. The |
+** async_cond_signal() function is used to signal the condition variable. |
+** It is assumed that the mutex used by the thread calling async_cond_wait() |
+** is held by the caller of async_cond_signal() (otherwise there would be |
+** a race condition). |
+** |
+** It is guaranteed that no other thread will call async_cond_wait() when |
+** there is already a thread waiting on the condition variable. |
+** |
+** The async_sched_yield() function is called to suggest to the operating |
+** system that it would be a good time to shift the current thread off the |
+** CPU. The system will still work if this function is not implemented |
+** (it is not currently implemented for win32), but it might be marginally |
+** more efficient if it is. |
+*/ |
+static void async_mutex_enter(int eMutex); |
+static void async_mutex_leave(int eMutex); |
+static void async_cond_wait(int eCond, int eMutex); |
+static void async_cond_signal(int eCond); |
+static void async_sched_yield(void); |
+ |
+/* |
+** There are also two definitions of the following. async_os_initialize() |
+** is called when the asynchronous VFS is first installed, and os_shutdown() |
+** is called when it is uninstalled (from within sqlite3async_shutdown()). |
+** |
+** For pthreads builds, both of these functions are no-ops. For win32, |
+** they provide an opportunity to initialize and finalize the required |
+** mutex and condition variables. |
+** |
+** If async_os_initialize() returns other than zero, then the initialization |
+** fails and SQLITE_ERROR is returned to the user. |
+*/ |
+static int async_os_initialize(void); |
+static void async_os_shutdown(void); |
+ |
+/* Values for use as the 'eMutex' argument of the above functions. The |
+** integer values assigned to these constants are important for assert() |
+** statements that verify that mutexes are locked in the correct order. |
+** Specifically, it is unsafe to try to lock mutex N while holding a lock |
+** on mutex M if (M<=N). |
+*/ |
+#define ASYNC_MUTEX_LOCK 0 |
+#define ASYNC_MUTEX_QUEUE 1 |
+#define ASYNC_MUTEX_WRITER 2 |
+ |
+/* Values for use as the 'eCond' argument of the above functions. */ |
+#define ASYNC_COND_QUEUE 0 |
+ |
+/************************************************************************* |
+** Start of OS specific code. |
+*/ |
+#if SQLITE_OS_WIN || defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__) |
+ |
+#include <windows.h> |
+ |
+/* The following block contains the win32 specific code. */ |
+ |
+#define mutex_held(X) (GetCurrentThreadId()==primitives.aHolder[X]) |
+ |
+static struct AsyncPrimitives { |
+ int isInit; |
+ DWORD aHolder[3]; |
+ CRITICAL_SECTION aMutex[3]; |
+ HANDLE aCond[1]; |
+} primitives = { 0 }; |
+ |
+static int async_os_initialize(void){ |
+ if( !primitives.isInit ){ |
+ primitives.aCond[0] = CreateEvent(NULL, TRUE, FALSE, 0); |
+ if( primitives.aCond[0]==NULL ){ |
+ return 1; |
+ } |
+ InitializeCriticalSection(&primitives.aMutex[0]); |
+ InitializeCriticalSection(&primitives.aMutex[1]); |
+ InitializeCriticalSection(&primitives.aMutex[2]); |
+ primitives.isInit = 1; |
+ } |
+ return 0; |
+} |
+static void async_os_shutdown(void){ |
+ if( primitives.isInit ){ |
+ DeleteCriticalSection(&primitives.aMutex[0]); |
+ DeleteCriticalSection(&primitives.aMutex[1]); |
+ DeleteCriticalSection(&primitives.aMutex[2]); |
+ CloseHandle(primitives.aCond[0]); |
+ primitives.isInit = 0; |
+ } |
+} |
+ |
+/* The following block contains the Win32 specific code. */ |
+static void async_mutex_enter(int eMutex){ |
+ assert( eMutex==0 || eMutex==1 || eMutex==2 ); |
+ assert( eMutex!=2 || (!mutex_held(0) && !mutex_held(1) && !mutex_held(2)) ); |
+ assert( eMutex!=1 || (!mutex_held(0) && !mutex_held(1)) ); |
+ assert( eMutex!=0 || (!mutex_held(0)) ); |
+ EnterCriticalSection(&primitives.aMutex[eMutex]); |
+ TESTONLY( primitives.aHolder[eMutex] = GetCurrentThreadId(); ) |
+} |
+static void async_mutex_leave(int eMutex){ |
+ assert( eMutex==0 || eMutex==1 || eMutex==2 ); |
+ assert( mutex_held(eMutex) ); |
+ TESTONLY( primitives.aHolder[eMutex] = 0; ) |
+ LeaveCriticalSection(&primitives.aMutex[eMutex]); |
+} |
+static void async_cond_wait(int eCond, int eMutex){ |
+ ResetEvent(primitives.aCond[eCond]); |
+ async_mutex_leave(eMutex); |
+ WaitForSingleObject(primitives.aCond[eCond], INFINITE); |
+ async_mutex_enter(eMutex); |
+} |
+static void async_cond_signal(int eCond){ |
+ assert( mutex_held(ASYNC_MUTEX_QUEUE) ); |
+ SetEvent(primitives.aCond[eCond]); |
+} |
+static void async_sched_yield(void){ |
+ Sleep(0); |
+} |
+#else |
+ |
+/* The following block contains the pthreads specific code. */ |
+#include <pthread.h> |
+#include <sched.h> |
+ |
+#define mutex_held(X) pthread_equal(primitives.aHolder[X], pthread_self()) |
+ |
+static int async_os_initialize(void) {return 0;} |
+static void async_os_shutdown(void) {} |
+ |
+static struct AsyncPrimitives { |
+ pthread_mutex_t aMutex[3]; |
+ pthread_cond_t aCond[1]; |
+ pthread_t aHolder[3]; |
+} primitives = { |
+ { PTHREAD_MUTEX_INITIALIZER, |
+ PTHREAD_MUTEX_INITIALIZER, |
+ PTHREAD_MUTEX_INITIALIZER |
+ } , { |
+ PTHREAD_COND_INITIALIZER |
+ } , { 0, 0, 0 } |
+}; |
+ |
+static void async_mutex_enter(int eMutex){ |
+ assert( eMutex==0 || eMutex==1 || eMutex==2 ); |
+ assert( eMutex!=2 || (!mutex_held(0) && !mutex_held(1) && !mutex_held(2)) ); |
+ assert( eMutex!=1 || (!mutex_held(0) && !mutex_held(1)) ); |
+ assert( eMutex!=0 || (!mutex_held(0)) ); |
+ pthread_mutex_lock(&primitives.aMutex[eMutex]); |
+ TESTONLY( primitives.aHolder[eMutex] = pthread_self(); ) |
+} |
+static void async_mutex_leave(int eMutex){ |
+ assert( eMutex==0 || eMutex==1 || eMutex==2 ); |
+ assert( mutex_held(eMutex) ); |
+ TESTONLY( primitives.aHolder[eMutex] = 0; ) |
+ pthread_mutex_unlock(&primitives.aMutex[eMutex]); |
+} |
+static void async_cond_wait(int eCond, int eMutex){ |
+ assert( eMutex==0 || eMutex==1 || eMutex==2 ); |
+ assert( mutex_held(eMutex) ); |
+ TESTONLY( primitives.aHolder[eMutex] = 0; ) |
+ pthread_cond_wait(&primitives.aCond[eCond], &primitives.aMutex[eMutex]); |
+ TESTONLY( primitives.aHolder[eMutex] = pthread_self(); ) |
+} |
+static void async_cond_signal(int eCond){ |
+ assert( mutex_held(ASYNC_MUTEX_QUEUE) ); |
+ pthread_cond_signal(&primitives.aCond[eCond]); |
+} |
+static void async_sched_yield(void){ |
+ sched_yield(); |
+} |
+#endif |
+/* |
+** End of OS specific code. |
+*************************************************************************/ |
+ |
+#define assert_mutex_is_held(X) assert( mutex_held(X) ) |
+ |
+ |
+#ifndef SQLITE_ASYNC_TWO_FILEHANDLES |
+/* #define SQLITE_ASYNC_TWO_FILEHANDLES 0 */ |
+#define SQLITE_ASYNC_TWO_FILEHANDLES 1 |
+#endif |
+ |
+/* |
+** State information is held in the static variable "async" defined |
+** as the following structure. |
+** |
+** Both async.ioError and async.nFile are protected by async.queueMutex. |
+*/ |
+static struct TestAsyncStaticData { |
+ AsyncWrite *pQueueFirst; /* Next write operation to be processed */ |
+ AsyncWrite *pQueueLast; /* Last write operation on the list */ |
+ AsyncLock *pLock; /* Linked list of all AsyncLock structures */ |
+ volatile int ioDelay; /* Extra delay between write operations */ |
+ volatile int eHalt; /* One of the SQLITEASYNC_HALT_XXX values */ |
+ volatile int bLockFiles; /* Current value of "lockfiles" parameter */ |
+ int ioError; /* True if an IO error has occurred */ |
+ int nFile; /* Number of open files (from sqlite pov) */ |
+} async = { 0,0,0,0,0,1,0,0 }; |
+ |
+/* Possible values of AsyncWrite.op */ |
+#define ASYNC_NOOP 0 |
+#define ASYNC_WRITE 1 |
+#define ASYNC_SYNC 2 |
+#define ASYNC_TRUNCATE 3 |
+#define ASYNC_CLOSE 4 |
+#define ASYNC_DELETE 5 |
+#define ASYNC_OPENEXCLUSIVE 6 |
+#define ASYNC_UNLOCK 7 |
+ |
+/* Names of opcodes. Used for debugging only. |
+** Make sure these stay in sync with the macros above! |
+*/ |
+static const char *azOpcodeName[] = { |
+ "NOOP", "WRITE", "SYNC", "TRUNCATE", "CLOSE", "DELETE", "OPENEX", "UNLOCK" |
+}; |
+ |
+/* |
+** Entries on the write-op queue are instances of the AsyncWrite |
+** structure, defined here. |
+** |
+** The interpretation of the iOffset and nByte variables varies depending |
+** on the value of AsyncWrite.op: |
+** |
+** ASYNC_NOOP: |
+** No values used. |
+** |
+** ASYNC_WRITE: |
+** iOffset -> Offset in file to write to. |
+** nByte -> Number of bytes of data to write (pointed to by zBuf). |
+** |
+** ASYNC_SYNC: |
+** nByte -> flags to pass to sqlite3OsSync(). |
+** |
+** ASYNC_TRUNCATE: |
+** iOffset -> Size to truncate file to. |
+** nByte -> Unused. |
+** |
+** ASYNC_CLOSE: |
+** iOffset -> Unused. |
+** nByte -> Unused. |
+** |
+** ASYNC_DELETE: |
+** iOffset -> Contains the "syncDir" flag. |
+** nByte -> Number of bytes of zBuf points to (file name). |
+** |
+** ASYNC_OPENEXCLUSIVE: |
+** iOffset -> Value of "delflag". |
+** nByte -> Number of bytes of zBuf points to (file name). |
+** |
+** ASYNC_UNLOCK: |
+** nByte -> Argument to sqlite3OsUnlock(). |
+** |
+** |
+** For an ASYNC_WRITE operation, zBuf points to the data to write to the file. |
+** This space is sqlite3_malloc()d along with the AsyncWrite structure in a |
+** single blob, so is deleted when sqlite3_free() is called on the parent |
+** structure. |
+*/ |
+struct AsyncWrite { |
+ AsyncFileData *pFileData; /* File to write data to or sync */ |
+ int op; /* One of ASYNC_xxx etc. */ |
+ sqlite_int64 iOffset; /* See above */ |
+ int nByte; /* See above */ |
+ char *zBuf; /* Data to write to file (or NULL if op!=ASYNC_WRITE) */ |
+ AsyncWrite *pNext; /* Next write operation (to any file) */ |
+}; |
+ |
+/* |
+** An instance of this structure is created for each distinct open file |
+** (i.e. if two handles are opened on the one file, only one of these |
+** structures is allocated) and stored in the async.aLock hash table. The |
+** keys for async.aLock are the full pathnames of the opened files. |
+** |
+** AsyncLock.pList points to the head of a linked list of AsyncFileLock |
+** structures, one for each handle currently open on the file. |
+** |
+** If the opened file is not a main-database (the SQLITE_OPEN_MAIN_DB is |
+** not passed to the sqlite3OsOpen() call), or if async.bLockFiles is |
+** false, variables AsyncLock.pFile and AsyncLock.eLock are never used. |
+** Otherwise, pFile is a file handle opened on the file in question and |
+** used to obtain the file-system locks required by database connections |
+** within this process. |
+** |
+** See comments above the asyncLock() function for more details on |
+** the implementation of database locking used by this backend. |
+*/ |
+struct AsyncLock { |
+ char *zFile; |
+ int nFile; |
+ sqlite3_file *pFile; |
+ int eLock; |
+ AsyncFileLock *pList; |
+ AsyncLock *pNext; /* Next in linked list headed by async.pLock */ |
+}; |
+ |
+/* |
+** An instance of the following structure is allocated along with each |
+** AsyncFileData structure (see AsyncFileData.lock), but is only used if the |
+** file was opened with the SQLITE_OPEN_MAIN_DB. |
+*/ |
+struct AsyncFileLock { |
+ int eLock; /* Internally visible lock state (sqlite pov) */ |
+ int eAsyncLock; /* Lock-state with write-queue unlock */ |
+ AsyncFileLock *pNext; |
+}; |
+ |
+/* |
+** The AsyncFile structure is a subclass of sqlite3_file used for |
+** asynchronous IO. |
+** |
+** All of the actual data for the structure is stored in the structure |
+** pointed to by AsyncFile.pData, which is allocated as part of the |
+** sqlite3OsOpen() using sqlite3_malloc(). The reason for this is that the |
+** lifetime of the AsyncFile structure is ended by the caller after OsClose() |
+** is called, but the data in AsyncFileData may be required by the |
+** writer thread after that point. |
+*/ |
+struct AsyncFile { |
+ sqlite3_io_methods *pMethod; |
+ AsyncFileData *pData; |
+}; |
+struct AsyncFileData { |
+ char *zName; /* Underlying OS filename - used for debugging */ |
+ int nName; /* Number of characters in zName */ |
+ sqlite3_file *pBaseRead; /* Read handle to the underlying Os file */ |
+ sqlite3_file *pBaseWrite; /* Write handle to the underlying Os file */ |
+ AsyncFileLock lock; /* Lock state for this handle */ |
+ AsyncLock *pLock; /* AsyncLock object for this file system entry */ |
+ AsyncWrite closeOp; /* Preallocated close operation */ |
+}; |
+ |
+/* |
+** Add an entry to the end of the global write-op list. pWrite should point |
+** to an AsyncWrite structure allocated using sqlite3_malloc(). The writer |
+** thread will call sqlite3_free() to free the structure after the specified |
+** operation has been completed. |
+** |
+** Once an AsyncWrite structure has been added to the list, it becomes the |
+** property of the writer thread and must not be read or modified by the |
+** caller. |
+*/ |
+static void addAsyncWrite(AsyncWrite *pWrite){ |
+ /* We must hold the queue mutex in order to modify the queue pointers */ |
+ if( pWrite->op!=ASYNC_UNLOCK ){ |
+ async_mutex_enter(ASYNC_MUTEX_QUEUE); |
+ } |
+ |
+ /* Add the record to the end of the write-op queue */ |
+ assert( !pWrite->pNext ); |
+ if( async.pQueueLast ){ |
+ assert( async.pQueueFirst ); |
+ async.pQueueLast->pNext = pWrite; |
+ }else{ |
+ async.pQueueFirst = pWrite; |
+ } |
+ async.pQueueLast = pWrite; |
+ ASYNC_TRACE(("PUSH %p (%s %s %d)\n", pWrite, azOpcodeName[pWrite->op], |
+ pWrite->pFileData ? pWrite->pFileData->zName : "-", pWrite->iOffset)); |
+ |
+ if( pWrite->op==ASYNC_CLOSE ){ |
+ async.nFile--; |
+ } |
+ |
+ /* The writer thread might have been idle because there was nothing |
+ ** on the write-op queue for it to do. So wake it up. */ |
+ async_cond_signal(ASYNC_COND_QUEUE); |
+ |
+ /* Drop the queue mutex */ |
+ if( pWrite->op!=ASYNC_UNLOCK ){ |
+ async_mutex_leave(ASYNC_MUTEX_QUEUE); |
+ } |
+} |
+ |
+/* |
+** Increment async.nFile in a thread-safe manner. |
+*/ |
+static void incrOpenFileCount(void){ |
+ /* We must hold the queue mutex in order to modify async.nFile */ |
+ async_mutex_enter(ASYNC_MUTEX_QUEUE); |
+ if( async.nFile==0 ){ |
+ async.ioError = SQLITE_OK; |
+ } |
+ async.nFile++; |
+ async_mutex_leave(ASYNC_MUTEX_QUEUE); |
+} |
+ |
+/* |
+** This is a utility function to allocate and populate a new AsyncWrite |
+** structure and insert it (via addAsyncWrite() ) into the global list. |
+*/ |
+static int addNewAsyncWrite( |
+ AsyncFileData *pFileData, |
+ int op, |
+ sqlite3_int64 iOffset, |
+ int nByte, |
+ const char *zByte |
+){ |
+ AsyncWrite *p; |
+ if( op!=ASYNC_CLOSE && async.ioError ){ |
+ return async.ioError; |
+ } |
+ p = sqlite3_malloc(sizeof(AsyncWrite) + (zByte?nByte:0)); |
+ if( !p ){ |
+ /* The upper layer does not expect operations like OsWrite() to |
+ ** return SQLITE_NOMEM. This is partly because under normal conditions |
+ ** SQLite is required to do rollback without calling malloc(). So |
+ ** if malloc() fails here, treat it as an I/O error. The above |
+ ** layer knows how to handle that. |
+ */ |
+ return SQLITE_IOERR; |
+ } |
+ p->op = op; |
+ p->iOffset = iOffset; |
+ p->nByte = nByte; |
+ p->pFileData = pFileData; |
+ p->pNext = 0; |
+ if( zByte ){ |
+ p->zBuf = (char *)&p[1]; |
+ memcpy(p->zBuf, zByte, nByte); |
+ }else{ |
+ p->zBuf = 0; |
+ } |
+ addAsyncWrite(p); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Close the file. This just adds an entry to the write-op list, the file is |
+** not actually closed. |
+*/ |
+static int asyncClose(sqlite3_file *pFile){ |
+ AsyncFileData *p = ((AsyncFile *)pFile)->pData; |
+ |
+ /* Unlock the file, if it is locked */ |
+ async_mutex_enter(ASYNC_MUTEX_LOCK); |
+ p->lock.eLock = 0; |
+ async_mutex_leave(ASYNC_MUTEX_LOCK); |
+ |
+ addAsyncWrite(&p->closeOp); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Implementation of sqlite3OsWrite() for asynchronous files. Instead of |
+** writing to the underlying file, this function adds an entry to the end of |
+** the global AsyncWrite list. Either SQLITE_OK or SQLITE_NOMEM may be |
+** returned. |
+*/ |
+static int asyncWrite( |
+ sqlite3_file *pFile, |
+ const void *pBuf, |
+ int amt, |
+ sqlite3_int64 iOff |
+){ |
+ AsyncFileData *p = ((AsyncFile *)pFile)->pData; |
+ return addNewAsyncWrite(p, ASYNC_WRITE, iOff, amt, pBuf); |
+} |
+ |
+/* |
+** Read data from the file. First we read from the filesystem, then adjust |
+** the contents of the buffer based on ASYNC_WRITE operations in the |
+** write-op queue. |
+** |
+** This method holds the mutex from start to finish. |
+*/ |
+static int asyncRead( |
+ sqlite3_file *pFile, |
+ void *zOut, |
+ int iAmt, |
+ sqlite3_int64 iOffset |
+){ |
+ AsyncFileData *p = ((AsyncFile *)pFile)->pData; |
+ int rc = SQLITE_OK; |
+ sqlite3_int64 filesize = 0; |
+ sqlite3_file *pBase = p->pBaseRead; |
+ sqlite3_int64 iAmt64 = (sqlite3_int64)iAmt; |
+ |
+ /* Grab the write queue mutex for the duration of the call */ |
+ async_mutex_enter(ASYNC_MUTEX_QUEUE); |
+ |
+ /* If an I/O error has previously occurred in this virtual file |
+ ** system, then all subsequent operations fail. |
+ */ |
+ if( async.ioError!=SQLITE_OK ){ |
+ rc = async.ioError; |
+ goto asyncread_out; |
+ } |
+ |
+ if( pBase->pMethods ){ |
+ sqlite3_int64 nRead; |
+ rc = pBase->pMethods->xFileSize(pBase, &filesize); |
+ if( rc!=SQLITE_OK ){ |
+ goto asyncread_out; |
+ } |
+ nRead = MIN(filesize - iOffset, iAmt64); |
+ if( nRead>0 ){ |
+ rc = pBase->pMethods->xRead(pBase, zOut, (int)nRead, iOffset); |
+ ASYNC_TRACE(("READ %s %d bytes at %d\n", p->zName, nRead, iOffset)); |
+ } |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ AsyncWrite *pWrite; |
+ char *zName = p->zName; |
+ |
+ for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){ |
+ if( pWrite->op==ASYNC_WRITE && ( |
+ (pWrite->pFileData==p) || |
+ (zName && pWrite->pFileData->zName==zName) |
+ )){ |
+ sqlite3_int64 nCopy; |
+ sqlite3_int64 nByte64 = (sqlite3_int64)pWrite->nByte; |
+ |
+ /* Set variable iBeginIn to the offset in buffer pWrite->zBuf[] from |
+ ** which data should be copied. Set iBeginOut to the offset within |
+ ** the output buffer to which data should be copied. If either of |
+ ** these offsets is a negative number, set them to 0. |
+ */ |
+ sqlite3_int64 iBeginOut = (pWrite->iOffset-iOffset); |
+ sqlite3_int64 iBeginIn = -iBeginOut; |
+ if( iBeginIn<0 ) iBeginIn = 0; |
+ if( iBeginOut<0 ) iBeginOut = 0; |
+ |
+ filesize = MAX(filesize, pWrite->iOffset+nByte64); |
+ |
+ nCopy = MIN(nByte64-iBeginIn, iAmt64-iBeginOut); |
+ if( nCopy>0 ){ |
+ memcpy(&((char *)zOut)[iBeginOut], &pWrite->zBuf[iBeginIn], (size_t)nCopy); |
+ ASYNC_TRACE(("OVERREAD %d bytes at %d\n", nCopy, iBeginOut+iOffset)); |
+ } |
+ } |
+ } |
+ } |
+ |
+asyncread_out: |
+ async_mutex_leave(ASYNC_MUTEX_QUEUE); |
+ if( rc==SQLITE_OK && filesize<(iOffset+iAmt) ){ |
+ rc = SQLITE_IOERR_SHORT_READ; |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Truncate the file to nByte bytes in length. This just adds an entry to |
+** the write-op list, no IO actually takes place. |
+*/ |
+static int asyncTruncate(sqlite3_file *pFile, sqlite3_int64 nByte){ |
+ AsyncFileData *p = ((AsyncFile *)pFile)->pData; |
+ return addNewAsyncWrite(p, ASYNC_TRUNCATE, nByte, 0, 0); |
+} |
+ |
+/* |
+** Sync the file. This just adds an entry to the write-op list, the |
+** sync() is done later by sqlite3_async_flush(). |
+*/ |
+static int asyncSync(sqlite3_file *pFile, int flags){ |
+ AsyncFileData *p = ((AsyncFile *)pFile)->pData; |
+ return addNewAsyncWrite(p, ASYNC_SYNC, 0, flags, 0); |
+} |
+ |
+/* |
+** Read the size of the file. First we read the size of the file system |
+** entry, then adjust for any ASYNC_WRITE or ASYNC_TRUNCATE operations |
+** currently in the write-op list. |
+** |
+** This method holds the mutex from start to finish. |
+*/ |
+int asyncFileSize(sqlite3_file *pFile, sqlite3_int64 *piSize){ |
+ AsyncFileData *p = ((AsyncFile *)pFile)->pData; |
+ int rc = SQLITE_OK; |
+ sqlite3_int64 s = 0; |
+ sqlite3_file *pBase; |
+ |
+ async_mutex_enter(ASYNC_MUTEX_QUEUE); |
+ |
+ /* Read the filesystem size from the base file. If pMethods is NULL, this |
+ ** means the file hasn't been opened yet. In this case all relevant data |
+ ** must be in the write-op queue anyway, so we can omit reading from the |
+ ** file-system. |
+ */ |
+ pBase = p->pBaseRead; |
+ if( pBase->pMethods ){ |
+ rc = pBase->pMethods->xFileSize(pBase, &s); |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ AsyncWrite *pWrite; |
+ for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){ |
+ if( pWrite->op==ASYNC_DELETE |
+ && p->zName |
+ && strcmp(p->zName, pWrite->zBuf)==0 |
+ ){ |
+ s = 0; |
+ }else if( pWrite->pFileData && ( |
+ (pWrite->pFileData==p) |
+ || (p->zName && pWrite->pFileData->zName==p->zName) |
+ )){ |
+ switch( pWrite->op ){ |
+ case ASYNC_WRITE: |
+ s = MAX(pWrite->iOffset + (sqlite3_int64)(pWrite->nByte), s); |
+ break; |
+ case ASYNC_TRUNCATE: |
+ s = MIN(s, pWrite->iOffset); |
+ break; |
+ } |
+ } |
+ } |
+ *piSize = s; |
+ } |
+ async_mutex_leave(ASYNC_MUTEX_QUEUE); |
+ return rc; |
+} |
+ |
+/* |
+** Lock or unlock the actual file-system entry. |
+*/ |
+static int getFileLock(AsyncLock *pLock){ |
+ int rc = SQLITE_OK; |
+ AsyncFileLock *pIter; |
+ int eRequired = 0; |
+ |
+ if( pLock->pFile ){ |
+ for(pIter=pLock->pList; pIter; pIter=pIter->pNext){ |
+ assert(pIter->eAsyncLock>=pIter->eLock); |
+ if( pIter->eAsyncLock>eRequired ){ |
+ eRequired = pIter->eAsyncLock; |
+ assert(eRequired>=0 && eRequired<=SQLITE_LOCK_EXCLUSIVE); |
+ } |
+ } |
+ |
+ if( eRequired>pLock->eLock ){ |
+ rc = pLock->pFile->pMethods->xLock(pLock->pFile, eRequired); |
+ if( rc==SQLITE_OK ){ |
+ pLock->eLock = eRequired; |
+ } |
+ } |
+ else if( eRequired<pLock->eLock && eRequired<=SQLITE_LOCK_SHARED ){ |
+ rc = pLock->pFile->pMethods->xUnlock(pLock->pFile, eRequired); |
+ if( rc==SQLITE_OK ){ |
+ pLock->eLock = eRequired; |
+ } |
+ } |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** Return the AsyncLock structure from the global async.pLock list |
+** associated with the file-system entry identified by path zName |
+** (a string of nName bytes). If no such structure exists, return 0. |
+*/ |
+static AsyncLock *findLock(const char *zName, int nName){ |
+ AsyncLock *p = async.pLock; |
+ while( p && (p->nFile!=nName || memcmp(p->zFile, zName, nName)) ){ |
+ p = p->pNext; |
+ } |
+ return p; |
+} |
+ |
+/* |
+** The following two methods - asyncLock() and asyncUnlock() - are used |
+** to obtain and release locks on database files opened with the |
+** asynchronous backend. |
+*/ |
+static int asyncLock(sqlite3_file *pFile, int eLock){ |
+ int rc = SQLITE_OK; |
+ AsyncFileData *p = ((AsyncFile *)pFile)->pData; |
+ |
+ if( p->zName ){ |
+ async_mutex_enter(ASYNC_MUTEX_LOCK); |
+ if( p->lock.eLock<eLock ){ |
+ AsyncLock *pLock = p->pLock; |
+ AsyncFileLock *pIter; |
+ assert(pLock && pLock->pList); |
+ for(pIter=pLock->pList; pIter; pIter=pIter->pNext){ |
+ if( pIter!=&p->lock && ( |
+ (eLock==SQLITE_LOCK_EXCLUSIVE && pIter->eLock>=SQLITE_LOCK_SHARED) || |
+ (eLock==SQLITE_LOCK_PENDING && pIter->eLock>=SQLITE_LOCK_RESERVED) || |
+ (eLock==SQLITE_LOCK_RESERVED && pIter->eLock>=SQLITE_LOCK_RESERVED) || |
+ (eLock==SQLITE_LOCK_SHARED && pIter->eLock>=SQLITE_LOCK_PENDING) |
+ )){ |
+ rc = SQLITE_BUSY; |
+ } |
+ } |
+ if( rc==SQLITE_OK ){ |
+ p->lock.eLock = eLock; |
+ p->lock.eAsyncLock = MAX(p->lock.eAsyncLock, eLock); |
+ } |
+ assert(p->lock.eAsyncLock>=p->lock.eLock); |
+ if( rc==SQLITE_OK ){ |
+ rc = getFileLock(pLock); |
+ } |
+ } |
+ async_mutex_leave(ASYNC_MUTEX_LOCK); |
+ } |
+ |
+ ASYNC_TRACE(("LOCK %d (%s) rc=%d\n", eLock, p->zName, rc)); |
+ return rc; |
+} |
+static int asyncUnlock(sqlite3_file *pFile, int eLock){ |
+ int rc = SQLITE_OK; |
+ AsyncFileData *p = ((AsyncFile *)pFile)->pData; |
+ if( p->zName ){ |
+ AsyncFileLock *pLock = &p->lock; |
+ async_mutex_enter(ASYNC_MUTEX_QUEUE); |
+ async_mutex_enter(ASYNC_MUTEX_LOCK); |
+ pLock->eLock = MIN(pLock->eLock, eLock); |
+ rc = addNewAsyncWrite(p, ASYNC_UNLOCK, 0, eLock, 0); |
+ async_mutex_leave(ASYNC_MUTEX_LOCK); |
+ async_mutex_leave(ASYNC_MUTEX_QUEUE); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** This function is called when the pager layer first opens a database file |
+** and is checking for a hot-journal. |
+*/ |
+static int asyncCheckReservedLock(sqlite3_file *pFile, int *pResOut){ |
+ int ret = 0; |
+ AsyncFileLock *pIter; |
+ AsyncFileData *p = ((AsyncFile *)pFile)->pData; |
+ |
+ async_mutex_enter(ASYNC_MUTEX_LOCK); |
+ for(pIter=p->pLock->pList; pIter; pIter=pIter->pNext){ |
+ if( pIter->eLock>=SQLITE_LOCK_RESERVED ){ |
+ ret = 1; |
+ break; |
+ } |
+ } |
+ async_mutex_leave(ASYNC_MUTEX_LOCK); |
+ |
+ ASYNC_TRACE(("CHECK-LOCK %d (%s)\n", ret, p->zName)); |
+ *pResOut = ret; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** sqlite3_file_control() implementation. |
+*/ |
+static int asyncFileControl(sqlite3_file *id, int op, void *pArg){ |
+ switch( op ){ |
+ case SQLITE_FCNTL_LOCKSTATE: { |
+ async_mutex_enter(ASYNC_MUTEX_LOCK); |
+ *(int*)pArg = ((AsyncFile*)id)->pData->lock.eLock; |
+ async_mutex_leave(ASYNC_MUTEX_LOCK); |
+ return SQLITE_OK; |
+ } |
+ } |
+ return SQLITE_NOTFOUND; |
+} |
+ |
+/* |
+** Return the device characteristics and sector-size of the device. It |
+** is tricky to implement these correctly, as this backend might |
+** not have an open file handle at this point. |
+*/ |
+static int asyncSectorSize(sqlite3_file *pFile){ |
+ UNUSED_PARAMETER(pFile); |
+ return 512; |
+} |
+static int asyncDeviceCharacteristics(sqlite3_file *pFile){ |
+ UNUSED_PARAMETER(pFile); |
+ return 0; |
+} |
+ |
+static int unlinkAsyncFile(AsyncFileData *pData){ |
+ AsyncFileLock **ppIter; |
+ int rc = SQLITE_OK; |
+ |
+ if( pData->zName ){ |
+ AsyncLock *pLock = pData->pLock; |
+ for(ppIter=&pLock->pList; *ppIter; ppIter=&((*ppIter)->pNext)){ |
+ if( (*ppIter)==&pData->lock ){ |
+ *ppIter = pData->lock.pNext; |
+ break; |
+ } |
+ } |
+ if( !pLock->pList ){ |
+ AsyncLock **pp; |
+ if( pLock->pFile ){ |
+ pLock->pFile->pMethods->xClose(pLock->pFile); |
+ } |
+ for(pp=&async.pLock; *pp!=pLock; pp=&((*pp)->pNext)); |
+ *pp = pLock->pNext; |
+ sqlite3_free(pLock); |
+ }else{ |
+ rc = getFileLock(pLock); |
+ } |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** The parameter passed to this function is a copy of a 'flags' parameter |
+** passed to this modules xOpen() method. This function returns true |
+** if the file should be opened asynchronously, or false if it should |
+** be opened immediately. |
+** |
+** If the file is to be opened asynchronously, then asyncOpen() will add |
+** an entry to the event queue and the file will not actually be opened |
+** until the event is processed. Otherwise, the file is opened directly |
+** by the caller. |
+*/ |
+static int doAsynchronousOpen(int flags){ |
+ return (flags&SQLITE_OPEN_CREATE) && ( |
+ (flags&SQLITE_OPEN_MAIN_JOURNAL) || |
+ (flags&SQLITE_OPEN_TEMP_JOURNAL) || |
+ (flags&SQLITE_OPEN_DELETEONCLOSE) |
+ ); |
+} |
+ |
+/* |
+** Open a file. |
+*/ |
+static int asyncOpen( |
+ sqlite3_vfs *pAsyncVfs, |
+ const char *zName, |
+ sqlite3_file *pFile, |
+ int flags, |
+ int *pOutFlags |
+){ |
+ static sqlite3_io_methods async_methods = { |
+ 1, /* iVersion */ |
+ asyncClose, /* xClose */ |
+ asyncRead, /* xRead */ |
+ asyncWrite, /* xWrite */ |
+ asyncTruncate, /* xTruncate */ |
+ asyncSync, /* xSync */ |
+ asyncFileSize, /* xFileSize */ |
+ asyncLock, /* xLock */ |
+ asyncUnlock, /* xUnlock */ |
+ asyncCheckReservedLock, /* xCheckReservedLock */ |
+ asyncFileControl, /* xFileControl */ |
+ asyncSectorSize, /* xSectorSize */ |
+ asyncDeviceCharacteristics /* xDeviceCharacteristics */ |
+ }; |
+ |
+ sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
+ AsyncFile *p = (AsyncFile *)pFile; |
+ int nName = 0; |
+ int rc = SQLITE_OK; |
+ int nByte; |
+ AsyncFileData *pData; |
+ AsyncLock *pLock = 0; |
+ char *z; |
+ int isAsyncOpen = doAsynchronousOpen(flags); |
+ |
+ /* If zName is NULL, then the upper layer is requesting an anonymous file. |
+ ** Otherwise, allocate enough space to make a copy of the file name (along |
+ ** with the second nul-terminator byte required by xOpen). |
+ */ |
+ if( zName ){ |
+ nName = (int)strlen(zName); |
+ } |
+ |
+ nByte = ( |
+ sizeof(AsyncFileData) + /* AsyncFileData structure */ |
+ 2 * pVfs->szOsFile + /* AsyncFileData.pBaseRead and pBaseWrite */ |
+ nName + 2 /* AsyncFileData.zName */ |
+ ); |
+ z = sqlite3_malloc(nByte); |
+ if( !z ){ |
+ return SQLITE_NOMEM; |
+ } |
+ memset(z, 0, nByte); |
+ pData = (AsyncFileData*)z; |
+ z += sizeof(pData[0]); |
+ pData->pBaseRead = (sqlite3_file*)z; |
+ z += pVfs->szOsFile; |
+ pData->pBaseWrite = (sqlite3_file*)z; |
+ pData->closeOp.pFileData = pData; |
+ pData->closeOp.op = ASYNC_CLOSE; |
+ |
+ if( zName ){ |
+ z += pVfs->szOsFile; |
+ pData->zName = z; |
+ pData->nName = nName; |
+ memcpy(pData->zName, zName, nName); |
+ } |
+ |
+ if( !isAsyncOpen ){ |
+ int flagsout; |
+ rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseRead, flags, &flagsout); |
+ if( rc==SQLITE_OK |
+ && (flagsout&SQLITE_OPEN_READWRITE) |
+ && (flags&SQLITE_OPEN_EXCLUSIVE)==0 |
+ ){ |
+ rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseWrite, flags, 0); |
+ } |
+ if( pOutFlags ){ |
+ *pOutFlags = flagsout; |
+ } |
+ } |
+ |
+ async_mutex_enter(ASYNC_MUTEX_LOCK); |
+ |
+ if( zName && rc==SQLITE_OK ){ |
+ pLock = findLock(pData->zName, pData->nName); |
+ if( !pLock ){ |
+ int nByte = pVfs->szOsFile + sizeof(AsyncLock) + pData->nName + 1; |
+ pLock = (AsyncLock *)sqlite3_malloc(nByte); |
+ if( pLock ){ |
+ memset(pLock, 0, nByte); |
+ if( async.bLockFiles && (flags&SQLITE_OPEN_MAIN_DB) ){ |
+ pLock->pFile = (sqlite3_file *)&pLock[1]; |
+ rc = pVfs->xOpen(pVfs, pData->zName, pLock->pFile, flags, 0); |
+ if( rc!=SQLITE_OK ){ |
+ sqlite3_free(pLock); |
+ pLock = 0; |
+ } |
+ } |
+ if( pLock ){ |
+ pLock->nFile = pData->nName; |
+ pLock->zFile = &((char *)(&pLock[1]))[pVfs->szOsFile]; |
+ memcpy(pLock->zFile, pData->zName, pLock->nFile); |
+ pLock->pNext = async.pLock; |
+ async.pLock = pLock; |
+ } |
+ }else{ |
+ rc = SQLITE_NOMEM; |
+ } |
+ } |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ p->pMethod = &async_methods; |
+ p->pData = pData; |
+ |
+ /* Link AsyncFileData.lock into the linked list of |
+ ** AsyncFileLock structures for this file. |
+ */ |
+ if( zName ){ |
+ pData->lock.pNext = pLock->pList; |
+ pLock->pList = &pData->lock; |
+ pData->zName = pLock->zFile; |
+ } |
+ }else{ |
+ if( pData->pBaseRead->pMethods ){ |
+ pData->pBaseRead->pMethods->xClose(pData->pBaseRead); |
+ } |
+ if( pData->pBaseWrite->pMethods ){ |
+ pData->pBaseWrite->pMethods->xClose(pData->pBaseWrite); |
+ } |
+ sqlite3_free(pData); |
+ } |
+ |
+ async_mutex_leave(ASYNC_MUTEX_LOCK); |
+ |
+ if( rc==SQLITE_OK ){ |
+ pData->pLock = pLock; |
+ } |
+ |
+ if( rc==SQLITE_OK && isAsyncOpen ){ |
+ rc = addNewAsyncWrite(pData, ASYNC_OPENEXCLUSIVE, (sqlite3_int64)flags,0,0); |
+ if( rc==SQLITE_OK ){ |
+ if( pOutFlags ) *pOutFlags = flags; |
+ }else{ |
+ async_mutex_enter(ASYNC_MUTEX_LOCK); |
+ unlinkAsyncFile(pData); |
+ async_mutex_leave(ASYNC_MUTEX_LOCK); |
+ sqlite3_free(pData); |
+ } |
+ } |
+ if( rc!=SQLITE_OK ){ |
+ p->pMethod = 0; |
+ }else{ |
+ incrOpenFileCount(); |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** Implementation of sqlite3OsDelete. Add an entry to the end of the |
+** write-op queue to perform the delete. |
+*/ |
+static int asyncDelete(sqlite3_vfs *pAsyncVfs, const char *z, int syncDir){ |
+ UNUSED_PARAMETER(pAsyncVfs); |
+ return addNewAsyncWrite(0, ASYNC_DELETE, syncDir, (int)strlen(z)+1, z); |
+} |
+ |
+/* |
+** Implementation of sqlite3OsAccess. This method holds the mutex from |
+** start to finish. |
+*/ |
+static int asyncAccess( |
+ sqlite3_vfs *pAsyncVfs, |
+ const char *zName, |
+ int flags, |
+ int *pResOut |
+){ |
+ int rc; |
+ int ret; |
+ AsyncWrite *p; |
+ sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
+ |
+ assert(flags==SQLITE_ACCESS_READWRITE |
+ || flags==SQLITE_ACCESS_READ |
+ || flags==SQLITE_ACCESS_EXISTS |
+ ); |
+ |
+ async_mutex_enter(ASYNC_MUTEX_QUEUE); |
+ rc = pVfs->xAccess(pVfs, zName, flags, &ret); |
+ if( rc==SQLITE_OK && flags==SQLITE_ACCESS_EXISTS ){ |
+ for(p=async.pQueueFirst; p; p = p->pNext){ |
+ if( p->op==ASYNC_DELETE && 0==strcmp(p->zBuf, zName) ){ |
+ ret = 0; |
+ }else if( p->op==ASYNC_OPENEXCLUSIVE |
+ && p->pFileData->zName |
+ && 0==strcmp(p->pFileData->zName, zName) |
+ ){ |
+ ret = 1; |
+ } |
+ } |
+ } |
+ ASYNC_TRACE(("ACCESS(%s): %s = %d\n", |
+ flags==SQLITE_ACCESS_READWRITE?"read-write": |
+ flags==SQLITE_ACCESS_READ?"read":"exists" |
+ , zName, ret) |
+ ); |
+ async_mutex_leave(ASYNC_MUTEX_QUEUE); |
+ *pResOut = ret; |
+ return rc; |
+} |
+ |
+/* |
+** Fill in zPathOut with the full path to the file identified by zPath. |
+*/ |
+static int asyncFullPathname( |
+ sqlite3_vfs *pAsyncVfs, |
+ const char *zPath, |
+ int nPathOut, |
+ char *zPathOut |
+){ |
+ int rc; |
+ sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
+ rc = pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut); |
+ |
+ /* Because of the way intra-process file locking works, this backend |
+ ** needs to return a canonical path. The following block assumes the |
+ ** file-system uses unix style paths. |
+ */ |
+ if( rc==SQLITE_OK ){ |
+ int i, j; |
+ char *z = zPathOut; |
+ int n = (int)strlen(z); |
+ while( n>1 && z[n-1]=='/' ){ n--; } |
+ for(i=j=0; i<n; i++){ |
+ if( z[i]=='/' ){ |
+ if( z[i+1]=='/' ) continue; |
+ if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){ |
+ i += 1; |
+ continue; |
+ } |
+ if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){ |
+ while( j>0 && z[j-1]!='/' ){ j--; } |
+ if( j>0 ){ j--; } |
+ i += 2; |
+ continue; |
+ } |
+ } |
+ z[j++] = z[i]; |
+ } |
+ z[j] = 0; |
+ } |
+ |
+ return rc; |
+} |
+static void *asyncDlOpen(sqlite3_vfs *pAsyncVfs, const char *zPath){ |
+ sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
+ return pVfs->xDlOpen(pVfs, zPath); |
+} |
+static void asyncDlError(sqlite3_vfs *pAsyncVfs, int nByte, char *zErrMsg){ |
+ sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
+ pVfs->xDlError(pVfs, nByte, zErrMsg); |
+} |
+static void (*asyncDlSym( |
+ sqlite3_vfs *pAsyncVfs, |
+ void *pHandle, |
+ const char *zSymbol |
+))(void){ |
+ sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
+ return pVfs->xDlSym(pVfs, pHandle, zSymbol); |
+} |
+static void asyncDlClose(sqlite3_vfs *pAsyncVfs, void *pHandle){ |
+ sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
+ pVfs->xDlClose(pVfs, pHandle); |
+} |
+static int asyncRandomness(sqlite3_vfs *pAsyncVfs, int nByte, char *zBufOut){ |
+ sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
+ return pVfs->xRandomness(pVfs, nByte, zBufOut); |
+} |
+static int asyncSleep(sqlite3_vfs *pAsyncVfs, int nMicro){ |
+ sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
+ return pVfs->xSleep(pVfs, nMicro); |
+} |
+static int asyncCurrentTime(sqlite3_vfs *pAsyncVfs, double *pTimeOut){ |
+ sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
+ return pVfs->xCurrentTime(pVfs, pTimeOut); |
+} |
+ |
+static sqlite3_vfs async_vfs = { |
+ 1, /* iVersion */ |
+ sizeof(AsyncFile), /* szOsFile */ |
+ 0, /* mxPathname */ |
+ 0, /* pNext */ |
+ SQLITEASYNC_VFSNAME, /* zName */ |
+ 0, /* pAppData */ |
+ asyncOpen, /* xOpen */ |
+ asyncDelete, /* xDelete */ |
+ asyncAccess, /* xAccess */ |
+ asyncFullPathname, /* xFullPathname */ |
+ asyncDlOpen, /* xDlOpen */ |
+ asyncDlError, /* xDlError */ |
+ asyncDlSym, /* xDlSym */ |
+ asyncDlClose, /* xDlClose */ |
+ asyncRandomness, /* xDlError */ |
+ asyncSleep, /* xDlSym */ |
+ asyncCurrentTime /* xDlClose */ |
+}; |
+ |
+/* |
+** This procedure runs in a separate thread, reading messages off of the |
+** write queue and processing them one by one. |
+** |
+** If async.writerHaltNow is true, then this procedure exits |
+** after processing a single message. |
+** |
+** If async.writerHaltWhenIdle is true, then this procedure exits when |
+** the write queue is empty. |
+** |
+** If both of the above variables are false, this procedure runs |
+** indefinately, waiting for operations to be added to the write queue |
+** and processing them in the order in which they arrive. |
+** |
+** An artifical delay of async.ioDelay milliseconds is inserted before |
+** each write operation in order to simulate the effect of a slow disk. |
+** |
+** Only one instance of this procedure may be running at a time. |
+*/ |
+static void asyncWriterThread(void){ |
+ sqlite3_vfs *pVfs = (sqlite3_vfs *)(async_vfs.pAppData); |
+ AsyncWrite *p = 0; |
+ int rc = SQLITE_OK; |
+ int holdingMutex = 0; |
+ |
+ async_mutex_enter(ASYNC_MUTEX_WRITER); |
+ |
+ while( async.eHalt!=SQLITEASYNC_HALT_NOW ){ |
+ int doNotFree = 0; |
+ sqlite3_file *pBase = 0; |
+ |
+ if( !holdingMutex ){ |
+ async_mutex_enter(ASYNC_MUTEX_QUEUE); |
+ } |
+ while( (p = async.pQueueFirst)==0 ){ |
+ if( async.eHalt!=SQLITEASYNC_HALT_NEVER ){ |
+ async_mutex_leave(ASYNC_MUTEX_QUEUE); |
+ break; |
+ }else{ |
+ ASYNC_TRACE(("IDLE\n")); |
+ async_cond_wait(ASYNC_COND_QUEUE, ASYNC_MUTEX_QUEUE); |
+ ASYNC_TRACE(("WAKEUP\n")); |
+ } |
+ } |
+ if( p==0 ) break; |
+ holdingMutex = 1; |
+ |
+ /* Right now this thread is holding the mutex on the write-op queue. |
+ ** Variable 'p' points to the first entry in the write-op queue. In |
+ ** the general case, we hold on to the mutex for the entire body of |
+ ** the loop. |
+ ** |
+ ** However in the cases enumerated below, we relinquish the mutex, |
+ ** perform the IO, and then re-request the mutex before removing 'p' from |
+ ** the head of the write-op queue. The idea is to increase concurrency with |
+ ** sqlite threads. |
+ ** |
+ ** * An ASYNC_CLOSE operation. |
+ ** * An ASYNC_OPENEXCLUSIVE operation. For this one, we relinquish |
+ ** the mutex, call the underlying xOpenExclusive() function, then |
+ ** re-aquire the mutex before seting the AsyncFile.pBaseRead |
+ ** variable. |
+ ** * ASYNC_SYNC and ASYNC_WRITE operations, if |
+ ** SQLITE_ASYNC_TWO_FILEHANDLES was set at compile time and two |
+ ** file-handles are open for the particular file being "synced". |
+ */ |
+ if( async.ioError!=SQLITE_OK && p->op!=ASYNC_CLOSE ){ |
+ p->op = ASYNC_NOOP; |
+ } |
+ if( p->pFileData ){ |
+ pBase = p->pFileData->pBaseWrite; |
+ if( |
+ p->op==ASYNC_CLOSE || |
+ p->op==ASYNC_OPENEXCLUSIVE || |
+ (pBase->pMethods && (p->op==ASYNC_SYNC || p->op==ASYNC_WRITE) ) |
+ ){ |
+ async_mutex_leave(ASYNC_MUTEX_QUEUE); |
+ holdingMutex = 0; |
+ } |
+ if( !pBase->pMethods ){ |
+ pBase = p->pFileData->pBaseRead; |
+ } |
+ } |
+ |
+ switch( p->op ){ |
+ case ASYNC_NOOP: |
+ break; |
+ |
+ case ASYNC_WRITE: |
+ assert( pBase ); |
+ ASYNC_TRACE(("WRITE %s %d bytes at %d\n", |
+ p->pFileData->zName, p->nByte, p->iOffset)); |
+ rc = pBase->pMethods->xWrite(pBase, (void *)(p->zBuf), p->nByte, p->iOffset); |
+ break; |
+ |
+ case ASYNC_SYNC: |
+ assert( pBase ); |
+ ASYNC_TRACE(("SYNC %s\n", p->pFileData->zName)); |
+ rc = pBase->pMethods->xSync(pBase, p->nByte); |
+ break; |
+ |
+ case ASYNC_TRUNCATE: |
+ assert( pBase ); |
+ ASYNC_TRACE(("TRUNCATE %s to %d bytes\n", |
+ p->pFileData->zName, p->iOffset)); |
+ rc = pBase->pMethods->xTruncate(pBase, p->iOffset); |
+ break; |
+ |
+ case ASYNC_CLOSE: { |
+ AsyncFileData *pData = p->pFileData; |
+ ASYNC_TRACE(("CLOSE %s\n", p->pFileData->zName)); |
+ if( pData->pBaseWrite->pMethods ){ |
+ pData->pBaseWrite->pMethods->xClose(pData->pBaseWrite); |
+ } |
+ if( pData->pBaseRead->pMethods ){ |
+ pData->pBaseRead->pMethods->xClose(pData->pBaseRead); |
+ } |
+ |
+ /* Unlink AsyncFileData.lock from the linked list of AsyncFileLock |
+ ** structures for this file. Obtain the async.lockMutex mutex |
+ ** before doing so. |
+ */ |
+ async_mutex_enter(ASYNC_MUTEX_LOCK); |
+ rc = unlinkAsyncFile(pData); |
+ async_mutex_leave(ASYNC_MUTEX_LOCK); |
+ |
+ if( !holdingMutex ){ |
+ async_mutex_enter(ASYNC_MUTEX_QUEUE); |
+ holdingMutex = 1; |
+ } |
+ assert_mutex_is_held(ASYNC_MUTEX_QUEUE); |
+ async.pQueueFirst = p->pNext; |
+ sqlite3_free(pData); |
+ doNotFree = 1; |
+ break; |
+ } |
+ |
+ case ASYNC_UNLOCK: { |
+ AsyncWrite *pIter; |
+ AsyncFileData *pData = p->pFileData; |
+ int eLock = p->nByte; |
+ |
+ /* When a file is locked by SQLite using the async backend, it is |
+ ** locked within the 'real' file-system synchronously. When it is |
+ ** unlocked, an ASYNC_UNLOCK event is added to the write-queue to |
+ ** unlock the file asynchronously. The design of the async backend |
+ ** requires that the 'real' file-system file be locked from the |
+ ** time that SQLite first locks it (and probably reads from it) |
+ ** until all asynchronous write events that were scheduled before |
+ ** SQLite unlocked the file have been processed. |
+ ** |
+ ** This is more complex if SQLite locks and unlocks the file multiple |
+ ** times in quick succession. For example, if SQLite does: |
+ ** |
+ ** lock, write, unlock, lock, write, unlock |
+ ** |
+ ** Each "lock" operation locks the file immediately. Each "write" |
+ ** and "unlock" operation adds an event to the event queue. If the |
+ ** second "lock" operation is performed before the first "unlock" |
+ ** operation has been processed asynchronously, then the first |
+ ** "unlock" cannot be safely processed as is, since this would mean |
+ ** the file was unlocked when the second "write" operation is |
+ ** processed. To work around this, when processing an ASYNC_UNLOCK |
+ ** operation, SQLite: |
+ ** |
+ ** 1) Unlocks the file to the minimum of the argument passed to |
+ ** the xUnlock() call and the current lock from SQLite's point |
+ ** of view, and |
+ ** |
+ ** 2) Only unlocks the file at all if this event is the last |
+ ** ASYNC_UNLOCK event on this file in the write-queue. |
+ */ |
+ assert( holdingMutex==1 ); |
+ assert( async.pQueueFirst==p ); |
+ for(pIter=async.pQueueFirst->pNext; pIter; pIter=pIter->pNext){ |
+ if( pIter->pFileData==pData && pIter->op==ASYNC_UNLOCK ) break; |
+ } |
+ if( !pIter ){ |
+ async_mutex_enter(ASYNC_MUTEX_LOCK); |
+ pData->lock.eAsyncLock = MIN( |
+ pData->lock.eAsyncLock, MAX(pData->lock.eLock, eLock) |
+ ); |
+ assert(pData->lock.eAsyncLock>=pData->lock.eLock); |
+ rc = getFileLock(pData->pLock); |
+ async_mutex_leave(ASYNC_MUTEX_LOCK); |
+ } |
+ break; |
+ } |
+ |
+ case ASYNC_DELETE: |
+ ASYNC_TRACE(("DELETE %s\n", p->zBuf)); |
+ rc = pVfs->xDelete(pVfs, p->zBuf, (int)p->iOffset); |
+ if( rc==SQLITE_IOERR_DELETE_NOENT ) rc = SQLITE_OK; |
+ break; |
+ |
+ case ASYNC_OPENEXCLUSIVE: { |
+ int flags = (int)p->iOffset; |
+ AsyncFileData *pData = p->pFileData; |
+ ASYNC_TRACE(("OPEN %s flags=%d\n", p->zBuf, (int)p->iOffset)); |
+ assert(pData->pBaseRead->pMethods==0 && pData->pBaseWrite->pMethods==0); |
+ rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseRead, flags, 0); |
+ assert( holdingMutex==0 ); |
+ async_mutex_enter(ASYNC_MUTEX_QUEUE); |
+ holdingMutex = 1; |
+ break; |
+ } |
+ |
+ default: assert(!"Illegal value for AsyncWrite.op"); |
+ } |
+ |
+ /* If we didn't hang on to the mutex during the IO op, obtain it now |
+ ** so that the AsyncWrite structure can be safely removed from the |
+ ** global write-op queue. |
+ */ |
+ if( !holdingMutex ){ |
+ async_mutex_enter(ASYNC_MUTEX_QUEUE); |
+ holdingMutex = 1; |
+ } |
+ /* ASYNC_TRACE(("UNLINK %p\n", p)); */ |
+ if( p==async.pQueueLast ){ |
+ async.pQueueLast = 0; |
+ } |
+ if( !doNotFree ){ |
+ assert_mutex_is_held(ASYNC_MUTEX_QUEUE); |
+ async.pQueueFirst = p->pNext; |
+ sqlite3_free(p); |
+ } |
+ assert( holdingMutex ); |
+ |
+ /* An IO error has occurred. We cannot report the error back to the |
+ ** connection that requested the I/O since the error happened |
+ ** asynchronously. The connection has already moved on. There |
+ ** really is nobody to report the error to. |
+ ** |
+ ** The file for which the error occurred may have been a database or |
+ ** journal file. Regardless, none of the currently queued operations |
+ ** associated with the same database should now be performed. Nor should |
+ ** any subsequently requested IO on either a database or journal file |
+ ** handle for the same database be accepted until the main database |
+ ** file handle has been closed and reopened. |
+ ** |
+ ** Furthermore, no further IO should be queued or performed on any file |
+ ** handle associated with a database that may have been part of a |
+ ** multi-file transaction that included the database associated with |
+ ** the IO error (i.e. a database ATTACHed to the same handle at some |
+ ** point in time). |
+ */ |
+ if( rc!=SQLITE_OK ){ |
+ async.ioError = rc; |
+ } |
+ |
+ if( async.ioError && !async.pQueueFirst ){ |
+ async_mutex_enter(ASYNC_MUTEX_LOCK); |
+ if( 0==async.pLock ){ |
+ async.ioError = SQLITE_OK; |
+ } |
+ async_mutex_leave(ASYNC_MUTEX_LOCK); |
+ } |
+ |
+ /* Drop the queue mutex before continuing to the next write operation |
+ ** in order to give other threads a chance to work with the write queue. |
+ */ |
+ if( !async.pQueueFirst || !async.ioError ){ |
+ async_mutex_leave(ASYNC_MUTEX_QUEUE); |
+ holdingMutex = 0; |
+ if( async.ioDelay>0 ){ |
+ pVfs->xSleep(pVfs, async.ioDelay*1000); |
+ }else{ |
+ async_sched_yield(); |
+ } |
+ } |
+ } |
+ |
+ async_mutex_leave(ASYNC_MUTEX_WRITER); |
+ return; |
+} |
+ |
+/* |
+** Install the asynchronous VFS. |
+*/ |
+int sqlite3async_initialize(const char *zParent, int isDefault){ |
+ int rc = SQLITE_OK; |
+ if( async_vfs.pAppData==0 ){ |
+ sqlite3_vfs *pParent = sqlite3_vfs_find(zParent); |
+ if( !pParent || async_os_initialize() ){ |
+ rc = SQLITE_ERROR; |
+ }else if( SQLITE_OK!=(rc = sqlite3_vfs_register(&async_vfs, isDefault)) ){ |
+ async_os_shutdown(); |
+ }else{ |
+ async_vfs.pAppData = (void *)pParent; |
+ async_vfs.mxPathname = ((sqlite3_vfs *)async_vfs.pAppData)->mxPathname; |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Uninstall the asynchronous VFS. |
+*/ |
+void sqlite3async_shutdown(void){ |
+ if( async_vfs.pAppData ){ |
+ async_os_shutdown(); |
+ sqlite3_vfs_unregister((sqlite3_vfs *)&async_vfs); |
+ async_vfs.pAppData = 0; |
+ } |
+} |
+ |
+/* |
+** Process events on the write-queue. |
+*/ |
+void sqlite3async_run(void){ |
+ asyncWriterThread(); |
+} |
+ |
+/* |
+** Control/configure the asynchronous IO system. |
+*/ |
+int sqlite3async_control(int op, ...){ |
+ va_list ap; |
+ va_start(ap, op); |
+ switch( op ){ |
+ case SQLITEASYNC_HALT: { |
+ int eWhen = va_arg(ap, int); |
+ if( eWhen!=SQLITEASYNC_HALT_NEVER |
+ && eWhen!=SQLITEASYNC_HALT_NOW |
+ && eWhen!=SQLITEASYNC_HALT_IDLE |
+ ){ |
+ return SQLITE_MISUSE; |
+ } |
+ async.eHalt = eWhen; |
+ async_mutex_enter(ASYNC_MUTEX_QUEUE); |
+ async_cond_signal(ASYNC_COND_QUEUE); |
+ async_mutex_leave(ASYNC_MUTEX_QUEUE); |
+ break; |
+ } |
+ |
+ case SQLITEASYNC_DELAY: { |
+ int iDelay = va_arg(ap, int); |
+ if( iDelay<0 ){ |
+ return SQLITE_MISUSE; |
+ } |
+ async.ioDelay = iDelay; |
+ break; |
+ } |
+ |
+ case SQLITEASYNC_LOCKFILES: { |
+ int bLock = va_arg(ap, int); |
+ async_mutex_enter(ASYNC_MUTEX_QUEUE); |
+ if( async.nFile || async.pQueueFirst ){ |
+ async_mutex_leave(ASYNC_MUTEX_QUEUE); |
+ return SQLITE_MISUSE; |
+ } |
+ async.bLockFiles = bLock; |
+ async_mutex_leave(ASYNC_MUTEX_QUEUE); |
+ break; |
+ } |
+ |
+ case SQLITEASYNC_GET_HALT: { |
+ int *peWhen = va_arg(ap, int *); |
+ *peWhen = async.eHalt; |
+ break; |
+ } |
+ case SQLITEASYNC_GET_DELAY: { |
+ int *piDelay = va_arg(ap, int *); |
+ *piDelay = async.ioDelay; |
+ break; |
+ } |
+ case SQLITEASYNC_GET_LOCKFILES: { |
+ int *piDelay = va_arg(ap, int *); |
+ *piDelay = async.bLockFiles; |
+ break; |
+ } |
+ |
+ default: |
+ return SQLITE_ERROR; |
+ } |
+ return SQLITE_OK; |
+} |
+ |
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ASYNCIO) */ |
+ |