Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(4)

Unified Diff: third_party/sqlite/src/src/analyze.c

Issue 949043002: Add //third_party/sqlite to dirs_to_snapshot, remove net_sql.patch (Closed) Base URL: git@github.com:domokit/mojo.git@master
Patch Set: Created 5 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « third_party/sqlite/src/src/alter.c ('k') | third_party/sqlite/src/src/attach.c » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: third_party/sqlite/src/src/analyze.c
diff --git a/third_party/sqlite/src/src/analyze.c b/third_party/sqlite/src/src/analyze.c
index 2444e7492329e0a33f171f5681b9b22a206f9e71..e655aaa50c7136cfb712f3799bcd3c65f3d050f6 100644
--- a/third_party/sqlite/src/src/analyze.c
+++ b/third_party/sqlite/src/src/analyze.c
@@ -1,5 +1,5 @@
/*
-** 2005 July 8
+** 2005-07-08
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
@@ -10,25 +10,164 @@
**
*************************************************************************
** This file contains code associated with the ANALYZE command.
+**
+** The ANALYZE command gather statistics about the content of tables
+** and indices. These statistics are made available to the query planner
+** to help it make better decisions about how to perform queries.
+**
+** The following system tables are or have been supported:
+**
+** CREATE TABLE sqlite_stat1(tbl, idx, stat);
+** CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample);
+** CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample);
+** CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample);
+**
+** Additional tables might be added in future releases of SQLite.
+** The sqlite_stat2 table is not created or used unless the SQLite version
+** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled
+** with SQLITE_ENABLE_STAT2. The sqlite_stat2 table is deprecated.
+** The sqlite_stat2 table is superseded by sqlite_stat3, which is only
+** created and used by SQLite versions 3.7.9 and later and with
+** SQLITE_ENABLE_STAT3 defined. The functionality of sqlite_stat3
+** is a superset of sqlite_stat2. The sqlite_stat4 is an enhanced
+** version of sqlite_stat3 and is only available when compiled with
+** SQLITE_ENABLE_STAT4 and in SQLite versions 3.8.1 and later. It is
+** not possible to enable both STAT3 and STAT4 at the same time. If they
+** are both enabled, then STAT4 takes precedence.
+**
+** For most applications, sqlite_stat1 provides all the statistics required
+** for the query planner to make good choices.
+**
+** Format of sqlite_stat1:
+**
+** There is normally one row per index, with the index identified by the
+** name in the idx column. The tbl column is the name of the table to
+** which the index belongs. In each such row, the stat column will be
+** a string consisting of a list of integers. The first integer in this
+** list is the number of rows in the index. (This is the same as the
+** number of rows in the table, except for partial indices.) The second
+** integer is the average number of rows in the index that have the same
+** value in the first column of the index. The third integer is the average
+** number of rows in the index that have the same value for the first two
+** columns. The N-th integer (for N>1) is the average number of rows in
+** the index which have the same value for the first N-1 columns. For
+** a K-column index, there will be K+1 integers in the stat column. If
+** the index is unique, then the last integer will be 1.
+**
+** The list of integers in the stat column can optionally be followed
+** by the keyword "unordered". The "unordered" keyword, if it is present,
+** must be separated from the last integer by a single space. If the
+** "unordered" keyword is present, then the query planner assumes that
+** the index is unordered and will not use the index for a range query.
+**
+** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat
+** column contains a single integer which is the (estimated) number of
+** rows in the table identified by sqlite_stat1.tbl.
+**
+** Format of sqlite_stat2:
+**
+** The sqlite_stat2 is only created and is only used if SQLite is compiled
+** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between
+** 3.6.18 and 3.7.8. The "stat2" table contains additional information
+** about the distribution of keys within an index. The index is identified by
+** the "idx" column and the "tbl" column is the name of the table to which
+** the index belongs. There are usually 10 rows in the sqlite_stat2
+** table for each index.
+**
+** The sqlite_stat2 entries for an index that have sampleno between 0 and 9
+** inclusive are samples of the left-most key value in the index taken at
+** evenly spaced points along the index. Let the number of samples be S
+** (10 in the standard build) and let C be the number of rows in the index.
+** Then the sampled rows are given by:
+**
+** rownumber = (i*C*2 + C)/(S*2)
+**
+** For i between 0 and S-1. Conceptually, the index space is divided into
+** S uniform buckets and the samples are the middle row from each bucket.
+**
+** The format for sqlite_stat2 is recorded here for legacy reference. This
+** version of SQLite does not support sqlite_stat2. It neither reads nor
+** writes the sqlite_stat2 table. This version of SQLite only supports
+** sqlite_stat3.
+**
+** Format for sqlite_stat3:
+**
+** The sqlite_stat3 format is a subset of sqlite_stat4. Hence, the
+** sqlite_stat4 format will be described first. Further information
+** about sqlite_stat3 follows the sqlite_stat4 description.
+**
+** Format for sqlite_stat4:
+**
+** As with sqlite_stat2, the sqlite_stat4 table contains histogram data
+** to aid the query planner in choosing good indices based on the values
+** that indexed columns are compared against in the WHERE clauses of
+** queries.
+**
+** The sqlite_stat4 table contains multiple entries for each index.
+** The idx column names the index and the tbl column is the table of the
+** index. If the idx and tbl columns are the same, then the sample is
+** of the INTEGER PRIMARY KEY. The sample column is a blob which is the
+** binary encoding of a key from the index. The nEq column is a
+** list of integers. The first integer is the approximate number
+** of entries in the index whose left-most column exactly matches
+** the left-most column of the sample. The second integer in nEq
+** is the approximate number of entries in the index where the
+** first two columns match the first two columns of the sample.
+** And so forth. nLt is another list of integers that show the approximate
+** number of entries that are strictly less than the sample. The first
+** integer in nLt contains the number of entries in the index where the
+** left-most column is less than the left-most column of the sample.
+** The K-th integer in the nLt entry is the number of index entries
+** where the first K columns are less than the first K columns of the
+** sample. The nDLt column is like nLt except that it contains the
+** number of distinct entries in the index that are less than the
+** sample.
+**
+** There can be an arbitrary number of sqlite_stat4 entries per index.
+** The ANALYZE command will typically generate sqlite_stat4 tables
+** that contain between 10 and 40 samples which are distributed across
+** the key space, though not uniformly, and which include samples with
+** large nEq values.
+**
+** Format for sqlite_stat3 redux:
+**
+** The sqlite_stat3 table is like sqlite_stat4 except that it only
+** looks at the left-most column of the index. The sqlite_stat3.sample
+** column contains the actual value of the left-most column instead
+** of a blob encoding of the complete index key as is found in
+** sqlite_stat4.sample. The nEq, nLt, and nDLt entries of sqlite_stat3
+** all contain just a single integer which is the same as the first
+** integer in the equivalent columns in sqlite_stat4.
*/
#ifndef SQLITE_OMIT_ANALYZE
#include "sqliteInt.h"
+#if defined(SQLITE_ENABLE_STAT4)
+# define IsStat4 1
+# define IsStat3 0
+#elif defined(SQLITE_ENABLE_STAT3)
+# define IsStat4 0
+# define IsStat3 1
+#else
+# define IsStat4 0
+# define IsStat3 0
+# undef SQLITE_STAT4_SAMPLES
+# define SQLITE_STAT4_SAMPLES 1
+#endif
+#define IsStat34 (IsStat3+IsStat4) /* 1 for STAT3 or STAT4. 0 otherwise */
+
/*
-** This routine generates code that opens the sqlite_stat1 table for
-** writing with cursor iStatCur. If the library was built with the
-** SQLITE_ENABLE_STAT2 macro defined, then the sqlite_stat2 table is
-** opened for writing using cursor (iStatCur+1)
+** This routine generates code that opens the sqlite_statN tables.
+** The sqlite_stat1 table is always relevant. sqlite_stat2 is now
+** obsolete. sqlite_stat3 and sqlite_stat4 are only opened when
+** appropriate compile-time options are provided.
**
-** If the sqlite_stat1 tables does not previously exist, it is created.
-** Similarly, if the sqlite_stat2 table does not exist and the library
-** is compiled with SQLITE_ENABLE_STAT2 defined, it is created.
+** If the sqlite_statN tables do not previously exist, it is created.
**
** Argument zWhere may be a pointer to a buffer containing a table name,
** or it may be a NULL pointer. If it is not NULL, then all entries in
-** the sqlite_stat1 and (if applicable) sqlite_stat2 tables associated
-** with the named table are deleted. If zWhere==0, then code is generated
-** to delete all stat table entries.
+** the sqlite_statN tables associated with the named table are deleted.
+** If zWhere==0, then code is generated to delete all stat table entries.
*/
static void openStatTable(
Parse *pParse, /* Parsing context */
@@ -42,59 +181,771 @@ static void openStatTable(
const char *zCols;
} aTable[] = {
{ "sqlite_stat1", "tbl,idx,stat" },
-#ifdef SQLITE_ENABLE_STAT2
- { "sqlite_stat2", "tbl,idx,sampleno,sample" },
+#if defined(SQLITE_ENABLE_STAT4)
+ { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" },
+ { "sqlite_stat3", 0 },
+#elif defined(SQLITE_ENABLE_STAT3)
+ { "sqlite_stat3", "tbl,idx,neq,nlt,ndlt,sample" },
+ { "sqlite_stat4", 0 },
+#else
+ { "sqlite_stat3", 0 },
+ { "sqlite_stat4", 0 },
#endif
};
-
- int aRoot[] = {0, 0};
- u8 aCreateTbl[] = {0, 0};
-
int i;
sqlite3 *db = pParse->db;
Db *pDb;
Vdbe *v = sqlite3GetVdbe(pParse);
+ int aRoot[ArraySize(aTable)];
+ u8 aCreateTbl[ArraySize(aTable)];
+
if( v==0 ) return;
assert( sqlite3BtreeHoldsAllMutexes(db) );
assert( sqlite3VdbeDb(v)==db );
pDb = &db->aDb[iDb];
+ /* Create new statistic tables if they do not exist, or clear them
+ ** if they do already exist.
+ */
for(i=0; i<ArraySize(aTable); i++){
const char *zTab = aTable[i].zName;
Table *pStat;
if( (pStat = sqlite3FindTable(db, zTab, pDb->zName))==0 ){
- /* The sqlite_stat[12] table does not exist. Create it. Note that a
- ** side-effect of the CREATE TABLE statement is to leave the rootpage
- ** of the new table in register pParse->regRoot. This is important
- ** because the OpenWrite opcode below will be needing it. */
- sqlite3NestedParse(pParse,
- "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols
- );
- aRoot[i] = pParse->regRoot;
- aCreateTbl[i] = 1;
+ if( aTable[i].zCols ){
+ /* The sqlite_statN table does not exist. Create it. Note that a
+ ** side-effect of the CREATE TABLE statement is to leave the rootpage
+ ** of the new table in register pParse->regRoot. This is important
+ ** because the OpenWrite opcode below will be needing it. */
+ sqlite3NestedParse(pParse,
+ "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols
+ );
+ aRoot[i] = pParse->regRoot;
+ aCreateTbl[i] = OPFLAG_P2ISREG;
+ }
}else{
/* The table already exists. If zWhere is not NULL, delete all entries
** associated with the table zWhere. If zWhere is NULL, delete the
** entire contents of the table. */
aRoot[i] = pStat->tnum;
+ aCreateTbl[i] = 0;
sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
if( zWhere ){
sqlite3NestedParse(pParse,
- "DELETE FROM %Q.%s WHERE %s=%Q", pDb->zName, zTab, zWhereType, zWhere
+ "DELETE FROM %Q.%s WHERE %s=%Q",
+ pDb->zName, zTab, zWhereType, zWhere
);
}else{
- /* The sqlite_stat[12] table already exists. Delete all rows. */
+ /* The sqlite_stat[134] table already exists. Delete all rows. */
sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb);
}
}
}
- /* Open the sqlite_stat[12] tables for writing. */
- for(i=0; i<ArraySize(aTable); i++){
- sqlite3VdbeAddOp3(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb);
- sqlite3VdbeChangeP4(v, -1, (char *)3, P4_INT32);
+ /* Open the sqlite_stat[134] tables for writing. */
+ for(i=0; aTable[i].zCols; i++){
+ assert( i<ArraySize(aTable) );
+ sqlite3VdbeAddOp4Int(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb, 3);
sqlite3VdbeChangeP5(v, aCreateTbl[i]);
+ VdbeComment((v, aTable[i].zName));
+ }
+}
+
+/*
+** Recommended number of samples for sqlite_stat4
+*/
+#ifndef SQLITE_STAT4_SAMPLES
+# define SQLITE_STAT4_SAMPLES 24
+#endif
+
+/*
+** Three SQL functions - stat_init(), stat_push(), and stat_get() -
+** share an instance of the following structure to hold their state
+** information.
+*/
+typedef struct Stat4Accum Stat4Accum;
+typedef struct Stat4Sample Stat4Sample;
+struct Stat4Sample {
+ tRowcnt *anEq; /* sqlite_stat4.nEq */
+ tRowcnt *anDLt; /* sqlite_stat4.nDLt */
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
+ tRowcnt *anLt; /* sqlite_stat4.nLt */
+ union {
+ i64 iRowid; /* Rowid in main table of the key */
+ u8 *aRowid; /* Key for WITHOUT ROWID tables */
+ } u;
+ u32 nRowid; /* Sizeof aRowid[] */
+ u8 isPSample; /* True if a periodic sample */
+ int iCol; /* If !isPSample, the reason for inclusion */
+ u32 iHash; /* Tiebreaker hash */
+#endif
+};
+struct Stat4Accum {
+ tRowcnt nRow; /* Number of rows in the entire table */
+ tRowcnt nPSample; /* How often to do a periodic sample */
+ int nCol; /* Number of columns in index + pk/rowid */
+ int nKeyCol; /* Number of index columns w/o the pk/rowid */
+ int mxSample; /* Maximum number of samples to accumulate */
+ Stat4Sample current; /* Current row as a Stat4Sample */
+ u32 iPrn; /* Pseudo-random number used for sampling */
+ Stat4Sample *aBest; /* Array of nCol best samples */
+ int iMin; /* Index in a[] of entry with minimum score */
+ int nSample; /* Current number of samples */
+ int iGet; /* Index of current sample accessed by stat_get() */
+ Stat4Sample *a; /* Array of mxSample Stat4Sample objects */
+ sqlite3 *db; /* Database connection, for malloc() */
+};
+
+/* Reclaim memory used by a Stat4Sample
+*/
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
+static void sampleClear(sqlite3 *db, Stat4Sample *p){
+ assert( db!=0 );
+ if( p->nRowid ){
+ sqlite3DbFree(db, p->u.aRowid);
+ p->nRowid = 0;
+ }
+}
+#endif
+
+/* Initialize the BLOB value of a ROWID
+*/
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
+static void sampleSetRowid(sqlite3 *db, Stat4Sample *p, int n, const u8 *pData){
+ assert( db!=0 );
+ if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid);
+ p->u.aRowid = sqlite3DbMallocRaw(db, n);
+ if( p->u.aRowid ){
+ p->nRowid = n;
+ memcpy(p->u.aRowid, pData, n);
+ }else{
+ p->nRowid = 0;
+ }
+}
+#endif
+
+/* Initialize the INTEGER value of a ROWID.
+*/
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
+static void sampleSetRowidInt64(sqlite3 *db, Stat4Sample *p, i64 iRowid){
+ assert( db!=0 );
+ if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid);
+ p->nRowid = 0;
+ p->u.iRowid = iRowid;
+}
+#endif
+
+
+/*
+** Copy the contents of object (*pFrom) into (*pTo).
+*/
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
+static void sampleCopy(Stat4Accum *p, Stat4Sample *pTo, Stat4Sample *pFrom){
+ pTo->isPSample = pFrom->isPSample;
+ pTo->iCol = pFrom->iCol;
+ pTo->iHash = pFrom->iHash;
+ memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol);
+ memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol);
+ memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol);
+ if( pFrom->nRowid ){
+ sampleSetRowid(p->db, pTo, pFrom->nRowid, pFrom->u.aRowid);
+ }else{
+ sampleSetRowidInt64(p->db, pTo, pFrom->u.iRowid);
+ }
+}
+#endif
+
+/*
+** Reclaim all memory of a Stat4Accum structure.
+*/
+static void stat4Destructor(void *pOld){
+ Stat4Accum *p = (Stat4Accum*)pOld;
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
+ int i;
+ for(i=0; i<p->nCol; i++) sampleClear(p->db, p->aBest+i);
+ for(i=0; i<p->mxSample; i++) sampleClear(p->db, p->a+i);
+ sampleClear(p->db, &p->current);
+#endif
+ sqlite3DbFree(p->db, p);
+}
+
+/*
+** Implementation of the stat_init(N,K,C) SQL function. The three parameters
+** are:
+** N: The number of columns in the index including the rowid/pk (note 1)
+** K: The number of columns in the index excluding the rowid/pk.
+** C: The number of rows in the index (note 2)
+**
+** Note 1: In the special case of the covering index that implements a
+** WITHOUT ROWID table, N is the number of PRIMARY KEY columns, not the
+** total number of columns in the table.
+**
+** Note 2: C is only used for STAT3 and STAT4.
+**
+** For indexes on ordinary rowid tables, N==K+1. But for indexes on
+** WITHOUT ROWID tables, N=K+P where P is the number of columns in the
+** PRIMARY KEY of the table. The covering index that implements the
+** original WITHOUT ROWID table as N==K as a special case.
+**
+** This routine allocates the Stat4Accum object in heap memory. The return
+** value is a pointer to the Stat4Accum object. The datatype of the
+** return value is BLOB, but it is really just a pointer to the Stat4Accum
+** object.
+*/
+static void statInit(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ Stat4Accum *p;
+ int nCol; /* Number of columns in index being sampled */
+ int nKeyCol; /* Number of key columns */
+ int nColUp; /* nCol rounded up for alignment */
+ int n; /* Bytes of space to allocate */
+ sqlite3 *db; /* Database connection */
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
+ int mxSample = SQLITE_STAT4_SAMPLES;
+#endif
+
+ /* Decode the three function arguments */
+ UNUSED_PARAMETER(argc);
+ nCol = sqlite3_value_int(argv[0]);
+ assert( nCol>0 );
+ nColUp = sizeof(tRowcnt)<8 ? (nCol+1)&~1 : nCol;
+ nKeyCol = sqlite3_value_int(argv[1]);
+ assert( nKeyCol<=nCol );
+ assert( nKeyCol>0 );
+
+ /* Allocate the space required for the Stat4Accum object */
+ n = sizeof(*p)
+ + sizeof(tRowcnt)*nColUp /* Stat4Accum.anEq */
+ + sizeof(tRowcnt)*nColUp /* Stat4Accum.anDLt */
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
+ + sizeof(tRowcnt)*nColUp /* Stat4Accum.anLt */
+ + sizeof(Stat4Sample)*(nCol+mxSample) /* Stat4Accum.aBest[], a[] */
+ + sizeof(tRowcnt)*3*nColUp*(nCol+mxSample)
+#endif
+ ;
+ db = sqlite3_context_db_handle(context);
+ p = sqlite3DbMallocZero(db, n);
+ if( p==0 ){
+ sqlite3_result_error_nomem(context);
+ return;
+ }
+
+ p->db = db;
+ p->nRow = 0;
+ p->nCol = nCol;
+ p->nKeyCol = nKeyCol;
+ p->current.anDLt = (tRowcnt*)&p[1];
+ p->current.anEq = &p->current.anDLt[nColUp];
+
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
+ {
+ u8 *pSpace; /* Allocated space not yet assigned */
+ int i; /* Used to iterate through p->aSample[] */
+
+ p->iGet = -1;
+ p->mxSample = mxSample;
+ p->nPSample = (tRowcnt)(sqlite3_value_int64(argv[2])/(mxSample/3+1) + 1);
+ p->current.anLt = &p->current.anEq[nColUp];
+ p->iPrn = nCol*0x689e962d ^ sqlite3_value_int(argv[2])*0xd0944565;
+
+ /* Set up the Stat4Accum.a[] and aBest[] arrays */
+ p->a = (struct Stat4Sample*)&p->current.anLt[nColUp];
+ p->aBest = &p->a[mxSample];
+ pSpace = (u8*)(&p->a[mxSample+nCol]);
+ for(i=0; i<(mxSample+nCol); i++){
+ p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
+ p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
+ p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
+ }
+ assert( (pSpace - (u8*)p)==n );
+
+ for(i=0; i<nCol; i++){
+ p->aBest[i].iCol = i;
+ }
+ }
+#endif
+
+ /* Return a pointer to the allocated object to the caller. Note that
+ ** only the pointer (the 2nd parameter) matters. The size of the object
+ ** (given by the 3rd parameter) is never used and can be any positive
+ ** value. */
+ sqlite3_result_blob(context, p, sizeof(*p), stat4Destructor);
+}
+static const FuncDef statInitFuncdef = {
+ 2+IsStat34, /* nArg */
+ SQLITE_UTF8, /* funcFlags */
+ 0, /* pUserData */
+ 0, /* pNext */
+ statInit, /* xFunc */
+ 0, /* xStep */
+ 0, /* xFinalize */
+ "stat_init", /* zName */
+ 0, /* pHash */
+ 0 /* pDestructor */
+};
+
+#ifdef SQLITE_ENABLE_STAT4
+/*
+** pNew and pOld are both candidate non-periodic samples selected for
+** the same column (pNew->iCol==pOld->iCol). Ignoring this column and
+** considering only any trailing columns and the sample hash value, this
+** function returns true if sample pNew is to be preferred over pOld.
+** In other words, if we assume that the cardinalities of the selected
+** column for pNew and pOld are equal, is pNew to be preferred over pOld.
+**
+** This function assumes that for each argument sample, the contents of
+** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid.
+*/
+static int sampleIsBetterPost(
+ Stat4Accum *pAccum,
+ Stat4Sample *pNew,
+ Stat4Sample *pOld
+){
+ int nCol = pAccum->nCol;
+ int i;
+ assert( pNew->iCol==pOld->iCol );
+ for(i=pNew->iCol+1; i<nCol; i++){
+ if( pNew->anEq[i]>pOld->anEq[i] ) return 1;
+ if( pNew->anEq[i]<pOld->anEq[i] ) return 0;
+ }
+ if( pNew->iHash>pOld->iHash ) return 1;
+ return 0;
+}
+#endif
+
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
+/*
+** Return true if pNew is to be preferred over pOld.
+**
+** This function assumes that for each argument sample, the contents of
+** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid.
+*/
+static int sampleIsBetter(
+ Stat4Accum *pAccum,
+ Stat4Sample *pNew,
+ Stat4Sample *pOld
+){
+ tRowcnt nEqNew = pNew->anEq[pNew->iCol];
+ tRowcnt nEqOld = pOld->anEq[pOld->iCol];
+
+ assert( pOld->isPSample==0 && pNew->isPSample==0 );
+ assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) );
+
+ if( (nEqNew>nEqOld) ) return 1;
+#ifdef SQLITE_ENABLE_STAT4
+ if( nEqNew==nEqOld ){
+ if( pNew->iCol<pOld->iCol ) return 1;
+ return (pNew->iCol==pOld->iCol && sampleIsBetterPost(pAccum, pNew, pOld));
+ }
+ return 0;
+#else
+ return (nEqNew==nEqOld && pNew->iHash>pOld->iHash);
+#endif
+}
+
+/*
+** Copy the contents of sample *pNew into the p->a[] array. If necessary,
+** remove the least desirable sample from p->a[] to make room.
+*/
+static void sampleInsert(Stat4Accum *p, Stat4Sample *pNew, int nEqZero){
+ Stat4Sample *pSample = 0;
+ int i;
+
+ assert( IsStat4 || nEqZero==0 );
+
+#ifdef SQLITE_ENABLE_STAT4
+ if( pNew->isPSample==0 ){
+ Stat4Sample *pUpgrade = 0;
+ assert( pNew->anEq[pNew->iCol]>0 );
+
+ /* This sample is being added because the prefix that ends in column
+ ** iCol occurs many times in the table. However, if we have already
+ ** added a sample that shares this prefix, there is no need to add
+ ** this one. Instead, upgrade the priority of the highest priority
+ ** existing sample that shares this prefix. */
+ for(i=p->nSample-1; i>=0; i--){
+ Stat4Sample *pOld = &p->a[i];
+ if( pOld->anEq[pNew->iCol]==0 ){
+ if( pOld->isPSample ) return;
+ assert( pOld->iCol>pNew->iCol );
+ assert( sampleIsBetter(p, pNew, pOld) );
+ if( pUpgrade==0 || sampleIsBetter(p, pOld, pUpgrade) ){
+ pUpgrade = pOld;
+ }
+ }
+ }
+ if( pUpgrade ){
+ pUpgrade->iCol = pNew->iCol;
+ pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol];
+ goto find_new_min;
+ }
+ }
+#endif
+
+ /* If necessary, remove sample iMin to make room for the new sample. */
+ if( p->nSample>=p->mxSample ){
+ Stat4Sample *pMin = &p->a[p->iMin];
+ tRowcnt *anEq = pMin->anEq;
+ tRowcnt *anLt = pMin->anLt;
+ tRowcnt *anDLt = pMin->anDLt;
+ sampleClear(p->db, pMin);
+ memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1));
+ pSample = &p->a[p->nSample-1];
+ pSample->nRowid = 0;
+ pSample->anEq = anEq;
+ pSample->anDLt = anDLt;
+ pSample->anLt = anLt;
+ p->nSample = p->mxSample-1;
+ }
+
+ /* The "rows less-than" for the rowid column must be greater than that
+ ** for the last sample in the p->a[] array. Otherwise, the samples would
+ ** be out of order. */
+#ifdef SQLITE_ENABLE_STAT4
+ assert( p->nSample==0
+ || pNew->anLt[p->nCol-1] > p->a[p->nSample-1].anLt[p->nCol-1] );
+#endif
+
+ /* Insert the new sample */
+ pSample = &p->a[p->nSample];
+ sampleCopy(p, pSample, pNew);
+ p->nSample++;
+
+ /* Zero the first nEqZero entries in the anEq[] array. */
+ memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero);
+
+#ifdef SQLITE_ENABLE_STAT4
+ find_new_min:
+#endif
+ if( p->nSample>=p->mxSample ){
+ int iMin = -1;
+ for(i=0; i<p->mxSample; i++){
+ if( p->a[i].isPSample ) continue;
+ if( iMin<0 || sampleIsBetter(p, &p->a[iMin], &p->a[i]) ){
+ iMin = i;
+ }
+ }
+ assert( iMin>=0 );
+ p->iMin = iMin;
+ }
+}
+#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
+
+/*
+** Field iChng of the index being scanned has changed. So at this point
+** p->current contains a sample that reflects the previous row of the
+** index. The value of anEq[iChng] and subsequent anEq[] elements are
+** correct at this point.
+*/
+static void samplePushPrevious(Stat4Accum *p, int iChng){
+#ifdef SQLITE_ENABLE_STAT4
+ int i;
+
+ /* Check if any samples from the aBest[] array should be pushed
+ ** into IndexSample.a[] at this point. */
+ for(i=(p->nCol-2); i>=iChng; i--){
+ Stat4Sample *pBest = &p->aBest[i];
+ pBest->anEq[i] = p->current.anEq[i];
+ if( p->nSample<p->mxSample || sampleIsBetter(p, pBest, &p->a[p->iMin]) ){
+ sampleInsert(p, pBest, i);
+ }
+ }
+
+ /* Update the anEq[] fields of any samples already collected. */
+ for(i=p->nSample-1; i>=0; i--){
+ int j;
+ for(j=iChng; j<p->nCol; j++){
+ if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j];
+ }
+ }
+#endif
+
+#if defined(SQLITE_ENABLE_STAT3) && !defined(SQLITE_ENABLE_STAT4)
+ if( iChng==0 ){
+ tRowcnt nLt = p->current.anLt[0];
+ tRowcnt nEq = p->current.anEq[0];
+
+ /* Check if this is to be a periodic sample. If so, add it. */
+ if( (nLt/p->nPSample)!=(nLt+nEq)/p->nPSample ){
+ p->current.isPSample = 1;
+ sampleInsert(p, &p->current, 0);
+ p->current.isPSample = 0;
+ }else
+
+ /* Or if it is a non-periodic sample. Add it in this case too. */
+ if( p->nSample<p->mxSample
+ || sampleIsBetter(p, &p->current, &p->a[p->iMin])
+ ){
+ sampleInsert(p, &p->current, 0);
+ }
+ }
+#endif
+
+#ifndef SQLITE_ENABLE_STAT3_OR_STAT4
+ UNUSED_PARAMETER( p );
+ UNUSED_PARAMETER( iChng );
+#endif
+}
+
+/*
+** Implementation of the stat_push SQL function: stat_push(P,C,R)
+** Arguments:
+**
+** P Pointer to the Stat4Accum object created by stat_init()
+** C Index of left-most column to differ from previous row
+** R Rowid for the current row. Might be a key record for
+** WITHOUT ROWID tables.
+**
+** This SQL function always returns NULL. It's purpose it to accumulate
+** statistical data and/or samples in the Stat4Accum object about the
+** index being analyzed. The stat_get() SQL function will later be used to
+** extract relevant information for constructing the sqlite_statN tables.
+**
+** The R parameter is only used for STAT3 and STAT4
+*/
+static void statPush(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ int i;
+
+ /* The three function arguments */
+ Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]);
+ int iChng = sqlite3_value_int(argv[1]);
+
+ UNUSED_PARAMETER( argc );
+ UNUSED_PARAMETER( context );
+ assert( p->nCol>0 );
+ assert( iChng<p->nCol );
+
+ if( p->nRow==0 ){
+ /* This is the first call to this function. Do initialization. */
+ for(i=0; i<p->nCol; i++) p->current.anEq[i] = 1;
+ }else{
+ /* Second and subsequent calls get processed here */
+ samplePushPrevious(p, iChng);
+
+ /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply
+ ** to the current row of the index. */
+ for(i=0; i<iChng; i++){
+ p->current.anEq[i]++;
+ }
+ for(i=iChng; i<p->nCol; i++){
+ p->current.anDLt[i]++;
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
+ p->current.anLt[i] += p->current.anEq[i];
+#endif
+ p->current.anEq[i] = 1;
+ }
+ }
+ p->nRow++;
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
+ if( sqlite3_value_type(argv[2])==SQLITE_INTEGER ){
+ sampleSetRowidInt64(p->db, &p->current, sqlite3_value_int64(argv[2]));
+ }else{
+ sampleSetRowid(p->db, &p->current, sqlite3_value_bytes(argv[2]),
+ sqlite3_value_blob(argv[2]));
+ }
+ p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345;
+#endif
+
+#ifdef SQLITE_ENABLE_STAT4
+ {
+ tRowcnt nLt = p->current.anLt[p->nCol-1];
+
+ /* Check if this is to be a periodic sample. If so, add it. */
+ if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){
+ p->current.isPSample = 1;
+ p->current.iCol = 0;
+ sampleInsert(p, &p->current, p->nCol-1);
+ p->current.isPSample = 0;
+ }
+
+ /* Update the aBest[] array. */
+ for(i=0; i<(p->nCol-1); i++){
+ p->current.iCol = i;
+ if( i>=iChng || sampleIsBetterPost(p, &p->current, &p->aBest[i]) ){
+ sampleCopy(p, &p->aBest[i], &p->current);
+ }
+ }
+ }
+#endif
+}
+static const FuncDef statPushFuncdef = {
+ 2+IsStat34, /* nArg */
+ SQLITE_UTF8, /* funcFlags */
+ 0, /* pUserData */
+ 0, /* pNext */
+ statPush, /* xFunc */
+ 0, /* xStep */
+ 0, /* xFinalize */
+ "stat_push", /* zName */
+ 0, /* pHash */
+ 0 /* pDestructor */
+};
+
+#define STAT_GET_STAT1 0 /* "stat" column of stat1 table */
+#define STAT_GET_ROWID 1 /* "rowid" column of stat[34] entry */
+#define STAT_GET_NEQ 2 /* "neq" column of stat[34] entry */
+#define STAT_GET_NLT 3 /* "nlt" column of stat[34] entry */
+#define STAT_GET_NDLT 4 /* "ndlt" column of stat[34] entry */
+
+/*
+** Implementation of the stat_get(P,J) SQL function. This routine is
+** used to query statistical information that has been gathered into
+** the Stat4Accum object by prior calls to stat_push(). The P parameter
+** has type BLOB but it is really just a pointer to the Stat4Accum object.
+** The content to returned is determined by the parameter J
+** which is one of the STAT_GET_xxxx values defined above.
+**
+** If neither STAT3 nor STAT4 are enabled, then J is always
+** STAT_GET_STAT1 and is hence omitted and this routine becomes
+** a one-parameter function, stat_get(P), that always returns the
+** stat1 table entry information.
+*/
+static void statGet(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]);
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
+ /* STAT3 and STAT4 have a parameter on this routine. */
+ int eCall = sqlite3_value_int(argv[1]);
+ assert( argc==2 );
+ assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ
+ || eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT
+ || eCall==STAT_GET_NDLT
+ );
+ if( eCall==STAT_GET_STAT1 )
+#else
+ assert( argc==1 );
+#endif
+ {
+ /* Return the value to store in the "stat" column of the sqlite_stat1
+ ** table for this index.
+ **
+ ** The value is a string composed of a list of integers describing
+ ** the index. The first integer in the list is the total number of
+ ** entries in the index. There is one additional integer in the list
+ ** for each indexed column. This additional integer is an estimate of
+ ** the number of rows matched by a stabbing query on the index using
+ ** a key with the corresponding number of fields. In other words,
+ ** if the index is on columns (a,b) and the sqlite_stat1 value is
+ ** "100 10 2", then SQLite estimates that:
+ **
+ ** * the index contains 100 rows,
+ ** * "WHERE a=?" matches 10 rows, and
+ ** * "WHERE a=? AND b=?" matches 2 rows.
+ **
+ ** If D is the count of distinct values and K is the total number of
+ ** rows, then each estimate is computed as:
+ **
+ ** I = (K+D-1)/D
+ */
+ char *z;
+ int i;
+
+ char *zRet = sqlite3MallocZero( (p->nKeyCol+1)*25 );
+ if( zRet==0 ){
+ sqlite3_result_error_nomem(context);
+ return;
+ }
+
+ sqlite3_snprintf(24, zRet, "%llu", (u64)p->nRow);
+ z = zRet + sqlite3Strlen30(zRet);
+ for(i=0; i<p->nKeyCol; i++){
+ u64 nDistinct = p->current.anDLt[i] + 1;
+ u64 iVal = (p->nRow + nDistinct - 1) / nDistinct;
+ sqlite3_snprintf(24, z, " %llu", iVal);
+ z += sqlite3Strlen30(z);
+ assert( p->current.anEq[i] );
+ }
+ assert( z[0]=='\0' && z>zRet );
+
+ sqlite3_result_text(context, zRet, -1, sqlite3_free);
+ }
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
+ else if( eCall==STAT_GET_ROWID ){
+ if( p->iGet<0 ){
+ samplePushPrevious(p, 0);
+ p->iGet = 0;
+ }
+ if( p->iGet<p->nSample ){
+ Stat4Sample *pS = p->a + p->iGet;
+ if( pS->nRowid==0 ){
+ sqlite3_result_int64(context, pS->u.iRowid);
+ }else{
+ sqlite3_result_blob(context, pS->u.aRowid, pS->nRowid,
+ SQLITE_TRANSIENT);
+ }
+ }
+ }else{
+ tRowcnt *aCnt = 0;
+
+ assert( p->iGet<p->nSample );
+ switch( eCall ){
+ case STAT_GET_NEQ: aCnt = p->a[p->iGet].anEq; break;
+ case STAT_GET_NLT: aCnt = p->a[p->iGet].anLt; break;
+ default: {
+ aCnt = p->a[p->iGet].anDLt;
+ p->iGet++;
+ break;
+ }
+ }
+
+ if( IsStat3 ){
+ sqlite3_result_int64(context, (i64)aCnt[0]);
+ }else{
+ char *zRet = sqlite3MallocZero(p->nCol * 25);
+ if( zRet==0 ){
+ sqlite3_result_error_nomem(context);
+ }else{
+ int i;
+ char *z = zRet;
+ for(i=0; i<p->nCol; i++){
+ sqlite3_snprintf(24, z, "%llu ", (u64)aCnt[i]);
+ z += sqlite3Strlen30(z);
+ }
+ assert( z[0]=='\0' && z>zRet );
+ z[-1] = '\0';
+ sqlite3_result_text(context, zRet, -1, sqlite3_free);
+ }
+ }
}
+#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
+#ifndef SQLITE_DEBUG
+ UNUSED_PARAMETER( argc );
+#endif
+}
+static const FuncDef statGetFuncdef = {
+ 1+IsStat34, /* nArg */
+ SQLITE_UTF8, /* funcFlags */
+ 0, /* pUserData */
+ 0, /* pNext */
+ statGet, /* xFunc */
+ 0, /* xStep */
+ 0, /* xFinalize */
+ "stat_get", /* zName */
+ 0, /* pHash */
+ 0 /* pDestructor */
+};
+
+static void callStatGet(Vdbe *v, int regStat4, int iParam, int regOut){
+ assert( regOut!=regStat4 && regOut!=regStat4+1 );
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
+ sqlite3VdbeAddOp2(v, OP_Integer, iParam, regStat4+1);
+#elif SQLITE_DEBUG
+ assert( iParam==STAT_GET_STAT1 );
+#else
+ UNUSED_PARAMETER( iParam );
+#endif
+ sqlite3VdbeAddOp3(v, OP_Function, 0, regStat4, regOut);
+ sqlite3VdbeChangeP4(v, -1, (char*)&statGetFuncdef, P4_FUNCDEF);
+ sqlite3VdbeChangeP5(v, 1 + IsStat34);
}
/*
@@ -106,34 +957,31 @@ static void analyzeOneTable(
Table *pTab, /* Table whose indices are to be analyzed */
Index *pOnlyIdx, /* If not NULL, only analyze this one index */
int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */
- int iMem /* Available memory locations begin here */
+ int iMem, /* Available memory locations begin here */
+ int iTab /* Next available cursor */
){
sqlite3 *db = pParse->db; /* Database handle */
Index *pIdx; /* An index to being analyzed */
int iIdxCur; /* Cursor open on index being analyzed */
+ int iTabCur; /* Table cursor */
Vdbe *v; /* The virtual machine being built up */
int i; /* Loop counter */
- int topOfLoop; /* The top of the loop */
- int endOfLoop; /* The end of the loop */
int jZeroRows = -1; /* Jump from here if number of rows is zero */
int iDb; /* Index of database containing pTab */
+ u8 needTableCnt = 1; /* True to count the table */
+ int regNewRowid = iMem++; /* Rowid for the inserted record */
+ int regStat4 = iMem++; /* Register to hold Stat4Accum object */
+ int regChng = iMem++; /* Index of changed index field */
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
+ int regRowid = iMem++; /* Rowid argument passed to stat_push() */
+#endif
+ int regTemp = iMem++; /* Temporary use register */
int regTabname = iMem++; /* Register containing table name */
int regIdxname = iMem++; /* Register containing index name */
- int regSampleno = iMem++; /* Register containing next sample number */
- int regCol = iMem++; /* Content of a column analyzed table */
- int regRec = iMem++; /* Register holding completed record */
- int regTemp = iMem++; /* Temporary use register */
- int regRowid = iMem++; /* Rowid for the inserted record */
-
-#ifdef SQLITE_ENABLE_STAT2
- int addr = 0; /* Instruction address */
- int regTemp2 = iMem++; /* Temporary use register */
- int regSamplerecno = iMem++; /* Index of next sample to record */
- int regRecno = iMem++; /* Current sample index */
- int regLast = iMem++; /* Index of last sample to record */
- int regFirst = iMem++; /* Index of first sample to record */
-#endif
+ int regStat1 = iMem++; /* Value for the stat column of sqlite_stat1 */
+ int regPrev = iMem; /* MUST BE LAST (see below) */
+ pParse->nMem = MAX(pParse->nMem, iMem);
v = sqlite3GetVdbe(pParse);
if( v==0 || NEVER(pTab==0) ){
return;
@@ -157,214 +1005,276 @@ static void analyzeOneTable(
}
#endif
- /* Establish a read-lock on the table at the shared-cache level. */
+ /* Establish a read-lock on the table at the shared-cache level.
+ ** Open a read-only cursor on the table. Also allocate a cursor number
+ ** to use for scanning indexes (iIdxCur). No index cursor is opened at
+ ** this time though. */
sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
-
- iIdxCur = pParse->nTab++;
+ iTabCur = iTab++;
+ iIdxCur = iTab++;
+ pParse->nTab = MAX(pParse->nTab, iTab);
+ sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0);
+
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
- int nCol;
- KeyInfo *pKey;
+ int nCol; /* Number of columns in pIdx. "N" */
+ int addrRewind; /* Address of "OP_Rewind iIdxCur" */
+ int addrNextRow; /* Address of "next_row:" */
+ const char *zIdxName; /* Name of the index */
+ int nColTest; /* Number of columns to test for changes */
if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;
- nCol = pIdx->nColumn;
- pKey = sqlite3IndexKeyinfo(pParse, pIdx);
- if( iMem+1+(nCol*2)>pParse->nMem ){
- pParse->nMem = iMem+1+(nCol*2);
+ if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0;
+ if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIdx) ){
+ nCol = pIdx->nKeyCol;
+ zIdxName = pTab->zName;
+ nColTest = nCol - 1;
+ }else{
+ nCol = pIdx->nColumn;
+ zIdxName = pIdx->zName;
+ nColTest = pIdx->uniqNotNull ? pIdx->nKeyCol-1 : nCol-1;
}
- /* Open a cursor to the index to be analyzed. */
- assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
- sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb,
- (char *)pKey, P4_KEYINFO_HANDOFF);
- VdbeComment((v, "%s", pIdx->zName));
-
/* Populate the register containing the index name. */
- sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, pIdx->zName, 0);
+ sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, zIdxName, 0);
+ VdbeComment((v, "Analysis for %s.%s", pTab->zName, zIdxName));
-#ifdef SQLITE_ENABLE_STAT2
-
- /* If this iteration of the loop is generating code to analyze the
- ** first index in the pTab->pIndex list, then register regLast has
- ** not been populated. In this case populate it now. */
- if( pTab->pIndex==pIdx ){
- sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES, regSamplerecno);
- sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES*2-1, regTemp);
- sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES*2, regTemp2);
+ /*
+ ** Pseudo-code for loop that calls stat_push():
+ **
+ ** Rewind csr
+ ** if eof(csr) goto end_of_scan;
+ ** regChng = 0
+ ** goto chng_addr_0;
+ **
+ ** next_row:
+ ** regChng = 0
+ ** if( idx(0) != regPrev(0) ) goto chng_addr_0
+ ** regChng = 1
+ ** if( idx(1) != regPrev(1) ) goto chng_addr_1
+ ** ...
+ ** regChng = N
+ ** goto chng_addr_N
+ **
+ ** chng_addr_0:
+ ** regPrev(0) = idx(0)
+ ** chng_addr_1:
+ ** regPrev(1) = idx(1)
+ ** ...
+ **
+ ** endDistinctTest:
+ ** regRowid = idx(rowid)
+ ** stat_push(P, regChng, regRowid)
+ ** Next csr
+ ** if !eof(csr) goto next_row;
+ **
+ ** end_of_scan:
+ */
- sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regLast);
- sqlite3VdbeAddOp2(v, OP_Null, 0, regFirst);
- addr = sqlite3VdbeAddOp3(v, OP_Lt, regSamplerecno, 0, regLast);
- sqlite3VdbeAddOp3(v, OP_Divide, regTemp2, regLast, regFirst);
- sqlite3VdbeAddOp3(v, OP_Multiply, regLast, regTemp, regLast);
- sqlite3VdbeAddOp2(v, OP_AddImm, regLast, SQLITE_INDEX_SAMPLES*2-2);
- sqlite3VdbeAddOp3(v, OP_Divide, regTemp2, regLast, regLast);
- sqlite3VdbeJumpHere(v, addr);
- }
+ /* Make sure there are enough memory cells allocated to accommodate
+ ** the regPrev array and a trailing rowid (the rowid slot is required
+ ** when building a record to insert into the sample column of
+ ** the sqlite_stat4 table. */
+ pParse->nMem = MAX(pParse->nMem, regPrev+nColTest);
- /* Zero the regSampleno and regRecno registers. */
- sqlite3VdbeAddOp2(v, OP_Integer, 0, regSampleno);
- sqlite3VdbeAddOp2(v, OP_Integer, 0, regRecno);
- sqlite3VdbeAddOp2(v, OP_Copy, regFirst, regSamplerecno);
-#endif
+ /* Open a read-only cursor on the index being analyzed. */
+ assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
+ sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb);
+ sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
+ VdbeComment((v, "%s", pIdx->zName));
- /* The block of memory cells initialized here is used as follows.
+ /* Invoke the stat_init() function. The arguments are:
+ **
+ ** (1) the number of columns in the index including the rowid
+ ** (or for a WITHOUT ROWID table, the number of PK columns),
+ ** (2) the number of columns in the key without the rowid/pk
+ ** (3) the number of rows in the index,
**
- ** iMem:
- ** The total number of rows in the table.
**
- ** iMem+1 .. iMem+nCol:
- ** Number of distinct entries in index considering the
- ** left-most N columns only, where N is between 1 and nCol,
- ** inclusive.
+ ** The third argument is only used for STAT3 and STAT4
+ */
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
+ sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+3);
+#endif
+ sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat4+1);
+ sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regStat4+2);
+ sqlite3VdbeAddOp3(v, OP_Function, 0, regStat4+1, regStat4);
+ sqlite3VdbeChangeP4(v, -1, (char*)&statInitFuncdef, P4_FUNCDEF);
+ sqlite3VdbeChangeP5(v, 2+IsStat34);
+
+ /* Implementation of the following:
**
- ** iMem+nCol+1 .. Mem+2*nCol:
- ** Previous value of indexed columns, from left to right.
+ ** Rewind csr
+ ** if eof(csr) goto end_of_scan;
+ ** regChng = 0
+ ** goto next_push_0;
**
- ** Cells iMem through iMem+nCol are initialized to 0. The others are
- ** initialized to contain an SQL NULL.
*/
- for(i=0; i<=nCol; i++){
- sqlite3VdbeAddOp2(v, OP_Integer, 0, iMem+i);
- }
- for(i=0; i<nCol; i++){
- sqlite3VdbeAddOp2(v, OP_Null, 0, iMem+nCol+i+1);
- }
+ addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur);
+ VdbeCoverage(v);
+ sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng);
+ addrNextRow = sqlite3VdbeCurrentAddr(v);
- /* Start the analysis loop. This loop runs through all the entries in
- ** the index b-tree. */
- endOfLoop = sqlite3VdbeMakeLabel(v);
- sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop);
- topOfLoop = sqlite3VdbeCurrentAddr(v);
- sqlite3VdbeAddOp2(v, OP_AddImm, iMem, 1);
+ if( nColTest>0 ){
+ int endDistinctTest = sqlite3VdbeMakeLabel(v);
+ int *aGotoChng; /* Array of jump instruction addresses */
+ aGotoChng = sqlite3DbMallocRaw(db, sizeof(int)*nColTest);
+ if( aGotoChng==0 ) continue;
- for(i=0; i<nCol; i++){
- CollSeq *pColl;
- sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regCol);
- if( i==0 ){
-#ifdef SQLITE_ENABLE_STAT2
- /* Check if the record that cursor iIdxCur points to contains a
- ** value that should be stored in the sqlite_stat2 table. If so,
- ** store it. */
- int ne = sqlite3VdbeAddOp3(v, OP_Ne, regRecno, 0, regSamplerecno);
- assert( regTabname+1==regIdxname
- && regTabname+2==regSampleno
- && regTabname+3==regCol
- );
- sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
- sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 4, regRec, "aaab", 0);
- sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regRowid);
- sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regRec, regRowid);
-
- /* Calculate new values for regSamplerecno and regSampleno.
- **
- ** sampleno = sampleno + 1
- ** samplerecno = samplerecno+(remaining records)/(remaining samples)
- */
- sqlite3VdbeAddOp2(v, OP_AddImm, regSampleno, 1);
- sqlite3VdbeAddOp3(v, OP_Subtract, regRecno, regLast, regTemp);
- sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
- sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES, regTemp2);
- sqlite3VdbeAddOp3(v, OP_Subtract, regSampleno, regTemp2, regTemp2);
- sqlite3VdbeAddOp3(v, OP_Divide, regTemp2, regTemp, regTemp);
- sqlite3VdbeAddOp3(v, OP_Add, regSamplerecno, regTemp, regSamplerecno);
-
- sqlite3VdbeJumpHere(v, ne);
- sqlite3VdbeAddOp2(v, OP_AddImm, regRecno, 1);
-#endif
-
- /* Always record the very first row */
- sqlite3VdbeAddOp1(v, OP_IfNot, iMem+1);
+ /*
+ ** next_row:
+ ** regChng = 0
+ ** if( idx(0) != regPrev(0) ) goto chng_addr_0
+ ** regChng = 1
+ ** if( idx(1) != regPrev(1) ) goto chng_addr_1
+ ** ...
+ ** regChng = N
+ ** goto endDistinctTest
+ */
+ sqlite3VdbeAddOp0(v, OP_Goto);
+ addrNextRow = sqlite3VdbeCurrentAddr(v);
+ if( nColTest==1 && pIdx->nKeyCol==1 && IsUniqueIndex(pIdx) ){
+ /* For a single-column UNIQUE index, once we have found a non-NULL
+ ** row, we know that all the rest will be distinct, so skip
+ ** subsequent distinctness tests. */
+ sqlite3VdbeAddOp2(v, OP_NotNull, regPrev, endDistinctTest);
+ VdbeCoverage(v);
}
- assert( pIdx->azColl!=0 );
- assert( pIdx->azColl[i]!=0 );
- pColl = sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
- sqlite3VdbeAddOp4(v, OP_Ne, regCol, 0, iMem+nCol+i+1,
- (char*)pColl, P4_COLLSEQ);
- sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
- }
- if( db->mallocFailed ){
- /* If a malloc failure has occurred, then the result of the expression
- ** passed as the second argument to the call to sqlite3VdbeJumpHere()
- ** below may be negative. Which causes an assert() to fail (or an
- ** out-of-bounds write if SQLITE_DEBUG is not defined). */
- return;
+ for(i=0; i<nColTest; i++){
+ char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
+ sqlite3VdbeAddOp2(v, OP_Integer, i, regChng);
+ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp);
+ aGotoChng[i] =
+ sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ);
+ sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
+ VdbeCoverage(v);
+ }
+ sqlite3VdbeAddOp2(v, OP_Integer, nColTest, regChng);
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, endDistinctTest);
+
+
+ /*
+ ** chng_addr_0:
+ ** regPrev(0) = idx(0)
+ ** chng_addr_1:
+ ** regPrev(1) = idx(1)
+ ** ...
+ */
+ sqlite3VdbeJumpHere(v, addrNextRow-1);
+ for(i=0; i<nColTest; i++){
+ sqlite3VdbeJumpHere(v, aGotoChng[i]);
+ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i);
+ }
+ sqlite3VdbeResolveLabel(v, endDistinctTest);
+ sqlite3DbFree(db, aGotoChng);
}
- sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop);
- for(i=0; i<nCol; i++){
- int addr2 = sqlite3VdbeCurrentAddr(v) - (nCol*2);
- if( i==0 ){
- sqlite3VdbeJumpHere(v, addr2-1); /* Set jump dest for the OP_IfNot */
+
+ /*
+ ** chng_addr_N:
+ ** regRowid = idx(rowid) // STAT34 only
+ ** stat_push(P, regChng, regRowid) // 3rd parameter STAT34 only
+ ** Next csr
+ ** if !eof(csr) goto next_row;
+ */
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
+ assert( regRowid==(regStat4+2) );
+ if( HasRowid(pTab) ){
+ sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, regRowid);
+ }else{
+ Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
+ int j, k, regKey;
+ regKey = sqlite3GetTempRange(pParse, pPk->nKeyCol);
+ for(j=0; j<pPk->nKeyCol; j++){
+ k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
+ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, regKey+j);
+ VdbeComment((v, "%s", pTab->aCol[pPk->aiColumn[j]].zName));
}
- sqlite3VdbeJumpHere(v, addr2); /* Set jump dest for the OP_Ne */
- sqlite3VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1);
- sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1);
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid);
+ sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol);
}
+#endif
+ assert( regChng==(regStat4+1) );
+ sqlite3VdbeAddOp3(v, OP_Function, 1, regStat4, regTemp);
+ sqlite3VdbeChangeP4(v, -1, (char*)&statPushFuncdef, P4_FUNCDEF);
+ sqlite3VdbeChangeP5(v, 2+IsStat34);
+ sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v);
- /* End of the analysis loop. */
- sqlite3VdbeResolveLabel(v, endOfLoop);
- sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop);
- sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);
+ /* Add the entry to the stat1 table. */
+ callStatGet(v, regStat4, STAT_GET_STAT1, regStat1);
+ assert( "BBB"[0]==SQLITE_AFF_TEXT );
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
+ sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
- /* Store the results in sqlite_stat1.
- **
- ** The result is a single row of the sqlite_stat1 table. The first
- ** two columns are the names of the table and index. The third column
- ** is a string composed of a list of integer statistics about the
- ** index. The first integer in the list is the total number of entries
- ** in the index. There is one additional integer in the list for each
- ** column of the table. This additional integer is a guess of how many
- ** rows of the table the index will select. If D is the count of distinct
- ** values and K is the total number of rows, then the integer is computed
- ** as:
- **
- ** I = (K+D-1)/D
- **
- ** If K==0 then no entry is made into the sqlite_stat1 table.
- ** If K>0 then it is always the case the D>0 so division by zero
- ** is never possible.
- */
- sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regSampleno);
- if( jZeroRows<0 ){
- jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, iMem);
+ /* Add the entries to the stat3 or stat4 table. */
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
+ {
+ int regEq = regStat1;
+ int regLt = regStat1+1;
+ int regDLt = regStat1+2;
+ int regSample = regStat1+3;
+ int regCol = regStat1+4;
+ int regSampleRowid = regCol + nCol;
+ int addrNext;
+ int addrIsNull;
+ u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound;
+
+ pParse->nMem = MAX(pParse->nMem, regCol+nCol);
+
+ addrNext = sqlite3VdbeCurrentAddr(v);
+ callStatGet(v, regStat4, STAT_GET_ROWID, regSampleRowid);
+ addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid);
+ VdbeCoverage(v);
+ callStatGet(v, regStat4, STAT_GET_NEQ, regEq);
+ callStatGet(v, regStat4, STAT_GET_NLT, regLt);
+ callStatGet(v, regStat4, STAT_GET_NDLT, regDLt);
+ sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0);
+ /* We know that the regSampleRowid row exists because it was read by
+ ** the previous loop. Thus the not-found jump of seekOp will never
+ ** be taken */
+ VdbeCoverageNeverTaken(v);
+#ifdef SQLITE_ENABLE_STAT3
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur,
+ pIdx->aiColumn[0], regSample);
+#else
+ for(i=0; i<nCol; i++){
+ i16 iCol = pIdx->aiColumn[i];
+ sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, iCol, regCol+i);
+ }
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol, regSample);
+#endif
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regTabname, 6, regTemp);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid);
+ sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid);
+ sqlite3VdbeAddOp2(v, OP_Goto, 1, addrNext); /* P1==1 for end-of-loop */
+ sqlite3VdbeJumpHere(v, addrIsNull);
}
- for(i=0; i<nCol; i++){
- sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0);
- sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regSampleno, regSampleno);
- sqlite3VdbeAddOp3(v, OP_Add, iMem, iMem+i+1, regTemp);
- sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
- sqlite3VdbeAddOp3(v, OP_Divide, iMem+i+1, regTemp, regTemp);
- sqlite3VdbeAddOp1(v, OP_ToInt, regTemp);
- sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regSampleno, regSampleno);
- }
- sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0);
- sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regRowid);
- sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regRowid);
- sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
+#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
+
+ /* End of analysis */
+ sqlite3VdbeJumpHere(v, addrRewind);
}
- /* If the table has no indices, create a single sqlite_stat1 entry
- ** containing NULL as the index name and the row count as the content.
+
+ /* Create a single sqlite_stat1 entry containing NULL as the index
+ ** name and the row count as the content.
*/
- if( pTab->pIndex==0 ){
- sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pTab->tnum, iDb);
+ if( pOnlyIdx==0 && needTableCnt ){
VdbeComment((v, "%s", pTab->zName));
- sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regSampleno);
- sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);
- jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regSampleno);
- }else{
+ sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1);
+ jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v);
+ sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
+ assert( "BBB"[0]==SQLITE_AFF_TEXT );
+ sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0);
+ sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
+ sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
+ sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
sqlite3VdbeJumpHere(v, jZeroRows);
- jZeroRows = sqlite3VdbeAddOp0(v, OP_Goto);
- }
- sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
- sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0);
- sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regRowid);
- sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regRowid);
- sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
- if( pParse->nMem<regRec ) pParse->nMem = regRec;
- sqlite3VdbeJumpHere(v, jZeroRows);
+ }
}
+
/*
** Generate code that will cause the most recent index analysis to
** be loaded into internal hash tables where is can be used.
@@ -385,16 +1295,18 @@ static void analyzeDatabase(Parse *pParse, int iDb){
HashElem *k;
int iStatCur;
int iMem;
+ int iTab;
sqlite3BeginWriteOperation(pParse, 0, iDb);
iStatCur = pParse->nTab;
- pParse->nTab += 2;
+ pParse->nTab += 3;
openStatTable(pParse, iDb, iStatCur, 0, 0);
iMem = pParse->nMem+1;
+ iTab = pParse->nTab;
assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
Table *pTab = (Table*)sqliteHashData(k);
- analyzeOneTable(pParse, pTab, 0, iStatCur, iMem);
+ analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab);
}
loadAnalysis(pParse, iDb);
}
@@ -413,13 +1325,13 @@ static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
sqlite3BeginWriteOperation(pParse, 0, iDb);
iStatCur = pParse->nTab;
- pParse->nTab += 2;
+ pParse->nTab += 3;
if( pOnlyIdx ){
openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx");
}else{
openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl");
}
- analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur, pParse->nMem+1);
+ analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab);
loadAnalysis(pParse, iDb);
}
@@ -443,6 +1355,7 @@ void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
Table *pTab;
Index *pIdx;
Token *pTableName;
+ Vdbe *v;
/* Read the database schema. If an error occurs, leave an error message
** and code in pParse and return NULL. */
@@ -490,6 +1403,8 @@ void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
}
}
}
+ v = sqlite3GetVdbe(pParse);
+ if( v ) sqlite3VdbeAddOp0(v, OP_Expire);
}
/*
@@ -503,6 +1418,66 @@ struct analysisInfo {
};
/*
+** The first argument points to a nul-terminated string containing a
+** list of space separated integers. Read the first nOut of these into
+** the array aOut[].
+*/
+static void decodeIntArray(
+ char *zIntArray, /* String containing int array to decode */
+ int nOut, /* Number of slots in aOut[] */
+ tRowcnt *aOut, /* Store integers here */
+ LogEst *aLog, /* Or, if aOut==0, here */
+ Index *pIndex /* Handle extra flags for this index, if not NULL */
+){
+ char *z = zIntArray;
+ int c;
+ int i;
+ tRowcnt v;
+
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
+ if( z==0 ) z = "";
+#else
+ assert( z!=0 );
+#endif
+ for(i=0; *z && i<nOut; i++){
+ v = 0;
+ while( (c=z[0])>='0' && c<='9' ){
+ v = v*10 + c - '0';
+ z++;
+ }
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
+ if( aOut ) aOut[i] = v;
+ if( aLog ) aLog[i] = sqlite3LogEst(v);
+#else
+ assert( aOut==0 );
+ UNUSED_PARAMETER(aOut);
+ assert( aLog!=0 );
+ aLog[i] = sqlite3LogEst(v);
+#endif
+ if( *z==' ' ) z++;
+ }
+#ifndef SQLITE_ENABLE_STAT3_OR_STAT4
+ assert( pIndex!=0 );
+#else
+ if( pIndex )
+#endif
+ while( z[0] ){
+ if( sqlite3_strglob("unordered*", z)==0 ){
+ pIndex->bUnordered = 1;
+ }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){
+ pIndex->szIdxRow = sqlite3LogEst(sqlite3Atoi(z+3));
+ }
+#ifdef SQLITE_ENABLE_COSTMULT
+ else if( sqlite3_strglob("costmult=[0-9]*",z)==0 ){
+ pIndex->pTable->costMult = sqlite3LogEst(sqlite3Atoi(z+9));
+ }
+#endif
+ while( z[0]!=0 && z[0]!=' ' ) z++;
+ while( z[0]==' ' ) z++;
+ }
+}
+
+/*
** This callback is invoked once for each index when reading the
** sqlite_stat1 table.
**
@@ -517,8 +1492,6 @@ static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){
analysisInfo *pInfo = (analysisInfo*)pData;
Index *pIndex;
Table *pTable;
- int i, c, n;
- unsigned int v;
const char *z;
assert( argc==3 );
@@ -531,28 +1504,38 @@ static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){
if( pTable==0 ){
return 0;
}
- if( argv[1] ){
- pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase);
- }else{
+ if( argv[1]==0 ){
pIndex = 0;
+ }else if( sqlite3_stricmp(argv[0],argv[1])==0 ){
+ pIndex = sqlite3PrimaryKeyIndex(pTable);
+ }else{
+ pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase);
}
- n = pIndex ? pIndex->nColumn : 0;
z = argv[2];
- for(i=0; *z && i<=n; i++){
- v = 0;
- while( (c=z[0])>='0' && c<='9' ){
- v = v*10 + c - '0';
- z++;
- }
- if( i==0 ) pTable->nRowEst = v;
- if( pIndex==0 ) break;
- pIndex->aiRowEst[i] = v;
- if( *z==' ' ) z++;
- if( strcmp(z, "unordered")==0 ){
- pIndex->bUnordered = 1;
- break;
- }
+
+ if( pIndex ){
+ int nCol = pIndex->nKeyCol+1;
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
+ tRowcnt * const aiRowEst = pIndex->aiRowEst = (tRowcnt*)sqlite3MallocZero(
+ sizeof(tRowcnt) * nCol
+ );
+ if( aiRowEst==0 ) pInfo->db->mallocFailed = 1;
+#else
+ tRowcnt * const aiRowEst = 0;
+#endif
+ pIndex->bUnordered = 0;
+ decodeIntArray((char*)z, nCol, aiRowEst, pIndex->aiRowLogEst, pIndex);
+ if( pIndex->pPartIdxWhere==0 ) pTable->nRowLogEst = pIndex->aiRowLogEst[0];
+ }else{
+ Index fakeIdx;
+ fakeIdx.szIdxRow = pTable->szTabRow;
+#ifdef SQLITE_ENABLE_COSTMULT
+ fakeIdx.pTable = pTable;
+#endif
+ decodeIntArray((char*)z, 1, 0, &pTable->nRowLogEst, &fakeIdx);
+ pTable->szTabRow = fakeIdx.szIdxRow;
}
+
return 0;
}
@@ -561,36 +1544,275 @@ static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){
** and its contents.
*/
void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){
-#ifdef SQLITE_ENABLE_STAT2
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
if( pIdx->aSample ){
int j;
- for(j=0; j<SQLITE_INDEX_SAMPLES; j++){
+ for(j=0; j<pIdx->nSample; j++){
IndexSample *p = &pIdx->aSample[j];
- if( p->eType==SQLITE_TEXT || p->eType==SQLITE_BLOB ){
- sqlite3DbFree(db, p->u.z);
- }
+ sqlite3DbFree(db, p->p);
}
sqlite3DbFree(db, pIdx->aSample);
}
+ if( db && db->pnBytesFreed==0 ){
+ pIdx->nSample = 0;
+ pIdx->aSample = 0;
+ }
#else
UNUSED_PARAMETER(db);
UNUSED_PARAMETER(pIdx);
-#endif
+#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
+}
+
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
+/*
+** Populate the pIdx->aAvgEq[] array based on the samples currently
+** stored in pIdx->aSample[].
+*/
+static void initAvgEq(Index *pIdx){
+ if( pIdx ){
+ IndexSample *aSample = pIdx->aSample;
+ IndexSample *pFinal = &aSample[pIdx->nSample-1];
+ int iCol;
+ int nCol = 1;
+ if( pIdx->nSampleCol>1 ){
+ /* If this is stat4 data, then calculate aAvgEq[] values for all
+ ** sample columns except the last. The last is always set to 1, as
+ ** once the trailing PK fields are considered all index keys are
+ ** unique. */
+ nCol = pIdx->nSampleCol-1;
+ pIdx->aAvgEq[nCol] = 1;
+ }
+ for(iCol=0; iCol<nCol; iCol++){
+ int nSample = pIdx->nSample;
+ int i; /* Used to iterate through samples */
+ tRowcnt sumEq = 0; /* Sum of the nEq values */
+ tRowcnt avgEq = 0;
+ tRowcnt nRow; /* Number of rows in index */
+ i64 nSum100 = 0; /* Number of terms contributing to sumEq */
+ i64 nDist100; /* Number of distinct values in index */
+
+ if( !pIdx->aiRowEst || iCol>=pIdx->nKeyCol || pIdx->aiRowEst[iCol+1]==0 ){
+ nRow = pFinal->anLt[iCol];
+ nDist100 = (i64)100 * pFinal->anDLt[iCol];
+ nSample--;
+ }else{
+ nRow = pIdx->aiRowEst[0];
+ nDist100 = ((i64)100 * pIdx->aiRowEst[0]) / pIdx->aiRowEst[iCol+1];
+ }
+
+ /* Set nSum to the number of distinct (iCol+1) field prefixes that
+ ** occur in the stat4 table for this index. Set sumEq to the sum of
+ ** the nEq values for column iCol for the same set (adding the value
+ ** only once where there exist duplicate prefixes). */
+ for(i=0; i<nSample; i++){
+ if( i==(pIdx->nSample-1)
+ || aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol]
+ ){
+ sumEq += aSample[i].anEq[iCol];
+ nSum100 += 100;
+ }
+ }
+
+ if( nDist100>nSum100 ){
+ avgEq = ((i64)100 * (nRow - sumEq))/(nDist100 - nSum100);
+ }
+ if( avgEq==0 ) avgEq = 1;
+ pIdx->aAvgEq[iCol] = avgEq;
+ }
+ }
}
/*
-** Load the content of the sqlite_stat1 and sqlite_stat2 tables. The
+** Look up an index by name. Or, if the name of a WITHOUT ROWID table
+** is supplied instead, find the PRIMARY KEY index for that table.
+*/
+static Index *findIndexOrPrimaryKey(
+ sqlite3 *db,
+ const char *zName,
+ const char *zDb
+){
+ Index *pIdx = sqlite3FindIndex(db, zName, zDb);
+ if( pIdx==0 ){
+ Table *pTab = sqlite3FindTable(db, zName, zDb);
+ if( pTab && !HasRowid(pTab) ) pIdx = sqlite3PrimaryKeyIndex(pTab);
+ }
+ return pIdx;
+}
+
+/*
+** Load the content from either the sqlite_stat4 or sqlite_stat3 table
+** into the relevant Index.aSample[] arrays.
+**
+** Arguments zSql1 and zSql2 must point to SQL statements that return
+** data equivalent to the following (statements are different for stat3,
+** see the caller of this function for details):
+**
+** zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx
+** zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4
+**
+** where %Q is replaced with the database name before the SQL is executed.
+*/
+static int loadStatTbl(
+ sqlite3 *db, /* Database handle */
+ int bStat3, /* Assume single column records only */
+ const char *zSql1, /* SQL statement 1 (see above) */
+ const char *zSql2, /* SQL statement 2 (see above) */
+ const char *zDb /* Database name (e.g. "main") */
+){
+ int rc; /* Result codes from subroutines */
+ sqlite3_stmt *pStmt = 0; /* An SQL statement being run */
+ char *zSql; /* Text of the SQL statement */
+ Index *pPrevIdx = 0; /* Previous index in the loop */
+ IndexSample *pSample; /* A slot in pIdx->aSample[] */
+
+ assert( db->lookaside.bEnabled==0 );
+ zSql = sqlite3MPrintf(db, zSql1, zDb);
+ if( !zSql ){
+ return SQLITE_NOMEM;
+ }
+ rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
+ sqlite3DbFree(db, zSql);
+ if( rc ) return rc;
+
+ while( sqlite3_step(pStmt)==SQLITE_ROW ){
+ int nIdxCol = 1; /* Number of columns in stat4 records */
+
+ char *zIndex; /* Index name */
+ Index *pIdx; /* Pointer to the index object */
+ int nSample; /* Number of samples */
+ int nByte; /* Bytes of space required */
+ int i; /* Bytes of space required */
+ tRowcnt *pSpace;
+
+ zIndex = (char *)sqlite3_column_text(pStmt, 0);
+ if( zIndex==0 ) continue;
+ nSample = sqlite3_column_int(pStmt, 1);
+ pIdx = findIndexOrPrimaryKey(db, zIndex, zDb);
+ assert( pIdx==0 || bStat3 || pIdx->nSample==0 );
+ /* Index.nSample is non-zero at this point if data has already been
+ ** loaded from the stat4 table. In this case ignore stat3 data. */
+ if( pIdx==0 || pIdx->nSample ) continue;
+ if( bStat3==0 ){
+ assert( !HasRowid(pIdx->pTable) || pIdx->nColumn==pIdx->nKeyCol+1 );
+ if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){
+ nIdxCol = pIdx->nKeyCol;
+ }else{
+ nIdxCol = pIdx->nColumn;
+ }
+ }
+ pIdx->nSampleCol = nIdxCol;
+ nByte = sizeof(IndexSample) * nSample;
+ nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample;
+ nByte += nIdxCol * sizeof(tRowcnt); /* Space for Index.aAvgEq[] */
+
+ pIdx->aSample = sqlite3DbMallocZero(db, nByte);
+ if( pIdx->aSample==0 ){
+ sqlite3_finalize(pStmt);
+ return SQLITE_NOMEM;
+ }
+ pSpace = (tRowcnt*)&pIdx->aSample[nSample];
+ pIdx->aAvgEq = pSpace; pSpace += nIdxCol;
+ for(i=0; i<nSample; i++){
+ pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol;
+ pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol;
+ pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol;
+ }
+ assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) );
+ }
+ rc = sqlite3_finalize(pStmt);
+ if( rc ) return rc;
+
+ zSql = sqlite3MPrintf(db, zSql2, zDb);
+ if( !zSql ){
+ return SQLITE_NOMEM;
+ }
+ rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
+ sqlite3DbFree(db, zSql);
+ if( rc ) return rc;
+
+ while( sqlite3_step(pStmt)==SQLITE_ROW ){
+ char *zIndex; /* Index name */
+ Index *pIdx; /* Pointer to the index object */
+ int nCol = 1; /* Number of columns in index */
+
+ zIndex = (char *)sqlite3_column_text(pStmt, 0);
+ if( zIndex==0 ) continue;
+ pIdx = findIndexOrPrimaryKey(db, zIndex, zDb);
+ if( pIdx==0 ) continue;
+ /* This next condition is true if data has already been loaded from
+ ** the sqlite_stat4 table. In this case ignore stat3 data. */
+ nCol = pIdx->nSampleCol;
+ if( bStat3 && nCol>1 ) continue;
+ if( pIdx!=pPrevIdx ){
+ initAvgEq(pPrevIdx);
+ pPrevIdx = pIdx;
+ }
+ pSample = &pIdx->aSample[pIdx->nSample];
+ decodeIntArray((char*)sqlite3_column_text(pStmt,1),nCol,pSample->anEq,0,0);
+ decodeIntArray((char*)sqlite3_column_text(pStmt,2),nCol,pSample->anLt,0,0);
+ decodeIntArray((char*)sqlite3_column_text(pStmt,3),nCol,pSample->anDLt,0,0);
+
+ /* Take a copy of the sample. Add two 0x00 bytes the end of the buffer.
+ ** This is in case the sample record is corrupted. In that case, the
+ ** sqlite3VdbeRecordCompare() may read up to two varints past the
+ ** end of the allocated buffer before it realizes it is dealing with
+ ** a corrupt record. Adding the two 0x00 bytes prevents this from causing
+ ** a buffer overread. */
+ pSample->n = sqlite3_column_bytes(pStmt, 4);
+ pSample->p = sqlite3DbMallocZero(db, pSample->n + 2);
+ if( pSample->p==0 ){
+ sqlite3_finalize(pStmt);
+ return SQLITE_NOMEM;
+ }
+ memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n);
+ pIdx->nSample++;
+ }
+ rc = sqlite3_finalize(pStmt);
+ if( rc==SQLITE_OK ) initAvgEq(pPrevIdx);
+ return rc;
+}
+
+/*
+** Load content from the sqlite_stat4 and sqlite_stat3 tables into
+** the Index.aSample[] arrays of all indices.
+*/
+static int loadStat4(sqlite3 *db, const char *zDb){
+ int rc = SQLITE_OK; /* Result codes from subroutines */
+
+ assert( db->lookaside.bEnabled==0 );
+ if( sqlite3FindTable(db, "sqlite_stat4", zDb) ){
+ rc = loadStatTbl(db, 0,
+ "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx",
+ "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4",
+ zDb
+ );
+ }
+
+ if( rc==SQLITE_OK && sqlite3FindTable(db, "sqlite_stat3", zDb) ){
+ rc = loadStatTbl(db, 1,
+ "SELECT idx,count(*) FROM %Q.sqlite_stat3 GROUP BY idx",
+ "SELECT idx,neq,nlt,ndlt,sqlite_record(sample) FROM %Q.sqlite_stat3",
+ zDb
+ );
+ }
+
+ return rc;
+}
+#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
+
+/*
+** Load the content of the sqlite_stat1 and sqlite_stat3/4 tables. The
** contents of sqlite_stat1 are used to populate the Index.aiRowEst[]
-** arrays. The contents of sqlite_stat2 are used to populate the
+** arrays. The contents of sqlite_stat3/4 are used to populate the
** Index.aSample[] arrays.
**
** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR
-** is returned. In this case, even if SQLITE_ENABLE_STAT2 was defined
-** during compilation and the sqlite_stat2 table is present, no data is
+** is returned. In this case, even if SQLITE_ENABLE_STAT3/4 was defined
+** during compilation and the sqlite_stat3/4 table is present, no data is
** read from it.
**
-** If SQLITE_ENABLE_STAT2 was defined during compilation and the
-** sqlite_stat2 table is not present in the database, SQLITE_ERROR is
+** If SQLITE_ENABLE_STAT3/4 was defined during compilation and the
+** sqlite_stat4 table is not present in the database, SQLITE_ERROR is
** returned. However, in this case, data is read from the sqlite_stat1
** table (if it is present) before returning.
**
@@ -612,8 +1834,10 @@ int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
Index *pIdx = sqliteHashData(i);
sqlite3DefaultRowEst(pIdx);
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
sqlite3DeleteIndexSamples(db, pIdx);
pIdx->aSample = 0;
+#endif
}
/* Check to make sure the sqlite_stat1 table exists */
@@ -625,7 +1849,7 @@ int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
/* Load new statistics out of the sqlite_stat1 table */
zSql = sqlite3MPrintf(db,
- "SELECT tbl, idx, stat FROM %Q.sqlite_stat1", sInfo.zDatabase);
+ "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase);
if( zSql==0 ){
rc = SQLITE_NOMEM;
}else{
@@ -634,78 +1858,18 @@ int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
}
- /* Load the statistics from the sqlite_stat2 table. */
-#ifdef SQLITE_ENABLE_STAT2
- if( rc==SQLITE_OK && !sqlite3FindTable(db, "sqlite_stat2", sInfo.zDatabase) ){
- rc = SQLITE_ERROR;
- }
+ /* Load the statistics from the sqlite_stat4 table. */
+#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
if( rc==SQLITE_OK ){
- sqlite3_stmt *pStmt = 0;
-
- zSql = sqlite3MPrintf(db,
- "SELECT idx,sampleno,sample FROM %Q.sqlite_stat2", sInfo.zDatabase);
- if( !zSql ){
- rc = SQLITE_NOMEM;
- }else{
- rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
- sqlite3DbFree(db, zSql);
- }
-
- if( rc==SQLITE_OK ){
- while( sqlite3_step(pStmt)==SQLITE_ROW ){
- char *zIndex; /* Index name */
- Index *pIdx; /* Pointer to the index object */
-
- zIndex = (char *)sqlite3_column_text(pStmt, 0);
- pIdx = zIndex ? sqlite3FindIndex(db, zIndex, sInfo.zDatabase) : 0;
- if( pIdx ){
- int iSample = sqlite3_column_int(pStmt, 1);
- if( iSample<SQLITE_INDEX_SAMPLES && iSample>=0 ){
- int eType = sqlite3_column_type(pStmt, 2);
-
- if( pIdx->aSample==0 ){
- static const int sz = sizeof(IndexSample)*SQLITE_INDEX_SAMPLES;
- pIdx->aSample = (IndexSample *)sqlite3DbMallocRaw(0, sz);
- if( pIdx->aSample==0 ){
- db->mallocFailed = 1;
- break;
- }
- memset(pIdx->aSample, 0, sz);
- }
-
- assert( pIdx->aSample );
- {
- IndexSample *pSample = &pIdx->aSample[iSample];
- pSample->eType = (u8)eType;
- if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
- pSample->u.r = sqlite3_column_double(pStmt, 2);
- }else if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){
- const char *z = (const char *)(
- (eType==SQLITE_BLOB) ?
- sqlite3_column_blob(pStmt, 2):
- sqlite3_column_text(pStmt, 2)
- );
- int n = sqlite3_column_bytes(pStmt, 2);
- if( n>24 ){
- n = 24;
- }
- pSample->nByte = (u8)n;
- if( n < 1){
- pSample->u.z = 0;
- }else{
- pSample->u.z = sqlite3DbStrNDup(0, z, n);
- if( pSample->u.z==0 ){
- db->mallocFailed = 1;
- break;
- }
- }
- }
- }
- }
- }
- }
- rc = sqlite3_finalize(pStmt);
- }
+ int lookasideEnabled = db->lookaside.bEnabled;
+ db->lookaside.bEnabled = 0;
+ rc = loadStat4(db, sInfo.zDatabase);
+ db->lookaside.bEnabled = lookasideEnabled;
+ }
+ for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
+ Index *pIdx = sqliteHashData(i);
+ sqlite3_free(pIdx->aiRowEst);
+ pIdx->aiRowEst = 0;
}
#endif
« no previous file with comments | « third_party/sqlite/src/src/alter.c ('k') | third_party/sqlite/src/src/attach.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698