Index: third_party/sqlite/sqlite-src-3080704/ext/fts3/fts3_expr.c |
diff --git a/third_party/sqlite/sqlite-src-3080704/ext/fts3/fts3_expr.c b/third_party/sqlite/sqlite-src-3080704/ext/fts3/fts3_expr.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..2ba786ce8092147b9b371b26929dda6f167ef3be |
--- /dev/null |
+++ b/third_party/sqlite/sqlite-src-3080704/ext/fts3/fts3_expr.c |
@@ -0,0 +1,1283 @@ |
+/* |
+** 2008 Nov 28 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+****************************************************************************** |
+** |
+** This module contains code that implements a parser for fts3 query strings |
+** (the right-hand argument to the MATCH operator). Because the supported |
+** syntax is relatively simple, the whole tokenizer/parser system is |
+** hand-coded. |
+*/ |
+#include "fts3Int.h" |
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) |
+ |
+/* |
+** By default, this module parses the legacy syntax that has been |
+** traditionally used by fts3. Or, if SQLITE_ENABLE_FTS3_PARENTHESIS |
+** is defined, then it uses the new syntax. The differences between |
+** the new and the old syntaxes are: |
+** |
+** a) The new syntax supports parenthesis. The old does not. |
+** |
+** b) The new syntax supports the AND and NOT operators. The old does not. |
+** |
+** c) The old syntax supports the "-" token qualifier. This is not |
+** supported by the new syntax (it is replaced by the NOT operator). |
+** |
+** d) When using the old syntax, the OR operator has a greater precedence |
+** than an implicit AND. When using the new, both implicity and explicit |
+** AND operators have a higher precedence than OR. |
+** |
+** If compiled with SQLITE_TEST defined, then this module exports the |
+** symbol "int sqlite3_fts3_enable_parentheses". Setting this variable |
+** to zero causes the module to use the old syntax. If it is set to |
+** non-zero the new syntax is activated. This is so both syntaxes can |
+** be tested using a single build of testfixture. |
+** |
+** The following describes the syntax supported by the fts3 MATCH |
+** operator in a similar format to that used by the lemon parser |
+** generator. This module does not use actually lemon, it uses a |
+** custom parser. |
+** |
+** query ::= andexpr (OR andexpr)*. |
+** |
+** andexpr ::= notexpr (AND? notexpr)*. |
+** |
+** notexpr ::= nearexpr (NOT nearexpr|-TOKEN)*. |
+** notexpr ::= LP query RP. |
+** |
+** nearexpr ::= phrase (NEAR distance_opt nearexpr)*. |
+** |
+** distance_opt ::= . |
+** distance_opt ::= / INTEGER. |
+** |
+** phrase ::= TOKEN. |
+** phrase ::= COLUMN:TOKEN. |
+** phrase ::= "TOKEN TOKEN TOKEN...". |
+*/ |
+ |
+#ifdef SQLITE_TEST |
+int sqlite3_fts3_enable_parentheses = 0; |
+#else |
+# ifdef SQLITE_ENABLE_FTS3_PARENTHESIS |
+# define sqlite3_fts3_enable_parentheses 1 |
+# else |
+# define sqlite3_fts3_enable_parentheses 0 |
+# endif |
+#endif |
+ |
+/* |
+** Default span for NEAR operators. |
+*/ |
+#define SQLITE_FTS3_DEFAULT_NEAR_PARAM 10 |
+ |
+#include <string.h> |
+#include <assert.h> |
+ |
+/* |
+** isNot: |
+** This variable is used by function getNextNode(). When getNextNode() is |
+** called, it sets ParseContext.isNot to true if the 'next node' is a |
+** FTSQUERY_PHRASE with a unary "-" attached to it. i.e. "mysql" in the |
+** FTS3 query "sqlite -mysql". Otherwise, ParseContext.isNot is set to |
+** zero. |
+*/ |
+typedef struct ParseContext ParseContext; |
+struct ParseContext { |
+ sqlite3_tokenizer *pTokenizer; /* Tokenizer module */ |
+ int iLangid; /* Language id used with tokenizer */ |
+ const char **azCol; /* Array of column names for fts3 table */ |
+ int bFts4; /* True to allow FTS4-only syntax */ |
+ int nCol; /* Number of entries in azCol[] */ |
+ int iDefaultCol; /* Default column to query */ |
+ int isNot; /* True if getNextNode() sees a unary - */ |
+ sqlite3_context *pCtx; /* Write error message here */ |
+ int nNest; /* Number of nested brackets */ |
+}; |
+ |
+/* |
+** This function is equivalent to the standard isspace() function. |
+** |
+** The standard isspace() can be awkward to use safely, because although it |
+** is defined to accept an argument of type int, its behavior when passed |
+** an integer that falls outside of the range of the unsigned char type |
+** is undefined (and sometimes, "undefined" means segfault). This wrapper |
+** is defined to accept an argument of type char, and always returns 0 for |
+** any values that fall outside of the range of the unsigned char type (i.e. |
+** negative values). |
+*/ |
+static int fts3isspace(char c){ |
+ return c==' ' || c=='\t' || c=='\n' || c=='\r' || c=='\v' || c=='\f'; |
+} |
+ |
+/* |
+** Allocate nByte bytes of memory using sqlite3_malloc(). If successful, |
+** zero the memory before returning a pointer to it. If unsuccessful, |
+** return NULL. |
+*/ |
+static void *fts3MallocZero(int nByte){ |
+ void *pRet = sqlite3_malloc(nByte); |
+ if( pRet ) memset(pRet, 0, nByte); |
+ return pRet; |
+} |
+ |
+int sqlite3Fts3OpenTokenizer( |
+ sqlite3_tokenizer *pTokenizer, |
+ int iLangid, |
+ const char *z, |
+ int n, |
+ sqlite3_tokenizer_cursor **ppCsr |
+){ |
+ sqlite3_tokenizer_module const *pModule = pTokenizer->pModule; |
+ sqlite3_tokenizer_cursor *pCsr = 0; |
+ int rc; |
+ |
+ rc = pModule->xOpen(pTokenizer, z, n, &pCsr); |
+ assert( rc==SQLITE_OK || pCsr==0 ); |
+ if( rc==SQLITE_OK ){ |
+ pCsr->pTokenizer = pTokenizer; |
+ if( pModule->iVersion>=1 ){ |
+ rc = pModule->xLanguageid(pCsr, iLangid); |
+ if( rc!=SQLITE_OK ){ |
+ pModule->xClose(pCsr); |
+ pCsr = 0; |
+ } |
+ } |
+ } |
+ *ppCsr = pCsr; |
+ return rc; |
+} |
+ |
+/* |
+** Function getNextNode(), which is called by fts3ExprParse(), may itself |
+** call fts3ExprParse(). So this forward declaration is required. |
+*/ |
+static int fts3ExprParse(ParseContext *, const char *, int, Fts3Expr **, int *); |
+ |
+/* |
+** Extract the next token from buffer z (length n) using the tokenizer |
+** and other information (column names etc.) in pParse. Create an Fts3Expr |
+** structure of type FTSQUERY_PHRASE containing a phrase consisting of this |
+** single token and set *ppExpr to point to it. If the end of the buffer is |
+** reached before a token is found, set *ppExpr to zero. It is the |
+** responsibility of the caller to eventually deallocate the allocated |
+** Fts3Expr structure (if any) by passing it to sqlite3_free(). |
+** |
+** Return SQLITE_OK if successful, or SQLITE_NOMEM if a memory allocation |
+** fails. |
+*/ |
+static int getNextToken( |
+ ParseContext *pParse, /* fts3 query parse context */ |
+ int iCol, /* Value for Fts3Phrase.iColumn */ |
+ const char *z, int n, /* Input string */ |
+ Fts3Expr **ppExpr, /* OUT: expression */ |
+ int *pnConsumed /* OUT: Number of bytes consumed */ |
+){ |
+ sqlite3_tokenizer *pTokenizer = pParse->pTokenizer; |
+ sqlite3_tokenizer_module const *pModule = pTokenizer->pModule; |
+ int rc; |
+ sqlite3_tokenizer_cursor *pCursor; |
+ Fts3Expr *pRet = 0; |
+ int i = 0; |
+ |
+ /* Set variable i to the maximum number of bytes of input to tokenize. */ |
+ for(i=0; i<n; i++){ |
+ if( sqlite3_fts3_enable_parentheses && (z[i]=='(' || z[i]==')') ) break; |
+ if( z[i]=='"' ) break; |
+ } |
+ |
+ *pnConsumed = i; |
+ rc = sqlite3Fts3OpenTokenizer(pTokenizer, pParse->iLangid, z, i, &pCursor); |
+ if( rc==SQLITE_OK ){ |
+ const char *zToken; |
+ int nToken = 0, iStart = 0, iEnd = 0, iPosition = 0; |
+ int nByte; /* total space to allocate */ |
+ |
+ rc = pModule->xNext(pCursor, &zToken, &nToken, &iStart, &iEnd, &iPosition); |
+ if( rc==SQLITE_OK ){ |
+ nByte = sizeof(Fts3Expr) + sizeof(Fts3Phrase) + nToken; |
+ pRet = (Fts3Expr *)fts3MallocZero(nByte); |
+ if( !pRet ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ pRet->eType = FTSQUERY_PHRASE; |
+ pRet->pPhrase = (Fts3Phrase *)&pRet[1]; |
+ pRet->pPhrase->nToken = 1; |
+ pRet->pPhrase->iColumn = iCol; |
+ pRet->pPhrase->aToken[0].n = nToken; |
+ pRet->pPhrase->aToken[0].z = (char *)&pRet->pPhrase[1]; |
+ memcpy(pRet->pPhrase->aToken[0].z, zToken, nToken); |
+ |
+ if( iEnd<n && z[iEnd]=='*' ){ |
+ pRet->pPhrase->aToken[0].isPrefix = 1; |
+ iEnd++; |
+ } |
+ |
+ while( 1 ){ |
+ if( !sqlite3_fts3_enable_parentheses |
+ && iStart>0 && z[iStart-1]=='-' |
+ ){ |
+ pParse->isNot = 1; |
+ iStart--; |
+ }else if( pParse->bFts4 && iStart>0 && z[iStart-1]=='^' ){ |
+ pRet->pPhrase->aToken[0].bFirst = 1; |
+ iStart--; |
+ }else{ |
+ break; |
+ } |
+ } |
+ |
+ } |
+ *pnConsumed = iEnd; |
+ }else if( i && rc==SQLITE_DONE ){ |
+ rc = SQLITE_OK; |
+ } |
+ |
+ pModule->xClose(pCursor); |
+ } |
+ |
+ *ppExpr = pRet; |
+ return rc; |
+} |
+ |
+ |
+/* |
+** Enlarge a memory allocation. If an out-of-memory allocation occurs, |
+** then free the old allocation. |
+*/ |
+static void *fts3ReallocOrFree(void *pOrig, int nNew){ |
+ void *pRet = sqlite3_realloc(pOrig, nNew); |
+ if( !pRet ){ |
+ sqlite3_free(pOrig); |
+ } |
+ return pRet; |
+} |
+ |
+/* |
+** Buffer zInput, length nInput, contains the contents of a quoted string |
+** that appeared as part of an fts3 query expression. Neither quote character |
+** is included in the buffer. This function attempts to tokenize the entire |
+** input buffer and create an Fts3Expr structure of type FTSQUERY_PHRASE |
+** containing the results. |
+** |
+** If successful, SQLITE_OK is returned and *ppExpr set to point at the |
+** allocated Fts3Expr structure. Otherwise, either SQLITE_NOMEM (out of memory |
+** error) or SQLITE_ERROR (tokenization error) is returned and *ppExpr set |
+** to 0. |
+*/ |
+static int getNextString( |
+ ParseContext *pParse, /* fts3 query parse context */ |
+ const char *zInput, int nInput, /* Input string */ |
+ Fts3Expr **ppExpr /* OUT: expression */ |
+){ |
+ sqlite3_tokenizer *pTokenizer = pParse->pTokenizer; |
+ sqlite3_tokenizer_module const *pModule = pTokenizer->pModule; |
+ int rc; |
+ Fts3Expr *p = 0; |
+ sqlite3_tokenizer_cursor *pCursor = 0; |
+ char *zTemp = 0; |
+ int nTemp = 0; |
+ |
+ const int nSpace = sizeof(Fts3Expr) + sizeof(Fts3Phrase); |
+ int nToken = 0; |
+ |
+ /* The final Fts3Expr data structure, including the Fts3Phrase, |
+ ** Fts3PhraseToken structures token buffers are all stored as a single |
+ ** allocation so that the expression can be freed with a single call to |
+ ** sqlite3_free(). Setting this up requires a two pass approach. |
+ ** |
+ ** The first pass, in the block below, uses a tokenizer cursor to iterate |
+ ** through the tokens in the expression. This pass uses fts3ReallocOrFree() |
+ ** to assemble data in two dynamic buffers: |
+ ** |
+ ** Buffer p: Points to the Fts3Expr structure, followed by the Fts3Phrase |
+ ** structure, followed by the array of Fts3PhraseToken |
+ ** structures. This pass only populates the Fts3PhraseToken array. |
+ ** |
+ ** Buffer zTemp: Contains copies of all tokens. |
+ ** |
+ ** The second pass, in the block that begins "if( rc==SQLITE_DONE )" below, |
+ ** appends buffer zTemp to buffer p, and fills in the Fts3Expr and Fts3Phrase |
+ ** structures. |
+ */ |
+ rc = sqlite3Fts3OpenTokenizer( |
+ pTokenizer, pParse->iLangid, zInput, nInput, &pCursor); |
+ if( rc==SQLITE_OK ){ |
+ int ii; |
+ for(ii=0; rc==SQLITE_OK; ii++){ |
+ const char *zByte; |
+ int nByte = 0, iBegin = 0, iEnd = 0, iPos = 0; |
+ rc = pModule->xNext(pCursor, &zByte, &nByte, &iBegin, &iEnd, &iPos); |
+ if( rc==SQLITE_OK ){ |
+ Fts3PhraseToken *pToken; |
+ |
+ p = fts3ReallocOrFree(p, nSpace + ii*sizeof(Fts3PhraseToken)); |
+ if( !p ) goto no_mem; |
+ |
+ zTemp = fts3ReallocOrFree(zTemp, nTemp + nByte); |
+ if( !zTemp ) goto no_mem; |
+ |
+ assert( nToken==ii ); |
+ pToken = &((Fts3Phrase *)(&p[1]))->aToken[ii]; |
+ memset(pToken, 0, sizeof(Fts3PhraseToken)); |
+ |
+ memcpy(&zTemp[nTemp], zByte, nByte); |
+ nTemp += nByte; |
+ |
+ pToken->n = nByte; |
+ pToken->isPrefix = (iEnd<nInput && zInput[iEnd]=='*'); |
+ pToken->bFirst = (iBegin>0 && zInput[iBegin-1]=='^'); |
+ nToken = ii+1; |
+ } |
+ } |
+ |
+ pModule->xClose(pCursor); |
+ pCursor = 0; |
+ } |
+ |
+ if( rc==SQLITE_DONE ){ |
+ int jj; |
+ char *zBuf = 0; |
+ |
+ p = fts3ReallocOrFree(p, nSpace + nToken*sizeof(Fts3PhraseToken) + nTemp); |
+ if( !p ) goto no_mem; |
+ memset(p, 0, (char *)&(((Fts3Phrase *)&p[1])->aToken[0])-(char *)p); |
+ p->eType = FTSQUERY_PHRASE; |
+ p->pPhrase = (Fts3Phrase *)&p[1]; |
+ p->pPhrase->iColumn = pParse->iDefaultCol; |
+ p->pPhrase->nToken = nToken; |
+ |
+ zBuf = (char *)&p->pPhrase->aToken[nToken]; |
+ if( zTemp ){ |
+ memcpy(zBuf, zTemp, nTemp); |
+ sqlite3_free(zTemp); |
+ }else{ |
+ assert( nTemp==0 ); |
+ } |
+ |
+ for(jj=0; jj<p->pPhrase->nToken; jj++){ |
+ p->pPhrase->aToken[jj].z = zBuf; |
+ zBuf += p->pPhrase->aToken[jj].n; |
+ } |
+ rc = SQLITE_OK; |
+ } |
+ |
+ *ppExpr = p; |
+ return rc; |
+no_mem: |
+ |
+ if( pCursor ){ |
+ pModule->xClose(pCursor); |
+ } |
+ sqlite3_free(zTemp); |
+ sqlite3_free(p); |
+ *ppExpr = 0; |
+ return SQLITE_NOMEM; |
+} |
+ |
+/* |
+** The output variable *ppExpr is populated with an allocated Fts3Expr |
+** structure, or set to 0 if the end of the input buffer is reached. |
+** |
+** Returns an SQLite error code. SQLITE_OK if everything works, SQLITE_NOMEM |
+** if a malloc failure occurs, or SQLITE_ERROR if a parse error is encountered. |
+** If SQLITE_ERROR is returned, pContext is populated with an error message. |
+*/ |
+static int getNextNode( |
+ ParseContext *pParse, /* fts3 query parse context */ |
+ const char *z, int n, /* Input string */ |
+ Fts3Expr **ppExpr, /* OUT: expression */ |
+ int *pnConsumed /* OUT: Number of bytes consumed */ |
+){ |
+ static const struct Fts3Keyword { |
+ char *z; /* Keyword text */ |
+ unsigned char n; /* Length of the keyword */ |
+ unsigned char parenOnly; /* Only valid in paren mode */ |
+ unsigned char eType; /* Keyword code */ |
+ } aKeyword[] = { |
+ { "OR" , 2, 0, FTSQUERY_OR }, |
+ { "AND", 3, 1, FTSQUERY_AND }, |
+ { "NOT", 3, 1, FTSQUERY_NOT }, |
+ { "NEAR", 4, 0, FTSQUERY_NEAR } |
+ }; |
+ int ii; |
+ int iCol; |
+ int iColLen; |
+ int rc; |
+ Fts3Expr *pRet = 0; |
+ |
+ const char *zInput = z; |
+ int nInput = n; |
+ |
+ pParse->isNot = 0; |
+ |
+ /* Skip over any whitespace before checking for a keyword, an open or |
+ ** close bracket, or a quoted string. |
+ */ |
+ while( nInput>0 && fts3isspace(*zInput) ){ |
+ nInput--; |
+ zInput++; |
+ } |
+ if( nInput==0 ){ |
+ return SQLITE_DONE; |
+ } |
+ |
+ /* See if we are dealing with a keyword. */ |
+ for(ii=0; ii<(int)(sizeof(aKeyword)/sizeof(struct Fts3Keyword)); ii++){ |
+ const struct Fts3Keyword *pKey = &aKeyword[ii]; |
+ |
+ if( (pKey->parenOnly & ~sqlite3_fts3_enable_parentheses)!=0 ){ |
+ continue; |
+ } |
+ |
+ if( nInput>=pKey->n && 0==memcmp(zInput, pKey->z, pKey->n) ){ |
+ int nNear = SQLITE_FTS3_DEFAULT_NEAR_PARAM; |
+ int nKey = pKey->n; |
+ char cNext; |
+ |
+ /* If this is a "NEAR" keyword, check for an explicit nearness. */ |
+ if( pKey->eType==FTSQUERY_NEAR ){ |
+ assert( nKey==4 ); |
+ if( zInput[4]=='/' && zInput[5]>='0' && zInput[5]<='9' ){ |
+ nNear = 0; |
+ for(nKey=5; zInput[nKey]>='0' && zInput[nKey]<='9'; nKey++){ |
+ nNear = nNear * 10 + (zInput[nKey] - '0'); |
+ } |
+ } |
+ } |
+ |
+ /* At this point this is probably a keyword. But for that to be true, |
+ ** the next byte must contain either whitespace, an open or close |
+ ** parenthesis, a quote character, or EOF. |
+ */ |
+ cNext = zInput[nKey]; |
+ if( fts3isspace(cNext) |
+ || cNext=='"' || cNext=='(' || cNext==')' || cNext==0 |
+ ){ |
+ pRet = (Fts3Expr *)fts3MallocZero(sizeof(Fts3Expr)); |
+ if( !pRet ){ |
+ return SQLITE_NOMEM; |
+ } |
+ pRet->eType = pKey->eType; |
+ pRet->nNear = nNear; |
+ *ppExpr = pRet; |
+ *pnConsumed = (int)((zInput - z) + nKey); |
+ return SQLITE_OK; |
+ } |
+ |
+ /* Turns out that wasn't a keyword after all. This happens if the |
+ ** user has supplied a token such as "ORacle". Continue. |
+ */ |
+ } |
+ } |
+ |
+ /* See if we are dealing with a quoted phrase. If this is the case, then |
+ ** search for the closing quote and pass the whole string to getNextString() |
+ ** for processing. This is easy to do, as fts3 has no syntax for escaping |
+ ** a quote character embedded in a string. |
+ */ |
+ if( *zInput=='"' ){ |
+ for(ii=1; ii<nInput && zInput[ii]!='"'; ii++); |
+ *pnConsumed = (int)((zInput - z) + ii + 1); |
+ if( ii==nInput ){ |
+ return SQLITE_ERROR; |
+ } |
+ return getNextString(pParse, &zInput[1], ii-1, ppExpr); |
+ } |
+ |
+ if( sqlite3_fts3_enable_parentheses ){ |
+ if( *zInput=='(' ){ |
+ int nConsumed = 0; |
+ pParse->nNest++; |
+ rc = fts3ExprParse(pParse, zInput+1, nInput-1, ppExpr, &nConsumed); |
+ if( rc==SQLITE_OK && !*ppExpr ){ rc = SQLITE_DONE; } |
+ *pnConsumed = (int)(zInput - z) + 1 + nConsumed; |
+ return rc; |
+ }else if( *zInput==')' ){ |
+ pParse->nNest--; |
+ *pnConsumed = (int)((zInput - z) + 1); |
+ *ppExpr = 0; |
+ return SQLITE_DONE; |
+ } |
+ } |
+ |
+ /* If control flows to this point, this must be a regular token, or |
+ ** the end of the input. Read a regular token using the sqlite3_tokenizer |
+ ** interface. Before doing so, figure out if there is an explicit |
+ ** column specifier for the token. |
+ ** |
+ ** TODO: Strangely, it is not possible to associate a column specifier |
+ ** with a quoted phrase, only with a single token. Not sure if this was |
+ ** an implementation artifact or an intentional decision when fts3 was |
+ ** first implemented. Whichever it was, this module duplicates the |
+ ** limitation. |
+ */ |
+ iCol = pParse->iDefaultCol; |
+ iColLen = 0; |
+ for(ii=0; ii<pParse->nCol; ii++){ |
+ const char *zStr = pParse->azCol[ii]; |
+ int nStr = (int)strlen(zStr); |
+ if( nInput>nStr && zInput[nStr]==':' |
+ && sqlite3_strnicmp(zStr, zInput, nStr)==0 |
+ ){ |
+ iCol = ii; |
+ iColLen = (int)((zInput - z) + nStr + 1); |
+ break; |
+ } |
+ } |
+ rc = getNextToken(pParse, iCol, &z[iColLen], n-iColLen, ppExpr, pnConsumed); |
+ *pnConsumed += iColLen; |
+ return rc; |
+} |
+ |
+/* |
+** The argument is an Fts3Expr structure for a binary operator (any type |
+** except an FTSQUERY_PHRASE). Return an integer value representing the |
+** precedence of the operator. Lower values have a higher precedence (i.e. |
+** group more tightly). For example, in the C language, the == operator |
+** groups more tightly than ||, and would therefore have a higher precedence. |
+** |
+** When using the new fts3 query syntax (when SQLITE_ENABLE_FTS3_PARENTHESIS |
+** is defined), the order of the operators in precedence from highest to |
+** lowest is: |
+** |
+** NEAR |
+** NOT |
+** AND (including implicit ANDs) |
+** OR |
+** |
+** Note that when using the old query syntax, the OR operator has a higher |
+** precedence than the AND operator. |
+*/ |
+static int opPrecedence(Fts3Expr *p){ |
+ assert( p->eType!=FTSQUERY_PHRASE ); |
+ if( sqlite3_fts3_enable_parentheses ){ |
+ return p->eType; |
+ }else if( p->eType==FTSQUERY_NEAR ){ |
+ return 1; |
+ }else if( p->eType==FTSQUERY_OR ){ |
+ return 2; |
+ } |
+ assert( p->eType==FTSQUERY_AND ); |
+ return 3; |
+} |
+ |
+/* |
+** Argument ppHead contains a pointer to the current head of a query |
+** expression tree being parsed. pPrev is the expression node most recently |
+** inserted into the tree. This function adds pNew, which is always a binary |
+** operator node, into the expression tree based on the relative precedence |
+** of pNew and the existing nodes of the tree. This may result in the head |
+** of the tree changing, in which case *ppHead is set to the new root node. |
+*/ |
+static void insertBinaryOperator( |
+ Fts3Expr **ppHead, /* Pointer to the root node of a tree */ |
+ Fts3Expr *pPrev, /* Node most recently inserted into the tree */ |
+ Fts3Expr *pNew /* New binary node to insert into expression tree */ |
+){ |
+ Fts3Expr *pSplit = pPrev; |
+ while( pSplit->pParent && opPrecedence(pSplit->pParent)<=opPrecedence(pNew) ){ |
+ pSplit = pSplit->pParent; |
+ } |
+ |
+ if( pSplit->pParent ){ |
+ assert( pSplit->pParent->pRight==pSplit ); |
+ pSplit->pParent->pRight = pNew; |
+ pNew->pParent = pSplit->pParent; |
+ }else{ |
+ *ppHead = pNew; |
+ } |
+ pNew->pLeft = pSplit; |
+ pSplit->pParent = pNew; |
+} |
+ |
+/* |
+** Parse the fts3 query expression found in buffer z, length n. This function |
+** returns either when the end of the buffer is reached or an unmatched |
+** closing bracket - ')' - is encountered. |
+** |
+** If successful, SQLITE_OK is returned, *ppExpr is set to point to the |
+** parsed form of the expression and *pnConsumed is set to the number of |
+** bytes read from buffer z. Otherwise, *ppExpr is set to 0 and SQLITE_NOMEM |
+** (out of memory error) or SQLITE_ERROR (parse error) is returned. |
+*/ |
+static int fts3ExprParse( |
+ ParseContext *pParse, /* fts3 query parse context */ |
+ const char *z, int n, /* Text of MATCH query */ |
+ Fts3Expr **ppExpr, /* OUT: Parsed query structure */ |
+ int *pnConsumed /* OUT: Number of bytes consumed */ |
+){ |
+ Fts3Expr *pRet = 0; |
+ Fts3Expr *pPrev = 0; |
+ Fts3Expr *pNotBranch = 0; /* Only used in legacy parse mode */ |
+ int nIn = n; |
+ const char *zIn = z; |
+ int rc = SQLITE_OK; |
+ int isRequirePhrase = 1; |
+ |
+ while( rc==SQLITE_OK ){ |
+ Fts3Expr *p = 0; |
+ int nByte = 0; |
+ |
+ rc = getNextNode(pParse, zIn, nIn, &p, &nByte); |
+ assert( nByte>0 || (rc!=SQLITE_OK && p==0) ); |
+ if( rc==SQLITE_OK ){ |
+ if( p ){ |
+ int isPhrase; |
+ |
+ if( !sqlite3_fts3_enable_parentheses |
+ && p->eType==FTSQUERY_PHRASE && pParse->isNot |
+ ){ |
+ /* Create an implicit NOT operator. */ |
+ Fts3Expr *pNot = fts3MallocZero(sizeof(Fts3Expr)); |
+ if( !pNot ){ |
+ sqlite3Fts3ExprFree(p); |
+ rc = SQLITE_NOMEM; |
+ goto exprparse_out; |
+ } |
+ pNot->eType = FTSQUERY_NOT; |
+ pNot->pRight = p; |
+ p->pParent = pNot; |
+ if( pNotBranch ){ |
+ pNot->pLeft = pNotBranch; |
+ pNotBranch->pParent = pNot; |
+ } |
+ pNotBranch = pNot; |
+ p = pPrev; |
+ }else{ |
+ int eType = p->eType; |
+ isPhrase = (eType==FTSQUERY_PHRASE || p->pLeft); |
+ |
+ /* The isRequirePhrase variable is set to true if a phrase or |
+ ** an expression contained in parenthesis is required. If a |
+ ** binary operator (AND, OR, NOT or NEAR) is encounted when |
+ ** isRequirePhrase is set, this is a syntax error. |
+ */ |
+ if( !isPhrase && isRequirePhrase ){ |
+ sqlite3Fts3ExprFree(p); |
+ rc = SQLITE_ERROR; |
+ goto exprparse_out; |
+ } |
+ |
+ if( isPhrase && !isRequirePhrase ){ |
+ /* Insert an implicit AND operator. */ |
+ Fts3Expr *pAnd; |
+ assert( pRet && pPrev ); |
+ pAnd = fts3MallocZero(sizeof(Fts3Expr)); |
+ if( !pAnd ){ |
+ sqlite3Fts3ExprFree(p); |
+ rc = SQLITE_NOMEM; |
+ goto exprparse_out; |
+ } |
+ pAnd->eType = FTSQUERY_AND; |
+ insertBinaryOperator(&pRet, pPrev, pAnd); |
+ pPrev = pAnd; |
+ } |
+ |
+ /* This test catches attempts to make either operand of a NEAR |
+ ** operator something other than a phrase. For example, either of |
+ ** the following: |
+ ** |
+ ** (bracketed expression) NEAR phrase |
+ ** phrase NEAR (bracketed expression) |
+ ** |
+ ** Return an error in either case. |
+ */ |
+ if( pPrev && ( |
+ (eType==FTSQUERY_NEAR && !isPhrase && pPrev->eType!=FTSQUERY_PHRASE) |
+ || (eType!=FTSQUERY_PHRASE && isPhrase && pPrev->eType==FTSQUERY_NEAR) |
+ )){ |
+ sqlite3Fts3ExprFree(p); |
+ rc = SQLITE_ERROR; |
+ goto exprparse_out; |
+ } |
+ |
+ if( isPhrase ){ |
+ if( pRet ){ |
+ assert( pPrev && pPrev->pLeft && pPrev->pRight==0 ); |
+ pPrev->pRight = p; |
+ p->pParent = pPrev; |
+ }else{ |
+ pRet = p; |
+ } |
+ }else{ |
+ insertBinaryOperator(&pRet, pPrev, p); |
+ } |
+ isRequirePhrase = !isPhrase; |
+ } |
+ pPrev = p; |
+ } |
+ assert( nByte>0 ); |
+ } |
+ assert( rc!=SQLITE_OK || (nByte>0 && nByte<=nIn) ); |
+ nIn -= nByte; |
+ zIn += nByte; |
+ } |
+ |
+ if( rc==SQLITE_DONE && pRet && isRequirePhrase ){ |
+ rc = SQLITE_ERROR; |
+ } |
+ |
+ if( rc==SQLITE_DONE ){ |
+ rc = SQLITE_OK; |
+ if( !sqlite3_fts3_enable_parentheses && pNotBranch ){ |
+ if( !pRet ){ |
+ rc = SQLITE_ERROR; |
+ }else{ |
+ Fts3Expr *pIter = pNotBranch; |
+ while( pIter->pLeft ){ |
+ pIter = pIter->pLeft; |
+ } |
+ pIter->pLeft = pRet; |
+ pRet->pParent = pIter; |
+ pRet = pNotBranch; |
+ } |
+ } |
+ } |
+ *pnConsumed = n - nIn; |
+ |
+exprparse_out: |
+ if( rc!=SQLITE_OK ){ |
+ sqlite3Fts3ExprFree(pRet); |
+ sqlite3Fts3ExprFree(pNotBranch); |
+ pRet = 0; |
+ } |
+ *ppExpr = pRet; |
+ return rc; |
+} |
+ |
+/* |
+** Return SQLITE_ERROR if the maximum depth of the expression tree passed |
+** as the only argument is more than nMaxDepth. |
+*/ |
+static int fts3ExprCheckDepth(Fts3Expr *p, int nMaxDepth){ |
+ int rc = SQLITE_OK; |
+ if( p ){ |
+ if( nMaxDepth<0 ){ |
+ rc = SQLITE_TOOBIG; |
+ }else{ |
+ rc = fts3ExprCheckDepth(p->pLeft, nMaxDepth-1); |
+ if( rc==SQLITE_OK ){ |
+ rc = fts3ExprCheckDepth(p->pRight, nMaxDepth-1); |
+ } |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** This function attempts to transform the expression tree at (*pp) to |
+** an equivalent but more balanced form. The tree is modified in place. |
+** If successful, SQLITE_OK is returned and (*pp) set to point to the |
+** new root expression node. |
+** |
+** nMaxDepth is the maximum allowable depth of the balanced sub-tree. |
+** |
+** Otherwise, if an error occurs, an SQLite error code is returned and |
+** expression (*pp) freed. |
+*/ |
+static int fts3ExprBalance(Fts3Expr **pp, int nMaxDepth){ |
+ int rc = SQLITE_OK; /* Return code */ |
+ Fts3Expr *pRoot = *pp; /* Initial root node */ |
+ Fts3Expr *pFree = 0; /* List of free nodes. Linked by pParent. */ |
+ int eType = pRoot->eType; /* Type of node in this tree */ |
+ |
+ if( nMaxDepth==0 ){ |
+ rc = SQLITE_ERROR; |
+ } |
+ |
+ if( rc==SQLITE_OK && (eType==FTSQUERY_AND || eType==FTSQUERY_OR) ){ |
+ Fts3Expr **apLeaf; |
+ apLeaf = (Fts3Expr **)sqlite3_malloc(sizeof(Fts3Expr *) * nMaxDepth); |
+ if( 0==apLeaf ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ memset(apLeaf, 0, sizeof(Fts3Expr *) * nMaxDepth); |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ int i; |
+ Fts3Expr *p; |
+ |
+ /* Set $p to point to the left-most leaf in the tree of eType nodes. */ |
+ for(p=pRoot; p->eType==eType; p=p->pLeft){ |
+ assert( p->pParent==0 || p->pParent->pLeft==p ); |
+ assert( p->pLeft && p->pRight ); |
+ } |
+ |
+ /* This loop runs once for each leaf in the tree of eType nodes. */ |
+ while( 1 ){ |
+ int iLvl; |
+ Fts3Expr *pParent = p->pParent; /* Current parent of p */ |
+ |
+ assert( pParent==0 || pParent->pLeft==p ); |
+ p->pParent = 0; |
+ if( pParent ){ |
+ pParent->pLeft = 0; |
+ }else{ |
+ pRoot = 0; |
+ } |
+ rc = fts3ExprBalance(&p, nMaxDepth-1); |
+ if( rc!=SQLITE_OK ) break; |
+ |
+ for(iLvl=0; p && iLvl<nMaxDepth; iLvl++){ |
+ if( apLeaf[iLvl]==0 ){ |
+ apLeaf[iLvl] = p; |
+ p = 0; |
+ }else{ |
+ assert( pFree ); |
+ pFree->pLeft = apLeaf[iLvl]; |
+ pFree->pRight = p; |
+ pFree->pLeft->pParent = pFree; |
+ pFree->pRight->pParent = pFree; |
+ |
+ p = pFree; |
+ pFree = pFree->pParent; |
+ p->pParent = 0; |
+ apLeaf[iLvl] = 0; |
+ } |
+ } |
+ if( p ){ |
+ sqlite3Fts3ExprFree(p); |
+ rc = SQLITE_TOOBIG; |
+ break; |
+ } |
+ |
+ /* If that was the last leaf node, break out of the loop */ |
+ if( pParent==0 ) break; |
+ |
+ /* Set $p to point to the next leaf in the tree of eType nodes */ |
+ for(p=pParent->pRight; p->eType==eType; p=p->pLeft); |
+ |
+ /* Remove pParent from the original tree. */ |
+ assert( pParent->pParent==0 || pParent->pParent->pLeft==pParent ); |
+ pParent->pRight->pParent = pParent->pParent; |
+ if( pParent->pParent ){ |
+ pParent->pParent->pLeft = pParent->pRight; |
+ }else{ |
+ assert( pParent==pRoot ); |
+ pRoot = pParent->pRight; |
+ } |
+ |
+ /* Link pParent into the free node list. It will be used as an |
+ ** internal node of the new tree. */ |
+ pParent->pParent = pFree; |
+ pFree = pParent; |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ p = 0; |
+ for(i=0; i<nMaxDepth; i++){ |
+ if( apLeaf[i] ){ |
+ if( p==0 ){ |
+ p = apLeaf[i]; |
+ p->pParent = 0; |
+ }else{ |
+ assert( pFree!=0 ); |
+ pFree->pRight = p; |
+ pFree->pLeft = apLeaf[i]; |
+ pFree->pLeft->pParent = pFree; |
+ pFree->pRight->pParent = pFree; |
+ |
+ p = pFree; |
+ pFree = pFree->pParent; |
+ p->pParent = 0; |
+ } |
+ } |
+ } |
+ pRoot = p; |
+ }else{ |
+ /* An error occurred. Delete the contents of the apLeaf[] array |
+ ** and pFree list. Everything else is cleaned up by the call to |
+ ** sqlite3Fts3ExprFree(pRoot) below. */ |
+ Fts3Expr *pDel; |
+ for(i=0; i<nMaxDepth; i++){ |
+ sqlite3Fts3ExprFree(apLeaf[i]); |
+ } |
+ while( (pDel=pFree)!=0 ){ |
+ pFree = pDel->pParent; |
+ sqlite3_free(pDel); |
+ } |
+ } |
+ |
+ assert( pFree==0 ); |
+ sqlite3_free( apLeaf ); |
+ } |
+ } |
+ |
+ if( rc!=SQLITE_OK ){ |
+ sqlite3Fts3ExprFree(pRoot); |
+ pRoot = 0; |
+ } |
+ *pp = pRoot; |
+ return rc; |
+} |
+ |
+/* |
+** This function is similar to sqlite3Fts3ExprParse(), with the following |
+** differences: |
+** |
+** 1. It does not do expression rebalancing. |
+** 2. It does not check that the expression does not exceed the |
+** maximum allowable depth. |
+** 3. Even if it fails, *ppExpr may still be set to point to an |
+** expression tree. It should be deleted using sqlite3Fts3ExprFree() |
+** in this case. |
+*/ |
+static int fts3ExprParseUnbalanced( |
+ sqlite3_tokenizer *pTokenizer, /* Tokenizer module */ |
+ int iLangid, /* Language id for tokenizer */ |
+ char **azCol, /* Array of column names for fts3 table */ |
+ int bFts4, /* True to allow FTS4-only syntax */ |
+ int nCol, /* Number of entries in azCol[] */ |
+ int iDefaultCol, /* Default column to query */ |
+ const char *z, int n, /* Text of MATCH query */ |
+ Fts3Expr **ppExpr /* OUT: Parsed query structure */ |
+){ |
+ int nParsed; |
+ int rc; |
+ ParseContext sParse; |
+ |
+ memset(&sParse, 0, sizeof(ParseContext)); |
+ sParse.pTokenizer = pTokenizer; |
+ sParse.iLangid = iLangid; |
+ sParse.azCol = (const char **)azCol; |
+ sParse.nCol = nCol; |
+ sParse.iDefaultCol = iDefaultCol; |
+ sParse.bFts4 = bFts4; |
+ if( z==0 ){ |
+ *ppExpr = 0; |
+ return SQLITE_OK; |
+ } |
+ if( n<0 ){ |
+ n = (int)strlen(z); |
+ } |
+ rc = fts3ExprParse(&sParse, z, n, ppExpr, &nParsed); |
+ assert( rc==SQLITE_OK || *ppExpr==0 ); |
+ |
+ /* Check for mismatched parenthesis */ |
+ if( rc==SQLITE_OK && sParse.nNest ){ |
+ rc = SQLITE_ERROR; |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** Parameters z and n contain a pointer to and length of a buffer containing |
+** an fts3 query expression, respectively. This function attempts to parse the |
+** query expression and create a tree of Fts3Expr structures representing the |
+** parsed expression. If successful, *ppExpr is set to point to the head |
+** of the parsed expression tree and SQLITE_OK is returned. If an error |
+** occurs, either SQLITE_NOMEM (out-of-memory error) or SQLITE_ERROR (parse |
+** error) is returned and *ppExpr is set to 0. |
+** |
+** If parameter n is a negative number, then z is assumed to point to a |
+** nul-terminated string and the length is determined using strlen(). |
+** |
+** The first parameter, pTokenizer, is passed the fts3 tokenizer module to |
+** use to normalize query tokens while parsing the expression. The azCol[] |
+** array, which is assumed to contain nCol entries, should contain the names |
+** of each column in the target fts3 table, in order from left to right. |
+** Column names must be nul-terminated strings. |
+** |
+** The iDefaultCol parameter should be passed the index of the table column |
+** that appears on the left-hand-side of the MATCH operator (the default |
+** column to match against for tokens for which a column name is not explicitly |
+** specified as part of the query string), or -1 if tokens may by default |
+** match any table column. |
+*/ |
+int sqlite3Fts3ExprParse( |
+ sqlite3_tokenizer *pTokenizer, /* Tokenizer module */ |
+ int iLangid, /* Language id for tokenizer */ |
+ char **azCol, /* Array of column names for fts3 table */ |
+ int bFts4, /* True to allow FTS4-only syntax */ |
+ int nCol, /* Number of entries in azCol[] */ |
+ int iDefaultCol, /* Default column to query */ |
+ const char *z, int n, /* Text of MATCH query */ |
+ Fts3Expr **ppExpr, /* OUT: Parsed query structure */ |
+ char **pzErr /* OUT: Error message (sqlite3_malloc) */ |
+){ |
+ int rc = fts3ExprParseUnbalanced( |
+ pTokenizer, iLangid, azCol, bFts4, nCol, iDefaultCol, z, n, ppExpr |
+ ); |
+ |
+ /* Rebalance the expression. And check that its depth does not exceed |
+ ** SQLITE_FTS3_MAX_EXPR_DEPTH. */ |
+ if( rc==SQLITE_OK && *ppExpr ){ |
+ rc = fts3ExprBalance(ppExpr, SQLITE_FTS3_MAX_EXPR_DEPTH); |
+ if( rc==SQLITE_OK ){ |
+ rc = fts3ExprCheckDepth(*ppExpr, SQLITE_FTS3_MAX_EXPR_DEPTH); |
+ } |
+ } |
+ |
+ if( rc!=SQLITE_OK ){ |
+ sqlite3Fts3ExprFree(*ppExpr); |
+ *ppExpr = 0; |
+ if( rc==SQLITE_TOOBIG ){ |
+ *pzErr = sqlite3_mprintf( |
+ "FTS expression tree is too large (maximum depth %d)", |
+ SQLITE_FTS3_MAX_EXPR_DEPTH |
+ ); |
+ rc = SQLITE_ERROR; |
+ }else if( rc==SQLITE_ERROR ){ |
+ *pzErr = sqlite3_mprintf("malformed MATCH expression: [%s]", z); |
+ } |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** Free a single node of an expression tree. |
+*/ |
+static void fts3FreeExprNode(Fts3Expr *p){ |
+ assert( p->eType==FTSQUERY_PHRASE || p->pPhrase==0 ); |
+ sqlite3Fts3EvalPhraseCleanup(p->pPhrase); |
+ sqlite3_free(p->aMI); |
+ sqlite3_free(p); |
+} |
+ |
+/* |
+** Free a parsed fts3 query expression allocated by sqlite3Fts3ExprParse(). |
+** |
+** This function would be simpler if it recursively called itself. But |
+** that would mean passing a sufficiently large expression to ExprParse() |
+** could cause a stack overflow. |
+*/ |
+void sqlite3Fts3ExprFree(Fts3Expr *pDel){ |
+ Fts3Expr *p; |
+ assert( pDel==0 || pDel->pParent==0 ); |
+ for(p=pDel; p && (p->pLeft||p->pRight); p=(p->pLeft ? p->pLeft : p->pRight)){ |
+ assert( p->pParent==0 || p==p->pParent->pRight || p==p->pParent->pLeft ); |
+ } |
+ while( p ){ |
+ Fts3Expr *pParent = p->pParent; |
+ fts3FreeExprNode(p); |
+ if( pParent && p==pParent->pLeft && pParent->pRight ){ |
+ p = pParent->pRight; |
+ while( p && (p->pLeft || p->pRight) ){ |
+ assert( p==p->pParent->pRight || p==p->pParent->pLeft ); |
+ p = (p->pLeft ? p->pLeft : p->pRight); |
+ } |
+ }else{ |
+ p = pParent; |
+ } |
+ } |
+} |
+ |
+/**************************************************************************** |
+***************************************************************************** |
+** Everything after this point is just test code. |
+*/ |
+ |
+#ifdef SQLITE_TEST |
+ |
+#include <stdio.h> |
+ |
+/* |
+** Function to query the hash-table of tokenizers (see README.tokenizers). |
+*/ |
+static int queryTestTokenizer( |
+ sqlite3 *db, |
+ const char *zName, |
+ const sqlite3_tokenizer_module **pp |
+){ |
+ int rc; |
+ sqlite3_stmt *pStmt; |
+ const char zSql[] = "SELECT fts3_tokenizer(?)"; |
+ |
+ *pp = 0; |
+ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ |
+ sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC); |
+ if( SQLITE_ROW==sqlite3_step(pStmt) ){ |
+ if( sqlite3_column_type(pStmt, 0)==SQLITE_BLOB ){ |
+ memcpy((void *)pp, sqlite3_column_blob(pStmt, 0), sizeof(*pp)); |
+ } |
+ } |
+ |
+ return sqlite3_finalize(pStmt); |
+} |
+ |
+/* |
+** Return a pointer to a buffer containing a text representation of the |
+** expression passed as the first argument. The buffer is obtained from |
+** sqlite3_malloc(). It is the responsibility of the caller to use |
+** sqlite3_free() to release the memory. If an OOM condition is encountered, |
+** NULL is returned. |
+** |
+** If the second argument is not NULL, then its contents are prepended to |
+** the returned expression text and then freed using sqlite3_free(). |
+*/ |
+static char *exprToString(Fts3Expr *pExpr, char *zBuf){ |
+ if( pExpr==0 ){ |
+ return sqlite3_mprintf(""); |
+ } |
+ switch( pExpr->eType ){ |
+ case FTSQUERY_PHRASE: { |
+ Fts3Phrase *pPhrase = pExpr->pPhrase; |
+ int i; |
+ zBuf = sqlite3_mprintf( |
+ "%zPHRASE %d 0", zBuf, pPhrase->iColumn); |
+ for(i=0; zBuf && i<pPhrase->nToken; i++){ |
+ zBuf = sqlite3_mprintf("%z %.*s%s", zBuf, |
+ pPhrase->aToken[i].n, pPhrase->aToken[i].z, |
+ (pPhrase->aToken[i].isPrefix?"+":"") |
+ ); |
+ } |
+ return zBuf; |
+ } |
+ |
+ case FTSQUERY_NEAR: |
+ zBuf = sqlite3_mprintf("%zNEAR/%d ", zBuf, pExpr->nNear); |
+ break; |
+ case FTSQUERY_NOT: |
+ zBuf = sqlite3_mprintf("%zNOT ", zBuf); |
+ break; |
+ case FTSQUERY_AND: |
+ zBuf = sqlite3_mprintf("%zAND ", zBuf); |
+ break; |
+ case FTSQUERY_OR: |
+ zBuf = sqlite3_mprintf("%zOR ", zBuf); |
+ break; |
+ } |
+ |
+ if( zBuf ) zBuf = sqlite3_mprintf("%z{", zBuf); |
+ if( zBuf ) zBuf = exprToString(pExpr->pLeft, zBuf); |
+ if( zBuf ) zBuf = sqlite3_mprintf("%z} {", zBuf); |
+ |
+ if( zBuf ) zBuf = exprToString(pExpr->pRight, zBuf); |
+ if( zBuf ) zBuf = sqlite3_mprintf("%z}", zBuf); |
+ |
+ return zBuf; |
+} |
+ |
+/* |
+** This is the implementation of a scalar SQL function used to test the |
+** expression parser. It should be called as follows: |
+** |
+** fts3_exprtest(<tokenizer>, <expr>, <column 1>, ...); |
+** |
+** The first argument, <tokenizer>, is the name of the fts3 tokenizer used |
+** to parse the query expression (see README.tokenizers). The second argument |
+** is the query expression to parse. Each subsequent argument is the name |
+** of a column of the fts3 table that the query expression may refer to. |
+** For example: |
+** |
+** SELECT fts3_exprtest('simple', 'Bill col2:Bloggs', 'col1', 'col2'); |
+*/ |
+static void fts3ExprTest( |
+ sqlite3_context *context, |
+ int argc, |
+ sqlite3_value **argv |
+){ |
+ sqlite3_tokenizer_module const *pModule = 0; |
+ sqlite3_tokenizer *pTokenizer = 0; |
+ int rc; |
+ char **azCol = 0; |
+ const char *zExpr; |
+ int nExpr; |
+ int nCol; |
+ int ii; |
+ Fts3Expr *pExpr; |
+ char *zBuf = 0; |
+ sqlite3 *db = sqlite3_context_db_handle(context); |
+ |
+ if( argc<3 ){ |
+ sqlite3_result_error(context, |
+ "Usage: fts3_exprtest(tokenizer, expr, col1, ...", -1 |
+ ); |
+ return; |
+ } |
+ |
+ rc = queryTestTokenizer(db, |
+ (const char *)sqlite3_value_text(argv[0]), &pModule); |
+ if( rc==SQLITE_NOMEM ){ |
+ sqlite3_result_error_nomem(context); |
+ goto exprtest_out; |
+ }else if( !pModule ){ |
+ sqlite3_result_error(context, "No such tokenizer module", -1); |
+ goto exprtest_out; |
+ } |
+ |
+ rc = pModule->xCreate(0, 0, &pTokenizer); |
+ assert( rc==SQLITE_NOMEM || rc==SQLITE_OK ); |
+ if( rc==SQLITE_NOMEM ){ |
+ sqlite3_result_error_nomem(context); |
+ goto exprtest_out; |
+ } |
+ pTokenizer->pModule = pModule; |
+ |
+ zExpr = (const char *)sqlite3_value_text(argv[1]); |
+ nExpr = sqlite3_value_bytes(argv[1]); |
+ nCol = argc-2; |
+ azCol = (char **)sqlite3_malloc(nCol*sizeof(char *)); |
+ if( !azCol ){ |
+ sqlite3_result_error_nomem(context); |
+ goto exprtest_out; |
+ } |
+ for(ii=0; ii<nCol; ii++){ |
+ azCol[ii] = (char *)sqlite3_value_text(argv[ii+2]); |
+ } |
+ |
+ if( sqlite3_user_data(context) ){ |
+ char *zDummy = 0; |
+ rc = sqlite3Fts3ExprParse( |
+ pTokenizer, 0, azCol, 0, nCol, nCol, zExpr, nExpr, &pExpr, &zDummy |
+ ); |
+ assert( rc==SQLITE_OK || pExpr==0 ); |
+ sqlite3_free(zDummy); |
+ }else{ |
+ rc = fts3ExprParseUnbalanced( |
+ pTokenizer, 0, azCol, 0, nCol, nCol, zExpr, nExpr, &pExpr |
+ ); |
+ } |
+ |
+ if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM ){ |
+ sqlite3Fts3ExprFree(pExpr); |
+ sqlite3_result_error(context, "Error parsing expression", -1); |
+ }else if( rc==SQLITE_NOMEM || !(zBuf = exprToString(pExpr, 0)) ){ |
+ sqlite3_result_error_nomem(context); |
+ }else{ |
+ sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); |
+ sqlite3_free(zBuf); |
+ } |
+ |
+ sqlite3Fts3ExprFree(pExpr); |
+ |
+exprtest_out: |
+ if( pModule && pTokenizer ){ |
+ rc = pModule->xDestroy(pTokenizer); |
+ } |
+ sqlite3_free(azCol); |
+} |
+ |
+/* |
+** Register the query expression parser test function fts3_exprtest() |
+** with database connection db. |
+*/ |
+int sqlite3Fts3ExprInitTestInterface(sqlite3* db){ |
+ int rc = sqlite3_create_function( |
+ db, "fts3_exprtest", -1, SQLITE_UTF8, 0, fts3ExprTest, 0, 0 |
+ ); |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3_create_function(db, "fts3_exprtest_rebalance", |
+ -1, SQLITE_UTF8, (void *)1, fts3ExprTest, 0, 0 |
+ ); |
+ } |
+ return rc; |
+} |
+ |
+#endif |
+#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ |