Index: third_party/sqlite/sqlite-src-3070603/src/pcache1.c |
diff --git a/third_party/sqlite/sqlite-src-3070603/src/pcache1.c b/third_party/sqlite/sqlite-src-3070603/src/pcache1.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..ad443954bffd0901fcc3e0e93a3b0788d7b997c4 |
--- /dev/null |
+++ b/third_party/sqlite/sqlite-src-3070603/src/pcache1.c |
@@ -0,0 +1,965 @@ |
+/* |
+** 2008 November 05 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+************************************************************************* |
+** |
+** This file implements the default page cache implementation (the |
+** sqlite3_pcache interface). It also contains part of the implementation |
+** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features. |
+** If the default page cache implementation is overriden, then neither of |
+** these two features are available. |
+*/ |
+ |
+#include "sqliteInt.h" |
+ |
+typedef struct PCache1 PCache1; |
+typedef struct PgHdr1 PgHdr1; |
+typedef struct PgFreeslot PgFreeslot; |
+typedef struct PGroup PGroup; |
+ |
+/* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set |
+** of one or more PCaches that are able to recycle each others unpinned |
+** pages when they are under memory pressure. A PGroup is an instance of |
+** the following object. |
+** |
+** This page cache implementation works in one of two modes: |
+** |
+** (1) Every PCache is the sole member of its own PGroup. There is |
+** one PGroup per PCache. |
+** |
+** (2) There is a single global PGroup that all PCaches are a member |
+** of. |
+** |
+** Mode 1 uses more memory (since PCache instances are not able to rob |
+** unused pages from other PCaches) but it also operates without a mutex, |
+** and is therefore often faster. Mode 2 requires a mutex in order to be |
+** threadsafe, but is able recycle pages more efficient. |
+** |
+** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single |
+** PGroup which is the pcache1.grp global variable and its mutex is |
+** SQLITE_MUTEX_STATIC_LRU. |
+*/ |
+struct PGroup { |
+ sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */ |
+ int nMaxPage; /* Sum of nMax for purgeable caches */ |
+ int nMinPage; /* Sum of nMin for purgeable caches */ |
+ int mxPinned; /* nMaxpage + 10 - nMinPage */ |
+ int nCurrentPage; /* Number of purgeable pages allocated */ |
+ PgHdr1 *pLruHead, *pLruTail; /* LRU list of unpinned pages */ |
+}; |
+ |
+/* Each page cache is an instance of the following object. Every |
+** open database file (including each in-memory database and each |
+** temporary or transient database) has a single page cache which |
+** is an instance of this object. |
+** |
+** Pointers to structures of this type are cast and returned as |
+** opaque sqlite3_pcache* handles. |
+*/ |
+struct PCache1 { |
+ /* Cache configuration parameters. Page size (szPage) and the purgeable |
+ ** flag (bPurgeable) are set when the cache is created. nMax may be |
+ ** modified at any time by a call to the pcache1CacheSize() method. |
+ ** The PGroup mutex must be held when accessing nMax. |
+ */ |
+ PGroup *pGroup; /* PGroup this cache belongs to */ |
+ int szPage; /* Size of allocated pages in bytes */ |
+ int bPurgeable; /* True if cache is purgeable */ |
+ unsigned int nMin; /* Minimum number of pages reserved */ |
+ unsigned int nMax; /* Configured "cache_size" value */ |
+ unsigned int n90pct; /* nMax*9/10 */ |
+ |
+ /* Hash table of all pages. The following variables may only be accessed |
+ ** when the accessor is holding the PGroup mutex. |
+ */ |
+ unsigned int nRecyclable; /* Number of pages in the LRU list */ |
+ unsigned int nPage; /* Total number of pages in apHash */ |
+ unsigned int nHash; /* Number of slots in apHash[] */ |
+ PgHdr1 **apHash; /* Hash table for fast lookup by key */ |
+ |
+ unsigned int iMaxKey; /* Largest key seen since xTruncate() */ |
+}; |
+ |
+/* |
+** Each cache entry is represented by an instance of the following |
+** structure. A buffer of PgHdr1.pCache->szPage bytes is allocated |
+** directly before this structure in memory (see the PGHDR1_TO_PAGE() |
+** macro below). |
+*/ |
+struct PgHdr1 { |
+ unsigned int iKey; /* Key value (page number) */ |
+ PgHdr1 *pNext; /* Next in hash table chain */ |
+ PCache1 *pCache; /* Cache that currently owns this page */ |
+ PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */ |
+ PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */ |
+}; |
+ |
+/* |
+** Free slots in the allocator used to divide up the buffer provided using |
+** the SQLITE_CONFIG_PAGECACHE mechanism. |
+*/ |
+struct PgFreeslot { |
+ PgFreeslot *pNext; /* Next free slot */ |
+}; |
+ |
+/* |
+** Global data used by this cache. |
+*/ |
+static SQLITE_WSD struct PCacheGlobal { |
+ PGroup grp; /* The global PGroup for mode (2) */ |
+ |
+ /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The |
+ ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all |
+ ** fixed at sqlite3_initialize() time and do not require mutex protection. |
+ ** The nFreeSlot and pFree values do require mutex protection. |
+ */ |
+ int isInit; /* True if initialized */ |
+ int szSlot; /* Size of each free slot */ |
+ int nSlot; /* The number of pcache slots */ |
+ int nReserve; /* Try to keep nFreeSlot above this */ |
+ void *pStart, *pEnd; /* Bounds of pagecache malloc range */ |
+ /* Above requires no mutex. Use mutex below for variable that follow. */ |
+ sqlite3_mutex *mutex; /* Mutex for accessing the following: */ |
+ int nFreeSlot; /* Number of unused pcache slots */ |
+ PgFreeslot *pFree; /* Free page blocks */ |
+ /* The following value requires a mutex to change. We skip the mutex on |
+ ** reading because (1) most platforms read a 32-bit integer atomically and |
+ ** (2) even if an incorrect value is read, no great harm is done since this |
+ ** is really just an optimization. */ |
+ int bUnderPressure; /* True if low on PAGECACHE memory */ |
+} pcache1_g; |
+ |
+/* |
+** All code in this file should access the global structure above via the |
+** alias "pcache1". This ensures that the WSD emulation is used when |
+** compiling for systems that do not support real WSD. |
+*/ |
+#define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g)) |
+ |
+/* |
+** When a PgHdr1 structure is allocated, the associated PCache1.szPage |
+** bytes of data are located directly before it in memory (i.e. the total |
+** size of the allocation is sizeof(PgHdr1)+PCache1.szPage byte). The |
+** PGHDR1_TO_PAGE() macro takes a pointer to a PgHdr1 structure as |
+** an argument and returns a pointer to the associated block of szPage |
+** bytes. The PAGE_TO_PGHDR1() macro does the opposite: its argument is |
+** a pointer to a block of szPage bytes of data and the return value is |
+** a pointer to the associated PgHdr1 structure. |
+** |
+** assert( PGHDR1_TO_PAGE(PAGE_TO_PGHDR1(pCache, X))==X ); |
+*/ |
+#define PGHDR1_TO_PAGE(p) (void*)(((char*)p) - p->pCache->szPage) |
+#define PAGE_TO_PGHDR1(c, p) (PgHdr1*)(((char*)p) + c->szPage) |
+ |
+/* |
+** Macros to enter and leave the PCache LRU mutex. |
+*/ |
+#define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex) |
+#define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex) |
+ |
+/******************************************************************************/ |
+/******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/ |
+ |
+/* |
+** This function is called during initialization if a static buffer is |
+** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE |
+** verb to sqlite3_config(). Parameter pBuf points to an allocation large |
+** enough to contain 'n' buffers of 'sz' bytes each. |
+** |
+** This routine is called from sqlite3_initialize() and so it is guaranteed |
+** to be serialized already. There is no need for further mutexing. |
+*/ |
+void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){ |
+ if( pcache1.isInit ){ |
+ PgFreeslot *p; |
+ sz = ROUNDDOWN8(sz); |
+ pcache1.szSlot = sz; |
+ pcache1.nSlot = pcache1.nFreeSlot = n; |
+ pcache1.nReserve = n>90 ? 10 : (n/10 + 1); |
+ pcache1.pStart = pBuf; |
+ pcache1.pFree = 0; |
+ pcache1.bUnderPressure = 0; |
+ while( n-- ){ |
+ p = (PgFreeslot*)pBuf; |
+ p->pNext = pcache1.pFree; |
+ pcache1.pFree = p; |
+ pBuf = (void*)&((char*)pBuf)[sz]; |
+ } |
+ pcache1.pEnd = pBuf; |
+ } |
+} |
+ |
+/* |
+** Malloc function used within this file to allocate space from the buffer |
+** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no |
+** such buffer exists or there is no space left in it, this function falls |
+** back to sqlite3Malloc(). |
+** |
+** Multiple threads can run this routine at the same time. Global variables |
+** in pcache1 need to be protected via mutex. |
+*/ |
+static void *pcache1Alloc(int nByte){ |
+ void *p = 0; |
+ assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); |
+ sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte); |
+ if( nByte<=pcache1.szSlot ){ |
+ sqlite3_mutex_enter(pcache1.mutex); |
+ p = (PgHdr1 *)pcache1.pFree; |
+ if( p ){ |
+ pcache1.pFree = pcache1.pFree->pNext; |
+ pcache1.nFreeSlot--; |
+ pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; |
+ assert( pcache1.nFreeSlot>=0 ); |
+ sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1); |
+ } |
+ sqlite3_mutex_leave(pcache1.mutex); |
+ } |
+ if( p==0 ){ |
+ /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get |
+ ** it from sqlite3Malloc instead. |
+ */ |
+ p = sqlite3Malloc(nByte); |
+ if( p ){ |
+ int sz = sqlite3MallocSize(p); |
+ sqlite3_mutex_enter(pcache1.mutex); |
+ sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz); |
+ sqlite3_mutex_leave(pcache1.mutex); |
+ } |
+ sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); |
+ } |
+ return p; |
+} |
+ |
+/* |
+** Free an allocated buffer obtained from pcache1Alloc(). |
+*/ |
+static void pcache1Free(void *p){ |
+ if( p==0 ) return; |
+ if( p>=pcache1.pStart && p<pcache1.pEnd ){ |
+ PgFreeslot *pSlot; |
+ sqlite3_mutex_enter(pcache1.mutex); |
+ sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1); |
+ pSlot = (PgFreeslot*)p; |
+ pSlot->pNext = pcache1.pFree; |
+ pcache1.pFree = pSlot; |
+ pcache1.nFreeSlot++; |
+ pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; |
+ assert( pcache1.nFreeSlot<=pcache1.nSlot ); |
+ sqlite3_mutex_leave(pcache1.mutex); |
+ }else{ |
+ int iSize; |
+ assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); |
+ sqlite3MemdebugSetType(p, MEMTYPE_HEAP); |
+ iSize = sqlite3MallocSize(p); |
+ sqlite3_mutex_enter(pcache1.mutex); |
+ sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -iSize); |
+ sqlite3_mutex_leave(pcache1.mutex); |
+ sqlite3_free(p); |
+ } |
+} |
+ |
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
+/* |
+** Return the size of a pcache allocation |
+*/ |
+static int pcache1MemSize(void *p){ |
+ if( p>=pcache1.pStart && p<pcache1.pEnd ){ |
+ return pcache1.szSlot; |
+ }else{ |
+ int iSize; |
+ assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); |
+ sqlite3MemdebugSetType(p, MEMTYPE_HEAP); |
+ iSize = sqlite3MallocSize(p); |
+ sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); |
+ return iSize; |
+ } |
+} |
+#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ |
+ |
+/* |
+** Allocate a new page object initially associated with cache pCache. |
+*/ |
+static PgHdr1 *pcache1AllocPage(PCache1 *pCache){ |
+ int nByte = sizeof(PgHdr1) + pCache->szPage; |
+ void *pPg = pcache1Alloc(nByte); |
+ PgHdr1 *p; |
+ if( pPg ){ |
+ p = PAGE_TO_PGHDR1(pCache, pPg); |
+ if( pCache->bPurgeable ){ |
+ pCache->pGroup->nCurrentPage++; |
+ } |
+ }else{ |
+ p = 0; |
+ } |
+ return p; |
+} |
+ |
+/* |
+** Free a page object allocated by pcache1AllocPage(). |
+** |
+** The pointer is allowed to be NULL, which is prudent. But it turns out |
+** that the current implementation happens to never call this routine |
+** with a NULL pointer, so we mark the NULL test with ALWAYS(). |
+*/ |
+static void pcache1FreePage(PgHdr1 *p){ |
+ if( ALWAYS(p) ){ |
+ PCache1 *pCache = p->pCache; |
+ if( pCache->bPurgeable ){ |
+ pCache->pGroup->nCurrentPage--; |
+ } |
+ pcache1Free(PGHDR1_TO_PAGE(p)); |
+ } |
+} |
+ |
+/* |
+** Malloc function used by SQLite to obtain space from the buffer configured |
+** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer |
+** exists, this function falls back to sqlite3Malloc(). |
+*/ |
+void *sqlite3PageMalloc(int sz){ |
+ return pcache1Alloc(sz); |
+} |
+ |
+/* |
+** Free an allocated buffer obtained from sqlite3PageMalloc(). |
+*/ |
+void sqlite3PageFree(void *p){ |
+ pcache1Free(p); |
+} |
+ |
+ |
+/* |
+** Return true if it desirable to avoid allocating a new page cache |
+** entry. |
+** |
+** If memory was allocated specifically to the page cache using |
+** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then |
+** it is desirable to avoid allocating a new page cache entry because |
+** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient |
+** for all page cache needs and we should not need to spill the |
+** allocation onto the heap. |
+** |
+** Or, the heap is used for all page cache memory put the heap is |
+** under memory pressure, then again it is desirable to avoid |
+** allocating a new page cache entry in order to avoid stressing |
+** the heap even further. |
+*/ |
+static int pcache1UnderMemoryPressure(PCache1 *pCache){ |
+ if( pcache1.nSlot && pCache->szPage<=pcache1.szSlot ){ |
+ return pcache1.bUnderPressure; |
+ }else{ |
+ return sqlite3HeapNearlyFull(); |
+ } |
+} |
+ |
+/******************************************************************************/ |
+/******** General Implementation Functions ************************************/ |
+ |
+/* |
+** This function is used to resize the hash table used by the cache passed |
+** as the first argument. |
+** |
+** The PCache mutex must be held when this function is called. |
+*/ |
+static int pcache1ResizeHash(PCache1 *p){ |
+ PgHdr1 **apNew; |
+ unsigned int nNew; |
+ unsigned int i; |
+ |
+ assert( sqlite3_mutex_held(p->pGroup->mutex) ); |
+ |
+ nNew = p->nHash*2; |
+ if( nNew<256 ){ |
+ nNew = 256; |
+ } |
+ |
+ pcache1LeaveMutex(p->pGroup); |
+ if( p->nHash ){ sqlite3BeginBenignMalloc(); } |
+ apNew = (PgHdr1 **)sqlite3_malloc(sizeof(PgHdr1 *)*nNew); |
+ if( p->nHash ){ sqlite3EndBenignMalloc(); } |
+ pcache1EnterMutex(p->pGroup); |
+ if( apNew ){ |
+ memset(apNew, 0, sizeof(PgHdr1 *)*nNew); |
+ for(i=0; i<p->nHash; i++){ |
+ PgHdr1 *pPage; |
+ PgHdr1 *pNext = p->apHash[i]; |
+ while( (pPage = pNext)!=0 ){ |
+ unsigned int h = pPage->iKey % nNew; |
+ pNext = pPage->pNext; |
+ pPage->pNext = apNew[h]; |
+ apNew[h] = pPage; |
+ } |
+ } |
+ sqlite3_free(p->apHash); |
+ p->apHash = apNew; |
+ p->nHash = nNew; |
+ } |
+ |
+ return (p->apHash ? SQLITE_OK : SQLITE_NOMEM); |
+} |
+ |
+/* |
+** This function is used internally to remove the page pPage from the |
+** PGroup LRU list, if is part of it. If pPage is not part of the PGroup |
+** LRU list, then this function is a no-op. |
+** |
+** The PGroup mutex must be held when this function is called. |
+** |
+** If pPage is NULL then this routine is a no-op. |
+*/ |
+static void pcache1PinPage(PgHdr1 *pPage){ |
+ PCache1 *pCache; |
+ PGroup *pGroup; |
+ |
+ if( pPage==0 ) return; |
+ pCache = pPage->pCache; |
+ pGroup = pCache->pGroup; |
+ assert( sqlite3_mutex_held(pGroup->mutex) ); |
+ if( pPage->pLruNext || pPage==pGroup->pLruTail ){ |
+ if( pPage->pLruPrev ){ |
+ pPage->pLruPrev->pLruNext = pPage->pLruNext; |
+ } |
+ if( pPage->pLruNext ){ |
+ pPage->pLruNext->pLruPrev = pPage->pLruPrev; |
+ } |
+ if( pGroup->pLruHead==pPage ){ |
+ pGroup->pLruHead = pPage->pLruNext; |
+ } |
+ if( pGroup->pLruTail==pPage ){ |
+ pGroup->pLruTail = pPage->pLruPrev; |
+ } |
+ pPage->pLruNext = 0; |
+ pPage->pLruPrev = 0; |
+ pPage->pCache->nRecyclable--; |
+ } |
+} |
+ |
+ |
+/* |
+** Remove the page supplied as an argument from the hash table |
+** (PCache1.apHash structure) that it is currently stored in. |
+** |
+** The PGroup mutex must be held when this function is called. |
+*/ |
+static void pcache1RemoveFromHash(PgHdr1 *pPage){ |
+ unsigned int h; |
+ PCache1 *pCache = pPage->pCache; |
+ PgHdr1 **pp; |
+ |
+ assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); |
+ h = pPage->iKey % pCache->nHash; |
+ for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext); |
+ *pp = (*pp)->pNext; |
+ |
+ pCache->nPage--; |
+} |
+ |
+/* |
+** If there are currently more than nMaxPage pages allocated, try |
+** to recycle pages to reduce the number allocated to nMaxPage. |
+*/ |
+static void pcache1EnforceMaxPage(PGroup *pGroup){ |
+ assert( sqlite3_mutex_held(pGroup->mutex) ); |
+ while( pGroup->nCurrentPage>pGroup->nMaxPage && pGroup->pLruTail ){ |
+ PgHdr1 *p = pGroup->pLruTail; |
+ assert( p->pCache->pGroup==pGroup ); |
+ pcache1PinPage(p); |
+ pcache1RemoveFromHash(p); |
+ pcache1FreePage(p); |
+ } |
+} |
+ |
+/* |
+** Discard all pages from cache pCache with a page number (key value) |
+** greater than or equal to iLimit. Any pinned pages that meet this |
+** criteria are unpinned before they are discarded. |
+** |
+** The PCache mutex must be held when this function is called. |
+*/ |
+static void pcache1TruncateUnsafe( |
+ PCache1 *pCache, /* The cache to truncate */ |
+ unsigned int iLimit /* Drop pages with this pgno or larger */ |
+){ |
+ TESTONLY( unsigned int nPage = 0; ) /* To assert pCache->nPage is correct */ |
+ unsigned int h; |
+ assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); |
+ for(h=0; h<pCache->nHash; h++){ |
+ PgHdr1 **pp = &pCache->apHash[h]; |
+ PgHdr1 *pPage; |
+ while( (pPage = *pp)!=0 ){ |
+ if( pPage->iKey>=iLimit ){ |
+ pCache->nPage--; |
+ *pp = pPage->pNext; |
+ pcache1PinPage(pPage); |
+ pcache1FreePage(pPage); |
+ }else{ |
+ pp = &pPage->pNext; |
+ TESTONLY( nPage++; ) |
+ } |
+ } |
+ } |
+ assert( pCache->nPage==nPage ); |
+} |
+ |
+/******************************************************************************/ |
+/******** sqlite3_pcache Methods **********************************************/ |
+ |
+/* |
+** Implementation of the sqlite3_pcache.xInit method. |
+*/ |
+static int pcache1Init(void *NotUsed){ |
+ UNUSED_PARAMETER(NotUsed); |
+ assert( pcache1.isInit==0 ); |
+ memset(&pcache1, 0, sizeof(pcache1)); |
+ if( sqlite3GlobalConfig.bCoreMutex ){ |
+ pcache1.grp.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU); |
+ pcache1.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PMEM); |
+ } |
+ pcache1.grp.mxPinned = 10; |
+ pcache1.isInit = 1; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Implementation of the sqlite3_pcache.xShutdown method. |
+** Note that the static mutex allocated in xInit does |
+** not need to be freed. |
+*/ |
+static void pcache1Shutdown(void *NotUsed){ |
+ UNUSED_PARAMETER(NotUsed); |
+ assert( pcache1.isInit!=0 ); |
+ memset(&pcache1, 0, sizeof(pcache1)); |
+} |
+ |
+/* |
+** Implementation of the sqlite3_pcache.xCreate method. |
+** |
+** Allocate a new cache. |
+*/ |
+static sqlite3_pcache *pcache1Create(int szPage, int bPurgeable){ |
+ PCache1 *pCache; /* The newly created page cache */ |
+ PGroup *pGroup; /* The group the new page cache will belong to */ |
+ int sz; /* Bytes of memory required to allocate the new cache */ |
+ |
+ /* |
+ ** The seperateCache variable is true if each PCache has its own private |
+ ** PGroup. In other words, separateCache is true for mode (1) where no |
+ ** mutexing is required. |
+ ** |
+ ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT |
+ ** |
+ ** * Always use a unified cache in single-threaded applications |
+ ** |
+ ** * Otherwise (if multi-threaded and ENABLE_MEMORY_MANAGEMENT is off) |
+ ** use separate caches (mode-1) |
+ */ |
+#if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0 |
+ const int separateCache = 0; |
+#else |
+ int separateCache = sqlite3GlobalConfig.bCoreMutex>0; |
+#endif |
+ |
+ sz = sizeof(PCache1) + sizeof(PGroup)*separateCache; |
+ pCache = (PCache1 *)sqlite3_malloc(sz); |
+ if( pCache ){ |
+ memset(pCache, 0, sz); |
+ if( separateCache ){ |
+ pGroup = (PGroup*)&pCache[1]; |
+ pGroup->mxPinned = 10; |
+ }else{ |
+ pGroup = &pcache1_g.grp; |
+ } |
+ pCache->pGroup = pGroup; |
+ pCache->szPage = szPage; |
+ pCache->bPurgeable = (bPurgeable ? 1 : 0); |
+ if( bPurgeable ){ |
+ pCache->nMin = 10; |
+ pcache1EnterMutex(pGroup); |
+ pGroup->nMinPage += pCache->nMin; |
+ pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; |
+ pcache1LeaveMutex(pGroup); |
+ } |
+ } |
+ return (sqlite3_pcache *)pCache; |
+} |
+ |
+/* |
+** Implementation of the sqlite3_pcache.xCachesize method. |
+** |
+** Configure the cache_size limit for a cache. |
+*/ |
+static void pcache1Cachesize(sqlite3_pcache *p, int nMax){ |
+ PCache1 *pCache = (PCache1 *)p; |
+ if( pCache->bPurgeable ){ |
+ PGroup *pGroup = pCache->pGroup; |
+ pcache1EnterMutex(pGroup); |
+ pGroup->nMaxPage += (nMax - pCache->nMax); |
+ pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; |
+ pCache->nMax = nMax; |
+ pCache->n90pct = pCache->nMax*9/10; |
+ pcache1EnforceMaxPage(pGroup); |
+ pcache1LeaveMutex(pGroup); |
+ } |
+} |
+ |
+/* |
+** Implementation of the sqlite3_pcache.xPagecount method. |
+*/ |
+static int pcache1Pagecount(sqlite3_pcache *p){ |
+ int n; |
+ PCache1 *pCache = (PCache1*)p; |
+ pcache1EnterMutex(pCache->pGroup); |
+ n = pCache->nPage; |
+ pcache1LeaveMutex(pCache->pGroup); |
+ return n; |
+} |
+ |
+/* |
+** Implementation of the sqlite3_pcache.xFetch method. |
+** |
+** Fetch a page by key value. |
+** |
+** Whether or not a new page may be allocated by this function depends on |
+** the value of the createFlag argument. 0 means do not allocate a new |
+** page. 1 means allocate a new page if space is easily available. 2 |
+** means to try really hard to allocate a new page. |
+** |
+** For a non-purgeable cache (a cache used as the storage for an in-memory |
+** database) there is really no difference between createFlag 1 and 2. So |
+** the calling function (pcache.c) will never have a createFlag of 1 on |
+** a non-purgable cache. |
+** |
+** There are three different approaches to obtaining space for a page, |
+** depending on the value of parameter createFlag (which may be 0, 1 or 2). |
+** |
+** 1. Regardless of the value of createFlag, the cache is searched for a |
+** copy of the requested page. If one is found, it is returned. |
+** |
+** 2. If createFlag==0 and the page is not already in the cache, NULL is |
+** returned. |
+** |
+** 3. If createFlag is 1, and the page is not already in the cache, then |
+** return NULL (do not allocate a new page) if any of the following |
+** conditions are true: |
+** |
+** (a) the number of pages pinned by the cache is greater than |
+** PCache1.nMax, or |
+** |
+** (b) the number of pages pinned by the cache is greater than |
+** the sum of nMax for all purgeable caches, less the sum of |
+** nMin for all other purgeable caches, or |
+** |
+** 4. If none of the first three conditions apply and the cache is marked |
+** as purgeable, and if one of the following is true: |
+** |
+** (a) The number of pages allocated for the cache is already |
+** PCache1.nMax, or |
+** |
+** (b) The number of pages allocated for all purgeable caches is |
+** already equal to or greater than the sum of nMax for all |
+** purgeable caches, |
+** |
+** (c) The system is under memory pressure and wants to avoid |
+** unnecessary pages cache entry allocations |
+** |
+** then attempt to recycle a page from the LRU list. If it is the right |
+** size, return the recycled buffer. Otherwise, free the buffer and |
+** proceed to step 5. |
+** |
+** 5. Otherwise, allocate and return a new page buffer. |
+*/ |
+static void *pcache1Fetch(sqlite3_pcache *p, unsigned int iKey, int createFlag){ |
+ int nPinned; |
+ PCache1 *pCache = (PCache1 *)p; |
+ PGroup *pGroup; |
+ PgHdr1 *pPage = 0; |
+ |
+ assert( pCache->bPurgeable || createFlag!=1 ); |
+ assert( pCache->bPurgeable || pCache->nMin==0 ); |
+ assert( pCache->bPurgeable==0 || pCache->nMin==10 ); |
+ assert( pCache->nMin==0 || pCache->bPurgeable ); |
+ pcache1EnterMutex(pGroup = pCache->pGroup); |
+ |
+ /* Step 1: Search the hash table for an existing entry. */ |
+ if( pCache->nHash>0 ){ |
+ unsigned int h = iKey % pCache->nHash; |
+ for(pPage=pCache->apHash[h]; pPage&&pPage->iKey!=iKey; pPage=pPage->pNext); |
+ } |
+ |
+ /* Step 2: Abort if no existing page is found and createFlag is 0 */ |
+ if( pPage || createFlag==0 ){ |
+ pcache1PinPage(pPage); |
+ goto fetch_out; |
+ } |
+ |
+ /* The pGroup local variable will normally be initialized by the |
+ ** pcache1EnterMutex() macro above. But if SQLITE_MUTEX_OMIT is defined, |
+ ** then pcache1EnterMutex() is a no-op, so we have to initialize the |
+ ** local variable here. Delaying the initialization of pGroup is an |
+ ** optimization: The common case is to exit the module before reaching |
+ ** this point. |
+ */ |
+#ifdef SQLITE_MUTEX_OMIT |
+ pGroup = pCache->pGroup; |
+#endif |
+ |
+ |
+ /* Step 3: Abort if createFlag is 1 but the cache is nearly full */ |
+ nPinned = pCache->nPage - pCache->nRecyclable; |
+ assert( nPinned>=0 ); |
+ assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage ); |
+ assert( pCache->n90pct == pCache->nMax*9/10 ); |
+ if( createFlag==1 && ( |
+ nPinned>=pGroup->mxPinned |
+ || nPinned>=(int)pCache->n90pct |
+ || pcache1UnderMemoryPressure(pCache) |
+ )){ |
+ goto fetch_out; |
+ } |
+ |
+ if( pCache->nPage>=pCache->nHash && pcache1ResizeHash(pCache) ){ |
+ goto fetch_out; |
+ } |
+ |
+ /* Step 4. Try to recycle a page. */ |
+ if( pCache->bPurgeable && pGroup->pLruTail && ( |
+ (pCache->nPage+1>=pCache->nMax) |
+ || pGroup->nCurrentPage>=pGroup->nMaxPage |
+ || pcache1UnderMemoryPressure(pCache) |
+ )){ |
+ PCache1 *pOtherCache; |
+ pPage = pGroup->pLruTail; |
+ pcache1RemoveFromHash(pPage); |
+ pcache1PinPage(pPage); |
+ if( (pOtherCache = pPage->pCache)->szPage!=pCache->szPage ){ |
+ pcache1FreePage(pPage); |
+ pPage = 0; |
+ }else{ |
+ pGroup->nCurrentPage -= |
+ (pOtherCache->bPurgeable - pCache->bPurgeable); |
+ } |
+ } |
+ |
+ /* Step 5. If a usable page buffer has still not been found, |
+ ** attempt to allocate a new one. |
+ */ |
+ if( !pPage ){ |
+ if( createFlag==1 ) sqlite3BeginBenignMalloc(); |
+ pcache1LeaveMutex(pGroup); |
+ pPage = pcache1AllocPage(pCache); |
+ pcache1EnterMutex(pGroup); |
+ if( createFlag==1 ) sqlite3EndBenignMalloc(); |
+ } |
+ |
+ if( pPage ){ |
+ unsigned int h = iKey % pCache->nHash; |
+ pCache->nPage++; |
+ pPage->iKey = iKey; |
+ pPage->pNext = pCache->apHash[h]; |
+ pPage->pCache = pCache; |
+ pPage->pLruPrev = 0; |
+ pPage->pLruNext = 0; |
+ *(void **)(PGHDR1_TO_PAGE(pPage)) = 0; |
+ pCache->apHash[h] = pPage; |
+ } |
+ |
+fetch_out: |
+ if( pPage && iKey>pCache->iMaxKey ){ |
+ pCache->iMaxKey = iKey; |
+ } |
+ pcache1LeaveMutex(pGroup); |
+ return (pPage ? PGHDR1_TO_PAGE(pPage) : 0); |
+} |
+ |
+ |
+/* |
+** Implementation of the sqlite3_pcache.xUnpin method. |
+** |
+** Mark a page as unpinned (eligible for asynchronous recycling). |
+*/ |
+static void pcache1Unpin(sqlite3_pcache *p, void *pPg, int reuseUnlikely){ |
+ PCache1 *pCache = (PCache1 *)p; |
+ PgHdr1 *pPage = PAGE_TO_PGHDR1(pCache, pPg); |
+ PGroup *pGroup = pCache->pGroup; |
+ |
+ assert( pPage->pCache==pCache ); |
+ pcache1EnterMutex(pGroup); |
+ |
+ /* It is an error to call this function if the page is already |
+ ** part of the PGroup LRU list. |
+ */ |
+ assert( pPage->pLruPrev==0 && pPage->pLruNext==0 ); |
+ assert( pGroup->pLruHead!=pPage && pGroup->pLruTail!=pPage ); |
+ |
+ if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){ |
+ pcache1RemoveFromHash(pPage); |
+ pcache1FreePage(pPage); |
+ }else{ |
+ /* Add the page to the PGroup LRU list. */ |
+ if( pGroup->pLruHead ){ |
+ pGroup->pLruHead->pLruPrev = pPage; |
+ pPage->pLruNext = pGroup->pLruHead; |
+ pGroup->pLruHead = pPage; |
+ }else{ |
+ pGroup->pLruTail = pPage; |
+ pGroup->pLruHead = pPage; |
+ } |
+ pCache->nRecyclable++; |
+ } |
+ |
+ pcache1LeaveMutex(pCache->pGroup); |
+} |
+ |
+/* |
+** Implementation of the sqlite3_pcache.xRekey method. |
+*/ |
+static void pcache1Rekey( |
+ sqlite3_pcache *p, |
+ void *pPg, |
+ unsigned int iOld, |
+ unsigned int iNew |
+){ |
+ PCache1 *pCache = (PCache1 *)p; |
+ PgHdr1 *pPage = PAGE_TO_PGHDR1(pCache, pPg); |
+ PgHdr1 **pp; |
+ unsigned int h; |
+ assert( pPage->iKey==iOld ); |
+ assert( pPage->pCache==pCache ); |
+ |
+ pcache1EnterMutex(pCache->pGroup); |
+ |
+ h = iOld%pCache->nHash; |
+ pp = &pCache->apHash[h]; |
+ while( (*pp)!=pPage ){ |
+ pp = &(*pp)->pNext; |
+ } |
+ *pp = pPage->pNext; |
+ |
+ h = iNew%pCache->nHash; |
+ pPage->iKey = iNew; |
+ pPage->pNext = pCache->apHash[h]; |
+ pCache->apHash[h] = pPage; |
+ if( iNew>pCache->iMaxKey ){ |
+ pCache->iMaxKey = iNew; |
+ } |
+ |
+ pcache1LeaveMutex(pCache->pGroup); |
+} |
+ |
+/* |
+** Implementation of the sqlite3_pcache.xTruncate method. |
+** |
+** Discard all unpinned pages in the cache with a page number equal to |
+** or greater than parameter iLimit. Any pinned pages with a page number |
+** equal to or greater than iLimit are implicitly unpinned. |
+*/ |
+static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){ |
+ PCache1 *pCache = (PCache1 *)p; |
+ pcache1EnterMutex(pCache->pGroup); |
+ if( iLimit<=pCache->iMaxKey ){ |
+ pcache1TruncateUnsafe(pCache, iLimit); |
+ pCache->iMaxKey = iLimit-1; |
+ } |
+ pcache1LeaveMutex(pCache->pGroup); |
+} |
+ |
+/* |
+** Implementation of the sqlite3_pcache.xDestroy method. |
+** |
+** Destroy a cache allocated using pcache1Create(). |
+*/ |
+static void pcache1Destroy(sqlite3_pcache *p){ |
+ PCache1 *pCache = (PCache1 *)p; |
+ PGroup *pGroup = pCache->pGroup; |
+ assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) ); |
+ pcache1EnterMutex(pGroup); |
+ pcache1TruncateUnsafe(pCache, 0); |
+ pGroup->nMaxPage -= pCache->nMax; |
+ pGroup->nMinPage -= pCache->nMin; |
+ pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; |
+ pcache1EnforceMaxPage(pGroup); |
+ pcache1LeaveMutex(pGroup); |
+ sqlite3_free(pCache->apHash); |
+ sqlite3_free(pCache); |
+} |
+ |
+/* |
+** This function is called during initialization (sqlite3_initialize()) to |
+** install the default pluggable cache module, assuming the user has not |
+** already provided an alternative. |
+*/ |
+void sqlite3PCacheSetDefault(void){ |
+ static const sqlite3_pcache_methods defaultMethods = { |
+ 0, /* pArg */ |
+ pcache1Init, /* xInit */ |
+ pcache1Shutdown, /* xShutdown */ |
+ pcache1Create, /* xCreate */ |
+ pcache1Cachesize, /* xCachesize */ |
+ pcache1Pagecount, /* xPagecount */ |
+ pcache1Fetch, /* xFetch */ |
+ pcache1Unpin, /* xUnpin */ |
+ pcache1Rekey, /* xRekey */ |
+ pcache1Truncate, /* xTruncate */ |
+ pcache1Destroy /* xDestroy */ |
+ }; |
+ sqlite3_config(SQLITE_CONFIG_PCACHE, &defaultMethods); |
+} |
+ |
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
+/* |
+** This function is called to free superfluous dynamically allocated memory |
+** held by the pager system. Memory in use by any SQLite pager allocated |
+** by the current thread may be sqlite3_free()ed. |
+** |
+** nReq is the number of bytes of memory required. Once this much has |
+** been released, the function returns. The return value is the total number |
+** of bytes of memory released. |
+*/ |
+int sqlite3PcacheReleaseMemory(int nReq){ |
+ int nFree = 0; |
+ assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); |
+ assert( sqlite3_mutex_notheld(pcache1.mutex) ); |
+ if( pcache1.pStart==0 ){ |
+ PgHdr1 *p; |
+ pcache1EnterMutex(&pcache1.grp); |
+ while( (nReq<0 || nFree<nReq) && ((p=pcache1.grp.pLruTail)!=0) ){ |
+ nFree += pcache1MemSize(PGHDR1_TO_PAGE(p)); |
+ pcache1PinPage(p); |
+ pcache1RemoveFromHash(p); |
+ pcache1FreePage(p); |
+ } |
+ pcache1LeaveMutex(&pcache1.grp); |
+ } |
+ return nFree; |
+} |
+#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ |
+ |
+#ifdef SQLITE_TEST |
+/* |
+** This function is used by test procedures to inspect the internal state |
+** of the global cache. |
+*/ |
+void sqlite3PcacheStats( |
+ int *pnCurrent, /* OUT: Total number of pages cached */ |
+ int *pnMax, /* OUT: Global maximum cache size */ |
+ int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */ |
+ int *pnRecyclable /* OUT: Total number of pages available for recycling */ |
+){ |
+ PgHdr1 *p; |
+ int nRecyclable = 0; |
+ for(p=pcache1.grp.pLruHead; p; p=p->pLruNext){ |
+ nRecyclable++; |
+ } |
+ *pnCurrent = pcache1.grp.nCurrentPage; |
+ *pnMax = pcache1.grp.nMaxPage; |
+ *pnMin = pcache1.grp.nMinPage; |
+ *pnRecyclable = nRecyclable; |
+} |
+#endif |