Index: third_party/sqlite/sqlite-src-3070603/src/vdbemem.c |
diff --git a/third_party/sqlite/sqlite-src-3070603/src/vdbemem.c b/third_party/sqlite/sqlite-src-3070603/src/vdbemem.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..882c686334a1b17fc02988765a3d83018b2dd919 |
--- /dev/null |
+++ b/third_party/sqlite/sqlite-src-3070603/src/vdbemem.c |
@@ -0,0 +1,1159 @@ |
+/* |
+** 2004 May 26 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+************************************************************************* |
+** |
+** This file contains code use to manipulate "Mem" structure. A "Mem" |
+** stores a single value in the VDBE. Mem is an opaque structure visible |
+** only within the VDBE. Interface routines refer to a Mem using the |
+** name sqlite_value |
+*/ |
+#include "sqliteInt.h" |
+#include "vdbeInt.h" |
+ |
+/* |
+** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*) |
+** P if required. |
+*/ |
+#define expandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0) |
+ |
+/* |
+** If pMem is an object with a valid string representation, this routine |
+** ensures the internal encoding for the string representation is |
+** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. |
+** |
+** If pMem is not a string object, or the encoding of the string |
+** representation is already stored using the requested encoding, then this |
+** routine is a no-op. |
+** |
+** SQLITE_OK is returned if the conversion is successful (or not required). |
+** SQLITE_NOMEM may be returned if a malloc() fails during conversion |
+** between formats. |
+*/ |
+int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ |
+ int rc; |
+ assert( (pMem->flags&MEM_RowSet)==0 ); |
+ assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE |
+ || desiredEnc==SQLITE_UTF16BE ); |
+ if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){ |
+ return SQLITE_OK; |
+ } |
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
+#ifdef SQLITE_OMIT_UTF16 |
+ return SQLITE_ERROR; |
+#else |
+ |
+ /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, |
+ ** then the encoding of the value may not have changed. |
+ */ |
+ rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc); |
+ assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); |
+ assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); |
+ assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); |
+ return rc; |
+#endif |
+} |
+ |
+/* |
+** Make sure pMem->z points to a writable allocation of at least |
+** n bytes. |
+** |
+** If the memory cell currently contains string or blob data |
+** and the third argument passed to this function is true, the |
+** current content of the cell is preserved. Otherwise, it may |
+** be discarded. |
+** |
+** This function sets the MEM_Dyn flag and clears any xDel callback. |
+** It also clears MEM_Ephem and MEM_Static. If the preserve flag is |
+** not set, Mem.n is zeroed. |
+*/ |
+int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve){ |
+ assert( 1 >= |
+ ((pMem->zMalloc && pMem->zMalloc==pMem->z) ? 1 : 0) + |
+ (((pMem->flags&MEM_Dyn)&&pMem->xDel) ? 1 : 0) + |
+ ((pMem->flags&MEM_Ephem) ? 1 : 0) + |
+ ((pMem->flags&MEM_Static) ? 1 : 0) |
+ ); |
+ assert( (pMem->flags&MEM_RowSet)==0 ); |
+ |
+ if( n<32 ) n = 32; |
+ if( sqlite3DbMallocSize(pMem->db, pMem->zMalloc)<n ){ |
+ if( preserve && pMem->z==pMem->zMalloc ){ |
+ pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); |
+ preserve = 0; |
+ }else{ |
+ sqlite3DbFree(pMem->db, pMem->zMalloc); |
+ pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); |
+ } |
+ } |
+ |
+ if( pMem->z && preserve && pMem->zMalloc && pMem->z!=pMem->zMalloc ){ |
+ memcpy(pMem->zMalloc, pMem->z, pMem->n); |
+ } |
+ if( pMem->flags&MEM_Dyn && pMem->xDel ){ |
+ pMem->xDel((void *)(pMem->z)); |
+ } |
+ |
+ pMem->z = pMem->zMalloc; |
+ if( pMem->z==0 ){ |
+ pMem->flags = MEM_Null; |
+ }else{ |
+ pMem->flags &= ~(MEM_Ephem|MEM_Static); |
+ } |
+ pMem->xDel = 0; |
+ return (pMem->z ? SQLITE_OK : SQLITE_NOMEM); |
+} |
+ |
+/* |
+** Make the given Mem object MEM_Dyn. In other words, make it so |
+** that any TEXT or BLOB content is stored in memory obtained from |
+** malloc(). In this way, we know that the memory is safe to be |
+** overwritten or altered. |
+** |
+** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. |
+*/ |
+int sqlite3VdbeMemMakeWriteable(Mem *pMem){ |
+ int f; |
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
+ assert( (pMem->flags&MEM_RowSet)==0 ); |
+ expandBlob(pMem); |
+ f = pMem->flags; |
+ if( (f&(MEM_Str|MEM_Blob)) && pMem->z!=pMem->zMalloc ){ |
+ if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){ |
+ return SQLITE_NOMEM; |
+ } |
+ pMem->z[pMem->n] = 0; |
+ pMem->z[pMem->n+1] = 0; |
+ pMem->flags |= MEM_Term; |
+#ifdef SQLITE_DEBUG |
+ pMem->pScopyFrom = 0; |
+#endif |
+ } |
+ |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** If the given Mem* has a zero-filled tail, turn it into an ordinary |
+** blob stored in dynamically allocated space. |
+*/ |
+#ifndef SQLITE_OMIT_INCRBLOB |
+int sqlite3VdbeMemExpandBlob(Mem *pMem){ |
+ if( pMem->flags & MEM_Zero ){ |
+ int nByte; |
+ assert( pMem->flags&MEM_Blob ); |
+ assert( (pMem->flags&MEM_RowSet)==0 ); |
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
+ |
+ /* Set nByte to the number of bytes required to store the expanded blob. */ |
+ nByte = pMem->n + pMem->u.nZero; |
+ if( nByte<=0 ){ |
+ nByte = 1; |
+ } |
+ if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){ |
+ return SQLITE_NOMEM; |
+ } |
+ |
+ memset(&pMem->z[pMem->n], 0, pMem->u.nZero); |
+ pMem->n += pMem->u.nZero; |
+ pMem->flags &= ~(MEM_Zero|MEM_Term); |
+ } |
+ return SQLITE_OK; |
+} |
+#endif |
+ |
+ |
+/* |
+** Make sure the given Mem is \u0000 terminated. |
+*/ |
+int sqlite3VdbeMemNulTerminate(Mem *pMem){ |
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
+ if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){ |
+ return SQLITE_OK; /* Nothing to do */ |
+ } |
+ if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){ |
+ return SQLITE_NOMEM; |
+ } |
+ pMem->z[pMem->n] = 0; |
+ pMem->z[pMem->n+1] = 0; |
+ pMem->flags |= MEM_Term; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Add MEM_Str to the set of representations for the given Mem. Numbers |
+** are converted using sqlite3_snprintf(). Converting a BLOB to a string |
+** is a no-op. |
+** |
+** Existing representations MEM_Int and MEM_Real are *not* invalidated. |
+** |
+** A MEM_Null value will never be passed to this function. This function is |
+** used for converting values to text for returning to the user (i.e. via |
+** sqlite3_value_text()), or for ensuring that values to be used as btree |
+** keys are strings. In the former case a NULL pointer is returned the |
+** user and the later is an internal programming error. |
+*/ |
+int sqlite3VdbeMemStringify(Mem *pMem, int enc){ |
+ int rc = SQLITE_OK; |
+ int fg = pMem->flags; |
+ const int nByte = 32; |
+ |
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
+ assert( !(fg&MEM_Zero) ); |
+ assert( !(fg&(MEM_Str|MEM_Blob)) ); |
+ assert( fg&(MEM_Int|MEM_Real) ); |
+ assert( (pMem->flags&MEM_RowSet)==0 ); |
+ assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
+ |
+ |
+ if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){ |
+ return SQLITE_NOMEM; |
+ } |
+ |
+ /* For a Real or Integer, use sqlite3_mprintf() to produce the UTF-8 |
+ ** string representation of the value. Then, if the required encoding |
+ ** is UTF-16le or UTF-16be do a translation. |
+ ** |
+ ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16. |
+ */ |
+ if( fg & MEM_Int ){ |
+ sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i); |
+ }else{ |
+ assert( fg & MEM_Real ); |
+ sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->r); |
+ } |
+ pMem->n = sqlite3Strlen30(pMem->z); |
+ pMem->enc = SQLITE_UTF8; |
+ pMem->flags |= MEM_Str|MEM_Term; |
+ sqlite3VdbeChangeEncoding(pMem, enc); |
+ return rc; |
+} |
+ |
+/* |
+** Memory cell pMem contains the context of an aggregate function. |
+** This routine calls the finalize method for that function. The |
+** result of the aggregate is stored back into pMem. |
+** |
+** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK |
+** otherwise. |
+*/ |
+int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ |
+ int rc = SQLITE_OK; |
+ if( ALWAYS(pFunc && pFunc->xFinalize) ){ |
+ sqlite3_context ctx; |
+ assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); |
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
+ memset(&ctx, 0, sizeof(ctx)); |
+ ctx.s.flags = MEM_Null; |
+ ctx.s.db = pMem->db; |
+ ctx.pMem = pMem; |
+ ctx.pFunc = pFunc; |
+ pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */ |
+ assert( 0==(pMem->flags&MEM_Dyn) && !pMem->xDel ); |
+ sqlite3DbFree(pMem->db, pMem->zMalloc); |
+ memcpy(pMem, &ctx.s, sizeof(ctx.s)); |
+ rc = ctx.isError; |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** If the memory cell contains a string value that must be freed by |
+** invoking an external callback, free it now. Calling this function |
+** does not free any Mem.zMalloc buffer. |
+*/ |
+void sqlite3VdbeMemReleaseExternal(Mem *p){ |
+ assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); |
+ testcase( p->flags & MEM_Agg ); |
+ testcase( p->flags & MEM_Dyn ); |
+ testcase( p->flags & MEM_RowSet ); |
+ testcase( p->flags & MEM_Frame ); |
+ if( p->flags&(MEM_Agg|MEM_Dyn|MEM_RowSet|MEM_Frame) ){ |
+ if( p->flags&MEM_Agg ){ |
+ sqlite3VdbeMemFinalize(p, p->u.pDef); |
+ assert( (p->flags & MEM_Agg)==0 ); |
+ sqlite3VdbeMemRelease(p); |
+ }else if( p->flags&MEM_Dyn && p->xDel ){ |
+ assert( (p->flags&MEM_RowSet)==0 ); |
+ p->xDel((void *)p->z); |
+ p->xDel = 0; |
+ }else if( p->flags&MEM_RowSet ){ |
+ sqlite3RowSetClear(p->u.pRowSet); |
+ }else if( p->flags&MEM_Frame ){ |
+ sqlite3VdbeMemSetNull(p); |
+ } |
+ } |
+} |
+ |
+/* |
+** Release any memory held by the Mem. This may leave the Mem in an |
+** inconsistent state, for example with (Mem.z==0) and |
+** (Mem.type==SQLITE_TEXT). |
+*/ |
+void sqlite3VdbeMemRelease(Mem *p){ |
+ sqlite3VdbeMemReleaseExternal(p); |
+ sqlite3DbFree(p->db, p->zMalloc); |
+ p->z = 0; |
+ p->zMalloc = 0; |
+ p->xDel = 0; |
+} |
+ |
+/* |
+** Convert a 64-bit IEEE double into a 64-bit signed integer. |
+** If the double is too large, return 0x8000000000000000. |
+** |
+** Most systems appear to do this simply by assigning |
+** variables and without the extra range tests. But |
+** there are reports that windows throws an expection |
+** if the floating point value is out of range. (See ticket #2880.) |
+** Because we do not completely understand the problem, we will |
+** take the conservative approach and always do range tests |
+** before attempting the conversion. |
+*/ |
+static i64 doubleToInt64(double r){ |
+#ifdef SQLITE_OMIT_FLOATING_POINT |
+ /* When floating-point is omitted, double and int64 are the same thing */ |
+ return r; |
+#else |
+ /* |
+ ** Many compilers we encounter do not define constants for the |
+ ** minimum and maximum 64-bit integers, or they define them |
+ ** inconsistently. And many do not understand the "LL" notation. |
+ ** So we define our own static constants here using nothing |
+ ** larger than a 32-bit integer constant. |
+ */ |
+ static const i64 maxInt = LARGEST_INT64; |
+ static const i64 minInt = SMALLEST_INT64; |
+ |
+ if( r<(double)minInt ){ |
+ return minInt; |
+ }else if( r>(double)maxInt ){ |
+ /* minInt is correct here - not maxInt. It turns out that assigning |
+ ** a very large positive number to an integer results in a very large |
+ ** negative integer. This makes no sense, but it is what x86 hardware |
+ ** does so for compatibility we will do the same in software. */ |
+ return minInt; |
+ }else{ |
+ return (i64)r; |
+ } |
+#endif |
+} |
+ |
+/* |
+** Return some kind of integer value which is the best we can do |
+** at representing the value that *pMem describes as an integer. |
+** If pMem is an integer, then the value is exact. If pMem is |
+** a floating-point then the value returned is the integer part. |
+** If pMem is a string or blob, then we make an attempt to convert |
+** it into a integer and return that. If pMem represents an |
+** an SQL-NULL value, return 0. |
+** |
+** If pMem represents a string value, its encoding might be changed. |
+*/ |
+i64 sqlite3VdbeIntValue(Mem *pMem){ |
+ int flags; |
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
+ assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
+ flags = pMem->flags; |
+ if( flags & MEM_Int ){ |
+ return pMem->u.i; |
+ }else if( flags & MEM_Real ){ |
+ return doubleToInt64(pMem->r); |
+ }else if( flags & (MEM_Str|MEM_Blob) ){ |
+ i64 value = 0; |
+ assert( pMem->z || pMem->n==0 ); |
+ testcase( pMem->z==0 ); |
+ sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc); |
+ return value; |
+ }else{ |
+ return 0; |
+ } |
+} |
+ |
+/* |
+** Return the best representation of pMem that we can get into a |
+** double. If pMem is already a double or an integer, return its |
+** value. If it is a string or blob, try to convert it to a double. |
+** If it is a NULL, return 0.0. |
+*/ |
+double sqlite3VdbeRealValue(Mem *pMem){ |
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
+ assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
+ if( pMem->flags & MEM_Real ){ |
+ return pMem->r; |
+ }else if( pMem->flags & MEM_Int ){ |
+ return (double)pMem->u.i; |
+ }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ |
+ /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ |
+ double val = (double)0; |
+ sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc); |
+ return val; |
+ }else{ |
+ /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ |
+ return (double)0; |
+ } |
+} |
+ |
+/* |
+** The MEM structure is already a MEM_Real. Try to also make it a |
+** MEM_Int if we can. |
+*/ |
+void sqlite3VdbeIntegerAffinity(Mem *pMem){ |
+ assert( pMem->flags & MEM_Real ); |
+ assert( (pMem->flags & MEM_RowSet)==0 ); |
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
+ assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
+ |
+ pMem->u.i = doubleToInt64(pMem->r); |
+ |
+ /* Only mark the value as an integer if |
+ ** |
+ ** (1) the round-trip conversion real->int->real is a no-op, and |
+ ** (2) The integer is neither the largest nor the smallest |
+ ** possible integer (ticket #3922) |
+ ** |
+ ** The second and third terms in the following conditional enforces |
+ ** the second condition under the assumption that addition overflow causes |
+ ** values to wrap around. On x86 hardware, the third term is always |
+ ** true and could be omitted. But we leave it in because other |
+ ** architectures might behave differently. |
+ */ |
+ if( pMem->r==(double)pMem->u.i && pMem->u.i>SMALLEST_INT64 |
+ && ALWAYS(pMem->u.i<LARGEST_INT64) ){ |
+ pMem->flags |= MEM_Int; |
+ } |
+} |
+ |
+/* |
+** Convert pMem to type integer. Invalidate any prior representations. |
+*/ |
+int sqlite3VdbeMemIntegerify(Mem *pMem){ |
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
+ assert( (pMem->flags & MEM_RowSet)==0 ); |
+ assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
+ |
+ pMem->u.i = sqlite3VdbeIntValue(pMem); |
+ MemSetTypeFlag(pMem, MEM_Int); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Convert pMem so that it is of type MEM_Real. |
+** Invalidate any prior representations. |
+*/ |
+int sqlite3VdbeMemRealify(Mem *pMem){ |
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
+ assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
+ |
+ pMem->r = sqlite3VdbeRealValue(pMem); |
+ MemSetTypeFlag(pMem, MEM_Real); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Convert pMem so that it has types MEM_Real or MEM_Int or both. |
+** Invalidate any prior representations. |
+** |
+** Every effort is made to force the conversion, even if the input |
+** is a string that does not look completely like a number. Convert |
+** as much of the string as we can and ignore the rest. |
+*/ |
+int sqlite3VdbeMemNumerify(Mem *pMem){ |
+ if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){ |
+ assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); |
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
+ if( 0==sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc) ){ |
+ MemSetTypeFlag(pMem, MEM_Int); |
+ }else{ |
+ pMem->r = sqlite3VdbeRealValue(pMem); |
+ MemSetTypeFlag(pMem, MEM_Real); |
+ sqlite3VdbeIntegerAffinity(pMem); |
+ } |
+ } |
+ assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 ); |
+ pMem->flags &= ~(MEM_Str|MEM_Blob); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Delete any previous value and set the value stored in *pMem to NULL. |
+*/ |
+void sqlite3VdbeMemSetNull(Mem *pMem){ |
+ if( pMem->flags & MEM_Frame ){ |
+ VdbeFrame *pFrame = pMem->u.pFrame; |
+ pFrame->pParent = pFrame->v->pDelFrame; |
+ pFrame->v->pDelFrame = pFrame; |
+ } |
+ if( pMem->flags & MEM_RowSet ){ |
+ sqlite3RowSetClear(pMem->u.pRowSet); |
+ } |
+ MemSetTypeFlag(pMem, MEM_Null); |
+ pMem->type = SQLITE_NULL; |
+} |
+ |
+/* |
+** Delete any previous value and set the value to be a BLOB of length |
+** n containing all zeros. |
+*/ |
+void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ |
+ sqlite3VdbeMemRelease(pMem); |
+ pMem->flags = MEM_Blob|MEM_Zero; |
+ pMem->type = SQLITE_BLOB; |
+ pMem->n = 0; |
+ if( n<0 ) n = 0; |
+ pMem->u.nZero = n; |
+ pMem->enc = SQLITE_UTF8; |
+ |
+#ifdef SQLITE_OMIT_INCRBLOB |
+ sqlite3VdbeMemGrow(pMem, n, 0); |
+ if( pMem->z ){ |
+ pMem->n = n; |
+ memset(pMem->z, 0, n); |
+ } |
+#endif |
+} |
+ |
+/* |
+** Delete any previous value and set the value stored in *pMem to val, |
+** manifest type INTEGER. |
+*/ |
+void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ |
+ sqlite3VdbeMemRelease(pMem); |
+ pMem->u.i = val; |
+ pMem->flags = MEM_Int; |
+ pMem->type = SQLITE_INTEGER; |
+} |
+ |
+#ifndef SQLITE_OMIT_FLOATING_POINT |
+/* |
+** Delete any previous value and set the value stored in *pMem to val, |
+** manifest type REAL. |
+*/ |
+void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ |
+ if( sqlite3IsNaN(val) ){ |
+ sqlite3VdbeMemSetNull(pMem); |
+ }else{ |
+ sqlite3VdbeMemRelease(pMem); |
+ pMem->r = val; |
+ pMem->flags = MEM_Real; |
+ pMem->type = SQLITE_FLOAT; |
+ } |
+} |
+#endif |
+ |
+/* |
+** Delete any previous value and set the value of pMem to be an |
+** empty boolean index. |
+*/ |
+void sqlite3VdbeMemSetRowSet(Mem *pMem){ |
+ sqlite3 *db = pMem->db; |
+ assert( db!=0 ); |
+ assert( (pMem->flags & MEM_RowSet)==0 ); |
+ sqlite3VdbeMemRelease(pMem); |
+ pMem->zMalloc = sqlite3DbMallocRaw(db, 64); |
+ if( db->mallocFailed ){ |
+ pMem->flags = MEM_Null; |
+ }else{ |
+ assert( pMem->zMalloc ); |
+ pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, |
+ sqlite3DbMallocSize(db, pMem->zMalloc)); |
+ assert( pMem->u.pRowSet!=0 ); |
+ pMem->flags = MEM_RowSet; |
+ } |
+} |
+ |
+/* |
+** Return true if the Mem object contains a TEXT or BLOB that is |
+** too large - whose size exceeds SQLITE_MAX_LENGTH. |
+*/ |
+int sqlite3VdbeMemTooBig(Mem *p){ |
+ assert( p->db!=0 ); |
+ if( p->flags & (MEM_Str|MEM_Blob) ){ |
+ int n = p->n; |
+ if( p->flags & MEM_Zero ){ |
+ n += p->u.nZero; |
+ } |
+ return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; |
+ } |
+ return 0; |
+} |
+ |
+#ifdef SQLITE_DEBUG |
+/* |
+** This routine prepares a memory cell for modication by breaking |
+** its link to a shallow copy and by marking any current shallow |
+** copies of this cell as invalid. |
+** |
+** This is used for testing and debugging only - to make sure shallow |
+** copies are not misused. |
+*/ |
+void sqlite3VdbeMemPrepareToChange(Vdbe *pVdbe, Mem *pMem){ |
+ int i; |
+ Mem *pX; |
+ for(i=1, pX=&pVdbe->aMem[1]; i<=pVdbe->nMem; i++, pX++){ |
+ if( pX->pScopyFrom==pMem ){ |
+ pX->flags |= MEM_Invalid; |
+ pX->pScopyFrom = 0; |
+ } |
+ } |
+ pMem->pScopyFrom = 0; |
+} |
+#endif /* SQLITE_DEBUG */ |
+ |
+/* |
+** Size of struct Mem not including the Mem.zMalloc member. |
+*/ |
+#define MEMCELLSIZE (size_t)(&(((Mem *)0)->zMalloc)) |
+ |
+/* |
+** Make an shallow copy of pFrom into pTo. Prior contents of |
+** pTo are freed. The pFrom->z field is not duplicated. If |
+** pFrom->z is used, then pTo->z points to the same thing as pFrom->z |
+** and flags gets srcType (either MEM_Ephem or MEM_Static). |
+*/ |
+void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ |
+ assert( (pFrom->flags & MEM_RowSet)==0 ); |
+ sqlite3VdbeMemReleaseExternal(pTo); |
+ memcpy(pTo, pFrom, MEMCELLSIZE); |
+ pTo->xDel = 0; |
+ if( (pFrom->flags&MEM_Static)==0 ){ |
+ pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); |
+ assert( srcType==MEM_Ephem || srcType==MEM_Static ); |
+ pTo->flags |= srcType; |
+ } |
+} |
+ |
+/* |
+** Make a full copy of pFrom into pTo. Prior contents of pTo are |
+** freed before the copy is made. |
+*/ |
+int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ |
+ int rc = SQLITE_OK; |
+ |
+ assert( (pFrom->flags & MEM_RowSet)==0 ); |
+ sqlite3VdbeMemReleaseExternal(pTo); |
+ memcpy(pTo, pFrom, MEMCELLSIZE); |
+ pTo->flags &= ~MEM_Dyn; |
+ |
+ if( pTo->flags&(MEM_Str|MEM_Blob) ){ |
+ if( 0==(pFrom->flags&MEM_Static) ){ |
+ pTo->flags |= MEM_Ephem; |
+ rc = sqlite3VdbeMemMakeWriteable(pTo); |
+ } |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** Transfer the contents of pFrom to pTo. Any existing value in pTo is |
+** freed. If pFrom contains ephemeral data, a copy is made. |
+** |
+** pFrom contains an SQL NULL when this routine returns. |
+*/ |
+void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ |
+ assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); |
+ assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); |
+ assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); |
+ |
+ sqlite3VdbeMemRelease(pTo); |
+ memcpy(pTo, pFrom, sizeof(Mem)); |
+ pFrom->flags = MEM_Null; |
+ pFrom->xDel = 0; |
+ pFrom->zMalloc = 0; |
+} |
+ |
+/* |
+** Change the value of a Mem to be a string or a BLOB. |
+** |
+** The memory management strategy depends on the value of the xDel |
+** parameter. If the value passed is SQLITE_TRANSIENT, then the |
+** string is copied into a (possibly existing) buffer managed by the |
+** Mem structure. Otherwise, any existing buffer is freed and the |
+** pointer copied. |
+** |
+** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH |
+** size limit) then no memory allocation occurs. If the string can be |
+** stored without allocating memory, then it is. If a memory allocation |
+** is required to store the string, then value of pMem is unchanged. In |
+** either case, SQLITE_TOOBIG is returned. |
+*/ |
+int sqlite3VdbeMemSetStr( |
+ Mem *pMem, /* Memory cell to set to string value */ |
+ const char *z, /* String pointer */ |
+ int n, /* Bytes in string, or negative */ |
+ u8 enc, /* Encoding of z. 0 for BLOBs */ |
+ void (*xDel)(void*) /* Destructor function */ |
+){ |
+ int nByte = n; /* New value for pMem->n */ |
+ int iLimit; /* Maximum allowed string or blob size */ |
+ u16 flags = 0; /* New value for pMem->flags */ |
+ |
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
+ assert( (pMem->flags & MEM_RowSet)==0 ); |
+ |
+ /* If z is a NULL pointer, set pMem to contain an SQL NULL. */ |
+ if( !z ){ |
+ sqlite3VdbeMemSetNull(pMem); |
+ return SQLITE_OK; |
+ } |
+ |
+ if( pMem->db ){ |
+ iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH]; |
+ }else{ |
+ iLimit = SQLITE_MAX_LENGTH; |
+ } |
+ flags = (enc==0?MEM_Blob:MEM_Str); |
+ if( nByte<0 ){ |
+ assert( enc!=0 ); |
+ if( enc==SQLITE_UTF8 ){ |
+ for(nByte=0; nByte<=iLimit && z[nByte]; nByte++){} |
+ }else{ |
+ for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){} |
+ } |
+ flags |= MEM_Term; |
+ } |
+ |
+ /* The following block sets the new values of Mem.z and Mem.xDel. It |
+ ** also sets a flag in local variable "flags" to indicate the memory |
+ ** management (one of MEM_Dyn or MEM_Static). |
+ */ |
+ if( xDel==SQLITE_TRANSIENT ){ |
+ int nAlloc = nByte; |
+ if( flags&MEM_Term ){ |
+ nAlloc += (enc==SQLITE_UTF8?1:2); |
+ } |
+ if( nByte>iLimit ){ |
+ return SQLITE_TOOBIG; |
+ } |
+ if( sqlite3VdbeMemGrow(pMem, nAlloc, 0) ){ |
+ return SQLITE_NOMEM; |
+ } |
+ memcpy(pMem->z, z, nAlloc); |
+ }else if( xDel==SQLITE_DYNAMIC ){ |
+ sqlite3VdbeMemRelease(pMem); |
+ pMem->zMalloc = pMem->z = (char *)z; |
+ pMem->xDel = 0; |
+ }else{ |
+ sqlite3VdbeMemRelease(pMem); |
+ pMem->z = (char *)z; |
+ pMem->xDel = xDel; |
+ flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); |
+ } |
+ |
+ pMem->n = nByte; |
+ pMem->flags = flags; |
+ pMem->enc = (enc==0 ? SQLITE_UTF8 : enc); |
+ pMem->type = (enc==0 ? SQLITE_BLOB : SQLITE_TEXT); |
+ |
+#ifndef SQLITE_OMIT_UTF16 |
+ if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){ |
+ return SQLITE_NOMEM; |
+ } |
+#endif |
+ |
+ if( nByte>iLimit ){ |
+ return SQLITE_TOOBIG; |
+ } |
+ |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Compare the values contained by the two memory cells, returning |
+** negative, zero or positive if pMem1 is less than, equal to, or greater |
+** than pMem2. Sorting order is NULL's first, followed by numbers (integers |
+** and reals) sorted numerically, followed by text ordered by the collating |
+** sequence pColl and finally blob's ordered by memcmp(). |
+** |
+** Two NULL values are considered equal by this function. |
+*/ |
+int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ |
+ int rc; |
+ int f1, f2; |
+ int combined_flags; |
+ |
+ f1 = pMem1->flags; |
+ f2 = pMem2->flags; |
+ combined_flags = f1|f2; |
+ assert( (combined_flags & MEM_RowSet)==0 ); |
+ |
+ /* If one value is NULL, it is less than the other. If both values |
+ ** are NULL, return 0. |
+ */ |
+ if( combined_flags&MEM_Null ){ |
+ return (f2&MEM_Null) - (f1&MEM_Null); |
+ } |
+ |
+ /* If one value is a number and the other is not, the number is less. |
+ ** If both are numbers, compare as reals if one is a real, or as integers |
+ ** if both values are integers. |
+ */ |
+ if( combined_flags&(MEM_Int|MEM_Real) ){ |
+ if( !(f1&(MEM_Int|MEM_Real)) ){ |
+ return 1; |
+ } |
+ if( !(f2&(MEM_Int|MEM_Real)) ){ |
+ return -1; |
+ } |
+ if( (f1 & f2 & MEM_Int)==0 ){ |
+ double r1, r2; |
+ if( (f1&MEM_Real)==0 ){ |
+ r1 = (double)pMem1->u.i; |
+ }else{ |
+ r1 = pMem1->r; |
+ } |
+ if( (f2&MEM_Real)==0 ){ |
+ r2 = (double)pMem2->u.i; |
+ }else{ |
+ r2 = pMem2->r; |
+ } |
+ if( r1<r2 ) return -1; |
+ if( r1>r2 ) return 1; |
+ return 0; |
+ }else{ |
+ assert( f1&MEM_Int ); |
+ assert( f2&MEM_Int ); |
+ if( pMem1->u.i < pMem2->u.i ) return -1; |
+ if( pMem1->u.i > pMem2->u.i ) return 1; |
+ return 0; |
+ } |
+ } |
+ |
+ /* If one value is a string and the other is a blob, the string is less. |
+ ** If both are strings, compare using the collating functions. |
+ */ |
+ if( combined_flags&MEM_Str ){ |
+ if( (f1 & MEM_Str)==0 ){ |
+ return 1; |
+ } |
+ if( (f2 & MEM_Str)==0 ){ |
+ return -1; |
+ } |
+ |
+ assert( pMem1->enc==pMem2->enc ); |
+ assert( pMem1->enc==SQLITE_UTF8 || |
+ pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); |
+ |
+ /* The collation sequence must be defined at this point, even if |
+ ** the user deletes the collation sequence after the vdbe program is |
+ ** compiled (this was not always the case). |
+ */ |
+ assert( !pColl || pColl->xCmp ); |
+ |
+ if( pColl ){ |
+ if( pMem1->enc==pColl->enc ){ |
+ /* The strings are already in the correct encoding. Call the |
+ ** comparison function directly */ |
+ return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); |
+ }else{ |
+ const void *v1, *v2; |
+ int n1, n2; |
+ Mem c1; |
+ Mem c2; |
+ memset(&c1, 0, sizeof(c1)); |
+ memset(&c2, 0, sizeof(c2)); |
+ sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); |
+ sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); |
+ v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); |
+ n1 = v1==0 ? 0 : c1.n; |
+ v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); |
+ n2 = v2==0 ? 0 : c2.n; |
+ rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2); |
+ sqlite3VdbeMemRelease(&c1); |
+ sqlite3VdbeMemRelease(&c2); |
+ return rc; |
+ } |
+ } |
+ /* If a NULL pointer was passed as the collate function, fall through |
+ ** to the blob case and use memcmp(). */ |
+ } |
+ |
+ /* Both values must be blobs. Compare using memcmp(). */ |
+ rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n); |
+ if( rc==0 ){ |
+ rc = pMem1->n - pMem2->n; |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Move data out of a btree key or data field and into a Mem structure. |
+** The data or key is taken from the entry that pCur is currently pointing |
+** to. offset and amt determine what portion of the data or key to retrieve. |
+** key is true to get the key or false to get data. The result is written |
+** into the pMem element. |
+** |
+** The pMem structure is assumed to be uninitialized. Any prior content |
+** is overwritten without being freed. |
+** |
+** If this routine fails for any reason (malloc returns NULL or unable |
+** to read from the disk) then the pMem is left in an inconsistent state. |
+*/ |
+int sqlite3VdbeMemFromBtree( |
+ BtCursor *pCur, /* Cursor pointing at record to retrieve. */ |
+ int offset, /* Offset from the start of data to return bytes from. */ |
+ int amt, /* Number of bytes to return. */ |
+ int key, /* If true, retrieve from the btree key, not data. */ |
+ Mem *pMem /* OUT: Return data in this Mem structure. */ |
+){ |
+ char *zData; /* Data from the btree layer */ |
+ int available = 0; /* Number of bytes available on the local btree page */ |
+ int rc = SQLITE_OK; /* Return code */ |
+ |
+ assert( sqlite3BtreeCursorIsValid(pCur) ); |
+ |
+ /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() |
+ ** that both the BtShared and database handle mutexes are held. */ |
+ assert( (pMem->flags & MEM_RowSet)==0 ); |
+ if( key ){ |
+ zData = (char *)sqlite3BtreeKeyFetch(pCur, &available); |
+ }else{ |
+ zData = (char *)sqlite3BtreeDataFetch(pCur, &available); |
+ } |
+ assert( zData!=0 ); |
+ |
+ if( offset+amt<=available && (pMem->flags&MEM_Dyn)==0 ){ |
+ sqlite3VdbeMemRelease(pMem); |
+ pMem->z = &zData[offset]; |
+ pMem->flags = MEM_Blob|MEM_Ephem; |
+ }else if( SQLITE_OK==(rc = sqlite3VdbeMemGrow(pMem, amt+2, 0)) ){ |
+ pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term; |
+ pMem->enc = 0; |
+ pMem->type = SQLITE_BLOB; |
+ if( key ){ |
+ rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z); |
+ }else{ |
+ rc = sqlite3BtreeData(pCur, offset, amt, pMem->z); |
+ } |
+ pMem->z[amt] = 0; |
+ pMem->z[amt+1] = 0; |
+ if( rc!=SQLITE_OK ){ |
+ sqlite3VdbeMemRelease(pMem); |
+ } |
+ } |
+ pMem->n = amt; |
+ |
+ return rc; |
+} |
+ |
+/* This function is only available internally, it is not part of the |
+** external API. It works in a similar way to sqlite3_value_text(), |
+** except the data returned is in the encoding specified by the second |
+** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or |
+** SQLITE_UTF8. |
+** |
+** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. |
+** If that is the case, then the result must be aligned on an even byte |
+** boundary. |
+*/ |
+const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ |
+ if( !pVal ) return 0; |
+ |
+ assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); |
+ assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); |
+ assert( (pVal->flags & MEM_RowSet)==0 ); |
+ |
+ if( pVal->flags&MEM_Null ){ |
+ return 0; |
+ } |
+ assert( (MEM_Blob>>3) == MEM_Str ); |
+ pVal->flags |= (pVal->flags & MEM_Blob)>>3; |
+ expandBlob(pVal); |
+ if( pVal->flags&MEM_Str ){ |
+ sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); |
+ if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){ |
+ assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); |
+ if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ |
+ return 0; |
+ } |
+ } |
+ sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-59893-45467 */ |
+ }else{ |
+ assert( (pVal->flags&MEM_Blob)==0 ); |
+ sqlite3VdbeMemStringify(pVal, enc); |
+ assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) ); |
+ } |
+ assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 |
+ || pVal->db->mallocFailed ); |
+ if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ |
+ return pVal->z; |
+ }else{ |
+ return 0; |
+ } |
+} |
+ |
+/* |
+** Create a new sqlite3_value object. |
+*/ |
+sqlite3_value *sqlite3ValueNew(sqlite3 *db){ |
+ Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); |
+ if( p ){ |
+ p->flags = MEM_Null; |
+ p->type = SQLITE_NULL; |
+ p->db = db; |
+ } |
+ return p; |
+} |
+ |
+/* |
+** Create a new sqlite3_value object, containing the value of pExpr. |
+** |
+** This only works for very simple expressions that consist of one constant |
+** token (i.e. "5", "5.1", "'a string'"). If the expression can |
+** be converted directly into a value, then the value is allocated and |
+** a pointer written to *ppVal. The caller is responsible for deallocating |
+** the value by passing it to sqlite3ValueFree() later on. If the expression |
+** cannot be converted to a value, then *ppVal is set to NULL. |
+*/ |
+int sqlite3ValueFromExpr( |
+ sqlite3 *db, /* The database connection */ |
+ Expr *pExpr, /* The expression to evaluate */ |
+ u8 enc, /* Encoding to use */ |
+ u8 affinity, /* Affinity to use */ |
+ sqlite3_value **ppVal /* Write the new value here */ |
+){ |
+ int op; |
+ char *zVal = 0; |
+ sqlite3_value *pVal = 0; |
+ int negInt = 1; |
+ const char *zNeg = ""; |
+ |
+ if( !pExpr ){ |
+ *ppVal = 0; |
+ return SQLITE_OK; |
+ } |
+ op = pExpr->op; |
+ |
+ /* op can only be TK_REGISTER if we have compiled with SQLITE_ENABLE_STAT2. |
+ ** The ifdef here is to enable us to achieve 100% branch test coverage even |
+ ** when SQLITE_ENABLE_STAT2 is omitted. |
+ */ |
+#ifdef SQLITE_ENABLE_STAT2 |
+ if( op==TK_REGISTER ) op = pExpr->op2; |
+#else |
+ if( NEVER(op==TK_REGISTER) ) op = pExpr->op2; |
+#endif |
+ |
+ /* Handle negative integers in a single step. This is needed in the |
+ ** case when the value is -9223372036854775808. |
+ */ |
+ if( op==TK_UMINUS |
+ && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){ |
+ pExpr = pExpr->pLeft; |
+ op = pExpr->op; |
+ negInt = -1; |
+ zNeg = "-"; |
+ } |
+ |
+ if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ |
+ pVal = sqlite3ValueNew(db); |
+ if( pVal==0 ) goto no_mem; |
+ if( ExprHasProperty(pExpr, EP_IntValue) ){ |
+ sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt); |
+ }else{ |
+ zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken); |
+ if( zVal==0 ) goto no_mem; |
+ sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); |
+ if( op==TK_FLOAT ) pVal->type = SQLITE_FLOAT; |
+ } |
+ if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){ |
+ sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); |
+ }else{ |
+ sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); |
+ } |
+ if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str; |
+ if( enc!=SQLITE_UTF8 ){ |
+ sqlite3VdbeChangeEncoding(pVal, enc); |
+ } |
+ }else if( op==TK_UMINUS ) { |
+ /* This branch happens for multiple negative signs. Ex: -(-5) */ |
+ if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){ |
+ sqlite3VdbeMemNumerify(pVal); |
+ if( pVal->u.i==SMALLEST_INT64 ){ |
+ pVal->flags &= MEM_Int; |
+ pVal->flags |= MEM_Real; |
+ pVal->r = (double)LARGEST_INT64; |
+ }else{ |
+ pVal->u.i = -pVal->u.i; |
+ } |
+ pVal->r = -pVal->r; |
+ sqlite3ValueApplyAffinity(pVal, affinity, enc); |
+ } |
+ }else if( op==TK_NULL ){ |
+ pVal = sqlite3ValueNew(db); |
+ if( pVal==0 ) goto no_mem; |
+ } |
+#ifndef SQLITE_OMIT_BLOB_LITERAL |
+ else if( op==TK_BLOB ){ |
+ int nVal; |
+ assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); |
+ assert( pExpr->u.zToken[1]=='\'' ); |
+ pVal = sqlite3ValueNew(db); |
+ if( !pVal ) goto no_mem; |
+ zVal = &pExpr->u.zToken[2]; |
+ nVal = sqlite3Strlen30(zVal)-1; |
+ assert( zVal[nVal]=='\'' ); |
+ sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, |
+ 0, SQLITE_DYNAMIC); |
+ } |
+#endif |
+ |
+ if( pVal ){ |
+ sqlite3VdbeMemStoreType(pVal); |
+ } |
+ *ppVal = pVal; |
+ return SQLITE_OK; |
+ |
+no_mem: |
+ db->mallocFailed = 1; |
+ sqlite3DbFree(db, zVal); |
+ sqlite3ValueFree(pVal); |
+ *ppVal = 0; |
+ return SQLITE_NOMEM; |
+} |
+ |
+/* |
+** Change the string value of an sqlite3_value object |
+*/ |
+void sqlite3ValueSetStr( |
+ sqlite3_value *v, /* Value to be set */ |
+ int n, /* Length of string z */ |
+ const void *z, /* Text of the new string */ |
+ u8 enc, /* Encoding to use */ |
+ void (*xDel)(void*) /* Destructor for the string */ |
+){ |
+ if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); |
+} |
+ |
+/* |
+** Free an sqlite3_value object |
+*/ |
+void sqlite3ValueFree(sqlite3_value *v){ |
+ if( !v ) return; |
+ sqlite3VdbeMemRelease((Mem *)v); |
+ sqlite3DbFree(((Mem*)v)->db, v); |
+} |
+ |
+/* |
+** Return the number of bytes in the sqlite3_value object assuming |
+** that it uses the encoding "enc" |
+*/ |
+int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ |
+ Mem *p = (Mem*)pVal; |
+ if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){ |
+ if( p->flags & MEM_Zero ){ |
+ return p->n + p->u.nZero; |
+ }else{ |
+ return p->n; |
+ } |
+ } |
+ return 0; |
+} |