Index: third_party/sqlite/sqlite-src-3080704/ext/fts3/fts3.c |
diff --git a/third_party/sqlite/sqlite-src-3080704/ext/fts3/fts3.c b/third_party/sqlite/sqlite-src-3080704/ext/fts3/fts3.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..2b93c6271576c8416d109120803c8556a51057f9 |
--- /dev/null |
+++ b/third_party/sqlite/sqlite-src-3080704/ext/fts3/fts3.c |
@@ -0,0 +1,5800 @@ |
+/* |
+** 2006 Oct 10 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+****************************************************************************** |
+** |
+** This is an SQLite module implementing full-text search. |
+*/ |
+ |
+/* |
+** The code in this file is only compiled if: |
+** |
+** * The FTS3 module is being built as an extension |
+** (in which case SQLITE_CORE is not defined), or |
+** |
+** * The FTS3 module is being built into the core of |
+** SQLite (in which case SQLITE_ENABLE_FTS3 is defined). |
+*/ |
+ |
+/* The full-text index is stored in a series of b+tree (-like) |
+** structures called segments which map terms to doclists. The |
+** structures are like b+trees in layout, but are constructed from the |
+** bottom up in optimal fashion and are not updatable. Since trees |
+** are built from the bottom up, things will be described from the |
+** bottom up. |
+** |
+** |
+**** Varints **** |
+** The basic unit of encoding is a variable-length integer called a |
+** varint. We encode variable-length integers in little-endian order |
+** using seven bits * per byte as follows: |
+** |
+** KEY: |
+** A = 0xxxxxxx 7 bits of data and one flag bit |
+** B = 1xxxxxxx 7 bits of data and one flag bit |
+** |
+** 7 bits - A |
+** 14 bits - BA |
+** 21 bits - BBA |
+** and so on. |
+** |
+** This is similar in concept to how sqlite encodes "varints" but |
+** the encoding is not the same. SQLite varints are big-endian |
+** are are limited to 9 bytes in length whereas FTS3 varints are |
+** little-endian and can be up to 10 bytes in length (in theory). |
+** |
+** Example encodings: |
+** |
+** 1: 0x01 |
+** 127: 0x7f |
+** 128: 0x81 0x00 |
+** |
+** |
+**** Document lists **** |
+** A doclist (document list) holds a docid-sorted list of hits for a |
+** given term. Doclists hold docids and associated token positions. |
+** A docid is the unique integer identifier for a single document. |
+** A position is the index of a word within the document. The first |
+** word of the document has a position of 0. |
+** |
+** FTS3 used to optionally store character offsets using a compile-time |
+** option. But that functionality is no longer supported. |
+** |
+** A doclist is stored like this: |
+** |
+** array { |
+** varint docid; (delta from previous doclist) |
+** array { (position list for column 0) |
+** varint position; (2 more than the delta from previous position) |
+** } |
+** array { |
+** varint POS_COLUMN; (marks start of position list for new column) |
+** varint column; (index of new column) |
+** array { |
+** varint position; (2 more than the delta from previous position) |
+** } |
+** } |
+** varint POS_END; (marks end of positions for this document. |
+** } |
+** |
+** Here, array { X } means zero or more occurrences of X, adjacent in |
+** memory. A "position" is an index of a token in the token stream |
+** generated by the tokenizer. Note that POS_END and POS_COLUMN occur |
+** in the same logical place as the position element, and act as sentinals |
+** ending a position list array. POS_END is 0. POS_COLUMN is 1. |
+** The positions numbers are not stored literally but rather as two more |
+** than the difference from the prior position, or the just the position plus |
+** 2 for the first position. Example: |
+** |
+** label: A B C D E F G H I J K |
+** value: 123 5 9 1 1 14 35 0 234 72 0 |
+** |
+** The 123 value is the first docid. For column zero in this document |
+** there are two matches at positions 3 and 10 (5-2 and 9-2+3). The 1 |
+** at D signals the start of a new column; the 1 at E indicates that the |
+** new column is column number 1. There are two positions at 12 and 45 |
+** (14-2 and 35-2+12). The 0 at H indicate the end-of-document. The |
+** 234 at I is the delta to next docid (357). It has one position 70 |
+** (72-2) and then terminates with the 0 at K. |
+** |
+** A "position-list" is the list of positions for multiple columns for |
+** a single docid. A "column-list" is the set of positions for a single |
+** column. Hence, a position-list consists of one or more column-lists, |
+** a document record consists of a docid followed by a position-list and |
+** a doclist consists of one or more document records. |
+** |
+** A bare doclist omits the position information, becoming an |
+** array of varint-encoded docids. |
+** |
+**** Segment leaf nodes **** |
+** Segment leaf nodes store terms and doclists, ordered by term. Leaf |
+** nodes are written using LeafWriter, and read using LeafReader (to |
+** iterate through a single leaf node's data) and LeavesReader (to |
+** iterate through a segment's entire leaf layer). Leaf nodes have |
+** the format: |
+** |
+** varint iHeight; (height from leaf level, always 0) |
+** varint nTerm; (length of first term) |
+** char pTerm[nTerm]; (content of first term) |
+** varint nDoclist; (length of term's associated doclist) |
+** char pDoclist[nDoclist]; (content of doclist) |
+** array { |
+** (further terms are delta-encoded) |
+** varint nPrefix; (length of prefix shared with previous term) |
+** varint nSuffix; (length of unshared suffix) |
+** char pTermSuffix[nSuffix];(unshared suffix of next term) |
+** varint nDoclist; (length of term's associated doclist) |
+** char pDoclist[nDoclist]; (content of doclist) |
+** } |
+** |
+** Here, array { X } means zero or more occurrences of X, adjacent in |
+** memory. |
+** |
+** Leaf nodes are broken into blocks which are stored contiguously in |
+** the %_segments table in sorted order. This means that when the end |
+** of a node is reached, the next term is in the node with the next |
+** greater node id. |
+** |
+** New data is spilled to a new leaf node when the current node |
+** exceeds LEAF_MAX bytes (default 2048). New data which itself is |
+** larger than STANDALONE_MIN (default 1024) is placed in a standalone |
+** node (a leaf node with a single term and doclist). The goal of |
+** these settings is to pack together groups of small doclists while |
+** making it efficient to directly access large doclists. The |
+** assumption is that large doclists represent terms which are more |
+** likely to be query targets. |
+** |
+** TODO(shess) It may be useful for blocking decisions to be more |
+** dynamic. For instance, it may make more sense to have a 2.5k leaf |
+** node rather than splitting into 2k and .5k nodes. My intuition is |
+** that this might extend through 2x or 4x the pagesize. |
+** |
+** |
+**** Segment interior nodes **** |
+** Segment interior nodes store blockids for subtree nodes and terms |
+** to describe what data is stored by the each subtree. Interior |
+** nodes are written using InteriorWriter, and read using |
+** InteriorReader. InteriorWriters are created as needed when |
+** SegmentWriter creates new leaf nodes, or when an interior node |
+** itself grows too big and must be split. The format of interior |
+** nodes: |
+** |
+** varint iHeight; (height from leaf level, always >0) |
+** varint iBlockid; (block id of node's leftmost subtree) |
+** optional { |
+** varint nTerm; (length of first term) |
+** char pTerm[nTerm]; (content of first term) |
+** array { |
+** (further terms are delta-encoded) |
+** varint nPrefix; (length of shared prefix with previous term) |
+** varint nSuffix; (length of unshared suffix) |
+** char pTermSuffix[nSuffix]; (unshared suffix of next term) |
+** } |
+** } |
+** |
+** Here, optional { X } means an optional element, while array { X } |
+** means zero or more occurrences of X, adjacent in memory. |
+** |
+** An interior node encodes n terms separating n+1 subtrees. The |
+** subtree blocks are contiguous, so only the first subtree's blockid |
+** is encoded. The subtree at iBlockid will contain all terms less |
+** than the first term encoded (or all terms if no term is encoded). |
+** Otherwise, for terms greater than or equal to pTerm[i] but less |
+** than pTerm[i+1], the subtree for that term will be rooted at |
+** iBlockid+i. Interior nodes only store enough term data to |
+** distinguish adjacent children (if the rightmost term of the left |
+** child is "something", and the leftmost term of the right child is |
+** "wicked", only "w" is stored). |
+** |
+** New data is spilled to a new interior node at the same height when |
+** the current node exceeds INTERIOR_MAX bytes (default 2048). |
+** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing |
+** interior nodes and making the tree too skinny. The interior nodes |
+** at a given height are naturally tracked by interior nodes at |
+** height+1, and so on. |
+** |
+** |
+**** Segment directory **** |
+** The segment directory in table %_segdir stores meta-information for |
+** merging and deleting segments, and also the root node of the |
+** segment's tree. |
+** |
+** The root node is the top node of the segment's tree after encoding |
+** the entire segment, restricted to ROOT_MAX bytes (default 1024). |
+** This could be either a leaf node or an interior node. If the top |
+** node requires more than ROOT_MAX bytes, it is flushed to %_segments |
+** and a new root interior node is generated (which should always fit |
+** within ROOT_MAX because it only needs space for 2 varints, the |
+** height and the blockid of the previous root). |
+** |
+** The meta-information in the segment directory is: |
+** level - segment level (see below) |
+** idx - index within level |
+** - (level,idx uniquely identify a segment) |
+** start_block - first leaf node |
+** leaves_end_block - last leaf node |
+** end_block - last block (including interior nodes) |
+** root - contents of root node |
+** |
+** If the root node is a leaf node, then start_block, |
+** leaves_end_block, and end_block are all 0. |
+** |
+** |
+**** Segment merging **** |
+** To amortize update costs, segments are grouped into levels and |
+** merged in batches. Each increase in level represents exponentially |
+** more documents. |
+** |
+** New documents (actually, document updates) are tokenized and |
+** written individually (using LeafWriter) to a level 0 segment, with |
+** incrementing idx. When idx reaches MERGE_COUNT (default 16), all |
+** level 0 segments are merged into a single level 1 segment. Level 1 |
+** is populated like level 0, and eventually MERGE_COUNT level 1 |
+** segments are merged to a single level 2 segment (representing |
+** MERGE_COUNT^2 updates), and so on. |
+** |
+** A segment merge traverses all segments at a given level in |
+** parallel, performing a straightforward sorted merge. Since segment |
+** leaf nodes are written in to the %_segments table in order, this |
+** merge traverses the underlying sqlite disk structures efficiently. |
+** After the merge, all segment blocks from the merged level are |
+** deleted. |
+** |
+** MERGE_COUNT controls how often we merge segments. 16 seems to be |
+** somewhat of a sweet spot for insertion performance. 32 and 64 show |
+** very similar performance numbers to 16 on insertion, though they're |
+** a tiny bit slower (perhaps due to more overhead in merge-time |
+** sorting). 8 is about 20% slower than 16, 4 about 50% slower than |
+** 16, 2 about 66% slower than 16. |
+** |
+** At query time, high MERGE_COUNT increases the number of segments |
+** which need to be scanned and merged. For instance, with 100k docs |
+** inserted: |
+** |
+** MERGE_COUNT segments |
+** 16 25 |
+** 8 12 |
+** 4 10 |
+** 2 6 |
+** |
+** This appears to have only a moderate impact on queries for very |
+** frequent terms (which are somewhat dominated by segment merge |
+** costs), and infrequent and non-existent terms still seem to be fast |
+** even with many segments. |
+** |
+** TODO(shess) That said, it would be nice to have a better query-side |
+** argument for MERGE_COUNT of 16. Also, it is possible/likely that |
+** optimizations to things like doclist merging will swing the sweet |
+** spot around. |
+** |
+** |
+** |
+**** Handling of deletions and updates **** |
+** Since we're using a segmented structure, with no docid-oriented |
+** index into the term index, we clearly cannot simply update the term |
+** index when a document is deleted or updated. For deletions, we |
+** write an empty doclist (varint(docid) varint(POS_END)), for updates |
+** we simply write the new doclist. Segment merges overwrite older |
+** data for a particular docid with newer data, so deletes or updates |
+** will eventually overtake the earlier data and knock it out. The |
+** query logic likewise merges doclists so that newer data knocks out |
+** older data. |
+*/ |
+ |
+#include "fts3Int.h" |
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) |
+ |
+#if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE) |
+# define SQLITE_CORE 1 |
+#endif |
+ |
+#include <assert.h> |
+#include <stdlib.h> |
+#include <stddef.h> |
+#include <stdio.h> |
+#include <string.h> |
+#include <stdarg.h> |
+ |
+#include "fts3.h" |
+#ifndef SQLITE_CORE |
+# include "sqlite3ext.h" |
+ SQLITE_EXTENSION_INIT1 |
+#endif |
+ |
+static int fts3EvalNext(Fts3Cursor *pCsr); |
+static int fts3EvalStart(Fts3Cursor *pCsr); |
+static int fts3TermSegReaderCursor( |
+ Fts3Cursor *, const char *, int, int, Fts3MultiSegReader **); |
+ |
+/* |
+** Write a 64-bit variable-length integer to memory starting at p[0]. |
+** The length of data written will be between 1 and FTS3_VARINT_MAX bytes. |
+** The number of bytes written is returned. |
+*/ |
+int sqlite3Fts3PutVarint(char *p, sqlite_int64 v){ |
+ unsigned char *q = (unsigned char *) p; |
+ sqlite_uint64 vu = v; |
+ do{ |
+ *q++ = (unsigned char) ((vu & 0x7f) | 0x80); |
+ vu >>= 7; |
+ }while( vu!=0 ); |
+ q[-1] &= 0x7f; /* turn off high bit in final byte */ |
+ assert( q - (unsigned char *)p <= FTS3_VARINT_MAX ); |
+ return (int) (q - (unsigned char *)p); |
+} |
+ |
+#define GETVARINT_STEP(v, ptr, shift, mask1, mask2, var, ret) \ |
+ v = (v & mask1) | ( (*ptr++) << shift ); \ |
+ if( (v & mask2)==0 ){ var = v; return ret; } |
+#define GETVARINT_INIT(v, ptr, shift, mask1, mask2, var, ret) \ |
+ v = (*ptr++); \ |
+ if( (v & mask2)==0 ){ var = v; return ret; } |
+ |
+/* |
+** Read a 64-bit variable-length integer from memory starting at p[0]. |
+** Return the number of bytes read, or 0 on error. |
+** The value is stored in *v. |
+*/ |
+int sqlite3Fts3GetVarint(const char *p, sqlite_int64 *v){ |
+ const char *pStart = p; |
+ u32 a; |
+ u64 b; |
+ int shift; |
+ |
+ GETVARINT_INIT(a, p, 0, 0x00, 0x80, *v, 1); |
+ GETVARINT_STEP(a, p, 7, 0x7F, 0x4000, *v, 2); |
+ GETVARINT_STEP(a, p, 14, 0x3FFF, 0x200000, *v, 3); |
+ GETVARINT_STEP(a, p, 21, 0x1FFFFF, 0x10000000, *v, 4); |
+ b = (a & 0x0FFFFFFF ); |
+ |
+ for(shift=28; shift<=63; shift+=7){ |
+ u64 c = *p++; |
+ b += (c&0x7F) << shift; |
+ if( (c & 0x80)==0 ) break; |
+ } |
+ *v = b; |
+ return (int)(p - pStart); |
+} |
+ |
+/* |
+** Similar to sqlite3Fts3GetVarint(), except that the output is truncated to a |
+** 32-bit integer before it is returned. |
+*/ |
+int sqlite3Fts3GetVarint32(const char *p, int *pi){ |
+ u32 a; |
+ |
+#ifndef fts3GetVarint32 |
+ GETVARINT_INIT(a, p, 0, 0x00, 0x80, *pi, 1); |
+#else |
+ a = (*p++); |
+ assert( a & 0x80 ); |
+#endif |
+ |
+ GETVARINT_STEP(a, p, 7, 0x7F, 0x4000, *pi, 2); |
+ GETVARINT_STEP(a, p, 14, 0x3FFF, 0x200000, *pi, 3); |
+ GETVARINT_STEP(a, p, 21, 0x1FFFFF, 0x10000000, *pi, 4); |
+ a = (a & 0x0FFFFFFF ); |
+ *pi = (int)(a | ((u32)(*p & 0x0F) << 28)); |
+ return 5; |
+} |
+ |
+/* |
+** Return the number of bytes required to encode v as a varint |
+*/ |
+int sqlite3Fts3VarintLen(sqlite3_uint64 v){ |
+ int i = 0; |
+ do{ |
+ i++; |
+ v >>= 7; |
+ }while( v!=0 ); |
+ return i; |
+} |
+ |
+/* |
+** Convert an SQL-style quoted string into a normal string by removing |
+** the quote characters. The conversion is done in-place. If the |
+** input does not begin with a quote character, then this routine |
+** is a no-op. |
+** |
+** Examples: |
+** |
+** "abc" becomes abc |
+** 'xyz' becomes xyz |
+** [pqr] becomes pqr |
+** `mno` becomes mno |
+** |
+*/ |
+void sqlite3Fts3Dequote(char *z){ |
+ char quote; /* Quote character (if any ) */ |
+ |
+ quote = z[0]; |
+ if( quote=='[' || quote=='\'' || quote=='"' || quote=='`' ){ |
+ int iIn = 1; /* Index of next byte to read from input */ |
+ int iOut = 0; /* Index of next byte to write to output */ |
+ |
+ /* If the first byte was a '[', then the close-quote character is a ']' */ |
+ if( quote=='[' ) quote = ']'; |
+ |
+ while( ALWAYS(z[iIn]) ){ |
+ if( z[iIn]==quote ){ |
+ if( z[iIn+1]!=quote ) break; |
+ z[iOut++] = quote; |
+ iIn += 2; |
+ }else{ |
+ z[iOut++] = z[iIn++]; |
+ } |
+ } |
+ z[iOut] = '\0'; |
+ } |
+} |
+ |
+/* |
+** Read a single varint from the doclist at *pp and advance *pp to point |
+** to the first byte past the end of the varint. Add the value of the varint |
+** to *pVal. |
+*/ |
+static void fts3GetDeltaVarint(char **pp, sqlite3_int64 *pVal){ |
+ sqlite3_int64 iVal; |
+ *pp += sqlite3Fts3GetVarint(*pp, &iVal); |
+ *pVal += iVal; |
+} |
+ |
+/* |
+** When this function is called, *pp points to the first byte following a |
+** varint that is part of a doclist (or position-list, or any other list |
+** of varints). This function moves *pp to point to the start of that varint, |
+** and sets *pVal by the varint value. |
+** |
+** Argument pStart points to the first byte of the doclist that the |
+** varint is part of. |
+*/ |
+static void fts3GetReverseVarint( |
+ char **pp, |
+ char *pStart, |
+ sqlite3_int64 *pVal |
+){ |
+ sqlite3_int64 iVal; |
+ char *p; |
+ |
+ /* Pointer p now points at the first byte past the varint we are |
+ ** interested in. So, unless the doclist is corrupt, the 0x80 bit is |
+ ** clear on character p[-1]. */ |
+ for(p = (*pp)-2; p>=pStart && *p&0x80; p--); |
+ p++; |
+ *pp = p; |
+ |
+ sqlite3Fts3GetVarint(p, &iVal); |
+ *pVal = iVal; |
+} |
+ |
+/* |
+** The xDisconnect() virtual table method. |
+*/ |
+static int fts3DisconnectMethod(sqlite3_vtab *pVtab){ |
+ Fts3Table *p = (Fts3Table *)pVtab; |
+ int i; |
+ |
+ assert( p->nPendingData==0 ); |
+ assert( p->pSegments==0 ); |
+ |
+ /* Free any prepared statements held */ |
+ for(i=0; i<SizeofArray(p->aStmt); i++){ |
+ sqlite3_finalize(p->aStmt[i]); |
+ } |
+ sqlite3_free(p->zSegmentsTbl); |
+ sqlite3_free(p->zReadExprlist); |
+ sqlite3_free(p->zWriteExprlist); |
+ sqlite3_free(p->zContentTbl); |
+ sqlite3_free(p->zLanguageid); |
+ |
+ /* Invoke the tokenizer destructor to free the tokenizer. */ |
+ p->pTokenizer->pModule->xDestroy(p->pTokenizer); |
+ |
+ sqlite3_free(p); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Construct one or more SQL statements from the format string given |
+** and then evaluate those statements. The success code is written |
+** into *pRc. |
+** |
+** If *pRc is initially non-zero then this routine is a no-op. |
+*/ |
+static void fts3DbExec( |
+ int *pRc, /* Success code */ |
+ sqlite3 *db, /* Database in which to run SQL */ |
+ const char *zFormat, /* Format string for SQL */ |
+ ... /* Arguments to the format string */ |
+){ |
+ va_list ap; |
+ char *zSql; |
+ if( *pRc ) return; |
+ va_start(ap, zFormat); |
+ zSql = sqlite3_vmprintf(zFormat, ap); |
+ va_end(ap); |
+ if( zSql==0 ){ |
+ *pRc = SQLITE_NOMEM; |
+ }else{ |
+ *pRc = sqlite3_exec(db, zSql, 0, 0, 0); |
+ sqlite3_free(zSql); |
+ } |
+} |
+ |
+/* |
+** The xDestroy() virtual table method. |
+*/ |
+static int fts3DestroyMethod(sqlite3_vtab *pVtab){ |
+ Fts3Table *p = (Fts3Table *)pVtab; |
+ int rc = SQLITE_OK; /* Return code */ |
+ const char *zDb = p->zDb; /* Name of database (e.g. "main", "temp") */ |
+ sqlite3 *db = p->db; /* Database handle */ |
+ |
+ /* Drop the shadow tables */ |
+ if( p->zContentTbl==0 ){ |
+ fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_content'", zDb, p->zName); |
+ } |
+ fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_segments'", zDb,p->zName); |
+ fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_segdir'", zDb, p->zName); |
+ fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_docsize'", zDb, p->zName); |
+ fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_stat'", zDb, p->zName); |
+ |
+ /* If everything has worked, invoke fts3DisconnectMethod() to free the |
+ ** memory associated with the Fts3Table structure and return SQLITE_OK. |
+ ** Otherwise, return an SQLite error code. |
+ */ |
+ return (rc==SQLITE_OK ? fts3DisconnectMethod(pVtab) : rc); |
+} |
+ |
+ |
+/* |
+** Invoke sqlite3_declare_vtab() to declare the schema for the FTS3 table |
+** passed as the first argument. This is done as part of the xConnect() |
+** and xCreate() methods. |
+** |
+** If *pRc is non-zero when this function is called, it is a no-op. |
+** Otherwise, if an error occurs, an SQLite error code is stored in *pRc |
+** before returning. |
+*/ |
+static void fts3DeclareVtab(int *pRc, Fts3Table *p){ |
+ if( *pRc==SQLITE_OK ){ |
+ int i; /* Iterator variable */ |
+ int rc; /* Return code */ |
+ char *zSql; /* SQL statement passed to declare_vtab() */ |
+ char *zCols; /* List of user defined columns */ |
+ const char *zLanguageid; |
+ |
+ zLanguageid = (p->zLanguageid ? p->zLanguageid : "__langid"); |
+ sqlite3_vtab_config(p->db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1); |
+ |
+ /* Create a list of user columns for the virtual table */ |
+ zCols = sqlite3_mprintf("%Q, ", p->azColumn[0]); |
+ for(i=1; zCols && i<p->nColumn; i++){ |
+ zCols = sqlite3_mprintf("%z%Q, ", zCols, p->azColumn[i]); |
+ } |
+ |
+ /* Create the whole "CREATE TABLE" statement to pass to SQLite */ |
+ zSql = sqlite3_mprintf( |
+ "CREATE TABLE x(%s %Q HIDDEN, docid HIDDEN, %Q HIDDEN)", |
+ zCols, p->zName, zLanguageid |
+ ); |
+ if( !zCols || !zSql ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ rc = sqlite3_declare_vtab(p->db, zSql); |
+ } |
+ |
+ sqlite3_free(zSql); |
+ sqlite3_free(zCols); |
+ *pRc = rc; |
+ } |
+} |
+ |
+/* |
+** Create the %_stat table if it does not already exist. |
+*/ |
+void sqlite3Fts3CreateStatTable(int *pRc, Fts3Table *p){ |
+ fts3DbExec(pRc, p->db, |
+ "CREATE TABLE IF NOT EXISTS %Q.'%q_stat'" |
+ "(id INTEGER PRIMARY KEY, value BLOB);", |
+ p->zDb, p->zName |
+ ); |
+ if( (*pRc)==SQLITE_OK ) p->bHasStat = 1; |
+} |
+ |
+/* |
+** Create the backing store tables (%_content, %_segments and %_segdir) |
+** required by the FTS3 table passed as the only argument. This is done |
+** as part of the vtab xCreate() method. |
+** |
+** If the p->bHasDocsize boolean is true (indicating that this is an |
+** FTS4 table, not an FTS3 table) then also create the %_docsize and |
+** %_stat tables required by FTS4. |
+*/ |
+static int fts3CreateTables(Fts3Table *p){ |
+ int rc = SQLITE_OK; /* Return code */ |
+ int i; /* Iterator variable */ |
+ sqlite3 *db = p->db; /* The database connection */ |
+ |
+ if( p->zContentTbl==0 ){ |
+ const char *zLanguageid = p->zLanguageid; |
+ char *zContentCols; /* Columns of %_content table */ |
+ |
+ /* Create a list of user columns for the content table */ |
+ zContentCols = sqlite3_mprintf("docid INTEGER PRIMARY KEY"); |
+ for(i=0; zContentCols && i<p->nColumn; i++){ |
+ char *z = p->azColumn[i]; |
+ zContentCols = sqlite3_mprintf("%z, 'c%d%q'", zContentCols, i, z); |
+ } |
+ if( zLanguageid && zContentCols ){ |
+ zContentCols = sqlite3_mprintf("%z, langid", zContentCols, zLanguageid); |
+ } |
+ if( zContentCols==0 ) rc = SQLITE_NOMEM; |
+ |
+ /* Create the content table */ |
+ fts3DbExec(&rc, db, |
+ "CREATE TABLE %Q.'%q_content'(%s)", |
+ p->zDb, p->zName, zContentCols |
+ ); |
+ sqlite3_free(zContentCols); |
+ } |
+ |
+ /* Create other tables */ |
+ fts3DbExec(&rc, db, |
+ "CREATE TABLE %Q.'%q_segments'(blockid INTEGER PRIMARY KEY, block BLOB);", |
+ p->zDb, p->zName |
+ ); |
+ fts3DbExec(&rc, db, |
+ "CREATE TABLE %Q.'%q_segdir'(" |
+ "level INTEGER," |
+ "idx INTEGER," |
+ "start_block INTEGER," |
+ "leaves_end_block INTEGER," |
+ "end_block INTEGER," |
+ "root BLOB," |
+ "PRIMARY KEY(level, idx)" |
+ ");", |
+ p->zDb, p->zName |
+ ); |
+ if( p->bHasDocsize ){ |
+ fts3DbExec(&rc, db, |
+ "CREATE TABLE %Q.'%q_docsize'(docid INTEGER PRIMARY KEY, size BLOB);", |
+ p->zDb, p->zName |
+ ); |
+ } |
+ assert( p->bHasStat==p->bFts4 ); |
+ if( p->bHasStat ){ |
+ sqlite3Fts3CreateStatTable(&rc, p); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Store the current database page-size in bytes in p->nPgsz. |
+** |
+** If *pRc is non-zero when this function is called, it is a no-op. |
+** Otherwise, if an error occurs, an SQLite error code is stored in *pRc |
+** before returning. |
+*/ |
+static void fts3DatabasePageSize(int *pRc, Fts3Table *p){ |
+ if( *pRc==SQLITE_OK ){ |
+ int rc; /* Return code */ |
+ char *zSql; /* SQL text "PRAGMA %Q.page_size" */ |
+ sqlite3_stmt *pStmt; /* Compiled "PRAGMA %Q.page_size" statement */ |
+ |
+ zSql = sqlite3_mprintf("PRAGMA %Q.page_size", p->zDb); |
+ if( !zSql ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ rc = sqlite3_prepare(p->db, zSql, -1, &pStmt, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_step(pStmt); |
+ p->nPgsz = sqlite3_column_int(pStmt, 0); |
+ rc = sqlite3_finalize(pStmt); |
+ }else if( rc==SQLITE_AUTH ){ |
+ p->nPgsz = 1024; |
+ rc = SQLITE_OK; |
+ } |
+ } |
+ assert( p->nPgsz>0 || rc!=SQLITE_OK ); |
+ sqlite3_free(zSql); |
+ *pRc = rc; |
+ } |
+} |
+ |
+/* |
+** "Special" FTS4 arguments are column specifications of the following form: |
+** |
+** <key> = <value> |
+** |
+** There may not be whitespace surrounding the "=" character. The <value> |
+** term may be quoted, but the <key> may not. |
+*/ |
+static int fts3IsSpecialColumn( |
+ const char *z, |
+ int *pnKey, |
+ char **pzValue |
+){ |
+ char *zValue; |
+ const char *zCsr = z; |
+ |
+ while( *zCsr!='=' ){ |
+ if( *zCsr=='\0' ) return 0; |
+ zCsr++; |
+ } |
+ |
+ *pnKey = (int)(zCsr-z); |
+ zValue = sqlite3_mprintf("%s", &zCsr[1]); |
+ if( zValue ){ |
+ sqlite3Fts3Dequote(zValue); |
+ } |
+ *pzValue = zValue; |
+ return 1; |
+} |
+ |
+/* |
+** Append the output of a printf() style formatting to an existing string. |
+*/ |
+static void fts3Appendf( |
+ int *pRc, /* IN/OUT: Error code */ |
+ char **pz, /* IN/OUT: Pointer to string buffer */ |
+ const char *zFormat, /* Printf format string to append */ |
+ ... /* Arguments for printf format string */ |
+){ |
+ if( *pRc==SQLITE_OK ){ |
+ va_list ap; |
+ char *z; |
+ va_start(ap, zFormat); |
+ z = sqlite3_vmprintf(zFormat, ap); |
+ va_end(ap); |
+ if( z && *pz ){ |
+ char *z2 = sqlite3_mprintf("%s%s", *pz, z); |
+ sqlite3_free(z); |
+ z = z2; |
+ } |
+ if( z==0 ) *pRc = SQLITE_NOMEM; |
+ sqlite3_free(*pz); |
+ *pz = z; |
+ } |
+} |
+ |
+/* |
+** Return a copy of input string zInput enclosed in double-quotes (") and |
+** with all double quote characters escaped. For example: |
+** |
+** fts3QuoteId("un \"zip\"") -> "un \"\"zip\"\"" |
+** |
+** The pointer returned points to memory obtained from sqlite3_malloc(). It |
+** is the callers responsibility to call sqlite3_free() to release this |
+** memory. |
+*/ |
+static char *fts3QuoteId(char const *zInput){ |
+ int nRet; |
+ char *zRet; |
+ nRet = 2 + (int)strlen(zInput)*2 + 1; |
+ zRet = sqlite3_malloc(nRet); |
+ if( zRet ){ |
+ int i; |
+ char *z = zRet; |
+ *(z++) = '"'; |
+ for(i=0; zInput[i]; i++){ |
+ if( zInput[i]=='"' ) *(z++) = '"'; |
+ *(z++) = zInput[i]; |
+ } |
+ *(z++) = '"'; |
+ *(z++) = '\0'; |
+ } |
+ return zRet; |
+} |
+ |
+/* |
+** Return a list of comma separated SQL expressions and a FROM clause that |
+** could be used in a SELECT statement such as the following: |
+** |
+** SELECT <list of expressions> FROM %_content AS x ... |
+** |
+** to return the docid, followed by each column of text data in order |
+** from left to write. If parameter zFunc is not NULL, then instead of |
+** being returned directly each column of text data is passed to an SQL |
+** function named zFunc first. For example, if zFunc is "unzip" and the |
+** table has the three user-defined columns "a", "b", and "c", the following |
+** string is returned: |
+** |
+** "docid, unzip(x.'a'), unzip(x.'b'), unzip(x.'c') FROM %_content AS x" |
+** |
+** The pointer returned points to a buffer allocated by sqlite3_malloc(). It |
+** is the responsibility of the caller to eventually free it. |
+** |
+** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and |
+** a NULL pointer is returned). Otherwise, if an OOM error is encountered |
+** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If |
+** no error occurs, *pRc is left unmodified. |
+*/ |
+static char *fts3ReadExprList(Fts3Table *p, const char *zFunc, int *pRc){ |
+ char *zRet = 0; |
+ char *zFree = 0; |
+ char *zFunction; |
+ int i; |
+ |
+ if( p->zContentTbl==0 ){ |
+ if( !zFunc ){ |
+ zFunction = ""; |
+ }else{ |
+ zFree = zFunction = fts3QuoteId(zFunc); |
+ } |
+ fts3Appendf(pRc, &zRet, "docid"); |
+ for(i=0; i<p->nColumn; i++){ |
+ fts3Appendf(pRc, &zRet, ",%s(x.'c%d%q')", zFunction, i, p->azColumn[i]); |
+ } |
+ if( p->zLanguageid ){ |
+ fts3Appendf(pRc, &zRet, ", x.%Q", "langid"); |
+ } |
+ sqlite3_free(zFree); |
+ }else{ |
+ fts3Appendf(pRc, &zRet, "rowid"); |
+ for(i=0; i<p->nColumn; i++){ |
+ fts3Appendf(pRc, &zRet, ", x.'%q'", p->azColumn[i]); |
+ } |
+ if( p->zLanguageid ){ |
+ fts3Appendf(pRc, &zRet, ", x.%Q", p->zLanguageid); |
+ } |
+ } |
+ fts3Appendf(pRc, &zRet, " FROM '%q'.'%q%s' AS x", |
+ p->zDb, |
+ (p->zContentTbl ? p->zContentTbl : p->zName), |
+ (p->zContentTbl ? "" : "_content") |
+ ); |
+ return zRet; |
+} |
+ |
+/* |
+** Return a list of N comma separated question marks, where N is the number |
+** of columns in the %_content table (one for the docid plus one for each |
+** user-defined text column). |
+** |
+** If argument zFunc is not NULL, then all but the first question mark |
+** is preceded by zFunc and an open bracket, and followed by a closed |
+** bracket. For example, if zFunc is "zip" and the FTS3 table has three |
+** user-defined text columns, the following string is returned: |
+** |
+** "?, zip(?), zip(?), zip(?)" |
+** |
+** The pointer returned points to a buffer allocated by sqlite3_malloc(). It |
+** is the responsibility of the caller to eventually free it. |
+** |
+** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and |
+** a NULL pointer is returned). Otherwise, if an OOM error is encountered |
+** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If |
+** no error occurs, *pRc is left unmodified. |
+*/ |
+static char *fts3WriteExprList(Fts3Table *p, const char *zFunc, int *pRc){ |
+ char *zRet = 0; |
+ char *zFree = 0; |
+ char *zFunction; |
+ int i; |
+ |
+ if( !zFunc ){ |
+ zFunction = ""; |
+ }else{ |
+ zFree = zFunction = fts3QuoteId(zFunc); |
+ } |
+ fts3Appendf(pRc, &zRet, "?"); |
+ for(i=0; i<p->nColumn; i++){ |
+ fts3Appendf(pRc, &zRet, ",%s(?)", zFunction); |
+ } |
+ if( p->zLanguageid ){ |
+ fts3Appendf(pRc, &zRet, ", ?"); |
+ } |
+ sqlite3_free(zFree); |
+ return zRet; |
+} |
+ |
+/* |
+** This function interprets the string at (*pp) as a non-negative integer |
+** value. It reads the integer and sets *pnOut to the value read, then |
+** sets *pp to point to the byte immediately following the last byte of |
+** the integer value. |
+** |
+** Only decimal digits ('0'..'9') may be part of an integer value. |
+** |
+** If *pp does not being with a decimal digit SQLITE_ERROR is returned and |
+** the output value undefined. Otherwise SQLITE_OK is returned. |
+** |
+** This function is used when parsing the "prefix=" FTS4 parameter. |
+*/ |
+static int fts3GobbleInt(const char **pp, int *pnOut){ |
+ const char *p; /* Iterator pointer */ |
+ int nInt = 0; /* Output value */ |
+ |
+ for(p=*pp; p[0]>='0' && p[0]<='9'; p++){ |
+ nInt = nInt * 10 + (p[0] - '0'); |
+ } |
+ if( p==*pp ) return SQLITE_ERROR; |
+ *pnOut = nInt; |
+ *pp = p; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** This function is called to allocate an array of Fts3Index structures |
+** representing the indexes maintained by the current FTS table. FTS tables |
+** always maintain the main "terms" index, but may also maintain one or |
+** more "prefix" indexes, depending on the value of the "prefix=" parameter |
+** (if any) specified as part of the CREATE VIRTUAL TABLE statement. |
+** |
+** Argument zParam is passed the value of the "prefix=" option if one was |
+** specified, or NULL otherwise. |
+** |
+** If no error occurs, SQLITE_OK is returned and *apIndex set to point to |
+** the allocated array. *pnIndex is set to the number of elements in the |
+** array. If an error does occur, an SQLite error code is returned. |
+** |
+** Regardless of whether or not an error is returned, it is the responsibility |
+** of the caller to call sqlite3_free() on the output array to free it. |
+*/ |
+static int fts3PrefixParameter( |
+ const char *zParam, /* ABC in prefix=ABC parameter to parse */ |
+ int *pnIndex, /* OUT: size of *apIndex[] array */ |
+ struct Fts3Index **apIndex /* OUT: Array of indexes for this table */ |
+){ |
+ struct Fts3Index *aIndex; /* Allocated array */ |
+ int nIndex = 1; /* Number of entries in array */ |
+ |
+ if( zParam && zParam[0] ){ |
+ const char *p; |
+ nIndex++; |
+ for(p=zParam; *p; p++){ |
+ if( *p==',' ) nIndex++; |
+ } |
+ } |
+ |
+ aIndex = sqlite3_malloc(sizeof(struct Fts3Index) * nIndex); |
+ *apIndex = aIndex; |
+ *pnIndex = nIndex; |
+ if( !aIndex ){ |
+ return SQLITE_NOMEM; |
+ } |
+ |
+ memset(aIndex, 0, sizeof(struct Fts3Index) * nIndex); |
+ if( zParam ){ |
+ const char *p = zParam; |
+ int i; |
+ for(i=1; i<nIndex; i++){ |
+ int nPrefix; |
+ if( fts3GobbleInt(&p, &nPrefix) ) return SQLITE_ERROR; |
+ aIndex[i].nPrefix = nPrefix; |
+ p++; |
+ } |
+ } |
+ |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** This function is called when initializing an FTS4 table that uses the |
+** content=xxx option. It determines the number of and names of the columns |
+** of the new FTS4 table. |
+** |
+** The third argument passed to this function is the value passed to the |
+** config=xxx option (i.e. "xxx"). This function queries the database for |
+** a table of that name. If found, the output variables are populated |
+** as follows: |
+** |
+** *pnCol: Set to the number of columns table xxx has, |
+** |
+** *pnStr: Set to the total amount of space required to store a copy |
+** of each columns name, including the nul-terminator. |
+** |
+** *pazCol: Set to point to an array of *pnCol strings. Each string is |
+** the name of the corresponding column in table xxx. The array |
+** and its contents are allocated using a single allocation. It |
+** is the responsibility of the caller to free this allocation |
+** by eventually passing the *pazCol value to sqlite3_free(). |
+** |
+** If the table cannot be found, an error code is returned and the output |
+** variables are undefined. Or, if an OOM is encountered, SQLITE_NOMEM is |
+** returned (and the output variables are undefined). |
+*/ |
+static int fts3ContentColumns( |
+ sqlite3 *db, /* Database handle */ |
+ const char *zDb, /* Name of db (i.e. "main", "temp" etc.) */ |
+ const char *zTbl, /* Name of content table */ |
+ const char ***pazCol, /* OUT: Malloc'd array of column names */ |
+ int *pnCol, /* OUT: Size of array *pazCol */ |
+ int *pnStr /* OUT: Bytes of string content */ |
+){ |
+ int rc = SQLITE_OK; /* Return code */ |
+ char *zSql; /* "SELECT *" statement on zTbl */ |
+ sqlite3_stmt *pStmt = 0; /* Compiled version of zSql */ |
+ |
+ zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", zDb, zTbl); |
+ if( !zSql ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); |
+ } |
+ sqlite3_free(zSql); |
+ |
+ if( rc==SQLITE_OK ){ |
+ const char **azCol; /* Output array */ |
+ int nStr = 0; /* Size of all column names (incl. 0x00) */ |
+ int nCol; /* Number of table columns */ |
+ int i; /* Used to iterate through columns */ |
+ |
+ /* Loop through the returned columns. Set nStr to the number of bytes of |
+ ** space required to store a copy of each column name, including the |
+ ** nul-terminator byte. */ |
+ nCol = sqlite3_column_count(pStmt); |
+ for(i=0; i<nCol; i++){ |
+ const char *zCol = sqlite3_column_name(pStmt, i); |
+ nStr += (int)strlen(zCol) + 1; |
+ } |
+ |
+ /* Allocate and populate the array to return. */ |
+ azCol = (const char **)sqlite3_malloc(sizeof(char *) * nCol + nStr); |
+ if( azCol==0 ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ char *p = (char *)&azCol[nCol]; |
+ for(i=0; i<nCol; i++){ |
+ const char *zCol = sqlite3_column_name(pStmt, i); |
+ int n = (int)strlen(zCol)+1; |
+ memcpy(p, zCol, n); |
+ azCol[i] = p; |
+ p += n; |
+ } |
+ } |
+ sqlite3_finalize(pStmt); |
+ |
+ /* Set the output variables. */ |
+ *pnCol = nCol; |
+ *pnStr = nStr; |
+ *pazCol = azCol; |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** This function is the implementation of both the xConnect and xCreate |
+** methods of the FTS3 virtual table. |
+** |
+** The argv[] array contains the following: |
+** |
+** argv[0] -> module name ("fts3" or "fts4") |
+** argv[1] -> database name |
+** argv[2] -> table name |
+** argv[...] -> "column name" and other module argument fields. |
+*/ |
+static int fts3InitVtab( |
+ int isCreate, /* True for xCreate, false for xConnect */ |
+ sqlite3 *db, /* The SQLite database connection */ |
+ void *pAux, /* Hash table containing tokenizers */ |
+ int argc, /* Number of elements in argv array */ |
+ const char * const *argv, /* xCreate/xConnect argument array */ |
+ sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */ |
+ char **pzErr /* Write any error message here */ |
+){ |
+ Fts3Hash *pHash = (Fts3Hash *)pAux; |
+ Fts3Table *p = 0; /* Pointer to allocated vtab */ |
+ int rc = SQLITE_OK; /* Return code */ |
+ int i; /* Iterator variable */ |
+ int nByte; /* Size of allocation used for *p */ |
+ int iCol; /* Column index */ |
+ int nString = 0; /* Bytes required to hold all column names */ |
+ int nCol = 0; /* Number of columns in the FTS table */ |
+ char *zCsr; /* Space for holding column names */ |
+ int nDb; /* Bytes required to hold database name */ |
+ int nName; /* Bytes required to hold table name */ |
+ int isFts4 = (argv[0][3]=='4'); /* True for FTS4, false for FTS3 */ |
+ const char **aCol; /* Array of column names */ |
+ sqlite3_tokenizer *pTokenizer = 0; /* Tokenizer for this table */ |
+ |
+ int nIndex; /* Size of aIndex[] array */ |
+ struct Fts3Index *aIndex = 0; /* Array of indexes for this table */ |
+ |
+ /* The results of parsing supported FTS4 key=value options: */ |
+ int bNoDocsize = 0; /* True to omit %_docsize table */ |
+ int bDescIdx = 0; /* True to store descending indexes */ |
+ char *zPrefix = 0; /* Prefix parameter value (or NULL) */ |
+ char *zCompress = 0; /* compress=? parameter (or NULL) */ |
+ char *zUncompress = 0; /* uncompress=? parameter (or NULL) */ |
+ char *zContent = 0; /* content=? parameter (or NULL) */ |
+ char *zLanguageid = 0; /* languageid=? parameter (or NULL) */ |
+ char **azNotindexed = 0; /* The set of notindexed= columns */ |
+ int nNotindexed = 0; /* Size of azNotindexed[] array */ |
+ |
+ assert( strlen(argv[0])==4 ); |
+ assert( (sqlite3_strnicmp(argv[0], "fts4", 4)==0 && isFts4) |
+ || (sqlite3_strnicmp(argv[0], "fts3", 4)==0 && !isFts4) |
+ ); |
+ |
+ nDb = (int)strlen(argv[1]) + 1; |
+ nName = (int)strlen(argv[2]) + 1; |
+ |
+ nByte = sizeof(const char *) * (argc-2); |
+ aCol = (const char **)sqlite3_malloc(nByte); |
+ if( aCol ){ |
+ memset((void*)aCol, 0, nByte); |
+ azNotindexed = (char **)sqlite3_malloc(nByte); |
+ } |
+ if( azNotindexed ){ |
+ memset(azNotindexed, 0, nByte); |
+ } |
+ if( !aCol || !azNotindexed ){ |
+ rc = SQLITE_NOMEM; |
+ goto fts3_init_out; |
+ } |
+ |
+ /* Loop through all of the arguments passed by the user to the FTS3/4 |
+ ** module (i.e. all the column names and special arguments). This loop |
+ ** does the following: |
+ ** |
+ ** + Figures out the number of columns the FTSX table will have, and |
+ ** the number of bytes of space that must be allocated to store copies |
+ ** of the column names. |
+ ** |
+ ** + If there is a tokenizer specification included in the arguments, |
+ ** initializes the tokenizer pTokenizer. |
+ */ |
+ for(i=3; rc==SQLITE_OK && i<argc; i++){ |
+ char const *z = argv[i]; |
+ int nKey; |
+ char *zVal; |
+ |
+ /* Check if this is a tokenizer specification */ |
+ if( !pTokenizer |
+ && strlen(z)>8 |
+ && 0==sqlite3_strnicmp(z, "tokenize", 8) |
+ && 0==sqlite3Fts3IsIdChar(z[8]) |
+ ){ |
+ rc = sqlite3Fts3InitTokenizer(pHash, &z[9], &pTokenizer, pzErr); |
+ } |
+ |
+ /* Check if it is an FTS4 special argument. */ |
+ else if( isFts4 && fts3IsSpecialColumn(z, &nKey, &zVal) ){ |
+ struct Fts4Option { |
+ const char *zOpt; |
+ int nOpt; |
+ } aFts4Opt[] = { |
+ { "matchinfo", 9 }, /* 0 -> MATCHINFO */ |
+ { "prefix", 6 }, /* 1 -> PREFIX */ |
+ { "compress", 8 }, /* 2 -> COMPRESS */ |
+ { "uncompress", 10 }, /* 3 -> UNCOMPRESS */ |
+ { "order", 5 }, /* 4 -> ORDER */ |
+ { "content", 7 }, /* 5 -> CONTENT */ |
+ { "languageid", 10 }, /* 6 -> LANGUAGEID */ |
+ { "notindexed", 10 } /* 7 -> NOTINDEXED */ |
+ }; |
+ |
+ int iOpt; |
+ if( !zVal ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ for(iOpt=0; iOpt<SizeofArray(aFts4Opt); iOpt++){ |
+ struct Fts4Option *pOp = &aFts4Opt[iOpt]; |
+ if( nKey==pOp->nOpt && !sqlite3_strnicmp(z, pOp->zOpt, pOp->nOpt) ){ |
+ break; |
+ } |
+ } |
+ if( iOpt==SizeofArray(aFts4Opt) ){ |
+ *pzErr = sqlite3_mprintf("unrecognized parameter: %s", z); |
+ rc = SQLITE_ERROR; |
+ }else{ |
+ switch( iOpt ){ |
+ case 0: /* MATCHINFO */ |
+ if( strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "fts3", 4) ){ |
+ *pzErr = sqlite3_mprintf("unrecognized matchinfo: %s", zVal); |
+ rc = SQLITE_ERROR; |
+ } |
+ bNoDocsize = 1; |
+ break; |
+ |
+ case 1: /* PREFIX */ |
+ sqlite3_free(zPrefix); |
+ zPrefix = zVal; |
+ zVal = 0; |
+ break; |
+ |
+ case 2: /* COMPRESS */ |
+ sqlite3_free(zCompress); |
+ zCompress = zVal; |
+ zVal = 0; |
+ break; |
+ |
+ case 3: /* UNCOMPRESS */ |
+ sqlite3_free(zUncompress); |
+ zUncompress = zVal; |
+ zVal = 0; |
+ break; |
+ |
+ case 4: /* ORDER */ |
+ if( (strlen(zVal)!=3 || sqlite3_strnicmp(zVal, "asc", 3)) |
+ && (strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "desc", 4)) |
+ ){ |
+ *pzErr = sqlite3_mprintf("unrecognized order: %s", zVal); |
+ rc = SQLITE_ERROR; |
+ } |
+ bDescIdx = (zVal[0]=='d' || zVal[0]=='D'); |
+ break; |
+ |
+ case 5: /* CONTENT */ |
+ sqlite3_free(zContent); |
+ zContent = zVal; |
+ zVal = 0; |
+ break; |
+ |
+ case 6: /* LANGUAGEID */ |
+ assert( iOpt==6 ); |
+ sqlite3_free(zLanguageid); |
+ zLanguageid = zVal; |
+ zVal = 0; |
+ break; |
+ |
+ case 7: /* NOTINDEXED */ |
+ azNotindexed[nNotindexed++] = zVal; |
+ zVal = 0; |
+ break; |
+ } |
+ } |
+ sqlite3_free(zVal); |
+ } |
+ } |
+ |
+ /* Otherwise, the argument is a column name. */ |
+ else { |
+ nString += (int)(strlen(z) + 1); |
+ aCol[nCol++] = z; |
+ } |
+ } |
+ |
+ /* If a content=xxx option was specified, the following: |
+ ** |
+ ** 1. Ignore any compress= and uncompress= options. |
+ ** |
+ ** 2. If no column names were specified as part of the CREATE VIRTUAL |
+ ** TABLE statement, use all columns from the content table. |
+ */ |
+ if( rc==SQLITE_OK && zContent ){ |
+ sqlite3_free(zCompress); |
+ sqlite3_free(zUncompress); |
+ zCompress = 0; |
+ zUncompress = 0; |
+ if( nCol==0 ){ |
+ sqlite3_free((void*)aCol); |
+ aCol = 0; |
+ rc = fts3ContentColumns(db, argv[1], zContent, &aCol, &nCol, &nString); |
+ |
+ /* If a languageid= option was specified, remove the language id |
+ ** column from the aCol[] array. */ |
+ if( rc==SQLITE_OK && zLanguageid ){ |
+ int j; |
+ for(j=0; j<nCol; j++){ |
+ if( sqlite3_stricmp(zLanguageid, aCol[j])==0 ){ |
+ int k; |
+ for(k=j; k<nCol; k++) aCol[k] = aCol[k+1]; |
+ nCol--; |
+ break; |
+ } |
+ } |
+ } |
+ } |
+ } |
+ if( rc!=SQLITE_OK ) goto fts3_init_out; |
+ |
+ if( nCol==0 ){ |
+ assert( nString==0 ); |
+ aCol[0] = "content"; |
+ nString = 8; |
+ nCol = 1; |
+ } |
+ |
+ if( pTokenizer==0 ){ |
+ rc = sqlite3Fts3InitTokenizer(pHash, "simple", &pTokenizer, pzErr); |
+ if( rc!=SQLITE_OK ) goto fts3_init_out; |
+ } |
+ assert( pTokenizer ); |
+ |
+ rc = fts3PrefixParameter(zPrefix, &nIndex, &aIndex); |
+ if( rc==SQLITE_ERROR ){ |
+ assert( zPrefix ); |
+ *pzErr = sqlite3_mprintf("error parsing prefix parameter: %s", zPrefix); |
+ } |
+ if( rc!=SQLITE_OK ) goto fts3_init_out; |
+ |
+ /* Allocate and populate the Fts3Table structure. */ |
+ nByte = sizeof(Fts3Table) + /* Fts3Table */ |
+ nCol * sizeof(char *) + /* azColumn */ |
+ nIndex * sizeof(struct Fts3Index) + /* aIndex */ |
+ nCol * sizeof(u8) + /* abNotindexed */ |
+ nName + /* zName */ |
+ nDb + /* zDb */ |
+ nString; /* Space for azColumn strings */ |
+ p = (Fts3Table*)sqlite3_malloc(nByte); |
+ if( p==0 ){ |
+ rc = SQLITE_NOMEM; |
+ goto fts3_init_out; |
+ } |
+ memset(p, 0, nByte); |
+ p->db = db; |
+ p->nColumn = nCol; |
+ p->nPendingData = 0; |
+ p->azColumn = (char **)&p[1]; |
+ p->pTokenizer = pTokenizer; |
+ p->nMaxPendingData = FTS3_MAX_PENDING_DATA; |
+ p->bHasDocsize = (isFts4 && bNoDocsize==0); |
+ p->bHasStat = isFts4; |
+ p->bFts4 = isFts4; |
+ p->bDescIdx = bDescIdx; |
+ p->nAutoincrmerge = 0xff; /* 0xff means setting unknown */ |
+ p->zContentTbl = zContent; |
+ p->zLanguageid = zLanguageid; |
+ zContent = 0; |
+ zLanguageid = 0; |
+ TESTONLY( p->inTransaction = -1 ); |
+ TESTONLY( p->mxSavepoint = -1 ); |
+ |
+ p->aIndex = (struct Fts3Index *)&p->azColumn[nCol]; |
+ memcpy(p->aIndex, aIndex, sizeof(struct Fts3Index) * nIndex); |
+ p->nIndex = nIndex; |
+ for(i=0; i<nIndex; i++){ |
+ fts3HashInit(&p->aIndex[i].hPending, FTS3_HASH_STRING, 1); |
+ } |
+ p->abNotindexed = (u8 *)&p->aIndex[nIndex]; |
+ |
+ /* Fill in the zName and zDb fields of the vtab structure. */ |
+ zCsr = (char *)&p->abNotindexed[nCol]; |
+ p->zName = zCsr; |
+ memcpy(zCsr, argv[2], nName); |
+ zCsr += nName; |
+ p->zDb = zCsr; |
+ memcpy(zCsr, argv[1], nDb); |
+ zCsr += nDb; |
+ |
+ /* Fill in the azColumn array */ |
+ for(iCol=0; iCol<nCol; iCol++){ |
+ char *z; |
+ int n = 0; |
+ z = (char *)sqlite3Fts3NextToken(aCol[iCol], &n); |
+ memcpy(zCsr, z, n); |
+ zCsr[n] = '\0'; |
+ sqlite3Fts3Dequote(zCsr); |
+ p->azColumn[iCol] = zCsr; |
+ zCsr += n+1; |
+ assert( zCsr <= &((char *)p)[nByte] ); |
+ } |
+ |
+ /* Fill in the abNotindexed array */ |
+ for(iCol=0; iCol<nCol; iCol++){ |
+ int n = (int)strlen(p->azColumn[iCol]); |
+ for(i=0; i<nNotindexed; i++){ |
+ char *zNot = azNotindexed[i]; |
+ if( zNot && n==(int)strlen(zNot) |
+ && 0==sqlite3_strnicmp(p->azColumn[iCol], zNot, n) |
+ ){ |
+ p->abNotindexed[iCol] = 1; |
+ sqlite3_free(zNot); |
+ azNotindexed[i] = 0; |
+ } |
+ } |
+ } |
+ for(i=0; i<nNotindexed; i++){ |
+ if( azNotindexed[i] ){ |
+ *pzErr = sqlite3_mprintf("no such column: %s", azNotindexed[i]); |
+ rc = SQLITE_ERROR; |
+ } |
+ } |
+ |
+ if( rc==SQLITE_OK && (zCompress==0)!=(zUncompress==0) ){ |
+ char const *zMiss = (zCompress==0 ? "compress" : "uncompress"); |
+ rc = SQLITE_ERROR; |
+ *pzErr = sqlite3_mprintf("missing %s parameter in fts4 constructor", zMiss); |
+ } |
+ p->zReadExprlist = fts3ReadExprList(p, zUncompress, &rc); |
+ p->zWriteExprlist = fts3WriteExprList(p, zCompress, &rc); |
+ if( rc!=SQLITE_OK ) goto fts3_init_out; |
+ |
+ /* If this is an xCreate call, create the underlying tables in the |
+ ** database. TODO: For xConnect(), it could verify that said tables exist. |
+ */ |
+ if( isCreate ){ |
+ rc = fts3CreateTables(p); |
+ } |
+ |
+ /* Check to see if a legacy fts3 table has been "upgraded" by the |
+ ** addition of a %_stat table so that it can use incremental merge. |
+ */ |
+ if( !isFts4 && !isCreate ){ |
+ p->bHasStat = 2; |
+ } |
+ |
+ /* Figure out the page-size for the database. This is required in order to |
+ ** estimate the cost of loading large doclists from the database. */ |
+ fts3DatabasePageSize(&rc, p); |
+ p->nNodeSize = p->nPgsz-35; |
+ |
+ /* Declare the table schema to SQLite. */ |
+ fts3DeclareVtab(&rc, p); |
+ |
+fts3_init_out: |
+ sqlite3_free(zPrefix); |
+ sqlite3_free(aIndex); |
+ sqlite3_free(zCompress); |
+ sqlite3_free(zUncompress); |
+ sqlite3_free(zContent); |
+ sqlite3_free(zLanguageid); |
+ for(i=0; i<nNotindexed; i++) sqlite3_free(azNotindexed[i]); |
+ sqlite3_free((void *)aCol); |
+ sqlite3_free((void *)azNotindexed); |
+ if( rc!=SQLITE_OK ){ |
+ if( p ){ |
+ fts3DisconnectMethod((sqlite3_vtab *)p); |
+ }else if( pTokenizer ){ |
+ pTokenizer->pModule->xDestroy(pTokenizer); |
+ } |
+ }else{ |
+ assert( p->pSegments==0 ); |
+ *ppVTab = &p->base; |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** The xConnect() and xCreate() methods for the virtual table. All the |
+** work is done in function fts3InitVtab(). |
+*/ |
+static int fts3ConnectMethod( |
+ sqlite3 *db, /* Database connection */ |
+ void *pAux, /* Pointer to tokenizer hash table */ |
+ int argc, /* Number of elements in argv array */ |
+ const char * const *argv, /* xCreate/xConnect argument array */ |
+ sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */ |
+ char **pzErr /* OUT: sqlite3_malloc'd error message */ |
+){ |
+ return fts3InitVtab(0, db, pAux, argc, argv, ppVtab, pzErr); |
+} |
+static int fts3CreateMethod( |
+ sqlite3 *db, /* Database connection */ |
+ void *pAux, /* Pointer to tokenizer hash table */ |
+ int argc, /* Number of elements in argv array */ |
+ const char * const *argv, /* xCreate/xConnect argument array */ |
+ sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */ |
+ char **pzErr /* OUT: sqlite3_malloc'd error message */ |
+){ |
+ return fts3InitVtab(1, db, pAux, argc, argv, ppVtab, pzErr); |
+} |
+ |
+/* |
+** Set the pIdxInfo->estimatedRows variable to nRow. Unless this |
+** extension is currently being used by a version of SQLite too old to |
+** support estimatedRows. In that case this function is a no-op. |
+*/ |
+static void fts3SetEstimatedRows(sqlite3_index_info *pIdxInfo, i64 nRow){ |
+#if SQLITE_VERSION_NUMBER>=3008002 |
+ if( sqlite3_libversion_number()>=3008002 ){ |
+ pIdxInfo->estimatedRows = nRow; |
+ } |
+#endif |
+} |
+ |
+/* |
+** Implementation of the xBestIndex method for FTS3 tables. There |
+** are three possible strategies, in order of preference: |
+** |
+** 1. Direct lookup by rowid or docid. |
+** 2. Full-text search using a MATCH operator on a non-docid column. |
+** 3. Linear scan of %_content table. |
+*/ |
+static int fts3BestIndexMethod(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){ |
+ Fts3Table *p = (Fts3Table *)pVTab; |
+ int i; /* Iterator variable */ |
+ int iCons = -1; /* Index of constraint to use */ |
+ |
+ int iLangidCons = -1; /* Index of langid=x constraint, if present */ |
+ int iDocidGe = -1; /* Index of docid>=x constraint, if present */ |
+ int iDocidLe = -1; /* Index of docid<=x constraint, if present */ |
+ int iIdx; |
+ |
+ /* By default use a full table scan. This is an expensive option, |
+ ** so search through the constraints to see if a more efficient |
+ ** strategy is possible. |
+ */ |
+ pInfo->idxNum = FTS3_FULLSCAN_SEARCH; |
+ pInfo->estimatedCost = 5000000; |
+ for(i=0; i<pInfo->nConstraint; i++){ |
+ int bDocid; /* True if this constraint is on docid */ |
+ struct sqlite3_index_constraint *pCons = &pInfo->aConstraint[i]; |
+ if( pCons->usable==0 ){ |
+ if( pCons->op==SQLITE_INDEX_CONSTRAINT_MATCH ){ |
+ /* There exists an unusable MATCH constraint. This means that if |
+ ** the planner does elect to use the results of this call as part |
+ ** of the overall query plan the user will see an "unable to use |
+ ** function MATCH in the requested context" error. To discourage |
+ ** this, return a very high cost here. */ |
+ pInfo->idxNum = FTS3_FULLSCAN_SEARCH; |
+ pInfo->estimatedCost = 1e50; |
+ fts3SetEstimatedRows(pInfo, ((sqlite3_int64)1) << 50); |
+ return SQLITE_OK; |
+ } |
+ continue; |
+ } |
+ |
+ bDocid = (pCons->iColumn<0 || pCons->iColumn==p->nColumn+1); |
+ |
+ /* A direct lookup on the rowid or docid column. Assign a cost of 1.0. */ |
+ if( iCons<0 && pCons->op==SQLITE_INDEX_CONSTRAINT_EQ && bDocid ){ |
+ pInfo->idxNum = FTS3_DOCID_SEARCH; |
+ pInfo->estimatedCost = 1.0; |
+ iCons = i; |
+ } |
+ |
+ /* A MATCH constraint. Use a full-text search. |
+ ** |
+ ** If there is more than one MATCH constraint available, use the first |
+ ** one encountered. If there is both a MATCH constraint and a direct |
+ ** rowid/docid lookup, prefer the MATCH strategy. This is done even |
+ ** though the rowid/docid lookup is faster than a MATCH query, selecting |
+ ** it would lead to an "unable to use function MATCH in the requested |
+ ** context" error. |
+ */ |
+ if( pCons->op==SQLITE_INDEX_CONSTRAINT_MATCH |
+ && pCons->iColumn>=0 && pCons->iColumn<=p->nColumn |
+ ){ |
+ pInfo->idxNum = FTS3_FULLTEXT_SEARCH + pCons->iColumn; |
+ pInfo->estimatedCost = 2.0; |
+ iCons = i; |
+ } |
+ |
+ /* Equality constraint on the langid column */ |
+ if( pCons->op==SQLITE_INDEX_CONSTRAINT_EQ |
+ && pCons->iColumn==p->nColumn + 2 |
+ ){ |
+ iLangidCons = i; |
+ } |
+ |
+ if( bDocid ){ |
+ switch( pCons->op ){ |
+ case SQLITE_INDEX_CONSTRAINT_GE: |
+ case SQLITE_INDEX_CONSTRAINT_GT: |
+ iDocidGe = i; |
+ break; |
+ |
+ case SQLITE_INDEX_CONSTRAINT_LE: |
+ case SQLITE_INDEX_CONSTRAINT_LT: |
+ iDocidLe = i; |
+ break; |
+ } |
+ } |
+ } |
+ |
+ iIdx = 1; |
+ if( iCons>=0 ){ |
+ pInfo->aConstraintUsage[iCons].argvIndex = iIdx++; |
+ pInfo->aConstraintUsage[iCons].omit = 1; |
+ } |
+ if( iLangidCons>=0 ){ |
+ pInfo->idxNum |= FTS3_HAVE_LANGID; |
+ pInfo->aConstraintUsage[iLangidCons].argvIndex = iIdx++; |
+ } |
+ if( iDocidGe>=0 ){ |
+ pInfo->idxNum |= FTS3_HAVE_DOCID_GE; |
+ pInfo->aConstraintUsage[iDocidGe].argvIndex = iIdx++; |
+ } |
+ if( iDocidLe>=0 ){ |
+ pInfo->idxNum |= FTS3_HAVE_DOCID_LE; |
+ pInfo->aConstraintUsage[iDocidLe].argvIndex = iIdx++; |
+ } |
+ |
+ /* Regardless of the strategy selected, FTS can deliver rows in rowid (or |
+ ** docid) order. Both ascending and descending are possible. |
+ */ |
+ if( pInfo->nOrderBy==1 ){ |
+ struct sqlite3_index_orderby *pOrder = &pInfo->aOrderBy[0]; |
+ if( pOrder->iColumn<0 || pOrder->iColumn==p->nColumn+1 ){ |
+ if( pOrder->desc ){ |
+ pInfo->idxStr = "DESC"; |
+ }else{ |
+ pInfo->idxStr = "ASC"; |
+ } |
+ pInfo->orderByConsumed = 1; |
+ } |
+ } |
+ |
+ assert( p->pSegments==0 ); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Implementation of xOpen method. |
+*/ |
+static int fts3OpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){ |
+ sqlite3_vtab_cursor *pCsr; /* Allocated cursor */ |
+ |
+ UNUSED_PARAMETER(pVTab); |
+ |
+ /* Allocate a buffer large enough for an Fts3Cursor structure. If the |
+ ** allocation succeeds, zero it and return SQLITE_OK. Otherwise, |
+ ** if the allocation fails, return SQLITE_NOMEM. |
+ */ |
+ *ppCsr = pCsr = (sqlite3_vtab_cursor *)sqlite3_malloc(sizeof(Fts3Cursor)); |
+ if( !pCsr ){ |
+ return SQLITE_NOMEM; |
+ } |
+ memset(pCsr, 0, sizeof(Fts3Cursor)); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Close the cursor. For additional information see the documentation |
+** on the xClose method of the virtual table interface. |
+*/ |
+static int fts3CloseMethod(sqlite3_vtab_cursor *pCursor){ |
+ Fts3Cursor *pCsr = (Fts3Cursor *)pCursor; |
+ assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 ); |
+ sqlite3_finalize(pCsr->pStmt); |
+ sqlite3Fts3ExprFree(pCsr->pExpr); |
+ sqlite3Fts3FreeDeferredTokens(pCsr); |
+ sqlite3_free(pCsr->aDoclist); |
+ sqlite3_free(pCsr->aMatchinfo); |
+ assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 ); |
+ sqlite3_free(pCsr); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** If pCsr->pStmt has not been prepared (i.e. if pCsr->pStmt==0), then |
+** compose and prepare an SQL statement of the form: |
+** |
+** "SELECT <columns> FROM %_content WHERE rowid = ?" |
+** |
+** (or the equivalent for a content=xxx table) and set pCsr->pStmt to |
+** it. If an error occurs, return an SQLite error code. |
+** |
+** Otherwise, set *ppStmt to point to pCsr->pStmt and return SQLITE_OK. |
+*/ |
+static int fts3CursorSeekStmt(Fts3Cursor *pCsr, sqlite3_stmt **ppStmt){ |
+ int rc = SQLITE_OK; |
+ if( pCsr->pStmt==0 ){ |
+ Fts3Table *p = (Fts3Table *)pCsr->base.pVtab; |
+ char *zSql; |
+ zSql = sqlite3_mprintf("SELECT %s WHERE rowid = ?", p->zReadExprlist); |
+ if( !zSql ) return SQLITE_NOMEM; |
+ rc = sqlite3_prepare_v2(p->db, zSql, -1, &pCsr->pStmt, 0); |
+ sqlite3_free(zSql); |
+ } |
+ *ppStmt = pCsr->pStmt; |
+ return rc; |
+} |
+ |
+/* |
+** Position the pCsr->pStmt statement so that it is on the row |
+** of the %_content table that contains the last match. Return |
+** SQLITE_OK on success. |
+*/ |
+static int fts3CursorSeek(sqlite3_context *pContext, Fts3Cursor *pCsr){ |
+ int rc = SQLITE_OK; |
+ if( pCsr->isRequireSeek ){ |
+ sqlite3_stmt *pStmt = 0; |
+ |
+ rc = fts3CursorSeekStmt(pCsr, &pStmt); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_bind_int64(pCsr->pStmt, 1, pCsr->iPrevId); |
+ pCsr->isRequireSeek = 0; |
+ if( SQLITE_ROW==sqlite3_step(pCsr->pStmt) ){ |
+ return SQLITE_OK; |
+ }else{ |
+ rc = sqlite3_reset(pCsr->pStmt); |
+ if( rc==SQLITE_OK && ((Fts3Table *)pCsr->base.pVtab)->zContentTbl==0 ){ |
+ /* If no row was found and no error has occurred, then the %_content |
+ ** table is missing a row that is present in the full-text index. |
+ ** The data structures are corrupt. */ |
+ rc = FTS_CORRUPT_VTAB; |
+ pCsr->isEof = 1; |
+ } |
+ } |
+ } |
+ } |
+ |
+ if( rc!=SQLITE_OK && pContext ){ |
+ sqlite3_result_error_code(pContext, rc); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** This function is used to process a single interior node when searching |
+** a b-tree for a term or term prefix. The node data is passed to this |
+** function via the zNode/nNode parameters. The term to search for is |
+** passed in zTerm/nTerm. |
+** |
+** If piFirst is not NULL, then this function sets *piFirst to the blockid |
+** of the child node that heads the sub-tree that may contain the term. |
+** |
+** If piLast is not NULL, then *piLast is set to the right-most child node |
+** that heads a sub-tree that may contain a term for which zTerm/nTerm is |
+** a prefix. |
+** |
+** If an OOM error occurs, SQLITE_NOMEM is returned. Otherwise, SQLITE_OK. |
+*/ |
+static int fts3ScanInteriorNode( |
+ const char *zTerm, /* Term to select leaves for */ |
+ int nTerm, /* Size of term zTerm in bytes */ |
+ const char *zNode, /* Buffer containing segment interior node */ |
+ int nNode, /* Size of buffer at zNode */ |
+ sqlite3_int64 *piFirst, /* OUT: Selected child node */ |
+ sqlite3_int64 *piLast /* OUT: Selected child node */ |
+){ |
+ int rc = SQLITE_OK; /* Return code */ |
+ const char *zCsr = zNode; /* Cursor to iterate through node */ |
+ const char *zEnd = &zCsr[nNode];/* End of interior node buffer */ |
+ char *zBuffer = 0; /* Buffer to load terms into */ |
+ int nAlloc = 0; /* Size of allocated buffer */ |
+ int isFirstTerm = 1; /* True when processing first term on page */ |
+ sqlite3_int64 iChild; /* Block id of child node to descend to */ |
+ |
+ /* Skip over the 'height' varint that occurs at the start of every |
+ ** interior node. Then load the blockid of the left-child of the b-tree |
+ ** node into variable iChild. |
+ ** |
+ ** Even if the data structure on disk is corrupted, this (reading two |
+ ** varints from the buffer) does not risk an overread. If zNode is a |
+ ** root node, then the buffer comes from a SELECT statement. SQLite does |
+ ** not make this guarantee explicitly, but in practice there are always |
+ ** either more than 20 bytes of allocated space following the nNode bytes of |
+ ** contents, or two zero bytes. Or, if the node is read from the %_segments |
+ ** table, then there are always 20 bytes of zeroed padding following the |
+ ** nNode bytes of content (see sqlite3Fts3ReadBlock() for details). |
+ */ |
+ zCsr += sqlite3Fts3GetVarint(zCsr, &iChild); |
+ zCsr += sqlite3Fts3GetVarint(zCsr, &iChild); |
+ if( zCsr>zEnd ){ |
+ return FTS_CORRUPT_VTAB; |
+ } |
+ |
+ while( zCsr<zEnd && (piFirst || piLast) ){ |
+ int cmp; /* memcmp() result */ |
+ int nSuffix; /* Size of term suffix */ |
+ int nPrefix = 0; /* Size of term prefix */ |
+ int nBuffer; /* Total term size */ |
+ |
+ /* Load the next term on the node into zBuffer. Use realloc() to expand |
+ ** the size of zBuffer if required. */ |
+ if( !isFirstTerm ){ |
+ zCsr += fts3GetVarint32(zCsr, &nPrefix); |
+ } |
+ isFirstTerm = 0; |
+ zCsr += fts3GetVarint32(zCsr, &nSuffix); |
+ |
+ if( nPrefix<0 || nSuffix<0 || &zCsr[nSuffix]>zEnd ){ |
+ rc = FTS_CORRUPT_VTAB; |
+ goto finish_scan; |
+ } |
+ if( nPrefix+nSuffix>nAlloc ){ |
+ char *zNew; |
+ nAlloc = (nPrefix+nSuffix) * 2; |
+ zNew = (char *)sqlite3_realloc(zBuffer, nAlloc); |
+ if( !zNew ){ |
+ rc = SQLITE_NOMEM; |
+ goto finish_scan; |
+ } |
+ zBuffer = zNew; |
+ } |
+ assert( zBuffer ); |
+ memcpy(&zBuffer[nPrefix], zCsr, nSuffix); |
+ nBuffer = nPrefix + nSuffix; |
+ zCsr += nSuffix; |
+ |
+ /* Compare the term we are searching for with the term just loaded from |
+ ** the interior node. If the specified term is greater than or equal |
+ ** to the term from the interior node, then all terms on the sub-tree |
+ ** headed by node iChild are smaller than zTerm. No need to search |
+ ** iChild. |
+ ** |
+ ** If the interior node term is larger than the specified term, then |
+ ** the tree headed by iChild may contain the specified term. |
+ */ |
+ cmp = memcmp(zTerm, zBuffer, (nBuffer>nTerm ? nTerm : nBuffer)); |
+ if( piFirst && (cmp<0 || (cmp==0 && nBuffer>nTerm)) ){ |
+ *piFirst = iChild; |
+ piFirst = 0; |
+ } |
+ |
+ if( piLast && cmp<0 ){ |
+ *piLast = iChild; |
+ piLast = 0; |
+ } |
+ |
+ iChild++; |
+ }; |
+ |
+ if( piFirst ) *piFirst = iChild; |
+ if( piLast ) *piLast = iChild; |
+ |
+ finish_scan: |
+ sqlite3_free(zBuffer); |
+ return rc; |
+} |
+ |
+ |
+/* |
+** The buffer pointed to by argument zNode (size nNode bytes) contains an |
+** interior node of a b-tree segment. The zTerm buffer (size nTerm bytes) |
+** contains a term. This function searches the sub-tree headed by the zNode |
+** node for the range of leaf nodes that may contain the specified term |
+** or terms for which the specified term is a prefix. |
+** |
+** If piLeaf is not NULL, then *piLeaf is set to the blockid of the |
+** left-most leaf node in the tree that may contain the specified term. |
+** If piLeaf2 is not NULL, then *piLeaf2 is set to the blockid of the |
+** right-most leaf node that may contain a term for which the specified |
+** term is a prefix. |
+** |
+** It is possible that the range of returned leaf nodes does not contain |
+** the specified term or any terms for which it is a prefix. However, if the |
+** segment does contain any such terms, they are stored within the identified |
+** range. Because this function only inspects interior segment nodes (and |
+** never loads leaf nodes into memory), it is not possible to be sure. |
+** |
+** If an error occurs, an error code other than SQLITE_OK is returned. |
+*/ |
+static int fts3SelectLeaf( |
+ Fts3Table *p, /* Virtual table handle */ |
+ const char *zTerm, /* Term to select leaves for */ |
+ int nTerm, /* Size of term zTerm in bytes */ |
+ const char *zNode, /* Buffer containing segment interior node */ |
+ int nNode, /* Size of buffer at zNode */ |
+ sqlite3_int64 *piLeaf, /* Selected leaf node */ |
+ sqlite3_int64 *piLeaf2 /* Selected leaf node */ |
+){ |
+ int rc; /* Return code */ |
+ int iHeight; /* Height of this node in tree */ |
+ |
+ assert( piLeaf || piLeaf2 ); |
+ |
+ fts3GetVarint32(zNode, &iHeight); |
+ rc = fts3ScanInteriorNode(zTerm, nTerm, zNode, nNode, piLeaf, piLeaf2); |
+ assert( !piLeaf2 || !piLeaf || rc!=SQLITE_OK || (*piLeaf<=*piLeaf2) ); |
+ |
+ if( rc==SQLITE_OK && iHeight>1 ){ |
+ char *zBlob = 0; /* Blob read from %_segments table */ |
+ int nBlob; /* Size of zBlob in bytes */ |
+ |
+ if( piLeaf && piLeaf2 && (*piLeaf!=*piLeaf2) ){ |
+ rc = sqlite3Fts3ReadBlock(p, *piLeaf, &zBlob, &nBlob, 0); |
+ if( rc==SQLITE_OK ){ |
+ rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, 0); |
+ } |
+ sqlite3_free(zBlob); |
+ piLeaf = 0; |
+ zBlob = 0; |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3Fts3ReadBlock(p, piLeaf?*piLeaf:*piLeaf2, &zBlob, &nBlob, 0); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, piLeaf2); |
+ } |
+ sqlite3_free(zBlob); |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** This function is used to create delta-encoded serialized lists of FTS3 |
+** varints. Each call to this function appends a single varint to a list. |
+*/ |
+static void fts3PutDeltaVarint( |
+ char **pp, /* IN/OUT: Output pointer */ |
+ sqlite3_int64 *piPrev, /* IN/OUT: Previous value written to list */ |
+ sqlite3_int64 iVal /* Write this value to the list */ |
+){ |
+ assert( iVal-*piPrev > 0 || (*piPrev==0 && iVal==0) ); |
+ *pp += sqlite3Fts3PutVarint(*pp, iVal-*piPrev); |
+ *piPrev = iVal; |
+} |
+ |
+/* |
+** When this function is called, *ppPoslist is assumed to point to the |
+** start of a position-list. After it returns, *ppPoslist points to the |
+** first byte after the position-list. |
+** |
+** A position list is list of positions (delta encoded) and columns for |
+** a single document record of a doclist. So, in other words, this |
+** routine advances *ppPoslist so that it points to the next docid in |
+** the doclist, or to the first byte past the end of the doclist. |
+** |
+** If pp is not NULL, then the contents of the position list are copied |
+** to *pp. *pp is set to point to the first byte past the last byte copied |
+** before this function returns. |
+*/ |
+static void fts3PoslistCopy(char **pp, char **ppPoslist){ |
+ char *pEnd = *ppPoslist; |
+ char c = 0; |
+ |
+ /* The end of a position list is marked by a zero encoded as an FTS3 |
+ ** varint. A single POS_END (0) byte. Except, if the 0 byte is preceded by |
+ ** a byte with the 0x80 bit set, then it is not a varint 0, but the tail |
+ ** of some other, multi-byte, value. |
+ ** |
+ ** The following while-loop moves pEnd to point to the first byte that is not |
+ ** immediately preceded by a byte with the 0x80 bit set. Then increments |
+ ** pEnd once more so that it points to the byte immediately following the |
+ ** last byte in the position-list. |
+ */ |
+ while( *pEnd | c ){ |
+ c = *pEnd++ & 0x80; |
+ testcase( c!=0 && (*pEnd)==0 ); |
+ } |
+ pEnd++; /* Advance past the POS_END terminator byte */ |
+ |
+ if( pp ){ |
+ int n = (int)(pEnd - *ppPoslist); |
+ char *p = *pp; |
+ memcpy(p, *ppPoslist, n); |
+ p += n; |
+ *pp = p; |
+ } |
+ *ppPoslist = pEnd; |
+} |
+ |
+/* |
+** When this function is called, *ppPoslist is assumed to point to the |
+** start of a column-list. After it returns, *ppPoslist points to the |
+** to the terminator (POS_COLUMN or POS_END) byte of the column-list. |
+** |
+** A column-list is list of delta-encoded positions for a single column |
+** within a single document within a doclist. |
+** |
+** The column-list is terminated either by a POS_COLUMN varint (1) or |
+** a POS_END varint (0). This routine leaves *ppPoslist pointing to |
+** the POS_COLUMN or POS_END that terminates the column-list. |
+** |
+** If pp is not NULL, then the contents of the column-list are copied |
+** to *pp. *pp is set to point to the first byte past the last byte copied |
+** before this function returns. The POS_COLUMN or POS_END terminator |
+** is not copied into *pp. |
+*/ |
+static void fts3ColumnlistCopy(char **pp, char **ppPoslist){ |
+ char *pEnd = *ppPoslist; |
+ char c = 0; |
+ |
+ /* A column-list is terminated by either a 0x01 or 0x00 byte that is |
+ ** not part of a multi-byte varint. |
+ */ |
+ while( 0xFE & (*pEnd | c) ){ |
+ c = *pEnd++ & 0x80; |
+ testcase( c!=0 && ((*pEnd)&0xfe)==0 ); |
+ } |
+ if( pp ){ |
+ int n = (int)(pEnd - *ppPoslist); |
+ char *p = *pp; |
+ memcpy(p, *ppPoslist, n); |
+ p += n; |
+ *pp = p; |
+ } |
+ *ppPoslist = pEnd; |
+} |
+ |
+/* |
+** Value used to signify the end of an position-list. This is safe because |
+** it is not possible to have a document with 2^31 terms. |
+*/ |
+#define POSITION_LIST_END 0x7fffffff |
+ |
+/* |
+** This function is used to help parse position-lists. When this function is |
+** called, *pp may point to the start of the next varint in the position-list |
+** being parsed, or it may point to 1 byte past the end of the position-list |
+** (in which case **pp will be a terminator bytes POS_END (0) or |
+** (1)). |
+** |
+** If *pp points past the end of the current position-list, set *pi to |
+** POSITION_LIST_END and return. Otherwise, read the next varint from *pp, |
+** increment the current value of *pi by the value read, and set *pp to |
+** point to the next value before returning. |
+** |
+** Before calling this routine *pi must be initialized to the value of |
+** the previous position, or zero if we are reading the first position |
+** in the position-list. Because positions are delta-encoded, the value |
+** of the previous position is needed in order to compute the value of |
+** the next position. |
+*/ |
+static void fts3ReadNextPos( |
+ char **pp, /* IN/OUT: Pointer into position-list buffer */ |
+ sqlite3_int64 *pi /* IN/OUT: Value read from position-list */ |
+){ |
+ if( (**pp)&0xFE ){ |
+ fts3GetDeltaVarint(pp, pi); |
+ *pi -= 2; |
+ }else{ |
+ *pi = POSITION_LIST_END; |
+ } |
+} |
+ |
+/* |
+** If parameter iCol is not 0, write an POS_COLUMN (1) byte followed by |
+** the value of iCol encoded as a varint to *pp. This will start a new |
+** column list. |
+** |
+** Set *pp to point to the byte just after the last byte written before |
+** returning (do not modify it if iCol==0). Return the total number of bytes |
+** written (0 if iCol==0). |
+*/ |
+static int fts3PutColNumber(char **pp, int iCol){ |
+ int n = 0; /* Number of bytes written */ |
+ if( iCol ){ |
+ char *p = *pp; /* Output pointer */ |
+ n = 1 + sqlite3Fts3PutVarint(&p[1], iCol); |
+ *p = 0x01; |
+ *pp = &p[n]; |
+ } |
+ return n; |
+} |
+ |
+/* |
+** Compute the union of two position lists. The output written |
+** into *pp contains all positions of both *pp1 and *pp2 in sorted |
+** order and with any duplicates removed. All pointers are |
+** updated appropriately. The caller is responsible for insuring |
+** that there is enough space in *pp to hold the complete output. |
+*/ |
+static void fts3PoslistMerge( |
+ char **pp, /* Output buffer */ |
+ char **pp1, /* Left input list */ |
+ char **pp2 /* Right input list */ |
+){ |
+ char *p = *pp; |
+ char *p1 = *pp1; |
+ char *p2 = *pp2; |
+ |
+ while( *p1 || *p2 ){ |
+ int iCol1; /* The current column index in pp1 */ |
+ int iCol2; /* The current column index in pp2 */ |
+ |
+ if( *p1==POS_COLUMN ) fts3GetVarint32(&p1[1], &iCol1); |
+ else if( *p1==POS_END ) iCol1 = POSITION_LIST_END; |
+ else iCol1 = 0; |
+ |
+ if( *p2==POS_COLUMN ) fts3GetVarint32(&p2[1], &iCol2); |
+ else if( *p2==POS_END ) iCol2 = POSITION_LIST_END; |
+ else iCol2 = 0; |
+ |
+ if( iCol1==iCol2 ){ |
+ sqlite3_int64 i1 = 0; /* Last position from pp1 */ |
+ sqlite3_int64 i2 = 0; /* Last position from pp2 */ |
+ sqlite3_int64 iPrev = 0; |
+ int n = fts3PutColNumber(&p, iCol1); |
+ p1 += n; |
+ p2 += n; |
+ |
+ /* At this point, both p1 and p2 point to the start of column-lists |
+ ** for the same column (the column with index iCol1 and iCol2). |
+ ** A column-list is a list of non-negative delta-encoded varints, each |
+ ** incremented by 2 before being stored. Each list is terminated by a |
+ ** POS_END (0) or POS_COLUMN (1). The following block merges the two lists |
+ ** and writes the results to buffer p. p is left pointing to the byte |
+ ** after the list written. No terminator (POS_END or POS_COLUMN) is |
+ ** written to the output. |
+ */ |
+ fts3GetDeltaVarint(&p1, &i1); |
+ fts3GetDeltaVarint(&p2, &i2); |
+ do { |
+ fts3PutDeltaVarint(&p, &iPrev, (i1<i2) ? i1 : i2); |
+ iPrev -= 2; |
+ if( i1==i2 ){ |
+ fts3ReadNextPos(&p1, &i1); |
+ fts3ReadNextPos(&p2, &i2); |
+ }else if( i1<i2 ){ |
+ fts3ReadNextPos(&p1, &i1); |
+ }else{ |
+ fts3ReadNextPos(&p2, &i2); |
+ } |
+ }while( i1!=POSITION_LIST_END || i2!=POSITION_LIST_END ); |
+ }else if( iCol1<iCol2 ){ |
+ p1 += fts3PutColNumber(&p, iCol1); |
+ fts3ColumnlistCopy(&p, &p1); |
+ }else{ |
+ p2 += fts3PutColNumber(&p, iCol2); |
+ fts3ColumnlistCopy(&p, &p2); |
+ } |
+ } |
+ |
+ *p++ = POS_END; |
+ *pp = p; |
+ *pp1 = p1 + 1; |
+ *pp2 = p2 + 1; |
+} |
+ |
+/* |
+** This function is used to merge two position lists into one. When it is |
+** called, *pp1 and *pp2 must both point to position lists. A position-list is |
+** the part of a doclist that follows each document id. For example, if a row |
+** contains: |
+** |
+** 'a b c'|'x y z'|'a b b a' |
+** |
+** Then the position list for this row for token 'b' would consist of: |
+** |
+** 0x02 0x01 0x02 0x03 0x03 0x00 |
+** |
+** When this function returns, both *pp1 and *pp2 are left pointing to the |
+** byte following the 0x00 terminator of their respective position lists. |
+** |
+** If isSaveLeft is 0, an entry is added to the output position list for |
+** each position in *pp2 for which there exists one or more positions in |
+** *pp1 so that (pos(*pp2)>pos(*pp1) && pos(*pp2)-pos(*pp1)<=nToken). i.e. |
+** when the *pp1 token appears before the *pp2 token, but not more than nToken |
+** slots before it. |
+** |
+** e.g. nToken==1 searches for adjacent positions. |
+*/ |
+static int fts3PoslistPhraseMerge( |
+ char **pp, /* IN/OUT: Preallocated output buffer */ |
+ int nToken, /* Maximum difference in token positions */ |
+ int isSaveLeft, /* Save the left position */ |
+ int isExact, /* If *pp1 is exactly nTokens before *pp2 */ |
+ char **pp1, /* IN/OUT: Left input list */ |
+ char **pp2 /* IN/OUT: Right input list */ |
+){ |
+ char *p = *pp; |
+ char *p1 = *pp1; |
+ char *p2 = *pp2; |
+ int iCol1 = 0; |
+ int iCol2 = 0; |
+ |
+ /* Never set both isSaveLeft and isExact for the same invocation. */ |
+ assert( isSaveLeft==0 || isExact==0 ); |
+ |
+ assert( p!=0 && *p1!=0 && *p2!=0 ); |
+ if( *p1==POS_COLUMN ){ |
+ p1++; |
+ p1 += fts3GetVarint32(p1, &iCol1); |
+ } |
+ if( *p2==POS_COLUMN ){ |
+ p2++; |
+ p2 += fts3GetVarint32(p2, &iCol2); |
+ } |
+ |
+ while( 1 ){ |
+ if( iCol1==iCol2 ){ |
+ char *pSave = p; |
+ sqlite3_int64 iPrev = 0; |
+ sqlite3_int64 iPos1 = 0; |
+ sqlite3_int64 iPos2 = 0; |
+ |
+ if( iCol1 ){ |
+ *p++ = POS_COLUMN; |
+ p += sqlite3Fts3PutVarint(p, iCol1); |
+ } |
+ |
+ assert( *p1!=POS_END && *p1!=POS_COLUMN ); |
+ assert( *p2!=POS_END && *p2!=POS_COLUMN ); |
+ fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2; |
+ fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2; |
+ |
+ while( 1 ){ |
+ if( iPos2==iPos1+nToken |
+ || (isExact==0 && iPos2>iPos1 && iPos2<=iPos1+nToken) |
+ ){ |
+ sqlite3_int64 iSave; |
+ iSave = isSaveLeft ? iPos1 : iPos2; |
+ fts3PutDeltaVarint(&p, &iPrev, iSave+2); iPrev -= 2; |
+ pSave = 0; |
+ assert( p ); |
+ } |
+ if( (!isSaveLeft && iPos2<=(iPos1+nToken)) || iPos2<=iPos1 ){ |
+ if( (*p2&0xFE)==0 ) break; |
+ fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2; |
+ }else{ |
+ if( (*p1&0xFE)==0 ) break; |
+ fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2; |
+ } |
+ } |
+ |
+ if( pSave ){ |
+ assert( pp && p ); |
+ p = pSave; |
+ } |
+ |
+ fts3ColumnlistCopy(0, &p1); |
+ fts3ColumnlistCopy(0, &p2); |
+ assert( (*p1&0xFE)==0 && (*p2&0xFE)==0 ); |
+ if( 0==*p1 || 0==*p2 ) break; |
+ |
+ p1++; |
+ p1 += fts3GetVarint32(p1, &iCol1); |
+ p2++; |
+ p2 += fts3GetVarint32(p2, &iCol2); |
+ } |
+ |
+ /* Advance pointer p1 or p2 (whichever corresponds to the smaller of |
+ ** iCol1 and iCol2) so that it points to either the 0x00 that marks the |
+ ** end of the position list, or the 0x01 that precedes the next |
+ ** column-number in the position list. |
+ */ |
+ else if( iCol1<iCol2 ){ |
+ fts3ColumnlistCopy(0, &p1); |
+ if( 0==*p1 ) break; |
+ p1++; |
+ p1 += fts3GetVarint32(p1, &iCol1); |
+ }else{ |
+ fts3ColumnlistCopy(0, &p2); |
+ if( 0==*p2 ) break; |
+ p2++; |
+ p2 += fts3GetVarint32(p2, &iCol2); |
+ } |
+ } |
+ |
+ fts3PoslistCopy(0, &p2); |
+ fts3PoslistCopy(0, &p1); |
+ *pp1 = p1; |
+ *pp2 = p2; |
+ if( *pp==p ){ |
+ return 0; |
+ } |
+ *p++ = 0x00; |
+ *pp = p; |
+ return 1; |
+} |
+ |
+/* |
+** Merge two position-lists as required by the NEAR operator. The argument |
+** position lists correspond to the left and right phrases of an expression |
+** like: |
+** |
+** "phrase 1" NEAR "phrase number 2" |
+** |
+** Position list *pp1 corresponds to the left-hand side of the NEAR |
+** expression and *pp2 to the right. As usual, the indexes in the position |
+** lists are the offsets of the last token in each phrase (tokens "1" and "2" |
+** in the example above). |
+** |
+** The output position list - written to *pp - is a copy of *pp2 with those |
+** entries that are not sufficiently NEAR entries in *pp1 removed. |
+*/ |
+static int fts3PoslistNearMerge( |
+ char **pp, /* Output buffer */ |
+ char *aTmp, /* Temporary buffer space */ |
+ int nRight, /* Maximum difference in token positions */ |
+ int nLeft, /* Maximum difference in token positions */ |
+ char **pp1, /* IN/OUT: Left input list */ |
+ char **pp2 /* IN/OUT: Right input list */ |
+){ |
+ char *p1 = *pp1; |
+ char *p2 = *pp2; |
+ |
+ char *pTmp1 = aTmp; |
+ char *pTmp2; |
+ char *aTmp2; |
+ int res = 1; |
+ |
+ fts3PoslistPhraseMerge(&pTmp1, nRight, 0, 0, pp1, pp2); |
+ aTmp2 = pTmp2 = pTmp1; |
+ *pp1 = p1; |
+ *pp2 = p2; |
+ fts3PoslistPhraseMerge(&pTmp2, nLeft, 1, 0, pp2, pp1); |
+ if( pTmp1!=aTmp && pTmp2!=aTmp2 ){ |
+ fts3PoslistMerge(pp, &aTmp, &aTmp2); |
+ }else if( pTmp1!=aTmp ){ |
+ fts3PoslistCopy(pp, &aTmp); |
+ }else if( pTmp2!=aTmp2 ){ |
+ fts3PoslistCopy(pp, &aTmp2); |
+ }else{ |
+ res = 0; |
+ } |
+ |
+ return res; |
+} |
+ |
+/* |
+** An instance of this function is used to merge together the (potentially |
+** large number of) doclists for each term that matches a prefix query. |
+** See function fts3TermSelectMerge() for details. |
+*/ |
+typedef struct TermSelect TermSelect; |
+struct TermSelect { |
+ char *aaOutput[16]; /* Malloc'd output buffers */ |
+ int anOutput[16]; /* Size each output buffer in bytes */ |
+}; |
+ |
+/* |
+** This function is used to read a single varint from a buffer. Parameter |
+** pEnd points 1 byte past the end of the buffer. When this function is |
+** called, if *pp points to pEnd or greater, then the end of the buffer |
+** has been reached. In this case *pp is set to 0 and the function returns. |
+** |
+** If *pp does not point to or past pEnd, then a single varint is read |
+** from *pp. *pp is then set to point 1 byte past the end of the read varint. |
+** |
+** If bDescIdx is false, the value read is added to *pVal before returning. |
+** If it is true, the value read is subtracted from *pVal before this |
+** function returns. |
+*/ |
+static void fts3GetDeltaVarint3( |
+ char **pp, /* IN/OUT: Point to read varint from */ |
+ char *pEnd, /* End of buffer */ |
+ int bDescIdx, /* True if docids are descending */ |
+ sqlite3_int64 *pVal /* IN/OUT: Integer value */ |
+){ |
+ if( *pp>=pEnd ){ |
+ *pp = 0; |
+ }else{ |
+ sqlite3_int64 iVal; |
+ *pp += sqlite3Fts3GetVarint(*pp, &iVal); |
+ if( bDescIdx ){ |
+ *pVal -= iVal; |
+ }else{ |
+ *pVal += iVal; |
+ } |
+ } |
+} |
+ |
+/* |
+** This function is used to write a single varint to a buffer. The varint |
+** is written to *pp. Before returning, *pp is set to point 1 byte past the |
+** end of the value written. |
+** |
+** If *pbFirst is zero when this function is called, the value written to |
+** the buffer is that of parameter iVal. |
+** |
+** If *pbFirst is non-zero when this function is called, then the value |
+** written is either (iVal-*piPrev) (if bDescIdx is zero) or (*piPrev-iVal) |
+** (if bDescIdx is non-zero). |
+** |
+** Before returning, this function always sets *pbFirst to 1 and *piPrev |
+** to the value of parameter iVal. |
+*/ |
+static void fts3PutDeltaVarint3( |
+ char **pp, /* IN/OUT: Output pointer */ |
+ int bDescIdx, /* True for descending docids */ |
+ sqlite3_int64 *piPrev, /* IN/OUT: Previous value written to list */ |
+ int *pbFirst, /* IN/OUT: True after first int written */ |
+ sqlite3_int64 iVal /* Write this value to the list */ |
+){ |
+ sqlite3_int64 iWrite; |
+ if( bDescIdx==0 || *pbFirst==0 ){ |
+ iWrite = iVal - *piPrev; |
+ }else{ |
+ iWrite = *piPrev - iVal; |
+ } |
+ assert( *pbFirst || *piPrev==0 ); |
+ assert( *pbFirst==0 || iWrite>0 ); |
+ *pp += sqlite3Fts3PutVarint(*pp, iWrite); |
+ *piPrev = iVal; |
+ *pbFirst = 1; |
+} |
+ |
+ |
+/* |
+** This macro is used by various functions that merge doclists. The two |
+** arguments are 64-bit docid values. If the value of the stack variable |
+** bDescDoclist is 0 when this macro is invoked, then it returns (i1-i2). |
+** Otherwise, (i2-i1). |
+** |
+** Using this makes it easier to write code that can merge doclists that are |
+** sorted in either ascending or descending order. |
+*/ |
+#define DOCID_CMP(i1, i2) ((bDescDoclist?-1:1) * (i1-i2)) |
+ |
+/* |
+** This function does an "OR" merge of two doclists (output contains all |
+** positions contained in either argument doclist). If the docids in the |
+** input doclists are sorted in ascending order, parameter bDescDoclist |
+** should be false. If they are sorted in ascending order, it should be |
+** passed a non-zero value. |
+** |
+** If no error occurs, *paOut is set to point at an sqlite3_malloc'd buffer |
+** containing the output doclist and SQLITE_OK is returned. In this case |
+** *pnOut is set to the number of bytes in the output doclist. |
+** |
+** If an error occurs, an SQLite error code is returned. The output values |
+** are undefined in this case. |
+*/ |
+static int fts3DoclistOrMerge( |
+ int bDescDoclist, /* True if arguments are desc */ |
+ char *a1, int n1, /* First doclist */ |
+ char *a2, int n2, /* Second doclist */ |
+ char **paOut, int *pnOut /* OUT: Malloc'd doclist */ |
+){ |
+ sqlite3_int64 i1 = 0; |
+ sqlite3_int64 i2 = 0; |
+ sqlite3_int64 iPrev = 0; |
+ char *pEnd1 = &a1[n1]; |
+ char *pEnd2 = &a2[n2]; |
+ char *p1 = a1; |
+ char *p2 = a2; |
+ char *p; |
+ char *aOut; |
+ int bFirstOut = 0; |
+ |
+ *paOut = 0; |
+ *pnOut = 0; |
+ |
+ /* Allocate space for the output. Both the input and output doclists |
+ ** are delta encoded. If they are in ascending order (bDescDoclist==0), |
+ ** then the first docid in each list is simply encoded as a varint. For |
+ ** each subsequent docid, the varint stored is the difference between the |
+ ** current and previous docid (a positive number - since the list is in |
+ ** ascending order). |
+ ** |
+ ** The first docid written to the output is therefore encoded using the |
+ ** same number of bytes as it is in whichever of the input lists it is |
+ ** read from. And each subsequent docid read from the same input list |
+ ** consumes either the same or less bytes as it did in the input (since |
+ ** the difference between it and the previous value in the output must |
+ ** be a positive value less than or equal to the delta value read from |
+ ** the input list). The same argument applies to all but the first docid |
+ ** read from the 'other' list. And to the contents of all position lists |
+ ** that will be copied and merged from the input to the output. |
+ ** |
+ ** However, if the first docid copied to the output is a negative number, |
+ ** then the encoding of the first docid from the 'other' input list may |
+ ** be larger in the output than it was in the input (since the delta value |
+ ** may be a larger positive integer than the actual docid). |
+ ** |
+ ** The space required to store the output is therefore the sum of the |
+ ** sizes of the two inputs, plus enough space for exactly one of the input |
+ ** docids to grow. |
+ ** |
+ ** A symetric argument may be made if the doclists are in descending |
+ ** order. |
+ */ |
+ aOut = sqlite3_malloc(n1+n2+FTS3_VARINT_MAX-1); |
+ if( !aOut ) return SQLITE_NOMEM; |
+ |
+ p = aOut; |
+ fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1); |
+ fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2); |
+ while( p1 || p2 ){ |
+ sqlite3_int64 iDiff = DOCID_CMP(i1, i2); |
+ |
+ if( p2 && p1 && iDiff==0 ){ |
+ fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1); |
+ fts3PoslistMerge(&p, &p1, &p2); |
+ fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1); |
+ fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2); |
+ }else if( !p2 || (p1 && iDiff<0) ){ |
+ fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1); |
+ fts3PoslistCopy(&p, &p1); |
+ fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1); |
+ }else{ |
+ fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i2); |
+ fts3PoslistCopy(&p, &p2); |
+ fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2); |
+ } |
+ } |
+ |
+ *paOut = aOut; |
+ *pnOut = (int)(p-aOut); |
+ assert( *pnOut<=n1+n2+FTS3_VARINT_MAX-1 ); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** This function does a "phrase" merge of two doclists. In a phrase merge, |
+** the output contains a copy of each position from the right-hand input |
+** doclist for which there is a position in the left-hand input doclist |
+** exactly nDist tokens before it. |
+** |
+** If the docids in the input doclists are sorted in ascending order, |
+** parameter bDescDoclist should be false. If they are sorted in ascending |
+** order, it should be passed a non-zero value. |
+** |
+** The right-hand input doclist is overwritten by this function. |
+*/ |
+static void fts3DoclistPhraseMerge( |
+ int bDescDoclist, /* True if arguments are desc */ |
+ int nDist, /* Distance from left to right (1=adjacent) */ |
+ char *aLeft, int nLeft, /* Left doclist */ |
+ char *aRight, int *pnRight /* IN/OUT: Right/output doclist */ |
+){ |
+ sqlite3_int64 i1 = 0; |
+ sqlite3_int64 i2 = 0; |
+ sqlite3_int64 iPrev = 0; |
+ char *pEnd1 = &aLeft[nLeft]; |
+ char *pEnd2 = &aRight[*pnRight]; |
+ char *p1 = aLeft; |
+ char *p2 = aRight; |
+ char *p; |
+ int bFirstOut = 0; |
+ char *aOut = aRight; |
+ |
+ assert( nDist>0 ); |
+ |
+ p = aOut; |
+ fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1); |
+ fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2); |
+ |
+ while( p1 && p2 ){ |
+ sqlite3_int64 iDiff = DOCID_CMP(i1, i2); |
+ if( iDiff==0 ){ |
+ char *pSave = p; |
+ sqlite3_int64 iPrevSave = iPrev; |
+ int bFirstOutSave = bFirstOut; |
+ |
+ fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1); |
+ if( 0==fts3PoslistPhraseMerge(&p, nDist, 0, 1, &p1, &p2) ){ |
+ p = pSave; |
+ iPrev = iPrevSave; |
+ bFirstOut = bFirstOutSave; |
+ } |
+ fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1); |
+ fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2); |
+ }else if( iDiff<0 ){ |
+ fts3PoslistCopy(0, &p1); |
+ fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1); |
+ }else{ |
+ fts3PoslistCopy(0, &p2); |
+ fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2); |
+ } |
+ } |
+ |
+ *pnRight = (int)(p - aOut); |
+} |
+ |
+/* |
+** Argument pList points to a position list nList bytes in size. This |
+** function checks to see if the position list contains any entries for |
+** a token in position 0 (of any column). If so, it writes argument iDelta |
+** to the output buffer pOut, followed by a position list consisting only |
+** of the entries from pList at position 0, and terminated by an 0x00 byte. |
+** The value returned is the number of bytes written to pOut (if any). |
+*/ |
+int sqlite3Fts3FirstFilter( |
+ sqlite3_int64 iDelta, /* Varint that may be written to pOut */ |
+ char *pList, /* Position list (no 0x00 term) */ |
+ int nList, /* Size of pList in bytes */ |
+ char *pOut /* Write output here */ |
+){ |
+ int nOut = 0; |
+ int bWritten = 0; /* True once iDelta has been written */ |
+ char *p = pList; |
+ char *pEnd = &pList[nList]; |
+ |
+ if( *p!=0x01 ){ |
+ if( *p==0x02 ){ |
+ nOut += sqlite3Fts3PutVarint(&pOut[nOut], iDelta); |
+ pOut[nOut++] = 0x02; |
+ bWritten = 1; |
+ } |
+ fts3ColumnlistCopy(0, &p); |
+ } |
+ |
+ while( p<pEnd && *p==0x01 ){ |
+ sqlite3_int64 iCol; |
+ p++; |
+ p += sqlite3Fts3GetVarint(p, &iCol); |
+ if( *p==0x02 ){ |
+ if( bWritten==0 ){ |
+ nOut += sqlite3Fts3PutVarint(&pOut[nOut], iDelta); |
+ bWritten = 1; |
+ } |
+ pOut[nOut++] = 0x01; |
+ nOut += sqlite3Fts3PutVarint(&pOut[nOut], iCol); |
+ pOut[nOut++] = 0x02; |
+ } |
+ fts3ColumnlistCopy(0, &p); |
+ } |
+ if( bWritten ){ |
+ pOut[nOut++] = 0x00; |
+ } |
+ |
+ return nOut; |
+} |
+ |
+ |
+/* |
+** Merge all doclists in the TermSelect.aaOutput[] array into a single |
+** doclist stored in TermSelect.aaOutput[0]. If successful, delete all |
+** other doclists (except the aaOutput[0] one) and return SQLITE_OK. |
+** |
+** If an OOM error occurs, return SQLITE_NOMEM. In this case it is |
+** the responsibility of the caller to free any doclists left in the |
+** TermSelect.aaOutput[] array. |
+*/ |
+static int fts3TermSelectFinishMerge(Fts3Table *p, TermSelect *pTS){ |
+ char *aOut = 0; |
+ int nOut = 0; |
+ int i; |
+ |
+ /* Loop through the doclists in the aaOutput[] array. Merge them all |
+ ** into a single doclist. |
+ */ |
+ for(i=0; i<SizeofArray(pTS->aaOutput); i++){ |
+ if( pTS->aaOutput[i] ){ |
+ if( !aOut ){ |
+ aOut = pTS->aaOutput[i]; |
+ nOut = pTS->anOutput[i]; |
+ pTS->aaOutput[i] = 0; |
+ }else{ |
+ int nNew; |
+ char *aNew; |
+ |
+ int rc = fts3DoclistOrMerge(p->bDescIdx, |
+ pTS->aaOutput[i], pTS->anOutput[i], aOut, nOut, &aNew, &nNew |
+ ); |
+ if( rc!=SQLITE_OK ){ |
+ sqlite3_free(aOut); |
+ return rc; |
+ } |
+ |
+ sqlite3_free(pTS->aaOutput[i]); |
+ sqlite3_free(aOut); |
+ pTS->aaOutput[i] = 0; |
+ aOut = aNew; |
+ nOut = nNew; |
+ } |
+ } |
+ } |
+ |
+ pTS->aaOutput[0] = aOut; |
+ pTS->anOutput[0] = nOut; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Merge the doclist aDoclist/nDoclist into the TermSelect object passed |
+** as the first argument. The merge is an "OR" merge (see function |
+** fts3DoclistOrMerge() for details). |
+** |
+** This function is called with the doclist for each term that matches |
+** a queried prefix. It merges all these doclists into one, the doclist |
+** for the specified prefix. Since there can be a very large number of |
+** doclists to merge, the merging is done pair-wise using the TermSelect |
+** object. |
+** |
+** This function returns SQLITE_OK if the merge is successful, or an |
+** SQLite error code (SQLITE_NOMEM) if an error occurs. |
+*/ |
+static int fts3TermSelectMerge( |
+ Fts3Table *p, /* FTS table handle */ |
+ TermSelect *pTS, /* TermSelect object to merge into */ |
+ char *aDoclist, /* Pointer to doclist */ |
+ int nDoclist /* Size of aDoclist in bytes */ |
+){ |
+ if( pTS->aaOutput[0]==0 ){ |
+ /* If this is the first term selected, copy the doclist to the output |
+ ** buffer using memcpy(). */ |
+ pTS->aaOutput[0] = sqlite3_malloc(nDoclist); |
+ pTS->anOutput[0] = nDoclist; |
+ if( pTS->aaOutput[0] ){ |
+ memcpy(pTS->aaOutput[0], aDoclist, nDoclist); |
+ }else{ |
+ return SQLITE_NOMEM; |
+ } |
+ }else{ |
+ char *aMerge = aDoclist; |
+ int nMerge = nDoclist; |
+ int iOut; |
+ |
+ for(iOut=0; iOut<SizeofArray(pTS->aaOutput); iOut++){ |
+ if( pTS->aaOutput[iOut]==0 ){ |
+ assert( iOut>0 ); |
+ pTS->aaOutput[iOut] = aMerge; |
+ pTS->anOutput[iOut] = nMerge; |
+ break; |
+ }else{ |
+ char *aNew; |
+ int nNew; |
+ |
+ int rc = fts3DoclistOrMerge(p->bDescIdx, aMerge, nMerge, |
+ pTS->aaOutput[iOut], pTS->anOutput[iOut], &aNew, &nNew |
+ ); |
+ if( rc!=SQLITE_OK ){ |
+ if( aMerge!=aDoclist ) sqlite3_free(aMerge); |
+ return rc; |
+ } |
+ |
+ if( aMerge!=aDoclist ) sqlite3_free(aMerge); |
+ sqlite3_free(pTS->aaOutput[iOut]); |
+ pTS->aaOutput[iOut] = 0; |
+ |
+ aMerge = aNew; |
+ nMerge = nNew; |
+ if( (iOut+1)==SizeofArray(pTS->aaOutput) ){ |
+ pTS->aaOutput[iOut] = aMerge; |
+ pTS->anOutput[iOut] = nMerge; |
+ } |
+ } |
+ } |
+ } |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Append SegReader object pNew to the end of the pCsr->apSegment[] array. |
+*/ |
+static int fts3SegReaderCursorAppend( |
+ Fts3MultiSegReader *pCsr, |
+ Fts3SegReader *pNew |
+){ |
+ if( (pCsr->nSegment%16)==0 ){ |
+ Fts3SegReader **apNew; |
+ int nByte = (pCsr->nSegment + 16)*sizeof(Fts3SegReader*); |
+ apNew = (Fts3SegReader **)sqlite3_realloc(pCsr->apSegment, nByte); |
+ if( !apNew ){ |
+ sqlite3Fts3SegReaderFree(pNew); |
+ return SQLITE_NOMEM; |
+ } |
+ pCsr->apSegment = apNew; |
+ } |
+ pCsr->apSegment[pCsr->nSegment++] = pNew; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Add seg-reader objects to the Fts3MultiSegReader object passed as the |
+** 8th argument. |
+** |
+** This function returns SQLITE_OK if successful, or an SQLite error code |
+** otherwise. |
+*/ |
+static int fts3SegReaderCursor( |
+ Fts3Table *p, /* FTS3 table handle */ |
+ int iLangid, /* Language id */ |
+ int iIndex, /* Index to search (from 0 to p->nIndex-1) */ |
+ int iLevel, /* Level of segments to scan */ |
+ const char *zTerm, /* Term to query for */ |
+ int nTerm, /* Size of zTerm in bytes */ |
+ int isPrefix, /* True for a prefix search */ |
+ int isScan, /* True to scan from zTerm to EOF */ |
+ Fts3MultiSegReader *pCsr /* Cursor object to populate */ |
+){ |
+ int rc = SQLITE_OK; /* Error code */ |
+ sqlite3_stmt *pStmt = 0; /* Statement to iterate through segments */ |
+ int rc2; /* Result of sqlite3_reset() */ |
+ |
+ /* If iLevel is less than 0 and this is not a scan, include a seg-reader |
+ ** for the pending-terms. If this is a scan, then this call must be being |
+ ** made by an fts4aux module, not an FTS table. In this case calling |
+ ** Fts3SegReaderPending might segfault, as the data structures used by |
+ ** fts4aux are not completely populated. So it's easiest to filter these |
+ ** calls out here. */ |
+ if( iLevel<0 && p->aIndex ){ |
+ Fts3SegReader *pSeg = 0; |
+ rc = sqlite3Fts3SegReaderPending(p, iIndex, zTerm, nTerm, isPrefix, &pSeg); |
+ if( rc==SQLITE_OK && pSeg ){ |
+ rc = fts3SegReaderCursorAppend(pCsr, pSeg); |
+ } |
+ } |
+ |
+ if( iLevel!=FTS3_SEGCURSOR_PENDING ){ |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3Fts3AllSegdirs(p, iLangid, iIndex, iLevel, &pStmt); |
+ } |
+ |
+ while( rc==SQLITE_OK && SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){ |
+ Fts3SegReader *pSeg = 0; |
+ |
+ /* Read the values returned by the SELECT into local variables. */ |
+ sqlite3_int64 iStartBlock = sqlite3_column_int64(pStmt, 1); |
+ sqlite3_int64 iLeavesEndBlock = sqlite3_column_int64(pStmt, 2); |
+ sqlite3_int64 iEndBlock = sqlite3_column_int64(pStmt, 3); |
+ int nRoot = sqlite3_column_bytes(pStmt, 4); |
+ char const *zRoot = sqlite3_column_blob(pStmt, 4); |
+ |
+ /* If zTerm is not NULL, and this segment is not stored entirely on its |
+ ** root node, the range of leaves scanned can be reduced. Do this. */ |
+ if( iStartBlock && zTerm ){ |
+ sqlite3_int64 *pi = (isPrefix ? &iLeavesEndBlock : 0); |
+ rc = fts3SelectLeaf(p, zTerm, nTerm, zRoot, nRoot, &iStartBlock, pi); |
+ if( rc!=SQLITE_OK ) goto finished; |
+ if( isPrefix==0 && isScan==0 ) iLeavesEndBlock = iStartBlock; |
+ } |
+ |
+ rc = sqlite3Fts3SegReaderNew(pCsr->nSegment+1, |
+ (isPrefix==0 && isScan==0), |
+ iStartBlock, iLeavesEndBlock, |
+ iEndBlock, zRoot, nRoot, &pSeg |
+ ); |
+ if( rc!=SQLITE_OK ) goto finished; |
+ rc = fts3SegReaderCursorAppend(pCsr, pSeg); |
+ } |
+ } |
+ |
+ finished: |
+ rc2 = sqlite3_reset(pStmt); |
+ if( rc==SQLITE_DONE ) rc = rc2; |
+ |
+ return rc; |
+} |
+ |
+/* |
+** Set up a cursor object for iterating through a full-text index or a |
+** single level therein. |
+*/ |
+int sqlite3Fts3SegReaderCursor( |
+ Fts3Table *p, /* FTS3 table handle */ |
+ int iLangid, /* Language-id to search */ |
+ int iIndex, /* Index to search (from 0 to p->nIndex-1) */ |
+ int iLevel, /* Level of segments to scan */ |
+ const char *zTerm, /* Term to query for */ |
+ int nTerm, /* Size of zTerm in bytes */ |
+ int isPrefix, /* True for a prefix search */ |
+ int isScan, /* True to scan from zTerm to EOF */ |
+ Fts3MultiSegReader *pCsr /* Cursor object to populate */ |
+){ |
+ assert( iIndex>=0 && iIndex<p->nIndex ); |
+ assert( iLevel==FTS3_SEGCURSOR_ALL |
+ || iLevel==FTS3_SEGCURSOR_PENDING |
+ || iLevel>=0 |
+ ); |
+ assert( iLevel<FTS3_SEGDIR_MAXLEVEL ); |
+ assert( FTS3_SEGCURSOR_ALL<0 && FTS3_SEGCURSOR_PENDING<0 ); |
+ assert( isPrefix==0 || isScan==0 ); |
+ |
+ memset(pCsr, 0, sizeof(Fts3MultiSegReader)); |
+ return fts3SegReaderCursor( |
+ p, iLangid, iIndex, iLevel, zTerm, nTerm, isPrefix, isScan, pCsr |
+ ); |
+} |
+ |
+/* |
+** In addition to its current configuration, have the Fts3MultiSegReader |
+** passed as the 4th argument also scan the doclist for term zTerm/nTerm. |
+** |
+** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code. |
+*/ |
+static int fts3SegReaderCursorAddZero( |
+ Fts3Table *p, /* FTS virtual table handle */ |
+ int iLangid, |
+ const char *zTerm, /* Term to scan doclist of */ |
+ int nTerm, /* Number of bytes in zTerm */ |
+ Fts3MultiSegReader *pCsr /* Fts3MultiSegReader to modify */ |
+){ |
+ return fts3SegReaderCursor(p, |
+ iLangid, 0, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 0, 0,pCsr |
+ ); |
+} |
+ |
+/* |
+** Open an Fts3MultiSegReader to scan the doclist for term zTerm/nTerm. Or, |
+** if isPrefix is true, to scan the doclist for all terms for which |
+** zTerm/nTerm is a prefix. If successful, return SQLITE_OK and write |
+** a pointer to the new Fts3MultiSegReader to *ppSegcsr. Otherwise, return |
+** an SQLite error code. |
+** |
+** It is the responsibility of the caller to free this object by eventually |
+** passing it to fts3SegReaderCursorFree() |
+** |
+** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code. |
+** Output parameter *ppSegcsr is set to 0 if an error occurs. |
+*/ |
+static int fts3TermSegReaderCursor( |
+ Fts3Cursor *pCsr, /* Virtual table cursor handle */ |
+ const char *zTerm, /* Term to query for */ |
+ int nTerm, /* Size of zTerm in bytes */ |
+ int isPrefix, /* True for a prefix search */ |
+ Fts3MultiSegReader **ppSegcsr /* OUT: Allocated seg-reader cursor */ |
+){ |
+ Fts3MultiSegReader *pSegcsr; /* Object to allocate and return */ |
+ int rc = SQLITE_NOMEM; /* Return code */ |
+ |
+ pSegcsr = sqlite3_malloc(sizeof(Fts3MultiSegReader)); |
+ if( pSegcsr ){ |
+ int i; |
+ int bFound = 0; /* True once an index has been found */ |
+ Fts3Table *p = (Fts3Table *)pCsr->base.pVtab; |
+ |
+ if( isPrefix ){ |
+ for(i=1; bFound==0 && i<p->nIndex; i++){ |
+ if( p->aIndex[i].nPrefix==nTerm ){ |
+ bFound = 1; |
+ rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid, |
+ i, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 0, 0, pSegcsr |
+ ); |
+ pSegcsr->bLookup = 1; |
+ } |
+ } |
+ |
+ for(i=1; bFound==0 && i<p->nIndex; i++){ |
+ if( p->aIndex[i].nPrefix==nTerm+1 ){ |
+ bFound = 1; |
+ rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid, |
+ i, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 1, 0, pSegcsr |
+ ); |
+ if( rc==SQLITE_OK ){ |
+ rc = fts3SegReaderCursorAddZero( |
+ p, pCsr->iLangid, zTerm, nTerm, pSegcsr |
+ ); |
+ } |
+ } |
+ } |
+ } |
+ |
+ if( bFound==0 ){ |
+ rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid, |
+ 0, FTS3_SEGCURSOR_ALL, zTerm, nTerm, isPrefix, 0, pSegcsr |
+ ); |
+ pSegcsr->bLookup = !isPrefix; |
+ } |
+ } |
+ |
+ *ppSegcsr = pSegcsr; |
+ return rc; |
+} |
+ |
+/* |
+** Free an Fts3MultiSegReader allocated by fts3TermSegReaderCursor(). |
+*/ |
+static void fts3SegReaderCursorFree(Fts3MultiSegReader *pSegcsr){ |
+ sqlite3Fts3SegReaderFinish(pSegcsr); |
+ sqlite3_free(pSegcsr); |
+} |
+ |
+/* |
+** This function retrieves the doclist for the specified term (or term |
+** prefix) from the database. |
+*/ |
+static int fts3TermSelect( |
+ Fts3Table *p, /* Virtual table handle */ |
+ Fts3PhraseToken *pTok, /* Token to query for */ |
+ int iColumn, /* Column to query (or -ve for all columns) */ |
+ int *pnOut, /* OUT: Size of buffer at *ppOut */ |
+ char **ppOut /* OUT: Malloced result buffer */ |
+){ |
+ int rc; /* Return code */ |
+ Fts3MultiSegReader *pSegcsr; /* Seg-reader cursor for this term */ |
+ TermSelect tsc; /* Object for pair-wise doclist merging */ |
+ Fts3SegFilter filter; /* Segment term filter configuration */ |
+ |
+ pSegcsr = pTok->pSegcsr; |
+ memset(&tsc, 0, sizeof(TermSelect)); |
+ |
+ filter.flags = FTS3_SEGMENT_IGNORE_EMPTY | FTS3_SEGMENT_REQUIRE_POS |
+ | (pTok->isPrefix ? FTS3_SEGMENT_PREFIX : 0) |
+ | (pTok->bFirst ? FTS3_SEGMENT_FIRST : 0) |
+ | (iColumn<p->nColumn ? FTS3_SEGMENT_COLUMN_FILTER : 0); |
+ filter.iCol = iColumn; |
+ filter.zTerm = pTok->z; |
+ filter.nTerm = pTok->n; |
+ |
+ rc = sqlite3Fts3SegReaderStart(p, pSegcsr, &filter); |
+ while( SQLITE_OK==rc |
+ && SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pSegcsr)) |
+ ){ |
+ rc = fts3TermSelectMerge(p, &tsc, pSegcsr->aDoclist, pSegcsr->nDoclist); |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ rc = fts3TermSelectFinishMerge(p, &tsc); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ *ppOut = tsc.aaOutput[0]; |
+ *pnOut = tsc.anOutput[0]; |
+ }else{ |
+ int i; |
+ for(i=0; i<SizeofArray(tsc.aaOutput); i++){ |
+ sqlite3_free(tsc.aaOutput[i]); |
+ } |
+ } |
+ |
+ fts3SegReaderCursorFree(pSegcsr); |
+ pTok->pSegcsr = 0; |
+ return rc; |
+} |
+ |
+/* |
+** This function counts the total number of docids in the doclist stored |
+** in buffer aList[], size nList bytes. |
+** |
+** If the isPoslist argument is true, then it is assumed that the doclist |
+** contains a position-list following each docid. Otherwise, it is assumed |
+** that the doclist is simply a list of docids stored as delta encoded |
+** varints. |
+*/ |
+static int fts3DoclistCountDocids(char *aList, int nList){ |
+ int nDoc = 0; /* Return value */ |
+ if( aList ){ |
+ char *aEnd = &aList[nList]; /* Pointer to one byte after EOF */ |
+ char *p = aList; /* Cursor */ |
+ while( p<aEnd ){ |
+ nDoc++; |
+ while( (*p++)&0x80 ); /* Skip docid varint */ |
+ fts3PoslistCopy(0, &p); /* Skip over position list */ |
+ } |
+ } |
+ |
+ return nDoc; |
+} |
+ |
+/* |
+** Advance the cursor to the next row in the %_content table that |
+** matches the search criteria. For a MATCH search, this will be |
+** the next row that matches. For a full-table scan, this will be |
+** simply the next row in the %_content table. For a docid lookup, |
+** this routine simply sets the EOF flag. |
+** |
+** Return SQLITE_OK if nothing goes wrong. SQLITE_OK is returned |
+** even if we reach end-of-file. The fts3EofMethod() will be called |
+** subsequently to determine whether or not an EOF was hit. |
+*/ |
+static int fts3NextMethod(sqlite3_vtab_cursor *pCursor){ |
+ int rc; |
+ Fts3Cursor *pCsr = (Fts3Cursor *)pCursor; |
+ if( pCsr->eSearch==FTS3_DOCID_SEARCH || pCsr->eSearch==FTS3_FULLSCAN_SEARCH ){ |
+ if( SQLITE_ROW!=sqlite3_step(pCsr->pStmt) ){ |
+ pCsr->isEof = 1; |
+ rc = sqlite3_reset(pCsr->pStmt); |
+ }else{ |
+ pCsr->iPrevId = sqlite3_column_int64(pCsr->pStmt, 0); |
+ rc = SQLITE_OK; |
+ } |
+ }else{ |
+ rc = fts3EvalNext((Fts3Cursor *)pCursor); |
+ } |
+ assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 ); |
+ return rc; |
+} |
+ |
+/* |
+** The following are copied from sqliteInt.h. |
+** |
+** Constants for the largest and smallest possible 64-bit signed integers. |
+** These macros are designed to work correctly on both 32-bit and 64-bit |
+** compilers. |
+*/ |
+#ifndef SQLITE_AMALGAMATION |
+# define LARGEST_INT64 (0xffffffff|(((sqlite3_int64)0x7fffffff)<<32)) |
+# define SMALLEST_INT64 (((sqlite3_int64)-1) - LARGEST_INT64) |
+#endif |
+ |
+/* |
+** If the numeric type of argument pVal is "integer", then return it |
+** converted to a 64-bit signed integer. Otherwise, return a copy of |
+** the second parameter, iDefault. |
+*/ |
+static sqlite3_int64 fts3DocidRange(sqlite3_value *pVal, i64 iDefault){ |
+ if( pVal ){ |
+ int eType = sqlite3_value_numeric_type(pVal); |
+ if( eType==SQLITE_INTEGER ){ |
+ return sqlite3_value_int64(pVal); |
+ } |
+ } |
+ return iDefault; |
+} |
+ |
+/* |
+** This is the xFilter interface for the virtual table. See |
+** the virtual table xFilter method documentation for additional |
+** information. |
+** |
+** If idxNum==FTS3_FULLSCAN_SEARCH then do a full table scan against |
+** the %_content table. |
+** |
+** If idxNum==FTS3_DOCID_SEARCH then do a docid lookup for a single entry |
+** in the %_content table. |
+** |
+** If idxNum>=FTS3_FULLTEXT_SEARCH then use the full text index. The |
+** column on the left-hand side of the MATCH operator is column |
+** number idxNum-FTS3_FULLTEXT_SEARCH, 0 indexed. argv[0] is the right-hand |
+** side of the MATCH operator. |
+*/ |
+static int fts3FilterMethod( |
+ sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */ |
+ int idxNum, /* Strategy index */ |
+ const char *idxStr, /* Unused */ |
+ int nVal, /* Number of elements in apVal */ |
+ sqlite3_value **apVal /* Arguments for the indexing scheme */ |
+){ |
+ int rc; |
+ char *zSql; /* SQL statement used to access %_content */ |
+ int eSearch; |
+ Fts3Table *p = (Fts3Table *)pCursor->pVtab; |
+ Fts3Cursor *pCsr = (Fts3Cursor *)pCursor; |
+ |
+ sqlite3_value *pCons = 0; /* The MATCH or rowid constraint, if any */ |
+ sqlite3_value *pLangid = 0; /* The "langid = ?" constraint, if any */ |
+ sqlite3_value *pDocidGe = 0; /* The "docid >= ?" constraint, if any */ |
+ sqlite3_value *pDocidLe = 0; /* The "docid <= ?" constraint, if any */ |
+ int iIdx; |
+ |
+ UNUSED_PARAMETER(idxStr); |
+ UNUSED_PARAMETER(nVal); |
+ |
+ eSearch = (idxNum & 0x0000FFFF); |
+ assert( eSearch>=0 && eSearch<=(FTS3_FULLTEXT_SEARCH+p->nColumn) ); |
+ assert( p->pSegments==0 ); |
+ |
+ /* Collect arguments into local variables */ |
+ iIdx = 0; |
+ if( eSearch!=FTS3_FULLSCAN_SEARCH ) pCons = apVal[iIdx++]; |
+ if( idxNum & FTS3_HAVE_LANGID ) pLangid = apVal[iIdx++]; |
+ if( idxNum & FTS3_HAVE_DOCID_GE ) pDocidGe = apVal[iIdx++]; |
+ if( idxNum & FTS3_HAVE_DOCID_LE ) pDocidLe = apVal[iIdx++]; |
+ assert( iIdx==nVal ); |
+ |
+ /* In case the cursor has been used before, clear it now. */ |
+ sqlite3_finalize(pCsr->pStmt); |
+ sqlite3_free(pCsr->aDoclist); |
+ sqlite3_free(pCsr->aMatchinfo); |
+ sqlite3Fts3ExprFree(pCsr->pExpr); |
+ memset(&pCursor[1], 0, sizeof(Fts3Cursor)-sizeof(sqlite3_vtab_cursor)); |
+ |
+ /* Set the lower and upper bounds on docids to return */ |
+ pCsr->iMinDocid = fts3DocidRange(pDocidGe, SMALLEST_INT64); |
+ pCsr->iMaxDocid = fts3DocidRange(pDocidLe, LARGEST_INT64); |
+ |
+ if( idxStr ){ |
+ pCsr->bDesc = (idxStr[0]=='D'); |
+ }else{ |
+ pCsr->bDesc = p->bDescIdx; |
+ } |
+ pCsr->eSearch = (i16)eSearch; |
+ |
+ if( eSearch!=FTS3_DOCID_SEARCH && eSearch!=FTS3_FULLSCAN_SEARCH ){ |
+ int iCol = eSearch-FTS3_FULLTEXT_SEARCH; |
+ const char *zQuery = (const char *)sqlite3_value_text(pCons); |
+ |
+ if( zQuery==0 && sqlite3_value_type(pCons)!=SQLITE_NULL ){ |
+ return SQLITE_NOMEM; |
+ } |
+ |
+ pCsr->iLangid = 0; |
+ if( pLangid ) pCsr->iLangid = sqlite3_value_int(pLangid); |
+ |
+ assert( p->base.zErrMsg==0 ); |
+ rc = sqlite3Fts3ExprParse(p->pTokenizer, pCsr->iLangid, |
+ p->azColumn, p->bFts4, p->nColumn, iCol, zQuery, -1, &pCsr->pExpr, |
+ &p->base.zErrMsg |
+ ); |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ |
+ rc = fts3EvalStart(pCsr); |
+ sqlite3Fts3SegmentsClose(p); |
+ if( rc!=SQLITE_OK ) return rc; |
+ pCsr->pNextId = pCsr->aDoclist; |
+ pCsr->iPrevId = 0; |
+ } |
+ |
+ /* Compile a SELECT statement for this cursor. For a full-table-scan, the |
+ ** statement loops through all rows of the %_content table. For a |
+ ** full-text query or docid lookup, the statement retrieves a single |
+ ** row by docid. |
+ */ |
+ if( eSearch==FTS3_FULLSCAN_SEARCH ){ |
+ zSql = sqlite3_mprintf( |
+ "SELECT %s ORDER BY rowid %s", |
+ p->zReadExprlist, (pCsr->bDesc ? "DESC" : "ASC") |
+ ); |
+ if( zSql ){ |
+ rc = sqlite3_prepare_v2(p->db, zSql, -1, &pCsr->pStmt, 0); |
+ sqlite3_free(zSql); |
+ }else{ |
+ rc = SQLITE_NOMEM; |
+ } |
+ }else if( eSearch==FTS3_DOCID_SEARCH ){ |
+ rc = fts3CursorSeekStmt(pCsr, &pCsr->pStmt); |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3_bind_value(pCsr->pStmt, 1, pCons); |
+ } |
+ } |
+ if( rc!=SQLITE_OK ) return rc; |
+ |
+ return fts3NextMethod(pCursor); |
+} |
+ |
+/* |
+** This is the xEof method of the virtual table. SQLite calls this |
+** routine to find out if it has reached the end of a result set. |
+*/ |
+static int fts3EofMethod(sqlite3_vtab_cursor *pCursor){ |
+ return ((Fts3Cursor *)pCursor)->isEof; |
+} |
+ |
+/* |
+** This is the xRowid method. The SQLite core calls this routine to |
+** retrieve the rowid for the current row of the result set. fts3 |
+** exposes %_content.docid as the rowid for the virtual table. The |
+** rowid should be written to *pRowid. |
+*/ |
+static int fts3RowidMethod(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){ |
+ Fts3Cursor *pCsr = (Fts3Cursor *) pCursor; |
+ *pRowid = pCsr->iPrevId; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** This is the xColumn method, called by SQLite to request a value from |
+** the row that the supplied cursor currently points to. |
+** |
+** If: |
+** |
+** (iCol < p->nColumn) -> The value of the iCol'th user column. |
+** (iCol == p->nColumn) -> Magic column with the same name as the table. |
+** (iCol == p->nColumn+1) -> Docid column |
+** (iCol == p->nColumn+2) -> Langid column |
+*/ |
+static int fts3ColumnMethod( |
+ sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */ |
+ sqlite3_context *pCtx, /* Context for sqlite3_result_xxx() calls */ |
+ int iCol /* Index of column to read value from */ |
+){ |
+ int rc = SQLITE_OK; /* Return Code */ |
+ Fts3Cursor *pCsr = (Fts3Cursor *) pCursor; |
+ Fts3Table *p = (Fts3Table *)pCursor->pVtab; |
+ |
+ /* The column value supplied by SQLite must be in range. */ |
+ assert( iCol>=0 && iCol<=p->nColumn+2 ); |
+ |
+ if( iCol==p->nColumn+1 ){ |
+ /* This call is a request for the "docid" column. Since "docid" is an |
+ ** alias for "rowid", use the xRowid() method to obtain the value. |
+ */ |
+ sqlite3_result_int64(pCtx, pCsr->iPrevId); |
+ }else if( iCol==p->nColumn ){ |
+ /* The extra column whose name is the same as the table. |
+ ** Return a blob which is a pointer to the cursor. */ |
+ sqlite3_result_blob(pCtx, &pCsr, sizeof(pCsr), SQLITE_TRANSIENT); |
+ }else if( iCol==p->nColumn+2 && pCsr->pExpr ){ |
+ sqlite3_result_int64(pCtx, pCsr->iLangid); |
+ }else{ |
+ /* The requested column is either a user column (one that contains |
+ ** indexed data), or the language-id column. */ |
+ rc = fts3CursorSeek(0, pCsr); |
+ |
+ if( rc==SQLITE_OK ){ |
+ if( iCol==p->nColumn+2 ){ |
+ int iLangid = 0; |
+ if( p->zLanguageid ){ |
+ iLangid = sqlite3_column_int(pCsr->pStmt, p->nColumn+1); |
+ } |
+ sqlite3_result_int(pCtx, iLangid); |
+ }else if( sqlite3_data_count(pCsr->pStmt)>(iCol+1) ){ |
+ sqlite3_result_value(pCtx, sqlite3_column_value(pCsr->pStmt, iCol+1)); |
+ } |
+ } |
+ } |
+ |
+ assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 ); |
+ return rc; |
+} |
+ |
+/* |
+** This function is the implementation of the xUpdate callback used by |
+** FTS3 virtual tables. It is invoked by SQLite each time a row is to be |
+** inserted, updated or deleted. |
+*/ |
+static int fts3UpdateMethod( |
+ sqlite3_vtab *pVtab, /* Virtual table handle */ |
+ int nArg, /* Size of argument array */ |
+ sqlite3_value **apVal, /* Array of arguments */ |
+ sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */ |
+){ |
+ return sqlite3Fts3UpdateMethod(pVtab, nArg, apVal, pRowid); |
+} |
+ |
+/* |
+** Implementation of xSync() method. Flush the contents of the pending-terms |
+** hash-table to the database. |
+*/ |
+static int fts3SyncMethod(sqlite3_vtab *pVtab){ |
+ |
+ /* Following an incremental-merge operation, assuming that the input |
+ ** segments are not completely consumed (the usual case), they are updated |
+ ** in place to remove the entries that have already been merged. This |
+ ** involves updating the leaf block that contains the smallest unmerged |
+ ** entry and each block (if any) between the leaf and the root node. So |
+ ** if the height of the input segment b-trees is N, and input segments |
+ ** are merged eight at a time, updating the input segments at the end |
+ ** of an incremental-merge requires writing (8*(1+N)) blocks. N is usually |
+ ** small - often between 0 and 2. So the overhead of the incremental |
+ ** merge is somewhere between 8 and 24 blocks. To avoid this overhead |
+ ** dwarfing the actual productive work accomplished, the incremental merge |
+ ** is only attempted if it will write at least 64 leaf blocks. Hence |
+ ** nMinMerge. |
+ ** |
+ ** Of course, updating the input segments also involves deleting a bunch |
+ ** of blocks from the segments table. But this is not considered overhead |
+ ** as it would also be required by a crisis-merge that used the same input |
+ ** segments. |
+ */ |
+ const u32 nMinMerge = 64; /* Minimum amount of incr-merge work to do */ |
+ |
+ Fts3Table *p = (Fts3Table*)pVtab; |
+ int rc = sqlite3Fts3PendingTermsFlush(p); |
+ |
+ if( rc==SQLITE_OK |
+ && p->nLeafAdd>(nMinMerge/16) |
+ && p->nAutoincrmerge && p->nAutoincrmerge!=0xff |
+ ){ |
+ int mxLevel = 0; /* Maximum relative level value in db */ |
+ int A; /* Incr-merge parameter A */ |
+ |
+ rc = sqlite3Fts3MaxLevel(p, &mxLevel); |
+ assert( rc==SQLITE_OK || mxLevel==0 ); |
+ A = p->nLeafAdd * mxLevel; |
+ A += (A/2); |
+ if( A>(int)nMinMerge ) rc = sqlite3Fts3Incrmerge(p, A, p->nAutoincrmerge); |
+ } |
+ sqlite3Fts3SegmentsClose(p); |
+ return rc; |
+} |
+ |
+/* |
+** If it is currently unknown whether or not the FTS table has an %_stat |
+** table (if p->bHasStat==2), attempt to determine this (set p->bHasStat |
+** to 0 or 1). Return SQLITE_OK if successful, or an SQLite error code |
+** if an error occurs. |
+*/ |
+static int fts3SetHasStat(Fts3Table *p){ |
+ int rc = SQLITE_OK; |
+ if( p->bHasStat==2 ){ |
+ const char *zFmt ="SELECT 1 FROM %Q.sqlite_master WHERE tbl_name='%q_stat'"; |
+ char *zSql = sqlite3_mprintf(zFmt, p->zDb, p->zName); |
+ if( zSql ){ |
+ sqlite3_stmt *pStmt = 0; |
+ rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); |
+ if( rc==SQLITE_OK ){ |
+ int bHasStat = (sqlite3_step(pStmt)==SQLITE_ROW); |
+ rc = sqlite3_finalize(pStmt); |
+ if( rc==SQLITE_OK ) p->bHasStat = bHasStat; |
+ } |
+ sqlite3_free(zSql); |
+ }else{ |
+ rc = SQLITE_NOMEM; |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Implementation of xBegin() method. |
+*/ |
+static int fts3BeginMethod(sqlite3_vtab *pVtab){ |
+ Fts3Table *p = (Fts3Table*)pVtab; |
+ UNUSED_PARAMETER(pVtab); |
+ assert( p->pSegments==0 ); |
+ assert( p->nPendingData==0 ); |
+ assert( p->inTransaction!=1 ); |
+ TESTONLY( p->inTransaction = 1 ); |
+ TESTONLY( p->mxSavepoint = -1; ); |
+ p->nLeafAdd = 0; |
+ return fts3SetHasStat(p); |
+} |
+ |
+/* |
+** Implementation of xCommit() method. This is a no-op. The contents of |
+** the pending-terms hash-table have already been flushed into the database |
+** by fts3SyncMethod(). |
+*/ |
+static int fts3CommitMethod(sqlite3_vtab *pVtab){ |
+ TESTONLY( Fts3Table *p = (Fts3Table*)pVtab ); |
+ UNUSED_PARAMETER(pVtab); |
+ assert( p->nPendingData==0 ); |
+ assert( p->inTransaction!=0 ); |
+ assert( p->pSegments==0 ); |
+ TESTONLY( p->inTransaction = 0 ); |
+ TESTONLY( p->mxSavepoint = -1; ); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Implementation of xRollback(). Discard the contents of the pending-terms |
+** hash-table. Any changes made to the database are reverted by SQLite. |
+*/ |
+static int fts3RollbackMethod(sqlite3_vtab *pVtab){ |
+ Fts3Table *p = (Fts3Table*)pVtab; |
+ sqlite3Fts3PendingTermsClear(p); |
+ assert( p->inTransaction!=0 ); |
+ TESTONLY( p->inTransaction = 0 ); |
+ TESTONLY( p->mxSavepoint = -1; ); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** When called, *ppPoslist must point to the byte immediately following the |
+** end of a position-list. i.e. ( (*ppPoslist)[-1]==POS_END ). This function |
+** moves *ppPoslist so that it instead points to the first byte of the |
+** same position list. |
+*/ |
+static void fts3ReversePoslist(char *pStart, char **ppPoslist){ |
+ char *p = &(*ppPoslist)[-2]; |
+ char c = 0; |
+ |
+ while( p>pStart && (c=*p--)==0 ); |
+ while( p>pStart && (*p & 0x80) | c ){ |
+ c = *p--; |
+ } |
+ if( p>pStart ){ p = &p[2]; } |
+ while( *p++&0x80 ); |
+ *ppPoslist = p; |
+} |
+ |
+/* |
+** Helper function used by the implementation of the overloaded snippet(), |
+** offsets() and optimize() SQL functions. |
+** |
+** If the value passed as the third argument is a blob of size |
+** sizeof(Fts3Cursor*), then the blob contents are copied to the |
+** output variable *ppCsr and SQLITE_OK is returned. Otherwise, an error |
+** message is written to context pContext and SQLITE_ERROR returned. The |
+** string passed via zFunc is used as part of the error message. |
+*/ |
+static int fts3FunctionArg( |
+ sqlite3_context *pContext, /* SQL function call context */ |
+ const char *zFunc, /* Function name */ |
+ sqlite3_value *pVal, /* argv[0] passed to function */ |
+ Fts3Cursor **ppCsr /* OUT: Store cursor handle here */ |
+){ |
+ Fts3Cursor *pRet; |
+ if( sqlite3_value_type(pVal)!=SQLITE_BLOB |
+ || sqlite3_value_bytes(pVal)!=sizeof(Fts3Cursor *) |
+ ){ |
+ char *zErr = sqlite3_mprintf("illegal first argument to %s", zFunc); |
+ sqlite3_result_error(pContext, zErr, -1); |
+ sqlite3_free(zErr); |
+ return SQLITE_ERROR; |
+ } |
+ memcpy(&pRet, sqlite3_value_blob(pVal), sizeof(Fts3Cursor *)); |
+ *ppCsr = pRet; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Implementation of the snippet() function for FTS3 |
+*/ |
+static void fts3SnippetFunc( |
+ sqlite3_context *pContext, /* SQLite function call context */ |
+ int nVal, /* Size of apVal[] array */ |
+ sqlite3_value **apVal /* Array of arguments */ |
+){ |
+ Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */ |
+ const char *zStart = "<b>"; |
+ const char *zEnd = "</b>"; |
+ const char *zEllipsis = "<b>...</b>"; |
+ int iCol = -1; |
+ int nToken = 15; /* Default number of tokens in snippet */ |
+ |
+ /* There must be at least one argument passed to this function (otherwise |
+ ** the non-overloaded version would have been called instead of this one). |
+ */ |
+ assert( nVal>=1 ); |
+ |
+ if( nVal>6 ){ |
+ sqlite3_result_error(pContext, |
+ "wrong number of arguments to function snippet()", -1); |
+ return; |
+ } |
+ if( fts3FunctionArg(pContext, "snippet", apVal[0], &pCsr) ) return; |
+ |
+ switch( nVal ){ |
+ case 6: nToken = sqlite3_value_int(apVal[5]); |
+ case 5: iCol = sqlite3_value_int(apVal[4]); |
+ case 4: zEllipsis = (const char*)sqlite3_value_text(apVal[3]); |
+ case 3: zEnd = (const char*)sqlite3_value_text(apVal[2]); |
+ case 2: zStart = (const char*)sqlite3_value_text(apVal[1]); |
+ } |
+ if( !zEllipsis || !zEnd || !zStart ){ |
+ sqlite3_result_error_nomem(pContext); |
+ }else if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){ |
+ sqlite3Fts3Snippet(pContext, pCsr, zStart, zEnd, zEllipsis, iCol, nToken); |
+ } |
+} |
+ |
+/* |
+** Implementation of the offsets() function for FTS3 |
+*/ |
+static void fts3OffsetsFunc( |
+ sqlite3_context *pContext, /* SQLite function call context */ |
+ int nVal, /* Size of argument array */ |
+ sqlite3_value **apVal /* Array of arguments */ |
+){ |
+ Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */ |
+ |
+ UNUSED_PARAMETER(nVal); |
+ |
+ assert( nVal==1 ); |
+ if( fts3FunctionArg(pContext, "offsets", apVal[0], &pCsr) ) return; |
+ assert( pCsr ); |
+ if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){ |
+ sqlite3Fts3Offsets(pContext, pCsr); |
+ } |
+} |
+ |
+/* |
+** Implementation of the special optimize() function for FTS3. This |
+** function merges all segments in the database to a single segment. |
+** Example usage is: |
+** |
+** SELECT optimize(t) FROM t LIMIT 1; |
+** |
+** where 't' is the name of an FTS3 table. |
+*/ |
+static void fts3OptimizeFunc( |
+ sqlite3_context *pContext, /* SQLite function call context */ |
+ int nVal, /* Size of argument array */ |
+ sqlite3_value **apVal /* Array of arguments */ |
+){ |
+ int rc; /* Return code */ |
+ Fts3Table *p; /* Virtual table handle */ |
+ Fts3Cursor *pCursor; /* Cursor handle passed through apVal[0] */ |
+ |
+ UNUSED_PARAMETER(nVal); |
+ |
+ assert( nVal==1 ); |
+ if( fts3FunctionArg(pContext, "optimize", apVal[0], &pCursor) ) return; |
+ p = (Fts3Table *)pCursor->base.pVtab; |
+ assert( p ); |
+ |
+ rc = sqlite3Fts3Optimize(p); |
+ |
+ switch( rc ){ |
+ case SQLITE_OK: |
+ sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC); |
+ break; |
+ case SQLITE_DONE: |
+ sqlite3_result_text(pContext, "Index already optimal", -1, SQLITE_STATIC); |
+ break; |
+ default: |
+ sqlite3_result_error_code(pContext, rc); |
+ break; |
+ } |
+} |
+ |
+/* |
+** Implementation of the matchinfo() function for FTS3 |
+*/ |
+static void fts3MatchinfoFunc( |
+ sqlite3_context *pContext, /* SQLite function call context */ |
+ int nVal, /* Size of argument array */ |
+ sqlite3_value **apVal /* Array of arguments */ |
+){ |
+ Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */ |
+ assert( nVal==1 || nVal==2 ); |
+ if( SQLITE_OK==fts3FunctionArg(pContext, "matchinfo", apVal[0], &pCsr) ){ |
+ const char *zArg = 0; |
+ if( nVal>1 ){ |
+ zArg = (const char *)sqlite3_value_text(apVal[1]); |
+ } |
+ sqlite3Fts3Matchinfo(pContext, pCsr, zArg); |
+ } |
+} |
+ |
+/* |
+** This routine implements the xFindFunction method for the FTS3 |
+** virtual table. |
+*/ |
+static int fts3FindFunctionMethod( |
+ sqlite3_vtab *pVtab, /* Virtual table handle */ |
+ int nArg, /* Number of SQL function arguments */ |
+ const char *zName, /* Name of SQL function */ |
+ void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), /* OUT: Result */ |
+ void **ppArg /* Unused */ |
+){ |
+ struct Overloaded { |
+ const char *zName; |
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**); |
+ } aOverload[] = { |
+ { "snippet", fts3SnippetFunc }, |
+ { "offsets", fts3OffsetsFunc }, |
+ { "optimize", fts3OptimizeFunc }, |
+ { "matchinfo", fts3MatchinfoFunc }, |
+ }; |
+ int i; /* Iterator variable */ |
+ |
+ UNUSED_PARAMETER(pVtab); |
+ UNUSED_PARAMETER(nArg); |
+ UNUSED_PARAMETER(ppArg); |
+ |
+ for(i=0; i<SizeofArray(aOverload); i++){ |
+ if( strcmp(zName, aOverload[i].zName)==0 ){ |
+ *pxFunc = aOverload[i].xFunc; |
+ return 1; |
+ } |
+ } |
+ |
+ /* No function of the specified name was found. Return 0. */ |
+ return 0; |
+} |
+ |
+/* |
+** Implementation of FTS3 xRename method. Rename an fts3 table. |
+*/ |
+static int fts3RenameMethod( |
+ sqlite3_vtab *pVtab, /* Virtual table handle */ |
+ const char *zName /* New name of table */ |
+){ |
+ Fts3Table *p = (Fts3Table *)pVtab; |
+ sqlite3 *db = p->db; /* Database connection */ |
+ int rc; /* Return Code */ |
+ |
+ /* At this point it must be known if the %_stat table exists or not. |
+ ** So bHasStat may not be 2. */ |
+ rc = fts3SetHasStat(p); |
+ |
+ /* As it happens, the pending terms table is always empty here. This is |
+ ** because an "ALTER TABLE RENAME TABLE" statement inside a transaction |
+ ** always opens a savepoint transaction. And the xSavepoint() method |
+ ** flushes the pending terms table. But leave the (no-op) call to |
+ ** PendingTermsFlush() in in case that changes. |
+ */ |
+ assert( p->nPendingData==0 ); |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3Fts3PendingTermsFlush(p); |
+ } |
+ |
+ if( p->zContentTbl==0 ){ |
+ fts3DbExec(&rc, db, |
+ "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';", |
+ p->zDb, p->zName, zName |
+ ); |
+ } |
+ |
+ if( p->bHasDocsize ){ |
+ fts3DbExec(&rc, db, |
+ "ALTER TABLE %Q.'%q_docsize' RENAME TO '%q_docsize';", |
+ p->zDb, p->zName, zName |
+ ); |
+ } |
+ if( p->bHasStat ){ |
+ fts3DbExec(&rc, db, |
+ "ALTER TABLE %Q.'%q_stat' RENAME TO '%q_stat';", |
+ p->zDb, p->zName, zName |
+ ); |
+ } |
+ fts3DbExec(&rc, db, |
+ "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';", |
+ p->zDb, p->zName, zName |
+ ); |
+ fts3DbExec(&rc, db, |
+ "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';", |
+ p->zDb, p->zName, zName |
+ ); |
+ return rc; |
+} |
+ |
+/* |
+** The xSavepoint() method. |
+** |
+** Flush the contents of the pending-terms table to disk. |
+*/ |
+static int fts3SavepointMethod(sqlite3_vtab *pVtab, int iSavepoint){ |
+ int rc = SQLITE_OK; |
+ UNUSED_PARAMETER(iSavepoint); |
+ assert( ((Fts3Table *)pVtab)->inTransaction ); |
+ assert( ((Fts3Table *)pVtab)->mxSavepoint < iSavepoint ); |
+ TESTONLY( ((Fts3Table *)pVtab)->mxSavepoint = iSavepoint ); |
+ if( ((Fts3Table *)pVtab)->bIgnoreSavepoint==0 ){ |
+ rc = fts3SyncMethod(pVtab); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** The xRelease() method. |
+** |
+** This is a no-op. |
+*/ |
+static int fts3ReleaseMethod(sqlite3_vtab *pVtab, int iSavepoint){ |
+ TESTONLY( Fts3Table *p = (Fts3Table*)pVtab ); |
+ UNUSED_PARAMETER(iSavepoint); |
+ UNUSED_PARAMETER(pVtab); |
+ assert( p->inTransaction ); |
+ assert( p->mxSavepoint >= iSavepoint ); |
+ TESTONLY( p->mxSavepoint = iSavepoint-1 ); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** The xRollbackTo() method. |
+** |
+** Discard the contents of the pending terms table. |
+*/ |
+static int fts3RollbackToMethod(sqlite3_vtab *pVtab, int iSavepoint){ |
+ Fts3Table *p = (Fts3Table*)pVtab; |
+ UNUSED_PARAMETER(iSavepoint); |
+ assert( p->inTransaction ); |
+ assert( p->mxSavepoint >= iSavepoint ); |
+ TESTONLY( p->mxSavepoint = iSavepoint ); |
+ sqlite3Fts3PendingTermsClear(p); |
+ return SQLITE_OK; |
+} |
+ |
+static const sqlite3_module fts3Module = { |
+ /* iVersion */ 2, |
+ /* xCreate */ fts3CreateMethod, |
+ /* xConnect */ fts3ConnectMethod, |
+ /* xBestIndex */ fts3BestIndexMethod, |
+ /* xDisconnect */ fts3DisconnectMethod, |
+ /* xDestroy */ fts3DestroyMethod, |
+ /* xOpen */ fts3OpenMethod, |
+ /* xClose */ fts3CloseMethod, |
+ /* xFilter */ fts3FilterMethod, |
+ /* xNext */ fts3NextMethod, |
+ /* xEof */ fts3EofMethod, |
+ /* xColumn */ fts3ColumnMethod, |
+ /* xRowid */ fts3RowidMethod, |
+ /* xUpdate */ fts3UpdateMethod, |
+ /* xBegin */ fts3BeginMethod, |
+ /* xSync */ fts3SyncMethod, |
+ /* xCommit */ fts3CommitMethod, |
+ /* xRollback */ fts3RollbackMethod, |
+ /* xFindFunction */ fts3FindFunctionMethod, |
+ /* xRename */ fts3RenameMethod, |
+ /* xSavepoint */ fts3SavepointMethod, |
+ /* xRelease */ fts3ReleaseMethod, |
+ /* xRollbackTo */ fts3RollbackToMethod, |
+}; |
+ |
+/* |
+** This function is registered as the module destructor (called when an |
+** FTS3 enabled database connection is closed). It frees the memory |
+** allocated for the tokenizer hash table. |
+*/ |
+static void hashDestroy(void *p){ |
+ Fts3Hash *pHash = (Fts3Hash *)p; |
+ sqlite3Fts3HashClear(pHash); |
+ sqlite3_free(pHash); |
+} |
+ |
+/* |
+** The fts3 built-in tokenizers - "simple", "porter" and "icu"- are |
+** implemented in files fts3_tokenizer1.c, fts3_porter.c and fts3_icu.c |
+** respectively. The following three forward declarations are for functions |
+** declared in these files used to retrieve the respective implementations. |
+** |
+** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed |
+** to by the argument to point to the "simple" tokenizer implementation. |
+** And so on. |
+*/ |
+void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule); |
+void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule); |
+#ifndef SQLITE_DISABLE_FTS3_UNICODE |
+void sqlite3Fts3UnicodeTokenizer(sqlite3_tokenizer_module const**ppModule); |
+#endif |
+#ifdef SQLITE_ENABLE_ICU |
+void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule); |
+#endif |
+ |
+/* |
+** Initialize the fts3 extension. If this extension is built as part |
+** of the sqlite library, then this function is called directly by |
+** SQLite. If fts3 is built as a dynamically loadable extension, this |
+** function is called by the sqlite3_extension_init() entry point. |
+*/ |
+int sqlite3Fts3Init(sqlite3 *db){ |
+ int rc = SQLITE_OK; |
+ Fts3Hash *pHash = 0; |
+ const sqlite3_tokenizer_module *pSimple = 0; |
+ const sqlite3_tokenizer_module *pPorter = 0; |
+#ifndef SQLITE_DISABLE_FTS3_UNICODE |
+ const sqlite3_tokenizer_module *pUnicode = 0; |
+#endif |
+ |
+#ifdef SQLITE_ENABLE_ICU |
+ const sqlite3_tokenizer_module *pIcu = 0; |
+ sqlite3Fts3IcuTokenizerModule(&pIcu); |
+#endif |
+ |
+#ifndef SQLITE_DISABLE_FTS3_UNICODE |
+ sqlite3Fts3UnicodeTokenizer(&pUnicode); |
+#endif |
+ |
+#ifdef SQLITE_TEST |
+ rc = sqlite3Fts3InitTerm(db); |
+ if( rc!=SQLITE_OK ) return rc; |
+#endif |
+ |
+ rc = sqlite3Fts3InitAux(db); |
+ if( rc!=SQLITE_OK ) return rc; |
+ |
+ sqlite3Fts3SimpleTokenizerModule(&pSimple); |
+ sqlite3Fts3PorterTokenizerModule(&pPorter); |
+ |
+ /* Allocate and initialize the hash-table used to store tokenizers. */ |
+ pHash = sqlite3_malloc(sizeof(Fts3Hash)); |
+ if( !pHash ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1); |
+ } |
+ |
+ /* Load the built-in tokenizers into the hash table */ |
+ if( rc==SQLITE_OK ){ |
+ if( sqlite3Fts3HashInsert(pHash, "simple", 7, (void *)pSimple) |
+ || sqlite3Fts3HashInsert(pHash, "porter", 7, (void *)pPorter) |
+ |
+#ifndef SQLITE_DISABLE_FTS3_UNICODE |
+ || sqlite3Fts3HashInsert(pHash, "unicode61", 10, (void *)pUnicode) |
+#endif |
+#ifdef SQLITE_ENABLE_ICU |
+ || (pIcu && sqlite3Fts3HashInsert(pHash, "icu", 4, (void *)pIcu)) |
+#endif |
+ ){ |
+ rc = SQLITE_NOMEM; |
+ } |
+ } |
+ |
+#ifdef SQLITE_TEST |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3Fts3ExprInitTestInterface(db); |
+ } |
+#endif |
+ |
+ /* Create the virtual table wrapper around the hash-table and overload |
+ ** the two scalar functions. If this is successful, register the |
+ ** module with sqlite. |
+ */ |
+ if( SQLITE_OK==rc |
+ && SQLITE_OK==(rc = sqlite3Fts3InitHashTable(db, pHash, "fts3_tokenizer")) |
+ && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1)) |
+ && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", 1)) |
+ && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 1)) |
+ && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 2)) |
+ && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", 1)) |
+ ){ |
+ rc = sqlite3_create_module_v2( |
+ db, "fts3", &fts3Module, (void *)pHash, hashDestroy |
+ ); |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3_create_module_v2( |
+ db, "fts4", &fts3Module, (void *)pHash, 0 |
+ ); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3Fts3InitTok(db, (void *)pHash); |
+ } |
+ return rc; |
+ } |
+ |
+ |
+ /* An error has occurred. Delete the hash table and return the error code. */ |
+ assert( rc!=SQLITE_OK ); |
+ if( pHash ){ |
+ sqlite3Fts3HashClear(pHash); |
+ sqlite3_free(pHash); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Allocate an Fts3MultiSegReader for each token in the expression headed |
+** by pExpr. |
+** |
+** An Fts3SegReader object is a cursor that can seek or scan a range of |
+** entries within a single segment b-tree. An Fts3MultiSegReader uses multiple |
+** Fts3SegReader objects internally to provide an interface to seek or scan |
+** within the union of all segments of a b-tree. Hence the name. |
+** |
+** If the allocated Fts3MultiSegReader just seeks to a single entry in a |
+** segment b-tree (if the term is not a prefix or it is a prefix for which |
+** there exists prefix b-tree of the right length) then it may be traversed |
+** and merged incrementally. Otherwise, it has to be merged into an in-memory |
+** doclist and then traversed. |
+*/ |
+static void fts3EvalAllocateReaders( |
+ Fts3Cursor *pCsr, /* FTS cursor handle */ |
+ Fts3Expr *pExpr, /* Allocate readers for this expression */ |
+ int *pnToken, /* OUT: Total number of tokens in phrase. */ |
+ int *pnOr, /* OUT: Total number of OR nodes in expr. */ |
+ int *pRc /* IN/OUT: Error code */ |
+){ |
+ if( pExpr && SQLITE_OK==*pRc ){ |
+ if( pExpr->eType==FTSQUERY_PHRASE ){ |
+ int i; |
+ int nToken = pExpr->pPhrase->nToken; |
+ *pnToken += nToken; |
+ for(i=0; i<nToken; i++){ |
+ Fts3PhraseToken *pToken = &pExpr->pPhrase->aToken[i]; |
+ int rc = fts3TermSegReaderCursor(pCsr, |
+ pToken->z, pToken->n, pToken->isPrefix, &pToken->pSegcsr |
+ ); |
+ if( rc!=SQLITE_OK ){ |
+ *pRc = rc; |
+ return; |
+ } |
+ } |
+ assert( pExpr->pPhrase->iDoclistToken==0 ); |
+ pExpr->pPhrase->iDoclistToken = -1; |
+ }else{ |
+ *pnOr += (pExpr->eType==FTSQUERY_OR); |
+ fts3EvalAllocateReaders(pCsr, pExpr->pLeft, pnToken, pnOr, pRc); |
+ fts3EvalAllocateReaders(pCsr, pExpr->pRight, pnToken, pnOr, pRc); |
+ } |
+ } |
+} |
+ |
+/* |
+** Arguments pList/nList contain the doclist for token iToken of phrase p. |
+** It is merged into the main doclist stored in p->doclist.aAll/nAll. |
+** |
+** This function assumes that pList points to a buffer allocated using |
+** sqlite3_malloc(). This function takes responsibility for eventually |
+** freeing the buffer. |
+*/ |
+static void fts3EvalPhraseMergeToken( |
+ Fts3Table *pTab, /* FTS Table pointer */ |
+ Fts3Phrase *p, /* Phrase to merge pList/nList into */ |
+ int iToken, /* Token pList/nList corresponds to */ |
+ char *pList, /* Pointer to doclist */ |
+ int nList /* Number of bytes in pList */ |
+){ |
+ assert( iToken!=p->iDoclistToken ); |
+ |
+ if( pList==0 ){ |
+ sqlite3_free(p->doclist.aAll); |
+ p->doclist.aAll = 0; |
+ p->doclist.nAll = 0; |
+ } |
+ |
+ else if( p->iDoclistToken<0 ){ |
+ p->doclist.aAll = pList; |
+ p->doclist.nAll = nList; |
+ } |
+ |
+ else if( p->doclist.aAll==0 ){ |
+ sqlite3_free(pList); |
+ } |
+ |
+ else { |
+ char *pLeft; |
+ char *pRight; |
+ int nLeft; |
+ int nRight; |
+ int nDiff; |
+ |
+ if( p->iDoclistToken<iToken ){ |
+ pLeft = p->doclist.aAll; |
+ nLeft = p->doclist.nAll; |
+ pRight = pList; |
+ nRight = nList; |
+ nDiff = iToken - p->iDoclistToken; |
+ }else{ |
+ pRight = p->doclist.aAll; |
+ nRight = p->doclist.nAll; |
+ pLeft = pList; |
+ nLeft = nList; |
+ nDiff = p->iDoclistToken - iToken; |
+ } |
+ |
+ fts3DoclistPhraseMerge(pTab->bDescIdx, nDiff, pLeft, nLeft, pRight,&nRight); |
+ sqlite3_free(pLeft); |
+ p->doclist.aAll = pRight; |
+ p->doclist.nAll = nRight; |
+ } |
+ |
+ if( iToken>p->iDoclistToken ) p->iDoclistToken = iToken; |
+} |
+ |
+/* |
+** Load the doclist for phrase p into p->doclist.aAll/nAll. The loaded doclist |
+** does not take deferred tokens into account. |
+** |
+** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code. |
+*/ |
+static int fts3EvalPhraseLoad( |
+ Fts3Cursor *pCsr, /* FTS Cursor handle */ |
+ Fts3Phrase *p /* Phrase object */ |
+){ |
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; |
+ int iToken; |
+ int rc = SQLITE_OK; |
+ |
+ for(iToken=0; rc==SQLITE_OK && iToken<p->nToken; iToken++){ |
+ Fts3PhraseToken *pToken = &p->aToken[iToken]; |
+ assert( pToken->pDeferred==0 || pToken->pSegcsr==0 ); |
+ |
+ if( pToken->pSegcsr ){ |
+ int nThis = 0; |
+ char *pThis = 0; |
+ rc = fts3TermSelect(pTab, pToken, p->iColumn, &nThis, &pThis); |
+ if( rc==SQLITE_OK ){ |
+ fts3EvalPhraseMergeToken(pTab, p, iToken, pThis, nThis); |
+ } |
+ } |
+ assert( pToken->pSegcsr==0 ); |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** This function is called on each phrase after the position lists for |
+** any deferred tokens have been loaded into memory. It updates the phrases |
+** current position list to include only those positions that are really |
+** instances of the phrase (after considering deferred tokens). If this |
+** means that the phrase does not appear in the current row, doclist.pList |
+** and doclist.nList are both zeroed. |
+** |
+** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code. |
+*/ |
+static int fts3EvalDeferredPhrase(Fts3Cursor *pCsr, Fts3Phrase *pPhrase){ |
+ int iToken; /* Used to iterate through phrase tokens */ |
+ char *aPoslist = 0; /* Position list for deferred tokens */ |
+ int nPoslist = 0; /* Number of bytes in aPoslist */ |
+ int iPrev = -1; /* Token number of previous deferred token */ |
+ |
+ assert( pPhrase->doclist.bFreeList==0 ); |
+ |
+ for(iToken=0; iToken<pPhrase->nToken; iToken++){ |
+ Fts3PhraseToken *pToken = &pPhrase->aToken[iToken]; |
+ Fts3DeferredToken *pDeferred = pToken->pDeferred; |
+ |
+ if( pDeferred ){ |
+ char *pList; |
+ int nList; |
+ int rc = sqlite3Fts3DeferredTokenList(pDeferred, &pList, &nList); |
+ if( rc!=SQLITE_OK ) return rc; |
+ |
+ if( pList==0 ){ |
+ sqlite3_free(aPoslist); |
+ pPhrase->doclist.pList = 0; |
+ pPhrase->doclist.nList = 0; |
+ return SQLITE_OK; |
+ |
+ }else if( aPoslist==0 ){ |
+ aPoslist = pList; |
+ nPoslist = nList; |
+ |
+ }else{ |
+ char *aOut = pList; |
+ char *p1 = aPoslist; |
+ char *p2 = aOut; |
+ |
+ assert( iPrev>=0 ); |
+ fts3PoslistPhraseMerge(&aOut, iToken-iPrev, 0, 1, &p1, &p2); |
+ sqlite3_free(aPoslist); |
+ aPoslist = pList; |
+ nPoslist = (int)(aOut - aPoslist); |
+ if( nPoslist==0 ){ |
+ sqlite3_free(aPoslist); |
+ pPhrase->doclist.pList = 0; |
+ pPhrase->doclist.nList = 0; |
+ return SQLITE_OK; |
+ } |
+ } |
+ iPrev = iToken; |
+ } |
+ } |
+ |
+ if( iPrev>=0 ){ |
+ int nMaxUndeferred = pPhrase->iDoclistToken; |
+ if( nMaxUndeferred<0 ){ |
+ pPhrase->doclist.pList = aPoslist; |
+ pPhrase->doclist.nList = nPoslist; |
+ pPhrase->doclist.iDocid = pCsr->iPrevId; |
+ pPhrase->doclist.bFreeList = 1; |
+ }else{ |
+ int nDistance; |
+ char *p1; |
+ char *p2; |
+ char *aOut; |
+ |
+ if( nMaxUndeferred>iPrev ){ |
+ p1 = aPoslist; |
+ p2 = pPhrase->doclist.pList; |
+ nDistance = nMaxUndeferred - iPrev; |
+ }else{ |
+ p1 = pPhrase->doclist.pList; |
+ p2 = aPoslist; |
+ nDistance = iPrev - nMaxUndeferred; |
+ } |
+ |
+ aOut = (char *)sqlite3_malloc(nPoslist+8); |
+ if( !aOut ){ |
+ sqlite3_free(aPoslist); |
+ return SQLITE_NOMEM; |
+ } |
+ |
+ pPhrase->doclist.pList = aOut; |
+ if( fts3PoslistPhraseMerge(&aOut, nDistance, 0, 1, &p1, &p2) ){ |
+ pPhrase->doclist.bFreeList = 1; |
+ pPhrase->doclist.nList = (int)(aOut - pPhrase->doclist.pList); |
+ }else{ |
+ sqlite3_free(aOut); |
+ pPhrase->doclist.pList = 0; |
+ pPhrase->doclist.nList = 0; |
+ } |
+ sqlite3_free(aPoslist); |
+ } |
+ } |
+ |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Maximum number of tokens a phrase may have to be considered for the |
+** incremental doclists strategy. |
+*/ |
+#define MAX_INCR_PHRASE_TOKENS 4 |
+ |
+/* |
+** This function is called for each Fts3Phrase in a full-text query |
+** expression to initialize the mechanism for returning rows. Once this |
+** function has been called successfully on an Fts3Phrase, it may be |
+** used with fts3EvalPhraseNext() to iterate through the matching docids. |
+** |
+** If parameter bOptOk is true, then the phrase may (or may not) use the |
+** incremental loading strategy. Otherwise, the entire doclist is loaded into |
+** memory within this call. |
+** |
+** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code. |
+*/ |
+static int fts3EvalPhraseStart(Fts3Cursor *pCsr, int bOptOk, Fts3Phrase *p){ |
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; |
+ int rc = SQLITE_OK; /* Error code */ |
+ int i; |
+ |
+ /* Determine if doclists may be loaded from disk incrementally. This is |
+ ** possible if the bOptOk argument is true, the FTS doclists will be |
+ ** scanned in forward order, and the phrase consists of |
+ ** MAX_INCR_PHRASE_TOKENS or fewer tokens, none of which are are "^first" |
+ ** tokens or prefix tokens that cannot use a prefix-index. */ |
+ int bHaveIncr = 0; |
+ int bIncrOk = (bOptOk |
+ && pCsr->bDesc==pTab->bDescIdx |
+ && p->nToken<=MAX_INCR_PHRASE_TOKENS && p->nToken>0 |
+ && p->nToken<=MAX_INCR_PHRASE_TOKENS && p->nToken>0 |
+#ifdef SQLITE_TEST |
+ && pTab->bNoIncrDoclist==0 |
+#endif |
+ ); |
+ for(i=0; bIncrOk==1 && i<p->nToken; i++){ |
+ Fts3PhraseToken *pToken = &p->aToken[i]; |
+ if( pToken->bFirst || (pToken->pSegcsr!=0 && !pToken->pSegcsr->bLookup) ){ |
+ bIncrOk = 0; |
+ } |
+ if( pToken->pSegcsr ) bHaveIncr = 1; |
+ } |
+ |
+ if( bIncrOk && bHaveIncr ){ |
+ /* Use the incremental approach. */ |
+ int iCol = (p->iColumn >= pTab->nColumn ? -1 : p->iColumn); |
+ for(i=0; rc==SQLITE_OK && i<p->nToken; i++){ |
+ Fts3PhraseToken *pToken = &p->aToken[i]; |
+ Fts3MultiSegReader *pSegcsr = pToken->pSegcsr; |
+ if( pSegcsr ){ |
+ rc = sqlite3Fts3MsrIncrStart(pTab, pSegcsr, iCol, pToken->z, pToken->n); |
+ } |
+ } |
+ p->bIncr = 1; |
+ }else{ |
+ /* Load the full doclist for the phrase into memory. */ |
+ rc = fts3EvalPhraseLoad(pCsr, p); |
+ p->bIncr = 0; |
+ } |
+ |
+ assert( rc!=SQLITE_OK || p->nToken<1 || p->aToken[0].pSegcsr==0 || p->bIncr ); |
+ return rc; |
+} |
+ |
+/* |
+** This function is used to iterate backwards (from the end to start) |
+** through doclists. It is used by this module to iterate through phrase |
+** doclists in reverse and by the fts3_write.c module to iterate through |
+** pending-terms lists when writing to databases with "order=desc". |
+** |
+** The doclist may be sorted in ascending (parameter bDescIdx==0) or |
+** descending (parameter bDescIdx==1) order of docid. Regardless, this |
+** function iterates from the end of the doclist to the beginning. |
+*/ |
+void sqlite3Fts3DoclistPrev( |
+ int bDescIdx, /* True if the doclist is desc */ |
+ char *aDoclist, /* Pointer to entire doclist */ |
+ int nDoclist, /* Length of aDoclist in bytes */ |
+ char **ppIter, /* IN/OUT: Iterator pointer */ |
+ sqlite3_int64 *piDocid, /* IN/OUT: Docid pointer */ |
+ int *pnList, /* OUT: List length pointer */ |
+ u8 *pbEof /* OUT: End-of-file flag */ |
+){ |
+ char *p = *ppIter; |
+ |
+ assert( nDoclist>0 ); |
+ assert( *pbEof==0 ); |
+ assert( p || *piDocid==0 ); |
+ assert( !p || (p>aDoclist && p<&aDoclist[nDoclist]) ); |
+ |
+ if( p==0 ){ |
+ sqlite3_int64 iDocid = 0; |
+ char *pNext = 0; |
+ char *pDocid = aDoclist; |
+ char *pEnd = &aDoclist[nDoclist]; |
+ int iMul = 1; |
+ |
+ while( pDocid<pEnd ){ |
+ sqlite3_int64 iDelta; |
+ pDocid += sqlite3Fts3GetVarint(pDocid, &iDelta); |
+ iDocid += (iMul * iDelta); |
+ pNext = pDocid; |
+ fts3PoslistCopy(0, &pDocid); |
+ while( pDocid<pEnd && *pDocid==0 ) pDocid++; |
+ iMul = (bDescIdx ? -1 : 1); |
+ } |
+ |
+ *pnList = (int)(pEnd - pNext); |
+ *ppIter = pNext; |
+ *piDocid = iDocid; |
+ }else{ |
+ int iMul = (bDescIdx ? -1 : 1); |
+ sqlite3_int64 iDelta; |
+ fts3GetReverseVarint(&p, aDoclist, &iDelta); |
+ *piDocid -= (iMul * iDelta); |
+ |
+ if( p==aDoclist ){ |
+ *pbEof = 1; |
+ }else{ |
+ char *pSave = p; |
+ fts3ReversePoslist(aDoclist, &p); |
+ *pnList = (int)(pSave - p); |
+ } |
+ *ppIter = p; |
+ } |
+} |
+ |
+/* |
+** Iterate forwards through a doclist. |
+*/ |
+void sqlite3Fts3DoclistNext( |
+ int bDescIdx, /* True if the doclist is desc */ |
+ char *aDoclist, /* Pointer to entire doclist */ |
+ int nDoclist, /* Length of aDoclist in bytes */ |
+ char **ppIter, /* IN/OUT: Iterator pointer */ |
+ sqlite3_int64 *piDocid, /* IN/OUT: Docid pointer */ |
+ u8 *pbEof /* OUT: End-of-file flag */ |
+){ |
+ char *p = *ppIter; |
+ |
+ assert( nDoclist>0 ); |
+ assert( *pbEof==0 ); |
+ assert( p || *piDocid==0 ); |
+ assert( !p || (p>=aDoclist && p<=&aDoclist[nDoclist]) ); |
+ |
+ if( p==0 ){ |
+ p = aDoclist; |
+ p += sqlite3Fts3GetVarint(p, piDocid); |
+ }else{ |
+ fts3PoslistCopy(0, &p); |
+ if( p>=&aDoclist[nDoclist] ){ |
+ *pbEof = 1; |
+ }else{ |
+ sqlite3_int64 iVar; |
+ p += sqlite3Fts3GetVarint(p, &iVar); |
+ *piDocid += ((bDescIdx ? -1 : 1) * iVar); |
+ } |
+ } |
+ |
+ *ppIter = p; |
+} |
+ |
+/* |
+** Advance the iterator pDL to the next entry in pDL->aAll/nAll. Set *pbEof |
+** to true if EOF is reached. |
+*/ |
+static void fts3EvalDlPhraseNext( |
+ Fts3Table *pTab, |
+ Fts3Doclist *pDL, |
+ u8 *pbEof |
+){ |
+ char *pIter; /* Used to iterate through aAll */ |
+ char *pEnd = &pDL->aAll[pDL->nAll]; /* 1 byte past end of aAll */ |
+ |
+ if( pDL->pNextDocid ){ |
+ pIter = pDL->pNextDocid; |
+ }else{ |
+ pIter = pDL->aAll; |
+ } |
+ |
+ if( pIter>=pEnd ){ |
+ /* We have already reached the end of this doclist. EOF. */ |
+ *pbEof = 1; |
+ }else{ |
+ sqlite3_int64 iDelta; |
+ pIter += sqlite3Fts3GetVarint(pIter, &iDelta); |
+ if( pTab->bDescIdx==0 || pDL->pNextDocid==0 ){ |
+ pDL->iDocid += iDelta; |
+ }else{ |
+ pDL->iDocid -= iDelta; |
+ } |
+ pDL->pList = pIter; |
+ fts3PoslistCopy(0, &pIter); |
+ pDL->nList = (int)(pIter - pDL->pList); |
+ |
+ /* pIter now points just past the 0x00 that terminates the position- |
+ ** list for document pDL->iDocid. However, if this position-list was |
+ ** edited in place by fts3EvalNearTrim(), then pIter may not actually |
+ ** point to the start of the next docid value. The following line deals |
+ ** with this case by advancing pIter past the zero-padding added by |
+ ** fts3EvalNearTrim(). */ |
+ while( pIter<pEnd && *pIter==0 ) pIter++; |
+ |
+ pDL->pNextDocid = pIter; |
+ assert( pIter>=&pDL->aAll[pDL->nAll] || *pIter ); |
+ *pbEof = 0; |
+ } |
+} |
+ |
+/* |
+** Helper type used by fts3EvalIncrPhraseNext() and incrPhraseTokenNext(). |
+*/ |
+typedef struct TokenDoclist TokenDoclist; |
+struct TokenDoclist { |
+ int bIgnore; |
+ sqlite3_int64 iDocid; |
+ char *pList; |
+ int nList; |
+}; |
+ |
+/* |
+** Token pToken is an incrementally loaded token that is part of a |
+** multi-token phrase. Advance it to the next matching document in the |
+** database and populate output variable *p with the details of the new |
+** entry. Or, if the iterator has reached EOF, set *pbEof to true. |
+** |
+** If an error occurs, return an SQLite error code. Otherwise, return |
+** SQLITE_OK. |
+*/ |
+static int incrPhraseTokenNext( |
+ Fts3Table *pTab, /* Virtual table handle */ |
+ Fts3Phrase *pPhrase, /* Phrase to advance token of */ |
+ int iToken, /* Specific token to advance */ |
+ TokenDoclist *p, /* OUT: Docid and doclist for new entry */ |
+ u8 *pbEof /* OUT: True if iterator is at EOF */ |
+){ |
+ int rc = SQLITE_OK; |
+ |
+ if( pPhrase->iDoclistToken==iToken ){ |
+ assert( p->bIgnore==0 ); |
+ assert( pPhrase->aToken[iToken].pSegcsr==0 ); |
+ fts3EvalDlPhraseNext(pTab, &pPhrase->doclist, pbEof); |
+ p->pList = pPhrase->doclist.pList; |
+ p->nList = pPhrase->doclist.nList; |
+ p->iDocid = pPhrase->doclist.iDocid; |
+ }else{ |
+ Fts3PhraseToken *pToken = &pPhrase->aToken[iToken]; |
+ assert( pToken->pDeferred==0 ); |
+ assert( pToken->pSegcsr || pPhrase->iDoclistToken>=0 ); |
+ if( pToken->pSegcsr ){ |
+ assert( p->bIgnore==0 ); |
+ rc = sqlite3Fts3MsrIncrNext( |
+ pTab, pToken->pSegcsr, &p->iDocid, &p->pList, &p->nList |
+ ); |
+ if( p->pList==0 ) *pbEof = 1; |
+ }else{ |
+ p->bIgnore = 1; |
+ } |
+ } |
+ |
+ return rc; |
+} |
+ |
+ |
+/* |
+** The phrase iterator passed as the second argument: |
+** |
+** * features at least one token that uses an incremental doclist, and |
+** |
+** * does not contain any deferred tokens. |
+** |
+** Advance it to the next matching documnent in the database and populate |
+** the Fts3Doclist.pList and nList fields. |
+** |
+** If there is no "next" entry and no error occurs, then *pbEof is set to |
+** 1 before returning. Otherwise, if no error occurs and the iterator is |
+** successfully advanced, *pbEof is set to 0. |
+** |
+** If an error occurs, return an SQLite error code. Otherwise, return |
+** SQLITE_OK. |
+*/ |
+static int fts3EvalIncrPhraseNext( |
+ Fts3Cursor *pCsr, /* FTS Cursor handle */ |
+ Fts3Phrase *p, /* Phrase object to advance to next docid */ |
+ u8 *pbEof /* OUT: Set to 1 if EOF */ |
+){ |
+ int rc = SQLITE_OK; |
+ Fts3Doclist *pDL = &p->doclist; |
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; |
+ u8 bEof = 0; |
+ |
+ /* This is only called if it is guaranteed that the phrase has at least |
+ ** one incremental token. In which case the bIncr flag is set. */ |
+ assert( p->bIncr==1 ); |
+ |
+ if( p->nToken==1 && p->bIncr ){ |
+ rc = sqlite3Fts3MsrIncrNext(pTab, p->aToken[0].pSegcsr, |
+ &pDL->iDocid, &pDL->pList, &pDL->nList |
+ ); |
+ if( pDL->pList==0 ) bEof = 1; |
+ }else{ |
+ int bDescDoclist = pCsr->bDesc; |
+ struct TokenDoclist a[MAX_INCR_PHRASE_TOKENS]; |
+ |
+ memset(a, 0, sizeof(a)); |
+ assert( p->nToken<=MAX_INCR_PHRASE_TOKENS ); |
+ assert( p->iDoclistToken<MAX_INCR_PHRASE_TOKENS ); |
+ |
+ while( bEof==0 ){ |
+ int bMaxSet = 0; |
+ sqlite3_int64 iMax = 0; /* Largest docid for all iterators */ |
+ int i; /* Used to iterate through tokens */ |
+ |
+ /* Advance the iterator for each token in the phrase once. */ |
+ for(i=0; rc==SQLITE_OK && i<p->nToken && bEof==0; i++){ |
+ rc = incrPhraseTokenNext(pTab, p, i, &a[i], &bEof); |
+ if( a[i].bIgnore==0 && (bMaxSet==0 || DOCID_CMP(iMax, a[i].iDocid)<0) ){ |
+ iMax = a[i].iDocid; |
+ bMaxSet = 1; |
+ } |
+ } |
+ assert( rc!=SQLITE_OK || (p->nToken>=1 && a[p->nToken-1].bIgnore==0) ); |
+ assert( rc!=SQLITE_OK || bMaxSet ); |
+ |
+ /* Keep advancing iterators until they all point to the same document */ |
+ for(i=0; i<p->nToken; i++){ |
+ while( rc==SQLITE_OK && bEof==0 |
+ && a[i].bIgnore==0 && DOCID_CMP(a[i].iDocid, iMax)<0 |
+ ){ |
+ rc = incrPhraseTokenNext(pTab, p, i, &a[i], &bEof); |
+ if( DOCID_CMP(a[i].iDocid, iMax)>0 ){ |
+ iMax = a[i].iDocid; |
+ i = 0; |
+ } |
+ } |
+ } |
+ |
+ /* Check if the current entries really are a phrase match */ |
+ if( bEof==0 ){ |
+ int nList = 0; |
+ int nByte = a[p->nToken-1].nList; |
+ char *aDoclist = sqlite3_malloc(nByte+1); |
+ if( !aDoclist ) return SQLITE_NOMEM; |
+ memcpy(aDoclist, a[p->nToken-1].pList, nByte+1); |
+ |
+ for(i=0; i<(p->nToken-1); i++){ |
+ if( a[i].bIgnore==0 ){ |
+ char *pL = a[i].pList; |
+ char *pR = aDoclist; |
+ char *pOut = aDoclist; |
+ int nDist = p->nToken-1-i; |
+ int res = fts3PoslistPhraseMerge(&pOut, nDist, 0, 1, &pL, &pR); |
+ if( res==0 ) break; |
+ nList = (int)(pOut - aDoclist); |
+ } |
+ } |
+ if( i==(p->nToken-1) ){ |
+ pDL->iDocid = iMax; |
+ pDL->pList = aDoclist; |
+ pDL->nList = nList; |
+ pDL->bFreeList = 1; |
+ break; |
+ } |
+ sqlite3_free(aDoclist); |
+ } |
+ } |
+ } |
+ |
+ *pbEof = bEof; |
+ return rc; |
+} |
+ |
+/* |
+** Attempt to move the phrase iterator to point to the next matching docid. |
+** If an error occurs, return an SQLite error code. Otherwise, return |
+** SQLITE_OK. |
+** |
+** If there is no "next" entry and no error occurs, then *pbEof is set to |
+** 1 before returning. Otherwise, if no error occurs and the iterator is |
+** successfully advanced, *pbEof is set to 0. |
+*/ |
+static int fts3EvalPhraseNext( |
+ Fts3Cursor *pCsr, /* FTS Cursor handle */ |
+ Fts3Phrase *p, /* Phrase object to advance to next docid */ |
+ u8 *pbEof /* OUT: Set to 1 if EOF */ |
+){ |
+ int rc = SQLITE_OK; |
+ Fts3Doclist *pDL = &p->doclist; |
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; |
+ |
+ if( p->bIncr ){ |
+ rc = fts3EvalIncrPhraseNext(pCsr, p, pbEof); |
+ }else if( pCsr->bDesc!=pTab->bDescIdx && pDL->nAll ){ |
+ sqlite3Fts3DoclistPrev(pTab->bDescIdx, pDL->aAll, pDL->nAll, |
+ &pDL->pNextDocid, &pDL->iDocid, &pDL->nList, pbEof |
+ ); |
+ pDL->pList = pDL->pNextDocid; |
+ }else{ |
+ fts3EvalDlPhraseNext(pTab, pDL, pbEof); |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** |
+** If *pRc is not SQLITE_OK when this function is called, it is a no-op. |
+** Otherwise, fts3EvalPhraseStart() is called on all phrases within the |
+** expression. Also the Fts3Expr.bDeferred variable is set to true for any |
+** expressions for which all descendent tokens are deferred. |
+** |
+** If parameter bOptOk is zero, then it is guaranteed that the |
+** Fts3Phrase.doclist.aAll/nAll variables contain the entire doclist for |
+** each phrase in the expression (subject to deferred token processing). |
+** Or, if bOptOk is non-zero, then one or more tokens within the expression |
+** may be loaded incrementally, meaning doclist.aAll/nAll is not available. |
+** |
+** If an error occurs within this function, *pRc is set to an SQLite error |
+** code before returning. |
+*/ |
+static void fts3EvalStartReaders( |
+ Fts3Cursor *pCsr, /* FTS Cursor handle */ |
+ Fts3Expr *pExpr, /* Expression to initialize phrases in */ |
+ int *pRc /* IN/OUT: Error code */ |
+){ |
+ if( pExpr && SQLITE_OK==*pRc ){ |
+ if( pExpr->eType==FTSQUERY_PHRASE ){ |
+ int i; |
+ int nToken = pExpr->pPhrase->nToken; |
+ for(i=0; i<nToken; i++){ |
+ if( pExpr->pPhrase->aToken[i].pDeferred==0 ) break; |
+ } |
+ pExpr->bDeferred = (i==nToken); |
+ *pRc = fts3EvalPhraseStart(pCsr, 1, pExpr->pPhrase); |
+ }else{ |
+ fts3EvalStartReaders(pCsr, pExpr->pLeft, pRc); |
+ fts3EvalStartReaders(pCsr, pExpr->pRight, pRc); |
+ pExpr->bDeferred = (pExpr->pLeft->bDeferred && pExpr->pRight->bDeferred); |
+ } |
+ } |
+} |
+ |
+/* |
+** An array of the following structures is assembled as part of the process |
+** of selecting tokens to defer before the query starts executing (as part |
+** of the xFilter() method). There is one element in the array for each |
+** token in the FTS expression. |
+** |
+** Tokens are divided into AND/NEAR clusters. All tokens in a cluster belong |
+** to phrases that are connected only by AND and NEAR operators (not OR or |
+** NOT). When determining tokens to defer, each AND/NEAR cluster is considered |
+** separately. The root of a tokens AND/NEAR cluster is stored in |
+** Fts3TokenAndCost.pRoot. |
+*/ |
+typedef struct Fts3TokenAndCost Fts3TokenAndCost; |
+struct Fts3TokenAndCost { |
+ Fts3Phrase *pPhrase; /* The phrase the token belongs to */ |
+ int iToken; /* Position of token in phrase */ |
+ Fts3PhraseToken *pToken; /* The token itself */ |
+ Fts3Expr *pRoot; /* Root of NEAR/AND cluster */ |
+ int nOvfl; /* Number of overflow pages to load doclist */ |
+ int iCol; /* The column the token must match */ |
+}; |
+ |
+/* |
+** This function is used to populate an allocated Fts3TokenAndCost array. |
+** |
+** If *pRc is not SQLITE_OK when this function is called, it is a no-op. |
+** Otherwise, if an error occurs during execution, *pRc is set to an |
+** SQLite error code. |
+*/ |
+static void fts3EvalTokenCosts( |
+ Fts3Cursor *pCsr, /* FTS Cursor handle */ |
+ Fts3Expr *pRoot, /* Root of current AND/NEAR cluster */ |
+ Fts3Expr *pExpr, /* Expression to consider */ |
+ Fts3TokenAndCost **ppTC, /* Write new entries to *(*ppTC)++ */ |
+ Fts3Expr ***ppOr, /* Write new OR root to *(*ppOr)++ */ |
+ int *pRc /* IN/OUT: Error code */ |
+){ |
+ if( *pRc==SQLITE_OK ){ |
+ if( pExpr->eType==FTSQUERY_PHRASE ){ |
+ Fts3Phrase *pPhrase = pExpr->pPhrase; |
+ int i; |
+ for(i=0; *pRc==SQLITE_OK && i<pPhrase->nToken; i++){ |
+ Fts3TokenAndCost *pTC = (*ppTC)++; |
+ pTC->pPhrase = pPhrase; |
+ pTC->iToken = i; |
+ pTC->pRoot = pRoot; |
+ pTC->pToken = &pPhrase->aToken[i]; |
+ pTC->iCol = pPhrase->iColumn; |
+ *pRc = sqlite3Fts3MsrOvfl(pCsr, pTC->pToken->pSegcsr, &pTC->nOvfl); |
+ } |
+ }else if( pExpr->eType!=FTSQUERY_NOT ){ |
+ assert( pExpr->eType==FTSQUERY_OR |
+ || pExpr->eType==FTSQUERY_AND |
+ || pExpr->eType==FTSQUERY_NEAR |
+ ); |
+ assert( pExpr->pLeft && pExpr->pRight ); |
+ if( pExpr->eType==FTSQUERY_OR ){ |
+ pRoot = pExpr->pLeft; |
+ **ppOr = pRoot; |
+ (*ppOr)++; |
+ } |
+ fts3EvalTokenCosts(pCsr, pRoot, pExpr->pLeft, ppTC, ppOr, pRc); |
+ if( pExpr->eType==FTSQUERY_OR ){ |
+ pRoot = pExpr->pRight; |
+ **ppOr = pRoot; |
+ (*ppOr)++; |
+ } |
+ fts3EvalTokenCosts(pCsr, pRoot, pExpr->pRight, ppTC, ppOr, pRc); |
+ } |
+ } |
+} |
+ |
+/* |
+** Determine the average document (row) size in pages. If successful, |
+** write this value to *pnPage and return SQLITE_OK. Otherwise, return |
+** an SQLite error code. |
+** |
+** The average document size in pages is calculated by first calculating |
+** determining the average size in bytes, B. If B is less than the amount |
+** of data that will fit on a single leaf page of an intkey table in |
+** this database, then the average docsize is 1. Otherwise, it is 1 plus |
+** the number of overflow pages consumed by a record B bytes in size. |
+*/ |
+static int fts3EvalAverageDocsize(Fts3Cursor *pCsr, int *pnPage){ |
+ if( pCsr->nRowAvg==0 ){ |
+ /* The average document size, which is required to calculate the cost |
+ ** of each doclist, has not yet been determined. Read the required |
+ ** data from the %_stat table to calculate it. |
+ ** |
+ ** Entry 0 of the %_stat table is a blob containing (nCol+1) FTS3 |
+ ** varints, where nCol is the number of columns in the FTS3 table. |
+ ** The first varint is the number of documents currently stored in |
+ ** the table. The following nCol varints contain the total amount of |
+ ** data stored in all rows of each column of the table, from left |
+ ** to right. |
+ */ |
+ int rc; |
+ Fts3Table *p = (Fts3Table*)pCsr->base.pVtab; |
+ sqlite3_stmt *pStmt; |
+ sqlite3_int64 nDoc = 0; |
+ sqlite3_int64 nByte = 0; |
+ const char *pEnd; |
+ const char *a; |
+ |
+ rc = sqlite3Fts3SelectDoctotal(p, &pStmt); |
+ if( rc!=SQLITE_OK ) return rc; |
+ a = sqlite3_column_blob(pStmt, 0); |
+ assert( a ); |
+ |
+ pEnd = &a[sqlite3_column_bytes(pStmt, 0)]; |
+ a += sqlite3Fts3GetVarint(a, &nDoc); |
+ while( a<pEnd ){ |
+ a += sqlite3Fts3GetVarint(a, &nByte); |
+ } |
+ if( nDoc==0 || nByte==0 ){ |
+ sqlite3_reset(pStmt); |
+ return FTS_CORRUPT_VTAB; |
+ } |
+ |
+ pCsr->nDoc = nDoc; |
+ pCsr->nRowAvg = (int)(((nByte / nDoc) + p->nPgsz) / p->nPgsz); |
+ assert( pCsr->nRowAvg>0 ); |
+ rc = sqlite3_reset(pStmt); |
+ if( rc!=SQLITE_OK ) return rc; |
+ } |
+ |
+ *pnPage = pCsr->nRowAvg; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** This function is called to select the tokens (if any) that will be |
+** deferred. The array aTC[] has already been populated when this is |
+** called. |
+** |
+** This function is called once for each AND/NEAR cluster in the |
+** expression. Each invocation determines which tokens to defer within |
+** the cluster with root node pRoot. See comments above the definition |
+** of struct Fts3TokenAndCost for more details. |
+** |
+** If no error occurs, SQLITE_OK is returned and sqlite3Fts3DeferToken() |
+** called on each token to defer. Otherwise, an SQLite error code is |
+** returned. |
+*/ |
+static int fts3EvalSelectDeferred( |
+ Fts3Cursor *pCsr, /* FTS Cursor handle */ |
+ Fts3Expr *pRoot, /* Consider tokens with this root node */ |
+ Fts3TokenAndCost *aTC, /* Array of expression tokens and costs */ |
+ int nTC /* Number of entries in aTC[] */ |
+){ |
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; |
+ int nDocSize = 0; /* Number of pages per doc loaded */ |
+ int rc = SQLITE_OK; /* Return code */ |
+ int ii; /* Iterator variable for various purposes */ |
+ int nOvfl = 0; /* Total overflow pages used by doclists */ |
+ int nToken = 0; /* Total number of tokens in cluster */ |
+ |
+ int nMinEst = 0; /* The minimum count for any phrase so far. */ |
+ int nLoad4 = 1; /* (Phrases that will be loaded)^4. */ |
+ |
+ /* Tokens are never deferred for FTS tables created using the content=xxx |
+ ** option. The reason being that it is not guaranteed that the content |
+ ** table actually contains the same data as the index. To prevent this from |
+ ** causing any problems, the deferred token optimization is completely |
+ ** disabled for content=xxx tables. */ |
+ if( pTab->zContentTbl ){ |
+ return SQLITE_OK; |
+ } |
+ |
+ /* Count the tokens in this AND/NEAR cluster. If none of the doclists |
+ ** associated with the tokens spill onto overflow pages, or if there is |
+ ** only 1 token, exit early. No tokens to defer in this case. */ |
+ for(ii=0; ii<nTC; ii++){ |
+ if( aTC[ii].pRoot==pRoot ){ |
+ nOvfl += aTC[ii].nOvfl; |
+ nToken++; |
+ } |
+ } |
+ if( nOvfl==0 || nToken<2 ) return SQLITE_OK; |
+ |
+ /* Obtain the average docsize (in pages). */ |
+ rc = fts3EvalAverageDocsize(pCsr, &nDocSize); |
+ assert( rc!=SQLITE_OK || nDocSize>0 ); |
+ |
+ |
+ /* Iterate through all tokens in this AND/NEAR cluster, in ascending order |
+ ** of the number of overflow pages that will be loaded by the pager layer |
+ ** to retrieve the entire doclist for the token from the full-text index. |
+ ** Load the doclists for tokens that are either: |
+ ** |
+ ** a. The cheapest token in the entire query (i.e. the one visited by the |
+ ** first iteration of this loop), or |
+ ** |
+ ** b. Part of a multi-token phrase. |
+ ** |
+ ** After each token doclist is loaded, merge it with the others from the |
+ ** same phrase and count the number of documents that the merged doclist |
+ ** contains. Set variable "nMinEst" to the smallest number of documents in |
+ ** any phrase doclist for which 1 or more token doclists have been loaded. |
+ ** Let nOther be the number of other phrases for which it is certain that |
+ ** one or more tokens will not be deferred. |
+ ** |
+ ** Then, for each token, defer it if loading the doclist would result in |
+ ** loading N or more overflow pages into memory, where N is computed as: |
+ ** |
+ ** (nMinEst + 4^nOther - 1) / (4^nOther) |
+ */ |
+ for(ii=0; ii<nToken && rc==SQLITE_OK; ii++){ |
+ int iTC; /* Used to iterate through aTC[] array. */ |
+ Fts3TokenAndCost *pTC = 0; /* Set to cheapest remaining token. */ |
+ |
+ /* Set pTC to point to the cheapest remaining token. */ |
+ for(iTC=0; iTC<nTC; iTC++){ |
+ if( aTC[iTC].pToken && aTC[iTC].pRoot==pRoot |
+ && (!pTC || aTC[iTC].nOvfl<pTC->nOvfl) |
+ ){ |
+ pTC = &aTC[iTC]; |
+ } |
+ } |
+ assert( pTC ); |
+ |
+ if( ii && pTC->nOvfl>=((nMinEst+(nLoad4/4)-1)/(nLoad4/4))*nDocSize ){ |
+ /* The number of overflow pages to load for this (and therefore all |
+ ** subsequent) tokens is greater than the estimated number of pages |
+ ** that will be loaded if all subsequent tokens are deferred. |
+ */ |
+ Fts3PhraseToken *pToken = pTC->pToken; |
+ rc = sqlite3Fts3DeferToken(pCsr, pToken, pTC->iCol); |
+ fts3SegReaderCursorFree(pToken->pSegcsr); |
+ pToken->pSegcsr = 0; |
+ }else{ |
+ /* Set nLoad4 to the value of (4^nOther) for the next iteration of the |
+ ** for-loop. Except, limit the value to 2^24 to prevent it from |
+ ** overflowing the 32-bit integer it is stored in. */ |
+ if( ii<12 ) nLoad4 = nLoad4*4; |
+ |
+ if( ii==0 || (pTC->pPhrase->nToken>1 && ii!=nToken-1) ){ |
+ /* Either this is the cheapest token in the entire query, or it is |
+ ** part of a multi-token phrase. Either way, the entire doclist will |
+ ** (eventually) be loaded into memory. It may as well be now. */ |
+ Fts3PhraseToken *pToken = pTC->pToken; |
+ int nList = 0; |
+ char *pList = 0; |
+ rc = fts3TermSelect(pTab, pToken, pTC->iCol, &nList, &pList); |
+ assert( rc==SQLITE_OK || pList==0 ); |
+ if( rc==SQLITE_OK ){ |
+ int nCount; |
+ fts3EvalPhraseMergeToken(pTab, pTC->pPhrase, pTC->iToken,pList,nList); |
+ nCount = fts3DoclistCountDocids( |
+ pTC->pPhrase->doclist.aAll, pTC->pPhrase->doclist.nAll |
+ ); |
+ if( ii==0 || nCount<nMinEst ) nMinEst = nCount; |
+ } |
+ } |
+ } |
+ pTC->pToken = 0; |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** This function is called from within the xFilter method. It initializes |
+** the full-text query currently stored in pCsr->pExpr. To iterate through |
+** the results of a query, the caller does: |
+** |
+** fts3EvalStart(pCsr); |
+** while( 1 ){ |
+** fts3EvalNext(pCsr); |
+** if( pCsr->bEof ) break; |
+** ... return row pCsr->iPrevId to the caller ... |
+** } |
+*/ |
+static int fts3EvalStart(Fts3Cursor *pCsr){ |
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; |
+ int rc = SQLITE_OK; |
+ int nToken = 0; |
+ int nOr = 0; |
+ |
+ /* Allocate a MultiSegReader for each token in the expression. */ |
+ fts3EvalAllocateReaders(pCsr, pCsr->pExpr, &nToken, &nOr, &rc); |
+ |
+ /* Determine which, if any, tokens in the expression should be deferred. */ |
+#ifndef SQLITE_DISABLE_FTS4_DEFERRED |
+ if( rc==SQLITE_OK && nToken>1 && pTab->bFts4 ){ |
+ Fts3TokenAndCost *aTC; |
+ Fts3Expr **apOr; |
+ aTC = (Fts3TokenAndCost *)sqlite3_malloc( |
+ sizeof(Fts3TokenAndCost) * nToken |
+ + sizeof(Fts3Expr *) * nOr * 2 |
+ ); |
+ apOr = (Fts3Expr **)&aTC[nToken]; |
+ |
+ if( !aTC ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ int ii; |
+ Fts3TokenAndCost *pTC = aTC; |
+ Fts3Expr **ppOr = apOr; |
+ |
+ fts3EvalTokenCosts(pCsr, 0, pCsr->pExpr, &pTC, &ppOr, &rc); |
+ nToken = (int)(pTC-aTC); |
+ nOr = (int)(ppOr-apOr); |
+ |
+ if( rc==SQLITE_OK ){ |
+ rc = fts3EvalSelectDeferred(pCsr, 0, aTC, nToken); |
+ for(ii=0; rc==SQLITE_OK && ii<nOr; ii++){ |
+ rc = fts3EvalSelectDeferred(pCsr, apOr[ii], aTC, nToken); |
+ } |
+ } |
+ |
+ sqlite3_free(aTC); |
+ } |
+ } |
+#endif |
+ |
+ fts3EvalStartReaders(pCsr, pCsr->pExpr, &rc); |
+ return rc; |
+} |
+ |
+/* |
+** Invalidate the current position list for phrase pPhrase. |
+*/ |
+static void fts3EvalInvalidatePoslist(Fts3Phrase *pPhrase){ |
+ if( pPhrase->doclist.bFreeList ){ |
+ sqlite3_free(pPhrase->doclist.pList); |
+ } |
+ pPhrase->doclist.pList = 0; |
+ pPhrase->doclist.nList = 0; |
+ pPhrase->doclist.bFreeList = 0; |
+} |
+ |
+/* |
+** This function is called to edit the position list associated with |
+** the phrase object passed as the fifth argument according to a NEAR |
+** condition. For example: |
+** |
+** abc NEAR/5 "def ghi" |
+** |
+** Parameter nNear is passed the NEAR distance of the expression (5 in |
+** the example above). When this function is called, *paPoslist points to |
+** the position list, and *pnToken is the number of phrase tokens in, the |
+** phrase on the other side of the NEAR operator to pPhrase. For example, |
+** if pPhrase refers to the "def ghi" phrase, then *paPoslist points to |
+** the position list associated with phrase "abc". |
+** |
+** All positions in the pPhrase position list that are not sufficiently |
+** close to a position in the *paPoslist position list are removed. If this |
+** leaves 0 positions, zero is returned. Otherwise, non-zero. |
+** |
+** Before returning, *paPoslist is set to point to the position lsit |
+** associated with pPhrase. And *pnToken is set to the number of tokens in |
+** pPhrase. |
+*/ |
+static int fts3EvalNearTrim( |
+ int nNear, /* NEAR distance. As in "NEAR/nNear". */ |
+ char *aTmp, /* Temporary space to use */ |
+ char **paPoslist, /* IN/OUT: Position list */ |
+ int *pnToken, /* IN/OUT: Tokens in phrase of *paPoslist */ |
+ Fts3Phrase *pPhrase /* The phrase object to trim the doclist of */ |
+){ |
+ int nParam1 = nNear + pPhrase->nToken; |
+ int nParam2 = nNear + *pnToken; |
+ int nNew; |
+ char *p2; |
+ char *pOut; |
+ int res; |
+ |
+ assert( pPhrase->doclist.pList ); |
+ |
+ p2 = pOut = pPhrase->doclist.pList; |
+ res = fts3PoslistNearMerge( |
+ &pOut, aTmp, nParam1, nParam2, paPoslist, &p2 |
+ ); |
+ if( res ){ |
+ nNew = (int)(pOut - pPhrase->doclist.pList) - 1; |
+ assert( pPhrase->doclist.pList[nNew]=='\0' ); |
+ assert( nNew<=pPhrase->doclist.nList && nNew>0 ); |
+ memset(&pPhrase->doclist.pList[nNew], 0, pPhrase->doclist.nList - nNew); |
+ pPhrase->doclist.nList = nNew; |
+ *paPoslist = pPhrase->doclist.pList; |
+ *pnToken = pPhrase->nToken; |
+ } |
+ |
+ return res; |
+} |
+ |
+/* |
+** This function is a no-op if *pRc is other than SQLITE_OK when it is called. |
+** Otherwise, it advances the expression passed as the second argument to |
+** point to the next matching row in the database. Expressions iterate through |
+** matching rows in docid order. Ascending order if Fts3Cursor.bDesc is zero, |
+** or descending if it is non-zero. |
+** |
+** If an error occurs, *pRc is set to an SQLite error code. Otherwise, if |
+** successful, the following variables in pExpr are set: |
+** |
+** Fts3Expr.bEof (non-zero if EOF - there is no next row) |
+** Fts3Expr.iDocid (valid if bEof==0. The docid of the next row) |
+** |
+** If the expression is of type FTSQUERY_PHRASE, and the expression is not |
+** at EOF, then the following variables are populated with the position list |
+** for the phrase for the visited row: |
+** |
+** FTs3Expr.pPhrase->doclist.nList (length of pList in bytes) |
+** FTs3Expr.pPhrase->doclist.pList (pointer to position list) |
+** |
+** It says above that this function advances the expression to the next |
+** matching row. This is usually true, but there are the following exceptions: |
+** |
+** 1. Deferred tokens are not taken into account. If a phrase consists |
+** entirely of deferred tokens, it is assumed to match every row in |
+** the db. In this case the position-list is not populated at all. |
+** |
+** Or, if a phrase contains one or more deferred tokens and one or |
+** more non-deferred tokens, then the expression is advanced to the |
+** next possible match, considering only non-deferred tokens. In other |
+** words, if the phrase is "A B C", and "B" is deferred, the expression |
+** is advanced to the next row that contains an instance of "A * C", |
+** where "*" may match any single token. The position list in this case |
+** is populated as for "A * C" before returning. |
+** |
+** 2. NEAR is treated as AND. If the expression is "x NEAR y", it is |
+** advanced to point to the next row that matches "x AND y". |
+** |
+** See fts3EvalTestDeferredAndNear() for details on testing if a row is |
+** really a match, taking into account deferred tokens and NEAR operators. |
+*/ |
+static void fts3EvalNextRow( |
+ Fts3Cursor *pCsr, /* FTS Cursor handle */ |
+ Fts3Expr *pExpr, /* Expr. to advance to next matching row */ |
+ int *pRc /* IN/OUT: Error code */ |
+){ |
+ if( *pRc==SQLITE_OK ){ |
+ int bDescDoclist = pCsr->bDesc; /* Used by DOCID_CMP() macro */ |
+ assert( pExpr->bEof==0 ); |
+ pExpr->bStart = 1; |
+ |
+ switch( pExpr->eType ){ |
+ case FTSQUERY_NEAR: |
+ case FTSQUERY_AND: { |
+ Fts3Expr *pLeft = pExpr->pLeft; |
+ Fts3Expr *pRight = pExpr->pRight; |
+ assert( !pLeft->bDeferred || !pRight->bDeferred ); |
+ |
+ if( pLeft->bDeferred ){ |
+ /* LHS is entirely deferred. So we assume it matches every row. |
+ ** Advance the RHS iterator to find the next row visited. */ |
+ fts3EvalNextRow(pCsr, pRight, pRc); |
+ pExpr->iDocid = pRight->iDocid; |
+ pExpr->bEof = pRight->bEof; |
+ }else if( pRight->bDeferred ){ |
+ /* RHS is entirely deferred. So we assume it matches every row. |
+ ** Advance the LHS iterator to find the next row visited. */ |
+ fts3EvalNextRow(pCsr, pLeft, pRc); |
+ pExpr->iDocid = pLeft->iDocid; |
+ pExpr->bEof = pLeft->bEof; |
+ }else{ |
+ /* Neither the RHS or LHS are deferred. */ |
+ fts3EvalNextRow(pCsr, pLeft, pRc); |
+ fts3EvalNextRow(pCsr, pRight, pRc); |
+ while( !pLeft->bEof && !pRight->bEof && *pRc==SQLITE_OK ){ |
+ sqlite3_int64 iDiff = DOCID_CMP(pLeft->iDocid, pRight->iDocid); |
+ if( iDiff==0 ) break; |
+ if( iDiff<0 ){ |
+ fts3EvalNextRow(pCsr, pLeft, pRc); |
+ }else{ |
+ fts3EvalNextRow(pCsr, pRight, pRc); |
+ } |
+ } |
+ pExpr->iDocid = pLeft->iDocid; |
+ pExpr->bEof = (pLeft->bEof || pRight->bEof); |
+ } |
+ break; |
+ } |
+ |
+ case FTSQUERY_OR: { |
+ Fts3Expr *pLeft = pExpr->pLeft; |
+ Fts3Expr *pRight = pExpr->pRight; |
+ sqlite3_int64 iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid); |
+ |
+ assert( pLeft->bStart || pLeft->iDocid==pRight->iDocid ); |
+ assert( pRight->bStart || pLeft->iDocid==pRight->iDocid ); |
+ |
+ if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){ |
+ fts3EvalNextRow(pCsr, pLeft, pRc); |
+ }else if( pLeft->bEof || (pRight->bEof==0 && iCmp>0) ){ |
+ fts3EvalNextRow(pCsr, pRight, pRc); |
+ }else{ |
+ fts3EvalNextRow(pCsr, pLeft, pRc); |
+ fts3EvalNextRow(pCsr, pRight, pRc); |
+ } |
+ |
+ pExpr->bEof = (pLeft->bEof && pRight->bEof); |
+ iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid); |
+ if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){ |
+ pExpr->iDocid = pLeft->iDocid; |
+ }else{ |
+ pExpr->iDocid = pRight->iDocid; |
+ } |
+ |
+ break; |
+ } |
+ |
+ case FTSQUERY_NOT: { |
+ Fts3Expr *pLeft = pExpr->pLeft; |
+ Fts3Expr *pRight = pExpr->pRight; |
+ |
+ if( pRight->bStart==0 ){ |
+ fts3EvalNextRow(pCsr, pRight, pRc); |
+ assert( *pRc!=SQLITE_OK || pRight->bStart ); |
+ } |
+ |
+ fts3EvalNextRow(pCsr, pLeft, pRc); |
+ if( pLeft->bEof==0 ){ |
+ while( !*pRc |
+ && !pRight->bEof |
+ && DOCID_CMP(pLeft->iDocid, pRight->iDocid)>0 |
+ ){ |
+ fts3EvalNextRow(pCsr, pRight, pRc); |
+ } |
+ } |
+ pExpr->iDocid = pLeft->iDocid; |
+ pExpr->bEof = pLeft->bEof; |
+ break; |
+ } |
+ |
+ default: { |
+ Fts3Phrase *pPhrase = pExpr->pPhrase; |
+ fts3EvalInvalidatePoslist(pPhrase); |
+ *pRc = fts3EvalPhraseNext(pCsr, pPhrase, &pExpr->bEof); |
+ pExpr->iDocid = pPhrase->doclist.iDocid; |
+ break; |
+ } |
+ } |
+ } |
+} |
+ |
+/* |
+** If *pRc is not SQLITE_OK, or if pExpr is not the root node of a NEAR |
+** cluster, then this function returns 1 immediately. |
+** |
+** Otherwise, it checks if the current row really does match the NEAR |
+** expression, using the data currently stored in the position lists |
+** (Fts3Expr->pPhrase.doclist.pList/nList) for each phrase in the expression. |
+** |
+** If the current row is a match, the position list associated with each |
+** phrase in the NEAR expression is edited in place to contain only those |
+** phrase instances sufficiently close to their peers to satisfy all NEAR |
+** constraints. In this case it returns 1. If the NEAR expression does not |
+** match the current row, 0 is returned. The position lists may or may not |
+** be edited if 0 is returned. |
+*/ |
+static int fts3EvalNearTest(Fts3Expr *pExpr, int *pRc){ |
+ int res = 1; |
+ |
+ /* The following block runs if pExpr is the root of a NEAR query. |
+ ** For example, the query: |
+ ** |
+ ** "w" NEAR "x" NEAR "y" NEAR "z" |
+ ** |
+ ** which is represented in tree form as: |
+ ** |
+ ** | |
+ ** +--NEAR--+ <-- root of NEAR query |
+ ** | | |
+ ** +--NEAR--+ "z" |
+ ** | | |
+ ** +--NEAR--+ "y" |
+ ** | | |
+ ** "w" "x" |
+ ** |
+ ** The right-hand child of a NEAR node is always a phrase. The |
+ ** left-hand child may be either a phrase or a NEAR node. There are |
+ ** no exceptions to this - it's the way the parser in fts3_expr.c works. |
+ */ |
+ if( *pRc==SQLITE_OK |
+ && pExpr->eType==FTSQUERY_NEAR |
+ && pExpr->bEof==0 |
+ && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR) |
+ ){ |
+ Fts3Expr *p; |
+ int nTmp = 0; /* Bytes of temp space */ |
+ char *aTmp; /* Temp space for PoslistNearMerge() */ |
+ |
+ /* Allocate temporary working space. */ |
+ for(p=pExpr; p->pLeft; p=p->pLeft){ |
+ nTmp += p->pRight->pPhrase->doclist.nList; |
+ } |
+ nTmp += p->pPhrase->doclist.nList; |
+ if( nTmp==0 ){ |
+ res = 0; |
+ }else{ |
+ aTmp = sqlite3_malloc(nTmp*2); |
+ if( !aTmp ){ |
+ *pRc = SQLITE_NOMEM; |
+ res = 0; |
+ }else{ |
+ char *aPoslist = p->pPhrase->doclist.pList; |
+ int nToken = p->pPhrase->nToken; |
+ |
+ for(p=p->pParent;res && p && p->eType==FTSQUERY_NEAR; p=p->pParent){ |
+ Fts3Phrase *pPhrase = p->pRight->pPhrase; |
+ int nNear = p->nNear; |
+ res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase); |
+ } |
+ |
+ aPoslist = pExpr->pRight->pPhrase->doclist.pList; |
+ nToken = pExpr->pRight->pPhrase->nToken; |
+ for(p=pExpr->pLeft; p && res; p=p->pLeft){ |
+ int nNear; |
+ Fts3Phrase *pPhrase; |
+ assert( p->pParent && p->pParent->pLeft==p ); |
+ nNear = p->pParent->nNear; |
+ pPhrase = ( |
+ p->eType==FTSQUERY_NEAR ? p->pRight->pPhrase : p->pPhrase |
+ ); |
+ res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase); |
+ } |
+ } |
+ |
+ sqlite3_free(aTmp); |
+ } |
+ } |
+ |
+ return res; |
+} |
+ |
+/* |
+** This function is a helper function for fts3EvalTestDeferredAndNear(). |
+** Assuming no error occurs or has occurred, It returns non-zero if the |
+** expression passed as the second argument matches the row that pCsr |
+** currently points to, or zero if it does not. |
+** |
+** If *pRc is not SQLITE_OK when this function is called, it is a no-op. |
+** If an error occurs during execution of this function, *pRc is set to |
+** the appropriate SQLite error code. In this case the returned value is |
+** undefined. |
+*/ |
+static int fts3EvalTestExpr( |
+ Fts3Cursor *pCsr, /* FTS cursor handle */ |
+ Fts3Expr *pExpr, /* Expr to test. May or may not be root. */ |
+ int *pRc /* IN/OUT: Error code */ |
+){ |
+ int bHit = 1; /* Return value */ |
+ if( *pRc==SQLITE_OK ){ |
+ switch( pExpr->eType ){ |
+ case FTSQUERY_NEAR: |
+ case FTSQUERY_AND: |
+ bHit = ( |
+ fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc) |
+ && fts3EvalTestExpr(pCsr, pExpr->pRight, pRc) |
+ && fts3EvalNearTest(pExpr, pRc) |
+ ); |
+ |
+ /* If the NEAR expression does not match any rows, zero the doclist for |
+ ** all phrases involved in the NEAR. This is because the snippet(), |
+ ** offsets() and matchinfo() functions are not supposed to recognize |
+ ** any instances of phrases that are part of unmatched NEAR queries. |
+ ** For example if this expression: |
+ ** |
+ ** ... MATCH 'a OR (b NEAR c)' |
+ ** |
+ ** is matched against a row containing: |
+ ** |
+ ** 'a b d e' |
+ ** |
+ ** then any snippet() should ony highlight the "a" term, not the "b" |
+ ** (as "b" is part of a non-matching NEAR clause). |
+ */ |
+ if( bHit==0 |
+ && pExpr->eType==FTSQUERY_NEAR |
+ && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR) |
+ ){ |
+ Fts3Expr *p; |
+ for(p=pExpr; p->pPhrase==0; p=p->pLeft){ |
+ if( p->pRight->iDocid==pCsr->iPrevId ){ |
+ fts3EvalInvalidatePoslist(p->pRight->pPhrase); |
+ } |
+ } |
+ if( p->iDocid==pCsr->iPrevId ){ |
+ fts3EvalInvalidatePoslist(p->pPhrase); |
+ } |
+ } |
+ |
+ break; |
+ |
+ case FTSQUERY_OR: { |
+ int bHit1 = fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc); |
+ int bHit2 = fts3EvalTestExpr(pCsr, pExpr->pRight, pRc); |
+ bHit = bHit1 || bHit2; |
+ break; |
+ } |
+ |
+ case FTSQUERY_NOT: |
+ bHit = ( |
+ fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc) |
+ && !fts3EvalTestExpr(pCsr, pExpr->pRight, pRc) |
+ ); |
+ break; |
+ |
+ default: { |
+#ifndef SQLITE_DISABLE_FTS4_DEFERRED |
+ if( pCsr->pDeferred |
+ && (pExpr->iDocid==pCsr->iPrevId || pExpr->bDeferred) |
+ ){ |
+ Fts3Phrase *pPhrase = pExpr->pPhrase; |
+ assert( pExpr->bDeferred || pPhrase->doclist.bFreeList==0 ); |
+ if( pExpr->bDeferred ){ |
+ fts3EvalInvalidatePoslist(pPhrase); |
+ } |
+ *pRc = fts3EvalDeferredPhrase(pCsr, pPhrase); |
+ bHit = (pPhrase->doclist.pList!=0); |
+ pExpr->iDocid = pCsr->iPrevId; |
+ }else |
+#endif |
+ { |
+ bHit = (pExpr->bEof==0 && pExpr->iDocid==pCsr->iPrevId); |
+ } |
+ break; |
+ } |
+ } |
+ } |
+ return bHit; |
+} |
+ |
+/* |
+** This function is called as the second part of each xNext operation when |
+** iterating through the results of a full-text query. At this point the |
+** cursor points to a row that matches the query expression, with the |
+** following caveats: |
+** |
+** * Up until this point, "NEAR" operators in the expression have been |
+** treated as "AND". |
+** |
+** * Deferred tokens have not yet been considered. |
+** |
+** If *pRc is not SQLITE_OK when this function is called, it immediately |
+** returns 0. Otherwise, it tests whether or not after considering NEAR |
+** operators and deferred tokens the current row is still a match for the |
+** expression. It returns 1 if both of the following are true: |
+** |
+** 1. *pRc is SQLITE_OK when this function returns, and |
+** |
+** 2. After scanning the current FTS table row for the deferred tokens, |
+** it is determined that the row does *not* match the query. |
+** |
+** Or, if no error occurs and it seems the current row does match the FTS |
+** query, return 0. |
+*/ |
+static int fts3EvalTestDeferredAndNear(Fts3Cursor *pCsr, int *pRc){ |
+ int rc = *pRc; |
+ int bMiss = 0; |
+ if( rc==SQLITE_OK ){ |
+ |
+ /* If there are one or more deferred tokens, load the current row into |
+ ** memory and scan it to determine the position list for each deferred |
+ ** token. Then, see if this row is really a match, considering deferred |
+ ** tokens and NEAR operators (neither of which were taken into account |
+ ** earlier, by fts3EvalNextRow()). |
+ */ |
+ if( pCsr->pDeferred ){ |
+ rc = fts3CursorSeek(0, pCsr); |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3Fts3CacheDeferredDoclists(pCsr); |
+ } |
+ } |
+ bMiss = (0==fts3EvalTestExpr(pCsr, pCsr->pExpr, &rc)); |
+ |
+ /* Free the position-lists accumulated for each deferred token above. */ |
+ sqlite3Fts3FreeDeferredDoclists(pCsr); |
+ *pRc = rc; |
+ } |
+ return (rc==SQLITE_OK && bMiss); |
+} |
+ |
+/* |
+** Advance to the next document that matches the FTS expression in |
+** Fts3Cursor.pExpr. |
+*/ |
+static int fts3EvalNext(Fts3Cursor *pCsr){ |
+ int rc = SQLITE_OK; /* Return Code */ |
+ Fts3Expr *pExpr = pCsr->pExpr; |
+ assert( pCsr->isEof==0 ); |
+ if( pExpr==0 ){ |
+ pCsr->isEof = 1; |
+ }else{ |
+ do { |
+ if( pCsr->isRequireSeek==0 ){ |
+ sqlite3_reset(pCsr->pStmt); |
+ } |
+ assert( sqlite3_data_count(pCsr->pStmt)==0 ); |
+ fts3EvalNextRow(pCsr, pExpr, &rc); |
+ pCsr->isEof = pExpr->bEof; |
+ pCsr->isRequireSeek = 1; |
+ pCsr->isMatchinfoNeeded = 1; |
+ pCsr->iPrevId = pExpr->iDocid; |
+ }while( pCsr->isEof==0 && fts3EvalTestDeferredAndNear(pCsr, &rc) ); |
+ } |
+ |
+ /* Check if the cursor is past the end of the docid range specified |
+ ** by Fts3Cursor.iMinDocid/iMaxDocid. If so, set the EOF flag. */ |
+ if( rc==SQLITE_OK && ( |
+ (pCsr->bDesc==0 && pCsr->iPrevId>pCsr->iMaxDocid) |
+ || (pCsr->bDesc!=0 && pCsr->iPrevId<pCsr->iMinDocid) |
+ )){ |
+ pCsr->isEof = 1; |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** Restart interation for expression pExpr so that the next call to |
+** fts3EvalNext() visits the first row. Do not allow incremental |
+** loading or merging of phrase doclists for this iteration. |
+** |
+** If *pRc is other than SQLITE_OK when this function is called, it is |
+** a no-op. If an error occurs within this function, *pRc is set to an |
+** SQLite error code before returning. |
+*/ |
+static void fts3EvalRestart( |
+ Fts3Cursor *pCsr, |
+ Fts3Expr *pExpr, |
+ int *pRc |
+){ |
+ if( pExpr && *pRc==SQLITE_OK ){ |
+ Fts3Phrase *pPhrase = pExpr->pPhrase; |
+ |
+ if( pPhrase ){ |
+ fts3EvalInvalidatePoslist(pPhrase); |
+ if( pPhrase->bIncr ){ |
+ int i; |
+ for(i=0; i<pPhrase->nToken; i++){ |
+ Fts3PhraseToken *pToken = &pPhrase->aToken[i]; |
+ assert( pToken->pDeferred==0 ); |
+ if( pToken->pSegcsr ){ |
+ sqlite3Fts3MsrIncrRestart(pToken->pSegcsr); |
+ } |
+ } |
+ *pRc = fts3EvalPhraseStart(pCsr, 0, pPhrase); |
+ } |
+ pPhrase->doclist.pNextDocid = 0; |
+ pPhrase->doclist.iDocid = 0; |
+ } |
+ |
+ pExpr->iDocid = 0; |
+ pExpr->bEof = 0; |
+ pExpr->bStart = 0; |
+ |
+ fts3EvalRestart(pCsr, pExpr->pLeft, pRc); |
+ fts3EvalRestart(pCsr, pExpr->pRight, pRc); |
+ } |
+} |
+ |
+/* |
+** After allocating the Fts3Expr.aMI[] array for each phrase in the |
+** expression rooted at pExpr, the cursor iterates through all rows matched |
+** by pExpr, calling this function for each row. This function increments |
+** the values in Fts3Expr.aMI[] according to the position-list currently |
+** found in Fts3Expr.pPhrase->doclist.pList for each of the phrase |
+** expression nodes. |
+*/ |
+static void fts3EvalUpdateCounts(Fts3Expr *pExpr){ |
+ if( pExpr ){ |
+ Fts3Phrase *pPhrase = pExpr->pPhrase; |
+ if( pPhrase && pPhrase->doclist.pList ){ |
+ int iCol = 0; |
+ char *p = pPhrase->doclist.pList; |
+ |
+ assert( *p ); |
+ while( 1 ){ |
+ u8 c = 0; |
+ int iCnt = 0; |
+ while( 0xFE & (*p | c) ){ |
+ if( (c&0x80)==0 ) iCnt++; |
+ c = *p++ & 0x80; |
+ } |
+ |
+ /* aMI[iCol*3 + 1] = Number of occurrences |
+ ** aMI[iCol*3 + 2] = Number of rows containing at least one instance |
+ */ |
+ pExpr->aMI[iCol*3 + 1] += iCnt; |
+ pExpr->aMI[iCol*3 + 2] += (iCnt>0); |
+ if( *p==0x00 ) break; |
+ p++; |
+ p += fts3GetVarint32(p, &iCol); |
+ } |
+ } |
+ |
+ fts3EvalUpdateCounts(pExpr->pLeft); |
+ fts3EvalUpdateCounts(pExpr->pRight); |
+ } |
+} |
+ |
+/* |
+** Expression pExpr must be of type FTSQUERY_PHRASE. |
+** |
+** If it is not already allocated and populated, this function allocates and |
+** populates the Fts3Expr.aMI[] array for expression pExpr. If pExpr is part |
+** of a NEAR expression, then it also allocates and populates the same array |
+** for all other phrases that are part of the NEAR expression. |
+** |
+** SQLITE_OK is returned if the aMI[] array is successfully allocated and |
+** populated. Otherwise, if an error occurs, an SQLite error code is returned. |
+*/ |
+static int fts3EvalGatherStats( |
+ Fts3Cursor *pCsr, /* Cursor object */ |
+ Fts3Expr *pExpr /* FTSQUERY_PHRASE expression */ |
+){ |
+ int rc = SQLITE_OK; /* Return code */ |
+ |
+ assert( pExpr->eType==FTSQUERY_PHRASE ); |
+ if( pExpr->aMI==0 ){ |
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; |
+ Fts3Expr *pRoot; /* Root of NEAR expression */ |
+ Fts3Expr *p; /* Iterator used for several purposes */ |
+ |
+ sqlite3_int64 iPrevId = pCsr->iPrevId; |
+ sqlite3_int64 iDocid; |
+ u8 bEof; |
+ |
+ /* Find the root of the NEAR expression */ |
+ pRoot = pExpr; |
+ while( pRoot->pParent && pRoot->pParent->eType==FTSQUERY_NEAR ){ |
+ pRoot = pRoot->pParent; |
+ } |
+ iDocid = pRoot->iDocid; |
+ bEof = pRoot->bEof; |
+ assert( pRoot->bStart ); |
+ |
+ /* Allocate space for the aMSI[] array of each FTSQUERY_PHRASE node */ |
+ for(p=pRoot; p; p=p->pLeft){ |
+ Fts3Expr *pE = (p->eType==FTSQUERY_PHRASE?p:p->pRight); |
+ assert( pE->aMI==0 ); |
+ pE->aMI = (u32 *)sqlite3_malloc(pTab->nColumn * 3 * sizeof(u32)); |
+ if( !pE->aMI ) return SQLITE_NOMEM; |
+ memset(pE->aMI, 0, pTab->nColumn * 3 * sizeof(u32)); |
+ } |
+ |
+ fts3EvalRestart(pCsr, pRoot, &rc); |
+ |
+ while( pCsr->isEof==0 && rc==SQLITE_OK ){ |
+ |
+ do { |
+ /* Ensure the %_content statement is reset. */ |
+ if( pCsr->isRequireSeek==0 ) sqlite3_reset(pCsr->pStmt); |
+ assert( sqlite3_data_count(pCsr->pStmt)==0 ); |
+ |
+ /* Advance to the next document */ |
+ fts3EvalNextRow(pCsr, pRoot, &rc); |
+ pCsr->isEof = pRoot->bEof; |
+ pCsr->isRequireSeek = 1; |
+ pCsr->isMatchinfoNeeded = 1; |
+ pCsr->iPrevId = pRoot->iDocid; |
+ }while( pCsr->isEof==0 |
+ && pRoot->eType==FTSQUERY_NEAR |
+ && fts3EvalTestDeferredAndNear(pCsr, &rc) |
+ ); |
+ |
+ if( rc==SQLITE_OK && pCsr->isEof==0 ){ |
+ fts3EvalUpdateCounts(pRoot); |
+ } |
+ } |
+ |
+ pCsr->isEof = 0; |
+ pCsr->iPrevId = iPrevId; |
+ |
+ if( bEof ){ |
+ pRoot->bEof = bEof; |
+ }else{ |
+ /* Caution: pRoot may iterate through docids in ascending or descending |
+ ** order. For this reason, even though it seems more defensive, the |
+ ** do loop can not be written: |
+ ** |
+ ** do {...} while( pRoot->iDocid<iDocid && rc==SQLITE_OK ); |
+ */ |
+ fts3EvalRestart(pCsr, pRoot, &rc); |
+ do { |
+ fts3EvalNextRow(pCsr, pRoot, &rc); |
+ assert( pRoot->bEof==0 ); |
+ }while( pRoot->iDocid!=iDocid && rc==SQLITE_OK ); |
+ fts3EvalTestDeferredAndNear(pCsr, &rc); |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** This function is used by the matchinfo() module to query a phrase |
+** expression node for the following information: |
+** |
+** 1. The total number of occurrences of the phrase in each column of |
+** the FTS table (considering all rows), and |
+** |
+** 2. For each column, the number of rows in the table for which the |
+** column contains at least one instance of the phrase. |
+** |
+** If no error occurs, SQLITE_OK is returned and the values for each column |
+** written into the array aiOut as follows: |
+** |
+** aiOut[iCol*3 + 1] = Number of occurrences |
+** aiOut[iCol*3 + 2] = Number of rows containing at least one instance |
+** |
+** Caveats: |
+** |
+** * If a phrase consists entirely of deferred tokens, then all output |
+** values are set to the number of documents in the table. In other |
+** words we assume that very common tokens occur exactly once in each |
+** column of each row of the table. |
+** |
+** * If a phrase contains some deferred tokens (and some non-deferred |
+** tokens), count the potential occurrence identified by considering |
+** the non-deferred tokens instead of actual phrase occurrences. |
+** |
+** * If the phrase is part of a NEAR expression, then only phrase instances |
+** that meet the NEAR constraint are included in the counts. |
+*/ |
+int sqlite3Fts3EvalPhraseStats( |
+ Fts3Cursor *pCsr, /* FTS cursor handle */ |
+ Fts3Expr *pExpr, /* Phrase expression */ |
+ u32 *aiOut /* Array to write results into (see above) */ |
+){ |
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; |
+ int rc = SQLITE_OK; |
+ int iCol; |
+ |
+ if( pExpr->bDeferred && pExpr->pParent->eType!=FTSQUERY_NEAR ){ |
+ assert( pCsr->nDoc>0 ); |
+ for(iCol=0; iCol<pTab->nColumn; iCol++){ |
+ aiOut[iCol*3 + 1] = (u32)pCsr->nDoc; |
+ aiOut[iCol*3 + 2] = (u32)pCsr->nDoc; |
+ } |
+ }else{ |
+ rc = fts3EvalGatherStats(pCsr, pExpr); |
+ if( rc==SQLITE_OK ){ |
+ assert( pExpr->aMI ); |
+ for(iCol=0; iCol<pTab->nColumn; iCol++){ |
+ aiOut[iCol*3 + 1] = pExpr->aMI[iCol*3 + 1]; |
+ aiOut[iCol*3 + 2] = pExpr->aMI[iCol*3 + 2]; |
+ } |
+ } |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** The expression pExpr passed as the second argument to this function |
+** must be of type FTSQUERY_PHRASE. |
+** |
+** The returned value is either NULL or a pointer to a buffer containing |
+** a position-list indicating the occurrences of the phrase in column iCol |
+** of the current row. |
+** |
+** More specifically, the returned buffer contains 1 varint for each |
+** occurrence of the phrase in the column, stored using the normal (delta+2) |
+** compression and is terminated by either an 0x01 or 0x00 byte. For example, |
+** if the requested column contains "a b X c d X X" and the position-list |
+** for 'X' is requested, the buffer returned may contain: |
+** |
+** 0x04 0x05 0x03 0x01 or 0x04 0x05 0x03 0x00 |
+** |
+** This function works regardless of whether or not the phrase is deferred, |
+** incremental, or neither. |
+*/ |
+int sqlite3Fts3EvalPhrasePoslist( |
+ Fts3Cursor *pCsr, /* FTS3 cursor object */ |
+ Fts3Expr *pExpr, /* Phrase to return doclist for */ |
+ int iCol, /* Column to return position list for */ |
+ char **ppOut /* OUT: Pointer to position list */ |
+){ |
+ Fts3Phrase *pPhrase = pExpr->pPhrase; |
+ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; |
+ char *pIter; |
+ int iThis; |
+ sqlite3_int64 iDocid; |
+ |
+ /* If this phrase is applies specifically to some column other than |
+ ** column iCol, return a NULL pointer. */ |
+ *ppOut = 0; |
+ assert( iCol>=0 && iCol<pTab->nColumn ); |
+ if( (pPhrase->iColumn<pTab->nColumn && pPhrase->iColumn!=iCol) ){ |
+ return SQLITE_OK; |
+ } |
+ |
+ iDocid = pExpr->iDocid; |
+ pIter = pPhrase->doclist.pList; |
+ if( iDocid!=pCsr->iPrevId || pExpr->bEof ){ |
+ int bDescDoclist = pTab->bDescIdx; /* For DOCID_CMP macro */ |
+ int iMul; /* +1 if csr dir matches index dir, else -1 */ |
+ int bOr = 0; |
+ u8 bEof = 0; |
+ u8 bTreeEof = 0; |
+ Fts3Expr *p; /* Used to iterate from pExpr to root */ |
+ Fts3Expr *pNear; /* Most senior NEAR ancestor (or pExpr) */ |
+ |
+ /* Check if this phrase descends from an OR expression node. If not, |
+ ** return NULL. Otherwise, the entry that corresponds to docid |
+ ** pCsr->iPrevId may lie earlier in the doclist buffer. Or, if the |
+ ** tree that the node is part of has been marked as EOF, but the node |
+ ** itself is not EOF, then it may point to an earlier entry. */ |
+ pNear = pExpr; |
+ for(p=pExpr->pParent; p; p=p->pParent){ |
+ if( p->eType==FTSQUERY_OR ) bOr = 1; |
+ if( p->eType==FTSQUERY_NEAR ) pNear = p; |
+ if( p->bEof ) bTreeEof = 1; |
+ } |
+ if( bOr==0 ) return SQLITE_OK; |
+ |
+ /* This is the descendent of an OR node. In this case we cannot use |
+ ** an incremental phrase. Load the entire doclist for the phrase |
+ ** into memory in this case. */ |
+ if( pPhrase->bIncr ){ |
+ int rc = SQLITE_OK; |
+ int bEofSave = pExpr->bEof; |
+ fts3EvalRestart(pCsr, pExpr, &rc); |
+ while( rc==SQLITE_OK && !pExpr->bEof ){ |
+ fts3EvalNextRow(pCsr, pExpr, &rc); |
+ if( bEofSave==0 && pExpr->iDocid==iDocid ) break; |
+ } |
+ pIter = pPhrase->doclist.pList; |
+ assert( rc!=SQLITE_OK || pPhrase->bIncr==0 ); |
+ if( rc!=SQLITE_OK ) return rc; |
+ } |
+ |
+ iMul = ((pCsr->bDesc==bDescDoclist) ? 1 : -1); |
+ while( bTreeEof==1 |
+ && pNear->bEof==0 |
+ && (DOCID_CMP(pNear->iDocid, pCsr->iPrevId) * iMul)<0 |
+ ){ |
+ int rc = SQLITE_OK; |
+ fts3EvalNextRow(pCsr, pExpr, &rc); |
+ if( rc!=SQLITE_OK ) return rc; |
+ iDocid = pExpr->iDocid; |
+ pIter = pPhrase->doclist.pList; |
+ } |
+ |
+ bEof = (pPhrase->doclist.nAll==0); |
+ assert( bDescDoclist==0 || bDescDoclist==1 ); |
+ assert( pCsr->bDesc==0 || pCsr->bDesc==1 ); |
+ |
+ if( bEof==0 ){ |
+ if( pCsr->bDesc==bDescDoclist ){ |
+ int dummy; |
+ if( pNear->bEof ){ |
+ /* This expression is already at EOF. So position it to point to the |
+ ** last entry in the doclist at pPhrase->doclist.aAll[]. Variable |
+ ** iDocid is already set for this entry, so all that is required is |
+ ** to set pIter to point to the first byte of the last position-list |
+ ** in the doclist. |
+ ** |
+ ** It would also be correct to set pIter and iDocid to zero. In |
+ ** this case, the first call to sqltie3Fts4DoclistPrev() below |
+ ** would also move the iterator to point to the last entry in the |
+ ** doclist. However, this is expensive, as to do so it has to |
+ ** iterate through the entire doclist from start to finish (since |
+ ** it does not know the docid for the last entry). */ |
+ pIter = &pPhrase->doclist.aAll[pPhrase->doclist.nAll-1]; |
+ fts3ReversePoslist(pPhrase->doclist.aAll, &pIter); |
+ } |
+ while( (pIter==0 || DOCID_CMP(iDocid, pCsr->iPrevId)>0 ) && bEof==0 ){ |
+ sqlite3Fts3DoclistPrev( |
+ bDescDoclist, pPhrase->doclist.aAll, pPhrase->doclist.nAll, |
+ &pIter, &iDocid, &dummy, &bEof |
+ ); |
+ } |
+ }else{ |
+ if( pNear->bEof ){ |
+ pIter = 0; |
+ iDocid = 0; |
+ } |
+ while( (pIter==0 || DOCID_CMP(iDocid, pCsr->iPrevId)<0 ) && bEof==0 ){ |
+ sqlite3Fts3DoclistNext( |
+ bDescDoclist, pPhrase->doclist.aAll, pPhrase->doclist.nAll, |
+ &pIter, &iDocid, &bEof |
+ ); |
+ } |
+ } |
+ } |
+ |
+ if( bEof || iDocid!=pCsr->iPrevId ) pIter = 0; |
+ } |
+ if( pIter==0 ) return SQLITE_OK; |
+ |
+ if( *pIter==0x01 ){ |
+ pIter++; |
+ pIter += fts3GetVarint32(pIter, &iThis); |
+ }else{ |
+ iThis = 0; |
+ } |
+ while( iThis<iCol ){ |
+ fts3ColumnlistCopy(0, &pIter); |
+ if( *pIter==0x00 ) return 0; |
+ pIter++; |
+ pIter += fts3GetVarint32(pIter, &iThis); |
+ } |
+ |
+ *ppOut = ((iCol==iThis)?pIter:0); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Free all components of the Fts3Phrase structure that were allocated by |
+** the eval module. Specifically, this means to free: |
+** |
+** * the contents of pPhrase->doclist, and |
+** * any Fts3MultiSegReader objects held by phrase tokens. |
+*/ |
+void sqlite3Fts3EvalPhraseCleanup(Fts3Phrase *pPhrase){ |
+ if( pPhrase ){ |
+ int i; |
+ sqlite3_free(pPhrase->doclist.aAll); |
+ fts3EvalInvalidatePoslist(pPhrase); |
+ memset(&pPhrase->doclist, 0, sizeof(Fts3Doclist)); |
+ for(i=0; i<pPhrase->nToken; i++){ |
+ fts3SegReaderCursorFree(pPhrase->aToken[i].pSegcsr); |
+ pPhrase->aToken[i].pSegcsr = 0; |
+ } |
+ } |
+} |
+ |
+ |
+/* |
+** Return SQLITE_CORRUPT_VTAB. |
+*/ |
+#ifdef SQLITE_DEBUG |
+int sqlite3Fts3Corrupt(){ |
+ return SQLITE_CORRUPT_VTAB; |
+} |
+#endif |
+ |
+#if !SQLITE_CORE |
+/* |
+** Initialize API pointer table, if required. |
+*/ |
+#ifdef _WIN32 |
+__declspec(dllexport) |
+#endif |
+int sqlite3_fts3_init( |
+ sqlite3 *db, |
+ char **pzErrMsg, |
+ const sqlite3_api_routines *pApi |
+){ |
+ SQLITE_EXTENSION_INIT2(pApi) |
+ return sqlite3Fts3Init(db); |
+} |
+#endif |
+ |
+#endif |