Index: third_party/sqlite/sqlite-src-3070603/src/date.c |
diff --git a/third_party/sqlite/sqlite-src-3070603/src/date.c b/third_party/sqlite/sqlite-src-3070603/src/date.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..b81049aa6531de3158c3f6656024b36011f419c4 |
--- /dev/null |
+++ b/third_party/sqlite/sqlite-src-3070603/src/date.c |
@@ -0,0 +1,1093 @@ |
+/* |
+** 2003 October 31 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+************************************************************************* |
+** This file contains the C functions that implement date and time |
+** functions for SQLite. |
+** |
+** There is only one exported symbol in this file - the function |
+** sqlite3RegisterDateTimeFunctions() found at the bottom of the file. |
+** All other code has file scope. |
+** |
+** SQLite processes all times and dates as Julian Day numbers. The |
+** dates and times are stored as the number of days since noon |
+** in Greenwich on November 24, 4714 B.C. according to the Gregorian |
+** calendar system. |
+** |
+** 1970-01-01 00:00:00 is JD 2440587.5 |
+** 2000-01-01 00:00:00 is JD 2451544.5 |
+** |
+** This implemention requires years to be expressed as a 4-digit number |
+** which means that only dates between 0000-01-01 and 9999-12-31 can |
+** be represented, even though julian day numbers allow a much wider |
+** range of dates. |
+** |
+** The Gregorian calendar system is used for all dates and times, |
+** even those that predate the Gregorian calendar. Historians usually |
+** use the Julian calendar for dates prior to 1582-10-15 and for some |
+** dates afterwards, depending on locale. Beware of this difference. |
+** |
+** The conversion algorithms are implemented based on descriptions |
+** in the following text: |
+** |
+** Jean Meeus |
+** Astronomical Algorithms, 2nd Edition, 1998 |
+** ISBM 0-943396-61-1 |
+** Willmann-Bell, Inc |
+** Richmond, Virginia (USA) |
+*/ |
+#include "sqliteInt.h" |
+#include <stdlib.h> |
+#include <assert.h> |
+#include <time.h> |
+ |
+#ifndef SQLITE_OMIT_DATETIME_FUNCS |
+ |
+/* |
+** On recent Windows platforms, the localtime_s() function is available |
+** as part of the "Secure CRT". It is essentially equivalent to |
+** localtime_r() available under most POSIX platforms, except that the |
+** order of the parameters is reversed. |
+** |
+** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx. |
+** |
+** If the user has not indicated to use localtime_r() or localtime_s() |
+** already, check for an MSVC build environment that provides |
+** localtime_s(). |
+*/ |
+#if !defined(HAVE_LOCALTIME_R) && !defined(HAVE_LOCALTIME_S) && \ |
+ defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE) |
+#define HAVE_LOCALTIME_S 1 |
+#endif |
+ |
+/* |
+** A structure for holding a single date and time. |
+*/ |
+typedef struct DateTime DateTime; |
+struct DateTime { |
+ sqlite3_int64 iJD; /* The julian day number times 86400000 */ |
+ int Y, M, D; /* Year, month, and day */ |
+ int h, m; /* Hour and minutes */ |
+ int tz; /* Timezone offset in minutes */ |
+ double s; /* Seconds */ |
+ char validYMD; /* True (1) if Y,M,D are valid */ |
+ char validHMS; /* True (1) if h,m,s are valid */ |
+ char validJD; /* True (1) if iJD is valid */ |
+ char validTZ; /* True (1) if tz is valid */ |
+}; |
+ |
+ |
+/* |
+** Convert zDate into one or more integers. Additional arguments |
+** come in groups of 5 as follows: |
+** |
+** N number of digits in the integer |
+** min minimum allowed value of the integer |
+** max maximum allowed value of the integer |
+** nextC first character after the integer |
+** pVal where to write the integers value. |
+** |
+** Conversions continue until one with nextC==0 is encountered. |
+** The function returns the number of successful conversions. |
+*/ |
+static int getDigits(const char *zDate, ...){ |
+ va_list ap; |
+ int val; |
+ int N; |
+ int min; |
+ int max; |
+ int nextC; |
+ int *pVal; |
+ int cnt = 0; |
+ va_start(ap, zDate); |
+ do{ |
+ N = va_arg(ap, int); |
+ min = va_arg(ap, int); |
+ max = va_arg(ap, int); |
+ nextC = va_arg(ap, int); |
+ pVal = va_arg(ap, int*); |
+ val = 0; |
+ while( N-- ){ |
+ if( !sqlite3Isdigit(*zDate) ){ |
+ goto end_getDigits; |
+ } |
+ val = val*10 + *zDate - '0'; |
+ zDate++; |
+ } |
+ if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){ |
+ goto end_getDigits; |
+ } |
+ *pVal = val; |
+ zDate++; |
+ cnt++; |
+ }while( nextC ); |
+end_getDigits: |
+ va_end(ap); |
+ return cnt; |
+} |
+ |
+/* |
+** Parse a timezone extension on the end of a date-time. |
+** The extension is of the form: |
+** |
+** (+/-)HH:MM |
+** |
+** Or the "zulu" notation: |
+** |
+** Z |
+** |
+** If the parse is successful, write the number of minutes |
+** of change in p->tz and return 0. If a parser error occurs, |
+** return non-zero. |
+** |
+** A missing specifier is not considered an error. |
+*/ |
+static int parseTimezone(const char *zDate, DateTime *p){ |
+ int sgn = 0; |
+ int nHr, nMn; |
+ int c; |
+ while( sqlite3Isspace(*zDate) ){ zDate++; } |
+ p->tz = 0; |
+ c = *zDate; |
+ if( c=='-' ){ |
+ sgn = -1; |
+ }else if( c=='+' ){ |
+ sgn = +1; |
+ }else if( c=='Z' || c=='z' ){ |
+ zDate++; |
+ goto zulu_time; |
+ }else{ |
+ return c!=0; |
+ } |
+ zDate++; |
+ if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){ |
+ return 1; |
+ } |
+ zDate += 5; |
+ p->tz = sgn*(nMn + nHr*60); |
+zulu_time: |
+ while( sqlite3Isspace(*zDate) ){ zDate++; } |
+ return *zDate!=0; |
+} |
+ |
+/* |
+** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF. |
+** The HH, MM, and SS must each be exactly 2 digits. The |
+** fractional seconds FFFF can be one or more digits. |
+** |
+** Return 1 if there is a parsing error and 0 on success. |
+*/ |
+static int parseHhMmSs(const char *zDate, DateTime *p){ |
+ int h, m, s; |
+ double ms = 0.0; |
+ if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){ |
+ return 1; |
+ } |
+ zDate += 5; |
+ if( *zDate==':' ){ |
+ zDate++; |
+ if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){ |
+ return 1; |
+ } |
+ zDate += 2; |
+ if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){ |
+ double rScale = 1.0; |
+ zDate++; |
+ while( sqlite3Isdigit(*zDate) ){ |
+ ms = ms*10.0 + *zDate - '0'; |
+ rScale *= 10.0; |
+ zDate++; |
+ } |
+ ms /= rScale; |
+ } |
+ }else{ |
+ s = 0; |
+ } |
+ p->validJD = 0; |
+ p->validHMS = 1; |
+ p->h = h; |
+ p->m = m; |
+ p->s = s + ms; |
+ if( parseTimezone(zDate, p) ) return 1; |
+ p->validTZ = (p->tz!=0)?1:0; |
+ return 0; |
+} |
+ |
+/* |
+** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume |
+** that the YYYY-MM-DD is according to the Gregorian calendar. |
+** |
+** Reference: Meeus page 61 |
+*/ |
+static void computeJD(DateTime *p){ |
+ int Y, M, D, A, B, X1, X2; |
+ |
+ if( p->validJD ) return; |
+ if( p->validYMD ){ |
+ Y = p->Y; |
+ M = p->M; |
+ D = p->D; |
+ }else{ |
+ Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */ |
+ M = 1; |
+ D = 1; |
+ } |
+ if( M<=2 ){ |
+ Y--; |
+ M += 12; |
+ } |
+ A = Y/100; |
+ B = 2 - A + (A/4); |
+ X1 = 36525*(Y+4716)/100; |
+ X2 = 306001*(M+1)/10000; |
+ p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000); |
+ p->validJD = 1; |
+ if( p->validHMS ){ |
+ p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000); |
+ if( p->validTZ ){ |
+ p->iJD -= p->tz*60000; |
+ p->validYMD = 0; |
+ p->validHMS = 0; |
+ p->validTZ = 0; |
+ } |
+ } |
+} |
+ |
+/* |
+** Parse dates of the form |
+** |
+** YYYY-MM-DD HH:MM:SS.FFF |
+** YYYY-MM-DD HH:MM:SS |
+** YYYY-MM-DD HH:MM |
+** YYYY-MM-DD |
+** |
+** Write the result into the DateTime structure and return 0 |
+** on success and 1 if the input string is not a well-formed |
+** date. |
+*/ |
+static int parseYyyyMmDd(const char *zDate, DateTime *p){ |
+ int Y, M, D, neg; |
+ |
+ if( zDate[0]=='-' ){ |
+ zDate++; |
+ neg = 1; |
+ }else{ |
+ neg = 0; |
+ } |
+ if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){ |
+ return 1; |
+ } |
+ zDate += 10; |
+ while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; } |
+ if( parseHhMmSs(zDate, p)==0 ){ |
+ /* We got the time */ |
+ }else if( *zDate==0 ){ |
+ p->validHMS = 0; |
+ }else{ |
+ return 1; |
+ } |
+ p->validJD = 0; |
+ p->validYMD = 1; |
+ p->Y = neg ? -Y : Y; |
+ p->M = M; |
+ p->D = D; |
+ if( p->validTZ ){ |
+ computeJD(p); |
+ } |
+ return 0; |
+} |
+ |
+/* |
+** Set the time to the current time reported by the VFS |
+*/ |
+static void setDateTimeToCurrent(sqlite3_context *context, DateTime *p){ |
+ sqlite3 *db = sqlite3_context_db_handle(context); |
+ sqlite3OsCurrentTimeInt64(db->pVfs, &p->iJD); |
+ p->validJD = 1; |
+} |
+ |
+/* |
+** Attempt to parse the given string into a Julian Day Number. Return |
+** the number of errors. |
+** |
+** The following are acceptable forms for the input string: |
+** |
+** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM |
+** DDDD.DD |
+** now |
+** |
+** In the first form, the +/-HH:MM is always optional. The fractional |
+** seconds extension (the ".FFF") is optional. The seconds portion |
+** (":SS.FFF") is option. The year and date can be omitted as long |
+** as there is a time string. The time string can be omitted as long |
+** as there is a year and date. |
+*/ |
+static int parseDateOrTime( |
+ sqlite3_context *context, |
+ const char *zDate, |
+ DateTime *p |
+){ |
+ double r; |
+ if( parseYyyyMmDd(zDate,p)==0 ){ |
+ return 0; |
+ }else if( parseHhMmSs(zDate, p)==0 ){ |
+ return 0; |
+ }else if( sqlite3StrICmp(zDate,"now")==0){ |
+ setDateTimeToCurrent(context, p); |
+ return 0; |
+ }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8) ){ |
+ p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5); |
+ p->validJD = 1; |
+ return 0; |
+ } |
+ return 1; |
+} |
+ |
+/* |
+** Compute the Year, Month, and Day from the julian day number. |
+*/ |
+static void computeYMD(DateTime *p){ |
+ int Z, A, B, C, D, E, X1; |
+ if( p->validYMD ) return; |
+ if( !p->validJD ){ |
+ p->Y = 2000; |
+ p->M = 1; |
+ p->D = 1; |
+ }else{ |
+ Z = (int)((p->iJD + 43200000)/86400000); |
+ A = (int)((Z - 1867216.25)/36524.25); |
+ A = Z + 1 + A - (A/4); |
+ B = A + 1524; |
+ C = (int)((B - 122.1)/365.25); |
+ D = (36525*C)/100; |
+ E = (int)((B-D)/30.6001); |
+ X1 = (int)(30.6001*E); |
+ p->D = B - D - X1; |
+ p->M = E<14 ? E-1 : E-13; |
+ p->Y = p->M>2 ? C - 4716 : C - 4715; |
+ } |
+ p->validYMD = 1; |
+} |
+ |
+/* |
+** Compute the Hour, Minute, and Seconds from the julian day number. |
+*/ |
+static void computeHMS(DateTime *p){ |
+ int s; |
+ if( p->validHMS ) return; |
+ computeJD(p); |
+ s = (int)((p->iJD + 43200000) % 86400000); |
+ p->s = s/1000.0; |
+ s = (int)p->s; |
+ p->s -= s; |
+ p->h = s/3600; |
+ s -= p->h*3600; |
+ p->m = s/60; |
+ p->s += s - p->m*60; |
+ p->validHMS = 1; |
+} |
+ |
+/* |
+** Compute both YMD and HMS |
+*/ |
+static void computeYMD_HMS(DateTime *p){ |
+ computeYMD(p); |
+ computeHMS(p); |
+} |
+ |
+/* |
+** Clear the YMD and HMS and the TZ |
+*/ |
+static void clearYMD_HMS_TZ(DateTime *p){ |
+ p->validYMD = 0; |
+ p->validHMS = 0; |
+ p->validTZ = 0; |
+} |
+ |
+#ifndef SQLITE_OMIT_LOCALTIME |
+/* |
+** Compute the difference (in milliseconds) |
+** between localtime and UTC (a.k.a. GMT) |
+** for the time value p where p is in UTC. |
+*/ |
+static sqlite3_int64 localtimeOffset(DateTime *p){ |
+ DateTime x, y; |
+ time_t t; |
+ x = *p; |
+ computeYMD_HMS(&x); |
+ if( x.Y<1971 || x.Y>=2038 ){ |
+ x.Y = 2000; |
+ x.M = 1; |
+ x.D = 1; |
+ x.h = 0; |
+ x.m = 0; |
+ x.s = 0.0; |
+ } else { |
+ int s = (int)(x.s + 0.5); |
+ x.s = s; |
+ } |
+ x.tz = 0; |
+ x.validJD = 0; |
+ computeJD(&x); |
+ t = (time_t)(x.iJD/1000 - 21086676*(i64)10000); |
+#ifdef HAVE_LOCALTIME_R |
+ { |
+ struct tm sLocal; |
+ localtime_r(&t, &sLocal); |
+ y.Y = sLocal.tm_year + 1900; |
+ y.M = sLocal.tm_mon + 1; |
+ y.D = sLocal.tm_mday; |
+ y.h = sLocal.tm_hour; |
+ y.m = sLocal.tm_min; |
+ y.s = sLocal.tm_sec; |
+ } |
+#elif defined(HAVE_LOCALTIME_S) && HAVE_LOCALTIME_S |
+ { |
+ struct tm sLocal; |
+ localtime_s(&sLocal, &t); |
+ y.Y = sLocal.tm_year + 1900; |
+ y.M = sLocal.tm_mon + 1; |
+ y.D = sLocal.tm_mday; |
+ y.h = sLocal.tm_hour; |
+ y.m = sLocal.tm_min; |
+ y.s = sLocal.tm_sec; |
+ } |
+#else |
+ { |
+ struct tm *pTm; |
+ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); |
+ pTm = localtime(&t); |
+ y.Y = pTm->tm_year + 1900; |
+ y.M = pTm->tm_mon + 1; |
+ y.D = pTm->tm_mday; |
+ y.h = pTm->tm_hour; |
+ y.m = pTm->tm_min; |
+ y.s = pTm->tm_sec; |
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); |
+ } |
+#endif |
+ y.validYMD = 1; |
+ y.validHMS = 1; |
+ y.validJD = 0; |
+ y.validTZ = 0; |
+ computeJD(&y); |
+ return y.iJD - x.iJD; |
+} |
+#endif /* SQLITE_OMIT_LOCALTIME */ |
+ |
+/* |
+** Process a modifier to a date-time stamp. The modifiers are |
+** as follows: |
+** |
+** NNN days |
+** NNN hours |
+** NNN minutes |
+** NNN.NNNN seconds |
+** NNN months |
+** NNN years |
+** start of month |
+** start of year |
+** start of week |
+** start of day |
+** weekday N |
+** unixepoch |
+** localtime |
+** utc |
+** |
+** Return 0 on success and 1 if there is any kind of error. |
+*/ |
+static int parseModifier(const char *zMod, DateTime *p){ |
+ int rc = 1; |
+ int n; |
+ double r; |
+ char *z, zBuf[30]; |
+ z = zBuf; |
+ for(n=0; n<ArraySize(zBuf)-1 && zMod[n]; n++){ |
+ z[n] = (char)sqlite3UpperToLower[(u8)zMod[n]]; |
+ } |
+ z[n] = 0; |
+ switch( z[0] ){ |
+#ifndef SQLITE_OMIT_LOCALTIME |
+ case 'l': { |
+ /* localtime |
+ ** |
+ ** Assuming the current time value is UTC (a.k.a. GMT), shift it to |
+ ** show local time. |
+ */ |
+ if( strcmp(z, "localtime")==0 ){ |
+ computeJD(p); |
+ p->iJD += localtimeOffset(p); |
+ clearYMD_HMS_TZ(p); |
+ rc = 0; |
+ } |
+ break; |
+ } |
+#endif |
+ case 'u': { |
+ /* |
+ ** unixepoch |
+ ** |
+ ** Treat the current value of p->iJD as the number of |
+ ** seconds since 1970. Convert to a real julian day number. |
+ */ |
+ if( strcmp(z, "unixepoch")==0 && p->validJD ){ |
+ p->iJD = (p->iJD + 43200)/86400 + 21086676*(i64)10000000; |
+ clearYMD_HMS_TZ(p); |
+ rc = 0; |
+ } |
+#ifndef SQLITE_OMIT_LOCALTIME |
+ else if( strcmp(z, "utc")==0 ){ |
+ sqlite3_int64 c1; |
+ computeJD(p); |
+ c1 = localtimeOffset(p); |
+ p->iJD -= c1; |
+ clearYMD_HMS_TZ(p); |
+ p->iJD += c1 - localtimeOffset(p); |
+ rc = 0; |
+ } |
+#endif |
+ break; |
+ } |
+ case 'w': { |
+ /* |
+ ** weekday N |
+ ** |
+ ** Move the date to the same time on the next occurrence of |
+ ** weekday N where 0==Sunday, 1==Monday, and so forth. If the |
+ ** date is already on the appropriate weekday, this is a no-op. |
+ */ |
+ if( strncmp(z, "weekday ", 8)==0 |
+ && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8) |
+ && (n=(int)r)==r && n>=0 && r<7 ){ |
+ sqlite3_int64 Z; |
+ computeYMD_HMS(p); |
+ p->validTZ = 0; |
+ p->validJD = 0; |
+ computeJD(p); |
+ Z = ((p->iJD + 129600000)/86400000) % 7; |
+ if( Z>n ) Z -= 7; |
+ p->iJD += (n - Z)*86400000; |
+ clearYMD_HMS_TZ(p); |
+ rc = 0; |
+ } |
+ break; |
+ } |
+ case 's': { |
+ /* |
+ ** start of TTTTT |
+ ** |
+ ** Move the date backwards to the beginning of the current day, |
+ ** or month or year. |
+ */ |
+ if( strncmp(z, "start of ", 9)!=0 ) break; |
+ z += 9; |
+ computeYMD(p); |
+ p->validHMS = 1; |
+ p->h = p->m = 0; |
+ p->s = 0.0; |
+ p->validTZ = 0; |
+ p->validJD = 0; |
+ if( strcmp(z,"month")==0 ){ |
+ p->D = 1; |
+ rc = 0; |
+ }else if( strcmp(z,"year")==0 ){ |
+ computeYMD(p); |
+ p->M = 1; |
+ p->D = 1; |
+ rc = 0; |
+ }else if( strcmp(z,"day")==0 ){ |
+ rc = 0; |
+ } |
+ break; |
+ } |
+ case '+': |
+ case '-': |
+ case '0': |
+ case '1': |
+ case '2': |
+ case '3': |
+ case '4': |
+ case '5': |
+ case '6': |
+ case '7': |
+ case '8': |
+ case '9': { |
+ double rRounder; |
+ for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){} |
+ if( !sqlite3AtoF(z, &r, n, SQLITE_UTF8) ){ |
+ rc = 1; |
+ break; |
+ } |
+ if( z[n]==':' ){ |
+ /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the |
+ ** specified number of hours, minutes, seconds, and fractional seconds |
+ ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be |
+ ** omitted. |
+ */ |
+ const char *z2 = z; |
+ DateTime tx; |
+ sqlite3_int64 day; |
+ if( !sqlite3Isdigit(*z2) ) z2++; |
+ memset(&tx, 0, sizeof(tx)); |
+ if( parseHhMmSs(z2, &tx) ) break; |
+ computeJD(&tx); |
+ tx.iJD -= 43200000; |
+ day = tx.iJD/86400000; |
+ tx.iJD -= day*86400000; |
+ if( z[0]=='-' ) tx.iJD = -tx.iJD; |
+ computeJD(p); |
+ clearYMD_HMS_TZ(p); |
+ p->iJD += tx.iJD; |
+ rc = 0; |
+ break; |
+ } |
+ z += n; |
+ while( sqlite3Isspace(*z) ) z++; |
+ n = sqlite3Strlen30(z); |
+ if( n>10 || n<3 ) break; |
+ if( z[n-1]=='s' ){ z[n-1] = 0; n--; } |
+ computeJD(p); |
+ rc = 0; |
+ rRounder = r<0 ? -0.5 : +0.5; |
+ if( n==3 && strcmp(z,"day")==0 ){ |
+ p->iJD += (sqlite3_int64)(r*86400000.0 + rRounder); |
+ }else if( n==4 && strcmp(z,"hour")==0 ){ |
+ p->iJD += (sqlite3_int64)(r*(86400000.0/24.0) + rRounder); |
+ }else if( n==6 && strcmp(z,"minute")==0 ){ |
+ p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0)) + rRounder); |
+ }else if( n==6 && strcmp(z,"second")==0 ){ |
+ p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0*60.0)) + rRounder); |
+ }else if( n==5 && strcmp(z,"month")==0 ){ |
+ int x, y; |
+ computeYMD_HMS(p); |
+ p->M += (int)r; |
+ x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; |
+ p->Y += x; |
+ p->M -= x*12; |
+ p->validJD = 0; |
+ computeJD(p); |
+ y = (int)r; |
+ if( y!=r ){ |
+ p->iJD += (sqlite3_int64)((r - y)*30.0*86400000.0 + rRounder); |
+ } |
+ }else if( n==4 && strcmp(z,"year")==0 ){ |
+ int y = (int)r; |
+ computeYMD_HMS(p); |
+ p->Y += y; |
+ p->validJD = 0; |
+ computeJD(p); |
+ if( y!=r ){ |
+ p->iJD += (sqlite3_int64)((r - y)*365.0*86400000.0 + rRounder); |
+ } |
+ }else{ |
+ rc = 1; |
+ } |
+ clearYMD_HMS_TZ(p); |
+ break; |
+ } |
+ default: { |
+ break; |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Process time function arguments. argv[0] is a date-time stamp. |
+** argv[1] and following are modifiers. Parse them all and write |
+** the resulting time into the DateTime structure p. Return 0 |
+** on success and 1 if there are any errors. |
+** |
+** If there are zero parameters (if even argv[0] is undefined) |
+** then assume a default value of "now" for argv[0]. |
+*/ |
+static int isDate( |
+ sqlite3_context *context, |
+ int argc, |
+ sqlite3_value **argv, |
+ DateTime *p |
+){ |
+ int i; |
+ const unsigned char *z; |
+ int eType; |
+ memset(p, 0, sizeof(*p)); |
+ if( argc==0 ){ |
+ setDateTimeToCurrent(context, p); |
+ }else if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT |
+ || eType==SQLITE_INTEGER ){ |
+ p->iJD = (sqlite3_int64)(sqlite3_value_double(argv[0])*86400000.0 + 0.5); |
+ p->validJD = 1; |
+ }else{ |
+ z = sqlite3_value_text(argv[0]); |
+ if( !z || parseDateOrTime(context, (char*)z, p) ){ |
+ return 1; |
+ } |
+ } |
+ for(i=1; i<argc; i++){ |
+ if( (z = sqlite3_value_text(argv[i]))==0 || parseModifier((char*)z, p) ){ |
+ return 1; |
+ } |
+ } |
+ return 0; |
+} |
+ |
+ |
+/* |
+** The following routines implement the various date and time functions |
+** of SQLite. |
+*/ |
+ |
+/* |
+** julianday( TIMESTRING, MOD, MOD, ...) |
+** |
+** Return the julian day number of the date specified in the arguments |
+*/ |
+static void juliandayFunc( |
+ sqlite3_context *context, |
+ int argc, |
+ sqlite3_value **argv |
+){ |
+ DateTime x; |
+ if( isDate(context, argc, argv, &x)==0 ){ |
+ computeJD(&x); |
+ sqlite3_result_double(context, x.iJD/86400000.0); |
+ } |
+} |
+ |
+/* |
+** datetime( TIMESTRING, MOD, MOD, ...) |
+** |
+** Return YYYY-MM-DD HH:MM:SS |
+*/ |
+static void datetimeFunc( |
+ sqlite3_context *context, |
+ int argc, |
+ sqlite3_value **argv |
+){ |
+ DateTime x; |
+ if( isDate(context, argc, argv, &x)==0 ){ |
+ char zBuf[100]; |
+ computeYMD_HMS(&x); |
+ sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d", |
+ x.Y, x.M, x.D, x.h, x.m, (int)(x.s)); |
+ sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); |
+ } |
+} |
+ |
+/* |
+** time( TIMESTRING, MOD, MOD, ...) |
+** |
+** Return HH:MM:SS |
+*/ |
+static void timeFunc( |
+ sqlite3_context *context, |
+ int argc, |
+ sqlite3_value **argv |
+){ |
+ DateTime x; |
+ if( isDate(context, argc, argv, &x)==0 ){ |
+ char zBuf[100]; |
+ computeHMS(&x); |
+ sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s); |
+ sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); |
+ } |
+} |
+ |
+/* |
+** date( TIMESTRING, MOD, MOD, ...) |
+** |
+** Return YYYY-MM-DD |
+*/ |
+static void dateFunc( |
+ sqlite3_context *context, |
+ int argc, |
+ sqlite3_value **argv |
+){ |
+ DateTime x; |
+ if( isDate(context, argc, argv, &x)==0 ){ |
+ char zBuf[100]; |
+ computeYMD(&x); |
+ sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D); |
+ sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); |
+ } |
+} |
+ |
+/* |
+** strftime( FORMAT, TIMESTRING, MOD, MOD, ...) |
+** |
+** Return a string described by FORMAT. Conversions as follows: |
+** |
+** %d day of month |
+** %f ** fractional seconds SS.SSS |
+** %H hour 00-24 |
+** %j day of year 000-366 |
+** %J ** Julian day number |
+** %m month 01-12 |
+** %M minute 00-59 |
+** %s seconds since 1970-01-01 |
+** %S seconds 00-59 |
+** %w day of week 0-6 sunday==0 |
+** %W week of year 00-53 |
+** %Y year 0000-9999 |
+** %% % |
+*/ |
+static void strftimeFunc( |
+ sqlite3_context *context, |
+ int argc, |
+ sqlite3_value **argv |
+){ |
+ DateTime x; |
+ u64 n; |
+ size_t i,j; |
+ char *z; |
+ sqlite3 *db; |
+ const char *zFmt = (const char*)sqlite3_value_text(argv[0]); |
+ char zBuf[100]; |
+ if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return; |
+ db = sqlite3_context_db_handle(context); |
+ for(i=0, n=1; zFmt[i]; i++, n++){ |
+ if( zFmt[i]=='%' ){ |
+ switch( zFmt[i+1] ){ |
+ case 'd': |
+ case 'H': |
+ case 'm': |
+ case 'M': |
+ case 'S': |
+ case 'W': |
+ n++; |
+ /* fall thru */ |
+ case 'w': |
+ case '%': |
+ break; |
+ case 'f': |
+ n += 8; |
+ break; |
+ case 'j': |
+ n += 3; |
+ break; |
+ case 'Y': |
+ n += 8; |
+ break; |
+ case 's': |
+ case 'J': |
+ n += 50; |
+ break; |
+ default: |
+ return; /* ERROR. return a NULL */ |
+ } |
+ i++; |
+ } |
+ } |
+ testcase( n==sizeof(zBuf)-1 ); |
+ testcase( n==sizeof(zBuf) ); |
+ testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH]+1 ); |
+ testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ); |
+ if( n<sizeof(zBuf) ){ |
+ z = zBuf; |
+ }else if( n>(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){ |
+ sqlite3_result_error_toobig(context); |
+ return; |
+ }else{ |
+ z = sqlite3DbMallocRaw(db, (int)n); |
+ if( z==0 ){ |
+ sqlite3_result_error_nomem(context); |
+ return; |
+ } |
+ } |
+ computeJD(&x); |
+ computeYMD_HMS(&x); |
+ for(i=j=0; zFmt[i]; i++){ |
+ if( zFmt[i]!='%' ){ |
+ z[j++] = zFmt[i]; |
+ }else{ |
+ i++; |
+ switch( zFmt[i] ){ |
+ case 'd': sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break; |
+ case 'f': { |
+ double s = x.s; |
+ if( s>59.999 ) s = 59.999; |
+ sqlite3_snprintf(7, &z[j],"%06.3f", s); |
+ j += sqlite3Strlen30(&z[j]); |
+ break; |
+ } |
+ case 'H': sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break; |
+ case 'W': /* Fall thru */ |
+ case 'j': { |
+ int nDay; /* Number of days since 1st day of year */ |
+ DateTime y = x; |
+ y.validJD = 0; |
+ y.M = 1; |
+ y.D = 1; |
+ computeJD(&y); |
+ nDay = (int)((x.iJD-y.iJD+43200000)/86400000); |
+ if( zFmt[i]=='W' ){ |
+ int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */ |
+ wd = (int)(((x.iJD+43200000)/86400000)%7); |
+ sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7); |
+ j += 2; |
+ }else{ |
+ sqlite3_snprintf(4, &z[j],"%03d",nDay+1); |
+ j += 3; |
+ } |
+ break; |
+ } |
+ case 'J': { |
+ sqlite3_snprintf(20, &z[j],"%.16g",x.iJD/86400000.0); |
+ j+=sqlite3Strlen30(&z[j]); |
+ break; |
+ } |
+ case 'm': sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break; |
+ case 'M': sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break; |
+ case 's': { |
+ sqlite3_snprintf(30,&z[j],"%lld", |
+ (i64)(x.iJD/1000 - 21086676*(i64)10000)); |
+ j += sqlite3Strlen30(&z[j]); |
+ break; |
+ } |
+ case 'S': sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break; |
+ case 'w': { |
+ z[j++] = (char)(((x.iJD+129600000)/86400000) % 7) + '0'; |
+ break; |
+ } |
+ case 'Y': { |
+ sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=sqlite3Strlen30(&z[j]); |
+ break; |
+ } |
+ default: z[j++] = '%'; break; |
+ } |
+ } |
+ } |
+ z[j] = 0; |
+ sqlite3_result_text(context, z, -1, |
+ z==zBuf ? SQLITE_TRANSIENT : SQLITE_DYNAMIC); |
+} |
+ |
+/* |
+** current_time() |
+** |
+** This function returns the same value as time('now'). |
+*/ |
+static void ctimeFunc( |
+ sqlite3_context *context, |
+ int NotUsed, |
+ sqlite3_value **NotUsed2 |
+){ |
+ UNUSED_PARAMETER2(NotUsed, NotUsed2); |
+ timeFunc(context, 0, 0); |
+} |
+ |
+/* |
+** current_date() |
+** |
+** This function returns the same value as date('now'). |
+*/ |
+static void cdateFunc( |
+ sqlite3_context *context, |
+ int NotUsed, |
+ sqlite3_value **NotUsed2 |
+){ |
+ UNUSED_PARAMETER2(NotUsed, NotUsed2); |
+ dateFunc(context, 0, 0); |
+} |
+ |
+/* |
+** current_timestamp() |
+** |
+** This function returns the same value as datetime('now'). |
+*/ |
+static void ctimestampFunc( |
+ sqlite3_context *context, |
+ int NotUsed, |
+ sqlite3_value **NotUsed2 |
+){ |
+ UNUSED_PARAMETER2(NotUsed, NotUsed2); |
+ datetimeFunc(context, 0, 0); |
+} |
+#endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */ |
+ |
+#ifdef SQLITE_OMIT_DATETIME_FUNCS |
+/* |
+** If the library is compiled to omit the full-scale date and time |
+** handling (to get a smaller binary), the following minimal version |
+** of the functions current_time(), current_date() and current_timestamp() |
+** are included instead. This is to support column declarations that |
+** include "DEFAULT CURRENT_TIME" etc. |
+** |
+** This function uses the C-library functions time(), gmtime() |
+** and strftime(). The format string to pass to strftime() is supplied |
+** as the user-data for the function. |
+*/ |
+static void currentTimeFunc( |
+ sqlite3_context *context, |
+ int argc, |
+ sqlite3_value **argv |
+){ |
+ time_t t; |
+ char *zFormat = (char *)sqlite3_user_data(context); |
+ sqlite3 *db; |
+ sqlite3_int64 iT; |
+ char zBuf[20]; |
+ |
+ UNUSED_PARAMETER(argc); |
+ UNUSED_PARAMETER(argv); |
+ |
+ db = sqlite3_context_db_handle(context); |
+ sqlite3OsCurrentTimeInt64(db->pVfs, &iT); |
+ t = iT/1000 - 10000*(sqlite3_int64)21086676; |
+#ifdef HAVE_GMTIME_R |
+ { |
+ struct tm sNow; |
+ gmtime_r(&t, &sNow); |
+ strftime(zBuf, 20, zFormat, &sNow); |
+ } |
+#else |
+ { |
+ struct tm *pTm; |
+ sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); |
+ pTm = gmtime(&t); |
+ strftime(zBuf, 20, zFormat, pTm); |
+ sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); |
+ } |
+#endif |
+ |
+ sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); |
+} |
+#endif |
+ |
+/* |
+** This function registered all of the above C functions as SQL |
+** functions. This should be the only routine in this file with |
+** external linkage. |
+*/ |
+void sqlite3RegisterDateTimeFunctions(void){ |
+ static SQLITE_WSD FuncDef aDateTimeFuncs[] = { |
+#ifndef SQLITE_OMIT_DATETIME_FUNCS |
+ FUNCTION(julianday, -1, 0, 0, juliandayFunc ), |
+ FUNCTION(date, -1, 0, 0, dateFunc ), |
+ FUNCTION(time, -1, 0, 0, timeFunc ), |
+ FUNCTION(datetime, -1, 0, 0, datetimeFunc ), |
+ FUNCTION(strftime, -1, 0, 0, strftimeFunc ), |
+ FUNCTION(current_time, 0, 0, 0, ctimeFunc ), |
+ FUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc), |
+ FUNCTION(current_date, 0, 0, 0, cdateFunc ), |
+#else |
+ STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc), |
+ STR_FUNCTION(current_date, 0, "%Y-%m-%d", 0, currentTimeFunc), |
+ STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc), |
+#endif |
+ }; |
+ int i; |
+ FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); |
+ FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aDateTimeFuncs); |
+ |
+ for(i=0; i<ArraySize(aDateTimeFuncs); i++){ |
+ sqlite3FuncDefInsert(pHash, &aFunc[i]); |
+ } |
+} |