| Index: third_party/sqlite/src/src/vdbeaux.c
|
| diff --git a/third_party/sqlite/src/src/vdbeaux.c b/third_party/sqlite/src/src/vdbeaux.c
|
| index 4d4bb224f93d8ce16b7b653344164df9a026f624..c0018bb71cae5d486e5e94f90963d3ce509dc16e 100644
|
| --- a/third_party/sqlite/src/src/vdbeaux.c
|
| +++ b/third_party/sqlite/src/src/vdbeaux.c
|
| @@ -10,29 +10,16 @@
|
| **
|
| *************************************************************************
|
| ** This file contains code used for creating, destroying, and populating
|
| -** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior
|
| -** to version 2.8.7, all this code was combined into the vdbe.c source file.
|
| -** But that file was getting too big so this subroutines were split out.
|
| +** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
|
| */
|
| #include "sqliteInt.h"
|
| #include "vdbeInt.h"
|
|
|
| -
|
| -
|
| -/*
|
| -** When debugging the code generator in a symbolic debugger, one can
|
| -** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed
|
| -** as they are added to the instruction stream.
|
| -*/
|
| -#ifdef SQLITE_DEBUG
|
| -int sqlite3VdbeAddopTrace = 0;
|
| -#endif
|
| -
|
| -
|
| /*
|
| ** Create a new virtual database engine.
|
| */
|
| -Vdbe *sqlite3VdbeCreate(sqlite3 *db){
|
| +Vdbe *sqlite3VdbeCreate(Parse *pParse){
|
| + sqlite3 *db = pParse->db;
|
| Vdbe *p;
|
| p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
|
| if( p==0 ) return 0;
|
| @@ -44,6 +31,10 @@ Vdbe *sqlite3VdbeCreate(sqlite3 *db){
|
| p->pPrev = 0;
|
| db->pVdbe = p;
|
| p->magic = VDBE_MAGIC_INIT;
|
| + p->pParse = pParse;
|
| + assert( pParse->aLabel==0 );
|
| + assert( pParse->nLabel==0 );
|
| + assert( pParse->nOpAlloc==0 );
|
| return p;
|
| }
|
|
|
| @@ -53,7 +44,7 @@ Vdbe *sqlite3VdbeCreate(sqlite3 *db){
|
| void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){
|
| assert( isPrepareV2==1 || isPrepareV2==0 );
|
| if( p==0 ) return;
|
| -#ifdef SQLITE_OMIT_TRACE
|
| +#if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG)
|
| if( !isPrepareV2 ) return;
|
| #endif
|
| assert( p->zSql==0 );
|
| @@ -90,35 +81,55 @@ void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
|
| pB->isPrepareV2 = pA->isPrepareV2;
|
| }
|
|
|
| -#ifdef SQLITE_DEBUG
|
| -/*
|
| -** Turn tracing on or off
|
| -*/
|
| -void sqlite3VdbeTrace(Vdbe *p, FILE *trace){
|
| - p->trace = trace;
|
| -}
|
| -#endif
|
| -
|
| /*
|
| -** Resize the Vdbe.aOp array so that it is at least one op larger than
|
| -** it was.
|
| +** Resize the Vdbe.aOp array so that it is at least nOp elements larger
|
| +** than its current size. nOp is guaranteed to be less than or equal
|
| +** to 1024/sizeof(Op).
|
| **
|
| ** If an out-of-memory error occurs while resizing the array, return
|
| -** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
|
| +** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain
|
| ** unchanged (this is so that any opcodes already allocated can be
|
| ** correctly deallocated along with the rest of the Vdbe).
|
| */
|
| -static int growOpArray(Vdbe *p){
|
| +static int growOpArray(Vdbe *v, int nOp){
|
| VdbeOp *pNew;
|
| + Parse *p = v->pParse;
|
| +
|
| + /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
|
| + ** more frequent reallocs and hence provide more opportunities for
|
| + ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
|
| + ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
|
| + ** by the minimum* amount required until the size reaches 512. Normal
|
| + ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
|
| + ** size of the op array or add 1KB of space, whichever is smaller. */
|
| +#ifdef SQLITE_TEST_REALLOC_STRESS
|
| + int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp);
|
| +#else
|
| int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
|
| - pNew = sqlite3DbRealloc(p->db, p->aOp, nNew*sizeof(Op));
|
| + UNUSED_PARAMETER(nOp);
|
| +#endif
|
| +
|
| + assert( nOp<=(1024/sizeof(Op)) );
|
| + assert( nNew>=(p->nOpAlloc+nOp) );
|
| + pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
|
| if( pNew ){
|
| p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op);
|
| - p->aOp = pNew;
|
| + v->aOp = pNew;
|
| }
|
| return (pNew ? SQLITE_OK : SQLITE_NOMEM);
|
| }
|
|
|
| +#ifdef SQLITE_DEBUG
|
| +/* This routine is just a convenient place to set a breakpoint that will
|
| +** fire after each opcode is inserted and displayed using
|
| +** "PRAGMA vdbe_addoptrace=on".
|
| +*/
|
| +static void test_addop_breakpoint(void){
|
| + static int n = 0;
|
| + n++;
|
| +}
|
| +#endif
|
| +
|
| /*
|
| ** Add a new instruction to the list of instructions current in the
|
| ** VDBE. Return the address of the new instruction.
|
| @@ -142,8 +153,8 @@ int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
|
| i = p->nOp;
|
| assert( p->magic==VDBE_MAGIC_INIT );
|
| assert( op>0 && op<0xff );
|
| - if( p->nOpAlloc<=i ){
|
| - if( growOpArray(p) ){
|
| + if( p->pParse->nOpAlloc<=i ){
|
| + if( growOpArray(p, 1) ){
|
| return 1;
|
| }
|
| }
|
| @@ -156,21 +167,31 @@ int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
|
| pOp->p3 = p3;
|
| pOp->p4.p = 0;
|
| pOp->p4type = P4_NOTUSED;
|
| - p->expired = 0;
|
| - if( op==OP_ParseSchema ){
|
| - /* Any program that uses the OP_ParseSchema opcode needs to lock
|
| - ** all btrees. */
|
| - int j;
|
| - for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
|
| - }
|
| -#ifdef SQLITE_DEBUG
|
| +#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
|
| pOp->zComment = 0;
|
| - if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
|
| +#endif
|
| +#ifdef SQLITE_DEBUG
|
| + if( p->db->flags & SQLITE_VdbeAddopTrace ){
|
| + int jj, kk;
|
| + Parse *pParse = p->pParse;
|
| + for(jj=kk=0; jj<SQLITE_N_COLCACHE; jj++){
|
| + struct yColCache *x = pParse->aColCache + jj;
|
| + if( x->iLevel>pParse->iCacheLevel || x->iReg==0 ) continue;
|
| + printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn);
|
| + kk++;
|
| + }
|
| + if( kk ) printf("\n");
|
| + sqlite3VdbePrintOp(0, i, &p->aOp[i]);
|
| + test_addop_breakpoint();
|
| + }
|
| #endif
|
| #ifdef VDBE_PROFILE
|
| pOp->cycles = 0;
|
| pOp->cnt = 0;
|
| #endif
|
| +#ifdef SQLITE_VDBE_COVERAGE
|
| + pOp->iSrcLine = 0;
|
| +#endif
|
| return i;
|
| }
|
| int sqlite3VdbeAddOp0(Vdbe *p, int op){
|
| @@ -202,6 +223,21 @@ int sqlite3VdbeAddOp4(
|
| }
|
|
|
| /*
|
| +** Add an OP_ParseSchema opcode. This routine is broken out from
|
| +** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
|
| +** as having been used.
|
| +**
|
| +** The zWhere string must have been obtained from sqlite3_malloc().
|
| +** This routine will take ownership of the allocated memory.
|
| +*/
|
| +void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
|
| + int j;
|
| + int addr = sqlite3VdbeAddOp3(p, OP_ParseSchema, iDb, 0, 0);
|
| + sqlite3VdbeChangeP4(p, addr, zWhere, P4_DYNAMIC);
|
| + for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
|
| +}
|
| +
|
| +/*
|
| ** Add an opcode that includes the p4 value as an integer.
|
| */
|
| int sqlite3VdbeAddOp4Int(
|
| @@ -231,15 +267,13 @@ int sqlite3VdbeAddOp4Int(
|
| **
|
| ** Zero is returned if a malloc() fails.
|
| */
|
| -int sqlite3VdbeMakeLabel(Vdbe *p){
|
| - int i;
|
| - i = p->nLabel++;
|
| - assert( p->magic==VDBE_MAGIC_INIT );
|
| - if( i>=p->nLabelAlloc ){
|
| - int n = p->nLabelAlloc*2 + 5;
|
| - p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
|
| - n*sizeof(p->aLabel[0]));
|
| - p->nLabelAlloc = sqlite3DbMallocSize(p->db, p->aLabel)/sizeof(p->aLabel[0]);
|
| +int sqlite3VdbeMakeLabel(Vdbe *v){
|
| + Parse *p = v->pParse;
|
| + int i = p->nLabel++;
|
| + assert( v->magic==VDBE_MAGIC_INIT );
|
| + if( (i & (i-1))==0 ){
|
| + p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
|
| + (i*2+1)*sizeof(p->aLabel[0]));
|
| }
|
| if( p->aLabel ){
|
| p->aLabel[i] = -1;
|
| @@ -252,13 +286,15 @@ int sqlite3VdbeMakeLabel(Vdbe *p){
|
| ** be inserted. The parameter "x" must have been obtained from
|
| ** a prior call to sqlite3VdbeMakeLabel().
|
| */
|
| -void sqlite3VdbeResolveLabel(Vdbe *p, int x){
|
| +void sqlite3VdbeResolveLabel(Vdbe *v, int x){
|
| + Parse *p = v->pParse;
|
| int j = -1-x;
|
| - assert( p->magic==VDBE_MAGIC_INIT );
|
| - assert( j>=0 && j<p->nLabel );
|
| - if( p->aLabel ){
|
| - p->aLabel[j] = p->nOp;
|
| + assert( v->magic==VDBE_MAGIC_INIT );
|
| + assert( j<p->nLabel );
|
| + if( ALWAYS(j>=0) && p->aLabel ){
|
| + p->aLabel[j] = v->nOp;
|
| }
|
| + p->iFixedOp = v->nOp - 1;
|
| }
|
|
|
| /*
|
| @@ -372,7 +408,7 @@ int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
|
| || (opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1)
|
| #endif
|
| || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
|
| - && (pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
|
| + && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
|
| ){
|
| hasAbort = 1;
|
| break;
|
| @@ -380,7 +416,7 @@ int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
|
| }
|
| sqlite3DbFree(v->db, sIter.apSub);
|
|
|
| - /* Return true if hasAbort==mayAbort. Or if a malloc failure occured.
|
| + /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
|
| ** If malloc failed, then the while() loop above may not have iterated
|
| ** through all opcodes and hasAbort may be set incorrectly. Return
|
| ** true for this case to prevent the assert() in the callers frame
|
| @@ -406,37 +442,79 @@ static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
|
| int i;
|
| int nMaxArgs = *pMaxFuncArgs;
|
| Op *pOp;
|
| - int *aLabel = p->aLabel;
|
| + Parse *pParse = p->pParse;
|
| + int *aLabel = pParse->aLabel;
|
| p->readOnly = 1;
|
| + p->bIsReader = 0;
|
| for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
|
| u8 opcode = pOp->opcode;
|
|
|
| - pOp->opflags = sqlite3OpcodeProperty[opcode];
|
| - if( opcode==OP_Function || opcode==OP_AggStep ){
|
| - if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
|
| - }else if( (opcode==OP_Transaction && pOp->p2!=0) || opcode==OP_Vacuum ){
|
| - p->readOnly = 0;
|
| + /* NOTE: Be sure to update mkopcodeh.awk when adding or removing
|
| + ** cases from this switch! */
|
| + switch( opcode ){
|
| + case OP_Function:
|
| + case OP_AggStep: {
|
| + if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
|
| + break;
|
| + }
|
| + case OP_Transaction: {
|
| + if( pOp->p2!=0 ) p->readOnly = 0;
|
| + /* fall thru */
|
| + }
|
| + case OP_AutoCommit:
|
| + case OP_Savepoint: {
|
| + p->bIsReader = 1;
|
| + break;
|
| + }
|
| +#ifndef SQLITE_OMIT_WAL
|
| + case OP_Checkpoint:
|
| +#endif
|
| + case OP_Vacuum:
|
| + case OP_JournalMode: {
|
| + p->readOnly = 0;
|
| + p->bIsReader = 1;
|
| + break;
|
| + }
|
| #ifndef SQLITE_OMIT_VIRTUALTABLE
|
| - }else if( opcode==OP_VUpdate ){
|
| - if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
|
| - }else if( opcode==OP_VFilter ){
|
| - int n;
|
| - assert( p->nOp - i >= 3 );
|
| - assert( pOp[-1].opcode==OP_Integer );
|
| - n = pOp[-1].p1;
|
| - if( n>nMaxArgs ) nMaxArgs = n;
|
| + case OP_VUpdate: {
|
| + if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
|
| + break;
|
| + }
|
| + case OP_VFilter: {
|
| + int n;
|
| + assert( p->nOp - i >= 3 );
|
| + assert( pOp[-1].opcode==OP_Integer );
|
| + n = pOp[-1].p1;
|
| + if( n>nMaxArgs ) nMaxArgs = n;
|
| + break;
|
| + }
|
| #endif
|
| + case OP_Next:
|
| + case OP_NextIfOpen:
|
| + case OP_SorterNext: {
|
| + pOp->p4.xAdvance = sqlite3BtreeNext;
|
| + pOp->p4type = P4_ADVANCE;
|
| + break;
|
| + }
|
| + case OP_Prev:
|
| + case OP_PrevIfOpen: {
|
| + pOp->p4.xAdvance = sqlite3BtreePrevious;
|
| + pOp->p4type = P4_ADVANCE;
|
| + break;
|
| + }
|
| }
|
|
|
| + pOp->opflags = sqlite3OpcodeProperty[opcode];
|
| if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
|
| - assert( -1-pOp->p2<p->nLabel );
|
| + assert( -1-pOp->p2<pParse->nLabel );
|
| pOp->p2 = aLabel[-1-pOp->p2];
|
| }
|
| }
|
| - sqlite3DbFree(p->db, p->aLabel);
|
| - p->aLabel = 0;
|
| -
|
| + sqlite3DbFree(p->db, pParse->aLabel);
|
| + pParse->aLabel = 0;
|
| + pParse->nLabel = 0;
|
| *pMaxFuncArgs = nMaxArgs;
|
| + assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
|
| }
|
|
|
| /*
|
| @@ -463,7 +541,7 @@ VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
|
| assert( aOp && !p->db->mallocFailed );
|
|
|
| /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
|
| - assert( p->btreeMask==0 );
|
| + assert( DbMaskAllZero(p->btreeMask) );
|
|
|
| resolveP2Values(p, pnMaxArg);
|
| *pnOp = p->nOp;
|
| @@ -475,10 +553,10 @@ VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
|
| ** Add a whole list of operations to the operation stack. Return the
|
| ** address of the first operation added.
|
| */
|
| -int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
|
| +int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp, int iLineno){
|
| int addr;
|
| assert( p->magic==VDBE_MAGIC_INIT );
|
| - if( p->nOp + nOp > p->nOpAlloc && growOpArray(p) ){
|
| + if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){
|
| return 0;
|
| }
|
| addr = p->nOp;
|
| @@ -490,7 +568,8 @@ int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
|
| VdbeOp *pOut = &p->aOp[i+addr];
|
| pOut->opcode = pIn->opcode;
|
| pOut->p1 = pIn->p1;
|
| - if( p2<0 && (sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP)!=0 ){
|
| + if( p2<0 ){
|
| + assert( sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP );
|
| pOut->p2 = addr + ADDR(p2);
|
| }else{
|
| pOut->p2 = p2;
|
| @@ -499,9 +578,16 @@ int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
|
| pOut->p4type = P4_NOTUSED;
|
| pOut->p4.p = 0;
|
| pOut->p5 = 0;
|
| -#ifdef SQLITE_DEBUG
|
| +#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
|
| pOut->zComment = 0;
|
| - if( sqlite3VdbeAddopTrace ){
|
| +#endif
|
| +#ifdef SQLITE_VDBE_COVERAGE
|
| + pOut->iSrcLine = iLineno+i;
|
| +#else
|
| + (void)iLineno;
|
| +#endif
|
| +#ifdef SQLITE_DEBUG
|
| + if( p->db->flags & SQLITE_VdbeAddopTrace ){
|
| sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
|
| }
|
| #endif
|
| @@ -517,10 +603,9 @@ int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
|
| ** static array using sqlite3VdbeAddOpList but we want to make a
|
| ** few minor changes to the program.
|
| */
|
| -void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
|
| +void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){
|
| assert( p!=0 );
|
| - assert( addr>=0 );
|
| - if( p->nOp>addr ){
|
| + if( ((u32)p->nOp)>addr ){
|
| p->aOp[addr].p1 = val;
|
| }
|
| }
|
| @@ -529,10 +614,9 @@ void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
|
| ** Change the value of the P2 operand for a specific instruction.
|
| ** This routine is useful for setting a jump destination.
|
| */
|
| -void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
|
| +void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
|
| assert( p!=0 );
|
| - assert( addr>=0 );
|
| - if( p->nOp>addr ){
|
| + if( ((u32)p->nOp)>addr ){
|
| p->aOp[addr].p2 = val;
|
| }
|
| }
|
| @@ -540,10 +624,9 @@ void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
|
| /*
|
| ** Change the value of the P3 operand for a specific instruction.
|
| */
|
| -void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
|
| +void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
|
| assert( p!=0 );
|
| - assert( addr>=0 );
|
| - if( p->nOp>addr ){
|
| + if( ((u32)p->nOp)>addr ){
|
| p->aOp[addr].p3 = val;
|
| }
|
| }
|
| @@ -565,8 +648,8 @@ void sqlite3VdbeChangeP5(Vdbe *p, u8 val){
|
| ** the address of the next instruction to be coded.
|
| */
|
| void sqlite3VdbeJumpHere(Vdbe *p, int addr){
|
| - assert( addr>=0 );
|
| sqlite3VdbeChangeP2(p, addr, p->nOp);
|
| + p->pParse->iFixedOp = p->nOp - 1;
|
| }
|
|
|
|
|
| @@ -575,7 +658,7 @@ void sqlite3VdbeJumpHere(Vdbe *p, int addr){
|
| ** the FuncDef is not ephermal, then do nothing.
|
| */
|
| static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
|
| - if( ALWAYS(pDef) && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){
|
| + if( ALWAYS(pDef) && (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
|
| sqlite3DbFree(db, pDef);
|
| }
|
| }
|
| @@ -592,21 +675,16 @@ static void freeP4(sqlite3 *db, int p4type, void *p4){
|
| case P4_REAL:
|
| case P4_INT64:
|
| case P4_DYNAMIC:
|
| - case P4_KEYINFO:
|
| - case P4_INTARRAY:
|
| - case P4_KEYINFO_HANDOFF: {
|
| + case P4_INTARRAY: {
|
| sqlite3DbFree(db, p4);
|
| break;
|
| }
|
| - case P4_MPRINTF: {
|
| - if( db->pnBytesFreed==0 ) sqlite3_free(p4);
|
| + case P4_KEYINFO: {
|
| + if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
|
| break;
|
| }
|
| - case P4_VDBEFUNC: {
|
| - VdbeFunc *pVdbeFunc = (VdbeFunc *)p4;
|
| - freeEphemeralFunction(db, pVdbeFunc->pFunc);
|
| - if( db->pnBytesFreed==0 ) sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
|
| - sqlite3DbFree(db, pVdbeFunc);
|
| + case P4_MPRINTF: {
|
| + if( db->pnBytesFreed==0 ) sqlite3_free(p4);
|
| break;
|
| }
|
| case P4_FUNCDEF: {
|
| @@ -618,7 +696,7 @@ static void freeP4(sqlite3 *db, int p4type, void *p4){
|
| sqlite3ValueFree((sqlite3_value*)p4);
|
| }else{
|
| Mem *p = (Mem*)p4;
|
| - sqlite3DbFree(db, p->zMalloc);
|
| + if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
|
| sqlite3DbFree(db, p);
|
| }
|
| break;
|
| @@ -641,7 +719,7 @@ static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
|
| Op *pOp;
|
| for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
|
| freeP4(db, pOp->p4type, pOp->p4.p);
|
| -#ifdef SQLITE_DEBUG
|
| +#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
|
| sqlite3DbFree(db, pOp->zComment);
|
| #endif
|
| }
|
| @@ -660,18 +738,29 @@ void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
|
| }
|
|
|
| /*
|
| -** Change N opcodes starting at addr to No-ops.
|
| +** Change the opcode at addr into OP_Noop
|
| */
|
| -void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){
|
| - if( p->aOp ){
|
| +void sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
|
| + if( addr<p->nOp ){
|
| VdbeOp *pOp = &p->aOp[addr];
|
| sqlite3 *db = p->db;
|
| - while( N-- ){
|
| - freeP4(db, pOp->p4type, pOp->p4.p);
|
| - memset(pOp, 0, sizeof(pOp[0]));
|
| - pOp->opcode = OP_Noop;
|
| - pOp++;
|
| - }
|
| + freeP4(db, pOp->p4type, pOp->p4.p);
|
| + memset(pOp, 0, sizeof(pOp[0]));
|
| + pOp->opcode = OP_Noop;
|
| + if( addr==p->nOp-1 ) p->nOp--;
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** If the last opcode is "op" and it is not a jump destination,
|
| +** then remove it. Return true if and only if an opcode was removed.
|
| +*/
|
| +int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
|
| + if( (p->nOp-1)>(p->pParse->iFixedOp) && p->aOp[p->nOp-1].opcode==op ){
|
| + sqlite3VdbeChangeToNoop(p, p->nOp-1);
|
| + return 1;
|
| + }else{
|
| + return 0;
|
| }
|
| }
|
|
|
| @@ -685,14 +774,6 @@ void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){
|
| ** the string is made into memory obtained from sqlite3_malloc().
|
| ** A value of n==0 means copy bytes of zP4 up to and including the
|
| ** first null byte. If n>0 then copy n+1 bytes of zP4.
|
| -**
|
| -** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure.
|
| -** A copy is made of the KeyInfo structure into memory obtained from
|
| -** sqlite3_malloc, to be freed when the Vdbe is finalized.
|
| -** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure
|
| -** stored in memory that the caller has obtained from sqlite3_malloc. The
|
| -** caller should not free the allocation, it will be freed when the Vdbe is
|
| -** finalized.
|
| **
|
| ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
|
| ** to a string or structure that is guaranteed to exist for the lifetime of
|
| @@ -707,7 +788,7 @@ void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
|
| db = p->db;
|
| assert( p->magic==VDBE_MAGIC_INIT );
|
| if( p->aOp==0 || db->mallocFailed ){
|
| - if ( n!=P4_KEYINFO && n!=P4_VTAB ) {
|
| + if( n!=P4_VTAB ){
|
| freeP4(db, n, (void*)*(char**)&zP4);
|
| }
|
| return;
|
| @@ -718,6 +799,9 @@ void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
|
| addr = p->nOp - 1;
|
| }
|
| pOp = &p->aOp[addr];
|
| + assert( pOp->p4type==P4_NOTUSED
|
| + || pOp->p4type==P4_INT32
|
| + || pOp->p4type==P4_KEYINFO );
|
| freeP4(db, pOp->p4type, pOp->p4.p);
|
| pOp->p4.p = 0;
|
| if( n==P4_INT32 ){
|
| @@ -729,27 +813,6 @@ void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
|
| pOp->p4.p = 0;
|
| pOp->p4type = P4_NOTUSED;
|
| }else if( n==P4_KEYINFO ){
|
| - KeyInfo *pKeyInfo;
|
| - int nField, nByte;
|
| -
|
| - nField = ((KeyInfo*)zP4)->nField;
|
| - nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
|
| - pKeyInfo = sqlite3DbMallocRaw(0, nByte);
|
| - pOp->p4.pKeyInfo = pKeyInfo;
|
| - if( pKeyInfo ){
|
| - u8 *aSortOrder;
|
| - memcpy((char*)pKeyInfo, zP4, nByte - nField);
|
| - aSortOrder = pKeyInfo->aSortOrder;
|
| - if( aSortOrder ){
|
| - pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
|
| - memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
|
| - }
|
| - pOp->p4type = P4_KEYINFO;
|
| - }else{
|
| - p->db->mallocFailed = 1;
|
| - pOp->p4type = P4_NOTUSED;
|
| - }
|
| - }else if( n==P4_KEYINFO_HANDOFF ){
|
| pOp->p4.p = (void*)zP4;
|
| pOp->p4type = P4_KEYINFO;
|
| }else if( n==P4_VTAB ){
|
| @@ -767,42 +830,62 @@ void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
|
| }
|
| }
|
|
|
| -#ifndef NDEBUG
|
| /*
|
| -** Change the comment on the the most recently coded instruction. Or
|
| +** Set the P4 on the most recently added opcode to the KeyInfo for the
|
| +** index given.
|
| +*/
|
| +void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
|
| + Vdbe *v = pParse->pVdbe;
|
| + assert( v!=0 );
|
| + assert( pIdx!=0 );
|
| + sqlite3VdbeChangeP4(v, -1, (char*)sqlite3KeyInfoOfIndex(pParse, pIdx),
|
| + P4_KEYINFO);
|
| +}
|
| +
|
| +#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
|
| +/*
|
| +** Change the comment on the most recently coded instruction. Or
|
| ** insert a No-op and add the comment to that new instruction. This
|
| ** makes the code easier to read during debugging. None of this happens
|
| ** in a production build.
|
| */
|
| -void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
|
| - va_list ap;
|
| - if( !p ) return;
|
| +static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
|
| assert( p->nOp>0 || p->aOp==0 );
|
| assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
|
| if( p->nOp ){
|
| - char **pz = &p->aOp[p->nOp-1].zComment;
|
| + assert( p->aOp );
|
| + sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
|
| + p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
|
| + }
|
| +}
|
| +void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
|
| + va_list ap;
|
| + if( p ){
|
| va_start(ap, zFormat);
|
| - sqlite3DbFree(p->db, *pz);
|
| - *pz = sqlite3VMPrintf(p->db, zFormat, ap);
|
| + vdbeVComment(p, zFormat, ap);
|
| va_end(ap);
|
| }
|
| }
|
| void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
|
| va_list ap;
|
| - if( !p ) return;
|
| - sqlite3VdbeAddOp0(p, OP_Noop);
|
| - assert( p->nOp>0 || p->aOp==0 );
|
| - assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
|
| - if( p->nOp ){
|
| - char **pz = &p->aOp[p->nOp-1].zComment;
|
| + if( p ){
|
| + sqlite3VdbeAddOp0(p, OP_Noop);
|
| va_start(ap, zFormat);
|
| - sqlite3DbFree(p->db, *pz);
|
| - *pz = sqlite3VMPrintf(p->db, zFormat, ap);
|
| + vdbeVComment(p, zFormat, ap);
|
| va_end(ap);
|
| }
|
| }
|
| #endif /* NDEBUG */
|
|
|
| +#ifdef SQLITE_VDBE_COVERAGE
|
| +/*
|
| +** Set the value if the iSrcLine field for the previously coded instruction.
|
| +*/
|
| +void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
|
| + sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
|
| +}
|
| +#endif /* SQLITE_VDBE_COVERAGE */
|
| +
|
| /*
|
| ** Return the opcode for a given address. If the address is -1, then
|
| ** return the most recently inserted opcode.
|
| @@ -811,28 +894,17 @@ void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
|
| ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
|
| ** is readable but not writable, though it is cast to a writable value.
|
| ** The return of a dummy opcode allows the call to continue functioning
|
| -** after a OOM fault without having to check to see if the return from
|
| +** after an OOM fault without having to check to see if the return from
|
| ** this routine is a valid pointer. But because the dummy.opcode is 0,
|
| ** dummy will never be written to. This is verified by code inspection and
|
| ** by running with Valgrind.
|
| -**
|
| -** About the #ifdef SQLITE_OMIT_TRACE: Normally, this routine is never called
|
| -** unless p->nOp>0. This is because in the absense of SQLITE_OMIT_TRACE,
|
| -** an OP_Trace instruction is always inserted by sqlite3VdbeGet() as soon as
|
| -** a new VDBE is created. So we are free to set addr to p->nOp-1 without
|
| -** having to double-check to make sure that the result is non-negative. But
|
| -** if SQLITE_OMIT_TRACE is defined, the OP_Trace is omitted and we do need to
|
| -** check the value of p->nOp-1 before continuing.
|
| */
|
| VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
|
| /* C89 specifies that the constant "dummy" will be initialized to all
|
| ** zeros, which is correct. MSVC generates a warning, nevertheless. */
|
| - static const VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
|
| + static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
|
| assert( p->magic==VDBE_MAGIC_INIT );
|
| if( addr<0 ){
|
| -#ifdef SQLITE_OMIT_TRACE
|
| - if( p->nOp==0 ) return (VdbeOp*)&dummy;
|
| -#endif
|
| addr = p->nOp - 1;
|
| }
|
| assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
|
| @@ -843,6 +915,97 @@ VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
|
| }
|
| }
|
|
|
| +#if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
|
| +/*
|
| +** Return an integer value for one of the parameters to the opcode pOp
|
| +** determined by character c.
|
| +*/
|
| +static int translateP(char c, const Op *pOp){
|
| + if( c=='1' ) return pOp->p1;
|
| + if( c=='2' ) return pOp->p2;
|
| + if( c=='3' ) return pOp->p3;
|
| + if( c=='4' ) return pOp->p4.i;
|
| + return pOp->p5;
|
| +}
|
| +
|
| +/*
|
| +** Compute a string for the "comment" field of a VDBE opcode listing.
|
| +**
|
| +** The Synopsis: field in comments in the vdbe.c source file gets converted
|
| +** to an extra string that is appended to the sqlite3OpcodeName(). In the
|
| +** absence of other comments, this synopsis becomes the comment on the opcode.
|
| +** Some translation occurs:
|
| +**
|
| +** "PX" -> "r[X]"
|
| +** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
|
| +** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
|
| +** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
|
| +*/
|
| +static int displayComment(
|
| + const Op *pOp, /* The opcode to be commented */
|
| + const char *zP4, /* Previously obtained value for P4 */
|
| + char *zTemp, /* Write result here */
|
| + int nTemp /* Space available in zTemp[] */
|
| +){
|
| + const char *zOpName;
|
| + const char *zSynopsis;
|
| + int nOpName;
|
| + int ii, jj;
|
| + zOpName = sqlite3OpcodeName(pOp->opcode);
|
| + nOpName = sqlite3Strlen30(zOpName);
|
| + if( zOpName[nOpName+1] ){
|
| + int seenCom = 0;
|
| + char c;
|
| + zSynopsis = zOpName += nOpName + 1;
|
| + for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){
|
| + if( c=='P' ){
|
| + c = zSynopsis[++ii];
|
| + if( c=='4' ){
|
| + sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4);
|
| + }else if( c=='X' ){
|
| + sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment);
|
| + seenCom = 1;
|
| + }else{
|
| + int v1 = translateP(c, pOp);
|
| + int v2;
|
| + sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1);
|
| + if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
|
| + ii += 3;
|
| + jj += sqlite3Strlen30(zTemp+jj);
|
| + v2 = translateP(zSynopsis[ii], pOp);
|
| + if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
|
| + ii += 2;
|
| + v2++;
|
| + }
|
| + if( v2>1 ){
|
| + sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1);
|
| + }
|
| + }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
|
| + ii += 4;
|
| + }
|
| + }
|
| + jj += sqlite3Strlen30(zTemp+jj);
|
| + }else{
|
| + zTemp[jj++] = c;
|
| + }
|
| + }
|
| + if( !seenCom && jj<nTemp-5 && pOp->zComment ){
|
| + sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment);
|
| + jj += sqlite3Strlen30(zTemp+jj);
|
| + }
|
| + if( jj<nTemp ) zTemp[jj] = 0;
|
| + }else if( pOp->zComment ){
|
| + sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment);
|
| + jj = sqlite3Strlen30(zTemp);
|
| + }else{
|
| + zTemp[0] = 0;
|
| + jj = 0;
|
| + }
|
| + return jj;
|
| +}
|
| +#endif /* SQLITE_DEBUG */
|
| +
|
| +
|
| #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
|
| || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
|
| /*
|
| @@ -853,30 +1016,30 @@ static char *displayP4(Op *pOp, char *zTemp, int nTemp){
|
| char *zP4 = zTemp;
|
| assert( nTemp>=20 );
|
| switch( pOp->p4type ){
|
| - case P4_KEYINFO_STATIC:
|
| case P4_KEYINFO: {
|
| int i, j;
|
| KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
|
| - sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField);
|
| + assert( pKeyInfo->aSortOrder!=0 );
|
| + sqlite3_snprintf(nTemp, zTemp, "k(%d", pKeyInfo->nField);
|
| i = sqlite3Strlen30(zTemp);
|
| for(j=0; j<pKeyInfo->nField; j++){
|
| CollSeq *pColl = pKeyInfo->aColl[j];
|
| - if( pColl ){
|
| - int n = sqlite3Strlen30(pColl->zName);
|
| - if( i+n>nTemp-6 ){
|
| - memcpy(&zTemp[i],",...",4);
|
| - break;
|
| - }
|
| - zTemp[i++] = ',';
|
| - if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){
|
| - zTemp[i++] = '-';
|
| - }
|
| - memcpy(&zTemp[i], pColl->zName,n+1);
|
| - i += n;
|
| - }else if( i+4<nTemp-6 ){
|
| - memcpy(&zTemp[i],",nil",4);
|
| - i += 4;
|
| + const char *zColl = pColl ? pColl->zName : "nil";
|
| + int n = sqlite3Strlen30(zColl);
|
| + if( n==6 && memcmp(zColl,"BINARY",6)==0 ){
|
| + zColl = "B";
|
| + n = 1;
|
| }
|
| + if( i+n>nTemp-6 ){
|
| + memcpy(&zTemp[i],",...",4);
|
| + break;
|
| + }
|
| + zTemp[i++] = ',';
|
| + if( pKeyInfo->aSortOrder[j] ){
|
| + zTemp[i++] = '-';
|
| + }
|
| + memcpy(&zTemp[i], zColl, n+1);
|
| + i += n;
|
| }
|
| zTemp[i++] = ')';
|
| zTemp[i] = 0;
|
| @@ -885,7 +1048,7 @@ static char *displayP4(Op *pOp, char *zTemp, int nTemp){
|
| }
|
| case P4_COLLSEQ: {
|
| CollSeq *pColl = pOp->p4.pColl;
|
| - sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName);
|
| + sqlite3_snprintf(nTemp, zTemp, "(%.20s)", pColl->zName);
|
| break;
|
| }
|
| case P4_FUNCDEF: {
|
| @@ -907,13 +1070,14 @@ static char *displayP4(Op *pOp, char *zTemp, int nTemp){
|
| }
|
| case P4_MEM: {
|
| Mem *pMem = pOp->p4.pMem;
|
| - assert( (pMem->flags & MEM_Null)==0 );
|
| if( pMem->flags & MEM_Str ){
|
| zP4 = pMem->z;
|
| }else if( pMem->flags & MEM_Int ){
|
| sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
|
| }else if( pMem->flags & MEM_Real ){
|
| - sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r);
|
| + sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->u.r);
|
| + }else if( pMem->flags & MEM_Null ){
|
| + sqlite3_snprintf(nTemp, zTemp, "NULL");
|
| }else{
|
| assert( pMem->flags & MEM_Blob );
|
| zP4 = "(blob)";
|
| @@ -935,6 +1099,10 @@ static char *displayP4(Op *pOp, char *zTemp, int nTemp){
|
| sqlite3_snprintf(nTemp, zTemp, "program");
|
| break;
|
| }
|
| + case P4_ADVANCE: {
|
| + zTemp[0] = 0;
|
| + break;
|
| + }
|
| default: {
|
| zP4 = pOp->p4.z;
|
| if( zP4==0 ){
|
| @@ -952,15 +1120,16 @@ static char *displayP4(Op *pOp, char *zTemp, int nTemp){
|
| ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
|
| **
|
| ** The prepared statements need to know in advance the complete set of
|
| -** attached databases that they will be using. A mask of these databases
|
| -** is maintained in p->btreeMask and is used for locking and other purposes.
|
| +** attached databases that will be use. A mask of these databases
|
| +** is maintained in p->btreeMask. The p->lockMask value is the subset of
|
| +** p->btreeMask of databases that will require a lock.
|
| */
|
| void sqlite3VdbeUsesBtree(Vdbe *p, int i){
|
| assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
|
| assert( i<(int)sizeof(p->btreeMask)*8 );
|
| - p->btreeMask |= ((yDbMask)1)<<i;
|
| + DbMaskSet(p->btreeMask, i);
|
| if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
|
| - p->lockMask |= ((yDbMask)1)<<i;
|
| + DbMaskSet(p->lockMask, i);
|
| }
|
| }
|
|
|
| @@ -988,16 +1157,15 @@ void sqlite3VdbeUsesBtree(Vdbe *p, int i){
|
| */
|
| void sqlite3VdbeEnter(Vdbe *p){
|
| int i;
|
| - yDbMask mask;
|
| sqlite3 *db;
|
| Db *aDb;
|
| int nDb;
|
| - if( p->lockMask==0 ) return; /* The common case */
|
| + if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
|
| db = p->db;
|
| aDb = db->aDb;
|
| nDb = db->nDb;
|
| - for(i=0, mask=1; i<nDb; i++, mask += mask){
|
| - if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){
|
| + for(i=0; i<nDb; i++){
|
| + if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
|
| sqlite3BtreeEnter(aDb[i].pBt);
|
| }
|
| }
|
| @@ -1010,16 +1178,15 @@ void sqlite3VdbeEnter(Vdbe *p){
|
| */
|
| void sqlite3VdbeLeave(Vdbe *p){
|
| int i;
|
| - yDbMask mask;
|
| sqlite3 *db;
|
| Db *aDb;
|
| int nDb;
|
| - if( p->lockMask==0 ) return; /* The common case */
|
| + if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
|
| db = p->db;
|
| aDb = db->aDb;
|
| nDb = db->nDb;
|
| - for(i=0, mask=1; i<nDb; i++, mask += mask){
|
| - if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){
|
| + for(i=0; i<nDb; i++){
|
| + if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
|
| sqlite3BtreeLeave(aDb[i].pBt);
|
| }
|
| }
|
| @@ -1033,16 +1200,21 @@ void sqlite3VdbeLeave(Vdbe *p){
|
| void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
|
| char *zP4;
|
| char zPtr[50];
|
| - static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n";
|
| + char zCom[100];
|
| + static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
|
| if( pOut==0 ) pOut = stdout;
|
| zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
|
| - fprintf(pOut, zFormat1, pc,
|
| - sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
|
| -#ifdef SQLITE_DEBUG
|
| - pOp->zComment ? pOp->zComment : ""
|
| +#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
|
| + displayComment(pOp, zP4, zCom, sizeof(zCom));
|
| #else
|
| - ""
|
| + zCom[0] = 0;
|
| #endif
|
| + /* NB: The sqlite3OpcodeName() function is implemented by code created
|
| + ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
|
| + ** information from the vdbe.c source text */
|
| + fprintf(pOut, zFormat1, pc,
|
| + sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
|
| + zCom
|
| );
|
| fflush(pOut);
|
| }
|
| @@ -1053,17 +1225,18 @@ void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
|
| */
|
| static void releaseMemArray(Mem *p, int N){
|
| if( p && N ){
|
| - Mem *pEnd;
|
| + Mem *pEnd = &p[N];
|
| sqlite3 *db = p->db;
|
| u8 malloc_failed = db->mallocFailed;
|
| if( db->pnBytesFreed ){
|
| - for(pEnd=&p[N]; p<pEnd; p++){
|
| - sqlite3DbFree(db, p->zMalloc);
|
| - }
|
| + do{
|
| + if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
|
| + }while( (++p)<pEnd );
|
| return;
|
| }
|
| - for(pEnd=&p[N]; p<pEnd; p++){
|
| + do{
|
| assert( (&p[1])==pEnd || p[0].db==p[1].db );
|
| + assert( sqlite3VdbeCheckMemInvariants(p) );
|
|
|
| /* This block is really an inlined version of sqlite3VdbeMemRelease()
|
| ** that takes advantage of the fact that the memory cell value is
|
| @@ -1077,15 +1250,19 @@ static void releaseMemArray(Mem *p, int N){
|
| ** with no indexes using a single prepared INSERT statement, bind()
|
| ** and reset(). Inserts are grouped into a transaction.
|
| */
|
| + testcase( p->flags & MEM_Agg );
|
| + testcase( p->flags & MEM_Dyn );
|
| + testcase( p->flags & MEM_Frame );
|
| + testcase( p->flags & MEM_RowSet );
|
| if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
|
| sqlite3VdbeMemRelease(p);
|
| - }else if( p->zMalloc ){
|
| + }else if( p->szMalloc ){
|
| sqlite3DbFree(db, p->zMalloc);
|
| - p->zMalloc = 0;
|
| + p->szMalloc = 0;
|
| }
|
|
|
| - p->flags = MEM_Null;
|
| - }
|
| + p->flags = MEM_Undefined;
|
| + }while( (++p)<pEnd );
|
| db->mallocFailed = malloc_failed;
|
| }
|
| }
|
| @@ -1131,7 +1308,7 @@ int sqlite3VdbeList(
|
| sqlite3 *db = p->db; /* The database connection */
|
| int i; /* Loop counter */
|
| int rc = SQLITE_OK; /* Return code */
|
| - Mem *pMem = p->pResultSet = &p->aMem[1]; /* First Mem of result set */
|
| + Mem *pMem = &p->aMem[1]; /* First Mem of result set */
|
|
|
| assert( p->explain );
|
| assert( p->magic==VDBE_MAGIC_RUN );
|
| @@ -1142,6 +1319,7 @@ int sqlite3VdbeList(
|
| ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
|
| */
|
| releaseMemArray(pMem, 8);
|
| + p->pResultSet = 0;
|
|
|
| if( p->rc==SQLITE_NOMEM ){
|
| /* This happens if a malloc() inside a call to sqlite3_column_text() or
|
| @@ -1187,7 +1365,7 @@ int sqlite3VdbeList(
|
| rc = SQLITE_ERROR;
|
| sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc));
|
| }else{
|
| - char *z;
|
| + char *zP4;
|
| Op *pOp;
|
| if( i<p->nOp ){
|
| /* The output line number is small enough that we are still in the
|
| @@ -1205,15 +1383,13 @@ int sqlite3VdbeList(
|
| }
|
| if( p->explain==1 ){
|
| pMem->flags = MEM_Int;
|
| - pMem->type = SQLITE_INTEGER;
|
| pMem->u.i = i; /* Program counter */
|
| pMem++;
|
|
|
| pMem->flags = MEM_Static|MEM_Str|MEM_Term;
|
| - pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
|
| + pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
|
| assert( pMem->z!=0 );
|
| pMem->n = sqlite3Strlen30(pMem->z);
|
| - pMem->type = SQLITE_TEXT;
|
| pMem->enc = SQLITE_UTF8;
|
| pMem++;
|
|
|
| @@ -1228,7 +1404,7 @@ int sqlite3VdbeList(
|
| for(j=0; j<nSub; j++){
|
| if( apSub[j]==pOp->p4.pProgram ) break;
|
| }
|
| - if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, 1) ){
|
| + if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){
|
| apSub = (SubProgram **)pSub->z;
|
| apSub[nSub++] = pOp->p4.pProgram;
|
| pSub->flags |= MEM_Blob;
|
| @@ -1239,63 +1415,57 @@ int sqlite3VdbeList(
|
|
|
| pMem->flags = MEM_Int;
|
| pMem->u.i = pOp->p1; /* P1 */
|
| - pMem->type = SQLITE_INTEGER;
|
| pMem++;
|
|
|
| pMem->flags = MEM_Int;
|
| pMem->u.i = pOp->p2; /* P2 */
|
| - pMem->type = SQLITE_INTEGER;
|
| pMem++;
|
|
|
| pMem->flags = MEM_Int;
|
| pMem->u.i = pOp->p3; /* P3 */
|
| - pMem->type = SQLITE_INTEGER;
|
| pMem++;
|
|
|
| - if( sqlite3VdbeMemGrow(pMem, 32, 0) ){ /* P4 */
|
| + if( sqlite3VdbeMemClearAndResize(pMem, 32) ){ /* P4 */
|
| assert( p->db->mallocFailed );
|
| return SQLITE_ERROR;
|
| }
|
| - pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
|
| - z = displayP4(pOp, pMem->z, 32);
|
| - if( z!=pMem->z ){
|
| - sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0);
|
| + pMem->flags = MEM_Str|MEM_Term;
|
| + zP4 = displayP4(pOp, pMem->z, 32);
|
| + if( zP4!=pMem->z ){
|
| + sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
|
| }else{
|
| assert( pMem->z!=0 );
|
| pMem->n = sqlite3Strlen30(pMem->z);
|
| pMem->enc = SQLITE_UTF8;
|
| }
|
| - pMem->type = SQLITE_TEXT;
|
| pMem++;
|
|
|
| if( p->explain==1 ){
|
| - if( sqlite3VdbeMemGrow(pMem, 4, 0) ){
|
| + if( sqlite3VdbeMemClearAndResize(pMem, 4) ){
|
| assert( p->db->mallocFailed );
|
| return SQLITE_ERROR;
|
| }
|
| - pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
|
| + pMem->flags = MEM_Str|MEM_Term;
|
| pMem->n = 2;
|
| sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
|
| - pMem->type = SQLITE_TEXT;
|
| pMem->enc = SQLITE_UTF8;
|
| pMem++;
|
|
|
| -#ifdef SQLITE_DEBUG
|
| - if( pOp->zComment ){
|
| - pMem->flags = MEM_Str|MEM_Term;
|
| - pMem->z = pOp->zComment;
|
| - pMem->n = sqlite3Strlen30(pMem->z);
|
| - pMem->enc = SQLITE_UTF8;
|
| - pMem->type = SQLITE_TEXT;
|
| - }else
|
| -#endif
|
| - {
|
| - pMem->flags = MEM_Null; /* Comment */
|
| - pMem->type = SQLITE_NULL;
|
| +#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
|
| + if( sqlite3VdbeMemClearAndResize(pMem, 500) ){
|
| + assert( p->db->mallocFailed );
|
| + return SQLITE_ERROR;
|
| }
|
| + pMem->flags = MEM_Str|MEM_Term;
|
| + pMem->n = displayComment(pOp, zP4, pMem->z, 500);
|
| + pMem->enc = SQLITE_UTF8;
|
| +#else
|
| + pMem->flags = MEM_Null; /* Comment */
|
| +#endif
|
| }
|
|
|
| p->nResColumn = 8 - 4*(p->explain-1);
|
| + p->pResultSet = &p->aMem[1];
|
| p->rc = SQLITE_OK;
|
| rc = SQLITE_ROW;
|
| }
|
| @@ -1308,15 +1478,17 @@ int sqlite3VdbeList(
|
| ** Print the SQL that was used to generate a VDBE program.
|
| */
|
| void sqlite3VdbePrintSql(Vdbe *p){
|
| - int nOp = p->nOp;
|
| - VdbeOp *pOp;
|
| - if( nOp<1 ) return;
|
| - pOp = &p->aOp[0];
|
| - if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
|
| - const char *z = pOp->p4.z;
|
| - while( sqlite3Isspace(*z) ) z++;
|
| - printf("SQL: [%s]\n", z);
|
| + const char *z = 0;
|
| + if( p->zSql ){
|
| + z = p->zSql;
|
| + }else if( p->nOp>=1 ){
|
| + const VdbeOp *pOp = &p->aOp[0];
|
| + if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
|
| + z = pOp->p4.z;
|
| + while( sqlite3Isspace(*z) ) z++;
|
| + }
|
| }
|
| + if( z ) printf("SQL: [%s]\n", z);
|
| }
|
| #endif
|
|
|
| @@ -1330,7 +1502,7 @@ void sqlite3VdbeIOTraceSql(Vdbe *p){
|
| if( sqlite3IoTrace==0 ) return;
|
| if( nOp<1 ) return;
|
| pOp = &p->aOp[0];
|
| - if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
|
| + if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
|
| int i, j;
|
| char z[1000];
|
| sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
|
| @@ -1391,34 +1563,13 @@ static void *allocSpace(
|
| }
|
|
|
| /*
|
| -** Prepare a virtual machine for execution. This involves things such
|
| -** as allocating stack space and initializing the program counter.
|
| -** After the VDBE has be prepped, it can be executed by one or more
|
| -** calls to sqlite3VdbeExec().
|
| -**
|
| -** This is the only way to move a VDBE from VDBE_MAGIC_INIT to
|
| -** VDBE_MAGIC_RUN.
|
| -**
|
| -** This function may be called more than once on a single virtual machine.
|
| -** The first call is made while compiling the SQL statement. Subsequent
|
| -** calls are made as part of the process of resetting a statement to be
|
| -** re-executed (from a call to sqlite3_reset()). The nVar, nMem, nCursor
|
| -** and isExplain parameters are only passed correct values the first time
|
| -** the function is called. On subsequent calls, from sqlite3_reset(), nVar
|
| -** is passed -1 and nMem, nCursor and isExplain are all passed zero.
|
| +** Rewind the VDBE back to the beginning in preparation for
|
| +** running it.
|
| */
|
| -void sqlite3VdbeMakeReady(
|
| - Vdbe *p, /* The VDBE */
|
| - int nVar, /* Number of '?' see in the SQL statement */
|
| - int nMem, /* Number of memory cells to allocate */
|
| - int nCursor, /* Number of cursors to allocate */
|
| - int nArg, /* Maximum number of args in SubPrograms */
|
| - int isExplain, /* True if the EXPLAIN keywords is present */
|
| - int usesStmtJournal /* True to set Vdbe.usesStmtJournal */
|
| -){
|
| - int n;
|
| - sqlite3 *db = p->db;
|
| -
|
| +void sqlite3VdbeRewind(Vdbe *p){
|
| +#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
|
| + int i;
|
| +#endif
|
| assert( p!=0 );
|
| assert( p->magic==VDBE_MAGIC_INIT );
|
|
|
| @@ -1429,6 +1580,75 @@ void sqlite3VdbeMakeReady(
|
| /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
|
| p->magic = VDBE_MAGIC_RUN;
|
|
|
| +#ifdef SQLITE_DEBUG
|
| + for(i=1; i<p->nMem; i++){
|
| + assert( p->aMem[i].db==p->db );
|
| + }
|
| +#endif
|
| + p->pc = -1;
|
| + p->rc = SQLITE_OK;
|
| + p->errorAction = OE_Abort;
|
| + p->magic = VDBE_MAGIC_RUN;
|
| + p->nChange = 0;
|
| + p->cacheCtr = 1;
|
| + p->minWriteFileFormat = 255;
|
| + p->iStatement = 0;
|
| + p->nFkConstraint = 0;
|
| +#ifdef VDBE_PROFILE
|
| + for(i=0; i<p->nOp; i++){
|
| + p->aOp[i].cnt = 0;
|
| + p->aOp[i].cycles = 0;
|
| + }
|
| +#endif
|
| +}
|
| +
|
| +/*
|
| +** Prepare a virtual machine for execution for the first time after
|
| +** creating the virtual machine. This involves things such
|
| +** as allocating registers and initializing the program counter.
|
| +** After the VDBE has be prepped, it can be executed by one or more
|
| +** calls to sqlite3VdbeExec().
|
| +**
|
| +** This function may be called exactly once on each virtual machine.
|
| +** After this routine is called the VM has been "packaged" and is ready
|
| +** to run. After this routine is called, further calls to
|
| +** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
|
| +** the Vdbe from the Parse object that helped generate it so that the
|
| +** the Vdbe becomes an independent entity and the Parse object can be
|
| +** destroyed.
|
| +**
|
| +** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
|
| +** to its initial state after it has been run.
|
| +*/
|
| +void sqlite3VdbeMakeReady(
|
| + Vdbe *p, /* The VDBE */
|
| + Parse *pParse /* Parsing context */
|
| +){
|
| + sqlite3 *db; /* The database connection */
|
| + int nVar; /* Number of parameters */
|
| + int nMem; /* Number of VM memory registers */
|
| + int nCursor; /* Number of cursors required */
|
| + int nArg; /* Number of arguments in subprograms */
|
| + int nOnce; /* Number of OP_Once instructions */
|
| + int n; /* Loop counter */
|
| + u8 *zCsr; /* Memory available for allocation */
|
| + u8 *zEnd; /* First byte past allocated memory */
|
| + int nByte; /* How much extra memory is needed */
|
| +
|
| + assert( p!=0 );
|
| + assert( p->nOp>0 );
|
| + assert( pParse!=0 );
|
| + assert( p->magic==VDBE_MAGIC_INIT );
|
| + assert( pParse==p->pParse );
|
| + db = p->db;
|
| + assert( db->mallocFailed==0 );
|
| + nVar = pParse->nVar;
|
| + nMem = pParse->nMem;
|
| + nCursor = pParse->nTab;
|
| + nArg = pParse->nMaxArg;
|
| + nOnce = pParse->nOnce;
|
| + if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */
|
| +
|
| /* For each cursor required, also allocate a memory cell. Memory
|
| ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
|
| ** the vdbe program. Instead they are used to allocate space for
|
| @@ -1441,91 +1661,71 @@ void sqlite3VdbeMakeReady(
|
| nMem += nCursor;
|
|
|
| /* Allocate space for memory registers, SQL variables, VDBE cursors and
|
| - ** an array to marshal SQL function arguments in. This is only done the
|
| - ** first time this function is called for a given VDBE, not when it is
|
| - ** being called from sqlite3_reset() to reset the virtual machine.
|
| + ** an array to marshal SQL function arguments in.
|
| */
|
| - if( nVar>=0 && ALWAYS(db->mallocFailed==0) ){
|
| - u8 *zCsr = (u8 *)&p->aOp[p->nOp]; /* Memory avaliable for alloation */
|
| - u8 *zEnd = (u8 *)&p->aOp[p->nOpAlloc]; /* First byte past available mem */
|
| - int nByte; /* How much extra memory needed */
|
| -
|
| - resolveP2Values(p, &nArg);
|
| - p->usesStmtJournal = (u8)usesStmtJournal;
|
| - if( isExplain && nMem<10 ){
|
| - nMem = 10;
|
| - }
|
| - memset(zCsr, 0, zEnd-zCsr);
|
| - zCsr += (zCsr - (u8*)0)&7;
|
| - assert( EIGHT_BYTE_ALIGNMENT(zCsr) );
|
| -
|
| - /* Memory for registers, parameters, cursor, etc, is allocated in two
|
| - ** passes. On the first pass, we try to reuse unused space at the
|
| - ** end of the opcode array. If we are unable to satisfy all memory
|
| - ** requirements by reusing the opcode array tail, then the second
|
| - ** pass will fill in the rest using a fresh allocation.
|
| - **
|
| - ** This two-pass approach that reuses as much memory as possible from
|
| - ** the leftover space at the end of the opcode array can significantly
|
| - ** reduce the amount of memory held by a prepared statement.
|
| - */
|
| - do {
|
| - nByte = 0;
|
| - p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
|
| - p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
|
| - p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
|
| - p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
|
| - p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
|
| - &zCsr, zEnd, &nByte);
|
| - if( nByte ){
|
| - p->pFree = sqlite3DbMallocZero(db, nByte);
|
| - }
|
| - zCsr = p->pFree;
|
| - zEnd = &zCsr[nByte];
|
| - }while( nByte && !db->mallocFailed );
|
| -
|
| - p->nCursor = (u16)nCursor;
|
| - if( p->aVar ){
|
| - p->nVar = (ynVar)nVar;
|
| - for(n=0; n<nVar; n++){
|
| - p->aVar[n].flags = MEM_Null;
|
| - p->aVar[n].db = db;
|
| - }
|
| - }
|
| - if( p->aMem ){
|
| - p->aMem--; /* aMem[] goes from 1..nMem */
|
| - p->nMem = nMem; /* not from 0..nMem-1 */
|
| - for(n=1; n<=nMem; n++){
|
| - p->aMem[n].flags = MEM_Null;
|
| - p->aMem[n].db = db;
|
| - }
|
| - }
|
| - }
|
| -#ifdef SQLITE_DEBUG
|
| - for(n=1; n<p->nMem; n++){
|
| - assert( p->aMem[n].db==db );
|
| + zCsr = (u8*)&p->aOp[p->nOp]; /* Memory avaliable for allocation */
|
| + zEnd = (u8*)&p->aOp[pParse->nOpAlloc]; /* First byte past end of zCsr[] */
|
| +
|
| + resolveP2Values(p, &nArg);
|
| + p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
|
| + if( pParse->explain && nMem<10 ){
|
| + nMem = 10;
|
| }
|
| -#endif
|
| + memset(zCsr, 0, zEnd-zCsr);
|
| + zCsr += (zCsr - (u8*)0)&7;
|
| + assert( EIGHT_BYTE_ALIGNMENT(zCsr) );
|
| + p->expired = 0;
|
|
|
| - p->pc = -1;
|
| - p->rc = SQLITE_OK;
|
| - p->errorAction = OE_Abort;
|
| - p->explain |= isExplain;
|
| - p->magic = VDBE_MAGIC_RUN;
|
| - p->nChange = 0;
|
| - p->cacheCtr = 1;
|
| - p->minWriteFileFormat = 255;
|
| - p->iStatement = 0;
|
| - p->nFkConstraint = 0;
|
| -#ifdef VDBE_PROFILE
|
| - {
|
| - int i;
|
| - for(i=0; i<p->nOp; i++){
|
| - p->aOp[i].cnt = 0;
|
| - p->aOp[i].cycles = 0;
|
| + /* Memory for registers, parameters, cursor, etc, is allocated in two
|
| + ** passes. On the first pass, we try to reuse unused space at the
|
| + ** end of the opcode array. If we are unable to satisfy all memory
|
| + ** requirements by reusing the opcode array tail, then the second
|
| + ** pass will fill in the rest using a fresh allocation.
|
| + **
|
| + ** This two-pass approach that reuses as much memory as possible from
|
| + ** the leftover space at the end of the opcode array can significantly
|
| + ** reduce the amount of memory held by a prepared statement.
|
| + */
|
| + do {
|
| + nByte = 0;
|
| + p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
|
| + p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
|
| + p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
|
| + p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
|
| + p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
|
| + &zCsr, zEnd, &nByte);
|
| + p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, &zCsr, zEnd, &nByte);
|
| + if( nByte ){
|
| + p->pFree = sqlite3DbMallocZero(db, nByte);
|
| + }
|
| + zCsr = p->pFree;
|
| + zEnd = &zCsr[nByte];
|
| + }while( nByte && !db->mallocFailed );
|
| +
|
| + p->nCursor = nCursor;
|
| + p->nOnceFlag = nOnce;
|
| + if( p->aVar ){
|
| + p->nVar = (ynVar)nVar;
|
| + for(n=0; n<nVar; n++){
|
| + p->aVar[n].flags = MEM_Null;
|
| + p->aVar[n].db = db;
|
| + }
|
| + }
|
| + if( p->azVar ){
|
| + p->nzVar = pParse->nzVar;
|
| + memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0]));
|
| + memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0]));
|
| + }
|
| + if( p->aMem ){
|
| + p->aMem--; /* aMem[] goes from 1..nMem */
|
| + p->nMem = nMem; /* not from 0..nMem-1 */
|
| + for(n=1; n<=nMem; n++){
|
| + p->aMem[n].flags = MEM_Undefined;
|
| + p->aMem[n].db = db;
|
| }
|
| }
|
| -#endif
|
| + p->explain = pParse->explain;
|
| + sqlite3VdbeRewind(p);
|
| }
|
|
|
| /*
|
| @@ -1536,6 +1736,7 @@ void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
|
| if( pCx==0 ){
|
| return;
|
| }
|
| + sqlite3VdbeSorterClose(p->db, pCx);
|
| if( pCx->pBt ){
|
| sqlite3BtreeClose(pCx->pBt);
|
| /* The pCx->pCursor will be close automatically, if it exists, by
|
| @@ -1544,9 +1745,9 @@ void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
|
| sqlite3BtreeCloseCursor(pCx->pCursor);
|
| }
|
| #ifndef SQLITE_OMIT_VIRTUALTABLE
|
| - if( pCx->pVtabCursor ){
|
| + else if( pCx->pVtabCursor ){
|
| sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
|
| - const sqlite3_module *pModule = pCx->pModule;
|
| + const sqlite3_module *pModule = pVtabCursor->pVtab->pModule;
|
| p->inVtabMethod = 1;
|
| pModule->xClose(pVtabCursor);
|
| p->inVtabMethod = 0;
|
| @@ -1561,6 +1762,8 @@ void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
|
| */
|
| int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
|
| Vdbe *v = pFrame->v;
|
| + v->aOnceFlag = pFrame->aOnceFlag;
|
| + v->nOnceFlag = pFrame->nOnceFlag;
|
| v->aOp = pFrame->aOp;
|
| v->nOp = pFrame->nOp;
|
| v->aMem = pFrame->aMem;
|
| @@ -1585,9 +1788,10 @@ static void closeAllCursors(Vdbe *p){
|
| VdbeFrame *pFrame;
|
| for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
|
| sqlite3VdbeFrameRestore(pFrame);
|
| + p->pFrame = 0;
|
| + p->nFrame = 0;
|
| }
|
| - p->pFrame = 0;
|
| - p->nFrame = 0;
|
| + assert( p->nFrame==0 );
|
|
|
| if( p->apCsr ){
|
| int i;
|
| @@ -1607,14 +1811,14 @@ static void closeAllCursors(Vdbe *p){
|
| p->pDelFrame = pDel->pParent;
|
| sqlite3VdbeFrameDelete(pDel);
|
| }
|
| +
|
| + /* Delete any auxdata allocations made by the VM */
|
| + if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p, -1, 0);
|
| + assert( p->pAuxData==0 );
|
| }
|
|
|
| /*
|
| -** Clean up the VM after execution.
|
| -**
|
| -** This routine will automatically close any cursors, lists, and/or
|
| -** sorters that were left open. It also deletes the values of
|
| -** variables in the aVar[] array.
|
| +** Clean up the VM after a single run.
|
| */
|
| static void Cleanup(Vdbe *p){
|
| sqlite3 *db = p->db;
|
| @@ -1623,8 +1827,10 @@ static void Cleanup(Vdbe *p){
|
| /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
|
| ** Vdbe.aMem[] arrays have already been cleaned up. */
|
| int i;
|
| - for(i=0; i<p->nCursor; i++) assert( p->apCsr==0 || p->apCsr[i]==0 );
|
| - for(i=1; i<=p->nMem; i++) assert( p->aMem==0 || p->aMem[i].flags==MEM_Null );
|
| + if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
|
| + if( p->aMem ){
|
| + for(i=1; i<=p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
|
| + }
|
| #endif
|
|
|
| sqlite3DbFree(db, p->zErrMsg);
|
| @@ -1713,7 +1919,7 @@ static int vdbeCommit(sqlite3 *db, Vdbe *p){
|
| ** required, as an xSync() callback may add an attached database
|
| ** to the transaction.
|
| */
|
| - rc = sqlite3VtabSync(db, &p->zErrMsg);
|
| + rc = sqlite3VtabSync(db, p);
|
|
|
| /* This loop determines (a) if the commit hook should be invoked and
|
| ** (b) how many database files have open write transactions, not
|
| @@ -1726,7 +1932,9 @@ static int vdbeCommit(sqlite3 *db, Vdbe *p){
|
| if( sqlite3BtreeIsInTrans(pBt) ){
|
| needXcommit = 1;
|
| if( i!=1 ) nTrans++;
|
| + sqlite3BtreeEnter(pBt);
|
| rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt));
|
| + sqlite3BtreeLeave(pBt);
|
| }
|
| }
|
| if( rc!=SQLITE_OK ){
|
| @@ -1737,7 +1945,7 @@ static int vdbeCommit(sqlite3 *db, Vdbe *p){
|
| if( needXcommit && db->xCommitCallback ){
|
| rc = db->xCommitCallback(db->pCommitArg);
|
| if( rc ){
|
| - return SQLITE_CONSTRAINT;
|
| + return SQLITE_CONSTRAINT_COMMITHOOK;
|
| }
|
| }
|
|
|
| @@ -1778,7 +1986,7 @@ static int vdbeCommit(sqlite3 *db, Vdbe *p){
|
|
|
| /* The complex case - There is a multi-file write-transaction active.
|
| ** This requires a master journal file to ensure the transaction is
|
| - ** committed atomicly.
|
| + ** committed atomically.
|
| */
|
| #ifndef SQLITE_OMIT_DISKIO
|
| else{
|
| @@ -1789,16 +1997,32 @@ static int vdbeCommit(sqlite3 *db, Vdbe *p){
|
| sqlite3_file *pMaster = 0;
|
| i64 offset = 0;
|
| int res;
|
| + int retryCount = 0;
|
| + int nMainFile;
|
|
|
| /* Select a master journal file name */
|
| + nMainFile = sqlite3Strlen30(zMainFile);
|
| + zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile);
|
| + if( zMaster==0 ) return SQLITE_NOMEM;
|
| do {
|
| u32 iRandom;
|
| - sqlite3DbFree(db, zMaster);
|
| - sqlite3_randomness(sizeof(iRandom), &iRandom);
|
| - zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, iRandom&0x7fffffff);
|
| - if( !zMaster ){
|
| - return SQLITE_NOMEM;
|
| + if( retryCount ){
|
| + if( retryCount>100 ){
|
| + sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
|
| + sqlite3OsDelete(pVfs, zMaster, 0);
|
| + break;
|
| + }else if( retryCount==1 ){
|
| + sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
|
| + }
|
| }
|
| + retryCount++;
|
| + sqlite3_randomness(sizeof(iRandom), &iRandom);
|
| + sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
|
| + (iRandom>>8)&0xffffff, iRandom&0xff);
|
| + /* The antipenultimate character of the master journal name must
|
| + ** be "9" to avoid name collisions when using 8+3 filenames. */
|
| + assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
|
| + sqlite3FileSuffix3(zMainFile, zMaster);
|
| rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
|
| }while( rc==SQLITE_OK && res );
|
| if( rc==SQLITE_OK ){
|
| @@ -1914,7 +2138,7 @@ static int vdbeCommit(sqlite3 *db, Vdbe *p){
|
| }
|
|
|
| /*
|
| -** This routine checks that the sqlite3.activeVdbeCnt count variable
|
| +** This routine checks that the sqlite3.nVdbeActive count variable
|
| ** matches the number of vdbe's in the list sqlite3.pVdbe that are
|
| ** currently active. An assertion fails if the two counts do not match.
|
| ** This is an internal self-check only - it is not an essential processing
|
| @@ -1927,53 +2151,30 @@ static void checkActiveVdbeCnt(sqlite3 *db){
|
| Vdbe *p;
|
| int cnt = 0;
|
| int nWrite = 0;
|
| + int nRead = 0;
|
| p = db->pVdbe;
|
| while( p ){
|
| - if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
|
| + if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
|
| cnt++;
|
| if( p->readOnly==0 ) nWrite++;
|
| + if( p->bIsReader ) nRead++;
|
| }
|
| p = p->pNext;
|
| }
|
| - assert( cnt==db->activeVdbeCnt );
|
| - assert( nWrite==db->writeVdbeCnt );
|
| + assert( cnt==db->nVdbeActive );
|
| + assert( nWrite==db->nVdbeWrite );
|
| + assert( nRead==db->nVdbeRead );
|
| }
|
| #else
|
| #define checkActiveVdbeCnt(x)
|
| #endif
|
|
|
| /*
|
| -** For every Btree that in database connection db which
|
| -** has been modified, "trip" or invalidate each cursor in
|
| -** that Btree might have been modified so that the cursor
|
| -** can never be used again. This happens when a rollback
|
| -*** occurs. We have to trip all the other cursors, even
|
| -** cursor from other VMs in different database connections,
|
| -** so that none of them try to use the data at which they
|
| -** were pointing and which now may have been changed due
|
| -** to the rollback.
|
| -**
|
| -** Remember that a rollback can delete tables complete and
|
| -** reorder rootpages. So it is not sufficient just to save
|
| -** the state of the cursor. We have to invalidate the cursor
|
| -** so that it is never used again.
|
| -*/
|
| -static void invalidateCursorsOnModifiedBtrees(sqlite3 *db){
|
| - int i;
|
| - for(i=0; i<db->nDb; i++){
|
| - Btree *p = db->aDb[i].pBt;
|
| - if( p && sqlite3BtreeIsInTrans(p) ){
|
| - sqlite3BtreeTripAllCursors(p, SQLITE_ABORT);
|
| - }
|
| - }
|
| -}
|
| -
|
| -/*
|
| ** If the Vdbe passed as the first argument opened a statement-transaction,
|
| ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
|
| ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
|
| ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
|
| -** statement transaction is commtted.
|
| +** statement transaction is committed.
|
| **
|
| ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
|
| ** Otherwise SQLITE_OK.
|
| @@ -1984,7 +2185,7 @@ int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
|
|
|
| /* If p->iStatement is greater than zero, then this Vdbe opened a
|
| ** statement transaction that should be closed here. The only exception
|
| - ** is that an IO error may have occured, causing an emergency rollback.
|
| + ** is that an IO error may have occurred, causing an emergency rollback.
|
| ** In this case (db->nStatement==0), and there is nothing to do.
|
| */
|
| if( db->nStatement && p->iStatement ){
|
| @@ -2013,11 +2214,21 @@ int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
|
| db->nStatement--;
|
| p->iStatement = 0;
|
|
|
| + if( rc==SQLITE_OK ){
|
| + if( eOp==SAVEPOINT_ROLLBACK ){
|
| + rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
|
| + }
|
| + if( rc==SQLITE_OK ){
|
| + rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
|
| + }
|
| + }
|
| +
|
| /* If the statement transaction is being rolled back, also restore the
|
| ** database handles deferred constraint counter to the value it had when
|
| ** the statement transaction was opened. */
|
| if( eOp==SAVEPOINT_ROLLBACK ){
|
| db->nDeferredCons = p->nStmtDefCons;
|
| + db->nDeferredImmCons = p->nStmtDefImmCons;
|
| }
|
| }
|
| return rc;
|
| @@ -2030,16 +2241,18 @@ int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
|
| ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
|
| **
|
| ** If there are outstanding FK violations and this function returns
|
| -** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT and write
|
| -** an error message to it. Then return SQLITE_ERROR.
|
| +** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
|
| +** and write an error message to it. Then return SQLITE_ERROR.
|
| */
|
| #ifndef SQLITE_OMIT_FOREIGN_KEY
|
| int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
|
| sqlite3 *db = p->db;
|
| - if( (deferred && db->nDeferredCons>0) || (!deferred && p->nFkConstraint>0) ){
|
| - p->rc = SQLITE_CONSTRAINT;
|
| + if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
|
| + || (!deferred && p->nFkConstraint>0)
|
| + ){
|
| + p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
|
| p->errorAction = OE_Abort;
|
| - sqlite3SetString(&p->zErrMsg, db, "foreign key constraint failed");
|
| + sqlite3SetString(&p->zErrMsg, db, "FOREIGN KEY constraint failed");
|
| return SQLITE_ERROR;
|
| }
|
| return SQLITE_OK;
|
| @@ -2082,14 +2295,16 @@ int sqlite3VdbeHalt(Vdbe *p){
|
| if( p->db->mallocFailed ){
|
| p->rc = SQLITE_NOMEM;
|
| }
|
| + if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag);
|
| closeAllCursors(p);
|
| if( p->magic!=VDBE_MAGIC_RUN ){
|
| return SQLITE_OK;
|
| }
|
| checkActiveVdbeCnt(db);
|
|
|
| - /* No commit or rollback needed if the program never started */
|
| - if( p->pc>=0 ){
|
| + /* No commit or rollback needed if the program never started or if the
|
| + ** SQL statement does not read or write a database file. */
|
| + if( p->pc>=0 && p->bIsReader ){
|
| int mrc; /* Primary error code from p->rc */
|
| int eStatementOp = 0;
|
| int isSpecialError; /* Set to true if a 'special' error */
|
| @@ -2099,7 +2314,6 @@ int sqlite3VdbeHalt(Vdbe *p){
|
|
|
| /* Check for one of the special errors */
|
| mrc = p->rc & 0xff;
|
| - assert( p->rc!=SQLITE_IOERR_BLOCKED ); /* This error no longer exists */
|
| isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
|
| || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
|
| if( isSpecialError ){
|
| @@ -2110,7 +2324,7 @@ int sqlite3VdbeHalt(Vdbe *p){
|
| **
|
| ** Even if the statement is read-only, it is important to perform
|
| ** a statement or transaction rollback operation. If the error
|
| - ** occured while writing to the journal, sub-journal or database
|
| + ** occurred while writing to the journal, sub-journal or database
|
| ** file as part of an effort to free up cache space (see function
|
| ** pagerStress() in pager.c), the rollback is required to restore
|
| ** the pager to a consistent state.
|
| @@ -2122,8 +2336,7 @@ int sqlite3VdbeHalt(Vdbe *p){
|
| /* We are forced to roll back the active transaction. Before doing
|
| ** so, abort any other statements this handle currently has active.
|
| */
|
| - invalidateCursorsOnModifiedBtrees(db);
|
| - sqlite3RollbackAll(db);
|
| + sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
|
| sqlite3CloseSavepoints(db);
|
| db->autoCommit = 1;
|
| }
|
| @@ -2143,7 +2356,7 @@ int sqlite3VdbeHalt(Vdbe *p){
|
| */
|
| if( !sqlite3VtabInSync(db)
|
| && db->autoCommit
|
| - && db->writeVdbeCnt==(p->readOnly==0)
|
| + && db->nVdbeWrite==(p->readOnly==0)
|
| ){
|
| if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
|
| rc = sqlite3VdbeCheckFk(p, 1);
|
| @@ -2152,7 +2365,7 @@ int sqlite3VdbeHalt(Vdbe *p){
|
| sqlite3VdbeLeave(p);
|
| return SQLITE_ERROR;
|
| }
|
| - rc = SQLITE_CONSTRAINT;
|
| + rc = SQLITE_CONSTRAINT_FOREIGNKEY;
|
| }else{
|
| /* The auto-commit flag is true, the vdbe program was successful
|
| ** or hit an 'OR FAIL' constraint and there are no deferred foreign
|
| @@ -2165,13 +2378,15 @@ int sqlite3VdbeHalt(Vdbe *p){
|
| return SQLITE_BUSY;
|
| }else if( rc!=SQLITE_OK ){
|
| p->rc = rc;
|
| - sqlite3RollbackAll(db);
|
| + sqlite3RollbackAll(db, SQLITE_OK);
|
| }else{
|
| db->nDeferredCons = 0;
|
| + db->nDeferredImmCons = 0;
|
| + db->flags &= ~SQLITE_DeferFKs;
|
| sqlite3CommitInternalChanges(db);
|
| }
|
| }else{
|
| - sqlite3RollbackAll(db);
|
| + sqlite3RollbackAll(db, SQLITE_OK);
|
| }
|
| db->nStatement = 0;
|
| }else if( eStatementOp==0 ){
|
| @@ -2180,8 +2395,7 @@ int sqlite3VdbeHalt(Vdbe *p){
|
| }else if( p->errorAction==OE_Abort ){
|
| eStatementOp = SAVEPOINT_ROLLBACK;
|
| }else{
|
| - invalidateCursorsOnModifiedBtrees(db);
|
| - sqlite3RollbackAll(db);
|
| + sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
|
| sqlite3CloseSavepoints(db);
|
| db->autoCommit = 1;
|
| }
|
| @@ -2192,23 +2406,16 @@ int sqlite3VdbeHalt(Vdbe *p){
|
| ** do so. If this operation returns an error, and the current statement
|
| ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
|
| ** current statement error code.
|
| - **
|
| - ** Note that sqlite3VdbeCloseStatement() can only fail if eStatementOp
|
| - ** is SAVEPOINT_ROLLBACK. But if p->rc==SQLITE_OK then eStatementOp
|
| - ** must be SAVEPOINT_RELEASE. Hence the NEVER(p->rc==SQLITE_OK) in
|
| - ** the following code.
|
| */
|
| if( eStatementOp ){
|
| rc = sqlite3VdbeCloseStatement(p, eStatementOp);
|
| if( rc ){
|
| - assert( eStatementOp==SAVEPOINT_ROLLBACK );
|
| - if( NEVER(p->rc==SQLITE_OK) || p->rc==SQLITE_CONSTRAINT ){
|
| + if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
|
| p->rc = rc;
|
| sqlite3DbFree(db, p->zErrMsg);
|
| p->zErrMsg = 0;
|
| }
|
| - invalidateCursorsOnModifiedBtrees(db);
|
| - sqlite3RollbackAll(db);
|
| + sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
|
| sqlite3CloseSavepoints(db);
|
| db->autoCommit = 1;
|
| }
|
| @@ -2225,12 +2432,6 @@ int sqlite3VdbeHalt(Vdbe *p){
|
| }
|
| p->nChange = 0;
|
| }
|
| -
|
| - /* Rollback or commit any schema changes that occurred. */
|
| - if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){
|
| - sqlite3ResetInternalSchema(db, -1);
|
| - db->flags = (db->flags | SQLITE_InternChanges);
|
| - }
|
|
|
| /* Release the locks */
|
| sqlite3VdbeLeave(p);
|
| @@ -2238,11 +2439,12 @@ int sqlite3VdbeHalt(Vdbe *p){
|
|
|
| /* We have successfully halted and closed the VM. Record this fact. */
|
| if( p->pc>=0 ){
|
| - db->activeVdbeCnt--;
|
| - if( !p->readOnly ){
|
| - db->writeVdbeCnt--;
|
| - }
|
| - assert( db->activeVdbeCnt>=db->writeVdbeCnt );
|
| + db->nVdbeActive--;
|
| + if( !p->readOnly ) db->nVdbeWrite--;
|
| + if( p->bIsReader ) db->nVdbeRead--;
|
| + assert( db->nVdbeActive>=db->nVdbeRead );
|
| + assert( db->nVdbeRead>=db->nVdbeWrite );
|
| + assert( db->nVdbeWrite>=0 );
|
| }
|
| p->magic = VDBE_MAGIC_HALT;
|
| checkActiveVdbeCnt(db);
|
| @@ -2258,7 +2460,7 @@ int sqlite3VdbeHalt(Vdbe *p){
|
| sqlite3ConnectionUnlocked(db);
|
| }
|
|
|
| - assert( db->activeVdbeCnt>0 || db->autoCommit==0 || db->nStatement==0 );
|
| + assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
|
| return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
|
| }
|
|
|
| @@ -2272,11 +2474,57 @@ void sqlite3VdbeResetStepResult(Vdbe *p){
|
| }
|
|
|
| /*
|
| -** Clean up a VDBE after execution but do not delete the VDBE just yet.
|
| -** Write any error messages into *pzErrMsg. Return the result code.
|
| -**
|
| -** After this routine is run, the VDBE should be ready to be executed
|
| -** again.
|
| +** Copy the error code and error message belonging to the VDBE passed
|
| +** as the first argument to its database handle (so that they will be
|
| +** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
|
| +**
|
| +** This function does not clear the VDBE error code or message, just
|
| +** copies them to the database handle.
|
| +*/
|
| +int sqlite3VdbeTransferError(Vdbe *p){
|
| + sqlite3 *db = p->db;
|
| + int rc = p->rc;
|
| + if( p->zErrMsg ){
|
| + u8 mallocFailed = db->mallocFailed;
|
| + sqlite3BeginBenignMalloc();
|
| + if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
|
| + sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
|
| + sqlite3EndBenignMalloc();
|
| + db->mallocFailed = mallocFailed;
|
| + db->errCode = rc;
|
| + }else{
|
| + sqlite3Error(db, rc);
|
| + }
|
| + return rc;
|
| +}
|
| +
|
| +#ifdef SQLITE_ENABLE_SQLLOG
|
| +/*
|
| +** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
|
| +** invoke it.
|
| +*/
|
| +static void vdbeInvokeSqllog(Vdbe *v){
|
| + if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
|
| + char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
|
| + assert( v->db->init.busy==0 );
|
| + if( zExpanded ){
|
| + sqlite3GlobalConfig.xSqllog(
|
| + sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
|
| + );
|
| + sqlite3DbFree(v->db, zExpanded);
|
| + }
|
| + }
|
| +}
|
| +#else
|
| +# define vdbeInvokeSqllog(x)
|
| +#endif
|
| +
|
| +/*
|
| +** Clean up a VDBE after execution but do not delete the VDBE just yet.
|
| +** Write any error messages into *pzErrMsg. Return the result code.
|
| +**
|
| +** After this routine is run, the VDBE should be ready to be executed
|
| +** again.
|
| **
|
| ** To look at it another way, this routine resets the state of the
|
| ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
|
| @@ -2298,26 +2546,17 @@ int sqlite3VdbeReset(Vdbe *p){
|
| ** instructions yet, leave the main database error information unchanged.
|
| */
|
| if( p->pc>=0 ){
|
| - if( p->zErrMsg ){
|
| - sqlite3BeginBenignMalloc();
|
| - sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,SQLITE_TRANSIENT);
|
| - sqlite3EndBenignMalloc();
|
| - db->errCode = p->rc;
|
| - sqlite3DbFree(db, p->zErrMsg);
|
| - p->zErrMsg = 0;
|
| - }else if( p->rc ){
|
| - sqlite3Error(db, p->rc, 0);
|
| - }else{
|
| - sqlite3Error(db, SQLITE_OK, 0);
|
| - }
|
| + vdbeInvokeSqllog(p);
|
| + sqlite3VdbeTransferError(p);
|
| + sqlite3DbFree(db, p->zErrMsg);
|
| + p->zErrMsg = 0;
|
| if( p->runOnlyOnce ) p->expired = 1;
|
| }else if( p->rc && p->expired ){
|
| /* The expired flag was set on the VDBE before the first call
|
| ** to sqlite3_step(). For consistency (since sqlite3_step() was
|
| ** called), set the database error in this case as well.
|
| */
|
| - sqlite3Error(db, p->rc, 0);
|
| - sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
|
| + sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
|
| sqlite3DbFree(db, p->zErrMsg);
|
| p->zErrMsg = 0;
|
| }
|
| @@ -2338,18 +2577,31 @@ int sqlite3VdbeReset(Vdbe *p){
|
| fprintf(out, "%02x", p->aOp[i].opcode);
|
| }
|
| fprintf(out, "\n");
|
| + if( p->zSql ){
|
| + char c, pc = 0;
|
| + fprintf(out, "-- ");
|
| + for(i=0; (c = p->zSql[i])!=0; i++){
|
| + if( pc=='\n' ) fprintf(out, "-- ");
|
| + putc(c, out);
|
| + pc = c;
|
| + }
|
| + if( pc!='\n' ) fprintf(out, "\n");
|
| + }
|
| for(i=0; i<p->nOp; i++){
|
| - fprintf(out, "%6d %10lld %8lld ",
|
| + char zHdr[100];
|
| + sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
|
| p->aOp[i].cnt,
|
| p->aOp[i].cycles,
|
| p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
|
| );
|
| + fprintf(out, "%s", zHdr);
|
| sqlite3VdbePrintOp(out, i, &p->aOp[i]);
|
| }
|
| fclose(out);
|
| }
|
| }
|
| #endif
|
| + p->iCurrentTime = 0;
|
| p->magic = VDBE_MAGIC_INIT;
|
| return p->rc & db->errMask;
|
| }
|
| @@ -2369,32 +2621,51 @@ int sqlite3VdbeFinalize(Vdbe *p){
|
| }
|
|
|
| /*
|
| -** Call the destructor for each auxdata entry in pVdbeFunc for which
|
| -** the corresponding bit in mask is clear. Auxdata entries beyond 31
|
| -** are always destroyed. To destroy all auxdata entries, call this
|
| -** routine with mask==0.
|
| +** If parameter iOp is less than zero, then invoke the destructor for
|
| +** all auxiliary data pointers currently cached by the VM passed as
|
| +** the first argument.
|
| +**
|
| +** Or, if iOp is greater than or equal to zero, then the destructor is
|
| +** only invoked for those auxiliary data pointers created by the user
|
| +** function invoked by the OP_Function opcode at instruction iOp of
|
| +** VM pVdbe, and only then if:
|
| +**
|
| +** * the associated function parameter is the 32nd or later (counting
|
| +** from left to right), or
|
| +**
|
| +** * the corresponding bit in argument mask is clear (where the first
|
| +** function parameter corresponds to bit 0 etc.).
|
| */
|
| -void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){
|
| - int i;
|
| - for(i=0; i<pVdbeFunc->nAux; i++){
|
| - struct AuxData *pAux = &pVdbeFunc->apAux[i];
|
| - if( (i>31 || !(mask&(((u32)1)<<i))) && pAux->pAux ){
|
| +void sqlite3VdbeDeleteAuxData(Vdbe *pVdbe, int iOp, int mask){
|
| + AuxData **pp = &pVdbe->pAuxData;
|
| + while( *pp ){
|
| + AuxData *pAux = *pp;
|
| + if( (iOp<0)
|
| + || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg))))
|
| + ){
|
| + testcase( pAux->iArg==31 );
|
| if( pAux->xDelete ){
|
| pAux->xDelete(pAux->pAux);
|
| }
|
| - pAux->pAux = 0;
|
| + *pp = pAux->pNext;
|
| + sqlite3DbFree(pVdbe->db, pAux);
|
| + }else{
|
| + pp= &pAux->pNext;
|
| }
|
| }
|
| }
|
|
|
| /*
|
| -** Free all memory associated with the Vdbe passed as the second argument.
|
| +** Free all memory associated with the Vdbe passed as the second argument,
|
| +** except for object itself, which is preserved.
|
| +**
|
| ** The difference between this function and sqlite3VdbeDelete() is that
|
| ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
|
| -** the database connection.
|
| +** the database connection and frees the object itself.
|
| */
|
| -void sqlite3VdbeDeleteObject(sqlite3 *db, Vdbe *p){
|
| +void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
|
| SubProgram *pSub, *pNext;
|
| + int i;
|
| assert( p->db==0 || p->db==db );
|
| releaseMemArray(p->aVar, p->nVar);
|
| releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
|
| @@ -2403,12 +2674,11 @@ void sqlite3VdbeDeleteObject(sqlite3 *db, Vdbe *p){
|
| vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
|
| sqlite3DbFree(db, pSub);
|
| }
|
| + for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
|
| vdbeFreeOpArray(db, p->aOp, p->nOp);
|
| - sqlite3DbFree(db, p->aLabel);
|
| sqlite3DbFree(db, p->aColName);
|
| sqlite3DbFree(db, p->zSql);
|
| sqlite3DbFree(db, p->pFree);
|
| - sqlite3DbFree(db, p);
|
| }
|
|
|
| /*
|
| @@ -2419,6 +2689,8 @@ void sqlite3VdbeDelete(Vdbe *p){
|
|
|
| if( NEVER(p==0) ) return;
|
| db = p->db;
|
| + assert( sqlite3_mutex_held(db->mutex) );
|
| + sqlite3VdbeClearObject(db, p);
|
| if( p->pPrev ){
|
| p->pPrev->pNext = p->pNext;
|
| }else{
|
| @@ -2430,7 +2702,58 @@ void sqlite3VdbeDelete(Vdbe *p){
|
| }
|
| p->magic = VDBE_MAGIC_DEAD;
|
| p->db = 0;
|
| - sqlite3VdbeDeleteObject(db, p);
|
| + sqlite3DbFree(db, p);
|
| +}
|
| +
|
| +/*
|
| +** The cursor "p" has a pending seek operation that has not yet been
|
| +** carried out. Seek the cursor now. If an error occurs, return
|
| +** the appropriate error code.
|
| +*/
|
| +static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){
|
| + int res, rc;
|
| +#ifdef SQLITE_TEST
|
| + extern int sqlite3_search_count;
|
| +#endif
|
| + assert( p->deferredMoveto );
|
| + assert( p->isTable );
|
| + rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
|
| + if( rc ) return rc;
|
| + if( res!=0 ) return SQLITE_CORRUPT_BKPT;
|
| +#ifdef SQLITE_TEST
|
| + sqlite3_search_count++;
|
| +#endif
|
| + p->deferredMoveto = 0;
|
| + p->cacheStatus = CACHE_STALE;
|
| + return SQLITE_OK;
|
| +}
|
| +
|
| +/*
|
| +** Something has moved cursor "p" out of place. Maybe the row it was
|
| +** pointed to was deleted out from under it. Or maybe the btree was
|
| +** rebalanced. Whatever the cause, try to restore "p" to the place it
|
| +** is supposed to be pointing. If the row was deleted out from under the
|
| +** cursor, set the cursor to point to a NULL row.
|
| +*/
|
| +static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
|
| + int isDifferentRow, rc;
|
| + assert( p->pCursor!=0 );
|
| + assert( sqlite3BtreeCursorHasMoved(p->pCursor) );
|
| + rc = sqlite3BtreeCursorRestore(p->pCursor, &isDifferentRow);
|
| + p->cacheStatus = CACHE_STALE;
|
| + if( isDifferentRow ) p->nullRow = 1;
|
| + return rc;
|
| +}
|
| +
|
| +/*
|
| +** Check to ensure that the cursor is valid. Restore the cursor
|
| +** if need be. Return any I/O error from the restore operation.
|
| +*/
|
| +int sqlite3VdbeCursorRestore(VdbeCursor *p){
|
| + if( sqlite3BtreeCursorHasMoved(p->pCursor) ){
|
| + return handleMovedCursor(p);
|
| + }
|
| + return SQLITE_OK;
|
| }
|
|
|
| /*
|
| @@ -2448,29 +2771,10 @@ void sqlite3VdbeDelete(Vdbe *p){
|
| */
|
| int sqlite3VdbeCursorMoveto(VdbeCursor *p){
|
| if( p->deferredMoveto ){
|
| - int res, rc;
|
| -#ifdef SQLITE_TEST
|
| - extern int sqlite3_search_count;
|
| -#endif
|
| - assert( p->isTable );
|
| - rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
|
| - if( rc ) return rc;
|
| - p->lastRowid = p->movetoTarget;
|
| - if( res!=0 ) return SQLITE_CORRUPT_BKPT;
|
| - p->rowidIsValid = 1;
|
| -#ifdef SQLITE_TEST
|
| - sqlite3_search_count++;
|
| -#endif
|
| - p->deferredMoveto = 0;
|
| - p->cacheStatus = CACHE_STALE;
|
| - }else if( ALWAYS(p->pCursor) ){
|
| - int hasMoved;
|
| - int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved);
|
| - if( rc ) return rc;
|
| - if( hasMoved ){
|
| - p->cacheStatus = CACHE_STALE;
|
| - p->nullRow = 1;
|
| - }
|
| + return handleDeferredMoveto(p);
|
| + }
|
| + if( p->pCursor && sqlite3BtreeCursorHasMoved(p->pCursor) ){
|
| + return handleMovedCursor(p);
|
| }
|
| return SQLITE_OK;
|
| }
|
| @@ -2493,7 +2797,7 @@ int sqlite3VdbeCursorMoveto(VdbeCursor *p){
|
| ** the blob of data that it corresponds to. In a table record, all serial
|
| ** types are stored at the start of the record, and the blobs of data at
|
| ** the end. Hence these functions allow the caller to handle the
|
| -** serial-type and data blob seperately.
|
| +** serial-type and data blob separately.
|
| **
|
| ** The following table describes the various storage classes for data:
|
| **
|
| @@ -2522,7 +2826,7 @@ int sqlite3VdbeCursorMoveto(VdbeCursor *p){
|
| */
|
| u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
|
| int flags = pMem->flags;
|
| - int n;
|
| + u32 n;
|
|
|
| if( flags&MEM_Null ){
|
| return 0;
|
| @@ -2532,9 +2836,6 @@ u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
|
| # define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
|
| i64 i = pMem->u.i;
|
| u64 u;
|
| - if( file_format>=4 && (i&1)==i ){
|
| - return 8+(u32)i;
|
| - }
|
| if( i<0 ){
|
| if( i<(-MAX_6BYTE) ) return 6;
|
| /* Previous test prevents: u = -(-9223372036854775808) */
|
| @@ -2542,7 +2843,9 @@ u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
|
| }else{
|
| u = i;
|
| }
|
| - if( u<=127 ) return 1;
|
| + if( u<=127 ){
|
| + return ((i&1)==i && file_format>=4) ? 8+(u32)u : 1;
|
| + }
|
| if( u<=32767 ) return 2;
|
| if( u<=8388607 ) return 3;
|
| if( u<=2147483647 ) return 4;
|
| @@ -2553,11 +2856,11 @@ u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
|
| return 7;
|
| }
|
| assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
|
| - n = pMem->n;
|
| + assert( pMem->n>=0 );
|
| + n = (u32)pMem->n;
|
| if( flags & MEM_Zero ){
|
| n += pMem->u.nZero;
|
| }
|
| - assert( n>=0 );
|
| return ((n*2) + 12 + ((flags&MEM_Str)!=0));
|
| }
|
|
|
| @@ -2631,21 +2934,15 @@ static u64 floatSwap(u64 in){
|
| ** buf. It is assumed that the caller has allocated sufficient space.
|
| ** Return the number of bytes written.
|
| **
|
| -** nBuf is the amount of space left in buf[]. nBuf must always be
|
| -** large enough to hold the entire field. Except, if the field is
|
| -** a blob with a zero-filled tail, then buf[] might be just the right
|
| -** size to hold everything except for the zero-filled tail. If buf[]
|
| -** is only big enough to hold the non-zero prefix, then only write that
|
| -** prefix into buf[]. But if buf[] is large enough to hold both the
|
| -** prefix and the tail then write the prefix and set the tail to all
|
| -** zeros.
|
| +** nBuf is the amount of space left in buf[]. The caller is responsible
|
| +** for allocating enough space to buf[] to hold the entire field, exclusive
|
| +** of the pMem->u.nZero bytes for a MEM_Zero value.
|
| **
|
| ** Return the number of bytes actually written into buf[]. The number
|
| ** of bytes in the zero-filled tail is included in the return value only
|
| ** if those bytes were zeroed in buf[].
|
| */
|
| -u32 sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){
|
| - u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
|
| +u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
|
| u32 len;
|
|
|
| /* Integer and Real */
|
| @@ -2653,18 +2950,18 @@ u32 sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){
|
| u64 v;
|
| u32 i;
|
| if( serial_type==7 ){
|
| - assert( sizeof(v)==sizeof(pMem->r) );
|
| - memcpy(&v, &pMem->r, sizeof(v));
|
| + assert( sizeof(v)==sizeof(pMem->u.r) );
|
| + memcpy(&v, &pMem->u.r, sizeof(v));
|
| swapMixedEndianFloat(v);
|
| }else{
|
| v = pMem->u.i;
|
| }
|
| len = i = sqlite3VdbeSerialTypeLen(serial_type);
|
| - assert( len<=(u32)nBuf );
|
| - while( i-- ){
|
| - buf[i] = (u8)(v&0xFF);
|
| + assert( i>0 );
|
| + do{
|
| + buf[--i] = (u8)(v&0xFF);
|
| v >>= 8;
|
| - }
|
| + }while( i );
|
| return len;
|
| }
|
|
|
| @@ -2672,17 +2969,8 @@ u32 sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){
|
| if( serial_type>=12 ){
|
| assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
|
| == (int)sqlite3VdbeSerialTypeLen(serial_type) );
|
| - assert( pMem->n<=nBuf );
|
| len = pMem->n;
|
| memcpy(buf, pMem->z, len);
|
| - if( pMem->flags & MEM_Zero ){
|
| - len += pMem->u.nZero;
|
| - assert( nBuf>=0 );
|
| - if( len > (u32)nBuf ){
|
| - len = (u32)nBuf;
|
| - }
|
| - memset(&buf[pMem->n], 0, len-pMem->n);
|
| - }
|
| return len;
|
| }
|
|
|
| @@ -2690,10 +2978,56 @@ u32 sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){
|
| return 0;
|
| }
|
|
|
| +/* Input "x" is a sequence of unsigned characters that represent a
|
| +** big-endian integer. Return the equivalent native integer
|
| +*/
|
| +#define ONE_BYTE_INT(x) ((i8)(x)[0])
|
| +#define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
|
| +#define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
|
| +#define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
|
| +#define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
|
| +
|
| /*
|
| ** Deserialize the data blob pointed to by buf as serial type serial_type
|
| ** and store the result in pMem. Return the number of bytes read.
|
| +**
|
| +** This function is implemented as two separate routines for performance.
|
| +** The few cases that require local variables are broken out into a separate
|
| +** routine so that in most cases the overhead of moving the stack pointer
|
| +** is avoided.
|
| */
|
| +static u32 SQLITE_NOINLINE serialGet(
|
| + const unsigned char *buf, /* Buffer to deserialize from */
|
| + u32 serial_type, /* Serial type to deserialize */
|
| + Mem *pMem /* Memory cell to write value into */
|
| +){
|
| + u64 x = FOUR_BYTE_UINT(buf);
|
| + u32 y = FOUR_BYTE_UINT(buf+4);
|
| + x = (x<<32) + y;
|
| + if( serial_type==6 ){
|
| + pMem->u.i = *(i64*)&x;
|
| + pMem->flags = MEM_Int;
|
| + testcase( pMem->u.i<0 );
|
| + }else{
|
| +#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
|
| + /* Verify that integers and floating point values use the same
|
| + ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
|
| + ** defined that 64-bit floating point values really are mixed
|
| + ** endian.
|
| + */
|
| + static const u64 t1 = ((u64)0x3ff00000)<<32;
|
| + static const double r1 = 1.0;
|
| + u64 t2 = t1;
|
| + swapMixedEndianFloat(t2);
|
| + assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
|
| +#endif
|
| + assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
|
| + swapMixedEndianFloat(x);
|
| + memcpy(&pMem->u.r, &x, sizeof(x));
|
| + pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real;
|
| + }
|
| + return 8;
|
| +}
|
| u32 sqlite3VdbeSerialGet(
|
| const unsigned char *buf, /* Buffer to deserialize from */
|
| u32 serial_type, /* Serial type to deserialize */
|
| @@ -2707,63 +3041,40 @@ u32 sqlite3VdbeSerialGet(
|
| break;
|
| }
|
| case 1: { /* 1-byte signed integer */
|
| - pMem->u.i = (signed char)buf[0];
|
| + pMem->u.i = ONE_BYTE_INT(buf);
|
| pMem->flags = MEM_Int;
|
| + testcase( pMem->u.i<0 );
|
| return 1;
|
| }
|
| case 2: { /* 2-byte signed integer */
|
| - pMem->u.i = (((signed char)buf[0])<<8) | buf[1];
|
| + pMem->u.i = TWO_BYTE_INT(buf);
|
| pMem->flags = MEM_Int;
|
| + testcase( pMem->u.i<0 );
|
| return 2;
|
| }
|
| case 3: { /* 3-byte signed integer */
|
| - pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2];
|
| + pMem->u.i = THREE_BYTE_INT(buf);
|
| pMem->flags = MEM_Int;
|
| + testcase( pMem->u.i<0 );
|
| return 3;
|
| }
|
| case 4: { /* 4-byte signed integer */
|
| - pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
|
| + pMem->u.i = FOUR_BYTE_INT(buf);
|
| pMem->flags = MEM_Int;
|
| + testcase( pMem->u.i<0 );
|
| return 4;
|
| }
|
| case 5: { /* 6-byte signed integer */
|
| - u64 x = (((signed char)buf[0])<<8) | buf[1];
|
| - u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
|
| - x = (x<<32) | y;
|
| - pMem->u.i = *(i64*)&x;
|
| + pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
|
| pMem->flags = MEM_Int;
|
| + testcase( pMem->u.i<0 );
|
| return 6;
|
| }
|
| case 6: /* 8-byte signed integer */
|
| case 7: { /* IEEE floating point */
|
| - u64 x;
|
| - u32 y;
|
| -#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
|
| - /* Verify that integers and floating point values use the same
|
| - ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
|
| - ** defined that 64-bit floating point values really are mixed
|
| - ** endian.
|
| - */
|
| - static const u64 t1 = ((u64)0x3ff00000)<<32;
|
| - static const double r1 = 1.0;
|
| - u64 t2 = t1;
|
| - swapMixedEndianFloat(t2);
|
| - assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
|
| -#endif
|
| -
|
| - x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
|
| - y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
|
| - x = (x<<32) | y;
|
| - if( serial_type==6 ){
|
| - pMem->u.i = *(i64*)&x;
|
| - pMem->flags = MEM_Int;
|
| - }else{
|
| - assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
|
| - swapMixedEndianFloat(x);
|
| - memcpy(&pMem->r, &x, sizeof(x));
|
| - pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real;
|
| - }
|
| - return 8;
|
| + /* These use local variables, so do them in a separate routine
|
| + ** to avoid having to move the frame pointer in the common case */
|
| + return serialGet(buf,serial_type,pMem);
|
| }
|
| case 8: /* Integer 0 */
|
| case 9: { /* Integer 1 */
|
| @@ -2772,164 +3083,136 @@ u32 sqlite3VdbeSerialGet(
|
| return 0;
|
| }
|
| default: {
|
| - u32 len = (serial_type-12)/2;
|
| + static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
|
| pMem->z = (char *)buf;
|
| - pMem->n = len;
|
| - pMem->xDel = 0;
|
| - if( serial_type&0x01 ){
|
| - pMem->flags = MEM_Str | MEM_Ephem;
|
| - }else{
|
| - pMem->flags = MEM_Blob | MEM_Ephem;
|
| - }
|
| - return len;
|
| + pMem->n = (serial_type-12)/2;
|
| + pMem->flags = aFlag[serial_type&1];
|
| + return pMem->n;
|
| }
|
| }
|
| return 0;
|
| }
|
| -
|
| -
|
| /*
|
| -** Given the nKey-byte encoding of a record in pKey[], parse the
|
| -** record into a UnpackedRecord structure. Return a pointer to
|
| -** that structure.
|
| +** This routine is used to allocate sufficient space for an UnpackedRecord
|
| +** structure large enough to be used with sqlite3VdbeRecordUnpack() if
|
| +** the first argument is a pointer to KeyInfo structure pKeyInfo.
|
| **
|
| -** The calling function might provide szSpace bytes of memory
|
| -** space at pSpace. This space can be used to hold the returned
|
| -** VDbeParsedRecord structure if it is large enough. If it is
|
| -** not big enough, space is obtained from sqlite3_malloc().
|
| +** The space is either allocated using sqlite3DbMallocRaw() or from within
|
| +** the unaligned buffer passed via the second and third arguments (presumably
|
| +** stack space). If the former, then *ppFree is set to a pointer that should
|
| +** be eventually freed by the caller using sqlite3DbFree(). Or, if the
|
| +** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
|
| +** before returning.
|
| **
|
| -** The returned structure should be closed by a call to
|
| -** sqlite3VdbeDeleteUnpackedRecord().
|
| -*/
|
| -UnpackedRecord *sqlite3VdbeRecordUnpack(
|
| - KeyInfo *pKeyInfo, /* Information about the record format */
|
| - int nKey, /* Size of the binary record */
|
| - const void *pKey, /* The binary record */
|
| - char *pSpace, /* Unaligned space available to hold the object */
|
| - int szSpace /* Size of pSpace[] in bytes */
|
| +** If an OOM error occurs, NULL is returned.
|
| +*/
|
| +UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
|
| + KeyInfo *pKeyInfo, /* Description of the record */
|
| + char *pSpace, /* Unaligned space available */
|
| + int szSpace, /* Size of pSpace[] in bytes */
|
| + char **ppFree /* OUT: Caller should free this pointer */
|
| ){
|
| - const unsigned char *aKey = (const unsigned char *)pKey;
|
| - UnpackedRecord *p; /* The unpacked record that we will return */
|
| - int nByte; /* Memory space needed to hold p, in bytes */
|
| - int d;
|
| - u32 idx;
|
| - u16 u; /* Unsigned loop counter */
|
| - u32 szHdr;
|
| - Mem *pMem;
|
| - int nOff; /* Increase pSpace by this much to 8-byte align it */
|
| -
|
| - /*
|
| - ** We want to shift the pointer pSpace up such that it is 8-byte aligned.
|
| + UnpackedRecord *p; /* Unpacked record to return */
|
| + int nOff; /* Increment pSpace by nOff to align it */
|
| + int nByte; /* Number of bytes required for *p */
|
| +
|
| + /* We want to shift the pointer pSpace up such that it is 8-byte aligned.
|
| ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift
|
| ** it by. If pSpace is already 8-byte aligned, nOff should be zero.
|
| */
|
| nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7;
|
| - pSpace += nOff;
|
| - szSpace -= nOff;
|
| nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
|
| - if( nByte>szSpace ){
|
| - p = sqlite3DbMallocRaw(pKeyInfo->db, nByte);
|
| - if( p==0 ) return 0;
|
| - p->flags = UNPACKED_NEED_FREE | UNPACKED_NEED_DESTROY;
|
| + if( nByte>szSpace+nOff ){
|
| + p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
|
| + *ppFree = (char *)p;
|
| + if( !p ) return 0;
|
| }else{
|
| - p = (UnpackedRecord*)pSpace;
|
| - p->flags = UNPACKED_NEED_DESTROY;
|
| + p = (UnpackedRecord*)&pSpace[nOff];
|
| + *ppFree = 0;
|
| }
|
| +
|
| + p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
|
| + assert( pKeyInfo->aSortOrder!=0 );
|
| p->pKeyInfo = pKeyInfo;
|
| p->nField = pKeyInfo->nField + 1;
|
| - p->aMem = pMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
|
| + return p;
|
| +}
|
| +
|
| +/*
|
| +** Given the nKey-byte encoding of a record in pKey[], populate the
|
| +** UnpackedRecord structure indicated by the fourth argument with the
|
| +** contents of the decoded record.
|
| +*/
|
| +void sqlite3VdbeRecordUnpack(
|
| + KeyInfo *pKeyInfo, /* Information about the record format */
|
| + int nKey, /* Size of the binary record */
|
| + const void *pKey, /* The binary record */
|
| + UnpackedRecord *p /* Populate this structure before returning. */
|
| +){
|
| + const unsigned char *aKey = (const unsigned char *)pKey;
|
| + int d;
|
| + u32 idx; /* Offset in aKey[] to read from */
|
| + u16 u; /* Unsigned loop counter */
|
| + u32 szHdr;
|
| + Mem *pMem = p->aMem;
|
| +
|
| + p->default_rc = 0;
|
| assert( EIGHT_BYTE_ALIGNMENT(pMem) );
|
| idx = getVarint32(aKey, szHdr);
|
| d = szHdr;
|
| u = 0;
|
| - while( idx<szHdr && u<p->nField && d<=nKey ){
|
| + while( idx<szHdr && d<=nKey ){
|
| u32 serial_type;
|
|
|
| idx += getVarint32(&aKey[idx], serial_type);
|
| pMem->enc = pKeyInfo->enc;
|
| pMem->db = pKeyInfo->db;
|
| - pMem->flags = 0;
|
| - pMem->zMalloc = 0;
|
| + /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
|
| + pMem->szMalloc = 0;
|
| d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
|
| pMem++;
|
| - u++;
|
| + if( (++u)>=p->nField ) break;
|
| }
|
| assert( u<=pKeyInfo->nField + 1 );
|
| p->nField = u;
|
| - return (void*)p;
|
| -}
|
| -
|
| -/*
|
| -** This routine destroys a UnpackedRecord object.
|
| -*/
|
| -void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord *p){
|
| - int i;
|
| - Mem *pMem;
|
| -
|
| - assert( p!=0 );
|
| - assert( p->flags & UNPACKED_NEED_DESTROY );
|
| - for(i=0, pMem=p->aMem; i<p->nField; i++, pMem++){
|
| - /* The unpacked record is always constructed by the
|
| - ** sqlite3VdbeUnpackRecord() function above, which makes all
|
| - ** strings and blobs static. And none of the elements are
|
| - ** ever transformed, so there is never anything to delete.
|
| - */
|
| - if( NEVER(pMem->zMalloc) ) sqlite3VdbeMemRelease(pMem);
|
| - }
|
| - if( p->flags & UNPACKED_NEED_FREE ){
|
| - sqlite3DbFree(p->pKeyInfo->db, p);
|
| - }
|
| }
|
|
|
| +#if SQLITE_DEBUG
|
| /*
|
| -** This function compares the two table rows or index records
|
| -** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
|
| -** or positive integer if key1 is less than, equal to or
|
| -** greater than key2. The {nKey1, pKey1} key must be a blob
|
| -** created by th OP_MakeRecord opcode of the VDBE. The pPKey2
|
| -** key must be a parsed key such as obtained from
|
| -** sqlite3VdbeParseRecord.
|
| +** This function compares two index or table record keys in the same way
|
| +** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
|
| +** this function deserializes and compares values using the
|
| +** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
|
| +** in assert() statements to ensure that the optimized code in
|
| +** sqlite3VdbeRecordCompare() returns results with these two primitives.
|
| **
|
| -** Key1 and Key2 do not have to contain the same number of fields.
|
| -** The key with fewer fields is usually compares less than the
|
| -** longer key. However if the UNPACKED_INCRKEY flags in pPKey2 is set
|
| -** and the common prefixes are equal, then key1 is less than key2.
|
| -** Or if the UNPACKED_MATCH_PREFIX flag is set and the prefixes are
|
| -** equal, then the keys are considered to be equal and
|
| -** the parts beyond the common prefix are ignored.
|
| -**
|
| -** If the UNPACKED_IGNORE_ROWID flag is set, then the last byte of
|
| -** the header of pKey1 is ignored. It is assumed that pKey1 is
|
| -** an index key, and thus ends with a rowid value. The last byte
|
| -** of the header will therefore be the serial type of the rowid:
|
| -** one of 1, 2, 3, 4, 5, 6, 8, or 9 - the integer serial types.
|
| -** The serial type of the final rowid will always be a single byte.
|
| -** By ignoring this last byte of the header, we force the comparison
|
| -** to ignore the rowid at the end of key1.
|
| +** Return true if the result of comparison is equivalent to desiredResult.
|
| +** Return false if there is a disagreement.
|
| */
|
| -int sqlite3VdbeRecordCompare(
|
| +static int vdbeRecordCompareDebug(
|
| int nKey1, const void *pKey1, /* Left key */
|
| - UnpackedRecord *pPKey2 /* Right key */
|
| + const UnpackedRecord *pPKey2, /* Right key */
|
| + int desiredResult /* Correct answer */
|
| ){
|
| - int d1; /* Offset into aKey[] of next data element */
|
| + u32 d1; /* Offset into aKey[] of next data element */
|
| u32 idx1; /* Offset into aKey[] of next header element */
|
| u32 szHdr1; /* Number of bytes in header */
|
| int i = 0;
|
| - int nField;
|
| int rc = 0;
|
| const unsigned char *aKey1 = (const unsigned char *)pKey1;
|
| KeyInfo *pKeyInfo;
|
| Mem mem1;
|
|
|
| pKeyInfo = pPKey2->pKeyInfo;
|
| + if( pKeyInfo->db==0 ) return 1;
|
| mem1.enc = pKeyInfo->enc;
|
| mem1.db = pKeyInfo->db;
|
| /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
|
| - VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by assert() statements */
|
| + VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
|
|
|
| /* Compilers may complain that mem1.u.i is potentially uninitialized.
|
| ** We could initialize it, as shown here, to silence those complaints.
|
| - ** But in fact, mem1.u.i will never actually be used initialized, and doing
|
| + ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
|
| ** the unnecessary initialization has a measurable negative performance
|
| ** impact, since this routine is a very high runner. And so, we choose
|
| ** to ignore the compiler warnings and leave this variable uninitialized.
|
| @@ -2938,16 +3221,27 @@ int sqlite3VdbeRecordCompare(
|
|
|
| idx1 = getVarint32(aKey1, szHdr1);
|
| d1 = szHdr1;
|
| - if( pPKey2->flags & UNPACKED_IGNORE_ROWID ){
|
| - szHdr1--;
|
| - }
|
| - nField = pKeyInfo->nField;
|
| - while( idx1<szHdr1 && i<pPKey2->nField ){
|
| + assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB );
|
| + assert( pKeyInfo->aSortOrder!=0 );
|
| + assert( pKeyInfo->nField>0 );
|
| + assert( idx1<=szHdr1 || CORRUPT_DB );
|
| + do{
|
| u32 serial_type1;
|
|
|
| /* Read the serial types for the next element in each key. */
|
| idx1 += getVarint32( aKey1+idx1, serial_type1 );
|
| - if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break;
|
| +
|
| + /* Verify that there is enough key space remaining to avoid
|
| + ** a buffer overread. The "d1+serial_type1+2" subexpression will
|
| + ** always be greater than or equal to the amount of required key space.
|
| + ** Use that approximation to avoid the more expensive call to
|
| + ** sqlite3VdbeSerialTypeLen() in the common case.
|
| + */
|
| + if( d1+serial_type1+2>(u32)nKey1
|
| + && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1
|
| + ){
|
| + break;
|
| + }
|
|
|
| /* Extract the values to be compared.
|
| */
|
| @@ -2955,58 +3249,623 @@ int sqlite3VdbeRecordCompare(
|
|
|
| /* Do the comparison
|
| */
|
| - rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
|
| - i<nField ? pKeyInfo->aColl[i] : 0);
|
| + rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);
|
| if( rc!=0 ){
|
| - assert( mem1.zMalloc==0 ); /* See comment below */
|
| -
|
| - /* Invert the result if we are using DESC sort order. */
|
| - if( pKeyInfo->aSortOrder && i<nField && pKeyInfo->aSortOrder[i] ){
|
| - rc = -rc;
|
| + assert( mem1.szMalloc==0 ); /* See comment below */
|
| + if( pKeyInfo->aSortOrder[i] ){
|
| + rc = -rc; /* Invert the result for DESC sort order. */
|
| }
|
| -
|
| - /* If the PREFIX_SEARCH flag is set and all fields except the final
|
| - ** rowid field were equal, then clear the PREFIX_SEARCH flag and set
|
| - ** pPKey2->rowid to the value of the rowid field in (pKey1, nKey1).
|
| - ** This is used by the OP_IsUnique opcode.
|
| - */
|
| - if( (pPKey2->flags & UNPACKED_PREFIX_SEARCH) && i==(pPKey2->nField-1) ){
|
| - assert( idx1==szHdr1 && rc );
|
| - assert( mem1.flags & MEM_Int );
|
| - pPKey2->flags &= ~UNPACKED_PREFIX_SEARCH;
|
| - pPKey2->rowid = mem1.u.i;
|
| - }
|
| -
|
| - return rc;
|
| + goto debugCompareEnd;
|
| }
|
| i++;
|
| - }
|
| + }while( idx1<szHdr1 && i<pPKey2->nField );
|
|
|
| /* No memory allocation is ever used on mem1. Prove this using
|
| ** the following assert(). If the assert() fails, it indicates a
|
| ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
|
| */
|
| - assert( mem1.zMalloc==0 );
|
| + assert( mem1.szMalloc==0 );
|
|
|
| /* rc==0 here means that one of the keys ran out of fields and
|
| - ** all the fields up to that point were equal. If the UNPACKED_INCRKEY
|
| - ** flag is set, then break the tie by treating key2 as larger.
|
| - ** If the UPACKED_PREFIX_MATCH flag is set, then keys with common prefixes
|
| - ** are considered to be equal. Otherwise, the longer key is the
|
| - ** larger. As it happens, the pPKey2 will always be the longer
|
| - ** if there is a difference.
|
| - */
|
| - assert( rc==0 );
|
| - if( pPKey2->flags & UNPACKED_INCRKEY ){
|
| - rc = -1;
|
| - }else if( pPKey2->flags & UNPACKED_PREFIX_MATCH ){
|
| - /* Leave rc==0 */
|
| - }else if( idx1<szHdr1 ){
|
| - rc = 1;
|
| + ** all the fields up to that point were equal. Return the default_rc
|
| + ** value. */
|
| + rc = pPKey2->default_rc;
|
| +
|
| +debugCompareEnd:
|
| + if( desiredResult==0 && rc==0 ) return 1;
|
| + if( desiredResult<0 && rc<0 ) return 1;
|
| + if( desiredResult>0 && rc>0 ) return 1;
|
| + if( CORRUPT_DB ) return 1;
|
| + if( pKeyInfo->db->mallocFailed ) return 1;
|
| + return 0;
|
| +}
|
| +#endif
|
| +
|
| +/*
|
| +** Both *pMem1 and *pMem2 contain string values. Compare the two values
|
| +** using the collation sequence pColl. As usual, return a negative , zero
|
| +** or positive value if *pMem1 is less than, equal to or greater than
|
| +** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
|
| +*/
|
| +static int vdbeCompareMemString(
|
| + const Mem *pMem1,
|
| + const Mem *pMem2,
|
| + const CollSeq *pColl,
|
| + u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */
|
| +){
|
| + if( pMem1->enc==pColl->enc ){
|
| + /* The strings are already in the correct encoding. Call the
|
| + ** comparison function directly */
|
| + return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
|
| + }else{
|
| + int rc;
|
| + const void *v1, *v2;
|
| + int n1, n2;
|
| + Mem c1;
|
| + Mem c2;
|
| + sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
|
| + sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
|
| + sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
|
| + sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
|
| + v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
|
| + n1 = v1==0 ? 0 : c1.n;
|
| + v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
|
| + n2 = v2==0 ? 0 : c2.n;
|
| + rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
|
| + sqlite3VdbeMemRelease(&c1);
|
| + sqlite3VdbeMemRelease(&c2);
|
| + if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM;
|
| + return rc;
|
| }
|
| - return rc;
|
| }
|
| +
|
| +/*
|
| +** Compare two blobs. Return negative, zero, or positive if the first
|
| +** is less than, equal to, or greater than the second, respectively.
|
| +** If one blob is a prefix of the other, then the shorter is the lessor.
|
| +*/
|
| +static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
|
| + int c = memcmp(pB1->z, pB2->z, pB1->n>pB2->n ? pB2->n : pB1->n);
|
| + if( c ) return c;
|
| + return pB1->n - pB2->n;
|
| +}
|
| +
|
| +
|
| +/*
|
| +** Compare the values contained by the two memory cells, returning
|
| +** negative, zero or positive if pMem1 is less than, equal to, or greater
|
| +** than pMem2. Sorting order is NULL's first, followed by numbers (integers
|
| +** and reals) sorted numerically, followed by text ordered by the collating
|
| +** sequence pColl and finally blob's ordered by memcmp().
|
| +**
|
| +** Two NULL values are considered equal by this function.
|
| +*/
|
| +int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
|
| + int f1, f2;
|
| + int combined_flags;
|
| +
|
| + f1 = pMem1->flags;
|
| + f2 = pMem2->flags;
|
| + combined_flags = f1|f2;
|
| + assert( (combined_flags & MEM_RowSet)==0 );
|
|
|
| + /* If one value is NULL, it is less than the other. If both values
|
| + ** are NULL, return 0.
|
| + */
|
| + if( combined_flags&MEM_Null ){
|
| + return (f2&MEM_Null) - (f1&MEM_Null);
|
| + }
|
| +
|
| + /* If one value is a number and the other is not, the number is less.
|
| + ** If both are numbers, compare as reals if one is a real, or as integers
|
| + ** if both values are integers.
|
| + */
|
| + if( combined_flags&(MEM_Int|MEM_Real) ){
|
| + double r1, r2;
|
| + if( (f1 & f2 & MEM_Int)!=0 ){
|
| + if( pMem1->u.i < pMem2->u.i ) return -1;
|
| + if( pMem1->u.i > pMem2->u.i ) return 1;
|
| + return 0;
|
| + }
|
| + if( (f1&MEM_Real)!=0 ){
|
| + r1 = pMem1->u.r;
|
| + }else if( (f1&MEM_Int)!=0 ){
|
| + r1 = (double)pMem1->u.i;
|
| + }else{
|
| + return 1;
|
| + }
|
| + if( (f2&MEM_Real)!=0 ){
|
| + r2 = pMem2->u.r;
|
| + }else if( (f2&MEM_Int)!=0 ){
|
| + r2 = (double)pMem2->u.i;
|
| + }else{
|
| + return -1;
|
| + }
|
| + if( r1<r2 ) return -1;
|
| + if( r1>r2 ) return 1;
|
| + return 0;
|
| + }
|
| +
|
| + /* If one value is a string and the other is a blob, the string is less.
|
| + ** If both are strings, compare using the collating functions.
|
| + */
|
| + if( combined_flags&MEM_Str ){
|
| + if( (f1 & MEM_Str)==0 ){
|
| + return 1;
|
| + }
|
| + if( (f2 & MEM_Str)==0 ){
|
| + return -1;
|
| + }
|
| +
|
| + assert( pMem1->enc==pMem2->enc );
|
| + assert( pMem1->enc==SQLITE_UTF8 ||
|
| + pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
|
| +
|
| + /* The collation sequence must be defined at this point, even if
|
| + ** the user deletes the collation sequence after the vdbe program is
|
| + ** compiled (this was not always the case).
|
| + */
|
| + assert( !pColl || pColl->xCmp );
|
| +
|
| + if( pColl ){
|
| + return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
|
| + }
|
| + /* If a NULL pointer was passed as the collate function, fall through
|
| + ** to the blob case and use memcmp(). */
|
| + }
|
| +
|
| + /* Both values must be blobs. Compare using memcmp(). */
|
| + return sqlite3BlobCompare(pMem1, pMem2);
|
| +}
|
| +
|
| +
|
| +/*
|
| +** The first argument passed to this function is a serial-type that
|
| +** corresponds to an integer - all values between 1 and 9 inclusive
|
| +** except 7. The second points to a buffer containing an integer value
|
| +** serialized according to serial_type. This function deserializes
|
| +** and returns the value.
|
| +*/
|
| +static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
|
| + u32 y;
|
| + assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
|
| + switch( serial_type ){
|
| + case 0:
|
| + case 1:
|
| + testcase( aKey[0]&0x80 );
|
| + return ONE_BYTE_INT(aKey);
|
| + case 2:
|
| + testcase( aKey[0]&0x80 );
|
| + return TWO_BYTE_INT(aKey);
|
| + case 3:
|
| + testcase( aKey[0]&0x80 );
|
| + return THREE_BYTE_INT(aKey);
|
| + case 4: {
|
| + testcase( aKey[0]&0x80 );
|
| + y = FOUR_BYTE_UINT(aKey);
|
| + return (i64)*(int*)&y;
|
| + }
|
| + case 5: {
|
| + testcase( aKey[0]&0x80 );
|
| + return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
|
| + }
|
| + case 6: {
|
| + u64 x = FOUR_BYTE_UINT(aKey);
|
| + testcase( aKey[0]&0x80 );
|
| + x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
|
| + return (i64)*(i64*)&x;
|
| + }
|
| + }
|
| +
|
| + return (serial_type - 8);
|
| +}
|
| +
|
| +/*
|
| +** This function compares the two table rows or index records
|
| +** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
|
| +** or positive integer if key1 is less than, equal to or
|
| +** greater than key2. The {nKey1, pKey1} key must be a blob
|
| +** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
|
| +** key must be a parsed key such as obtained from
|
| +** sqlite3VdbeParseRecord.
|
| +**
|
| +** If argument bSkip is non-zero, it is assumed that the caller has already
|
| +** determined that the first fields of the keys are equal.
|
| +**
|
| +** Key1 and Key2 do not have to contain the same number of fields. If all
|
| +** fields that appear in both keys are equal, then pPKey2->default_rc is
|
| +** returned.
|
| +**
|
| +** If database corruption is discovered, set pPKey2->errCode to
|
| +** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
|
| +** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
|
| +** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
|
| +*/
|
| +static int vdbeRecordCompareWithSkip(
|
| + int nKey1, const void *pKey1, /* Left key */
|
| + UnpackedRecord *pPKey2, /* Right key */
|
| + int bSkip /* If true, skip the first field */
|
| +){
|
| + u32 d1; /* Offset into aKey[] of next data element */
|
| + int i; /* Index of next field to compare */
|
| + u32 szHdr1; /* Size of record header in bytes */
|
| + u32 idx1; /* Offset of first type in header */
|
| + int rc = 0; /* Return value */
|
| + Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */
|
| + KeyInfo *pKeyInfo = pPKey2->pKeyInfo;
|
| + const unsigned char *aKey1 = (const unsigned char *)pKey1;
|
| + Mem mem1;
|
| +
|
| + /* If bSkip is true, then the caller has already determined that the first
|
| + ** two elements in the keys are equal. Fix the various stack variables so
|
| + ** that this routine begins comparing at the second field. */
|
| + if( bSkip ){
|
| + u32 s1;
|
| + idx1 = 1 + getVarint32(&aKey1[1], s1);
|
| + szHdr1 = aKey1[0];
|
| + d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
|
| + i = 1;
|
| + pRhs++;
|
| + }else{
|
| + idx1 = getVarint32(aKey1, szHdr1);
|
| + d1 = szHdr1;
|
| + if( d1>(unsigned)nKey1 ){
|
| + pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
|
| + return 0; /* Corruption */
|
| + }
|
| + i = 0;
|
| + }
|
| +
|
| + VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
|
| + assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField
|
| + || CORRUPT_DB );
|
| + assert( pPKey2->pKeyInfo->aSortOrder!=0 );
|
| + assert( pPKey2->pKeyInfo->nField>0 );
|
| + assert( idx1<=szHdr1 || CORRUPT_DB );
|
| + do{
|
| + u32 serial_type;
|
| +
|
| + /* RHS is an integer */
|
| + if( pRhs->flags & MEM_Int ){
|
| + serial_type = aKey1[idx1];
|
| + testcase( serial_type==12 );
|
| + if( serial_type>=12 ){
|
| + rc = +1;
|
| + }else if( serial_type==0 ){
|
| + rc = -1;
|
| + }else if( serial_type==7 ){
|
| + double rhs = (double)pRhs->u.i;
|
| + sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
|
| + if( mem1.u.r<rhs ){
|
| + rc = -1;
|
| + }else if( mem1.u.r>rhs ){
|
| + rc = +1;
|
| + }
|
| + }else{
|
| + i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
|
| + i64 rhs = pRhs->u.i;
|
| + if( lhs<rhs ){
|
| + rc = -1;
|
| + }else if( lhs>rhs ){
|
| + rc = +1;
|
| + }
|
| + }
|
| + }
|
| +
|
| + /* RHS is real */
|
| + else if( pRhs->flags & MEM_Real ){
|
| + serial_type = aKey1[idx1];
|
| + if( serial_type>=12 ){
|
| + rc = +1;
|
| + }else if( serial_type==0 ){
|
| + rc = -1;
|
| + }else{
|
| + double rhs = pRhs->u.r;
|
| + double lhs;
|
| + sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
|
| + if( serial_type==7 ){
|
| + lhs = mem1.u.r;
|
| + }else{
|
| + lhs = (double)mem1.u.i;
|
| + }
|
| + if( lhs<rhs ){
|
| + rc = -1;
|
| + }else if( lhs>rhs ){
|
| + rc = +1;
|
| + }
|
| + }
|
| + }
|
| +
|
| + /* RHS is a string */
|
| + else if( pRhs->flags & MEM_Str ){
|
| + getVarint32(&aKey1[idx1], serial_type);
|
| + testcase( serial_type==12 );
|
| + if( serial_type<12 ){
|
| + rc = -1;
|
| + }else if( !(serial_type & 0x01) ){
|
| + rc = +1;
|
| + }else{
|
| + mem1.n = (serial_type - 12) / 2;
|
| + testcase( (d1+mem1.n)==(unsigned)nKey1 );
|
| + testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
|
| + if( (d1+mem1.n) > (unsigned)nKey1 ){
|
| + pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
|
| + return 0; /* Corruption */
|
| + }else if( pKeyInfo->aColl[i] ){
|
| + mem1.enc = pKeyInfo->enc;
|
| + mem1.db = pKeyInfo->db;
|
| + mem1.flags = MEM_Str;
|
| + mem1.z = (char*)&aKey1[d1];
|
| + rc = vdbeCompareMemString(
|
| + &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
|
| + );
|
| + }else{
|
| + int nCmp = MIN(mem1.n, pRhs->n);
|
| + rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
|
| + if( rc==0 ) rc = mem1.n - pRhs->n;
|
| + }
|
| + }
|
| + }
|
| +
|
| + /* RHS is a blob */
|
| + else if( pRhs->flags & MEM_Blob ){
|
| + getVarint32(&aKey1[idx1], serial_type);
|
| + testcase( serial_type==12 );
|
| + if( serial_type<12 || (serial_type & 0x01) ){
|
| + rc = -1;
|
| + }else{
|
| + int nStr = (serial_type - 12) / 2;
|
| + testcase( (d1+nStr)==(unsigned)nKey1 );
|
| + testcase( (d1+nStr+1)==(unsigned)nKey1 );
|
| + if( (d1+nStr) > (unsigned)nKey1 ){
|
| + pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
|
| + return 0; /* Corruption */
|
| + }else{
|
| + int nCmp = MIN(nStr, pRhs->n);
|
| + rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
|
| + if( rc==0 ) rc = nStr - pRhs->n;
|
| + }
|
| + }
|
| + }
|
| +
|
| + /* RHS is null */
|
| + else{
|
| + serial_type = aKey1[idx1];
|
| + rc = (serial_type!=0);
|
| + }
|
| +
|
| + if( rc!=0 ){
|
| + if( pKeyInfo->aSortOrder[i] ){
|
| + rc = -rc;
|
| + }
|
| + assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
|
| + assert( mem1.szMalloc==0 ); /* See comment below */
|
| + return rc;
|
| + }
|
| +
|
| + i++;
|
| + pRhs++;
|
| + d1 += sqlite3VdbeSerialTypeLen(serial_type);
|
| + idx1 += sqlite3VarintLen(serial_type);
|
| + }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 );
|
| +
|
| + /* No memory allocation is ever used on mem1. Prove this using
|
| + ** the following assert(). If the assert() fails, it indicates a
|
| + ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
|
| + assert( mem1.szMalloc==0 );
|
| +
|
| + /* rc==0 here means that one or both of the keys ran out of fields and
|
| + ** all the fields up to that point were equal. Return the default_rc
|
| + ** value. */
|
| + assert( CORRUPT_DB
|
| + || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
|
| + || pKeyInfo->db->mallocFailed
|
| + );
|
| + return pPKey2->default_rc;
|
| +}
|
| +int sqlite3VdbeRecordCompare(
|
| + int nKey1, const void *pKey1, /* Left key */
|
| + UnpackedRecord *pPKey2 /* Right key */
|
| +){
|
| + return vdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
|
| +}
|
| +
|
| +
|
| +/*
|
| +** This function is an optimized version of sqlite3VdbeRecordCompare()
|
| +** that (a) the first field of pPKey2 is an integer, and (b) the
|
| +** size-of-header varint at the start of (pKey1/nKey1) fits in a single
|
| +** byte (i.e. is less than 128).
|
| +**
|
| +** To avoid concerns about buffer overreads, this routine is only used
|
| +** on schemas where the maximum valid header size is 63 bytes or less.
|
| +*/
|
| +static int vdbeRecordCompareInt(
|
| + int nKey1, const void *pKey1, /* Left key */
|
| + UnpackedRecord *pPKey2 /* Right key */
|
| +){
|
| + const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
|
| + int serial_type = ((const u8*)pKey1)[1];
|
| + int res;
|
| + u32 y;
|
| + u64 x;
|
| + i64 v = pPKey2->aMem[0].u.i;
|
| + i64 lhs;
|
| +
|
| + assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
|
| + switch( serial_type ){
|
| + case 1: { /* 1-byte signed integer */
|
| + lhs = ONE_BYTE_INT(aKey);
|
| + testcase( lhs<0 );
|
| + break;
|
| + }
|
| + case 2: { /* 2-byte signed integer */
|
| + lhs = TWO_BYTE_INT(aKey);
|
| + testcase( lhs<0 );
|
| + break;
|
| + }
|
| + case 3: { /* 3-byte signed integer */
|
| + lhs = THREE_BYTE_INT(aKey);
|
| + testcase( lhs<0 );
|
| + break;
|
| + }
|
| + case 4: { /* 4-byte signed integer */
|
| + y = FOUR_BYTE_UINT(aKey);
|
| + lhs = (i64)*(int*)&y;
|
| + testcase( lhs<0 );
|
| + break;
|
| + }
|
| + case 5: { /* 6-byte signed integer */
|
| + lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
|
| + testcase( lhs<0 );
|
| + break;
|
| + }
|
| + case 6: { /* 8-byte signed integer */
|
| + x = FOUR_BYTE_UINT(aKey);
|
| + x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
|
| + lhs = *(i64*)&x;
|
| + testcase( lhs<0 );
|
| + break;
|
| + }
|
| + case 8:
|
| + lhs = 0;
|
| + break;
|
| + case 9:
|
| + lhs = 1;
|
| + break;
|
| +
|
| + /* This case could be removed without changing the results of running
|
| + ** this code. Including it causes gcc to generate a faster switch
|
| + ** statement (since the range of switch targets now starts at zero and
|
| + ** is contiguous) but does not cause any duplicate code to be generated
|
| + ** (as gcc is clever enough to combine the two like cases). Other
|
| + ** compilers might be similar. */
|
| + case 0: case 7:
|
| + return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
|
| +
|
| + default:
|
| + return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
|
| + }
|
| +
|
| + if( v>lhs ){
|
| + res = pPKey2->r1;
|
| + }else if( v<lhs ){
|
| + res = pPKey2->r2;
|
| + }else if( pPKey2->nField>1 ){
|
| + /* The first fields of the two keys are equal. Compare the trailing
|
| + ** fields. */
|
| + res = vdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
|
| + }else{
|
| + /* The first fields of the two keys are equal and there are no trailing
|
| + ** fields. Return pPKey2->default_rc in this case. */
|
| + res = pPKey2->default_rc;
|
| + }
|
| +
|
| + assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
|
| + return res;
|
| +}
|
| +
|
| +/*
|
| +** This function is an optimized version of sqlite3VdbeRecordCompare()
|
| +** that (a) the first field of pPKey2 is a string, that (b) the first field
|
| +** uses the collation sequence BINARY and (c) that the size-of-header varint
|
| +** at the start of (pKey1/nKey1) fits in a single byte.
|
| +*/
|
| +static int vdbeRecordCompareString(
|
| + int nKey1, const void *pKey1, /* Left key */
|
| + UnpackedRecord *pPKey2 /* Right key */
|
| +){
|
| + const u8 *aKey1 = (const u8*)pKey1;
|
| + int serial_type;
|
| + int res;
|
| +
|
| + getVarint32(&aKey1[1], serial_type);
|
| + if( serial_type<12 ){
|
| + res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */
|
| + }else if( !(serial_type & 0x01) ){
|
| + res = pPKey2->r2; /* (pKey1/nKey1) is a blob */
|
| + }else{
|
| + int nCmp;
|
| + int nStr;
|
| + int szHdr = aKey1[0];
|
| +
|
| + nStr = (serial_type-12) / 2;
|
| + if( (szHdr + nStr) > nKey1 ){
|
| + pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
|
| + return 0; /* Corruption */
|
| + }
|
| + nCmp = MIN( pPKey2->aMem[0].n, nStr );
|
| + res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
|
| +
|
| + if( res==0 ){
|
| + res = nStr - pPKey2->aMem[0].n;
|
| + if( res==0 ){
|
| + if( pPKey2->nField>1 ){
|
| + res = vdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
|
| + }else{
|
| + res = pPKey2->default_rc;
|
| + }
|
| + }else if( res>0 ){
|
| + res = pPKey2->r2;
|
| + }else{
|
| + res = pPKey2->r1;
|
| + }
|
| + }else if( res>0 ){
|
| + res = pPKey2->r2;
|
| + }else{
|
| + res = pPKey2->r1;
|
| + }
|
| + }
|
| +
|
| + assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
|
| + || CORRUPT_DB
|
| + || pPKey2->pKeyInfo->db->mallocFailed
|
| + );
|
| + return res;
|
| +}
|
| +
|
| +/*
|
| +** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
|
| +** suitable for comparing serialized records to the unpacked record passed
|
| +** as the only argument.
|
| +*/
|
| +RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
|
| + /* varintRecordCompareInt() and varintRecordCompareString() both assume
|
| + ** that the size-of-header varint that occurs at the start of each record
|
| + ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
|
| + ** also assumes that it is safe to overread a buffer by at least the
|
| + ** maximum possible legal header size plus 8 bytes. Because there is
|
| + ** guaranteed to be at least 74 (but not 136) bytes of padding following each
|
| + ** buffer passed to varintRecordCompareInt() this makes it convenient to
|
| + ** limit the size of the header to 64 bytes in cases where the first field
|
| + ** is an integer.
|
| + **
|
| + ** The easiest way to enforce this limit is to consider only records with
|
| + ** 13 fields or less. If the first field is an integer, the maximum legal
|
| + ** header size is (12*5 + 1 + 1) bytes. */
|
| + if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){
|
| + int flags = p->aMem[0].flags;
|
| + if( p->pKeyInfo->aSortOrder[0] ){
|
| + p->r1 = 1;
|
| + p->r2 = -1;
|
| + }else{
|
| + p->r1 = -1;
|
| + p->r2 = 1;
|
| + }
|
| + if( (flags & MEM_Int) ){
|
| + return vdbeRecordCompareInt;
|
| + }
|
| + testcase( flags & MEM_Real );
|
| + testcase( flags & MEM_Null );
|
| + testcase( flags & MEM_Blob );
|
| + if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){
|
| + assert( flags & MEM_Str );
|
| + return vdbeRecordCompareString;
|
| + }
|
| + }
|
| +
|
| + return sqlite3VdbeRecordCompare;
|
| +}
|
|
|
| /*
|
| ** pCur points at an index entry created using the OP_MakeRecord opcode.
|
| @@ -3024,21 +3883,19 @@ int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
|
| u32 lenRowid; /* Size of the rowid */
|
| Mem m, v;
|
|
|
| - UNUSED_PARAMETER(db);
|
| -
|
| /* Get the size of the index entry. Only indices entries of less
|
| ** than 2GiB are support - anything large must be database corruption.
|
| ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
|
| ** this code can safely assume that nCellKey is 32-bits
|
| */
|
| assert( sqlite3BtreeCursorIsValid(pCur) );
|
| - rc = sqlite3BtreeKeySize(pCur, &nCellKey);
|
| + VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
|
| assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
|
| assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
|
|
|
| /* Read in the complete content of the index entry */
|
| - memset(&m, 0, sizeof(m));
|
| - rc = sqlite3VdbeMemFromBtree(pCur, 0, (int)nCellKey, 1, &m);
|
| + sqlite3VdbeMemInit(&m, db, 0);
|
| + rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m);
|
| if( rc ){
|
| return rc;
|
| }
|
| @@ -3080,7 +3937,7 @@ int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
|
| /* Jump here if database corruption is detected after m has been
|
| ** allocated. Free the m object and return SQLITE_CORRUPT. */
|
| idx_rowid_corruption:
|
| - testcase( m.zMalloc!=0 );
|
| + testcase( m.szMalloc!=0 );
|
| sqlite3VdbeMemRelease(&m);
|
| return SQLITE_CORRUPT_BKPT;
|
| }
|
| @@ -3097,9 +3954,10 @@ idx_rowid_corruption:
|
| ** of the keys prior to the final rowid, not the entire key.
|
| */
|
| int sqlite3VdbeIdxKeyCompare(
|
| - VdbeCursor *pC, /* The cursor to compare against */
|
| - UnpackedRecord *pUnpacked, /* Unpacked version of key to compare against */
|
| - int *res /* Write the comparison result here */
|
| + sqlite3 *db, /* Database connection */
|
| + VdbeCursor *pC, /* The cursor to compare against */
|
| + UnpackedRecord *pUnpacked, /* Unpacked version of key */
|
| + int *res /* Write the comparison result here */
|
| ){
|
| i64 nCellKey = 0;
|
| int rc;
|
| @@ -3107,20 +3965,19 @@ int sqlite3VdbeIdxKeyCompare(
|
| Mem m;
|
|
|
| assert( sqlite3BtreeCursorIsValid(pCur) );
|
| - rc = sqlite3BtreeKeySize(pCur, &nCellKey);
|
| + VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
|
| assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
|
| - /* nCellKey will always be between 0 and 0xffffffff because of the say
|
| + /* nCellKey will always be between 0 and 0xffffffff because of the way
|
| ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
|
| if( nCellKey<=0 || nCellKey>0x7fffffff ){
|
| *res = 0;
|
| return SQLITE_CORRUPT_BKPT;
|
| }
|
| - memset(&m, 0, sizeof(m));
|
| - rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (int)nCellKey, 1, &m);
|
| + sqlite3VdbeMemInit(&m, db, 0);
|
| + rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (u32)nCellKey, 1, &m);
|
| if( rc ){
|
| return rc;
|
| }
|
| - assert( pUnpacked->flags & UNPACKED_IGNORE_ROWID );
|
| *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
|
| sqlite3VdbeMemRelease(&m);
|
| return SQLITE_OK;
|
| @@ -3176,7 +4033,7 @@ sqlite3 *sqlite3VdbeDb(Vdbe *v){
|
| **
|
| ** The returned value must be freed by the caller using sqlite3ValueFree().
|
| */
|
| -sqlite3_value *sqlite3VdbeGetValue(Vdbe *v, int iVar, u8 aff){
|
| +sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
|
| assert( iVar>0 );
|
| if( v ){
|
| Mem *pMem = &v->aVar[iVar-1];
|
| @@ -3185,7 +4042,6 @@ sqlite3_value *sqlite3VdbeGetValue(Vdbe *v, int iVar, u8 aff){
|
| if( pRet ){
|
| sqlite3VdbeMemCopy((Mem *)pRet, pMem);
|
| sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
|
| - sqlite3VdbeMemStoreType((Mem *)pRet);
|
| }
|
| return pRet;
|
| }
|
| @@ -3206,3 +4062,18 @@ void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
|
| v->expmask |= ((u32)1 << (iVar-1));
|
| }
|
| }
|
| +
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| +/*
|
| +** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
|
| +** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
|
| +** in memory obtained from sqlite3DbMalloc).
|
| +*/
|
| +void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
|
| + sqlite3 *db = p->db;
|
| + sqlite3DbFree(db, p->zErrMsg);
|
| + p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
|
| + sqlite3_free(pVtab->zErrMsg);
|
| + pVtab->zErrMsg = 0;
|
| +}
|
| +#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|