Index: third_party/sqlite/sqlite-src-3070603/src/vdbe.c |
diff --git a/third_party/sqlite/sqlite-src-3070603/src/vdbe.c b/third_party/sqlite/sqlite-src-3070603/src/vdbe.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..5376b08a00ef9d9f2d27e0d54627fcbe64af20ff |
--- /dev/null |
+++ b/third_party/sqlite/sqlite-src-3070603/src/vdbe.c |
@@ -0,0 +1,5983 @@ |
+/* |
+** 2001 September 15 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+************************************************************************* |
+** The code in this file implements execution method of the |
+** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c") |
+** handles housekeeping details such as creating and deleting |
+** VDBE instances. This file is solely interested in executing |
+** the VDBE program. |
+** |
+** In the external interface, an "sqlite3_stmt*" is an opaque pointer |
+** to a VDBE. |
+** |
+** The SQL parser generates a program which is then executed by |
+** the VDBE to do the work of the SQL statement. VDBE programs are |
+** similar in form to assembly language. The program consists of |
+** a linear sequence of operations. Each operation has an opcode |
+** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4 |
+** is a null-terminated string. Operand P5 is an unsigned character. |
+** Few opcodes use all 5 operands. |
+** |
+** Computation results are stored on a set of registers numbered beginning |
+** with 1 and going up to Vdbe.nMem. Each register can store |
+** either an integer, a null-terminated string, a floating point |
+** number, or the SQL "NULL" value. An implicit conversion from one |
+** type to the other occurs as necessary. |
+** |
+** Most of the code in this file is taken up by the sqlite3VdbeExec() |
+** function which does the work of interpreting a VDBE program. |
+** But other routines are also provided to help in building up |
+** a program instruction by instruction. |
+** |
+** Various scripts scan this source file in order to generate HTML |
+** documentation, headers files, or other derived files. The formatting |
+** of the code in this file is, therefore, important. See other comments |
+** in this file for details. If in doubt, do not deviate from existing |
+** commenting and indentation practices when changing or adding code. |
+*/ |
+#include "sqliteInt.h" |
+#include "vdbeInt.h" |
+ |
+/* |
+** Invoke this macro on memory cells just prior to changing the |
+** value of the cell. This macro verifies that shallow copies are |
+** not misused. |
+*/ |
+#ifdef SQLITE_DEBUG |
+# define memAboutToChange(P,M) sqlite3VdbeMemPrepareToChange(P,M) |
+#else |
+# define memAboutToChange(P,M) |
+#endif |
+ |
+/* |
+** The following global variable is incremented every time a cursor |
+** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test |
+** procedures use this information to make sure that indices are |
+** working correctly. This variable has no function other than to |
+** help verify the correct operation of the library. |
+*/ |
+#ifdef SQLITE_TEST |
+int sqlite3_search_count = 0; |
+#endif |
+ |
+/* |
+** When this global variable is positive, it gets decremented once before |
+** each instruction in the VDBE. When reaches zero, the u1.isInterrupted |
+** field of the sqlite3 structure is set in order to simulate and interrupt. |
+** |
+** This facility is used for testing purposes only. It does not function |
+** in an ordinary build. |
+*/ |
+#ifdef SQLITE_TEST |
+int sqlite3_interrupt_count = 0; |
+#endif |
+ |
+/* |
+** The next global variable is incremented each type the OP_Sort opcode |
+** is executed. The test procedures use this information to make sure that |
+** sorting is occurring or not occurring at appropriate times. This variable |
+** has no function other than to help verify the correct operation of the |
+** library. |
+*/ |
+#ifdef SQLITE_TEST |
+int sqlite3_sort_count = 0; |
+#endif |
+ |
+/* |
+** The next global variable records the size of the largest MEM_Blob |
+** or MEM_Str that has been used by a VDBE opcode. The test procedures |
+** use this information to make sure that the zero-blob functionality |
+** is working correctly. This variable has no function other than to |
+** help verify the correct operation of the library. |
+*/ |
+#ifdef SQLITE_TEST |
+int sqlite3_max_blobsize = 0; |
+static void updateMaxBlobsize(Mem *p){ |
+ if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ |
+ sqlite3_max_blobsize = p->n; |
+ } |
+} |
+#endif |
+ |
+/* |
+** The next global variable is incremented each type the OP_Found opcode |
+** is executed. This is used to test whether or not the foreign key |
+** operation implemented using OP_FkIsZero is working. This variable |
+** has no function other than to help verify the correct operation of the |
+** library. |
+*/ |
+#ifdef SQLITE_TEST |
+int sqlite3_found_count = 0; |
+#endif |
+ |
+/* |
+** Test a register to see if it exceeds the current maximum blob size. |
+** If it does, record the new maximum blob size. |
+*/ |
+#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST) |
+# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) |
+#else |
+# define UPDATE_MAX_BLOBSIZE(P) |
+#endif |
+ |
+/* |
+** Convert the given register into a string if it isn't one |
+** already. Return non-zero if a malloc() fails. |
+*/ |
+#define Stringify(P, enc) \ |
+ if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \ |
+ { goto no_mem; } |
+ |
+/* |
+** An ephemeral string value (signified by the MEM_Ephem flag) contains |
+** a pointer to a dynamically allocated string where some other entity |
+** is responsible for deallocating that string. Because the register |
+** does not control the string, it might be deleted without the register |
+** knowing it. |
+** |
+** This routine converts an ephemeral string into a dynamically allocated |
+** string that the register itself controls. In other words, it |
+** converts an MEM_Ephem string into an MEM_Dyn string. |
+*/ |
+#define Deephemeralize(P) \ |
+ if( ((P)->flags&MEM_Ephem)!=0 \ |
+ && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} |
+ |
+/* |
+** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*) |
+** P if required. |
+*/ |
+#define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0) |
+ |
+/* |
+** Argument pMem points at a register that will be passed to a |
+** user-defined function or returned to the user as the result of a query. |
+** This routine sets the pMem->type variable used by the sqlite3_value_*() |
+** routines. |
+*/ |
+void sqlite3VdbeMemStoreType(Mem *pMem){ |
+ int flags = pMem->flags; |
+ if( flags & MEM_Null ){ |
+ pMem->type = SQLITE_NULL; |
+ } |
+ else if( flags & MEM_Int ){ |
+ pMem->type = SQLITE_INTEGER; |
+ } |
+ else if( flags & MEM_Real ){ |
+ pMem->type = SQLITE_FLOAT; |
+ } |
+ else if( flags & MEM_Str ){ |
+ pMem->type = SQLITE_TEXT; |
+ }else{ |
+ pMem->type = SQLITE_BLOB; |
+ } |
+} |
+ |
+/* |
+** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL |
+** if we run out of memory. |
+*/ |
+static VdbeCursor *allocateCursor( |
+ Vdbe *p, /* The virtual machine */ |
+ int iCur, /* Index of the new VdbeCursor */ |
+ int nField, /* Number of fields in the table or index */ |
+ int iDb, /* When database the cursor belongs to, or -1 */ |
+ int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */ |
+){ |
+ /* Find the memory cell that will be used to store the blob of memory |
+ ** required for this VdbeCursor structure. It is convenient to use a |
+ ** vdbe memory cell to manage the memory allocation required for a |
+ ** VdbeCursor structure for the following reasons: |
+ ** |
+ ** * Sometimes cursor numbers are used for a couple of different |
+ ** purposes in a vdbe program. The different uses might require |
+ ** different sized allocations. Memory cells provide growable |
+ ** allocations. |
+ ** |
+ ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can |
+ ** be freed lazily via the sqlite3_release_memory() API. This |
+ ** minimizes the number of malloc calls made by the system. |
+ ** |
+ ** Memory cells for cursors are allocated at the top of the address |
+ ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for |
+ ** cursor 1 is managed by memory cell (p->nMem-1), etc. |
+ */ |
+ Mem *pMem = &p->aMem[p->nMem-iCur]; |
+ |
+ int nByte; |
+ VdbeCursor *pCx = 0; |
+ nByte = |
+ ROUND8(sizeof(VdbeCursor)) + |
+ (isBtreeCursor?sqlite3BtreeCursorSize():0) + |
+ 2*nField*sizeof(u32); |
+ |
+ assert( iCur<p->nCursor ); |
+ if( p->apCsr[iCur] ){ |
+ sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); |
+ p->apCsr[iCur] = 0; |
+ } |
+ if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){ |
+ p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; |
+ memset(pCx, 0, sizeof(VdbeCursor)); |
+ pCx->iDb = iDb; |
+ pCx->nField = nField; |
+ if( nField ){ |
+ pCx->aType = (u32 *)&pMem->z[ROUND8(sizeof(VdbeCursor))]; |
+ } |
+ if( isBtreeCursor ){ |
+ pCx->pCursor = (BtCursor*) |
+ &pMem->z[ROUND8(sizeof(VdbeCursor))+2*nField*sizeof(u32)]; |
+ sqlite3BtreeCursorZero(pCx->pCursor); |
+ } |
+ } |
+ return pCx; |
+} |
+ |
+/* |
+** Try to convert a value into a numeric representation if we can |
+** do so without loss of information. In other words, if the string |
+** looks like a number, convert it into a number. If it does not |
+** look like a number, leave it alone. |
+*/ |
+static void applyNumericAffinity(Mem *pRec){ |
+ if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){ |
+ double rValue; |
+ i64 iValue; |
+ u8 enc = pRec->enc; |
+ if( (pRec->flags&MEM_Str)==0 ) return; |
+ if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return; |
+ if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){ |
+ pRec->u.i = iValue; |
+ pRec->flags |= MEM_Int; |
+ }else{ |
+ pRec->r = rValue; |
+ pRec->flags |= MEM_Real; |
+ } |
+ } |
+} |
+ |
+/* |
+** Processing is determine by the affinity parameter: |
+** |
+** SQLITE_AFF_INTEGER: |
+** SQLITE_AFF_REAL: |
+** SQLITE_AFF_NUMERIC: |
+** Try to convert pRec to an integer representation or a |
+** floating-point representation if an integer representation |
+** is not possible. Note that the integer representation is |
+** always preferred, even if the affinity is REAL, because |
+** an integer representation is more space efficient on disk. |
+** |
+** SQLITE_AFF_TEXT: |
+** Convert pRec to a text representation. |
+** |
+** SQLITE_AFF_NONE: |
+** No-op. pRec is unchanged. |
+*/ |
+static void applyAffinity( |
+ Mem *pRec, /* The value to apply affinity to */ |
+ char affinity, /* The affinity to be applied */ |
+ u8 enc /* Use this text encoding */ |
+){ |
+ if( affinity==SQLITE_AFF_TEXT ){ |
+ /* Only attempt the conversion to TEXT if there is an integer or real |
+ ** representation (blob and NULL do not get converted) but no string |
+ ** representation. |
+ */ |
+ if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){ |
+ sqlite3VdbeMemStringify(pRec, enc); |
+ } |
+ pRec->flags &= ~(MEM_Real|MEM_Int); |
+ }else if( affinity!=SQLITE_AFF_NONE ){ |
+ assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL |
+ || affinity==SQLITE_AFF_NUMERIC ); |
+ applyNumericAffinity(pRec); |
+ if( pRec->flags & MEM_Real ){ |
+ sqlite3VdbeIntegerAffinity(pRec); |
+ } |
+ } |
+} |
+ |
+/* |
+** Try to convert the type of a function argument or a result column |
+** into a numeric representation. Use either INTEGER or REAL whichever |
+** is appropriate. But only do the conversion if it is possible without |
+** loss of information and return the revised type of the argument. |
+*/ |
+int sqlite3_value_numeric_type(sqlite3_value *pVal){ |
+ Mem *pMem = (Mem*)pVal; |
+ if( pMem->type==SQLITE_TEXT ){ |
+ applyNumericAffinity(pMem); |
+ sqlite3VdbeMemStoreType(pMem); |
+ } |
+ return pMem->type; |
+} |
+ |
+/* |
+** Exported version of applyAffinity(). This one works on sqlite3_value*, |
+** not the internal Mem* type. |
+*/ |
+void sqlite3ValueApplyAffinity( |
+ sqlite3_value *pVal, |
+ u8 affinity, |
+ u8 enc |
+){ |
+ applyAffinity((Mem *)pVal, affinity, enc); |
+} |
+ |
+#ifdef SQLITE_DEBUG |
+/* |
+** Write a nice string representation of the contents of cell pMem |
+** into buffer zBuf, length nBuf. |
+*/ |
+void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){ |
+ char *zCsr = zBuf; |
+ int f = pMem->flags; |
+ |
+ static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; |
+ |
+ if( f&MEM_Blob ){ |
+ int i; |
+ char c; |
+ if( f & MEM_Dyn ){ |
+ c = 'z'; |
+ assert( (f & (MEM_Static|MEM_Ephem))==0 ); |
+ }else if( f & MEM_Static ){ |
+ c = 't'; |
+ assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); |
+ }else if( f & MEM_Ephem ){ |
+ c = 'e'; |
+ assert( (f & (MEM_Static|MEM_Dyn))==0 ); |
+ }else{ |
+ c = 's'; |
+ } |
+ |
+ sqlite3_snprintf(100, zCsr, "%c", c); |
+ zCsr += sqlite3Strlen30(zCsr); |
+ sqlite3_snprintf(100, zCsr, "%d[", pMem->n); |
+ zCsr += sqlite3Strlen30(zCsr); |
+ for(i=0; i<16 && i<pMem->n; i++){ |
+ sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF)); |
+ zCsr += sqlite3Strlen30(zCsr); |
+ } |
+ for(i=0; i<16 && i<pMem->n; i++){ |
+ char z = pMem->z[i]; |
+ if( z<32 || z>126 ) *zCsr++ = '.'; |
+ else *zCsr++ = z; |
+ } |
+ |
+ sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]); |
+ zCsr += sqlite3Strlen30(zCsr); |
+ if( f & MEM_Zero ){ |
+ sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero); |
+ zCsr += sqlite3Strlen30(zCsr); |
+ } |
+ *zCsr = '\0'; |
+ }else if( f & MEM_Str ){ |
+ int j, k; |
+ zBuf[0] = ' '; |
+ if( f & MEM_Dyn ){ |
+ zBuf[1] = 'z'; |
+ assert( (f & (MEM_Static|MEM_Ephem))==0 ); |
+ }else if( f & MEM_Static ){ |
+ zBuf[1] = 't'; |
+ assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); |
+ }else if( f & MEM_Ephem ){ |
+ zBuf[1] = 'e'; |
+ assert( (f & (MEM_Static|MEM_Dyn))==0 ); |
+ }else{ |
+ zBuf[1] = 's'; |
+ } |
+ k = 2; |
+ sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n); |
+ k += sqlite3Strlen30(&zBuf[k]); |
+ zBuf[k++] = '['; |
+ for(j=0; j<15 && j<pMem->n; j++){ |
+ u8 c = pMem->z[j]; |
+ if( c>=0x20 && c<0x7f ){ |
+ zBuf[k++] = c; |
+ }else{ |
+ zBuf[k++] = '.'; |
+ } |
+ } |
+ zBuf[k++] = ']'; |
+ sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]); |
+ k += sqlite3Strlen30(&zBuf[k]); |
+ zBuf[k++] = 0; |
+ } |
+} |
+#endif |
+ |
+#ifdef SQLITE_DEBUG |
+/* |
+** Print the value of a register for tracing purposes: |
+*/ |
+static void memTracePrint(FILE *out, Mem *p){ |
+ if( p->flags & MEM_Null ){ |
+ fprintf(out, " NULL"); |
+ }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ |
+ fprintf(out, " si:%lld", p->u.i); |
+ }else if( p->flags & MEM_Int ){ |
+ fprintf(out, " i:%lld", p->u.i); |
+#ifndef SQLITE_OMIT_FLOATING_POINT |
+ }else if( p->flags & MEM_Real ){ |
+ fprintf(out, " r:%g", p->r); |
+#endif |
+ }else if( p->flags & MEM_RowSet ){ |
+ fprintf(out, " (rowset)"); |
+ }else{ |
+ char zBuf[200]; |
+ sqlite3VdbeMemPrettyPrint(p, zBuf); |
+ fprintf(out, " "); |
+ fprintf(out, "%s", zBuf); |
+ } |
+} |
+static void registerTrace(FILE *out, int iReg, Mem *p){ |
+ fprintf(out, "REG[%d] = ", iReg); |
+ memTracePrint(out, p); |
+ fprintf(out, "\n"); |
+} |
+#endif |
+ |
+#ifdef SQLITE_DEBUG |
+# define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M) |
+#else |
+# define REGISTER_TRACE(R,M) |
+#endif |
+ |
+ |
+#ifdef VDBE_PROFILE |
+ |
+/* |
+** hwtime.h contains inline assembler code for implementing |
+** high-performance timing routines. |
+*/ |
+#include "hwtime.h" |
+ |
+#endif |
+ |
+/* |
+** The CHECK_FOR_INTERRUPT macro defined here looks to see if the |
+** sqlite3_interrupt() routine has been called. If it has been, then |
+** processing of the VDBE program is interrupted. |
+** |
+** This macro added to every instruction that does a jump in order to |
+** implement a loop. This test used to be on every single instruction, |
+** but that meant we more testing that we needed. By only testing the |
+** flag on jump instructions, we get a (small) speed improvement. |
+*/ |
+#define CHECK_FOR_INTERRUPT \ |
+ if( db->u1.isInterrupted ) goto abort_due_to_interrupt; |
+ |
+ |
+#ifndef NDEBUG |
+/* |
+** This function is only called from within an assert() expression. It |
+** checks that the sqlite3.nTransaction variable is correctly set to |
+** the number of non-transaction savepoints currently in the |
+** linked list starting at sqlite3.pSavepoint. |
+** |
+** Usage: |
+** |
+** assert( checkSavepointCount(db) ); |
+*/ |
+static int checkSavepointCount(sqlite3 *db){ |
+ int n = 0; |
+ Savepoint *p; |
+ for(p=db->pSavepoint; p; p=p->pNext) n++; |
+ assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); |
+ return 1; |
+} |
+#endif |
+ |
+/* |
+** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored |
+** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored |
+** in memory obtained from sqlite3DbMalloc). |
+*/ |
+static void importVtabErrMsg(Vdbe *p, sqlite3_vtab *pVtab){ |
+ sqlite3 *db = p->db; |
+ sqlite3DbFree(db, p->zErrMsg); |
+ p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); |
+ sqlite3_free(pVtab->zErrMsg); |
+ pVtab->zErrMsg = 0; |
+} |
+ |
+ |
+/* |
+** Execute as much of a VDBE program as we can then return. |
+** |
+** sqlite3VdbeMakeReady() must be called before this routine in order to |
+** close the program with a final OP_Halt and to set up the callbacks |
+** and the error message pointer. |
+** |
+** Whenever a row or result data is available, this routine will either |
+** invoke the result callback (if there is one) or return with |
+** SQLITE_ROW. |
+** |
+** If an attempt is made to open a locked database, then this routine |
+** will either invoke the busy callback (if there is one) or it will |
+** return SQLITE_BUSY. |
+** |
+** If an error occurs, an error message is written to memory obtained |
+** from sqlite3_malloc() and p->zErrMsg is made to point to that memory. |
+** The error code is stored in p->rc and this routine returns SQLITE_ERROR. |
+** |
+** If the callback ever returns non-zero, then the program exits |
+** immediately. There will be no error message but the p->rc field is |
+** set to SQLITE_ABORT and this routine will return SQLITE_ERROR. |
+** |
+** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this |
+** routine to return SQLITE_ERROR. |
+** |
+** Other fatal errors return SQLITE_ERROR. |
+** |
+** After this routine has finished, sqlite3VdbeFinalize() should be |
+** used to clean up the mess that was left behind. |
+*/ |
+int sqlite3VdbeExec( |
+ Vdbe *p /* The VDBE */ |
+){ |
+ int pc=0; /* The program counter */ |
+ Op *aOp = p->aOp; /* Copy of p->aOp */ |
+ Op *pOp; /* Current operation */ |
+ int rc = SQLITE_OK; /* Value to return */ |
+ sqlite3 *db = p->db; /* The database */ |
+ u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ |
+ u8 encoding = ENC(db); /* The database encoding */ |
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK |
+ int checkProgress; /* True if progress callbacks are enabled */ |
+ int nProgressOps = 0; /* Opcodes executed since progress callback. */ |
+#endif |
+ Mem *aMem = p->aMem; /* Copy of p->aMem */ |
+ Mem *pIn1 = 0; /* 1st input operand */ |
+ Mem *pIn2 = 0; /* 2nd input operand */ |
+ Mem *pIn3 = 0; /* 3rd input operand */ |
+ Mem *pOut = 0; /* Output operand */ |
+ int iCompare = 0; /* Result of last OP_Compare operation */ |
+ int *aPermute = 0; /* Permutation of columns for OP_Compare */ |
+#ifdef VDBE_PROFILE |
+ u64 start; /* CPU clock count at start of opcode */ |
+ int origPc; /* Program counter at start of opcode */ |
+#endif |
+ /*** INSERT STACK UNION HERE ***/ |
+ |
+ assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ |
+ sqlite3VdbeEnter(p); |
+ if( p->rc==SQLITE_NOMEM ){ |
+ /* This happens if a malloc() inside a call to sqlite3_column_text() or |
+ ** sqlite3_column_text16() failed. */ |
+ goto no_mem; |
+ } |
+ assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY ); |
+ p->rc = SQLITE_OK; |
+ assert( p->explain==0 ); |
+ p->pResultSet = 0; |
+ db->busyHandler.nBusy = 0; |
+ CHECK_FOR_INTERRUPT; |
+ sqlite3VdbeIOTraceSql(p); |
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK |
+ checkProgress = db->xProgress!=0; |
+#endif |
+#ifdef SQLITE_DEBUG |
+ sqlite3BeginBenignMalloc(); |
+ if( p->pc==0 && (p->db->flags & SQLITE_VdbeListing)!=0 ){ |
+ int i; |
+ printf("VDBE Program Listing:\n"); |
+ sqlite3VdbePrintSql(p); |
+ for(i=0; i<p->nOp; i++){ |
+ sqlite3VdbePrintOp(stdout, i, &aOp[i]); |
+ } |
+ } |
+ sqlite3EndBenignMalloc(); |
+#endif |
+ for(pc=p->pc; rc==SQLITE_OK; pc++){ |
+ assert( pc>=0 && pc<p->nOp ); |
+ if( db->mallocFailed ) goto no_mem; |
+#ifdef VDBE_PROFILE |
+ origPc = pc; |
+ start = sqlite3Hwtime(); |
+#endif |
+ pOp = &aOp[pc]; |
+ |
+ /* Only allow tracing if SQLITE_DEBUG is defined. |
+ */ |
+#ifdef SQLITE_DEBUG |
+ if( p->trace ){ |
+ if( pc==0 ){ |
+ printf("VDBE Execution Trace:\n"); |
+ sqlite3VdbePrintSql(p); |
+ } |
+ sqlite3VdbePrintOp(p->trace, pc, pOp); |
+ } |
+#endif |
+ |
+ |
+ /* Check to see if we need to simulate an interrupt. This only happens |
+ ** if we have a special test build. |
+ */ |
+#ifdef SQLITE_TEST |
+ if( sqlite3_interrupt_count>0 ){ |
+ sqlite3_interrupt_count--; |
+ if( sqlite3_interrupt_count==0 ){ |
+ sqlite3_interrupt(db); |
+ } |
+ } |
+#endif |
+ |
+#ifndef SQLITE_OMIT_PROGRESS_CALLBACK |
+ /* Call the progress callback if it is configured and the required number |
+ ** of VDBE ops have been executed (either since this invocation of |
+ ** sqlite3VdbeExec() or since last time the progress callback was called). |
+ ** If the progress callback returns non-zero, exit the virtual machine with |
+ ** a return code SQLITE_ABORT. |
+ */ |
+ if( checkProgress ){ |
+ if( db->nProgressOps==nProgressOps ){ |
+ int prc; |
+ prc = db->xProgress(db->pProgressArg); |
+ if( prc!=0 ){ |
+ rc = SQLITE_INTERRUPT; |
+ goto vdbe_error_halt; |
+ } |
+ nProgressOps = 0; |
+ } |
+ nProgressOps++; |
+ } |
+#endif |
+ |
+ /* On any opcode with the "out2-prerelase" tag, free any |
+ ** external allocations out of mem[p2] and set mem[p2] to be |
+ ** an undefined integer. Opcodes will either fill in the integer |
+ ** value or convert mem[p2] to a different type. |
+ */ |
+ assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] ); |
+ if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){ |
+ assert( pOp->p2>0 ); |
+ assert( pOp->p2<=p->nMem ); |
+ pOut = &aMem[pOp->p2]; |
+ memAboutToChange(p, pOut); |
+ sqlite3VdbeMemReleaseExternal(pOut); |
+ pOut->flags = MEM_Int; |
+ } |
+ |
+ /* Sanity checking on other operands */ |
+#ifdef SQLITE_DEBUG |
+ if( (pOp->opflags & OPFLG_IN1)!=0 ){ |
+ assert( pOp->p1>0 ); |
+ assert( pOp->p1<=p->nMem ); |
+ assert( memIsValid(&aMem[pOp->p1]) ); |
+ REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); |
+ } |
+ if( (pOp->opflags & OPFLG_IN2)!=0 ){ |
+ assert( pOp->p2>0 ); |
+ assert( pOp->p2<=p->nMem ); |
+ assert( memIsValid(&aMem[pOp->p2]) ); |
+ REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); |
+ } |
+ if( (pOp->opflags & OPFLG_IN3)!=0 ){ |
+ assert( pOp->p3>0 ); |
+ assert( pOp->p3<=p->nMem ); |
+ assert( memIsValid(&aMem[pOp->p3]) ); |
+ REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); |
+ } |
+ if( (pOp->opflags & OPFLG_OUT2)!=0 ){ |
+ assert( pOp->p2>0 ); |
+ assert( pOp->p2<=p->nMem ); |
+ memAboutToChange(p, &aMem[pOp->p2]); |
+ } |
+ if( (pOp->opflags & OPFLG_OUT3)!=0 ){ |
+ assert( pOp->p3>0 ); |
+ assert( pOp->p3<=p->nMem ); |
+ memAboutToChange(p, &aMem[pOp->p3]); |
+ } |
+#endif |
+ |
+ switch( pOp->opcode ){ |
+ |
+/***************************************************************************** |
+** What follows is a massive switch statement where each case implements a |
+** separate instruction in the virtual machine. If we follow the usual |
+** indentation conventions, each case should be indented by 6 spaces. But |
+** that is a lot of wasted space on the left margin. So the code within |
+** the switch statement will break with convention and be flush-left. Another |
+** big comment (similar to this one) will mark the point in the code where |
+** we transition back to normal indentation. |
+** |
+** The formatting of each case is important. The makefile for SQLite |
+** generates two C files "opcodes.h" and "opcodes.c" by scanning this |
+** file looking for lines that begin with "case OP_". The opcodes.h files |
+** will be filled with #defines that give unique integer values to each |
+** opcode and the opcodes.c file is filled with an array of strings where |
+** each string is the symbolic name for the corresponding opcode. If the |
+** case statement is followed by a comment of the form "/# same as ... #/" |
+** that comment is used to determine the particular value of the opcode. |
+** |
+** Other keywords in the comment that follows each case are used to |
+** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. |
+** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See |
+** the mkopcodeh.awk script for additional information. |
+** |
+** Documentation about VDBE opcodes is generated by scanning this file |
+** for lines of that contain "Opcode:". That line and all subsequent |
+** comment lines are used in the generation of the opcode.html documentation |
+** file. |
+** |
+** SUMMARY: |
+** |
+** Formatting is important to scripts that scan this file. |
+** Do not deviate from the formatting style currently in use. |
+** |
+*****************************************************************************/ |
+ |
+/* Opcode: Goto * P2 * * * |
+** |
+** An unconditional jump to address P2. |
+** The next instruction executed will be |
+** the one at index P2 from the beginning of |
+** the program. |
+*/ |
+case OP_Goto: { /* jump */ |
+ CHECK_FOR_INTERRUPT; |
+ pc = pOp->p2 - 1; |
+ break; |
+} |
+ |
+/* Opcode: Gosub P1 P2 * * * |
+** |
+** Write the current address onto register P1 |
+** and then jump to address P2. |
+*/ |
+case OP_Gosub: { /* jump, in1 */ |
+ pIn1 = &aMem[pOp->p1]; |
+ assert( (pIn1->flags & MEM_Dyn)==0 ); |
+ memAboutToChange(p, pIn1); |
+ pIn1->flags = MEM_Int; |
+ pIn1->u.i = pc; |
+ REGISTER_TRACE(pOp->p1, pIn1); |
+ pc = pOp->p2 - 1; |
+ break; |
+} |
+ |
+/* Opcode: Return P1 * * * * |
+** |
+** Jump to the next instruction after the address in register P1. |
+*/ |
+case OP_Return: { /* in1 */ |
+ pIn1 = &aMem[pOp->p1]; |
+ assert( pIn1->flags & MEM_Int ); |
+ pc = (int)pIn1->u.i; |
+ break; |
+} |
+ |
+/* Opcode: Yield P1 * * * * |
+** |
+** Swap the program counter with the value in register P1. |
+*/ |
+case OP_Yield: { /* in1 */ |
+ int pcDest; |
+ pIn1 = &aMem[pOp->p1]; |
+ assert( (pIn1->flags & MEM_Dyn)==0 ); |
+ pIn1->flags = MEM_Int; |
+ pcDest = (int)pIn1->u.i; |
+ pIn1->u.i = pc; |
+ REGISTER_TRACE(pOp->p1, pIn1); |
+ pc = pcDest; |
+ break; |
+} |
+ |
+/* Opcode: HaltIfNull P1 P2 P3 P4 * |
+** |
+** Check the value in register P3. If is is NULL then Halt using |
+** parameter P1, P2, and P4 as if this were a Halt instruction. If the |
+** value in register P3 is not NULL, then this routine is a no-op. |
+*/ |
+case OP_HaltIfNull: { /* in3 */ |
+ pIn3 = &aMem[pOp->p3]; |
+ if( (pIn3->flags & MEM_Null)==0 ) break; |
+ /* Fall through into OP_Halt */ |
+} |
+ |
+/* Opcode: Halt P1 P2 * P4 * |
+** |
+** Exit immediately. All open cursors, etc are closed |
+** automatically. |
+** |
+** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), |
+** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). |
+** For errors, it can be some other value. If P1!=0 then P2 will determine |
+** whether or not to rollback the current transaction. Do not rollback |
+** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, |
+** then back out all changes that have occurred during this execution of the |
+** VDBE, but do not rollback the transaction. |
+** |
+** If P4 is not null then it is an error message string. |
+** |
+** There is an implied "Halt 0 0 0" instruction inserted at the very end of |
+** every program. So a jump past the last instruction of the program |
+** is the same as executing Halt. |
+*/ |
+case OP_Halt: { |
+ if( pOp->p1==SQLITE_OK && p->pFrame ){ |
+ /* Halt the sub-program. Return control to the parent frame. */ |
+ VdbeFrame *pFrame = p->pFrame; |
+ p->pFrame = pFrame->pParent; |
+ p->nFrame--; |
+ sqlite3VdbeSetChanges(db, p->nChange); |
+ pc = sqlite3VdbeFrameRestore(pFrame); |
+ if( pOp->p2==OE_Ignore ){ |
+ /* Instruction pc is the OP_Program that invoked the sub-program |
+ ** currently being halted. If the p2 instruction of this OP_Halt |
+ ** instruction is set to OE_Ignore, then the sub-program is throwing |
+ ** an IGNORE exception. In this case jump to the address specified |
+ ** as the p2 of the calling OP_Program. */ |
+ pc = p->aOp[pc].p2-1; |
+ } |
+ aOp = p->aOp; |
+ aMem = p->aMem; |
+ break; |
+ } |
+ |
+ p->rc = pOp->p1; |
+ p->errorAction = (u8)pOp->p2; |
+ p->pc = pc; |
+ if( pOp->p4.z ){ |
+ assert( p->rc!=SQLITE_OK ); |
+ sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z); |
+ testcase( sqlite3GlobalConfig.xLog!=0 ); |
+ sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pc, p->zSql, pOp->p4.z); |
+ }else if( p->rc ){ |
+ testcase( sqlite3GlobalConfig.xLog!=0 ); |
+ sqlite3_log(pOp->p1, "constraint failed at %d in [%s]", pc, p->zSql); |
+ } |
+ rc = sqlite3VdbeHalt(p); |
+ assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); |
+ if( rc==SQLITE_BUSY ){ |
+ p->rc = rc = SQLITE_BUSY; |
+ }else{ |
+ assert( rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT ); |
+ assert( rc==SQLITE_OK || db->nDeferredCons>0 ); |
+ rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; |
+ } |
+ goto vdbe_return; |
+} |
+ |
+/* Opcode: Integer P1 P2 * * * |
+** |
+** The 32-bit integer value P1 is written into register P2. |
+*/ |
+case OP_Integer: { /* out2-prerelease */ |
+ pOut->u.i = pOp->p1; |
+ break; |
+} |
+ |
+/* Opcode: Int64 * P2 * P4 * |
+** |
+** P4 is a pointer to a 64-bit integer value. |
+** Write that value into register P2. |
+*/ |
+case OP_Int64: { /* out2-prerelease */ |
+ assert( pOp->p4.pI64!=0 ); |
+ pOut->u.i = *pOp->p4.pI64; |
+ break; |
+} |
+ |
+#ifndef SQLITE_OMIT_FLOATING_POINT |
+/* Opcode: Real * P2 * P4 * |
+** |
+** P4 is a pointer to a 64-bit floating point value. |
+** Write that value into register P2. |
+*/ |
+case OP_Real: { /* same as TK_FLOAT, out2-prerelease */ |
+ pOut->flags = MEM_Real; |
+ assert( !sqlite3IsNaN(*pOp->p4.pReal) ); |
+ pOut->r = *pOp->p4.pReal; |
+ break; |
+} |
+#endif |
+ |
+/* Opcode: String8 * P2 * P4 * |
+** |
+** P4 points to a nul terminated UTF-8 string. This opcode is transformed |
+** into an OP_String before it is executed for the first time. |
+*/ |
+case OP_String8: { /* same as TK_STRING, out2-prerelease */ |
+ assert( pOp->p4.z!=0 ); |
+ pOp->opcode = OP_String; |
+ pOp->p1 = sqlite3Strlen30(pOp->p4.z); |
+ |
+#ifndef SQLITE_OMIT_UTF16 |
+ if( encoding!=SQLITE_UTF8 ){ |
+ rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); |
+ if( rc==SQLITE_TOOBIG ) goto too_big; |
+ if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; |
+ assert( pOut->zMalloc==pOut->z ); |
+ assert( pOut->flags & MEM_Dyn ); |
+ pOut->zMalloc = 0; |
+ pOut->flags |= MEM_Static; |
+ pOut->flags &= ~MEM_Dyn; |
+ if( pOp->p4type==P4_DYNAMIC ){ |
+ sqlite3DbFree(db, pOp->p4.z); |
+ } |
+ pOp->p4type = P4_DYNAMIC; |
+ pOp->p4.z = pOut->z; |
+ pOp->p1 = pOut->n; |
+ } |
+#endif |
+ if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ |
+ goto too_big; |
+ } |
+ /* Fall through to the next case, OP_String */ |
+} |
+ |
+/* Opcode: String P1 P2 * P4 * |
+** |
+** The string value P4 of length P1 (bytes) is stored in register P2. |
+*/ |
+case OP_String: { /* out2-prerelease */ |
+ assert( pOp->p4.z!=0 ); |
+ pOut->flags = MEM_Str|MEM_Static|MEM_Term; |
+ pOut->z = pOp->p4.z; |
+ pOut->n = pOp->p1; |
+ pOut->enc = encoding; |
+ UPDATE_MAX_BLOBSIZE(pOut); |
+ break; |
+} |
+ |
+/* Opcode: Null * P2 * * * |
+** |
+** Write a NULL into register P2. |
+*/ |
+case OP_Null: { /* out2-prerelease */ |
+ pOut->flags = MEM_Null; |
+ break; |
+} |
+ |
+ |
+/* Opcode: Blob P1 P2 * P4 |
+** |
+** P4 points to a blob of data P1 bytes long. Store this |
+** blob in register P2. |
+*/ |
+case OP_Blob: { /* out2-prerelease */ |
+ assert( pOp->p1 <= SQLITE_MAX_LENGTH ); |
+ sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); |
+ pOut->enc = encoding; |
+ UPDATE_MAX_BLOBSIZE(pOut); |
+ break; |
+} |
+ |
+/* Opcode: Variable P1 P2 * P4 * |
+** |
+** Transfer the values of bound parameter P1 into register P2 |
+** |
+** If the parameter is named, then its name appears in P4 and P3==1. |
+** The P4 value is used by sqlite3_bind_parameter_name(). |
+*/ |
+case OP_Variable: { /* out2-prerelease */ |
+ Mem *pVar; /* Value being transferred */ |
+ |
+ assert( pOp->p1>0 && pOp->p1<=p->nVar ); |
+ pVar = &p->aVar[pOp->p1 - 1]; |
+ if( sqlite3VdbeMemTooBig(pVar) ){ |
+ goto too_big; |
+ } |
+ sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static); |
+ UPDATE_MAX_BLOBSIZE(pOut); |
+ break; |
+} |
+ |
+/* Opcode: Move P1 P2 P3 * * |
+** |
+** Move the values in register P1..P1+P3-1 over into |
+** registers P2..P2+P3-1. Registers P1..P1+P1-1 are |
+** left holding a NULL. It is an error for register ranges |
+** P1..P1+P3-1 and P2..P2+P3-1 to overlap. |
+*/ |
+case OP_Move: { |
+ char *zMalloc; /* Holding variable for allocated memory */ |
+ int n; /* Number of registers left to copy */ |
+ int p1; /* Register to copy from */ |
+ int p2; /* Register to copy to */ |
+ |
+ n = pOp->p3; |
+ p1 = pOp->p1; |
+ p2 = pOp->p2; |
+ assert( n>0 && p1>0 && p2>0 ); |
+ assert( p1+n<=p2 || p2+n<=p1 ); |
+ |
+ pIn1 = &aMem[p1]; |
+ pOut = &aMem[p2]; |
+ while( n-- ){ |
+ assert( pOut<=&aMem[p->nMem] ); |
+ assert( pIn1<=&aMem[p->nMem] ); |
+ assert( memIsValid(pIn1) ); |
+ memAboutToChange(p, pOut); |
+ zMalloc = pOut->zMalloc; |
+ pOut->zMalloc = 0; |
+ sqlite3VdbeMemMove(pOut, pIn1); |
+ pIn1->zMalloc = zMalloc; |
+ REGISTER_TRACE(p2++, pOut); |
+ pIn1++; |
+ pOut++; |
+ } |
+ break; |
+} |
+ |
+/* Opcode: Copy P1 P2 * * * |
+** |
+** Make a copy of register P1 into register P2. |
+** |
+** This instruction makes a deep copy of the value. A duplicate |
+** is made of any string or blob constant. See also OP_SCopy. |
+*/ |
+case OP_Copy: { /* in1, out2 */ |
+ pIn1 = &aMem[pOp->p1]; |
+ pOut = &aMem[pOp->p2]; |
+ assert( pOut!=pIn1 ); |
+ sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); |
+ Deephemeralize(pOut); |
+ REGISTER_TRACE(pOp->p2, pOut); |
+ break; |
+} |
+ |
+/* Opcode: SCopy P1 P2 * * * |
+** |
+** Make a shallow copy of register P1 into register P2. |
+** |
+** This instruction makes a shallow copy of the value. If the value |
+** is a string or blob, then the copy is only a pointer to the |
+** original and hence if the original changes so will the copy. |
+** Worse, if the original is deallocated, the copy becomes invalid. |
+** Thus the program must guarantee that the original will not change |
+** during the lifetime of the copy. Use OP_Copy to make a complete |
+** copy. |
+*/ |
+case OP_SCopy: { /* in1, out2 */ |
+ pIn1 = &aMem[pOp->p1]; |
+ pOut = &aMem[pOp->p2]; |
+ assert( pOut!=pIn1 ); |
+ sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); |
+#ifdef SQLITE_DEBUG |
+ if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1; |
+#endif |
+ REGISTER_TRACE(pOp->p2, pOut); |
+ break; |
+} |
+ |
+/* Opcode: ResultRow P1 P2 * * * |
+** |
+** The registers P1 through P1+P2-1 contain a single row of |
+** results. This opcode causes the sqlite3_step() call to terminate |
+** with an SQLITE_ROW return code and it sets up the sqlite3_stmt |
+** structure to provide access to the top P1 values as the result |
+** row. |
+*/ |
+case OP_ResultRow: { |
+ Mem *pMem; |
+ int i; |
+ assert( p->nResColumn==pOp->p2 ); |
+ assert( pOp->p1>0 ); |
+ assert( pOp->p1+pOp->p2<=p->nMem+1 ); |
+ |
+ /* If this statement has violated immediate foreign key constraints, do |
+ ** not return the number of rows modified. And do not RELEASE the statement |
+ ** transaction. It needs to be rolled back. */ |
+ if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){ |
+ assert( db->flags&SQLITE_CountRows ); |
+ assert( p->usesStmtJournal ); |
+ break; |
+ } |
+ |
+ /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then |
+ ** DML statements invoke this opcode to return the number of rows |
+ ** modified to the user. This is the only way that a VM that |
+ ** opens a statement transaction may invoke this opcode. |
+ ** |
+ ** In case this is such a statement, close any statement transaction |
+ ** opened by this VM before returning control to the user. This is to |
+ ** ensure that statement-transactions are always nested, not overlapping. |
+ ** If the open statement-transaction is not closed here, then the user |
+ ** may step another VM that opens its own statement transaction. This |
+ ** may lead to overlapping statement transactions. |
+ ** |
+ ** The statement transaction is never a top-level transaction. Hence |
+ ** the RELEASE call below can never fail. |
+ */ |
+ assert( p->iStatement==0 || db->flags&SQLITE_CountRows ); |
+ rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE); |
+ if( NEVER(rc!=SQLITE_OK) ){ |
+ break; |
+ } |
+ |
+ /* Invalidate all ephemeral cursor row caches */ |
+ p->cacheCtr = (p->cacheCtr + 2)|1; |
+ |
+ /* Make sure the results of the current row are \000 terminated |
+ ** and have an assigned type. The results are de-ephemeralized as |
+ ** as side effect. |
+ */ |
+ pMem = p->pResultSet = &aMem[pOp->p1]; |
+ for(i=0; i<pOp->p2; i++){ |
+ assert( memIsValid(&pMem[i]) ); |
+ Deephemeralize(&pMem[i]); |
+ assert( (pMem[i].flags & MEM_Ephem)==0 |
+ || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); |
+ sqlite3VdbeMemNulTerminate(&pMem[i]); |
+ sqlite3VdbeMemStoreType(&pMem[i]); |
+ REGISTER_TRACE(pOp->p1+i, &pMem[i]); |
+ } |
+ if( db->mallocFailed ) goto no_mem; |
+ |
+ /* Return SQLITE_ROW |
+ */ |
+ p->pc = pc + 1; |
+ rc = SQLITE_ROW; |
+ goto vdbe_return; |
+} |
+ |
+/* Opcode: Concat P1 P2 P3 * * |
+** |
+** Add the text in register P1 onto the end of the text in |
+** register P2 and store the result in register P3. |
+** If either the P1 or P2 text are NULL then store NULL in P3. |
+** |
+** P3 = P2 || P1 |
+** |
+** It is illegal for P1 and P3 to be the same register. Sometimes, |
+** if P3 is the same register as P2, the implementation is able |
+** to avoid a memcpy(). |
+*/ |
+case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ |
+ i64 nByte; |
+ |
+ pIn1 = &aMem[pOp->p1]; |
+ pIn2 = &aMem[pOp->p2]; |
+ pOut = &aMem[pOp->p3]; |
+ assert( pIn1!=pOut ); |
+ if( (pIn1->flags | pIn2->flags) & MEM_Null ){ |
+ sqlite3VdbeMemSetNull(pOut); |
+ break; |
+ } |
+ if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem; |
+ Stringify(pIn1, encoding); |
+ Stringify(pIn2, encoding); |
+ nByte = pIn1->n + pIn2->n; |
+ if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ |
+ goto too_big; |
+ } |
+ MemSetTypeFlag(pOut, MEM_Str); |
+ if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){ |
+ goto no_mem; |
+ } |
+ if( pOut!=pIn2 ){ |
+ memcpy(pOut->z, pIn2->z, pIn2->n); |
+ } |
+ memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); |
+ pOut->z[nByte] = 0; |
+ pOut->z[nByte+1] = 0; |
+ pOut->flags |= MEM_Term; |
+ pOut->n = (int)nByte; |
+ pOut->enc = encoding; |
+ UPDATE_MAX_BLOBSIZE(pOut); |
+ break; |
+} |
+ |
+/* Opcode: Add P1 P2 P3 * * |
+** |
+** Add the value in register P1 to the value in register P2 |
+** and store the result in register P3. |
+** If either input is NULL, the result is NULL. |
+*/ |
+/* Opcode: Multiply P1 P2 P3 * * |
+** |
+** |
+** Multiply the value in register P1 by the value in register P2 |
+** and store the result in register P3. |
+** If either input is NULL, the result is NULL. |
+*/ |
+/* Opcode: Subtract P1 P2 P3 * * |
+** |
+** Subtract the value in register P1 from the value in register P2 |
+** and store the result in register P3. |
+** If either input is NULL, the result is NULL. |
+*/ |
+/* Opcode: Divide P1 P2 P3 * * |
+** |
+** Divide the value in register P1 by the value in register P2 |
+** and store the result in register P3 (P3=P2/P1). If the value in |
+** register P1 is zero, then the result is NULL. If either input is |
+** NULL, the result is NULL. |
+*/ |
+/* Opcode: Remainder P1 P2 P3 * * |
+** |
+** Compute the remainder after integer division of the value in |
+** register P1 by the value in register P2 and store the result in P3. |
+** If the value in register P2 is zero the result is NULL. |
+** If either operand is NULL, the result is NULL. |
+*/ |
+case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ |
+case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ |
+case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ |
+case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ |
+case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ |
+ int flags; /* Combined MEM_* flags from both inputs */ |
+ i64 iA; /* Integer value of left operand */ |
+ i64 iB; /* Integer value of right operand */ |
+ double rA; /* Real value of left operand */ |
+ double rB; /* Real value of right operand */ |
+ |
+ pIn1 = &aMem[pOp->p1]; |
+ applyNumericAffinity(pIn1); |
+ pIn2 = &aMem[pOp->p2]; |
+ applyNumericAffinity(pIn2); |
+ pOut = &aMem[pOp->p3]; |
+ flags = pIn1->flags | pIn2->flags; |
+ if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null; |
+ if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){ |
+ iA = pIn1->u.i; |
+ iB = pIn2->u.i; |
+ switch( pOp->opcode ){ |
+ case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; |
+ case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; |
+ case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; |
+ case OP_Divide: { |
+ if( iA==0 ) goto arithmetic_result_is_null; |
+ if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; |
+ iB /= iA; |
+ break; |
+ } |
+ default: { |
+ if( iA==0 ) goto arithmetic_result_is_null; |
+ if( iA==-1 ) iA = 1; |
+ iB %= iA; |
+ break; |
+ } |
+ } |
+ pOut->u.i = iB; |
+ MemSetTypeFlag(pOut, MEM_Int); |
+ }else{ |
+fp_math: |
+ rA = sqlite3VdbeRealValue(pIn1); |
+ rB = sqlite3VdbeRealValue(pIn2); |
+ switch( pOp->opcode ){ |
+ case OP_Add: rB += rA; break; |
+ case OP_Subtract: rB -= rA; break; |
+ case OP_Multiply: rB *= rA; break; |
+ case OP_Divide: { |
+ /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ |
+ if( rA==(double)0 ) goto arithmetic_result_is_null; |
+ rB /= rA; |
+ break; |
+ } |
+ default: { |
+ iA = (i64)rA; |
+ iB = (i64)rB; |
+ if( iA==0 ) goto arithmetic_result_is_null; |
+ if( iA==-1 ) iA = 1; |
+ rB = (double)(iB % iA); |
+ break; |
+ } |
+ } |
+#ifdef SQLITE_OMIT_FLOATING_POINT |
+ pOut->u.i = rB; |
+ MemSetTypeFlag(pOut, MEM_Int); |
+#else |
+ if( sqlite3IsNaN(rB) ){ |
+ goto arithmetic_result_is_null; |
+ } |
+ pOut->r = rB; |
+ MemSetTypeFlag(pOut, MEM_Real); |
+ if( (flags & MEM_Real)==0 ){ |
+ sqlite3VdbeIntegerAffinity(pOut); |
+ } |
+#endif |
+ } |
+ break; |
+ |
+arithmetic_result_is_null: |
+ sqlite3VdbeMemSetNull(pOut); |
+ break; |
+} |
+ |
+/* Opcode: CollSeq * * P4 |
+** |
+** P4 is a pointer to a CollSeq struct. If the next call to a user function |
+** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will |
+** be returned. This is used by the built-in min(), max() and nullif() |
+** functions. |
+** |
+** The interface used by the implementation of the aforementioned functions |
+** to retrieve the collation sequence set by this opcode is not available |
+** publicly, only to user functions defined in func.c. |
+*/ |
+case OP_CollSeq: { |
+ assert( pOp->p4type==P4_COLLSEQ ); |
+ break; |
+} |
+ |
+/* Opcode: Function P1 P2 P3 P4 P5 |
+** |
+** Invoke a user function (P4 is a pointer to a Function structure that |
+** defines the function) with P5 arguments taken from register P2 and |
+** successors. The result of the function is stored in register P3. |
+** Register P3 must not be one of the function inputs. |
+** |
+** P1 is a 32-bit bitmask indicating whether or not each argument to the |
+** function was determined to be constant at compile time. If the first |
+** argument was constant then bit 0 of P1 is set. This is used to determine |
+** whether meta data associated with a user function argument using the |
+** sqlite3_set_auxdata() API may be safely retained until the next |
+** invocation of this opcode. |
+** |
+** See also: AggStep and AggFinal |
+*/ |
+case OP_Function: { |
+ int i; |
+ Mem *pArg; |
+ sqlite3_context ctx; |
+ sqlite3_value **apVal; |
+ int n; |
+ |
+ n = pOp->p5; |
+ apVal = p->apArg; |
+ assert( apVal || n==0 ); |
+ assert( pOp->p3>0 && pOp->p3<=p->nMem ); |
+ pOut = &aMem[pOp->p3]; |
+ memAboutToChange(p, pOut); |
+ |
+ assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem+1) ); |
+ assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); |
+ pArg = &aMem[pOp->p2]; |
+ for(i=0; i<n; i++, pArg++){ |
+ assert( memIsValid(pArg) ); |
+ apVal[i] = pArg; |
+ Deephemeralize(pArg); |
+ sqlite3VdbeMemStoreType(pArg); |
+ REGISTER_TRACE(pOp->p2+i, pArg); |
+ } |
+ |
+ assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC ); |
+ if( pOp->p4type==P4_FUNCDEF ){ |
+ ctx.pFunc = pOp->p4.pFunc; |
+ ctx.pVdbeFunc = 0; |
+ }else{ |
+ ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc; |
+ ctx.pFunc = ctx.pVdbeFunc->pFunc; |
+ } |
+ |
+ ctx.s.flags = MEM_Null; |
+ ctx.s.db = db; |
+ ctx.s.xDel = 0; |
+ ctx.s.zMalloc = 0; |
+ |
+ /* The output cell may already have a buffer allocated. Move |
+ ** the pointer to ctx.s so in case the user-function can use |
+ ** the already allocated buffer instead of allocating a new one. |
+ */ |
+ sqlite3VdbeMemMove(&ctx.s, pOut); |
+ MemSetTypeFlag(&ctx.s, MEM_Null); |
+ |
+ ctx.isError = 0; |
+ if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ |
+ assert( pOp>aOp ); |
+ assert( pOp[-1].p4type==P4_COLLSEQ ); |
+ assert( pOp[-1].opcode==OP_CollSeq ); |
+ ctx.pColl = pOp[-1].p4.pColl; |
+ } |
+ (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */ |
+ if( db->mallocFailed ){ |
+ /* Even though a malloc() has failed, the implementation of the |
+ ** user function may have called an sqlite3_result_XXX() function |
+ ** to return a value. The following call releases any resources |
+ ** associated with such a value. |
+ */ |
+ sqlite3VdbeMemRelease(&ctx.s); |
+ goto no_mem; |
+ } |
+ |
+ /* If any auxiliary data functions have been called by this user function, |
+ ** immediately call the destructor for any non-static values. |
+ */ |
+ if( ctx.pVdbeFunc ){ |
+ sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1); |
+ pOp->p4.pVdbeFunc = ctx.pVdbeFunc; |
+ pOp->p4type = P4_VDBEFUNC; |
+ } |
+ |
+ /* If the function returned an error, throw an exception */ |
+ if( ctx.isError ){ |
+ sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s)); |
+ rc = ctx.isError; |
+ } |
+ |
+ /* Copy the result of the function into register P3 */ |
+ sqlite3VdbeChangeEncoding(&ctx.s, encoding); |
+ sqlite3VdbeMemMove(pOut, &ctx.s); |
+ if( sqlite3VdbeMemTooBig(pOut) ){ |
+ goto too_big; |
+ } |
+ |
+#if 0 |
+ /* The app-defined function has done something that as caused this |
+ ** statement to expire. (Perhaps the function called sqlite3_exec() |
+ ** with a CREATE TABLE statement.) |
+ */ |
+ if( p->expired ) rc = SQLITE_ABORT; |
+#endif |
+ |
+ REGISTER_TRACE(pOp->p3, pOut); |
+ UPDATE_MAX_BLOBSIZE(pOut); |
+ break; |
+} |
+ |
+/* Opcode: BitAnd P1 P2 P3 * * |
+** |
+** Take the bit-wise AND of the values in register P1 and P2 and |
+** store the result in register P3. |
+** If either input is NULL, the result is NULL. |
+*/ |
+/* Opcode: BitOr P1 P2 P3 * * |
+** |
+** Take the bit-wise OR of the values in register P1 and P2 and |
+** store the result in register P3. |
+** If either input is NULL, the result is NULL. |
+*/ |
+/* Opcode: ShiftLeft P1 P2 P3 * * |
+** |
+** Shift the integer value in register P2 to the left by the |
+** number of bits specified by the integer in register P1. |
+** Store the result in register P3. |
+** If either input is NULL, the result is NULL. |
+*/ |
+/* Opcode: ShiftRight P1 P2 P3 * * |
+** |
+** Shift the integer value in register P2 to the right by the |
+** number of bits specified by the integer in register P1. |
+** Store the result in register P3. |
+** If either input is NULL, the result is NULL. |
+*/ |
+case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ |
+case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ |
+case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ |
+case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ |
+ i64 iA; |
+ u64 uA; |
+ i64 iB; |
+ u8 op; |
+ |
+ pIn1 = &aMem[pOp->p1]; |
+ pIn2 = &aMem[pOp->p2]; |
+ pOut = &aMem[pOp->p3]; |
+ if( (pIn1->flags | pIn2->flags) & MEM_Null ){ |
+ sqlite3VdbeMemSetNull(pOut); |
+ break; |
+ } |
+ iA = sqlite3VdbeIntValue(pIn2); |
+ iB = sqlite3VdbeIntValue(pIn1); |
+ op = pOp->opcode; |
+ if( op==OP_BitAnd ){ |
+ iA &= iB; |
+ }else if( op==OP_BitOr ){ |
+ iA |= iB; |
+ }else if( iB!=0 ){ |
+ assert( op==OP_ShiftRight || op==OP_ShiftLeft ); |
+ |
+ /* If shifting by a negative amount, shift in the other direction */ |
+ if( iB<0 ){ |
+ assert( OP_ShiftRight==OP_ShiftLeft+1 ); |
+ op = 2*OP_ShiftLeft + 1 - op; |
+ iB = iB>(-64) ? -iB : 64; |
+ } |
+ |
+ if( iB>=64 ){ |
+ iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; |
+ }else{ |
+ memcpy(&uA, &iA, sizeof(uA)); |
+ if( op==OP_ShiftLeft ){ |
+ uA <<= iB; |
+ }else{ |
+ uA >>= iB; |
+ /* Sign-extend on a right shift of a negative number */ |
+ if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); |
+ } |
+ memcpy(&iA, &uA, sizeof(iA)); |
+ } |
+ } |
+ pOut->u.i = iA; |
+ MemSetTypeFlag(pOut, MEM_Int); |
+ break; |
+} |
+ |
+/* Opcode: AddImm P1 P2 * * * |
+** |
+** Add the constant P2 to the value in register P1. |
+** The result is always an integer. |
+** |
+** To force any register to be an integer, just add 0. |
+*/ |
+case OP_AddImm: { /* in1 */ |
+ pIn1 = &aMem[pOp->p1]; |
+ memAboutToChange(p, pIn1); |
+ sqlite3VdbeMemIntegerify(pIn1); |
+ pIn1->u.i += pOp->p2; |
+ break; |
+} |
+ |
+/* Opcode: MustBeInt P1 P2 * * * |
+** |
+** Force the value in register P1 to be an integer. If the value |
+** in P1 is not an integer and cannot be converted into an integer |
+** without data loss, then jump immediately to P2, or if P2==0 |
+** raise an SQLITE_MISMATCH exception. |
+*/ |
+case OP_MustBeInt: { /* jump, in1 */ |
+ pIn1 = &aMem[pOp->p1]; |
+ applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); |
+ if( (pIn1->flags & MEM_Int)==0 ){ |
+ if( pOp->p2==0 ){ |
+ rc = SQLITE_MISMATCH; |
+ goto abort_due_to_error; |
+ }else{ |
+ pc = pOp->p2 - 1; |
+ } |
+ }else{ |
+ MemSetTypeFlag(pIn1, MEM_Int); |
+ } |
+ break; |
+} |
+ |
+#ifndef SQLITE_OMIT_FLOATING_POINT |
+/* Opcode: RealAffinity P1 * * * * |
+** |
+** If register P1 holds an integer convert it to a real value. |
+** |
+** This opcode is used when extracting information from a column that |
+** has REAL affinity. Such column values may still be stored as |
+** integers, for space efficiency, but after extraction we want them |
+** to have only a real value. |
+*/ |
+case OP_RealAffinity: { /* in1 */ |
+ pIn1 = &aMem[pOp->p1]; |
+ if( pIn1->flags & MEM_Int ){ |
+ sqlite3VdbeMemRealify(pIn1); |
+ } |
+ break; |
+} |
+#endif |
+ |
+#ifndef SQLITE_OMIT_CAST |
+/* Opcode: ToText P1 * * * * |
+** |
+** Force the value in register P1 to be text. |
+** If the value is numeric, convert it to a string using the |
+** equivalent of printf(). Blob values are unchanged and |
+** are afterwards simply interpreted as text. |
+** |
+** A NULL value is not changed by this routine. It remains NULL. |
+*/ |
+case OP_ToText: { /* same as TK_TO_TEXT, in1 */ |
+ pIn1 = &aMem[pOp->p1]; |
+ memAboutToChange(p, pIn1); |
+ if( pIn1->flags & MEM_Null ) break; |
+ assert( MEM_Str==(MEM_Blob>>3) ); |
+ pIn1->flags |= (pIn1->flags&MEM_Blob)>>3; |
+ applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding); |
+ rc = ExpandBlob(pIn1); |
+ assert( pIn1->flags & MEM_Str || db->mallocFailed ); |
+ pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero); |
+ UPDATE_MAX_BLOBSIZE(pIn1); |
+ break; |
+} |
+ |
+/* Opcode: ToBlob P1 * * * * |
+** |
+** Force the value in register P1 to be a BLOB. |
+** If the value is numeric, convert it to a string first. |
+** Strings are simply reinterpreted as blobs with no change |
+** to the underlying data. |
+** |
+** A NULL value is not changed by this routine. It remains NULL. |
+*/ |
+case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */ |
+ pIn1 = &aMem[pOp->p1]; |
+ if( pIn1->flags & MEM_Null ) break; |
+ if( (pIn1->flags & MEM_Blob)==0 ){ |
+ applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding); |
+ assert( pIn1->flags & MEM_Str || db->mallocFailed ); |
+ MemSetTypeFlag(pIn1, MEM_Blob); |
+ }else{ |
+ pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob); |
+ } |
+ UPDATE_MAX_BLOBSIZE(pIn1); |
+ break; |
+} |
+ |
+/* Opcode: ToNumeric P1 * * * * |
+** |
+** Force the value in register P1 to be numeric (either an |
+** integer or a floating-point number.) |
+** If the value is text or blob, try to convert it to an using the |
+** equivalent of atoi() or atof() and store 0 if no such conversion |
+** is possible. |
+** |
+** A NULL value is not changed by this routine. It remains NULL. |
+*/ |
+case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */ |
+ pIn1 = &aMem[pOp->p1]; |
+ sqlite3VdbeMemNumerify(pIn1); |
+ break; |
+} |
+#endif /* SQLITE_OMIT_CAST */ |
+ |
+/* Opcode: ToInt P1 * * * * |
+** |
+** Force the value in register P1 to be an integer. If |
+** The value is currently a real number, drop its fractional part. |
+** If the value is text or blob, try to convert it to an integer using the |
+** equivalent of atoi() and store 0 if no such conversion is possible. |
+** |
+** A NULL value is not changed by this routine. It remains NULL. |
+*/ |
+case OP_ToInt: { /* same as TK_TO_INT, in1 */ |
+ pIn1 = &aMem[pOp->p1]; |
+ if( (pIn1->flags & MEM_Null)==0 ){ |
+ sqlite3VdbeMemIntegerify(pIn1); |
+ } |
+ break; |
+} |
+ |
+#if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) |
+/* Opcode: ToReal P1 * * * * |
+** |
+** Force the value in register P1 to be a floating point number. |
+** If The value is currently an integer, convert it. |
+** If the value is text or blob, try to convert it to an integer using the |
+** equivalent of atoi() and store 0.0 if no such conversion is possible. |
+** |
+** A NULL value is not changed by this routine. It remains NULL. |
+*/ |
+case OP_ToReal: { /* same as TK_TO_REAL, in1 */ |
+ pIn1 = &aMem[pOp->p1]; |
+ memAboutToChange(p, pIn1); |
+ if( (pIn1->flags & MEM_Null)==0 ){ |
+ sqlite3VdbeMemRealify(pIn1); |
+ } |
+ break; |
+} |
+#endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */ |
+ |
+/* Opcode: Lt P1 P2 P3 P4 P5 |
+** |
+** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then |
+** jump to address P2. |
+** |
+** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or |
+** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL |
+** bit is clear then fall through if either operand is NULL. |
+** |
+** The SQLITE_AFF_MASK portion of P5 must be an affinity character - |
+** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made |
+** to coerce both inputs according to this affinity before the |
+** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric |
+** affinity is used. Note that the affinity conversions are stored |
+** back into the input registers P1 and P3. So this opcode can cause |
+** persistent changes to registers P1 and P3. |
+** |
+** Once any conversions have taken place, and neither value is NULL, |
+** the values are compared. If both values are blobs then memcmp() is |
+** used to determine the results of the comparison. If both values |
+** are text, then the appropriate collating function specified in |
+** P4 is used to do the comparison. If P4 is not specified then |
+** memcmp() is used to compare text string. If both values are |
+** numeric, then a numeric comparison is used. If the two values |
+** are of different types, then numbers are considered less than |
+** strings and strings are considered less than blobs. |
+** |
+** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead, |
+** store a boolean result (either 0, or 1, or NULL) in register P2. |
+*/ |
+/* Opcode: Ne P1 P2 P3 P4 P5 |
+** |
+** This works just like the Lt opcode except that the jump is taken if |
+** the operands in registers P1 and P3 are not equal. See the Lt opcode for |
+** additional information. |
+** |
+** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either |
+** true or false and is never NULL. If both operands are NULL then the result |
+** of comparison is false. If either operand is NULL then the result is true. |
+** If neither operand is NULL the the result is the same as it would be if |
+** the SQLITE_NULLEQ flag were omitted from P5. |
+*/ |
+/* Opcode: Eq P1 P2 P3 P4 P5 |
+** |
+** This works just like the Lt opcode except that the jump is taken if |
+** the operands in registers P1 and P3 are equal. |
+** See the Lt opcode for additional information. |
+** |
+** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either |
+** true or false and is never NULL. If both operands are NULL then the result |
+** of comparison is true. If either operand is NULL then the result is false. |
+** If neither operand is NULL the the result is the same as it would be if |
+** the SQLITE_NULLEQ flag were omitted from P5. |
+*/ |
+/* Opcode: Le P1 P2 P3 P4 P5 |
+** |
+** This works just like the Lt opcode except that the jump is taken if |
+** the content of register P3 is less than or equal to the content of |
+** register P1. See the Lt opcode for additional information. |
+*/ |
+/* Opcode: Gt P1 P2 P3 P4 P5 |
+** |
+** This works just like the Lt opcode except that the jump is taken if |
+** the content of register P3 is greater than the content of |
+** register P1. See the Lt opcode for additional information. |
+*/ |
+/* Opcode: Ge P1 P2 P3 P4 P5 |
+** |
+** This works just like the Lt opcode except that the jump is taken if |
+** the content of register P3 is greater than or equal to the content of |
+** register P1. See the Lt opcode for additional information. |
+*/ |
+case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ |
+case OP_Ne: /* same as TK_NE, jump, in1, in3 */ |
+case OP_Lt: /* same as TK_LT, jump, in1, in3 */ |
+case OP_Le: /* same as TK_LE, jump, in1, in3 */ |
+case OP_Gt: /* same as TK_GT, jump, in1, in3 */ |
+case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ |
+ int res; /* Result of the comparison of pIn1 against pIn3 */ |
+ char affinity; /* Affinity to use for comparison */ |
+ u16 flags1; /* Copy of initial value of pIn1->flags */ |
+ u16 flags3; /* Copy of initial value of pIn3->flags */ |
+ |
+ pIn1 = &aMem[pOp->p1]; |
+ pIn3 = &aMem[pOp->p3]; |
+ flags1 = pIn1->flags; |
+ flags3 = pIn3->flags; |
+ if( (pIn1->flags | pIn3->flags)&MEM_Null ){ |
+ /* One or both operands are NULL */ |
+ if( pOp->p5 & SQLITE_NULLEQ ){ |
+ /* If SQLITE_NULLEQ is set (which will only happen if the operator is |
+ ** OP_Eq or OP_Ne) then take the jump or not depending on whether |
+ ** or not both operands are null. |
+ */ |
+ assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne ); |
+ res = (pIn1->flags & pIn3->flags & MEM_Null)==0; |
+ }else{ |
+ /* SQLITE_NULLEQ is clear and at least one operand is NULL, |
+ ** then the result is always NULL. |
+ ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. |
+ */ |
+ if( pOp->p5 & SQLITE_STOREP2 ){ |
+ pOut = &aMem[pOp->p2]; |
+ MemSetTypeFlag(pOut, MEM_Null); |
+ REGISTER_TRACE(pOp->p2, pOut); |
+ }else if( pOp->p5 & SQLITE_JUMPIFNULL ){ |
+ pc = pOp->p2-1; |
+ } |
+ break; |
+ } |
+ }else{ |
+ /* Neither operand is NULL. Do a comparison. */ |
+ affinity = pOp->p5 & SQLITE_AFF_MASK; |
+ if( affinity ){ |
+ applyAffinity(pIn1, affinity, encoding); |
+ applyAffinity(pIn3, affinity, encoding); |
+ if( db->mallocFailed ) goto no_mem; |
+ } |
+ |
+ assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); |
+ ExpandBlob(pIn1); |
+ ExpandBlob(pIn3); |
+ res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); |
+ } |
+ switch( pOp->opcode ){ |
+ case OP_Eq: res = res==0; break; |
+ case OP_Ne: res = res!=0; break; |
+ case OP_Lt: res = res<0; break; |
+ case OP_Le: res = res<=0; break; |
+ case OP_Gt: res = res>0; break; |
+ default: res = res>=0; break; |
+ } |
+ |
+ if( pOp->p5 & SQLITE_STOREP2 ){ |
+ pOut = &aMem[pOp->p2]; |
+ memAboutToChange(p, pOut); |
+ MemSetTypeFlag(pOut, MEM_Int); |
+ pOut->u.i = res; |
+ REGISTER_TRACE(pOp->p2, pOut); |
+ }else if( res ){ |
+ pc = pOp->p2-1; |
+ } |
+ |
+ /* Undo any changes made by applyAffinity() to the input registers. */ |
+ pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (flags1&MEM_TypeMask); |
+ pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (flags3&MEM_TypeMask); |
+ break; |
+} |
+ |
+/* Opcode: Permutation * * * P4 * |
+** |
+** Set the permutation used by the OP_Compare operator to be the array |
+** of integers in P4. |
+** |
+** The permutation is only valid until the next OP_Permutation, OP_Compare, |
+** OP_Halt, or OP_ResultRow. Typically the OP_Permutation should occur |
+** immediately prior to the OP_Compare. |
+*/ |
+case OP_Permutation: { |
+ assert( pOp->p4type==P4_INTARRAY ); |
+ assert( pOp->p4.ai ); |
+ aPermute = pOp->p4.ai; |
+ break; |
+} |
+ |
+/* Opcode: Compare P1 P2 P3 P4 * |
+** |
+** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this |
+** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of |
+** the comparison for use by the next OP_Jump instruct. |
+** |
+** P4 is a KeyInfo structure that defines collating sequences and sort |
+** orders for the comparison. The permutation applies to registers |
+** only. The KeyInfo elements are used sequentially. |
+** |
+** The comparison is a sort comparison, so NULLs compare equal, |
+** NULLs are less than numbers, numbers are less than strings, |
+** and strings are less than blobs. |
+*/ |
+case OP_Compare: { |
+ int n; |
+ int i; |
+ int p1; |
+ int p2; |
+ const KeyInfo *pKeyInfo; |
+ int idx; |
+ CollSeq *pColl; /* Collating sequence to use on this term */ |
+ int bRev; /* True for DESCENDING sort order */ |
+ |
+ n = pOp->p3; |
+ pKeyInfo = pOp->p4.pKeyInfo; |
+ assert( n>0 ); |
+ assert( pKeyInfo!=0 ); |
+ p1 = pOp->p1; |
+ p2 = pOp->p2; |
+#if SQLITE_DEBUG |
+ if( aPermute ){ |
+ int k, mx = 0; |
+ for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k]; |
+ assert( p1>0 && p1+mx<=p->nMem+1 ); |
+ assert( p2>0 && p2+mx<=p->nMem+1 ); |
+ }else{ |
+ assert( p1>0 && p1+n<=p->nMem+1 ); |
+ assert( p2>0 && p2+n<=p->nMem+1 ); |
+ } |
+#endif /* SQLITE_DEBUG */ |
+ for(i=0; i<n; i++){ |
+ idx = aPermute ? aPermute[i] : i; |
+ assert( memIsValid(&aMem[p1+idx]) ); |
+ assert( memIsValid(&aMem[p2+idx]) ); |
+ REGISTER_TRACE(p1+idx, &aMem[p1+idx]); |
+ REGISTER_TRACE(p2+idx, &aMem[p2+idx]); |
+ assert( i<pKeyInfo->nField ); |
+ pColl = pKeyInfo->aColl[i]; |
+ bRev = pKeyInfo->aSortOrder[i]; |
+ iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); |
+ if( iCompare ){ |
+ if( bRev ) iCompare = -iCompare; |
+ break; |
+ } |
+ } |
+ aPermute = 0; |
+ break; |
+} |
+ |
+/* Opcode: Jump P1 P2 P3 * * |
+** |
+** Jump to the instruction at address P1, P2, or P3 depending on whether |
+** in the most recent OP_Compare instruction the P1 vector was less than |
+** equal to, or greater than the P2 vector, respectively. |
+*/ |
+case OP_Jump: { /* jump */ |
+ if( iCompare<0 ){ |
+ pc = pOp->p1 - 1; |
+ }else if( iCompare==0 ){ |
+ pc = pOp->p2 - 1; |
+ }else{ |
+ pc = pOp->p3 - 1; |
+ } |
+ break; |
+} |
+ |
+/* Opcode: And P1 P2 P3 * * |
+** |
+** Take the logical AND of the values in registers P1 and P2 and |
+** write the result into register P3. |
+** |
+** If either P1 or P2 is 0 (false) then the result is 0 even if |
+** the other input is NULL. A NULL and true or two NULLs give |
+** a NULL output. |
+*/ |
+/* Opcode: Or P1 P2 P3 * * |
+** |
+** Take the logical OR of the values in register P1 and P2 and |
+** store the answer in register P3. |
+** |
+** If either P1 or P2 is nonzero (true) then the result is 1 (true) |
+** even if the other input is NULL. A NULL and false or two NULLs |
+** give a NULL output. |
+*/ |
+case OP_And: /* same as TK_AND, in1, in2, out3 */ |
+case OP_Or: { /* same as TK_OR, in1, in2, out3 */ |
+ int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ |
+ int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ |
+ |
+ pIn1 = &aMem[pOp->p1]; |
+ if( pIn1->flags & MEM_Null ){ |
+ v1 = 2; |
+ }else{ |
+ v1 = sqlite3VdbeIntValue(pIn1)!=0; |
+ } |
+ pIn2 = &aMem[pOp->p2]; |
+ if( pIn2->flags & MEM_Null ){ |
+ v2 = 2; |
+ }else{ |
+ v2 = sqlite3VdbeIntValue(pIn2)!=0; |
+ } |
+ if( pOp->opcode==OP_And ){ |
+ static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; |
+ v1 = and_logic[v1*3+v2]; |
+ }else{ |
+ static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; |
+ v1 = or_logic[v1*3+v2]; |
+ } |
+ pOut = &aMem[pOp->p3]; |
+ if( v1==2 ){ |
+ MemSetTypeFlag(pOut, MEM_Null); |
+ }else{ |
+ pOut->u.i = v1; |
+ MemSetTypeFlag(pOut, MEM_Int); |
+ } |
+ break; |
+} |
+ |
+/* Opcode: Not P1 P2 * * * |
+** |
+** Interpret the value in register P1 as a boolean value. Store the |
+** boolean complement in register P2. If the value in register P1 is |
+** NULL, then a NULL is stored in P2. |
+*/ |
+case OP_Not: { /* same as TK_NOT, in1, out2 */ |
+ pIn1 = &aMem[pOp->p1]; |
+ pOut = &aMem[pOp->p2]; |
+ if( pIn1->flags & MEM_Null ){ |
+ sqlite3VdbeMemSetNull(pOut); |
+ }else{ |
+ sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1)); |
+ } |
+ break; |
+} |
+ |
+/* Opcode: BitNot P1 P2 * * * |
+** |
+** Interpret the content of register P1 as an integer. Store the |
+** ones-complement of the P1 value into register P2. If P1 holds |
+** a NULL then store a NULL in P2. |
+*/ |
+case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ |
+ pIn1 = &aMem[pOp->p1]; |
+ pOut = &aMem[pOp->p2]; |
+ if( pIn1->flags & MEM_Null ){ |
+ sqlite3VdbeMemSetNull(pOut); |
+ }else{ |
+ sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1)); |
+ } |
+ break; |
+} |
+ |
+/* Opcode: If P1 P2 P3 * * |
+** |
+** Jump to P2 if the value in register P1 is true. The value is |
+** is considered true if it is numeric and non-zero. If the value |
+** in P1 is NULL then take the jump if P3 is true. |
+*/ |
+/* Opcode: IfNot P1 P2 P3 * * |
+** |
+** Jump to P2 if the value in register P1 is False. The value is |
+** is considered true if it has a numeric value of zero. If the value |
+** in P1 is NULL then take the jump if P3 is true. |
+*/ |
+case OP_If: /* jump, in1 */ |
+case OP_IfNot: { /* jump, in1 */ |
+ int c; |
+ pIn1 = &aMem[pOp->p1]; |
+ if( pIn1->flags & MEM_Null ){ |
+ c = pOp->p3; |
+ }else{ |
+#ifdef SQLITE_OMIT_FLOATING_POINT |
+ c = sqlite3VdbeIntValue(pIn1)!=0; |
+#else |
+ c = sqlite3VdbeRealValue(pIn1)!=0.0; |
+#endif |
+ if( pOp->opcode==OP_IfNot ) c = !c; |
+ } |
+ if( c ){ |
+ pc = pOp->p2-1; |
+ } |
+ break; |
+} |
+ |
+/* Opcode: IsNull P1 P2 * * * |
+** |
+** Jump to P2 if the value in register P1 is NULL. |
+*/ |
+case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ |
+ pIn1 = &aMem[pOp->p1]; |
+ if( (pIn1->flags & MEM_Null)!=0 ){ |
+ pc = pOp->p2 - 1; |
+ } |
+ break; |
+} |
+ |
+/* Opcode: NotNull P1 P2 * * * |
+** |
+** Jump to P2 if the value in register P1 is not NULL. |
+*/ |
+case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ |
+ pIn1 = &aMem[pOp->p1]; |
+ if( (pIn1->flags & MEM_Null)==0 ){ |
+ pc = pOp->p2 - 1; |
+ } |
+ break; |
+} |
+ |
+/* Opcode: Column P1 P2 P3 P4 P5 |
+** |
+** Interpret the data that cursor P1 points to as a structure built using |
+** the MakeRecord instruction. (See the MakeRecord opcode for additional |
+** information about the format of the data.) Extract the P2-th column |
+** from this record. If there are less that (P2+1) |
+** values in the record, extract a NULL. |
+** |
+** The value extracted is stored in register P3. |
+** |
+** If the column contains fewer than P2 fields, then extract a NULL. Or, |
+** if the P4 argument is a P4_MEM use the value of the P4 argument as |
+** the result. |
+** |
+** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor, |
+** then the cache of the cursor is reset prior to extracting the column. |
+** The first OP_Column against a pseudo-table after the value of the content |
+** register has changed should have this bit set. |
+*/ |
+case OP_Column: { |
+ u32 payloadSize; /* Number of bytes in the record */ |
+ i64 payloadSize64; /* Number of bytes in the record */ |
+ int p1; /* P1 value of the opcode */ |
+ int p2; /* column number to retrieve */ |
+ VdbeCursor *pC; /* The VDBE cursor */ |
+ char *zRec; /* Pointer to complete record-data */ |
+ BtCursor *pCrsr; /* The BTree cursor */ |
+ u32 *aType; /* aType[i] holds the numeric type of the i-th column */ |
+ u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ |
+ int nField; /* number of fields in the record */ |
+ int len; /* The length of the serialized data for the column */ |
+ int i; /* Loop counter */ |
+ char *zData; /* Part of the record being decoded */ |
+ Mem *pDest; /* Where to write the extracted value */ |
+ Mem sMem; /* For storing the record being decoded */ |
+ u8 *zIdx; /* Index into header */ |
+ u8 *zEndHdr; /* Pointer to first byte after the header */ |
+ u32 offset; /* Offset into the data */ |
+ u32 szField; /* Number of bytes in the content of a field */ |
+ int szHdr; /* Size of the header size field at start of record */ |
+ int avail; /* Number of bytes of available data */ |
+ Mem *pReg; /* PseudoTable input register */ |
+ |
+ |
+ p1 = pOp->p1; |
+ p2 = pOp->p2; |
+ pC = 0; |
+ memset(&sMem, 0, sizeof(sMem)); |
+ assert( p1<p->nCursor ); |
+ assert( pOp->p3>0 && pOp->p3<=p->nMem ); |
+ pDest = &aMem[pOp->p3]; |
+ memAboutToChange(p, pDest); |
+ MemSetTypeFlag(pDest, MEM_Null); |
+ zRec = 0; |
+ |
+ /* This block sets the variable payloadSize to be the total number of |
+ ** bytes in the record. |
+ ** |
+ ** zRec is set to be the complete text of the record if it is available. |
+ ** The complete record text is always available for pseudo-tables |
+ ** If the record is stored in a cursor, the complete record text |
+ ** might be available in the pC->aRow cache. Or it might not be. |
+ ** If the data is unavailable, zRec is set to NULL. |
+ ** |
+ ** We also compute the number of columns in the record. For cursors, |
+ ** the number of columns is stored in the VdbeCursor.nField element. |
+ */ |
+ pC = p->apCsr[p1]; |
+ assert( pC!=0 ); |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ assert( pC->pVtabCursor==0 ); |
+#endif |
+ pCrsr = pC->pCursor; |
+ if( pCrsr!=0 ){ |
+ /* The record is stored in a B-Tree */ |
+ rc = sqlite3VdbeCursorMoveto(pC); |
+ if( rc ) goto abort_due_to_error; |
+ if( pC->nullRow ){ |
+ payloadSize = 0; |
+ }else if( pC->cacheStatus==p->cacheCtr ){ |
+ payloadSize = pC->payloadSize; |
+ zRec = (char*)pC->aRow; |
+ }else if( pC->isIndex ){ |
+ assert( sqlite3BtreeCursorIsValid(pCrsr) ); |
+ rc = sqlite3BtreeKeySize(pCrsr, &payloadSize64); |
+ assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ |
+ /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the |
+ ** payload size, so it is impossible for payloadSize64 to be |
+ ** larger than 32 bits. */ |
+ assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 ); |
+ payloadSize = (u32)payloadSize64; |
+ }else{ |
+ assert( sqlite3BtreeCursorIsValid(pCrsr) ); |
+ rc = sqlite3BtreeDataSize(pCrsr, &payloadSize); |
+ assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ |
+ } |
+ }else if( pC->pseudoTableReg>0 ){ |
+ pReg = &aMem[pC->pseudoTableReg]; |
+ assert( pReg->flags & MEM_Blob ); |
+ assert( memIsValid(pReg) ); |
+ payloadSize = pReg->n; |
+ zRec = pReg->z; |
+ pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr; |
+ assert( payloadSize==0 || zRec!=0 ); |
+ }else{ |
+ /* Consider the row to be NULL */ |
+ payloadSize = 0; |
+ } |
+ |
+ /* If payloadSize is 0, then just store a NULL */ |
+ if( payloadSize==0 ){ |
+ assert( pDest->flags&MEM_Null ); |
+ goto op_column_out; |
+ } |
+ assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 ); |
+ if( payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ |
+ goto too_big; |
+ } |
+ |
+ nField = pC->nField; |
+ assert( p2<nField ); |
+ |
+ /* Read and parse the table header. Store the results of the parse |
+ ** into the record header cache fields of the cursor. |
+ */ |
+ aType = pC->aType; |
+ if( pC->cacheStatus==p->cacheCtr ){ |
+ aOffset = pC->aOffset; |
+ }else{ |
+ assert(aType); |
+ avail = 0; |
+ pC->aOffset = aOffset = &aType[nField]; |
+ pC->payloadSize = payloadSize; |
+ pC->cacheStatus = p->cacheCtr; |
+ |
+ /* Figure out how many bytes are in the header */ |
+ if( zRec ){ |
+ zData = zRec; |
+ }else{ |
+ if( pC->isIndex ){ |
+ zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail); |
+ }else{ |
+ zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail); |
+ } |
+ /* If KeyFetch()/DataFetch() managed to get the entire payload, |
+ ** save the payload in the pC->aRow cache. That will save us from |
+ ** having to make additional calls to fetch the content portion of |
+ ** the record. |
+ */ |
+ assert( avail>=0 ); |
+ if( payloadSize <= (u32)avail ){ |
+ zRec = zData; |
+ pC->aRow = (u8*)zData; |
+ }else{ |
+ pC->aRow = 0; |
+ } |
+ } |
+ /* The following assert is true in all cases accept when |
+ ** the database file has been corrupted externally. |
+ ** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */ |
+ szHdr = getVarint32((u8*)zData, offset); |
+ |
+ /* Make sure a corrupt database has not given us an oversize header. |
+ ** Do this now to avoid an oversize memory allocation. |
+ ** |
+ ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte |
+ ** types use so much data space that there can only be 4096 and 32 of |
+ ** them, respectively. So the maximum header length results from a |
+ ** 3-byte type for each of the maximum of 32768 columns plus three |
+ ** extra bytes for the header length itself. 32768*3 + 3 = 98307. |
+ */ |
+ if( offset > 98307 ){ |
+ rc = SQLITE_CORRUPT_BKPT; |
+ goto op_column_out; |
+ } |
+ |
+ /* Compute in len the number of bytes of data we need to read in order |
+ ** to get nField type values. offset is an upper bound on this. But |
+ ** nField might be significantly less than the true number of columns |
+ ** in the table, and in that case, 5*nField+3 might be smaller than offset. |
+ ** We want to minimize len in order to limit the size of the memory |
+ ** allocation, especially if a corrupt database file has caused offset |
+ ** to be oversized. Offset is limited to 98307 above. But 98307 might |
+ ** still exceed Robson memory allocation limits on some configurations. |
+ ** On systems that cannot tolerate large memory allocations, nField*5+3 |
+ ** will likely be much smaller since nField will likely be less than |
+ ** 20 or so. This insures that Robson memory allocation limits are |
+ ** not exceeded even for corrupt database files. |
+ */ |
+ len = nField*5 + 3; |
+ if( len > (int)offset ) len = (int)offset; |
+ |
+ /* The KeyFetch() or DataFetch() above are fast and will get the entire |
+ ** record header in most cases. But they will fail to get the complete |
+ ** record header if the record header does not fit on a single page |
+ ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to |
+ ** acquire the complete header text. |
+ */ |
+ if( !zRec && avail<len ){ |
+ sMem.flags = 0; |
+ sMem.db = 0; |
+ rc = sqlite3VdbeMemFromBtree(pCrsr, 0, len, pC->isIndex, &sMem); |
+ if( rc!=SQLITE_OK ){ |
+ goto op_column_out; |
+ } |
+ zData = sMem.z; |
+ } |
+ zEndHdr = (u8 *)&zData[len]; |
+ zIdx = (u8 *)&zData[szHdr]; |
+ |
+ /* Scan the header and use it to fill in the aType[] and aOffset[] |
+ ** arrays. aType[i] will contain the type integer for the i-th |
+ ** column and aOffset[i] will contain the offset from the beginning |
+ ** of the record to the start of the data for the i-th column |
+ */ |
+ for(i=0; i<nField; i++){ |
+ if( zIdx<zEndHdr ){ |
+ aOffset[i] = offset; |
+ zIdx += getVarint32(zIdx, aType[i]); |
+ szField = sqlite3VdbeSerialTypeLen(aType[i]); |
+ offset += szField; |
+ if( offset<szField ){ /* True if offset overflows */ |
+ zIdx = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */ |
+ break; |
+ } |
+ }else{ |
+ /* If i is less that nField, then there are less fields in this |
+ ** record than SetNumColumns indicated there are columns in the |
+ ** table. Set the offset for any extra columns not present in |
+ ** the record to 0. This tells code below to store a NULL |
+ ** instead of deserializing a value from the record. |
+ */ |
+ aOffset[i] = 0; |
+ } |
+ } |
+ sqlite3VdbeMemRelease(&sMem); |
+ sMem.flags = MEM_Null; |
+ |
+ /* If we have read more header data than was contained in the header, |
+ ** or if the end of the last field appears to be past the end of the |
+ ** record, or if the end of the last field appears to be before the end |
+ ** of the record (when all fields present), then we must be dealing |
+ ** with a corrupt database. |
+ */ |
+ if( (zIdx > zEndHdr) || (offset > payloadSize) |
+ || (zIdx==zEndHdr && offset!=payloadSize) ){ |
+ rc = SQLITE_CORRUPT_BKPT; |
+ goto op_column_out; |
+ } |
+ } |
+ |
+ /* Get the column information. If aOffset[p2] is non-zero, then |
+ ** deserialize the value from the record. If aOffset[p2] is zero, |
+ ** then there are not enough fields in the record to satisfy the |
+ ** request. In this case, set the value NULL or to P4 if P4 is |
+ ** a pointer to a Mem object. |
+ */ |
+ if( aOffset[p2] ){ |
+ assert( rc==SQLITE_OK ); |
+ if( zRec ){ |
+ sqlite3VdbeMemReleaseExternal(pDest); |
+ sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest); |
+ }else{ |
+ len = sqlite3VdbeSerialTypeLen(aType[p2]); |
+ sqlite3VdbeMemMove(&sMem, pDest); |
+ rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem); |
+ if( rc!=SQLITE_OK ){ |
+ goto op_column_out; |
+ } |
+ zData = sMem.z; |
+ sqlite3VdbeSerialGet((u8*)zData, aType[p2], pDest); |
+ } |
+ pDest->enc = encoding; |
+ }else{ |
+ if( pOp->p4type==P4_MEM ){ |
+ sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); |
+ }else{ |
+ assert( pDest->flags&MEM_Null ); |
+ } |
+ } |
+ |
+ /* If we dynamically allocated space to hold the data (in the |
+ ** sqlite3VdbeMemFromBtree() call above) then transfer control of that |
+ ** dynamically allocated space over to the pDest structure. |
+ ** This prevents a memory copy. |
+ */ |
+ if( sMem.zMalloc ){ |
+ assert( sMem.z==sMem.zMalloc ); |
+ assert( !(pDest->flags & MEM_Dyn) ); |
+ assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z ); |
+ pDest->flags &= ~(MEM_Ephem|MEM_Static); |
+ pDest->flags |= MEM_Term; |
+ pDest->z = sMem.z; |
+ pDest->zMalloc = sMem.zMalloc; |
+ } |
+ |
+ rc = sqlite3VdbeMemMakeWriteable(pDest); |
+ |
+op_column_out: |
+ UPDATE_MAX_BLOBSIZE(pDest); |
+ REGISTER_TRACE(pOp->p3, pDest); |
+ break; |
+} |
+ |
+/* Opcode: Affinity P1 P2 * P4 * |
+** |
+** Apply affinities to a range of P2 registers starting with P1. |
+** |
+** P4 is a string that is P2 characters long. The nth character of the |
+** string indicates the column affinity that should be used for the nth |
+** memory cell in the range. |
+*/ |
+case OP_Affinity: { |
+ const char *zAffinity; /* The affinity to be applied */ |
+ char cAff; /* A single character of affinity */ |
+ |
+ zAffinity = pOp->p4.z; |
+ assert( zAffinity!=0 ); |
+ assert( zAffinity[pOp->p2]==0 ); |
+ pIn1 = &aMem[pOp->p1]; |
+ while( (cAff = *(zAffinity++))!=0 ){ |
+ assert( pIn1 <= &p->aMem[p->nMem] ); |
+ assert( memIsValid(pIn1) ); |
+ ExpandBlob(pIn1); |
+ applyAffinity(pIn1, cAff, encoding); |
+ pIn1++; |
+ } |
+ break; |
+} |
+ |
+/* Opcode: MakeRecord P1 P2 P3 P4 * |
+** |
+** Convert P2 registers beginning with P1 into the [record format] |
+** use as a data record in a database table or as a key |
+** in an index. The OP_Column opcode can decode the record later. |
+** |
+** P4 may be a string that is P2 characters long. The nth character of the |
+** string indicates the column affinity that should be used for the nth |
+** field of the index key. |
+** |
+** The mapping from character to affinity is given by the SQLITE_AFF_ |
+** macros defined in sqliteInt.h. |
+** |
+** If P4 is NULL then all index fields have the affinity NONE. |
+*/ |
+case OP_MakeRecord: { |
+ u8 *zNewRecord; /* A buffer to hold the data for the new record */ |
+ Mem *pRec; /* The new record */ |
+ u64 nData; /* Number of bytes of data space */ |
+ int nHdr; /* Number of bytes of header space */ |
+ i64 nByte; /* Data space required for this record */ |
+ int nZero; /* Number of zero bytes at the end of the record */ |
+ int nVarint; /* Number of bytes in a varint */ |
+ u32 serial_type; /* Type field */ |
+ Mem *pData0; /* First field to be combined into the record */ |
+ Mem *pLast; /* Last field of the record */ |
+ int nField; /* Number of fields in the record */ |
+ char *zAffinity; /* The affinity string for the record */ |
+ int file_format; /* File format to use for encoding */ |
+ int i; /* Space used in zNewRecord[] */ |
+ int len; /* Length of a field */ |
+ |
+ /* Assuming the record contains N fields, the record format looks |
+ ** like this: |
+ ** |
+ ** ------------------------------------------------------------------------ |
+ ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | |
+ ** ------------------------------------------------------------------------ |
+ ** |
+ ** Data(0) is taken from register P1. Data(1) comes from register P1+1 |
+ ** and so froth. |
+ ** |
+ ** Each type field is a varint representing the serial type of the |
+ ** corresponding data element (see sqlite3VdbeSerialType()). The |
+ ** hdr-size field is also a varint which is the offset from the beginning |
+ ** of the record to data0. |
+ */ |
+ nData = 0; /* Number of bytes of data space */ |
+ nHdr = 0; /* Number of bytes of header space */ |
+ nZero = 0; /* Number of zero bytes at the end of the record */ |
+ nField = pOp->p1; |
+ zAffinity = pOp->p4.z; |
+ assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem+1 ); |
+ pData0 = &aMem[nField]; |
+ nField = pOp->p2; |
+ pLast = &pData0[nField-1]; |
+ file_format = p->minWriteFileFormat; |
+ |
+ /* Identify the output register */ |
+ assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); |
+ pOut = &aMem[pOp->p3]; |
+ memAboutToChange(p, pOut); |
+ |
+ /* Loop through the elements that will make up the record to figure |
+ ** out how much space is required for the new record. |
+ */ |
+ for(pRec=pData0; pRec<=pLast; pRec++){ |
+ assert( memIsValid(pRec) ); |
+ if( zAffinity ){ |
+ applyAffinity(pRec, zAffinity[pRec-pData0], encoding); |
+ } |
+ if( pRec->flags&MEM_Zero && pRec->n>0 ){ |
+ sqlite3VdbeMemExpandBlob(pRec); |
+ } |
+ serial_type = sqlite3VdbeSerialType(pRec, file_format); |
+ len = sqlite3VdbeSerialTypeLen(serial_type); |
+ nData += len; |
+ nHdr += sqlite3VarintLen(serial_type); |
+ if( pRec->flags & MEM_Zero ){ |
+ /* Only pure zero-filled BLOBs can be input to this Opcode. |
+ ** We do not allow blobs with a prefix and a zero-filled tail. */ |
+ nZero += pRec->u.nZero; |
+ }else if( len ){ |
+ nZero = 0; |
+ } |
+ } |
+ |
+ /* Add the initial header varint and total the size */ |
+ nHdr += nVarint = sqlite3VarintLen(nHdr); |
+ if( nVarint<sqlite3VarintLen(nHdr) ){ |
+ nHdr++; |
+ } |
+ nByte = nHdr+nData-nZero; |
+ if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ |
+ goto too_big; |
+ } |
+ |
+ /* Make sure the output register has a buffer large enough to store |
+ ** the new record. The output register (pOp->p3) is not allowed to |
+ ** be one of the input registers (because the following call to |
+ ** sqlite3VdbeMemGrow() could clobber the value before it is used). |
+ */ |
+ if( sqlite3VdbeMemGrow(pOut, (int)nByte, 0) ){ |
+ goto no_mem; |
+ } |
+ zNewRecord = (u8 *)pOut->z; |
+ |
+ /* Write the record */ |
+ i = putVarint32(zNewRecord, nHdr); |
+ for(pRec=pData0; pRec<=pLast; pRec++){ |
+ serial_type = sqlite3VdbeSerialType(pRec, file_format); |
+ i += putVarint32(&zNewRecord[i], serial_type); /* serial type */ |
+ } |
+ for(pRec=pData0; pRec<=pLast; pRec++){ /* serial data */ |
+ i += sqlite3VdbeSerialPut(&zNewRecord[i], (int)(nByte-i), pRec,file_format); |
+ } |
+ assert( i==nByte ); |
+ |
+ assert( pOp->p3>0 && pOp->p3<=p->nMem ); |
+ pOut->n = (int)nByte; |
+ pOut->flags = MEM_Blob | MEM_Dyn; |
+ pOut->xDel = 0; |
+ if( nZero ){ |
+ pOut->u.nZero = nZero; |
+ pOut->flags |= MEM_Zero; |
+ } |
+ pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */ |
+ REGISTER_TRACE(pOp->p3, pOut); |
+ UPDATE_MAX_BLOBSIZE(pOut); |
+ break; |
+} |
+ |
+/* Opcode: Count P1 P2 * * * |
+** |
+** Store the number of entries (an integer value) in the table or index |
+** opened by cursor P1 in register P2 |
+*/ |
+#ifndef SQLITE_OMIT_BTREECOUNT |
+case OP_Count: { /* out2-prerelease */ |
+ i64 nEntry; |
+ BtCursor *pCrsr; |
+ |
+ pCrsr = p->apCsr[pOp->p1]->pCursor; |
+ if( pCrsr ){ |
+ rc = sqlite3BtreeCount(pCrsr, &nEntry); |
+ }else{ |
+ nEntry = 0; |
+ } |
+ pOut->u.i = nEntry; |
+ break; |
+} |
+#endif |
+ |
+/* Opcode: Savepoint P1 * * P4 * |
+** |
+** Open, release or rollback the savepoint named by parameter P4, depending |
+** on the value of P1. To open a new savepoint, P1==0. To release (commit) an |
+** existing savepoint, P1==1, or to rollback an existing savepoint P1==2. |
+*/ |
+case OP_Savepoint: { |
+ int p1; /* Value of P1 operand */ |
+ char *zName; /* Name of savepoint */ |
+ int nName; |
+ Savepoint *pNew; |
+ Savepoint *pSavepoint; |
+ Savepoint *pTmp; |
+ int iSavepoint; |
+ int ii; |
+ |
+ p1 = pOp->p1; |
+ zName = pOp->p4.z; |
+ |
+ /* Assert that the p1 parameter is valid. Also that if there is no open |
+ ** transaction, then there cannot be any savepoints. |
+ */ |
+ assert( db->pSavepoint==0 || db->autoCommit==0 ); |
+ assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); |
+ assert( db->pSavepoint || db->isTransactionSavepoint==0 ); |
+ assert( checkSavepointCount(db) ); |
+ |
+ if( p1==SAVEPOINT_BEGIN ){ |
+ if( db->writeVdbeCnt>0 ){ |
+ /* A new savepoint cannot be created if there are active write |
+ ** statements (i.e. open read/write incremental blob handles). |
+ */ |
+ sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - " |
+ "SQL statements in progress"); |
+ rc = SQLITE_BUSY; |
+ }else{ |
+ nName = sqlite3Strlen30(zName); |
+ |
+ /* Create a new savepoint structure. */ |
+ pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1); |
+ if( pNew ){ |
+ pNew->zName = (char *)&pNew[1]; |
+ memcpy(pNew->zName, zName, nName+1); |
+ |
+ /* If there is no open transaction, then mark this as a special |
+ ** "transaction savepoint". */ |
+ if( db->autoCommit ){ |
+ db->autoCommit = 0; |
+ db->isTransactionSavepoint = 1; |
+ }else{ |
+ db->nSavepoint++; |
+ } |
+ |
+ /* Link the new savepoint into the database handle's list. */ |
+ pNew->pNext = db->pSavepoint; |
+ db->pSavepoint = pNew; |
+ pNew->nDeferredCons = db->nDeferredCons; |
+ } |
+ } |
+ }else{ |
+ iSavepoint = 0; |
+ |
+ /* Find the named savepoint. If there is no such savepoint, then an |
+ ** an error is returned to the user. */ |
+ for( |
+ pSavepoint = db->pSavepoint; |
+ pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); |
+ pSavepoint = pSavepoint->pNext |
+ ){ |
+ iSavepoint++; |
+ } |
+ if( !pSavepoint ){ |
+ sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName); |
+ rc = SQLITE_ERROR; |
+ }else if( |
+ db->writeVdbeCnt>0 || (p1==SAVEPOINT_ROLLBACK && db->activeVdbeCnt>1) |
+ ){ |
+ /* It is not possible to release (commit) a savepoint if there are |
+ ** active write statements. It is not possible to rollback a savepoint |
+ ** if there are any active statements at all. |
+ */ |
+ sqlite3SetString(&p->zErrMsg, db, |
+ "cannot %s savepoint - SQL statements in progress", |
+ (p1==SAVEPOINT_ROLLBACK ? "rollback": "release") |
+ ); |
+ rc = SQLITE_BUSY; |
+ }else{ |
+ |
+ /* Determine whether or not this is a transaction savepoint. If so, |
+ ** and this is a RELEASE command, then the current transaction |
+ ** is committed. |
+ */ |
+ int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; |
+ if( isTransaction && p1==SAVEPOINT_RELEASE ){ |
+ if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ |
+ goto vdbe_return; |
+ } |
+ db->autoCommit = 1; |
+ if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ |
+ p->pc = pc; |
+ db->autoCommit = 0; |
+ p->rc = rc = SQLITE_BUSY; |
+ goto vdbe_return; |
+ } |
+ db->isTransactionSavepoint = 0; |
+ rc = p->rc; |
+ }else{ |
+ iSavepoint = db->nSavepoint - iSavepoint - 1; |
+ for(ii=0; ii<db->nDb; ii++){ |
+ rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); |
+ if( rc!=SQLITE_OK ){ |
+ goto abort_due_to_error; |
+ } |
+ } |
+ if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){ |
+ sqlite3ExpirePreparedStatements(db); |
+ sqlite3ResetInternalSchema(db, -1); |
+ db->flags = (db->flags | SQLITE_InternChanges); |
+ } |
+ } |
+ |
+ /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all |
+ ** savepoints nested inside of the savepoint being operated on. */ |
+ while( db->pSavepoint!=pSavepoint ){ |
+ pTmp = db->pSavepoint; |
+ db->pSavepoint = pTmp->pNext; |
+ sqlite3DbFree(db, pTmp); |
+ db->nSavepoint--; |
+ } |
+ |
+ /* If it is a RELEASE, then destroy the savepoint being operated on |
+ ** too. If it is a ROLLBACK TO, then set the number of deferred |
+ ** constraint violations present in the database to the value stored |
+ ** when the savepoint was created. */ |
+ if( p1==SAVEPOINT_RELEASE ){ |
+ assert( pSavepoint==db->pSavepoint ); |
+ db->pSavepoint = pSavepoint->pNext; |
+ sqlite3DbFree(db, pSavepoint); |
+ if( !isTransaction ){ |
+ db->nSavepoint--; |
+ } |
+ }else{ |
+ db->nDeferredCons = pSavepoint->nDeferredCons; |
+ } |
+ } |
+ } |
+ |
+ break; |
+} |
+ |
+/* Opcode: AutoCommit P1 P2 * * * |
+** |
+** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll |
+** back any currently active btree transactions. If there are any active |
+** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if |
+** there are active writing VMs or active VMs that use shared cache. |
+** |
+** This instruction causes the VM to halt. |
+*/ |
+case OP_AutoCommit: { |
+ int desiredAutoCommit; |
+ int iRollback; |
+ int turnOnAC; |
+ |
+ desiredAutoCommit = pOp->p1; |
+ iRollback = pOp->p2; |
+ turnOnAC = desiredAutoCommit && !db->autoCommit; |
+ assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); |
+ assert( desiredAutoCommit==1 || iRollback==0 ); |
+ assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */ |
+ |
+ if( turnOnAC && iRollback && db->activeVdbeCnt>1 ){ |
+ /* If this instruction implements a ROLLBACK and other VMs are |
+ ** still running, and a transaction is active, return an error indicating |
+ ** that the other VMs must complete first. |
+ */ |
+ sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - " |
+ "SQL statements in progress"); |
+ rc = SQLITE_BUSY; |
+ }else if( turnOnAC && !iRollback && db->writeVdbeCnt>0 ){ |
+ /* If this instruction implements a COMMIT and other VMs are writing |
+ ** return an error indicating that the other VMs must complete first. |
+ */ |
+ sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - " |
+ "SQL statements in progress"); |
+ rc = SQLITE_BUSY; |
+ }else if( desiredAutoCommit!=db->autoCommit ){ |
+ if( iRollback ){ |
+ assert( desiredAutoCommit==1 ); |
+ sqlite3RollbackAll(db); |
+ db->autoCommit = 1; |
+ }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ |
+ goto vdbe_return; |
+ }else{ |
+ db->autoCommit = (u8)desiredAutoCommit; |
+ if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ |
+ p->pc = pc; |
+ db->autoCommit = (u8)(1-desiredAutoCommit); |
+ p->rc = rc = SQLITE_BUSY; |
+ goto vdbe_return; |
+ } |
+ } |
+ assert( db->nStatement==0 ); |
+ sqlite3CloseSavepoints(db); |
+ if( p->rc==SQLITE_OK ){ |
+ rc = SQLITE_DONE; |
+ }else{ |
+ rc = SQLITE_ERROR; |
+ } |
+ goto vdbe_return; |
+ }else{ |
+ sqlite3SetString(&p->zErrMsg, db, |
+ (!desiredAutoCommit)?"cannot start a transaction within a transaction":( |
+ (iRollback)?"cannot rollback - no transaction is active": |
+ "cannot commit - no transaction is active")); |
+ |
+ rc = SQLITE_ERROR; |
+ } |
+ break; |
+} |
+ |
+/* Opcode: Transaction P1 P2 * * * |
+** |
+** Begin a transaction. The transaction ends when a Commit or Rollback |
+** opcode is encountered. Depending on the ON CONFLICT setting, the |
+** transaction might also be rolled back if an error is encountered. |
+** |
+** P1 is the index of the database file on which the transaction is |
+** started. Index 0 is the main database file and index 1 is the |
+** file used for temporary tables. Indices of 2 or more are used for |
+** attached databases. |
+** |
+** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is |
+** obtained on the database file when a write-transaction is started. No |
+** other process can start another write transaction while this transaction is |
+** underway. Starting a write transaction also creates a rollback journal. A |
+** write transaction must be started before any changes can be made to the |
+** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained |
+** on the file. |
+** |
+** If a write-transaction is started and the Vdbe.usesStmtJournal flag is |
+** true (this flag is set if the Vdbe may modify more than one row and may |
+** throw an ABORT exception), a statement transaction may also be opened. |
+** More specifically, a statement transaction is opened iff the database |
+** connection is currently not in autocommit mode, or if there are other |
+** active statements. A statement transaction allows the affects of this |
+** VDBE to be rolled back after an error without having to roll back the |
+** entire transaction. If no error is encountered, the statement transaction |
+** will automatically commit when the VDBE halts. |
+** |
+** If P2 is zero, then a read-lock is obtained on the database file. |
+*/ |
+case OP_Transaction: { |
+ Btree *pBt; |
+ |
+ assert( pOp->p1>=0 && pOp->p1<db->nDb ); |
+ assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); |
+ pBt = db->aDb[pOp->p1].pBt; |
+ |
+ if( pBt ){ |
+ rc = sqlite3BtreeBeginTrans(pBt, pOp->p2); |
+ if( rc==SQLITE_BUSY ){ |
+ p->pc = pc; |
+ p->rc = rc = SQLITE_BUSY; |
+ goto vdbe_return; |
+ } |
+ if( rc!=SQLITE_OK ){ |
+ goto abort_due_to_error; |
+ } |
+ |
+ if( pOp->p2 && p->usesStmtJournal |
+ && (db->autoCommit==0 || db->activeVdbeCnt>1) |
+ ){ |
+ assert( sqlite3BtreeIsInTrans(pBt) ); |
+ if( p->iStatement==0 ){ |
+ assert( db->nStatement>=0 && db->nSavepoint>=0 ); |
+ db->nStatement++; |
+ p->iStatement = db->nSavepoint + db->nStatement; |
+ } |
+ rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); |
+ |
+ /* Store the current value of the database handles deferred constraint |
+ ** counter. If the statement transaction needs to be rolled back, |
+ ** the value of this counter needs to be restored too. */ |
+ p->nStmtDefCons = db->nDeferredCons; |
+ } |
+ } |
+ break; |
+} |
+ |
+/* Opcode: ReadCookie P1 P2 P3 * * |
+** |
+** Read cookie number P3 from database P1 and write it into register P2. |
+** P3==1 is the schema version. P3==2 is the database format. |
+** P3==3 is the recommended pager cache size, and so forth. P1==0 is |
+** the main database file and P1==1 is the database file used to store |
+** temporary tables. |
+** |
+** There must be a read-lock on the database (either a transaction |
+** must be started or there must be an open cursor) before |
+** executing this instruction. |
+*/ |
+case OP_ReadCookie: { /* out2-prerelease */ |
+ int iMeta; |
+ int iDb; |
+ int iCookie; |
+ |
+ iDb = pOp->p1; |
+ iCookie = pOp->p3; |
+ assert( pOp->p3<SQLITE_N_BTREE_META ); |
+ assert( iDb>=0 && iDb<db->nDb ); |
+ assert( db->aDb[iDb].pBt!=0 ); |
+ assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 ); |
+ |
+ sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); |
+ pOut->u.i = iMeta; |
+ break; |
+} |
+ |
+/* Opcode: SetCookie P1 P2 P3 * * |
+** |
+** Write the content of register P3 (interpreted as an integer) |
+** into cookie number P2 of database P1. P2==1 is the schema version. |
+** P2==2 is the database format. P2==3 is the recommended pager cache |
+** size, and so forth. P1==0 is the main database file and P1==1 is the |
+** database file used to store temporary tables. |
+** |
+** A transaction must be started before executing this opcode. |
+*/ |
+case OP_SetCookie: { /* in3 */ |
+ Db *pDb; |
+ assert( pOp->p2<SQLITE_N_BTREE_META ); |
+ assert( pOp->p1>=0 && pOp->p1<db->nDb ); |
+ assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); |
+ pDb = &db->aDb[pOp->p1]; |
+ assert( pDb->pBt!=0 ); |
+ assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); |
+ pIn3 = &aMem[pOp->p3]; |
+ sqlite3VdbeMemIntegerify(pIn3); |
+ /* See note about index shifting on OP_ReadCookie */ |
+ rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i); |
+ if( pOp->p2==BTREE_SCHEMA_VERSION ){ |
+ /* When the schema cookie changes, record the new cookie internally */ |
+ pDb->pSchema->schema_cookie = (int)pIn3->u.i; |
+ db->flags |= SQLITE_InternChanges; |
+ }else if( pOp->p2==BTREE_FILE_FORMAT ){ |
+ /* Record changes in the file format */ |
+ pDb->pSchema->file_format = (u8)pIn3->u.i; |
+ } |
+ if( pOp->p1==1 ){ |
+ /* Invalidate all prepared statements whenever the TEMP database |
+ ** schema is changed. Ticket #1644 */ |
+ sqlite3ExpirePreparedStatements(db); |
+ p->expired = 0; |
+ } |
+ break; |
+} |
+ |
+/* Opcode: VerifyCookie P1 P2 P3 * * |
+** |
+** Check the value of global database parameter number 0 (the |
+** schema version) and make sure it is equal to P2 and that the |
+** generation counter on the local schema parse equals P3. |
+** |
+** P1 is the database number which is 0 for the main database file |
+** and 1 for the file holding temporary tables and some higher number |
+** for auxiliary databases. |
+** |
+** The cookie changes its value whenever the database schema changes. |
+** This operation is used to detect when that the cookie has changed |
+** and that the current process needs to reread the schema. |
+** |
+** Either a transaction needs to have been started or an OP_Open needs |
+** to be executed (to establish a read lock) before this opcode is |
+** invoked. |
+*/ |
+case OP_VerifyCookie: { |
+ int iMeta; |
+ int iGen; |
+ Btree *pBt; |
+ |
+ assert( pOp->p1>=0 && pOp->p1<db->nDb ); |
+ assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); |
+ assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); |
+ pBt = db->aDb[pOp->p1].pBt; |
+ if( pBt ){ |
+ sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta); |
+ iGen = db->aDb[pOp->p1].pSchema->iGeneration; |
+ }else{ |
+ iGen = iMeta = 0; |
+ } |
+ if( iMeta!=pOp->p2 || iGen!=pOp->p3 ){ |
+ sqlite3DbFree(db, p->zErrMsg); |
+ p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); |
+ /* If the schema-cookie from the database file matches the cookie |
+ ** stored with the in-memory representation of the schema, do |
+ ** not reload the schema from the database file. |
+ ** |
+ ** If virtual-tables are in use, this is not just an optimization. |
+ ** Often, v-tables store their data in other SQLite tables, which |
+ ** are queried from within xNext() and other v-table methods using |
+ ** prepared queries. If such a query is out-of-date, we do not want to |
+ ** discard the database schema, as the user code implementing the |
+ ** v-table would have to be ready for the sqlite3_vtab structure itself |
+ ** to be invalidated whenever sqlite3_step() is called from within |
+ ** a v-table method. |
+ */ |
+ if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ |
+ sqlite3ResetInternalSchema(db, pOp->p1); |
+ } |
+ |
+ p->expired = 1; |
+ rc = SQLITE_SCHEMA; |
+ } |
+ break; |
+} |
+ |
+/* Opcode: OpenRead P1 P2 P3 P4 P5 |
+** |
+** Open a read-only cursor for the database table whose root page is |
+** P2 in a database file. The database file is determined by P3. |
+** P3==0 means the main database, P3==1 means the database used for |
+** temporary tables, and P3>1 means used the corresponding attached |
+** database. Give the new cursor an identifier of P1. The P1 |
+** values need not be contiguous but all P1 values should be small integers. |
+** It is an error for P1 to be negative. |
+** |
+** If P5!=0 then use the content of register P2 as the root page, not |
+** the value of P2 itself. |
+** |
+** There will be a read lock on the database whenever there is an |
+** open cursor. If the database was unlocked prior to this instruction |
+** then a read lock is acquired as part of this instruction. A read |
+** lock allows other processes to read the database but prohibits |
+** any other process from modifying the database. The read lock is |
+** released when all cursors are closed. If this instruction attempts |
+** to get a read lock but fails, the script terminates with an |
+** SQLITE_BUSY error code. |
+** |
+** The P4 value may be either an integer (P4_INT32) or a pointer to |
+** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo |
+** structure, then said structure defines the content and collating |
+** sequence of the index being opened. Otherwise, if P4 is an integer |
+** value, it is set to the number of columns in the table. |
+** |
+** See also OpenWrite. |
+*/ |
+/* Opcode: OpenWrite P1 P2 P3 P4 P5 |
+** |
+** Open a read/write cursor named P1 on the table or index whose root |
+** page is P2. Or if P5!=0 use the content of register P2 to find the |
+** root page. |
+** |
+** The P4 value may be either an integer (P4_INT32) or a pointer to |
+** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo |
+** structure, then said structure defines the content and collating |
+** sequence of the index being opened. Otherwise, if P4 is an integer |
+** value, it is set to the number of columns in the table, or to the |
+** largest index of any column of the table that is actually used. |
+** |
+** This instruction works just like OpenRead except that it opens the cursor |
+** in read/write mode. For a given table, there can be one or more read-only |
+** cursors or a single read/write cursor but not both. |
+** |
+** See also OpenRead. |
+*/ |
+case OP_OpenRead: |
+case OP_OpenWrite: { |
+ int nField; |
+ KeyInfo *pKeyInfo; |
+ int p2; |
+ int iDb; |
+ int wrFlag; |
+ Btree *pX; |
+ VdbeCursor *pCur; |
+ Db *pDb; |
+ |
+ if( p->expired ){ |
+ rc = SQLITE_ABORT; |
+ break; |
+ } |
+ |
+ nField = 0; |
+ pKeyInfo = 0; |
+ p2 = pOp->p2; |
+ iDb = pOp->p3; |
+ assert( iDb>=0 && iDb<db->nDb ); |
+ assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 ); |
+ pDb = &db->aDb[iDb]; |
+ pX = pDb->pBt; |
+ assert( pX!=0 ); |
+ if( pOp->opcode==OP_OpenWrite ){ |
+ wrFlag = 1; |
+ assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
+ if( pDb->pSchema->file_format < p->minWriteFileFormat ){ |
+ p->minWriteFileFormat = pDb->pSchema->file_format; |
+ } |
+ }else{ |
+ wrFlag = 0; |
+ } |
+ if( pOp->p5 ){ |
+ assert( p2>0 ); |
+ assert( p2<=p->nMem ); |
+ pIn2 = &aMem[p2]; |
+ assert( memIsValid(pIn2) ); |
+ assert( (pIn2->flags & MEM_Int)!=0 ); |
+ sqlite3VdbeMemIntegerify(pIn2); |
+ p2 = (int)pIn2->u.i; |
+ /* The p2 value always comes from a prior OP_CreateTable opcode and |
+ ** that opcode will always set the p2 value to 2 or more or else fail. |
+ ** If there were a failure, the prepared statement would have halted |
+ ** before reaching this instruction. */ |
+ if( NEVER(p2<2) ) { |
+ rc = SQLITE_CORRUPT_BKPT; |
+ goto abort_due_to_error; |
+ } |
+ } |
+ if( pOp->p4type==P4_KEYINFO ){ |
+ pKeyInfo = pOp->p4.pKeyInfo; |
+ pKeyInfo->enc = ENC(p->db); |
+ nField = pKeyInfo->nField+1; |
+ }else if( pOp->p4type==P4_INT32 ){ |
+ nField = pOp->p4.i; |
+ } |
+ assert( pOp->p1>=0 ); |
+ pCur = allocateCursor(p, pOp->p1, nField, iDb, 1); |
+ if( pCur==0 ) goto no_mem; |
+ pCur->nullRow = 1; |
+ pCur->isOrdered = 1; |
+ rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor); |
+ pCur->pKeyInfo = pKeyInfo; |
+ |
+ /* Since it performs no memory allocation or IO, the only values that |
+ ** sqlite3BtreeCursor() may return are SQLITE_EMPTY and SQLITE_OK. |
+ ** SQLITE_EMPTY is only returned when attempting to open the table |
+ ** rooted at page 1 of a zero-byte database. */ |
+ assert( rc==SQLITE_EMPTY || rc==SQLITE_OK ); |
+ if( rc==SQLITE_EMPTY ){ |
+ pCur->pCursor = 0; |
+ rc = SQLITE_OK; |
+ } |
+ |
+ /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of |
+ ** SQLite used to check if the root-page flags were sane at this point |
+ ** and report database corruption if they were not, but this check has |
+ ** since moved into the btree layer. */ |
+ pCur->isTable = pOp->p4type!=P4_KEYINFO; |
+ pCur->isIndex = !pCur->isTable; |
+ break; |
+} |
+ |
+/* Opcode: OpenEphemeral P1 P2 * P4 * |
+** |
+** Open a new cursor P1 to a transient table. |
+** The cursor is always opened read/write even if |
+** the main database is read-only. The ephemeral |
+** table is deleted automatically when the cursor is closed. |
+** |
+** P2 is the number of columns in the ephemeral table. |
+** The cursor points to a BTree table if P4==0 and to a BTree index |
+** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure |
+** that defines the format of keys in the index. |
+** |
+** This opcode was once called OpenTemp. But that created |
+** confusion because the term "temp table", might refer either |
+** to a TEMP table at the SQL level, or to a table opened by |
+** this opcode. Then this opcode was call OpenVirtual. But |
+** that created confusion with the whole virtual-table idea. |
+*/ |
+/* Opcode: OpenAutoindex P1 P2 * P4 * |
+** |
+** This opcode works the same as OP_OpenEphemeral. It has a |
+** different name to distinguish its use. Tables created using |
+** by this opcode will be used for automatically created transient |
+** indices in joins. |
+*/ |
+case OP_OpenAutoindex: |
+case OP_OpenEphemeral: { |
+ VdbeCursor *pCx; |
+ static const int vfsFlags = |
+ SQLITE_OPEN_READWRITE | |
+ SQLITE_OPEN_CREATE | |
+ SQLITE_OPEN_EXCLUSIVE | |
+ SQLITE_OPEN_DELETEONCLOSE | |
+ SQLITE_OPEN_TRANSIENT_DB; |
+ |
+ assert( pOp->p1>=0 ); |
+ pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1); |
+ if( pCx==0 ) goto no_mem; |
+ pCx->nullRow = 1; |
+ rc = sqlite3BtreeOpen(0, db, &pCx->pBt, |
+ BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags); |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3BtreeBeginTrans(pCx->pBt, 1); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ /* If a transient index is required, create it by calling |
+ ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before |
+ ** opening it. If a transient table is required, just use the |
+ ** automatically created table with root-page 1 (an BLOB_INTKEY table). |
+ */ |
+ if( pOp->p4.pKeyInfo ){ |
+ int pgno; |
+ assert( pOp->p4type==P4_KEYINFO ); |
+ rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY); |
+ if( rc==SQLITE_OK ){ |
+ assert( pgno==MASTER_ROOT+1 ); |
+ rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, |
+ (KeyInfo*)pOp->p4.z, pCx->pCursor); |
+ pCx->pKeyInfo = pOp->p4.pKeyInfo; |
+ pCx->pKeyInfo->enc = ENC(p->db); |
+ } |
+ pCx->isTable = 0; |
+ }else{ |
+ rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor); |
+ pCx->isTable = 1; |
+ } |
+ } |
+ pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); |
+ pCx->isIndex = !pCx->isTable; |
+ break; |
+} |
+ |
+/* Opcode: OpenPseudo P1 P2 P3 * * |
+** |
+** Open a new cursor that points to a fake table that contains a single |
+** row of data. The content of that one row in the content of memory |
+** register P2. In other words, cursor P1 becomes an alias for the |
+** MEM_Blob content contained in register P2. |
+** |
+** A pseudo-table created by this opcode is used to hold a single |
+** row output from the sorter so that the row can be decomposed into |
+** individual columns using the OP_Column opcode. The OP_Column opcode |
+** is the only cursor opcode that works with a pseudo-table. |
+** |
+** P3 is the number of fields in the records that will be stored by |
+** the pseudo-table. |
+*/ |
+case OP_OpenPseudo: { |
+ VdbeCursor *pCx; |
+ |
+ assert( pOp->p1>=0 ); |
+ pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0); |
+ if( pCx==0 ) goto no_mem; |
+ pCx->nullRow = 1; |
+ pCx->pseudoTableReg = pOp->p2; |
+ pCx->isTable = 1; |
+ pCx->isIndex = 0; |
+ break; |
+} |
+ |
+/* Opcode: Close P1 * * * * |
+** |
+** Close a cursor previously opened as P1. If P1 is not |
+** currently open, this instruction is a no-op. |
+*/ |
+case OP_Close: { |
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
+ sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); |
+ p->apCsr[pOp->p1] = 0; |
+ break; |
+} |
+ |
+/* Opcode: SeekGe P1 P2 P3 P4 * |
+** |
+** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), |
+** use the value in register P3 as the key. If cursor P1 refers |
+** to an SQL index, then P3 is the first in an array of P4 registers |
+** that are used as an unpacked index key. |
+** |
+** Reposition cursor P1 so that it points to the smallest entry that |
+** is greater than or equal to the key value. If there are no records |
+** greater than or equal to the key and P2 is not zero, then jump to P2. |
+** |
+** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe |
+*/ |
+/* Opcode: SeekGt P1 P2 P3 P4 * |
+** |
+** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), |
+** use the value in register P3 as a key. If cursor P1 refers |
+** to an SQL index, then P3 is the first in an array of P4 registers |
+** that are used as an unpacked index key. |
+** |
+** Reposition cursor P1 so that it points to the smallest entry that |
+** is greater than the key value. If there are no records greater than |
+** the key and P2 is not zero, then jump to P2. |
+** |
+** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe |
+*/ |
+/* Opcode: SeekLt P1 P2 P3 P4 * |
+** |
+** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), |
+** use the value in register P3 as a key. If cursor P1 refers |
+** to an SQL index, then P3 is the first in an array of P4 registers |
+** that are used as an unpacked index key. |
+** |
+** Reposition cursor P1 so that it points to the largest entry that |
+** is less than the key value. If there are no records less than |
+** the key and P2 is not zero, then jump to P2. |
+** |
+** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe |
+*/ |
+/* Opcode: SeekLe P1 P2 P3 P4 * |
+** |
+** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), |
+** use the value in register P3 as a key. If cursor P1 refers |
+** to an SQL index, then P3 is the first in an array of P4 registers |
+** that are used as an unpacked index key. |
+** |
+** Reposition cursor P1 so that it points to the largest entry that |
+** is less than or equal to the key value. If there are no records |
+** less than or equal to the key and P2 is not zero, then jump to P2. |
+** |
+** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt |
+*/ |
+case OP_SeekLt: /* jump, in3 */ |
+case OP_SeekLe: /* jump, in3 */ |
+case OP_SeekGe: /* jump, in3 */ |
+case OP_SeekGt: { /* jump, in3 */ |
+ int res; |
+ int oc; |
+ VdbeCursor *pC; |
+ UnpackedRecord r; |
+ int nField; |
+ i64 iKey; /* The rowid we are to seek to */ |
+ |
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
+ assert( pOp->p2!=0 ); |
+ pC = p->apCsr[pOp->p1]; |
+ assert( pC!=0 ); |
+ assert( pC->pseudoTableReg==0 ); |
+ assert( OP_SeekLe == OP_SeekLt+1 ); |
+ assert( OP_SeekGe == OP_SeekLt+2 ); |
+ assert( OP_SeekGt == OP_SeekLt+3 ); |
+ assert( pC->isOrdered ); |
+ if( pC->pCursor!=0 ){ |
+ oc = pOp->opcode; |
+ pC->nullRow = 0; |
+ if( pC->isTable ){ |
+ /* The input value in P3 might be of any type: integer, real, string, |
+ ** blob, or NULL. But it needs to be an integer before we can do |
+ ** the seek, so covert it. */ |
+ pIn3 = &aMem[pOp->p3]; |
+ applyNumericAffinity(pIn3); |
+ iKey = sqlite3VdbeIntValue(pIn3); |
+ pC->rowidIsValid = 0; |
+ |
+ /* If the P3 value could not be converted into an integer without |
+ ** loss of information, then special processing is required... */ |
+ if( (pIn3->flags & MEM_Int)==0 ){ |
+ if( (pIn3->flags & MEM_Real)==0 ){ |
+ /* If the P3 value cannot be converted into any kind of a number, |
+ ** then the seek is not possible, so jump to P2 */ |
+ pc = pOp->p2 - 1; |
+ break; |
+ } |
+ /* If we reach this point, then the P3 value must be a floating |
+ ** point number. */ |
+ assert( (pIn3->flags & MEM_Real)!=0 ); |
+ |
+ if( iKey==SMALLEST_INT64 && (pIn3->r<(double)iKey || pIn3->r>0) ){ |
+ /* The P3 value is too large in magnitude to be expressed as an |
+ ** integer. */ |
+ res = 1; |
+ if( pIn3->r<0 ){ |
+ if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt ); |
+ rc = sqlite3BtreeFirst(pC->pCursor, &res); |
+ if( rc!=SQLITE_OK ) goto abort_due_to_error; |
+ } |
+ }else{ |
+ if( oc<=OP_SeekLe ){ assert( oc==OP_SeekLt || oc==OP_SeekLe ); |
+ rc = sqlite3BtreeLast(pC->pCursor, &res); |
+ if( rc!=SQLITE_OK ) goto abort_due_to_error; |
+ } |
+ } |
+ if( res ){ |
+ pc = pOp->p2 - 1; |
+ } |
+ break; |
+ }else if( oc==OP_SeekLt || oc==OP_SeekGe ){ |
+ /* Use the ceiling() function to convert real->int */ |
+ if( pIn3->r > (double)iKey ) iKey++; |
+ }else{ |
+ /* Use the floor() function to convert real->int */ |
+ assert( oc==OP_SeekLe || oc==OP_SeekGt ); |
+ if( pIn3->r < (double)iKey ) iKey--; |
+ } |
+ } |
+ rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res); |
+ if( rc!=SQLITE_OK ){ |
+ goto abort_due_to_error; |
+ } |
+ if( res==0 ){ |
+ pC->rowidIsValid = 1; |
+ pC->lastRowid = iKey; |
+ } |
+ }else{ |
+ nField = pOp->p4.i; |
+ assert( pOp->p4type==P4_INT32 ); |
+ assert( nField>0 ); |
+ r.pKeyInfo = pC->pKeyInfo; |
+ r.nField = (u16)nField; |
+ |
+ /* The next line of code computes as follows, only faster: |
+ ** if( oc==OP_SeekGt || oc==OP_SeekLe ){ |
+ ** r.flags = UNPACKED_INCRKEY; |
+ ** }else{ |
+ ** r.flags = 0; |
+ ** } |
+ */ |
+ r.flags = (u16)(UNPACKED_INCRKEY * (1 & (oc - OP_SeekLt))); |
+ assert( oc!=OP_SeekGt || r.flags==UNPACKED_INCRKEY ); |
+ assert( oc!=OP_SeekLe || r.flags==UNPACKED_INCRKEY ); |
+ assert( oc!=OP_SeekGe || r.flags==0 ); |
+ assert( oc!=OP_SeekLt || r.flags==0 ); |
+ |
+ r.aMem = &aMem[pOp->p3]; |
+#ifdef SQLITE_DEBUG |
+ { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } |
+#endif |
+ ExpandBlob(r.aMem); |
+ rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res); |
+ if( rc!=SQLITE_OK ){ |
+ goto abort_due_to_error; |
+ } |
+ pC->rowidIsValid = 0; |
+ } |
+ pC->deferredMoveto = 0; |
+ pC->cacheStatus = CACHE_STALE; |
+#ifdef SQLITE_TEST |
+ sqlite3_search_count++; |
+#endif |
+ if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt ); |
+ if( res<0 || (res==0 && oc==OP_SeekGt) ){ |
+ rc = sqlite3BtreeNext(pC->pCursor, &res); |
+ if( rc!=SQLITE_OK ) goto abort_due_to_error; |
+ pC->rowidIsValid = 0; |
+ }else{ |
+ res = 0; |
+ } |
+ }else{ |
+ assert( oc==OP_SeekLt || oc==OP_SeekLe ); |
+ if( res>0 || (res==0 && oc==OP_SeekLt) ){ |
+ rc = sqlite3BtreePrevious(pC->pCursor, &res); |
+ if( rc!=SQLITE_OK ) goto abort_due_to_error; |
+ pC->rowidIsValid = 0; |
+ }else{ |
+ /* res might be negative because the table is empty. Check to |
+ ** see if this is the case. |
+ */ |
+ res = sqlite3BtreeEof(pC->pCursor); |
+ } |
+ } |
+ assert( pOp->p2>0 ); |
+ if( res ){ |
+ pc = pOp->p2 - 1; |
+ } |
+ }else{ |
+ /* This happens when attempting to open the sqlite3_master table |
+ ** for read access returns SQLITE_EMPTY. In this case always |
+ ** take the jump (since there are no records in the table). |
+ */ |
+ pc = pOp->p2 - 1; |
+ } |
+ break; |
+} |
+ |
+/* Opcode: Seek P1 P2 * * * |
+** |
+** P1 is an open table cursor and P2 is a rowid integer. Arrange |
+** for P1 to move so that it points to the rowid given by P2. |
+** |
+** This is actually a deferred seek. Nothing actually happens until |
+** the cursor is used to read a record. That way, if no reads |
+** occur, no unnecessary I/O happens. |
+*/ |
+case OP_Seek: { /* in2 */ |
+ VdbeCursor *pC; |
+ |
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
+ pC = p->apCsr[pOp->p1]; |
+ assert( pC!=0 ); |
+ if( ALWAYS(pC->pCursor!=0) ){ |
+ assert( pC->isTable ); |
+ pC->nullRow = 0; |
+ pIn2 = &aMem[pOp->p2]; |
+ pC->movetoTarget = sqlite3VdbeIntValue(pIn2); |
+ pC->rowidIsValid = 0; |
+ pC->deferredMoveto = 1; |
+ } |
+ break; |
+} |
+ |
+ |
+/* Opcode: Found P1 P2 P3 P4 * |
+** |
+** If P4==0 then register P3 holds a blob constructed by MakeRecord. If |
+** P4>0 then register P3 is the first of P4 registers that form an unpacked |
+** record. |
+** |
+** Cursor P1 is on an index btree. If the record identified by P3 and P4 |
+** is a prefix of any entry in P1 then a jump is made to P2 and |
+** P1 is left pointing at the matching entry. |
+*/ |
+/* Opcode: NotFound P1 P2 P3 P4 * |
+** |
+** If P4==0 then register P3 holds a blob constructed by MakeRecord. If |
+** P4>0 then register P3 is the first of P4 registers that form an unpacked |
+** record. |
+** |
+** Cursor P1 is on an index btree. If the record identified by P3 and P4 |
+** is not the prefix of any entry in P1 then a jump is made to P2. If P1 |
+** does contain an entry whose prefix matches the P3/P4 record then control |
+** falls through to the next instruction and P1 is left pointing at the |
+** matching entry. |
+** |
+** See also: Found, NotExists, IsUnique |
+*/ |
+case OP_NotFound: /* jump, in3 */ |
+case OP_Found: { /* jump, in3 */ |
+ int alreadyExists; |
+ VdbeCursor *pC; |
+ int res; |
+ UnpackedRecord *pIdxKey; |
+ UnpackedRecord r; |
+ char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7]; |
+ |
+#ifdef SQLITE_TEST |
+ sqlite3_found_count++; |
+#endif |
+ |
+ alreadyExists = 0; |
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
+ assert( pOp->p4type==P4_INT32 ); |
+ pC = p->apCsr[pOp->p1]; |
+ assert( pC!=0 ); |
+ pIn3 = &aMem[pOp->p3]; |
+ if( ALWAYS(pC->pCursor!=0) ){ |
+ |
+ assert( pC->isTable==0 ); |
+ if( pOp->p4.i>0 ){ |
+ r.pKeyInfo = pC->pKeyInfo; |
+ r.nField = (u16)pOp->p4.i; |
+ r.aMem = pIn3; |
+#ifdef SQLITE_DEBUG |
+ { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } |
+#endif |
+ r.flags = UNPACKED_PREFIX_MATCH; |
+ pIdxKey = &r; |
+ }else{ |
+ assert( pIn3->flags & MEM_Blob ); |
+ assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */ |
+ pIdxKey = sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, |
+ aTempRec, sizeof(aTempRec)); |
+ if( pIdxKey==0 ){ |
+ goto no_mem; |
+ } |
+ pIdxKey->flags |= UNPACKED_PREFIX_MATCH; |
+ } |
+ rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res); |
+ if( pOp->p4.i==0 ){ |
+ sqlite3VdbeDeleteUnpackedRecord(pIdxKey); |
+ } |
+ if( rc!=SQLITE_OK ){ |
+ break; |
+ } |
+ alreadyExists = (res==0); |
+ pC->deferredMoveto = 0; |
+ pC->cacheStatus = CACHE_STALE; |
+ } |
+ if( pOp->opcode==OP_Found ){ |
+ if( alreadyExists ) pc = pOp->p2 - 1; |
+ }else{ |
+ if( !alreadyExists ) pc = pOp->p2 - 1; |
+ } |
+ break; |
+} |
+ |
+/* Opcode: IsUnique P1 P2 P3 P4 * |
+** |
+** Cursor P1 is open on an index b-tree - that is to say, a btree which |
+** no data and where the key are records generated by OP_MakeRecord with |
+** the list field being the integer ROWID of the entry that the index |
+** entry refers to. |
+** |
+** The P3 register contains an integer record number. Call this record |
+** number R. Register P4 is the first in a set of N contiguous registers |
+** that make up an unpacked index key that can be used with cursor P1. |
+** The value of N can be inferred from the cursor. N includes the rowid |
+** value appended to the end of the index record. This rowid value may |
+** or may not be the same as R. |
+** |
+** If any of the N registers beginning with register P4 contains a NULL |
+** value, jump immediately to P2. |
+** |
+** Otherwise, this instruction checks if cursor P1 contains an entry |
+** where the first (N-1) fields match but the rowid value at the end |
+** of the index entry is not R. If there is no such entry, control jumps |
+** to instruction P2. Otherwise, the rowid of the conflicting index |
+** entry is copied to register P3 and control falls through to the next |
+** instruction. |
+** |
+** See also: NotFound, NotExists, Found |
+*/ |
+case OP_IsUnique: { /* jump, in3 */ |
+ u16 ii; |
+ VdbeCursor *pCx; |
+ BtCursor *pCrsr; |
+ u16 nField; |
+ Mem *aMx; |
+ UnpackedRecord r; /* B-Tree index search key */ |
+ i64 R; /* Rowid stored in register P3 */ |
+ |
+ pIn3 = &aMem[pOp->p3]; |
+ aMx = &aMem[pOp->p4.i]; |
+ /* Assert that the values of parameters P1 and P4 are in range. */ |
+ assert( pOp->p4type==P4_INT32 ); |
+ assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem ); |
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
+ |
+ /* Find the index cursor. */ |
+ pCx = p->apCsr[pOp->p1]; |
+ assert( pCx->deferredMoveto==0 ); |
+ pCx->seekResult = 0; |
+ pCx->cacheStatus = CACHE_STALE; |
+ pCrsr = pCx->pCursor; |
+ |
+ /* If any of the values are NULL, take the jump. */ |
+ nField = pCx->pKeyInfo->nField; |
+ for(ii=0; ii<nField; ii++){ |
+ if( aMx[ii].flags & MEM_Null ){ |
+ pc = pOp->p2 - 1; |
+ pCrsr = 0; |
+ break; |
+ } |
+ } |
+ assert( (aMx[nField].flags & MEM_Null)==0 ); |
+ |
+ if( pCrsr!=0 ){ |
+ /* Populate the index search key. */ |
+ r.pKeyInfo = pCx->pKeyInfo; |
+ r.nField = nField + 1; |
+ r.flags = UNPACKED_PREFIX_SEARCH; |
+ r.aMem = aMx; |
+#ifdef SQLITE_DEBUG |
+ { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } |
+#endif |
+ |
+ /* Extract the value of R from register P3. */ |
+ sqlite3VdbeMemIntegerify(pIn3); |
+ R = pIn3->u.i; |
+ |
+ /* Search the B-Tree index. If no conflicting record is found, jump |
+ ** to P2. Otherwise, copy the rowid of the conflicting record to |
+ ** register P3 and fall through to the next instruction. */ |
+ rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &pCx->seekResult); |
+ if( (r.flags & UNPACKED_PREFIX_SEARCH) || r.rowid==R ){ |
+ pc = pOp->p2 - 1; |
+ }else{ |
+ pIn3->u.i = r.rowid; |
+ } |
+ } |
+ break; |
+} |
+ |
+/* Opcode: NotExists P1 P2 P3 * * |
+** |
+** Use the content of register P3 as a integer key. If a record |
+** with that key does not exist in table of P1, then jump to P2. |
+** If the record does exist, then fall through. The cursor is left |
+** pointing to the record if it exists. |
+** |
+** The difference between this operation and NotFound is that this |
+** operation assumes the key is an integer and that P1 is a table whereas |
+** NotFound assumes key is a blob constructed from MakeRecord and |
+** P1 is an index. |
+** |
+** See also: Found, NotFound, IsUnique |
+*/ |
+case OP_NotExists: { /* jump, in3 */ |
+ VdbeCursor *pC; |
+ BtCursor *pCrsr; |
+ int res; |
+ u64 iKey; |
+ |
+ pIn3 = &aMem[pOp->p3]; |
+ assert( pIn3->flags & MEM_Int ); |
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
+ pC = p->apCsr[pOp->p1]; |
+ assert( pC!=0 ); |
+ assert( pC->isTable ); |
+ assert( pC->pseudoTableReg==0 ); |
+ pCrsr = pC->pCursor; |
+ if( pCrsr!=0 ){ |
+ res = 0; |
+ iKey = pIn3->u.i; |
+ rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); |
+ pC->lastRowid = pIn3->u.i; |
+ pC->rowidIsValid = res==0 ?1:0; |
+ pC->nullRow = 0; |
+ pC->cacheStatus = CACHE_STALE; |
+ pC->deferredMoveto = 0; |
+ if( res!=0 ){ |
+ pc = pOp->p2 - 1; |
+ assert( pC->rowidIsValid==0 ); |
+ } |
+ pC->seekResult = res; |
+ }else{ |
+ /* This happens when an attempt to open a read cursor on the |
+ ** sqlite_master table returns SQLITE_EMPTY. |
+ */ |
+ pc = pOp->p2 - 1; |
+ assert( pC->rowidIsValid==0 ); |
+ pC->seekResult = 0; |
+ } |
+ break; |
+} |
+ |
+/* Opcode: Sequence P1 P2 * * * |
+** |
+** Find the next available sequence number for cursor P1. |
+** Write the sequence number into register P2. |
+** The sequence number on the cursor is incremented after this |
+** instruction. |
+*/ |
+case OP_Sequence: { /* out2-prerelease */ |
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
+ assert( p->apCsr[pOp->p1]!=0 ); |
+ pOut->u.i = p->apCsr[pOp->p1]->seqCount++; |
+ break; |
+} |
+ |
+ |
+/* Opcode: NewRowid P1 P2 P3 * * |
+** |
+** Get a new integer record number (a.k.a "rowid") used as the key to a table. |
+** The record number is not previously used as a key in the database |
+** table that cursor P1 points to. The new record number is written |
+** written to register P2. |
+** |
+** If P3>0 then P3 is a register in the root frame of this VDBE that holds |
+** the largest previously generated record number. No new record numbers are |
+** allowed to be less than this value. When this value reaches its maximum, |
+** a SQLITE_FULL error is generated. The P3 register is updated with the ' |
+** generated record number. This P3 mechanism is used to help implement the |
+** AUTOINCREMENT feature. |
+*/ |
+case OP_NewRowid: { /* out2-prerelease */ |
+ i64 v; /* The new rowid */ |
+ VdbeCursor *pC; /* Cursor of table to get the new rowid */ |
+ int res; /* Result of an sqlite3BtreeLast() */ |
+ int cnt; /* Counter to limit the number of searches */ |
+ Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ |
+ VdbeFrame *pFrame; /* Root frame of VDBE */ |
+ |
+ v = 0; |
+ res = 0; |
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
+ pC = p->apCsr[pOp->p1]; |
+ assert( pC!=0 ); |
+ if( NEVER(pC->pCursor==0) ){ |
+ /* The zero initialization above is all that is needed */ |
+ }else{ |
+ /* The next rowid or record number (different terms for the same |
+ ** thing) is obtained in a two-step algorithm. |
+ ** |
+ ** First we attempt to find the largest existing rowid and add one |
+ ** to that. But if the largest existing rowid is already the maximum |
+ ** positive integer, we have to fall through to the second |
+ ** probabilistic algorithm |
+ ** |
+ ** The second algorithm is to select a rowid at random and see if |
+ ** it already exists in the table. If it does not exist, we have |
+ ** succeeded. If the random rowid does exist, we select a new one |
+ ** and try again, up to 100 times. |
+ */ |
+ assert( pC->isTable ); |
+ |
+#ifdef SQLITE_32BIT_ROWID |
+# define MAX_ROWID 0x7fffffff |
+#else |
+ /* Some compilers complain about constants of the form 0x7fffffffffffffff. |
+ ** Others complain about 0x7ffffffffffffffffLL. The following macro seems |
+ ** to provide the constant while making all compilers happy. |
+ */ |
+# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) |
+#endif |
+ |
+ if( !pC->useRandomRowid ){ |
+ v = sqlite3BtreeGetCachedRowid(pC->pCursor); |
+ if( v==0 ){ |
+ rc = sqlite3BtreeLast(pC->pCursor, &res); |
+ if( rc!=SQLITE_OK ){ |
+ goto abort_due_to_error; |
+ } |
+ if( res ){ |
+ v = 1; /* IMP: R-61914-48074 */ |
+ }else{ |
+ assert( sqlite3BtreeCursorIsValid(pC->pCursor) ); |
+ rc = sqlite3BtreeKeySize(pC->pCursor, &v); |
+ assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */ |
+ if( v==MAX_ROWID ){ |
+ pC->useRandomRowid = 1; |
+ }else{ |
+ v++; /* IMP: R-29538-34987 */ |
+ } |
+ } |
+ } |
+ |
+#ifndef SQLITE_OMIT_AUTOINCREMENT |
+ if( pOp->p3 ){ |
+ /* Assert that P3 is a valid memory cell. */ |
+ assert( pOp->p3>0 ); |
+ if( p->pFrame ){ |
+ for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); |
+ /* Assert that P3 is a valid memory cell. */ |
+ assert( pOp->p3<=pFrame->nMem ); |
+ pMem = &pFrame->aMem[pOp->p3]; |
+ }else{ |
+ /* Assert that P3 is a valid memory cell. */ |
+ assert( pOp->p3<=p->nMem ); |
+ pMem = &aMem[pOp->p3]; |
+ memAboutToChange(p, pMem); |
+ } |
+ assert( memIsValid(pMem) ); |
+ |
+ REGISTER_TRACE(pOp->p3, pMem); |
+ sqlite3VdbeMemIntegerify(pMem); |
+ assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ |
+ if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ |
+ rc = SQLITE_FULL; /* IMP: R-12275-61338 */ |
+ goto abort_due_to_error; |
+ } |
+ if( v<pMem->u.i+1 ){ |
+ v = pMem->u.i + 1; |
+ } |
+ pMem->u.i = v; |
+ } |
+#endif |
+ |
+ sqlite3BtreeSetCachedRowid(pC->pCursor, v<MAX_ROWID ? v+1 : 0); |
+ } |
+ if( pC->useRandomRowid ){ |
+ /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the |
+ ** largest possible integer (9223372036854775807) then the database |
+ ** engine starts picking positive candidate ROWIDs at random until |
+ ** it finds one that is not previously used. */ |
+ assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is |
+ ** an AUTOINCREMENT table. */ |
+ /* on the first attempt, simply do one more than previous */ |
+ v = db->lastRowid; |
+ v &= (MAX_ROWID>>1); /* ensure doesn't go negative */ |
+ v++; /* ensure non-zero */ |
+ cnt = 0; |
+ while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v, |
+ 0, &res))==SQLITE_OK) |
+ && (res==0) |
+ && (++cnt<100)){ |
+ /* collision - try another random rowid */ |
+ sqlite3_randomness(sizeof(v), &v); |
+ if( cnt<5 ){ |
+ /* try "small" random rowids for the initial attempts */ |
+ v &= 0xffffff; |
+ }else{ |
+ v &= (MAX_ROWID>>1); /* ensure doesn't go negative */ |
+ } |
+ v++; /* ensure non-zero */ |
+ } |
+ if( rc==SQLITE_OK && res==0 ){ |
+ rc = SQLITE_FULL; /* IMP: R-38219-53002 */ |
+ goto abort_due_to_error; |
+ } |
+ assert( v>0 ); /* EV: R-40812-03570 */ |
+ } |
+ pC->rowidIsValid = 0; |
+ pC->deferredMoveto = 0; |
+ pC->cacheStatus = CACHE_STALE; |
+ } |
+ pOut->u.i = v; |
+ break; |
+} |
+ |
+/* Opcode: Insert P1 P2 P3 P4 P5 |
+** |
+** Write an entry into the table of cursor P1. A new entry is |
+** created if it doesn't already exist or the data for an existing |
+** entry is overwritten. The data is the value MEM_Blob stored in register |
+** number P2. The key is stored in register P3. The key must |
+** be a MEM_Int. |
+** |
+** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is |
+** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, |
+** then rowid is stored for subsequent return by the |
+** sqlite3_last_insert_rowid() function (otherwise it is unmodified). |
+** |
+** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of |
+** the last seek operation (OP_NotExists) was a success, then this |
+** operation will not attempt to find the appropriate row before doing |
+** the insert but will instead overwrite the row that the cursor is |
+** currently pointing to. Presumably, the prior OP_NotExists opcode |
+** has already positioned the cursor correctly. This is an optimization |
+** that boosts performance by avoiding redundant seeks. |
+** |
+** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an |
+** UPDATE operation. Otherwise (if the flag is clear) then this opcode |
+** is part of an INSERT operation. The difference is only important to |
+** the update hook. |
+** |
+** Parameter P4 may point to a string containing the table-name, or |
+** may be NULL. If it is not NULL, then the update-hook |
+** (sqlite3.xUpdateCallback) is invoked following a successful insert. |
+** |
+** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically |
+** allocated, then ownership of P2 is transferred to the pseudo-cursor |
+** and register P2 becomes ephemeral. If the cursor is changed, the |
+** value of register P2 will then change. Make sure this does not |
+** cause any problems.) |
+** |
+** This instruction only works on tables. The equivalent instruction |
+** for indices is OP_IdxInsert. |
+*/ |
+/* Opcode: InsertInt P1 P2 P3 P4 P5 |
+** |
+** This works exactly like OP_Insert except that the key is the |
+** integer value P3, not the value of the integer stored in register P3. |
+*/ |
+case OP_Insert: |
+case OP_InsertInt: { |
+ Mem *pData; /* MEM cell holding data for the record to be inserted */ |
+ Mem *pKey; /* MEM cell holding key for the record */ |
+ i64 iKey; /* The integer ROWID or key for the record to be inserted */ |
+ VdbeCursor *pC; /* Cursor to table into which insert is written */ |
+ int nZero; /* Number of zero-bytes to append */ |
+ int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ |
+ const char *zDb; /* database name - used by the update hook */ |
+ const char *zTbl; /* Table name - used by the opdate hook */ |
+ int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */ |
+ |
+ pData = &aMem[pOp->p2]; |
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
+ assert( memIsValid(pData) ); |
+ pC = p->apCsr[pOp->p1]; |
+ assert( pC!=0 ); |
+ assert( pC->pCursor!=0 ); |
+ assert( pC->pseudoTableReg==0 ); |
+ assert( pC->isTable ); |
+ REGISTER_TRACE(pOp->p2, pData); |
+ |
+ if( pOp->opcode==OP_Insert ){ |
+ pKey = &aMem[pOp->p3]; |
+ assert( pKey->flags & MEM_Int ); |
+ assert( memIsValid(pKey) ); |
+ REGISTER_TRACE(pOp->p3, pKey); |
+ iKey = pKey->u.i; |
+ }else{ |
+ assert( pOp->opcode==OP_InsertInt ); |
+ iKey = pOp->p3; |
+ } |
+ |
+ if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; |
+ if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = iKey; |
+ if( pData->flags & MEM_Null ){ |
+ pData->z = 0; |
+ pData->n = 0; |
+ }else{ |
+ assert( pData->flags & (MEM_Blob|MEM_Str) ); |
+ } |
+ seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); |
+ if( pData->flags & MEM_Zero ){ |
+ nZero = pData->u.nZero; |
+ }else{ |
+ nZero = 0; |
+ } |
+ sqlite3BtreeSetCachedRowid(pC->pCursor, 0); |
+ rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey, |
+ pData->z, pData->n, nZero, |
+ pOp->p5 & OPFLAG_APPEND, seekResult |
+ ); |
+ pC->rowidIsValid = 0; |
+ pC->deferredMoveto = 0; |
+ pC->cacheStatus = CACHE_STALE; |
+ |
+ /* Invoke the update-hook if required. */ |
+ if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){ |
+ zDb = db->aDb[pC->iDb].zName; |
+ zTbl = pOp->p4.z; |
+ op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT); |
+ assert( pC->isTable ); |
+ db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey); |
+ assert( pC->iDb>=0 ); |
+ } |
+ break; |
+} |
+ |
+/* Opcode: Delete P1 P2 * P4 * |
+** |
+** Delete the record at which the P1 cursor is currently pointing. |
+** |
+** The cursor will be left pointing at either the next or the previous |
+** record in the table. If it is left pointing at the next record, then |
+** the next Next instruction will be a no-op. Hence it is OK to delete |
+** a record from within an Next loop. |
+** |
+** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is |
+** incremented (otherwise not). |
+** |
+** P1 must not be pseudo-table. It has to be a real table with |
+** multiple rows. |
+** |
+** If P4 is not NULL, then it is the name of the table that P1 is |
+** pointing to. The update hook will be invoked, if it exists. |
+** If P4 is not NULL then the P1 cursor must have been positioned |
+** using OP_NotFound prior to invoking this opcode. |
+*/ |
+case OP_Delete: { |
+ i64 iKey; |
+ VdbeCursor *pC; |
+ |
+ iKey = 0; |
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
+ pC = p->apCsr[pOp->p1]; |
+ assert( pC!=0 ); |
+ assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */ |
+ |
+ /* If the update-hook will be invoked, set iKey to the rowid of the |
+ ** row being deleted. |
+ */ |
+ if( db->xUpdateCallback && pOp->p4.z ){ |
+ assert( pC->isTable ); |
+ assert( pC->rowidIsValid ); /* lastRowid set by previous OP_NotFound */ |
+ iKey = pC->lastRowid; |
+ } |
+ |
+ /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or |
+ ** OP_Column on the same table without any intervening operations that |
+ ** might move or invalidate the cursor. Hence cursor pC is always pointing |
+ ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation |
+ ** below is always a no-op and cannot fail. We will run it anyhow, though, |
+ ** to guard against future changes to the code generator. |
+ **/ |
+ assert( pC->deferredMoveto==0 ); |
+ rc = sqlite3VdbeCursorMoveto(pC); |
+ if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; |
+ |
+ sqlite3BtreeSetCachedRowid(pC->pCursor, 0); |
+ rc = sqlite3BtreeDelete(pC->pCursor); |
+ pC->cacheStatus = CACHE_STALE; |
+ |
+ /* Invoke the update-hook if required. */ |
+ if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){ |
+ const char *zDb = db->aDb[pC->iDb].zName; |
+ const char *zTbl = pOp->p4.z; |
+ db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey); |
+ assert( pC->iDb>=0 ); |
+ } |
+ if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++; |
+ break; |
+} |
+/* Opcode: ResetCount * * * * * |
+** |
+** The value of the change counter is copied to the database handle |
+** change counter (returned by subsequent calls to sqlite3_changes()). |
+** Then the VMs internal change counter resets to 0. |
+** This is used by trigger programs. |
+*/ |
+case OP_ResetCount: { |
+ sqlite3VdbeSetChanges(db, p->nChange); |
+ p->nChange = 0; |
+ break; |
+} |
+ |
+/* Opcode: RowData P1 P2 * * * |
+** |
+** Write into register P2 the complete row data for cursor P1. |
+** There is no interpretation of the data. |
+** It is just copied onto the P2 register exactly as |
+** it is found in the database file. |
+** |
+** If the P1 cursor must be pointing to a valid row (not a NULL row) |
+** of a real table, not a pseudo-table. |
+*/ |
+/* Opcode: RowKey P1 P2 * * * |
+** |
+** Write into register P2 the complete row key for cursor P1. |
+** There is no interpretation of the data. |
+** The key is copied onto the P3 register exactly as |
+** it is found in the database file. |
+** |
+** If the P1 cursor must be pointing to a valid row (not a NULL row) |
+** of a real table, not a pseudo-table. |
+*/ |
+case OP_RowKey: |
+case OP_RowData: { |
+ VdbeCursor *pC; |
+ BtCursor *pCrsr; |
+ u32 n; |
+ i64 n64; |
+ |
+ pOut = &aMem[pOp->p2]; |
+ memAboutToChange(p, pOut); |
+ |
+ /* Note that RowKey and RowData are really exactly the same instruction */ |
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
+ pC = p->apCsr[pOp->p1]; |
+ assert( pC->isTable || pOp->opcode==OP_RowKey ); |
+ assert( pC->isIndex || pOp->opcode==OP_RowData ); |
+ assert( pC!=0 ); |
+ assert( pC->nullRow==0 ); |
+ assert( pC->pseudoTableReg==0 ); |
+ assert( pC->pCursor!=0 ); |
+ pCrsr = pC->pCursor; |
+ assert( sqlite3BtreeCursorIsValid(pCrsr) ); |
+ |
+ /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or |
+ ** OP_Rewind/Op_Next with no intervening instructions that might invalidate |
+ ** the cursor. Hence the following sqlite3VdbeCursorMoveto() call is always |
+ ** a no-op and can never fail. But we leave it in place as a safety. |
+ */ |
+ assert( pC->deferredMoveto==0 ); |
+ rc = sqlite3VdbeCursorMoveto(pC); |
+ if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; |
+ |
+ if( pC->isIndex ){ |
+ assert( !pC->isTable ); |
+ rc = sqlite3BtreeKeySize(pCrsr, &n64); |
+ assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */ |
+ if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){ |
+ goto too_big; |
+ } |
+ n = (u32)n64; |
+ }else{ |
+ rc = sqlite3BtreeDataSize(pCrsr, &n); |
+ assert( rc==SQLITE_OK ); /* DataSize() cannot fail */ |
+ if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ |
+ goto too_big; |
+ } |
+ } |
+ if( sqlite3VdbeMemGrow(pOut, n, 0) ){ |
+ goto no_mem; |
+ } |
+ pOut->n = n; |
+ MemSetTypeFlag(pOut, MEM_Blob); |
+ if( pC->isIndex ){ |
+ rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z); |
+ }else{ |
+ rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z); |
+ } |
+ pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */ |
+ UPDATE_MAX_BLOBSIZE(pOut); |
+ break; |
+} |
+ |
+/* Opcode: Rowid P1 P2 * * * |
+** |
+** Store in register P2 an integer which is the key of the table entry that |
+** P1 is currently point to. |
+** |
+** P1 can be either an ordinary table or a virtual table. There used to |
+** be a separate OP_VRowid opcode for use with virtual tables, but this |
+** one opcode now works for both table types. |
+*/ |
+case OP_Rowid: { /* out2-prerelease */ |
+ VdbeCursor *pC; |
+ i64 v; |
+ sqlite3_vtab *pVtab; |
+ const sqlite3_module *pModule; |
+ |
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
+ pC = p->apCsr[pOp->p1]; |
+ assert( pC!=0 ); |
+ assert( pC->pseudoTableReg==0 ); |
+ if( pC->nullRow ){ |
+ pOut->flags = MEM_Null; |
+ break; |
+ }else if( pC->deferredMoveto ){ |
+ v = pC->movetoTarget; |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ }else if( pC->pVtabCursor ){ |
+ pVtab = pC->pVtabCursor->pVtab; |
+ pModule = pVtab->pModule; |
+ assert( pModule->xRowid ); |
+ rc = pModule->xRowid(pC->pVtabCursor, &v); |
+ importVtabErrMsg(p, pVtab); |
+#endif /* SQLITE_OMIT_VIRTUALTABLE */ |
+ }else{ |
+ assert( pC->pCursor!=0 ); |
+ rc = sqlite3VdbeCursorMoveto(pC); |
+ if( rc ) goto abort_due_to_error; |
+ if( pC->rowidIsValid ){ |
+ v = pC->lastRowid; |
+ }else{ |
+ rc = sqlite3BtreeKeySize(pC->pCursor, &v); |
+ assert( rc==SQLITE_OK ); /* Always so because of CursorMoveto() above */ |
+ } |
+ } |
+ pOut->u.i = v; |
+ break; |
+} |
+ |
+/* Opcode: NullRow P1 * * * * |
+** |
+** Move the cursor P1 to a null row. Any OP_Column operations |
+** that occur while the cursor is on the null row will always |
+** write a NULL. |
+*/ |
+case OP_NullRow: { |
+ VdbeCursor *pC; |
+ |
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
+ pC = p->apCsr[pOp->p1]; |
+ assert( pC!=0 ); |
+ pC->nullRow = 1; |
+ pC->rowidIsValid = 0; |
+ if( pC->pCursor ){ |
+ sqlite3BtreeClearCursor(pC->pCursor); |
+ } |
+ break; |
+} |
+ |
+/* Opcode: Last P1 P2 * * * |
+** |
+** The next use of the Rowid or Column or Next instruction for P1 |
+** will refer to the last entry in the database table or index. |
+** If the table or index is empty and P2>0, then jump immediately to P2. |
+** If P2 is 0 or if the table or index is not empty, fall through |
+** to the following instruction. |
+*/ |
+case OP_Last: { /* jump */ |
+ VdbeCursor *pC; |
+ BtCursor *pCrsr; |
+ int res; |
+ |
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
+ pC = p->apCsr[pOp->p1]; |
+ assert( pC!=0 ); |
+ pCrsr = pC->pCursor; |
+ if( pCrsr==0 ){ |
+ res = 1; |
+ }else{ |
+ rc = sqlite3BtreeLast(pCrsr, &res); |
+ } |
+ pC->nullRow = (u8)res; |
+ pC->deferredMoveto = 0; |
+ pC->rowidIsValid = 0; |
+ pC->cacheStatus = CACHE_STALE; |
+ if( pOp->p2>0 && res ){ |
+ pc = pOp->p2 - 1; |
+ } |
+ break; |
+} |
+ |
+ |
+/* Opcode: Sort P1 P2 * * * |
+** |
+** This opcode does exactly the same thing as OP_Rewind except that |
+** it increments an undocumented global variable used for testing. |
+** |
+** Sorting is accomplished by writing records into a sorting index, |
+** then rewinding that index and playing it back from beginning to |
+** end. We use the OP_Sort opcode instead of OP_Rewind to do the |
+** rewinding so that the global variable will be incremented and |
+** regression tests can determine whether or not the optimizer is |
+** correctly optimizing out sorts. |
+*/ |
+case OP_Sort: { /* jump */ |
+#ifdef SQLITE_TEST |
+ sqlite3_sort_count++; |
+ sqlite3_search_count--; |
+#endif |
+ p->aCounter[SQLITE_STMTSTATUS_SORT-1]++; |
+ /* Fall through into OP_Rewind */ |
+} |
+/* Opcode: Rewind P1 P2 * * * |
+** |
+** The next use of the Rowid or Column or Next instruction for P1 |
+** will refer to the first entry in the database table or index. |
+** If the table or index is empty and P2>0, then jump immediately to P2. |
+** If P2 is 0 or if the table or index is not empty, fall through |
+** to the following instruction. |
+*/ |
+case OP_Rewind: { /* jump */ |
+ VdbeCursor *pC; |
+ BtCursor *pCrsr; |
+ int res; |
+ |
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
+ pC = p->apCsr[pOp->p1]; |
+ assert( pC!=0 ); |
+ res = 1; |
+ if( (pCrsr = pC->pCursor)!=0 ){ |
+ rc = sqlite3BtreeFirst(pCrsr, &res); |
+ pC->atFirst = res==0 ?1:0; |
+ pC->deferredMoveto = 0; |
+ pC->cacheStatus = CACHE_STALE; |
+ pC->rowidIsValid = 0; |
+ } |
+ pC->nullRow = (u8)res; |
+ assert( pOp->p2>0 && pOp->p2<p->nOp ); |
+ if( res ){ |
+ pc = pOp->p2 - 1; |
+ } |
+ break; |
+} |
+ |
+/* Opcode: Next P1 P2 * * P5 |
+** |
+** Advance cursor P1 so that it points to the next key/data pair in its |
+** table or index. If there are no more key/value pairs then fall through |
+** to the following instruction. But if the cursor advance was successful, |
+** jump immediately to P2. |
+** |
+** The P1 cursor must be for a real table, not a pseudo-table. |
+** |
+** If P5 is positive and the jump is taken, then event counter |
+** number P5-1 in the prepared statement is incremented. |
+** |
+** See also: Prev |
+*/ |
+/* Opcode: Prev P1 P2 * * P5 |
+** |
+** Back up cursor P1 so that it points to the previous key/data pair in its |
+** table or index. If there is no previous key/value pairs then fall through |
+** to the following instruction. But if the cursor backup was successful, |
+** jump immediately to P2. |
+** |
+** The P1 cursor must be for a real table, not a pseudo-table. |
+** |
+** If P5 is positive and the jump is taken, then event counter |
+** number P5-1 in the prepared statement is incremented. |
+*/ |
+case OP_Prev: /* jump */ |
+case OP_Next: { /* jump */ |
+ VdbeCursor *pC; |
+ BtCursor *pCrsr; |
+ int res; |
+ |
+ CHECK_FOR_INTERRUPT; |
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
+ assert( pOp->p5<=ArraySize(p->aCounter) ); |
+ pC = p->apCsr[pOp->p1]; |
+ if( pC==0 ){ |
+ break; /* See ticket #2273 */ |
+ } |
+ pCrsr = pC->pCursor; |
+ if( pCrsr==0 ){ |
+ pC->nullRow = 1; |
+ break; |
+ } |
+ res = 1; |
+ assert( pC->deferredMoveto==0 ); |
+ rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) : |
+ sqlite3BtreePrevious(pCrsr, &res); |
+ pC->nullRow = (u8)res; |
+ pC->cacheStatus = CACHE_STALE; |
+ if( res==0 ){ |
+ pc = pOp->p2 - 1; |
+ if( pOp->p5 ) p->aCounter[pOp->p5-1]++; |
+#ifdef SQLITE_TEST |
+ sqlite3_search_count++; |
+#endif |
+ } |
+ pC->rowidIsValid = 0; |
+ break; |
+} |
+ |
+/* Opcode: IdxInsert P1 P2 P3 * P5 |
+** |
+** Register P2 holds a SQL index key made using the |
+** MakeRecord instructions. This opcode writes that key |
+** into the index P1. Data for the entry is nil. |
+** |
+** P3 is a flag that provides a hint to the b-tree layer that this |
+** insert is likely to be an append. |
+** |
+** This instruction only works for indices. The equivalent instruction |
+** for tables is OP_Insert. |
+*/ |
+case OP_IdxInsert: { /* in2 */ |
+ VdbeCursor *pC; |
+ BtCursor *pCrsr; |
+ int nKey; |
+ const char *zKey; |
+ |
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
+ pC = p->apCsr[pOp->p1]; |
+ assert( pC!=0 ); |
+ pIn2 = &aMem[pOp->p2]; |
+ assert( pIn2->flags & MEM_Blob ); |
+ pCrsr = pC->pCursor; |
+ if( ALWAYS(pCrsr!=0) ){ |
+ assert( pC->isTable==0 ); |
+ rc = ExpandBlob(pIn2); |
+ if( rc==SQLITE_OK ){ |
+ nKey = pIn2->n; |
+ zKey = pIn2->z; |
+ rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3, |
+ ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) |
+ ); |
+ assert( pC->deferredMoveto==0 ); |
+ pC->cacheStatus = CACHE_STALE; |
+ } |
+ } |
+ break; |
+} |
+ |
+/* Opcode: IdxDelete P1 P2 P3 * * |
+** |
+** The content of P3 registers starting at register P2 form |
+** an unpacked index key. This opcode removes that entry from the |
+** index opened by cursor P1. |
+*/ |
+case OP_IdxDelete: { |
+ VdbeCursor *pC; |
+ BtCursor *pCrsr; |
+ int res; |
+ UnpackedRecord r; |
+ |
+ assert( pOp->p3>0 ); |
+ assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 ); |
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
+ pC = p->apCsr[pOp->p1]; |
+ assert( pC!=0 ); |
+ pCrsr = pC->pCursor; |
+ if( ALWAYS(pCrsr!=0) ){ |
+ r.pKeyInfo = pC->pKeyInfo; |
+ r.nField = (u16)pOp->p3; |
+ r.flags = 0; |
+ r.aMem = &aMem[pOp->p2]; |
+#ifdef SQLITE_DEBUG |
+ { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } |
+#endif |
+ rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); |
+ if( rc==SQLITE_OK && res==0 ){ |
+ rc = sqlite3BtreeDelete(pCrsr); |
+ } |
+ assert( pC->deferredMoveto==0 ); |
+ pC->cacheStatus = CACHE_STALE; |
+ } |
+ break; |
+} |
+ |
+/* Opcode: IdxRowid P1 P2 * * * |
+** |
+** Write into register P2 an integer which is the last entry in the record at |
+** the end of the index key pointed to by cursor P1. This integer should be |
+** the rowid of the table entry to which this index entry points. |
+** |
+** See also: Rowid, MakeRecord. |
+*/ |
+case OP_IdxRowid: { /* out2-prerelease */ |
+ BtCursor *pCrsr; |
+ VdbeCursor *pC; |
+ i64 rowid; |
+ |
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
+ pC = p->apCsr[pOp->p1]; |
+ assert( pC!=0 ); |
+ pCrsr = pC->pCursor; |
+ pOut->flags = MEM_Null; |
+ if( ALWAYS(pCrsr!=0) ){ |
+ rc = sqlite3VdbeCursorMoveto(pC); |
+ if( NEVER(rc) ) goto abort_due_to_error; |
+ assert( pC->deferredMoveto==0 ); |
+ assert( pC->isTable==0 ); |
+ if( !pC->nullRow ){ |
+ rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid); |
+ if( rc!=SQLITE_OK ){ |
+ goto abort_due_to_error; |
+ } |
+ pOut->u.i = rowid; |
+ pOut->flags = MEM_Int; |
+ } |
+ } |
+ break; |
+} |
+ |
+/* Opcode: IdxGE P1 P2 P3 P4 P5 |
+** |
+** The P4 register values beginning with P3 form an unpacked index |
+** key that omits the ROWID. Compare this key value against the index |
+** that P1 is currently pointing to, ignoring the ROWID on the P1 index. |
+** |
+** If the P1 index entry is greater than or equal to the key value |
+** then jump to P2. Otherwise fall through to the next instruction. |
+** |
+** If P5 is non-zero then the key value is increased by an epsilon |
+** prior to the comparison. This make the opcode work like IdxGT except |
+** that if the key from register P3 is a prefix of the key in the cursor, |
+** the result is false whereas it would be true with IdxGT. |
+*/ |
+/* Opcode: IdxLT P1 P2 P3 P4 P5 |
+** |
+** The P4 register values beginning with P3 form an unpacked index |
+** key that omits the ROWID. Compare this key value against the index |
+** that P1 is currently pointing to, ignoring the ROWID on the P1 index. |
+** |
+** If the P1 index entry is less than the key value then jump to P2. |
+** Otherwise fall through to the next instruction. |
+** |
+** If P5 is non-zero then the key value is increased by an epsilon prior |
+** to the comparison. This makes the opcode work like IdxLE. |
+*/ |
+case OP_IdxLT: /* jump */ |
+case OP_IdxGE: { /* jump */ |
+ VdbeCursor *pC; |
+ int res; |
+ UnpackedRecord r; |
+ |
+ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
+ pC = p->apCsr[pOp->p1]; |
+ assert( pC!=0 ); |
+ assert( pC->isOrdered ); |
+ if( ALWAYS(pC->pCursor!=0) ){ |
+ assert( pC->deferredMoveto==0 ); |
+ assert( pOp->p5==0 || pOp->p5==1 ); |
+ assert( pOp->p4type==P4_INT32 ); |
+ r.pKeyInfo = pC->pKeyInfo; |
+ r.nField = (u16)pOp->p4.i; |
+ if( pOp->p5 ){ |
+ r.flags = UNPACKED_INCRKEY | UNPACKED_IGNORE_ROWID; |
+ }else{ |
+ r.flags = UNPACKED_IGNORE_ROWID; |
+ } |
+ r.aMem = &aMem[pOp->p3]; |
+#ifdef SQLITE_DEBUG |
+ { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } |
+#endif |
+ rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res); |
+ if( pOp->opcode==OP_IdxLT ){ |
+ res = -res; |
+ }else{ |
+ assert( pOp->opcode==OP_IdxGE ); |
+ res++; |
+ } |
+ if( res>0 ){ |
+ pc = pOp->p2 - 1 ; |
+ } |
+ } |
+ break; |
+} |
+ |
+/* Opcode: Destroy P1 P2 P3 * * |
+** |
+** Delete an entire database table or index whose root page in the database |
+** file is given by P1. |
+** |
+** The table being destroyed is in the main database file if P3==0. If |
+** P3==1 then the table to be clear is in the auxiliary database file |
+** that is used to store tables create using CREATE TEMPORARY TABLE. |
+** |
+** If AUTOVACUUM is enabled then it is possible that another root page |
+** might be moved into the newly deleted root page in order to keep all |
+** root pages contiguous at the beginning of the database. The former |
+** value of the root page that moved - its value before the move occurred - |
+** is stored in register P2. If no page |
+** movement was required (because the table being dropped was already |
+** the last one in the database) then a zero is stored in register P2. |
+** If AUTOVACUUM is disabled then a zero is stored in register P2. |
+** |
+** See also: Clear |
+*/ |
+case OP_Destroy: { /* out2-prerelease */ |
+ int iMoved; |
+ int iCnt; |
+ Vdbe *pVdbe; |
+ int iDb; |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+ iCnt = 0; |
+ for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){ |
+ if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){ |
+ iCnt++; |
+ } |
+ } |
+#else |
+ iCnt = db->activeVdbeCnt; |
+#endif |
+ pOut->flags = MEM_Null; |
+ if( iCnt>1 ){ |
+ rc = SQLITE_LOCKED; |
+ p->errorAction = OE_Abort; |
+ }else{ |
+ iDb = pOp->p3; |
+ assert( iCnt==1 ); |
+ assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 ); |
+ rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); |
+ pOut->flags = MEM_Int; |
+ pOut->u.i = iMoved; |
+#ifndef SQLITE_OMIT_AUTOVACUUM |
+ if( rc==SQLITE_OK && iMoved!=0 ){ |
+ sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); |
+ /* All OP_Destroy operations occur on the same btree */ |
+ assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); |
+ resetSchemaOnFault = iDb+1; |
+ } |
+#endif |
+ } |
+ break; |
+} |
+ |
+/* Opcode: Clear P1 P2 P3 |
+** |
+** Delete all contents of the database table or index whose root page |
+** in the database file is given by P1. But, unlike Destroy, do not |
+** remove the table or index from the database file. |
+** |
+** The table being clear is in the main database file if P2==0. If |
+** P2==1 then the table to be clear is in the auxiliary database file |
+** that is used to store tables create using CREATE TEMPORARY TABLE. |
+** |
+** If the P3 value is non-zero, then the table referred to must be an |
+** intkey table (an SQL table, not an index). In this case the row change |
+** count is incremented by the number of rows in the table being cleared. |
+** If P3 is greater than zero, then the value stored in register P3 is |
+** also incremented by the number of rows in the table being cleared. |
+** |
+** See also: Destroy |
+*/ |
+case OP_Clear: { |
+ int nChange; |
+ |
+ nChange = 0; |
+ assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 ); |
+ rc = sqlite3BtreeClearTable( |
+ db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0) |
+ ); |
+ if( pOp->p3 ){ |
+ p->nChange += nChange; |
+ if( pOp->p3>0 ){ |
+ assert( memIsValid(&aMem[pOp->p3]) ); |
+ memAboutToChange(p, &aMem[pOp->p3]); |
+ aMem[pOp->p3].u.i += nChange; |
+ } |
+ } |
+ break; |
+} |
+ |
+/* Opcode: CreateTable P1 P2 * * * |
+** |
+** Allocate a new table in the main database file if P1==0 or in the |
+** auxiliary database file if P1==1 or in an attached database if |
+** P1>1. Write the root page number of the new table into |
+** register P2 |
+** |
+** The difference between a table and an index is this: A table must |
+** have a 4-byte integer key and can have arbitrary data. An index |
+** has an arbitrary key but no data. |
+** |
+** See also: CreateIndex |
+*/ |
+/* Opcode: CreateIndex P1 P2 * * * |
+** |
+** Allocate a new index in the main database file if P1==0 or in the |
+** auxiliary database file if P1==1 or in an attached database if |
+** P1>1. Write the root page number of the new table into |
+** register P2. |
+** |
+** See documentation on OP_CreateTable for additional information. |
+*/ |
+case OP_CreateIndex: /* out2-prerelease */ |
+case OP_CreateTable: { /* out2-prerelease */ |
+ int pgno; |
+ int flags; |
+ Db *pDb; |
+ |
+ pgno = 0; |
+ assert( pOp->p1>=0 && pOp->p1<db->nDb ); |
+ assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); |
+ pDb = &db->aDb[pOp->p1]; |
+ assert( pDb->pBt!=0 ); |
+ if( pOp->opcode==OP_CreateTable ){ |
+ /* flags = BTREE_INTKEY; */ |
+ flags = BTREE_INTKEY; |
+ }else{ |
+ flags = BTREE_BLOBKEY; |
+ } |
+ rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags); |
+ pOut->u.i = pgno; |
+ break; |
+} |
+ |
+/* Opcode: ParseSchema P1 * * P4 * |
+** |
+** Read and parse all entries from the SQLITE_MASTER table of database P1 |
+** that match the WHERE clause P4. |
+** |
+** This opcode invokes the parser to create a new virtual machine, |
+** then runs the new virtual machine. It is thus a re-entrant opcode. |
+*/ |
+case OP_ParseSchema: { |
+ int iDb; |
+ const char *zMaster; |
+ char *zSql; |
+ InitData initData; |
+ |
+ /* Any prepared statement that invokes this opcode will hold mutexes |
+ ** on every btree. This is a prerequisite for invoking |
+ ** sqlite3InitCallback(). |
+ */ |
+#ifdef SQLITE_DEBUG |
+ for(iDb=0; iDb<db->nDb; iDb++){ |
+ assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); |
+ } |
+#endif |
+ |
+ iDb = pOp->p1; |
+ assert( iDb>=0 && iDb<db->nDb ); |
+ assert( DbHasProperty(db, iDb, DB_SchemaLoaded) ); |
+ /* Used to be a conditional */ { |
+ zMaster = SCHEMA_TABLE(iDb); |
+ initData.db = db; |
+ initData.iDb = pOp->p1; |
+ initData.pzErrMsg = &p->zErrMsg; |
+ zSql = sqlite3MPrintf(db, |
+ "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid", |
+ db->aDb[iDb].zName, zMaster, pOp->p4.z); |
+ if( zSql==0 ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ assert( db->init.busy==0 ); |
+ db->init.busy = 1; |
+ initData.rc = SQLITE_OK; |
+ assert( !db->mallocFailed ); |
+ rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); |
+ if( rc==SQLITE_OK ) rc = initData.rc; |
+ sqlite3DbFree(db, zSql); |
+ db->init.busy = 0; |
+ } |
+ } |
+ if( rc==SQLITE_NOMEM ){ |
+ goto no_mem; |
+ } |
+ break; |
+} |
+ |
+#if !defined(SQLITE_OMIT_ANALYZE) |
+/* Opcode: LoadAnalysis P1 * * * * |
+** |
+** Read the sqlite_stat1 table for database P1 and load the content |
+** of that table into the internal index hash table. This will cause |
+** the analysis to be used when preparing all subsequent queries. |
+*/ |
+case OP_LoadAnalysis: { |
+ assert( pOp->p1>=0 && pOp->p1<db->nDb ); |
+ rc = sqlite3AnalysisLoad(db, pOp->p1); |
+ break; |
+} |
+#endif /* !defined(SQLITE_OMIT_ANALYZE) */ |
+ |
+/* Opcode: DropTable P1 * * P4 * |
+** |
+** Remove the internal (in-memory) data structures that describe |
+** the table named P4 in database P1. This is called after a table |
+** is dropped in order to keep the internal representation of the |
+** schema consistent with what is on disk. |
+*/ |
+case OP_DropTable: { |
+ sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); |
+ break; |
+} |
+ |
+/* Opcode: DropIndex P1 * * P4 * |
+** |
+** Remove the internal (in-memory) data structures that describe |
+** the index named P4 in database P1. This is called after an index |
+** is dropped in order to keep the internal representation of the |
+** schema consistent with what is on disk. |
+*/ |
+case OP_DropIndex: { |
+ sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); |
+ break; |
+} |
+ |
+/* Opcode: DropTrigger P1 * * P4 * |
+** |
+** Remove the internal (in-memory) data structures that describe |
+** the trigger named P4 in database P1. This is called after a trigger |
+** is dropped in order to keep the internal representation of the |
+** schema consistent with what is on disk. |
+*/ |
+case OP_DropTrigger: { |
+ sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); |
+ break; |
+} |
+ |
+ |
+#ifndef SQLITE_OMIT_INTEGRITY_CHECK |
+/* Opcode: IntegrityCk P1 P2 P3 * P5 |
+** |
+** Do an analysis of the currently open database. Store in |
+** register P1 the text of an error message describing any problems. |
+** If no problems are found, store a NULL in register P1. |
+** |
+** The register P3 contains the maximum number of allowed errors. |
+** At most reg(P3) errors will be reported. |
+** In other words, the analysis stops as soon as reg(P1) errors are |
+** seen. Reg(P1) is updated with the number of errors remaining. |
+** |
+** The root page numbers of all tables in the database are integer |
+** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables |
+** total. |
+** |
+** If P5 is not zero, the check is done on the auxiliary database |
+** file, not the main database file. |
+** |
+** This opcode is used to implement the integrity_check pragma. |
+*/ |
+case OP_IntegrityCk: { |
+ int nRoot; /* Number of tables to check. (Number of root pages.) */ |
+ int *aRoot; /* Array of rootpage numbers for tables to be checked */ |
+ int j; /* Loop counter */ |
+ int nErr; /* Number of errors reported */ |
+ char *z; /* Text of the error report */ |
+ Mem *pnErr; /* Register keeping track of errors remaining */ |
+ |
+ nRoot = pOp->p2; |
+ assert( nRoot>0 ); |
+ aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) ); |
+ if( aRoot==0 ) goto no_mem; |
+ assert( pOp->p3>0 && pOp->p3<=p->nMem ); |
+ pnErr = &aMem[pOp->p3]; |
+ assert( (pnErr->flags & MEM_Int)!=0 ); |
+ assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); |
+ pIn1 = &aMem[pOp->p1]; |
+ for(j=0; j<nRoot; j++){ |
+ aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]); |
+ } |
+ aRoot[j] = 0; |
+ assert( pOp->p5<db->nDb ); |
+ assert( (p->btreeMask & (((yDbMask)1)<<pOp->p5))!=0 ); |
+ z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot, |
+ (int)pnErr->u.i, &nErr); |
+ sqlite3DbFree(db, aRoot); |
+ pnErr->u.i -= nErr; |
+ sqlite3VdbeMemSetNull(pIn1); |
+ if( nErr==0 ){ |
+ assert( z==0 ); |
+ }else if( z==0 ){ |
+ goto no_mem; |
+ }else{ |
+ sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); |
+ } |
+ UPDATE_MAX_BLOBSIZE(pIn1); |
+ sqlite3VdbeChangeEncoding(pIn1, encoding); |
+ break; |
+} |
+#endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
+ |
+/* Opcode: RowSetAdd P1 P2 * * * |
+** |
+** Insert the integer value held by register P2 into a boolean index |
+** held in register P1. |
+** |
+** An assertion fails if P2 is not an integer. |
+*/ |
+case OP_RowSetAdd: { /* in1, in2 */ |
+ pIn1 = &aMem[pOp->p1]; |
+ pIn2 = &aMem[pOp->p2]; |
+ assert( (pIn2->flags & MEM_Int)!=0 ); |
+ if( (pIn1->flags & MEM_RowSet)==0 ){ |
+ sqlite3VdbeMemSetRowSet(pIn1); |
+ if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; |
+ } |
+ sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i); |
+ break; |
+} |
+ |
+/* Opcode: RowSetRead P1 P2 P3 * * |
+** |
+** Extract the smallest value from boolean index P1 and put that value into |
+** register P3. Or, if boolean index P1 is initially empty, leave P3 |
+** unchanged and jump to instruction P2. |
+*/ |
+case OP_RowSetRead: { /* jump, in1, out3 */ |
+ i64 val; |
+ CHECK_FOR_INTERRUPT; |
+ pIn1 = &aMem[pOp->p1]; |
+ if( (pIn1->flags & MEM_RowSet)==0 |
+ || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0 |
+ ){ |
+ /* The boolean index is empty */ |
+ sqlite3VdbeMemSetNull(pIn1); |
+ pc = pOp->p2 - 1; |
+ }else{ |
+ /* A value was pulled from the index */ |
+ sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); |
+ } |
+ break; |
+} |
+ |
+/* Opcode: RowSetTest P1 P2 P3 P4 |
+** |
+** Register P3 is assumed to hold a 64-bit integer value. If register P1 |
+** contains a RowSet object and that RowSet object contains |
+** the value held in P3, jump to register P2. Otherwise, insert the |
+** integer in P3 into the RowSet and continue on to the |
+** next opcode. |
+** |
+** The RowSet object is optimized for the case where successive sets |
+** of integers, where each set contains no duplicates. Each set |
+** of values is identified by a unique P4 value. The first set |
+** must have P4==0, the final set P4=-1. P4 must be either -1 or |
+** non-negative. For non-negative values of P4 only the lower 4 |
+** bits are significant. |
+** |
+** This allows optimizations: (a) when P4==0 there is no need to test |
+** the rowset object for P3, as it is guaranteed not to contain it, |
+** (b) when P4==-1 there is no need to insert the value, as it will |
+** never be tested for, and (c) when a value that is part of set X is |
+** inserted, there is no need to search to see if the same value was |
+** previously inserted as part of set X (only if it was previously |
+** inserted as part of some other set). |
+*/ |
+case OP_RowSetTest: { /* jump, in1, in3 */ |
+ int iSet; |
+ int exists; |
+ |
+ pIn1 = &aMem[pOp->p1]; |
+ pIn3 = &aMem[pOp->p3]; |
+ iSet = pOp->p4.i; |
+ assert( pIn3->flags&MEM_Int ); |
+ |
+ /* If there is anything other than a rowset object in memory cell P1, |
+ ** delete it now and initialize P1 with an empty rowset |
+ */ |
+ if( (pIn1->flags & MEM_RowSet)==0 ){ |
+ sqlite3VdbeMemSetRowSet(pIn1); |
+ if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; |
+ } |
+ |
+ assert( pOp->p4type==P4_INT32 ); |
+ assert( iSet==-1 || iSet>=0 ); |
+ if( iSet ){ |
+ exists = sqlite3RowSetTest(pIn1->u.pRowSet, |
+ (u8)(iSet>=0 ? iSet & 0xf : 0xff), |
+ pIn3->u.i); |
+ if( exists ){ |
+ pc = pOp->p2 - 1; |
+ break; |
+ } |
+ } |
+ if( iSet>=0 ){ |
+ sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i); |
+ } |
+ break; |
+} |
+ |
+ |
+#ifndef SQLITE_OMIT_TRIGGER |
+ |
+/* Opcode: Program P1 P2 P3 P4 * |
+** |
+** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). |
+** |
+** P1 contains the address of the memory cell that contains the first memory |
+** cell in an array of values used as arguments to the sub-program. P2 |
+** contains the address to jump to if the sub-program throws an IGNORE |
+** exception using the RAISE() function. Register P3 contains the address |
+** of a memory cell in this (the parent) VM that is used to allocate the |
+** memory required by the sub-vdbe at runtime. |
+** |
+** P4 is a pointer to the VM containing the trigger program. |
+*/ |
+case OP_Program: { /* jump */ |
+ int nMem; /* Number of memory registers for sub-program */ |
+ int nByte; /* Bytes of runtime space required for sub-program */ |
+ Mem *pRt; /* Register to allocate runtime space */ |
+ Mem *pMem; /* Used to iterate through memory cells */ |
+ Mem *pEnd; /* Last memory cell in new array */ |
+ VdbeFrame *pFrame; /* New vdbe frame to execute in */ |
+ SubProgram *pProgram; /* Sub-program to execute */ |
+ void *t; /* Token identifying trigger */ |
+ |
+ pProgram = pOp->p4.pProgram; |
+ pRt = &aMem[pOp->p3]; |
+ assert( memIsValid(pRt) ); |
+ assert( pProgram->nOp>0 ); |
+ |
+ /* If the p5 flag is clear, then recursive invocation of triggers is |
+ ** disabled for backwards compatibility (p5 is set if this sub-program |
+ ** is really a trigger, not a foreign key action, and the flag set |
+ ** and cleared by the "PRAGMA recursive_triggers" command is clear). |
+ ** |
+ ** It is recursive invocation of triggers, at the SQL level, that is |
+ ** disabled. In some cases a single trigger may generate more than one |
+ ** SubProgram (if the trigger may be executed with more than one different |
+ ** ON CONFLICT algorithm). SubProgram structures associated with a |
+ ** single trigger all have the same value for the SubProgram.token |
+ ** variable. */ |
+ if( pOp->p5 ){ |
+ t = pProgram->token; |
+ for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); |
+ if( pFrame ) break; |
+ } |
+ |
+ if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ |
+ rc = SQLITE_ERROR; |
+ sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion"); |
+ break; |
+ } |
+ |
+ /* Register pRt is used to store the memory required to save the state |
+ ** of the current program, and the memory required at runtime to execute |
+ ** the trigger program. If this trigger has been fired before, then pRt |
+ ** is already allocated. Otherwise, it must be initialized. */ |
+ if( (pRt->flags&MEM_Frame)==0 ){ |
+ /* SubProgram.nMem is set to the number of memory cells used by the |
+ ** program stored in SubProgram.aOp. As well as these, one memory |
+ ** cell is required for each cursor used by the program. Set local |
+ ** variable nMem (and later, VdbeFrame.nChildMem) to this value. |
+ */ |
+ nMem = pProgram->nMem + pProgram->nCsr; |
+ nByte = ROUND8(sizeof(VdbeFrame)) |
+ + nMem * sizeof(Mem) |
+ + pProgram->nCsr * sizeof(VdbeCursor *); |
+ pFrame = sqlite3DbMallocZero(db, nByte); |
+ if( !pFrame ){ |
+ goto no_mem; |
+ } |
+ sqlite3VdbeMemRelease(pRt); |
+ pRt->flags = MEM_Frame; |
+ pRt->u.pFrame = pFrame; |
+ |
+ pFrame->v = p; |
+ pFrame->nChildMem = nMem; |
+ pFrame->nChildCsr = pProgram->nCsr; |
+ pFrame->pc = pc; |
+ pFrame->aMem = p->aMem; |
+ pFrame->nMem = p->nMem; |
+ pFrame->apCsr = p->apCsr; |
+ pFrame->nCursor = p->nCursor; |
+ pFrame->aOp = p->aOp; |
+ pFrame->nOp = p->nOp; |
+ pFrame->token = pProgram->token; |
+ |
+ pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; |
+ for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ |
+ pMem->flags = MEM_Null; |
+ pMem->db = db; |
+ } |
+ }else{ |
+ pFrame = pRt->u.pFrame; |
+ assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem ); |
+ assert( pProgram->nCsr==pFrame->nChildCsr ); |
+ assert( pc==pFrame->pc ); |
+ } |
+ |
+ p->nFrame++; |
+ pFrame->pParent = p->pFrame; |
+ pFrame->lastRowid = db->lastRowid; |
+ pFrame->nChange = p->nChange; |
+ p->nChange = 0; |
+ p->pFrame = pFrame; |
+ p->aMem = aMem = &VdbeFrameMem(pFrame)[-1]; |
+ p->nMem = pFrame->nChildMem; |
+ p->nCursor = (u16)pFrame->nChildCsr; |
+ p->apCsr = (VdbeCursor **)&aMem[p->nMem+1]; |
+ p->aOp = aOp = pProgram->aOp; |
+ p->nOp = pProgram->nOp; |
+ pc = -1; |
+ |
+ break; |
+} |
+ |
+/* Opcode: Param P1 P2 * * * |
+** |
+** This opcode is only ever present in sub-programs called via the |
+** OP_Program instruction. Copy a value currently stored in a memory |
+** cell of the calling (parent) frame to cell P2 in the current frames |
+** address space. This is used by trigger programs to access the new.* |
+** and old.* values. |
+** |
+** The address of the cell in the parent frame is determined by adding |
+** the value of the P1 argument to the value of the P1 argument to the |
+** calling OP_Program instruction. |
+*/ |
+case OP_Param: { /* out2-prerelease */ |
+ VdbeFrame *pFrame; |
+ Mem *pIn; |
+ pFrame = p->pFrame; |
+ pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; |
+ sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); |
+ break; |
+} |
+ |
+#endif /* #ifndef SQLITE_OMIT_TRIGGER */ |
+ |
+#ifndef SQLITE_OMIT_FOREIGN_KEY |
+/* Opcode: FkCounter P1 P2 * * * |
+** |
+** Increment a "constraint counter" by P2 (P2 may be negative or positive). |
+** If P1 is non-zero, the database constraint counter is incremented |
+** (deferred foreign key constraints). Otherwise, if P1 is zero, the |
+** statement counter is incremented (immediate foreign key constraints). |
+*/ |
+case OP_FkCounter: { |
+ if( pOp->p1 ){ |
+ db->nDeferredCons += pOp->p2; |
+ }else{ |
+ p->nFkConstraint += pOp->p2; |
+ } |
+ break; |
+} |
+ |
+/* Opcode: FkIfZero P1 P2 * * * |
+** |
+** This opcode tests if a foreign key constraint-counter is currently zero. |
+** If so, jump to instruction P2. Otherwise, fall through to the next |
+** instruction. |
+** |
+** If P1 is non-zero, then the jump is taken if the database constraint-counter |
+** is zero (the one that counts deferred constraint violations). If P1 is |
+** zero, the jump is taken if the statement constraint-counter is zero |
+** (immediate foreign key constraint violations). |
+*/ |
+case OP_FkIfZero: { /* jump */ |
+ if( pOp->p1 ){ |
+ if( db->nDeferredCons==0 ) pc = pOp->p2-1; |
+ }else{ |
+ if( p->nFkConstraint==0 ) pc = pOp->p2-1; |
+ } |
+ break; |
+} |
+#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ |
+ |
+#ifndef SQLITE_OMIT_AUTOINCREMENT |
+/* Opcode: MemMax P1 P2 * * * |
+** |
+** P1 is a register in the root frame of this VM (the root frame is |
+** different from the current frame if this instruction is being executed |
+** within a sub-program). Set the value of register P1 to the maximum of |
+** its current value and the value in register P2. |
+** |
+** This instruction throws an error if the memory cell is not initially |
+** an integer. |
+*/ |
+case OP_MemMax: { /* in2 */ |
+ Mem *pIn1; |
+ VdbeFrame *pFrame; |
+ if( p->pFrame ){ |
+ for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); |
+ pIn1 = &pFrame->aMem[pOp->p1]; |
+ }else{ |
+ pIn1 = &aMem[pOp->p1]; |
+ } |
+ assert( memIsValid(pIn1) ); |
+ sqlite3VdbeMemIntegerify(pIn1); |
+ pIn2 = &aMem[pOp->p2]; |
+ sqlite3VdbeMemIntegerify(pIn2); |
+ if( pIn1->u.i<pIn2->u.i){ |
+ pIn1->u.i = pIn2->u.i; |
+ } |
+ break; |
+} |
+#endif /* SQLITE_OMIT_AUTOINCREMENT */ |
+ |
+/* Opcode: IfPos P1 P2 * * * |
+** |
+** If the value of register P1 is 1 or greater, jump to P2. |
+** |
+** It is illegal to use this instruction on a register that does |
+** not contain an integer. An assertion fault will result if you try. |
+*/ |
+case OP_IfPos: { /* jump, in1 */ |
+ pIn1 = &aMem[pOp->p1]; |
+ assert( pIn1->flags&MEM_Int ); |
+ if( pIn1->u.i>0 ){ |
+ pc = pOp->p2 - 1; |
+ } |
+ break; |
+} |
+ |
+/* Opcode: IfNeg P1 P2 * * * |
+** |
+** If the value of register P1 is less than zero, jump to P2. |
+** |
+** It is illegal to use this instruction on a register that does |
+** not contain an integer. An assertion fault will result if you try. |
+*/ |
+case OP_IfNeg: { /* jump, in1 */ |
+ pIn1 = &aMem[pOp->p1]; |
+ assert( pIn1->flags&MEM_Int ); |
+ if( pIn1->u.i<0 ){ |
+ pc = pOp->p2 - 1; |
+ } |
+ break; |
+} |
+ |
+/* Opcode: IfZero P1 P2 P3 * * |
+** |
+** The register P1 must contain an integer. Add literal P3 to the |
+** value in register P1. If the result is exactly 0, jump to P2. |
+** |
+** It is illegal to use this instruction on a register that does |
+** not contain an integer. An assertion fault will result if you try. |
+*/ |
+case OP_IfZero: { /* jump, in1 */ |
+ pIn1 = &aMem[pOp->p1]; |
+ assert( pIn1->flags&MEM_Int ); |
+ pIn1->u.i += pOp->p3; |
+ if( pIn1->u.i==0 ){ |
+ pc = pOp->p2 - 1; |
+ } |
+ break; |
+} |
+ |
+/* Opcode: AggStep * P2 P3 P4 P5 |
+** |
+** Execute the step function for an aggregate. The |
+** function has P5 arguments. P4 is a pointer to the FuncDef |
+** structure that specifies the function. Use register |
+** P3 as the accumulator. |
+** |
+** The P5 arguments are taken from register P2 and its |
+** successors. |
+*/ |
+case OP_AggStep: { |
+ int n; |
+ int i; |
+ Mem *pMem; |
+ Mem *pRec; |
+ sqlite3_context ctx; |
+ sqlite3_value **apVal; |
+ |
+ n = pOp->p5; |
+ assert( n>=0 ); |
+ pRec = &aMem[pOp->p2]; |
+ apVal = p->apArg; |
+ assert( apVal || n==0 ); |
+ for(i=0; i<n; i++, pRec++){ |
+ assert( memIsValid(pRec) ); |
+ apVal[i] = pRec; |
+ memAboutToChange(p, pRec); |
+ sqlite3VdbeMemStoreType(pRec); |
+ } |
+ ctx.pFunc = pOp->p4.pFunc; |
+ assert( pOp->p3>0 && pOp->p3<=p->nMem ); |
+ ctx.pMem = pMem = &aMem[pOp->p3]; |
+ pMem->n++; |
+ ctx.s.flags = MEM_Null; |
+ ctx.s.z = 0; |
+ ctx.s.zMalloc = 0; |
+ ctx.s.xDel = 0; |
+ ctx.s.db = db; |
+ ctx.isError = 0; |
+ ctx.pColl = 0; |
+ if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ |
+ assert( pOp>p->aOp ); |
+ assert( pOp[-1].p4type==P4_COLLSEQ ); |
+ assert( pOp[-1].opcode==OP_CollSeq ); |
+ ctx.pColl = pOp[-1].p4.pColl; |
+ } |
+ (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */ |
+ if( ctx.isError ){ |
+ sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s)); |
+ rc = ctx.isError; |
+ } |
+ |
+ sqlite3VdbeMemRelease(&ctx.s); |
+ |
+ break; |
+} |
+ |
+/* Opcode: AggFinal P1 P2 * P4 * |
+** |
+** Execute the finalizer function for an aggregate. P1 is |
+** the memory location that is the accumulator for the aggregate. |
+** |
+** P2 is the number of arguments that the step function takes and |
+** P4 is a pointer to the FuncDef for this function. The P2 |
+** argument is not used by this opcode. It is only there to disambiguate |
+** functions that can take varying numbers of arguments. The |
+** P4 argument is only needed for the degenerate case where |
+** the step function was not previously called. |
+*/ |
+case OP_AggFinal: { |
+ Mem *pMem; |
+ assert( pOp->p1>0 && pOp->p1<=p->nMem ); |
+ pMem = &aMem[pOp->p1]; |
+ assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); |
+ rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); |
+ if( rc ){ |
+ sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem)); |
+ } |
+ sqlite3VdbeChangeEncoding(pMem, encoding); |
+ UPDATE_MAX_BLOBSIZE(pMem); |
+ if( sqlite3VdbeMemTooBig(pMem) ){ |
+ goto too_big; |
+ } |
+ break; |
+} |
+ |
+#ifndef SQLITE_OMIT_WAL |
+/* Opcode: Checkpoint P1 P2 P3 * * |
+** |
+** Checkpoint database P1. This is a no-op if P1 is not currently in |
+** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL |
+** or RESTART. Write 1 or 0 into mem[P3] if the checkpoint returns |
+** SQLITE_BUSY or not, respectively. Write the number of pages in the |
+** WAL after the checkpoint into mem[P3+1] and the number of pages |
+** in the WAL that have been checkpointed after the checkpoint |
+** completes into mem[P3+2]. However on an error, mem[P3+1] and |
+** mem[P3+2] are initialized to -1. |
+*/ |
+case OP_Checkpoint: { |
+ int i; /* Loop counter */ |
+ int aRes[3]; /* Results */ |
+ Mem *pMem; /* Write results here */ |
+ |
+ aRes[0] = 0; |
+ aRes[1] = aRes[2] = -1; |
+ assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE |
+ || pOp->p2==SQLITE_CHECKPOINT_FULL |
+ || pOp->p2==SQLITE_CHECKPOINT_RESTART |
+ ); |
+ rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); |
+ if( rc==SQLITE_BUSY ){ |
+ rc = SQLITE_OK; |
+ aRes[0] = 1; |
+ } |
+ for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ |
+ sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); |
+ } |
+ break; |
+}; |
+#endif |
+ |
+#ifndef SQLITE_OMIT_PRAGMA |
+/* Opcode: JournalMode P1 P2 P3 * P5 |
+** |
+** Change the journal mode of database P1 to P3. P3 must be one of the |
+** PAGER_JOURNALMODE_XXX values. If changing between the various rollback |
+** modes (delete, truncate, persist, off and memory), this is a simple |
+** operation. No IO is required. |
+** |
+** If changing into or out of WAL mode the procedure is more complicated. |
+** |
+** Write a string containing the final journal-mode to register P2. |
+*/ |
+case OP_JournalMode: { /* out2-prerelease */ |
+ Btree *pBt; /* Btree to change journal mode of */ |
+ Pager *pPager; /* Pager associated with pBt */ |
+ int eNew; /* New journal mode */ |
+ int eOld; /* The old journal mode */ |
+ const char *zFilename; /* Name of database file for pPager */ |
+ |
+ eNew = pOp->p3; |
+ assert( eNew==PAGER_JOURNALMODE_DELETE |
+ || eNew==PAGER_JOURNALMODE_TRUNCATE |
+ || eNew==PAGER_JOURNALMODE_PERSIST |
+ || eNew==PAGER_JOURNALMODE_OFF |
+ || eNew==PAGER_JOURNALMODE_MEMORY |
+ || eNew==PAGER_JOURNALMODE_WAL |
+ || eNew==PAGER_JOURNALMODE_QUERY |
+ ); |
+ assert( pOp->p1>=0 && pOp->p1<db->nDb ); |
+ |
+ pBt = db->aDb[pOp->p1].pBt; |
+ pPager = sqlite3BtreePager(pBt); |
+ eOld = sqlite3PagerGetJournalMode(pPager); |
+ if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; |
+ if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; |
+ |
+#ifndef SQLITE_OMIT_WAL |
+ zFilename = sqlite3PagerFilename(pPager); |
+ |
+ /* Do not allow a transition to journal_mode=WAL for a database |
+ ** in temporary storage or if the VFS does not support shared memory |
+ */ |
+ if( eNew==PAGER_JOURNALMODE_WAL |
+ && (zFilename[0]==0 /* Temp file */ |
+ || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ |
+ ){ |
+ eNew = eOld; |
+ } |
+ |
+ if( (eNew!=eOld) |
+ && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) |
+ ){ |
+ if( !db->autoCommit || db->activeVdbeCnt>1 ){ |
+ rc = SQLITE_ERROR; |
+ sqlite3SetString(&p->zErrMsg, db, |
+ "cannot change %s wal mode from within a transaction", |
+ (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") |
+ ); |
+ break; |
+ }else{ |
+ |
+ if( eOld==PAGER_JOURNALMODE_WAL ){ |
+ /* If leaving WAL mode, close the log file. If successful, the call |
+ ** to PagerCloseWal() checkpoints and deletes the write-ahead-log |
+ ** file. An EXCLUSIVE lock may still be held on the database file |
+ ** after a successful return. |
+ */ |
+ rc = sqlite3PagerCloseWal(pPager); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3PagerSetJournalMode(pPager, eNew); |
+ } |
+ }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ |
+ /* Cannot transition directly from MEMORY to WAL. Use mode OFF |
+ ** as an intermediate */ |
+ sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); |
+ } |
+ |
+ /* Open a transaction on the database file. Regardless of the journal |
+ ** mode, this transaction always uses a rollback journal. |
+ */ |
+ assert( sqlite3BtreeIsInTrans(pBt)==0 ); |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); |
+ } |
+ } |
+ } |
+#endif /* ifndef SQLITE_OMIT_WAL */ |
+ |
+ if( rc ){ |
+ eNew = eOld; |
+ } |
+ eNew = sqlite3PagerSetJournalMode(pPager, eNew); |
+ |
+ pOut = &aMem[pOp->p2]; |
+ pOut->flags = MEM_Str|MEM_Static|MEM_Term; |
+ pOut->z = (char *)sqlite3JournalModename(eNew); |
+ pOut->n = sqlite3Strlen30(pOut->z); |
+ pOut->enc = SQLITE_UTF8; |
+ sqlite3VdbeChangeEncoding(pOut, encoding); |
+ break; |
+}; |
+#endif /* SQLITE_OMIT_PRAGMA */ |
+ |
+#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) |
+/* Opcode: Vacuum * * * * * |
+** |
+** Vacuum the entire database. This opcode will cause other virtual |
+** machines to be created and run. It may not be called from within |
+** a transaction. |
+*/ |
+case OP_Vacuum: { |
+ rc = sqlite3RunVacuum(&p->zErrMsg, db); |
+ break; |
+} |
+#endif |
+ |
+#if !defined(SQLITE_OMIT_AUTOVACUUM) |
+/* Opcode: IncrVacuum P1 P2 * * * |
+** |
+** Perform a single step of the incremental vacuum procedure on |
+** the P1 database. If the vacuum has finished, jump to instruction |
+** P2. Otherwise, fall through to the next instruction. |
+*/ |
+case OP_IncrVacuum: { /* jump */ |
+ Btree *pBt; |
+ |
+ assert( pOp->p1>=0 && pOp->p1<db->nDb ); |
+ assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); |
+ pBt = db->aDb[pOp->p1].pBt; |
+ rc = sqlite3BtreeIncrVacuum(pBt); |
+ if( rc==SQLITE_DONE ){ |
+ pc = pOp->p2 - 1; |
+ rc = SQLITE_OK; |
+ } |
+ break; |
+} |
+#endif |
+ |
+/* Opcode: Expire P1 * * * * |
+** |
+** Cause precompiled statements to become expired. An expired statement |
+** fails with an error code of SQLITE_SCHEMA if it is ever executed |
+** (via sqlite3_step()). |
+** |
+** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, |
+** then only the currently executing statement is affected. |
+*/ |
+case OP_Expire: { |
+ if( !pOp->p1 ){ |
+ sqlite3ExpirePreparedStatements(db); |
+ }else{ |
+ p->expired = 1; |
+ } |
+ break; |
+} |
+ |
+#ifndef SQLITE_OMIT_SHARED_CACHE |
+/* Opcode: TableLock P1 P2 P3 P4 * |
+** |
+** Obtain a lock on a particular table. This instruction is only used when |
+** the shared-cache feature is enabled. |
+** |
+** P1 is the index of the database in sqlite3.aDb[] of the database |
+** on which the lock is acquired. A readlock is obtained if P3==0 or |
+** a write lock if P3==1. |
+** |
+** P2 contains the root-page of the table to lock. |
+** |
+** P4 contains a pointer to the name of the table being locked. This is only |
+** used to generate an error message if the lock cannot be obtained. |
+*/ |
+case OP_TableLock: { |
+ u8 isWriteLock = (u8)pOp->p3; |
+ if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){ |
+ int p1 = pOp->p1; |
+ assert( p1>=0 && p1<db->nDb ); |
+ assert( (p->btreeMask & (((yDbMask)1)<<p1))!=0 ); |
+ assert( isWriteLock==0 || isWriteLock==1 ); |
+ rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); |
+ if( (rc&0xFF)==SQLITE_LOCKED ){ |
+ const char *z = pOp->p4.z; |
+ sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z); |
+ } |
+ } |
+ break; |
+} |
+#endif /* SQLITE_OMIT_SHARED_CACHE */ |
+ |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+/* Opcode: VBegin * * * P4 * |
+** |
+** P4 may be a pointer to an sqlite3_vtab structure. If so, call the |
+** xBegin method for that table. |
+** |
+** Also, whether or not P4 is set, check that this is not being called from |
+** within a callback to a virtual table xSync() method. If it is, the error |
+** code will be set to SQLITE_LOCKED. |
+*/ |
+case OP_VBegin: { |
+ VTable *pVTab; |
+ pVTab = pOp->p4.pVtab; |
+ rc = sqlite3VtabBegin(db, pVTab); |
+ if( pVTab ) importVtabErrMsg(p, pVTab->pVtab); |
+ break; |
+} |
+#endif /* SQLITE_OMIT_VIRTUALTABLE */ |
+ |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+/* Opcode: VCreate P1 * * P4 * |
+** |
+** P4 is the name of a virtual table in database P1. Call the xCreate method |
+** for that table. |
+*/ |
+case OP_VCreate: { |
+ rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg); |
+ break; |
+} |
+#endif /* SQLITE_OMIT_VIRTUALTABLE */ |
+ |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+/* Opcode: VDestroy P1 * * P4 * |
+** |
+** P4 is the name of a virtual table in database P1. Call the xDestroy method |
+** of that table. |
+*/ |
+case OP_VDestroy: { |
+ p->inVtabMethod = 2; |
+ rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); |
+ p->inVtabMethod = 0; |
+ break; |
+} |
+#endif /* SQLITE_OMIT_VIRTUALTABLE */ |
+ |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+/* Opcode: VOpen P1 * * P4 * |
+** |
+** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. |
+** P1 is a cursor number. This opcode opens a cursor to the virtual |
+** table and stores that cursor in P1. |
+*/ |
+case OP_VOpen: { |
+ VdbeCursor *pCur; |
+ sqlite3_vtab_cursor *pVtabCursor; |
+ sqlite3_vtab *pVtab; |
+ sqlite3_module *pModule; |
+ |
+ pCur = 0; |
+ pVtabCursor = 0; |
+ pVtab = pOp->p4.pVtab->pVtab; |
+ pModule = (sqlite3_module *)pVtab->pModule; |
+ assert(pVtab && pModule); |
+ rc = pModule->xOpen(pVtab, &pVtabCursor); |
+ importVtabErrMsg(p, pVtab); |
+ if( SQLITE_OK==rc ){ |
+ /* Initialize sqlite3_vtab_cursor base class */ |
+ pVtabCursor->pVtab = pVtab; |
+ |
+ /* Initialise vdbe cursor object */ |
+ pCur = allocateCursor(p, pOp->p1, 0, -1, 0); |
+ if( pCur ){ |
+ pCur->pVtabCursor = pVtabCursor; |
+ pCur->pModule = pVtabCursor->pVtab->pModule; |
+ }else{ |
+ db->mallocFailed = 1; |
+ pModule->xClose(pVtabCursor); |
+ } |
+ } |
+ break; |
+} |
+#endif /* SQLITE_OMIT_VIRTUALTABLE */ |
+ |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+/* Opcode: VFilter P1 P2 P3 P4 * |
+** |
+** P1 is a cursor opened using VOpen. P2 is an address to jump to if |
+** the filtered result set is empty. |
+** |
+** P4 is either NULL or a string that was generated by the xBestIndex |
+** method of the module. The interpretation of the P4 string is left |
+** to the module implementation. |
+** |
+** This opcode invokes the xFilter method on the virtual table specified |
+** by P1. The integer query plan parameter to xFilter is stored in register |
+** P3. Register P3+1 stores the argc parameter to be passed to the |
+** xFilter method. Registers P3+2..P3+1+argc are the argc |
+** additional parameters which are passed to |
+** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. |
+** |
+** A jump is made to P2 if the result set after filtering would be empty. |
+*/ |
+case OP_VFilter: { /* jump */ |
+ int nArg; |
+ int iQuery; |
+ const sqlite3_module *pModule; |
+ Mem *pQuery; |
+ Mem *pArgc; |
+ sqlite3_vtab_cursor *pVtabCursor; |
+ sqlite3_vtab *pVtab; |
+ VdbeCursor *pCur; |
+ int res; |
+ int i; |
+ Mem **apArg; |
+ |
+ pQuery = &aMem[pOp->p3]; |
+ pArgc = &pQuery[1]; |
+ pCur = p->apCsr[pOp->p1]; |
+ assert( memIsValid(pQuery) ); |
+ REGISTER_TRACE(pOp->p3, pQuery); |
+ assert( pCur->pVtabCursor ); |
+ pVtabCursor = pCur->pVtabCursor; |
+ pVtab = pVtabCursor->pVtab; |
+ pModule = pVtab->pModule; |
+ |
+ /* Grab the index number and argc parameters */ |
+ assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); |
+ nArg = (int)pArgc->u.i; |
+ iQuery = (int)pQuery->u.i; |
+ |
+ /* Invoke the xFilter method */ |
+ { |
+ res = 0; |
+ apArg = p->apArg; |
+ for(i = 0; i<nArg; i++){ |
+ apArg[i] = &pArgc[i+1]; |
+ sqlite3VdbeMemStoreType(apArg[i]); |
+ } |
+ |
+ p->inVtabMethod = 1; |
+ rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg); |
+ p->inVtabMethod = 0; |
+ importVtabErrMsg(p, pVtab); |
+ if( rc==SQLITE_OK ){ |
+ res = pModule->xEof(pVtabCursor); |
+ } |
+ |
+ if( res ){ |
+ pc = pOp->p2 - 1; |
+ } |
+ } |
+ pCur->nullRow = 0; |
+ |
+ break; |
+} |
+#endif /* SQLITE_OMIT_VIRTUALTABLE */ |
+ |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+/* Opcode: VColumn P1 P2 P3 * * |
+** |
+** Store the value of the P2-th column of |
+** the row of the virtual-table that the |
+** P1 cursor is pointing to into register P3. |
+*/ |
+case OP_VColumn: { |
+ sqlite3_vtab *pVtab; |
+ const sqlite3_module *pModule; |
+ Mem *pDest; |
+ sqlite3_context sContext; |
+ |
+ VdbeCursor *pCur = p->apCsr[pOp->p1]; |
+ assert( pCur->pVtabCursor ); |
+ assert( pOp->p3>0 && pOp->p3<=p->nMem ); |
+ pDest = &aMem[pOp->p3]; |
+ memAboutToChange(p, pDest); |
+ if( pCur->nullRow ){ |
+ sqlite3VdbeMemSetNull(pDest); |
+ break; |
+ } |
+ pVtab = pCur->pVtabCursor->pVtab; |
+ pModule = pVtab->pModule; |
+ assert( pModule->xColumn ); |
+ memset(&sContext, 0, sizeof(sContext)); |
+ |
+ /* The output cell may already have a buffer allocated. Move |
+ ** the current contents to sContext.s so in case the user-function |
+ ** can use the already allocated buffer instead of allocating a |
+ ** new one. |
+ */ |
+ sqlite3VdbeMemMove(&sContext.s, pDest); |
+ MemSetTypeFlag(&sContext.s, MEM_Null); |
+ |
+ rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2); |
+ importVtabErrMsg(p, pVtab); |
+ if( sContext.isError ){ |
+ rc = sContext.isError; |
+ } |
+ |
+ /* Copy the result of the function to the P3 register. We |
+ ** do this regardless of whether or not an error occurred to ensure any |
+ ** dynamic allocation in sContext.s (a Mem struct) is released. |
+ */ |
+ sqlite3VdbeChangeEncoding(&sContext.s, encoding); |
+ sqlite3VdbeMemMove(pDest, &sContext.s); |
+ REGISTER_TRACE(pOp->p3, pDest); |
+ UPDATE_MAX_BLOBSIZE(pDest); |
+ |
+ if( sqlite3VdbeMemTooBig(pDest) ){ |
+ goto too_big; |
+ } |
+ break; |
+} |
+#endif /* SQLITE_OMIT_VIRTUALTABLE */ |
+ |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+/* Opcode: VNext P1 P2 * * * |
+** |
+** Advance virtual table P1 to the next row in its result set and |
+** jump to instruction P2. Or, if the virtual table has reached |
+** the end of its result set, then fall through to the next instruction. |
+*/ |
+case OP_VNext: { /* jump */ |
+ sqlite3_vtab *pVtab; |
+ const sqlite3_module *pModule; |
+ int res; |
+ VdbeCursor *pCur; |
+ |
+ res = 0; |
+ pCur = p->apCsr[pOp->p1]; |
+ assert( pCur->pVtabCursor ); |
+ if( pCur->nullRow ){ |
+ break; |
+ } |
+ pVtab = pCur->pVtabCursor->pVtab; |
+ pModule = pVtab->pModule; |
+ assert( pModule->xNext ); |
+ |
+ /* Invoke the xNext() method of the module. There is no way for the |
+ ** underlying implementation to return an error if one occurs during |
+ ** xNext(). Instead, if an error occurs, true is returned (indicating that |
+ ** data is available) and the error code returned when xColumn or |
+ ** some other method is next invoked on the save virtual table cursor. |
+ */ |
+ p->inVtabMethod = 1; |
+ rc = pModule->xNext(pCur->pVtabCursor); |
+ p->inVtabMethod = 0; |
+ importVtabErrMsg(p, pVtab); |
+ if( rc==SQLITE_OK ){ |
+ res = pModule->xEof(pCur->pVtabCursor); |
+ } |
+ |
+ if( !res ){ |
+ /* If there is data, jump to P2 */ |
+ pc = pOp->p2 - 1; |
+ } |
+ break; |
+} |
+#endif /* SQLITE_OMIT_VIRTUALTABLE */ |
+ |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+/* Opcode: VRename P1 * * P4 * |
+** |
+** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. |
+** This opcode invokes the corresponding xRename method. The value |
+** in register P1 is passed as the zName argument to the xRename method. |
+*/ |
+case OP_VRename: { |
+ sqlite3_vtab *pVtab; |
+ Mem *pName; |
+ |
+ pVtab = pOp->p4.pVtab->pVtab; |
+ pName = &aMem[pOp->p1]; |
+ assert( pVtab->pModule->xRename ); |
+ assert( memIsValid(pName) ); |
+ REGISTER_TRACE(pOp->p1, pName); |
+ assert( pName->flags & MEM_Str ); |
+ rc = pVtab->pModule->xRename(pVtab, pName->z); |
+ importVtabErrMsg(p, pVtab); |
+ p->expired = 0; |
+ |
+ break; |
+} |
+#endif |
+ |
+#ifndef SQLITE_OMIT_VIRTUALTABLE |
+/* Opcode: VUpdate P1 P2 P3 P4 * |
+** |
+** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. |
+** This opcode invokes the corresponding xUpdate method. P2 values |
+** are contiguous memory cells starting at P3 to pass to the xUpdate |
+** invocation. The value in register (P3+P2-1) corresponds to the |
+** p2th element of the argv array passed to xUpdate. |
+** |
+** The xUpdate method will do a DELETE or an INSERT or both. |
+** The argv[0] element (which corresponds to memory cell P3) |
+** is the rowid of a row to delete. If argv[0] is NULL then no |
+** deletion occurs. The argv[1] element is the rowid of the new |
+** row. This can be NULL to have the virtual table select the new |
+** rowid for itself. The subsequent elements in the array are |
+** the values of columns in the new row. |
+** |
+** If P2==1 then no insert is performed. argv[0] is the rowid of |
+** a row to delete. |
+** |
+** P1 is a boolean flag. If it is set to true and the xUpdate call |
+** is successful, then the value returned by sqlite3_last_insert_rowid() |
+** is set to the value of the rowid for the row just inserted. |
+*/ |
+case OP_VUpdate: { |
+ sqlite3_vtab *pVtab; |
+ sqlite3_module *pModule; |
+ int nArg; |
+ int i; |
+ sqlite_int64 rowid; |
+ Mem **apArg; |
+ Mem *pX; |
+ |
+ pVtab = pOp->p4.pVtab->pVtab; |
+ pModule = (sqlite3_module *)pVtab->pModule; |
+ nArg = pOp->p2; |
+ assert( pOp->p4type==P4_VTAB ); |
+ if( ALWAYS(pModule->xUpdate) ){ |
+ apArg = p->apArg; |
+ pX = &aMem[pOp->p3]; |
+ for(i=0; i<nArg; i++){ |
+ assert( memIsValid(pX) ); |
+ memAboutToChange(p, pX); |
+ sqlite3VdbeMemStoreType(pX); |
+ apArg[i] = pX; |
+ pX++; |
+ } |
+ rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); |
+ importVtabErrMsg(p, pVtab); |
+ if( rc==SQLITE_OK && pOp->p1 ){ |
+ assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); |
+ db->lastRowid = rowid; |
+ } |
+ p->nChange++; |
+ } |
+ break; |
+} |
+#endif /* SQLITE_OMIT_VIRTUALTABLE */ |
+ |
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS |
+/* Opcode: Pagecount P1 P2 * * * |
+** |
+** Write the current number of pages in database P1 to memory cell P2. |
+*/ |
+case OP_Pagecount: { /* out2-prerelease */ |
+ pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); |
+ break; |
+} |
+#endif |
+ |
+ |
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS |
+/* Opcode: MaxPgcnt P1 P2 P3 * * |
+** |
+** Try to set the maximum page count for database P1 to the value in P3. |
+** Do not let the maximum page count fall below the current page count and |
+** do not change the maximum page count value if P3==0. |
+** |
+** Store the maximum page count after the change in register P2. |
+*/ |
+case OP_MaxPgcnt: { /* out2-prerelease */ |
+ unsigned int newMax; |
+ Btree *pBt; |
+ |
+ pBt = db->aDb[pOp->p1].pBt; |
+ newMax = 0; |
+ if( pOp->p3 ){ |
+ newMax = sqlite3BtreeLastPage(pBt); |
+ if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; |
+ } |
+ pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); |
+ break; |
+} |
+#endif |
+ |
+ |
+#ifndef SQLITE_OMIT_TRACE |
+/* Opcode: Trace * * * P4 * |
+** |
+** If tracing is enabled (by the sqlite3_trace()) interface, then |
+** the UTF-8 string contained in P4 is emitted on the trace callback. |
+*/ |
+case OP_Trace: { |
+ char *zTrace; |
+ |
+ zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); |
+ if( zTrace ){ |
+ if( db->xTrace ){ |
+ char *z = sqlite3VdbeExpandSql(p, zTrace); |
+ db->xTrace(db->pTraceArg, z); |
+ sqlite3DbFree(db, z); |
+ } |
+#ifdef SQLITE_DEBUG |
+ if( (db->flags & SQLITE_SqlTrace)!=0 ){ |
+ sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); |
+ } |
+#endif /* SQLITE_DEBUG */ |
+ } |
+ break; |
+} |
+#endif |
+ |
+ |
+/* Opcode: Noop * * * * * |
+** |
+** Do nothing. This instruction is often useful as a jump |
+** destination. |
+*/ |
+/* |
+** The magic Explain opcode are only inserted when explain==2 (which |
+** is to say when the EXPLAIN QUERY PLAN syntax is used.) |
+** This opcode records information from the optimizer. It is the |
+** the same as a no-op. This opcodesnever appears in a real VM program. |
+*/ |
+default: { /* This is really OP_Noop and OP_Explain */ |
+ assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); |
+ break; |
+} |
+ |
+/***************************************************************************** |
+** The cases of the switch statement above this line should all be indented |
+** by 6 spaces. But the left-most 6 spaces have been removed to improve the |
+** readability. From this point on down, the normal indentation rules are |
+** restored. |
+*****************************************************************************/ |
+ } |
+ |
+#ifdef VDBE_PROFILE |
+ { |
+ u64 elapsed = sqlite3Hwtime() - start; |
+ pOp->cycles += elapsed; |
+ pOp->cnt++; |
+#if 0 |
+ fprintf(stdout, "%10llu ", elapsed); |
+ sqlite3VdbePrintOp(stdout, origPc, &aOp[origPc]); |
+#endif |
+ } |
+#endif |
+ |
+ /* The following code adds nothing to the actual functionality |
+ ** of the program. It is only here for testing and debugging. |
+ ** On the other hand, it does burn CPU cycles every time through |
+ ** the evaluator loop. So we can leave it out when NDEBUG is defined. |
+ */ |
+#ifndef NDEBUG |
+ assert( pc>=-1 && pc<p->nOp ); |
+ |
+#ifdef SQLITE_DEBUG |
+ if( p->trace ){ |
+ if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc); |
+ if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){ |
+ registerTrace(p->trace, pOp->p2, &aMem[pOp->p2]); |
+ } |
+ if( pOp->opflags & OPFLG_OUT3 ){ |
+ registerTrace(p->trace, pOp->p3, &aMem[pOp->p3]); |
+ } |
+ } |
+#endif /* SQLITE_DEBUG */ |
+#endif /* NDEBUG */ |
+ } /* The end of the for(;;) loop the loops through opcodes */ |
+ |
+ /* If we reach this point, it means that execution is finished with |
+ ** an error of some kind. |
+ */ |
+vdbe_error_halt: |
+ assert( rc ); |
+ p->rc = rc; |
+ testcase( sqlite3GlobalConfig.xLog!=0 ); |
+ sqlite3_log(rc, "statement aborts at %d: [%s] %s", |
+ pc, p->zSql, p->zErrMsg); |
+ sqlite3VdbeHalt(p); |
+ if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1; |
+ rc = SQLITE_ERROR; |
+ if( resetSchemaOnFault>0 ){ |
+ sqlite3ResetInternalSchema(db, resetSchemaOnFault-1); |
+ } |
+ |
+ /* This is the only way out of this procedure. We have to |
+ ** release the mutexes on btrees that were acquired at the |
+ ** top. */ |
+vdbe_return: |
+ sqlite3VdbeLeave(p); |
+ return rc; |
+ |
+ /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH |
+ ** is encountered. |
+ */ |
+too_big: |
+ sqlite3SetString(&p->zErrMsg, db, "string or blob too big"); |
+ rc = SQLITE_TOOBIG; |
+ goto vdbe_error_halt; |
+ |
+ /* Jump to here if a malloc() fails. |
+ */ |
+no_mem: |
+ db->mallocFailed = 1; |
+ sqlite3SetString(&p->zErrMsg, db, "out of memory"); |
+ rc = SQLITE_NOMEM; |
+ goto vdbe_error_halt; |
+ |
+ /* Jump to here for any other kind of fatal error. The "rc" variable |
+ ** should hold the error number. |
+ */ |
+abort_due_to_error: |
+ assert( p->zErrMsg==0 ); |
+ if( db->mallocFailed ) rc = SQLITE_NOMEM; |
+ if( rc!=SQLITE_IOERR_NOMEM ){ |
+ sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc)); |
+ } |
+ goto vdbe_error_halt; |
+ |
+ /* Jump to here if the sqlite3_interrupt() API sets the interrupt |
+ ** flag. |
+ */ |
+abort_due_to_interrupt: |
+ assert( db->u1.isInterrupted ); |
+ rc = SQLITE_INTERRUPT; |
+ p->rc = rc; |
+ sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc)); |
+ goto vdbe_error_halt; |
+} |