| Index: third_party/sqlite/sqlite-src-3080704/src/test_rtree.c
|
| diff --git a/third_party/sqlite/sqlite-src-3080704/src/test_rtree.c b/third_party/sqlite/sqlite-src-3080704/src/test_rtree.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..9d19fa0e2c86657b56dc4c8a22cd37e5485c8cbb
|
| --- /dev/null
|
| +++ b/third_party/sqlite/sqlite-src-3080704/src/test_rtree.c
|
| @@ -0,0 +1,471 @@
|
| +/*
|
| +** 2010 August 28
|
| +**
|
| +** The author disclaims copyright to this source code. In place of
|
| +** a legal notice, here is a blessing:
|
| +**
|
| +** May you do good and not evil.
|
| +** May you find forgiveness for yourself and forgive others.
|
| +** May you share freely, never taking more than you give.
|
| +**
|
| +*************************************************************************
|
| +** Code for testing all sorts of SQLite interfaces. This code
|
| +** is not included in the SQLite library.
|
| +*/
|
| +
|
| +#include <sqlite3.h>
|
| +#include <tcl.h>
|
| +
|
| +/* Solely for the UNUSED_PARAMETER() macro. */
|
| +#include "sqliteInt.h"
|
| +
|
| +#ifdef SQLITE_ENABLE_RTREE
|
| +/*
|
| +** Type used to cache parameter information for the "circle" r-tree geometry
|
| +** callback.
|
| +*/
|
| +typedef struct Circle Circle;
|
| +struct Circle {
|
| + struct Box {
|
| + double xmin;
|
| + double xmax;
|
| + double ymin;
|
| + double ymax;
|
| + } aBox[2];
|
| + double centerx;
|
| + double centery;
|
| + double radius;
|
| + double mxArea;
|
| + int eScoreType;
|
| +};
|
| +
|
| +/*
|
| +** Destructor function for Circle objects allocated by circle_geom().
|
| +*/
|
| +static void circle_del(void *p){
|
| + sqlite3_free(p);
|
| +}
|
| +
|
| +/*
|
| +** Implementation of "circle" r-tree geometry callback.
|
| +*/
|
| +static int circle_geom(
|
| + sqlite3_rtree_geometry *p,
|
| + int nCoord,
|
| + sqlite3_rtree_dbl *aCoord,
|
| + int *pRes
|
| +){
|
| + int i; /* Iterator variable */
|
| + Circle *pCircle; /* Structure defining circular region */
|
| + double xmin, xmax; /* X dimensions of box being tested */
|
| + double ymin, ymax; /* X dimensions of box being tested */
|
| +
|
| + xmin = aCoord[0];
|
| + xmax = aCoord[1];
|
| + ymin = aCoord[2];
|
| + ymax = aCoord[3];
|
| + pCircle = (Circle *)p->pUser;
|
| + if( pCircle==0 ){
|
| + /* If pUser is still 0, then the parameter values have not been tested
|
| + ** for correctness or stored into a Circle structure yet. Do this now. */
|
| +
|
| + /* This geometry callback is for use with a 2-dimensional r-tree table.
|
| + ** Return an error if the table does not have exactly 2 dimensions. */
|
| + if( nCoord!=4 ) return SQLITE_ERROR;
|
| +
|
| + /* Test that the correct number of parameters (3) have been supplied,
|
| + ** and that the parameters are in range (that the radius of the circle
|
| + ** radius is greater than zero). */
|
| + if( p->nParam!=3 || p->aParam[2]<0.0 ) return SQLITE_ERROR;
|
| +
|
| + /* Allocate a structure to cache parameter data in. Return SQLITE_NOMEM
|
| + ** if the allocation fails. */
|
| + pCircle = (Circle *)(p->pUser = sqlite3_malloc(sizeof(Circle)));
|
| + if( !pCircle ) return SQLITE_NOMEM;
|
| + p->xDelUser = circle_del;
|
| +
|
| + /* Record the center and radius of the circular region. One way that
|
| + ** tested bounding boxes that intersect the circular region are detected
|
| + ** is by testing if each corner of the bounding box lies within radius
|
| + ** units of the center of the circle. */
|
| + pCircle->centerx = p->aParam[0];
|
| + pCircle->centery = p->aParam[1];
|
| + pCircle->radius = p->aParam[2];
|
| +
|
| + /* Define two bounding box regions. The first, aBox[0], extends to
|
| + ** infinity in the X dimension. It covers the same range of the Y dimension
|
| + ** as the circular region. The second, aBox[1], extends to infinity in
|
| + ** the Y dimension and is constrained to the range of the circle in the
|
| + ** X dimension.
|
| + **
|
| + ** Then imagine each box is split in half along its short axis by a line
|
| + ** that intersects the center of the circular region. A bounding box
|
| + ** being tested can be said to intersect the circular region if it contains
|
| + ** points from each half of either of the two infinite bounding boxes.
|
| + */
|
| + pCircle->aBox[0].xmin = pCircle->centerx;
|
| + pCircle->aBox[0].xmax = pCircle->centerx;
|
| + pCircle->aBox[0].ymin = pCircle->centery + pCircle->radius;
|
| + pCircle->aBox[0].ymax = pCircle->centery - pCircle->radius;
|
| + pCircle->aBox[1].xmin = pCircle->centerx + pCircle->radius;
|
| + pCircle->aBox[1].xmax = pCircle->centerx - pCircle->radius;
|
| + pCircle->aBox[1].ymin = pCircle->centery;
|
| + pCircle->aBox[1].ymax = pCircle->centery;
|
| + pCircle->mxArea = (xmax - xmin)*(ymax - ymin) + 1.0;
|
| + }
|
| +
|
| + /* Check if any of the 4 corners of the bounding-box being tested lie
|
| + ** inside the circular region. If they do, then the bounding-box does
|
| + ** intersect the region of interest. Set the output variable to true and
|
| + ** return SQLITE_OK in this case. */
|
| + for(i=0; i<4; i++){
|
| + double x = (i&0x01) ? xmax : xmin;
|
| + double y = (i&0x02) ? ymax : ymin;
|
| + double d2;
|
| +
|
| + d2 = (x-pCircle->centerx)*(x-pCircle->centerx);
|
| + d2 += (y-pCircle->centery)*(y-pCircle->centery);
|
| + if( d2<(pCircle->radius*pCircle->radius) ){
|
| + *pRes = 1;
|
| + return SQLITE_OK;
|
| + }
|
| + }
|
| +
|
| + /* Check if the bounding box covers any other part of the circular region.
|
| + ** See comments above for a description of how this test works. If it does
|
| + ** cover part of the circular region, set the output variable to true
|
| + ** and return SQLITE_OK. */
|
| + for(i=0; i<2; i++){
|
| + if( xmin<=pCircle->aBox[i].xmin
|
| + && xmax>=pCircle->aBox[i].xmax
|
| + && ymin<=pCircle->aBox[i].ymin
|
| + && ymax>=pCircle->aBox[i].ymax
|
| + ){
|
| + *pRes = 1;
|
| + return SQLITE_OK;
|
| + }
|
| + }
|
| +
|
| + /* The specified bounding box does not intersect the circular region. Set
|
| + ** the output variable to zero and return SQLITE_OK. */
|
| + *pRes = 0;
|
| + return SQLITE_OK;
|
| +}
|
| +
|
| +/*
|
| +** Implementation of "circle" r-tree geometry callback using the
|
| +** 2nd-generation interface that allows scoring.
|
| +*/
|
| +static int circle_query_func(sqlite3_rtree_query_info *p){
|
| + int i; /* Iterator variable */
|
| + Circle *pCircle; /* Structure defining circular region */
|
| + double xmin, xmax; /* X dimensions of box being tested */
|
| + double ymin, ymax; /* X dimensions of box being tested */
|
| + int nWithin = 0; /* Number of corners inside the circle */
|
| +
|
| + xmin = p->aCoord[0];
|
| + xmax = p->aCoord[1];
|
| + ymin = p->aCoord[2];
|
| + ymax = p->aCoord[3];
|
| + pCircle = (Circle *)p->pUser;
|
| + if( pCircle==0 ){
|
| + /* If pUser is still 0, then the parameter values have not been tested
|
| + ** for correctness or stored into a Circle structure yet. Do this now. */
|
| +
|
| + /* This geometry callback is for use with a 2-dimensional r-tree table.
|
| + ** Return an error if the table does not have exactly 2 dimensions. */
|
| + if( p->nCoord!=4 ) return SQLITE_ERROR;
|
| +
|
| + /* Test that the correct number of parameters (4) have been supplied,
|
| + ** and that the parameters are in range (that the radius of the circle
|
| + ** radius is greater than zero). */
|
| + if( p->nParam!=4 || p->aParam[2]<0.0 ) return SQLITE_ERROR;
|
| +
|
| + /* Allocate a structure to cache parameter data in. Return SQLITE_NOMEM
|
| + ** if the allocation fails. */
|
| + pCircle = (Circle *)(p->pUser = sqlite3_malloc(sizeof(Circle)));
|
| + if( !pCircle ) return SQLITE_NOMEM;
|
| + p->xDelUser = circle_del;
|
| +
|
| + /* Record the center and radius of the circular region. One way that
|
| + ** tested bounding boxes that intersect the circular region are detected
|
| + ** is by testing if each corner of the bounding box lies within radius
|
| + ** units of the center of the circle. */
|
| + pCircle->centerx = p->aParam[0];
|
| + pCircle->centery = p->aParam[1];
|
| + pCircle->radius = p->aParam[2];
|
| + pCircle->eScoreType = (int)p->aParam[3];
|
| +
|
| + /* Define two bounding box regions. The first, aBox[0], extends to
|
| + ** infinity in the X dimension. It covers the same range of the Y dimension
|
| + ** as the circular region. The second, aBox[1], extends to infinity in
|
| + ** the Y dimension and is constrained to the range of the circle in the
|
| + ** X dimension.
|
| + **
|
| + ** Then imagine each box is split in half along its short axis by a line
|
| + ** that intersects the center of the circular region. A bounding box
|
| + ** being tested can be said to intersect the circular region if it contains
|
| + ** points from each half of either of the two infinite bounding boxes.
|
| + */
|
| + pCircle->aBox[0].xmin = pCircle->centerx;
|
| + pCircle->aBox[0].xmax = pCircle->centerx;
|
| + pCircle->aBox[0].ymin = pCircle->centery + pCircle->radius;
|
| + pCircle->aBox[0].ymax = pCircle->centery - pCircle->radius;
|
| + pCircle->aBox[1].xmin = pCircle->centerx + pCircle->radius;
|
| + pCircle->aBox[1].xmax = pCircle->centerx - pCircle->radius;
|
| + pCircle->aBox[1].ymin = pCircle->centery;
|
| + pCircle->aBox[1].ymax = pCircle->centery;
|
| + pCircle->mxArea = 200.0*200.0;
|
| + }
|
| +
|
| + /* Check if any of the 4 corners of the bounding-box being tested lie
|
| + ** inside the circular region. If they do, then the bounding-box does
|
| + ** intersect the region of interest. Set the output variable to true and
|
| + ** return SQLITE_OK in this case. */
|
| + for(i=0; i<4; i++){
|
| + double x = (i&0x01) ? xmax : xmin;
|
| + double y = (i&0x02) ? ymax : ymin;
|
| + double d2;
|
| +
|
| + d2 = (x-pCircle->centerx)*(x-pCircle->centerx);
|
| + d2 += (y-pCircle->centery)*(y-pCircle->centery);
|
| + if( d2<(pCircle->radius*pCircle->radius) ) nWithin++;
|
| + }
|
| +
|
| + /* Check if the bounding box covers any other part of the circular region.
|
| + ** See comments above for a description of how this test works. If it does
|
| + ** cover part of the circular region, set the output variable to true
|
| + ** and return SQLITE_OK. */
|
| + if( nWithin==0 ){
|
| + for(i=0; i<2; i++){
|
| + if( xmin<=pCircle->aBox[i].xmin
|
| + && xmax>=pCircle->aBox[i].xmax
|
| + && ymin<=pCircle->aBox[i].ymin
|
| + && ymax>=pCircle->aBox[i].ymax
|
| + ){
|
| + nWithin = 1;
|
| + break;
|
| + }
|
| + }
|
| + }
|
| +
|
| + if( pCircle->eScoreType==1 ){
|
| + /* Depth first search */
|
| + p->rScore = p->iLevel;
|
| + }else if( pCircle->eScoreType==2 ){
|
| + /* Breadth first search */
|
| + p->rScore = 100 - p->iLevel;
|
| + }else if( pCircle->eScoreType==3 ){
|
| + /* Depth-first search, except sort the leaf nodes by area with
|
| + ** the largest area first */
|
| + if( p->iLevel==1 ){
|
| + p->rScore = 1.0 - (xmax-xmin)*(ymax-ymin)/pCircle->mxArea;
|
| + if( p->rScore<0.01 ) p->rScore = 0.01;
|
| + }else{
|
| + p->rScore = 0.0;
|
| + }
|
| + }else if( pCircle->eScoreType==4 ){
|
| + /* Depth-first search, except exclude odd rowids */
|
| + p->rScore = p->iLevel;
|
| + if( p->iRowid&1 ) nWithin = 0;
|
| + }else{
|
| + /* Breadth-first search, except exclude odd rowids */
|
| + p->rScore = 100 - p->iLevel;
|
| + if( p->iRowid&1 ) nWithin = 0;
|
| + }
|
| + if( nWithin==0 ){
|
| + p->eWithin = NOT_WITHIN;
|
| + }else if( nWithin>=4 ){
|
| + p->eWithin = FULLY_WITHIN;
|
| + }else{
|
| + p->eWithin = PARTLY_WITHIN;
|
| + }
|
| + return SQLITE_OK;
|
| +}
|
| +/*
|
| +** Implementation of "breadthfirstsearch" r-tree geometry callback using the
|
| +** 2nd-generation interface that allows scoring.
|
| +**
|
| +** ... WHERE id MATCH breadthfirstsearch($x0,$x1,$y0,$y1) ...
|
| +**
|
| +** It returns all entries whose bounding boxes overlap with $x0,$x1,$y0,$y1.
|
| +*/
|
| +static int bfs_query_func(sqlite3_rtree_query_info *p){
|
| + double x0,x1,y0,y1; /* Dimensions of box being tested */
|
| + double bx0,bx1,by0,by1; /* Boundary of the query function */
|
| +
|
| + if( p->nParam!=4 ) return SQLITE_ERROR;
|
| + x0 = p->aCoord[0];
|
| + x1 = p->aCoord[1];
|
| + y0 = p->aCoord[2];
|
| + y1 = p->aCoord[3];
|
| + bx0 = p->aParam[0];
|
| + bx1 = p->aParam[1];
|
| + by0 = p->aParam[2];
|
| + by1 = p->aParam[3];
|
| + p->rScore = 100 - p->iLevel;
|
| + if( p->eParentWithin==FULLY_WITHIN ){
|
| + p->eWithin = FULLY_WITHIN;
|
| + }else if( x0>=bx0 && x1<=bx1 && y0>=by0 && y1<=by1 ){
|
| + p->eWithin = FULLY_WITHIN;
|
| + }else if( x1>=bx0 && x0<=bx1 && y1>=by0 && y0<=by1 ){
|
| + p->eWithin = PARTLY_WITHIN;
|
| + }else{
|
| + p->eWithin = NOT_WITHIN;
|
| + }
|
| + return SQLITE_OK;
|
| +}
|
| +
|
| +/* END of implementation of "circle" geometry callback.
|
| +**************************************************************************
|
| +*************************************************************************/
|
| +
|
| +#include <assert.h>
|
| +#include "tcl.h"
|
| +
|
| +typedef struct Cube Cube;
|
| +struct Cube {
|
| + double x;
|
| + double y;
|
| + double z;
|
| + double width;
|
| + double height;
|
| + double depth;
|
| +};
|
| +
|
| +static void cube_context_free(void *p){
|
| + sqlite3_free(p);
|
| +}
|
| +
|
| +/*
|
| +** The context pointer registered along with the 'cube' callback is
|
| +** always ((void *)&gHere). This is just to facilitate testing, it is not
|
| +** actually used for anything.
|
| +*/
|
| +static int gHere = 42;
|
| +
|
| +/*
|
| +** Implementation of a simple r-tree geom callback to test for intersection
|
| +** of r-tree rows with a "cube" shape. Cubes are defined by six scalar
|
| +** coordinates as follows:
|
| +**
|
| +** cube(x, y, z, width, height, depth)
|
| +**
|
| +** The width, height and depth parameters must all be greater than zero.
|
| +*/
|
| +static int cube_geom(
|
| + sqlite3_rtree_geometry *p,
|
| + int nCoord,
|
| + sqlite3_rtree_dbl *aCoord,
|
| + int *piRes
|
| +){
|
| + Cube *pCube = (Cube *)p->pUser;
|
| +
|
| + assert( p->pContext==(void *)&gHere );
|
| +
|
| + if( pCube==0 ){
|
| + if( p->nParam!=6 || nCoord!=6
|
| + || p->aParam[3]<=0.0 || p->aParam[4]<=0.0 || p->aParam[5]<=0.0
|
| + ){
|
| + return SQLITE_ERROR;
|
| + }
|
| + pCube = (Cube *)sqlite3_malloc(sizeof(Cube));
|
| + if( !pCube ){
|
| + return SQLITE_NOMEM;
|
| + }
|
| + pCube->x = p->aParam[0];
|
| + pCube->y = p->aParam[1];
|
| + pCube->z = p->aParam[2];
|
| + pCube->width = p->aParam[3];
|
| + pCube->height = p->aParam[4];
|
| + pCube->depth = p->aParam[5];
|
| +
|
| + p->pUser = (void *)pCube;
|
| + p->xDelUser = cube_context_free;
|
| + }
|
| +
|
| + assert( nCoord==6 );
|
| + *piRes = 0;
|
| + if( aCoord[0]<=(pCube->x+pCube->width)
|
| + && aCoord[1]>=pCube->x
|
| + && aCoord[2]<=(pCube->y+pCube->height)
|
| + && aCoord[3]>=pCube->y
|
| + && aCoord[4]<=(pCube->z+pCube->depth)
|
| + && aCoord[5]>=pCube->z
|
| + ){
|
| + *piRes = 1;
|
| + }
|
| +
|
| + return SQLITE_OK;
|
| +}
|
| +#endif /* SQLITE_ENABLE_RTREE */
|
| +
|
| +static int register_cube_geom(
|
| + void * clientData,
|
| + Tcl_Interp *interp,
|
| + int objc,
|
| + Tcl_Obj *CONST objv[]
|
| +){
|
| +#ifndef SQLITE_ENABLE_RTREE
|
| + UNUSED_PARAMETER(clientData);
|
| + UNUSED_PARAMETER(interp);
|
| + UNUSED_PARAMETER(objc);
|
| + UNUSED_PARAMETER(objv);
|
| +#else
|
| + extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**);
|
| + extern const char *sqlite3ErrName(int);
|
| + sqlite3 *db;
|
| + int rc;
|
| +
|
| + if( objc!=2 ){
|
| + Tcl_WrongNumArgs(interp, 1, objv, "DB");
|
| + return TCL_ERROR;
|
| + }
|
| + if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
|
| + rc = sqlite3_rtree_geometry_callback(db, "cube", cube_geom, (void *)&gHere);
|
| + Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC);
|
| +#endif
|
| + return TCL_OK;
|
| +}
|
| +
|
| +static int register_circle_geom(
|
| + void * clientData,
|
| + Tcl_Interp *interp,
|
| + int objc,
|
| + Tcl_Obj *CONST objv[]
|
| +){
|
| +#ifndef SQLITE_ENABLE_RTREE
|
| + UNUSED_PARAMETER(clientData);
|
| + UNUSED_PARAMETER(interp);
|
| + UNUSED_PARAMETER(objc);
|
| + UNUSED_PARAMETER(objv);
|
| +#else
|
| + extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**);
|
| + extern const char *sqlite3ErrName(int);
|
| + sqlite3 *db;
|
| + int rc;
|
| +
|
| + if( objc!=2 ){
|
| + Tcl_WrongNumArgs(interp, 1, objv, "DB");
|
| + return TCL_ERROR;
|
| + }
|
| + if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
|
| + rc = sqlite3_rtree_geometry_callback(db, "circle", circle_geom, 0);
|
| + if( rc==SQLITE_OK ){
|
| + rc = sqlite3_rtree_query_callback(db, "Qcircle",
|
| + circle_query_func, 0, 0);
|
| + }
|
| + if( rc==SQLITE_OK ){
|
| + rc = sqlite3_rtree_query_callback(db, "breadthfirstsearch",
|
| + bfs_query_func, 0, 0);
|
| + }
|
| + Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC);
|
| +#endif
|
| + return TCL_OK;
|
| +}
|
| +
|
| +int Sqlitetestrtree_Init(Tcl_Interp *interp){
|
| + Tcl_CreateObjCommand(interp, "register_cube_geom", register_cube_geom, 0, 0);
|
| + Tcl_CreateObjCommand(interp, "register_circle_geom",register_circle_geom,0,0);
|
| + return TCL_OK;
|
| +}
|
|
|