Index: third_party/sqlite/src/src/test_rtree.c |
diff --git a/third_party/sqlite/src/src/test_rtree.c b/third_party/sqlite/src/src/test_rtree.c |
index 5fc994ddf204c9d1771fc95a5589363045aeb720..9d19fa0e2c86657b56dc4c8a22cd37e5485c8cbb 100644 |
--- a/third_party/sqlite/src/src/test_rtree.c |
+++ b/third_party/sqlite/src/src/test_rtree.c |
@@ -14,10 +14,12 @@ |
*/ |
#include <sqlite3.h> |
+#include <tcl.h> |
/* Solely for the UNUSED_PARAMETER() macro. */ |
#include "sqliteInt.h" |
+#ifdef SQLITE_ENABLE_RTREE |
/* |
** Type used to cache parameter information for the "circle" r-tree geometry |
** callback. |
@@ -33,6 +35,8 @@ struct Circle { |
double centerx; |
double centery; |
double radius; |
+ double mxArea; |
+ int eScoreType; |
}; |
/* |
@@ -48,7 +52,7 @@ static void circle_del(void *p){ |
static int circle_geom( |
sqlite3_rtree_geometry *p, |
int nCoord, |
- double *aCoord, |
+ sqlite3_rtree_dbl *aCoord, |
int *pRes |
){ |
int i; /* Iterator variable */ |
@@ -56,7 +60,12 @@ static int circle_geom( |
double xmin, xmax; /* X dimensions of box being tested */ |
double ymin, ymax; /* X dimensions of box being tested */ |
- if( p->pUser==0 ){ |
+ xmin = aCoord[0]; |
+ xmax = aCoord[1]; |
+ ymin = aCoord[2]; |
+ ymax = aCoord[3]; |
+ pCircle = (Circle *)p->pUser; |
+ if( pCircle==0 ){ |
/* If pUser is still 0, then the parameter values have not been tested |
** for correctness or stored into a Circle structure yet. Do this now. */ |
@@ -102,14 +111,9 @@ static int circle_geom( |
pCircle->aBox[1].xmax = pCircle->centerx - pCircle->radius; |
pCircle->aBox[1].ymin = pCircle->centery; |
pCircle->aBox[1].ymax = pCircle->centery; |
+ pCircle->mxArea = (xmax - xmin)*(ymax - ymin) + 1.0; |
} |
- pCircle = (Circle *)p->pUser; |
- xmin = aCoord[0]; |
- xmax = aCoord[1]; |
- ymin = aCoord[2]; |
- ymax = aCoord[3]; |
- |
/* Check if any of the 4 corners of the bounding-box being tested lie |
** inside the circular region. If they do, then the bounding-box does |
** intersect the region of interest. Set the output variable to true and |
@@ -148,6 +152,170 @@ static int circle_geom( |
return SQLITE_OK; |
} |
+/* |
+** Implementation of "circle" r-tree geometry callback using the |
+** 2nd-generation interface that allows scoring. |
+*/ |
+static int circle_query_func(sqlite3_rtree_query_info *p){ |
+ int i; /* Iterator variable */ |
+ Circle *pCircle; /* Structure defining circular region */ |
+ double xmin, xmax; /* X dimensions of box being tested */ |
+ double ymin, ymax; /* X dimensions of box being tested */ |
+ int nWithin = 0; /* Number of corners inside the circle */ |
+ |
+ xmin = p->aCoord[0]; |
+ xmax = p->aCoord[1]; |
+ ymin = p->aCoord[2]; |
+ ymax = p->aCoord[3]; |
+ pCircle = (Circle *)p->pUser; |
+ if( pCircle==0 ){ |
+ /* If pUser is still 0, then the parameter values have not been tested |
+ ** for correctness or stored into a Circle structure yet. Do this now. */ |
+ |
+ /* This geometry callback is for use with a 2-dimensional r-tree table. |
+ ** Return an error if the table does not have exactly 2 dimensions. */ |
+ if( p->nCoord!=4 ) return SQLITE_ERROR; |
+ |
+ /* Test that the correct number of parameters (4) have been supplied, |
+ ** and that the parameters are in range (that the radius of the circle |
+ ** radius is greater than zero). */ |
+ if( p->nParam!=4 || p->aParam[2]<0.0 ) return SQLITE_ERROR; |
+ |
+ /* Allocate a structure to cache parameter data in. Return SQLITE_NOMEM |
+ ** if the allocation fails. */ |
+ pCircle = (Circle *)(p->pUser = sqlite3_malloc(sizeof(Circle))); |
+ if( !pCircle ) return SQLITE_NOMEM; |
+ p->xDelUser = circle_del; |
+ |
+ /* Record the center and radius of the circular region. One way that |
+ ** tested bounding boxes that intersect the circular region are detected |
+ ** is by testing if each corner of the bounding box lies within radius |
+ ** units of the center of the circle. */ |
+ pCircle->centerx = p->aParam[0]; |
+ pCircle->centery = p->aParam[1]; |
+ pCircle->radius = p->aParam[2]; |
+ pCircle->eScoreType = (int)p->aParam[3]; |
+ |
+ /* Define two bounding box regions. The first, aBox[0], extends to |
+ ** infinity in the X dimension. It covers the same range of the Y dimension |
+ ** as the circular region. The second, aBox[1], extends to infinity in |
+ ** the Y dimension and is constrained to the range of the circle in the |
+ ** X dimension. |
+ ** |
+ ** Then imagine each box is split in half along its short axis by a line |
+ ** that intersects the center of the circular region. A bounding box |
+ ** being tested can be said to intersect the circular region if it contains |
+ ** points from each half of either of the two infinite bounding boxes. |
+ */ |
+ pCircle->aBox[0].xmin = pCircle->centerx; |
+ pCircle->aBox[0].xmax = pCircle->centerx; |
+ pCircle->aBox[0].ymin = pCircle->centery + pCircle->radius; |
+ pCircle->aBox[0].ymax = pCircle->centery - pCircle->radius; |
+ pCircle->aBox[1].xmin = pCircle->centerx + pCircle->radius; |
+ pCircle->aBox[1].xmax = pCircle->centerx - pCircle->radius; |
+ pCircle->aBox[1].ymin = pCircle->centery; |
+ pCircle->aBox[1].ymax = pCircle->centery; |
+ pCircle->mxArea = 200.0*200.0; |
+ } |
+ |
+ /* Check if any of the 4 corners of the bounding-box being tested lie |
+ ** inside the circular region. If they do, then the bounding-box does |
+ ** intersect the region of interest. Set the output variable to true and |
+ ** return SQLITE_OK in this case. */ |
+ for(i=0; i<4; i++){ |
+ double x = (i&0x01) ? xmax : xmin; |
+ double y = (i&0x02) ? ymax : ymin; |
+ double d2; |
+ |
+ d2 = (x-pCircle->centerx)*(x-pCircle->centerx); |
+ d2 += (y-pCircle->centery)*(y-pCircle->centery); |
+ if( d2<(pCircle->radius*pCircle->radius) ) nWithin++; |
+ } |
+ |
+ /* Check if the bounding box covers any other part of the circular region. |
+ ** See comments above for a description of how this test works. If it does |
+ ** cover part of the circular region, set the output variable to true |
+ ** and return SQLITE_OK. */ |
+ if( nWithin==0 ){ |
+ for(i=0; i<2; i++){ |
+ if( xmin<=pCircle->aBox[i].xmin |
+ && xmax>=pCircle->aBox[i].xmax |
+ && ymin<=pCircle->aBox[i].ymin |
+ && ymax>=pCircle->aBox[i].ymax |
+ ){ |
+ nWithin = 1; |
+ break; |
+ } |
+ } |
+ } |
+ |
+ if( pCircle->eScoreType==1 ){ |
+ /* Depth first search */ |
+ p->rScore = p->iLevel; |
+ }else if( pCircle->eScoreType==2 ){ |
+ /* Breadth first search */ |
+ p->rScore = 100 - p->iLevel; |
+ }else if( pCircle->eScoreType==3 ){ |
+ /* Depth-first search, except sort the leaf nodes by area with |
+ ** the largest area first */ |
+ if( p->iLevel==1 ){ |
+ p->rScore = 1.0 - (xmax-xmin)*(ymax-ymin)/pCircle->mxArea; |
+ if( p->rScore<0.01 ) p->rScore = 0.01; |
+ }else{ |
+ p->rScore = 0.0; |
+ } |
+ }else if( pCircle->eScoreType==4 ){ |
+ /* Depth-first search, except exclude odd rowids */ |
+ p->rScore = p->iLevel; |
+ if( p->iRowid&1 ) nWithin = 0; |
+ }else{ |
+ /* Breadth-first search, except exclude odd rowids */ |
+ p->rScore = 100 - p->iLevel; |
+ if( p->iRowid&1 ) nWithin = 0; |
+ } |
+ if( nWithin==0 ){ |
+ p->eWithin = NOT_WITHIN; |
+ }else if( nWithin>=4 ){ |
+ p->eWithin = FULLY_WITHIN; |
+ }else{ |
+ p->eWithin = PARTLY_WITHIN; |
+ } |
+ return SQLITE_OK; |
+} |
+/* |
+** Implementation of "breadthfirstsearch" r-tree geometry callback using the |
+** 2nd-generation interface that allows scoring. |
+** |
+** ... WHERE id MATCH breadthfirstsearch($x0,$x1,$y0,$y1) ... |
+** |
+** It returns all entries whose bounding boxes overlap with $x0,$x1,$y0,$y1. |
+*/ |
+static int bfs_query_func(sqlite3_rtree_query_info *p){ |
+ double x0,x1,y0,y1; /* Dimensions of box being tested */ |
+ double bx0,bx1,by0,by1; /* Boundary of the query function */ |
+ |
+ if( p->nParam!=4 ) return SQLITE_ERROR; |
+ x0 = p->aCoord[0]; |
+ x1 = p->aCoord[1]; |
+ y0 = p->aCoord[2]; |
+ y1 = p->aCoord[3]; |
+ bx0 = p->aParam[0]; |
+ bx1 = p->aParam[1]; |
+ by0 = p->aParam[2]; |
+ by1 = p->aParam[3]; |
+ p->rScore = 100 - p->iLevel; |
+ if( p->eParentWithin==FULLY_WITHIN ){ |
+ p->eWithin = FULLY_WITHIN; |
+ }else if( x0>=bx0 && x1<=bx1 && y0>=by0 && y1<=by1 ){ |
+ p->eWithin = FULLY_WITHIN; |
+ }else if( x1>=bx0 && x0<=bx1 && y1>=by0 && y0<=by1 ){ |
+ p->eWithin = PARTLY_WITHIN; |
+ }else{ |
+ p->eWithin = NOT_WITHIN; |
+ } |
+ return SQLITE_OK; |
+} |
+ |
/* END of implementation of "circle" geometry callback. |
************************************************************************** |
*************************************************************************/ |
@@ -187,8 +355,8 @@ static int gHere = 42; |
*/ |
static int cube_geom( |
sqlite3_rtree_geometry *p, |
- int nCoord, |
- double *aCoord, |
+ int nCoord, |
+ sqlite3_rtree_dbl *aCoord, |
int *piRes |
){ |
Cube *pCube = (Cube *)p->pUser; |
@@ -230,6 +398,7 @@ static int cube_geom( |
return SQLITE_OK; |
} |
+#endif /* SQLITE_ENABLE_RTREE */ |
static int register_cube_geom( |
void * clientData, |
@@ -244,7 +413,7 @@ static int register_cube_geom( |
UNUSED_PARAMETER(objv); |
#else |
extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**); |
- extern const char *sqlite3TestErrorName(int); |
+ extern const char *sqlite3ErrName(int); |
sqlite3 *db; |
int rc; |
@@ -254,7 +423,7 @@ static int register_cube_geom( |
} |
if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; |
rc = sqlite3_rtree_geometry_callback(db, "cube", cube_geom, (void *)&gHere); |
- Tcl_SetResult(interp, (char *)sqlite3TestErrorName(rc), TCL_STATIC); |
+ Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC); |
#endif |
return TCL_OK; |
} |
@@ -272,7 +441,7 @@ static int register_circle_geom( |
UNUSED_PARAMETER(objv); |
#else |
extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**); |
- extern const char *sqlite3TestErrorName(int); |
+ extern const char *sqlite3ErrName(int); |
sqlite3 *db; |
int rc; |
@@ -282,7 +451,15 @@ static int register_circle_geom( |
} |
if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; |
rc = sqlite3_rtree_geometry_callback(db, "circle", circle_geom, 0); |
- Tcl_SetResult(interp, (char *)sqlite3TestErrorName(rc), TCL_STATIC); |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3_rtree_query_callback(db, "Qcircle", |
+ circle_query_func, 0, 0); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3_rtree_query_callback(db, "breadthfirstsearch", |
+ bfs_query_func, 0, 0); |
+ } |
+ Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC); |
#endif |
return TCL_OK; |
} |