Index: third_party/sqlite/src/src/insert.c |
diff --git a/third_party/sqlite/src/src/insert.c b/third_party/sqlite/src/src/insert.c |
index 588a84f36d0be3b2a15639a4ed222072e3343c58..a5c3f3e92d437dcb0bd349017afae3e5e4c00843 100644 |
--- a/third_party/sqlite/src/src/insert.c |
+++ b/third_party/sqlite/src/src/insert.c |
@@ -15,23 +15,38 @@ |
#include "sqliteInt.h" |
/* |
-** Generate code that will open a table for reading. |
+** Generate code that will |
+** |
+** (1) acquire a lock for table pTab then |
+** (2) open pTab as cursor iCur. |
+** |
+** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index |
+** for that table that is actually opened. |
*/ |
void sqlite3OpenTable( |
- Parse *p, /* Generate code into this VDBE */ |
+ Parse *pParse, /* Generate code into this VDBE */ |
int iCur, /* The cursor number of the table */ |
int iDb, /* The database index in sqlite3.aDb[] */ |
Table *pTab, /* The table to be opened */ |
int opcode /* OP_OpenRead or OP_OpenWrite */ |
){ |
Vdbe *v; |
- if( IsVirtual(pTab) ) return; |
- v = sqlite3GetVdbe(p); |
+ assert( !IsVirtual(pTab) ); |
+ v = sqlite3GetVdbe(pParse); |
assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); |
- sqlite3TableLock(p, iDb, pTab->tnum, (opcode==OP_OpenWrite)?1:0, pTab->zName); |
- sqlite3VdbeAddOp3(v, opcode, iCur, pTab->tnum, iDb); |
- sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(pTab->nCol), P4_INT32); |
- VdbeComment((v, "%s", pTab->zName)); |
+ sqlite3TableLock(pParse, iDb, pTab->tnum, |
+ (opcode==OP_OpenWrite)?1:0, pTab->zName); |
+ if( HasRowid(pTab) ){ |
+ sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol); |
+ VdbeComment((v, "%s", pTab->zName)); |
+ }else{ |
+ Index *pPk = sqlite3PrimaryKeyIndex(pTab); |
+ assert( pPk!=0 ); |
+ assert( pPk->tnum=pTab->tnum ); |
+ sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); |
+ sqlite3VdbeSetP4KeyInfo(pParse, pPk); |
+ VdbeComment((v, "%s", pTab->zName)); |
+ } |
} |
/* |
@@ -41,13 +56,13 @@ void sqlite3OpenTable( |
** |
** Character Column affinity |
** ------------------------------ |
-** 'a' TEXT |
-** 'b' NONE |
-** 'c' NUMERIC |
-** 'd' INTEGER |
-** 'e' REAL |
+** 'A' NONE |
+** 'B' TEXT |
+** 'C' NUMERIC |
+** 'D' INTEGER |
+** 'F' REAL |
** |
-** An extra 'b' is appended to the end of the string to cover the |
+** An extra 'D' is appended to the end of the string to cover the |
** rowid that appears as the last column in every index. |
** |
** Memory for the buffer containing the column index affinity string |
@@ -67,15 +82,15 @@ const char *sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){ |
int n; |
Table *pTab = pIdx->pTable; |
sqlite3 *db = sqlite3VdbeDb(v); |
- pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+2); |
+ pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); |
if( !pIdx->zColAff ){ |
db->mallocFailed = 1; |
return 0; |
} |
for(n=0; n<pIdx->nColumn; n++){ |
- pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity; |
+ i16 x = pIdx->aiColumn[n]; |
+ pIdx->zColAff[n] = x<0 ? SQLITE_AFF_INTEGER : pTab->aCol[x].affinity; |
} |
- pIdx->zColAff[n++] = SQLITE_AFF_NONE; |
pIdx->zColAff[n] = 0; |
} |
@@ -83,32 +98,30 @@ const char *sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){ |
} |
/* |
-** Set P4 of the most recently inserted opcode to a column affinity |
-** string for table pTab. A column affinity string has one character |
-** for each column indexed by the index, according to the affinity of the |
-** column: |
+** Compute the affinity string for table pTab, if it has not already been |
+** computed. As an optimization, omit trailing SQLITE_AFF_NONE affinities. |
+** |
+** If the affinity exists (if it is no entirely SQLITE_AFF_NONE values) and |
+** if iReg>0 then code an OP_Affinity opcode that will set the affinities |
+** for register iReg and following. Or if affinities exists and iReg==0, |
+** then just set the P4 operand of the previous opcode (which should be |
+** an OP_MakeRecord) to the affinity string. |
+** |
+** A column affinity string has one character per column: |
** |
** Character Column affinity |
** ------------------------------ |
-** 'a' TEXT |
-** 'b' NONE |
-** 'c' NUMERIC |
-** 'd' INTEGER |
-** 'e' REAL |
+** 'A' NONE |
+** 'B' TEXT |
+** 'C' NUMERIC |
+** 'D' INTEGER |
+** 'E' REAL |
*/ |
-void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){ |
- /* The first time a column affinity string for a particular table |
- ** is required, it is allocated and populated here. It is then |
- ** stored as a member of the Table structure for subsequent use. |
- ** |
- ** The column affinity string will eventually be deleted by |
- ** sqlite3DeleteTable() when the Table structure itself is cleaned up. |
- */ |
- if( !pTab->zColAff ){ |
- char *zColAff; |
- int i; |
+void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ |
+ int i; |
+ char *zColAff = pTab->zColAff; |
+ if( zColAff==0 ){ |
sqlite3 *db = sqlite3VdbeDb(v); |
- |
zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); |
if( !zColAff ){ |
db->mallocFailed = 1; |
@@ -118,22 +131,28 @@ void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){ |
for(i=0; i<pTab->nCol; i++){ |
zColAff[i] = pTab->aCol[i].affinity; |
} |
- zColAff[pTab->nCol] = '\0'; |
- |
+ do{ |
+ zColAff[i--] = 0; |
+ }while( i>=0 && zColAff[i]==SQLITE_AFF_NONE ); |
pTab->zColAff = zColAff; |
} |
- |
- sqlite3VdbeChangeP4(v, -1, pTab->zColAff, P4_TRANSIENT); |
+ i = sqlite3Strlen30(zColAff); |
+ if( i ){ |
+ if( iReg ){ |
+ sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); |
+ }else{ |
+ sqlite3VdbeChangeP4(v, -1, zColAff, i); |
+ } |
+ } |
} |
/* |
** Return non-zero if the table pTab in database iDb or any of its indices |
-** have been opened at any point in the VDBE program beginning at location |
-** iStartAddr throught the end of the program. This is used to see if |
+** have been opened at any point in the VDBE program. This is used to see if |
** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can |
-** run without using temporary table for the results of the SELECT. |
+** run without using a temporary table for the results of the SELECT. |
*/ |
-static int readsTable(Parse *p, int iStartAddr, int iDb, Table *pTab){ |
+static int readsTable(Parse *p, int iDb, Table *pTab){ |
Vdbe *v = sqlite3GetVdbe(p); |
int i; |
int iEnd = sqlite3VdbeCurrentAddr(v); |
@@ -141,7 +160,7 @@ static int readsTable(Parse *p, int iStartAddr, int iDb, Table *pTab){ |
VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; |
#endif |
- for(i=iStartAddr; i<iEnd; i++){ |
+ for(i=1; i<iEnd; i++){ |
VdbeOp *pOp = sqlite3VdbeGetOp(v, i); |
assert( pOp!=0 ); |
if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ |
@@ -239,16 +258,17 @@ void sqlite3AutoincrementBegin(Parse *pParse){ |
memId = p->regCtr; |
assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); |
sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); |
+ sqlite3VdbeAddOp3(v, OP_Null, 0, memId, memId+1); |
addr = sqlite3VdbeCurrentAddr(v); |
sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0); |
- sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9); |
+ sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9); VdbeCoverage(v); |
sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId); |
- sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId); |
+ sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId); VdbeCoverage(v); |
sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); |
sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1); |
sqlite3VdbeAddOp3(v, OP_Column, 0, 1, memId); |
sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9); |
- sqlite3VdbeAddOp2(v, OP_Next, 0, addr+2); |
+ sqlite3VdbeAddOp2(v, OP_Next, 0, addr+2); VdbeCoverage(v); |
sqlite3VdbeAddOp2(v, OP_Integer, 0, memId); |
sqlite3VdbeAddOp0(v, OP_Close); |
} |
@@ -283,25 +303,16 @@ void sqlite3AutoincrementEnd(Parse *pParse){ |
assert( v ); |
for(p = pParse->pAinc; p; p = p->pNext){ |
Db *pDb = &db->aDb[p->iDb]; |
- int j1, j2, j3, j4, j5; |
+ int j1; |
int iRec; |
int memId = p->regCtr; |
iRec = sqlite3GetTempReg(pParse); |
assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); |
sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); |
- j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1); |
- j2 = sqlite3VdbeAddOp0(v, OP_Rewind); |
- j3 = sqlite3VdbeAddOp3(v, OP_Column, 0, 0, iRec); |
- j4 = sqlite3VdbeAddOp3(v, OP_Eq, memId-1, 0, iRec); |
- sqlite3VdbeAddOp2(v, OP_Next, 0, j3); |
- sqlite3VdbeJumpHere(v, j2); |
+ j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1); VdbeCoverage(v); |
sqlite3VdbeAddOp2(v, OP_NewRowid, 0, memId+1); |
- j5 = sqlite3VdbeAddOp0(v, OP_Goto); |
- sqlite3VdbeJumpHere(v, j4); |
- sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1); |
sqlite3VdbeJumpHere(v, j1); |
- sqlite3VdbeJumpHere(v, j5); |
sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec); |
sqlite3VdbeAddOp3(v, OP_Insert, 0, iRec, memId+1); |
sqlite3VdbeChangeP5(v, OPFLAG_APPEND); |
@@ -329,7 +340,7 @@ static int xferOptimization( |
); |
/* |
-** This routine is call to handle SQL of the following forms: |
+** This routine is called to handle SQL of the following forms: |
** |
** insert into TABLE (IDLIST) values(EXPRLIST) |
** insert into TABLE (IDLIST) select |
@@ -344,12 +355,12 @@ static int xferOptimization( |
** data for the insert. |
** |
** The code generated follows one of four templates. For a simple |
-** select with data coming from a VALUES clause, the code executes |
+** insert with data coming from a VALUES clause, the code executes |
** once straight down through. Pseudo-code follows (we call this |
** the "1st template"): |
** |
** open write cursor to <table> and its indices |
-** puts VALUES clause expressions onto the stack |
+** put VALUES clause expressions into registers |
** write the resulting record into <table> |
** cleanup |
** |
@@ -381,7 +392,6 @@ static int xferOptimization( |
** and the SELECT clause does not read from <table> at any time. |
** The generated code follows this template: |
** |
-** EOF <- 0 |
** X <- A |
** goto B |
** A: setup for the SELECT |
@@ -390,12 +400,9 @@ static int xferOptimization( |
** yield X |
** end loop |
** cleanup after the SELECT |
-** EOF <- 1 |
-** yield X |
-** goto A |
+** end-coroutine X |
** B: open write cursor to <table> and its indices |
-** C: yield X |
-** if EOF goto D |
+** C: yield X, at EOF goto D |
** insert the select result into <table> from R..R+n |
** goto C |
** D: cleanup |
@@ -403,10 +410,9 @@ static int xferOptimization( |
** The 4th template is used if the insert statement takes its |
** values from a SELECT but the data is being inserted into a table |
** that is also read as part of the SELECT. In the third form, |
-** we have to use a intermediate table to store the results of |
+** we have to use an intermediate table to store the results of |
** the select. The template is like this: |
** |
-** EOF <- 0 |
** X <- A |
** goto B |
** A: setup for the SELECT |
@@ -415,12 +421,9 @@ static int xferOptimization( |
** yield X |
** end loop |
** cleanup after the SELECT |
-** EOF <- 1 |
-** yield X |
-** halt-error |
+** end co-routine R |
** B: open temp table |
-** L: yield X |
-** if EOF goto M |
+** L: yield X, at EOF goto M |
** insert row from R..R+n into temp table |
** goto L |
** M: open write cursor to <table> and its indices |
@@ -433,7 +436,6 @@ static int xferOptimization( |
void sqlite3Insert( |
Parse *pParse, /* Parser context */ |
SrcList *pTabList, /* Name of table into which we are inserting */ |
- ExprList *pList, /* List of values to be inserted */ |
Select *pSelect, /* A SELECT statement to use as the data source */ |
IdList *pColumn, /* Column names corresponding to IDLIST. */ |
int onError /* How to handle constraint errors */ |
@@ -447,18 +449,21 @@ void sqlite3Insert( |
Index *pIdx; /* For looping over indices of the table */ |
int nColumn; /* Number of columns in the data */ |
int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ |
- int baseCur = 0; /* VDBE Cursor number for pTab */ |
- int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ |
+ int iDataCur = 0; /* VDBE cursor that is the main data repository */ |
+ int iIdxCur = 0; /* First index cursor */ |
+ int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ |
int endOfLoop; /* Label for the end of the insertion loop */ |
- int useTempTable = 0; /* Store SELECT results in intermediate table */ |
int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ |
int addrInsTop = 0; /* Jump to label "D" */ |
int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ |
- int addrSelect = 0; /* Address of coroutine that implements the SELECT */ |
SelectDest dest; /* Destination for SELECT on rhs of INSERT */ |
int iDb; /* Index of database holding TABLE */ |
Db *pDb; /* The database containing table being inserted into */ |
- int appendFlag = 0; /* True if the insert is likely to be an append */ |
+ u8 useTempTable = 0; /* Store SELECT results in intermediate table */ |
+ u8 appendFlag = 0; /* True if the insert is likely to be an append */ |
+ u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ |
+ u8 bIdListInOrder = 1; /* True if IDLIST is in table order */ |
+ ExprList *pList = 0; /* List of VALUES() to be inserted */ |
/* Register allocations */ |
int regFromSelect = 0;/* Base register for data coming from SELECT */ |
@@ -467,7 +472,6 @@ void sqlite3Insert( |
int regIns; /* Block of regs holding rowid+data being inserted */ |
int regRowid; /* registers holding insert rowid */ |
int regData; /* register holding first column to insert */ |
- int regEof = 0; /* Register recording end of SELECT data */ |
int *aRegIdx = 0; /* One register allocated to each index */ |
#ifndef SQLITE_OMIT_TRIGGER |
@@ -482,6 +486,17 @@ void sqlite3Insert( |
goto insert_cleanup; |
} |
+ /* If the Select object is really just a simple VALUES() list with a |
+ ** single row values (the common case) then keep that one row of values |
+ ** and go ahead and discard the Select object |
+ */ |
+ if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ |
+ pList = pSelect->pEList; |
+ pSelect->pEList = 0; |
+ sqlite3SelectDelete(db, pSelect); |
+ pSelect = 0; |
+ } |
+ |
/* Locate the table into which we will be inserting new information. |
*/ |
assert( pTabList->nSrc==1 ); |
@@ -498,6 +513,7 @@ void sqlite3Insert( |
if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){ |
goto insert_cleanup; |
} |
+ withoutRowid = !HasRowid(pTab); |
/* Figure out if we have any triggers and if the table being |
** inserted into is a view |
@@ -517,16 +533,13 @@ void sqlite3Insert( |
assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); |
/* If pTab is really a view, make sure it has been initialized. |
- ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual |
- ** module table). |
+ ** ViewGetColumnNames() is a no-op if pTab is not a view. |
*/ |
if( sqlite3ViewGetColumnNames(pParse, pTab) ){ |
goto insert_cleanup; |
} |
- /* Ensure that: |
- * (a) the table is not read-only, |
- * (b) that if it is a view then ON INSERT triggers exist |
+ /* Cannot insert into a read-only table. |
*/ |
if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ |
goto insert_cleanup; |
@@ -561,72 +574,93 @@ void sqlite3Insert( |
*/ |
regAutoinc = autoIncBegin(pParse, iDb, pTab); |
+ /* Allocate registers for holding the rowid of the new row, |
+ ** the content of the new row, and the assembled row record. |
+ */ |
+ regRowid = regIns = pParse->nMem+1; |
+ pParse->nMem += pTab->nCol + 1; |
+ if( IsVirtual(pTab) ){ |
+ regRowid++; |
+ pParse->nMem++; |
+ } |
+ regData = regRowid+1; |
+ |
+ /* If the INSERT statement included an IDLIST term, then make sure |
+ ** all elements of the IDLIST really are columns of the table and |
+ ** remember the column indices. |
+ ** |
+ ** If the table has an INTEGER PRIMARY KEY column and that column |
+ ** is named in the IDLIST, then record in the ipkColumn variable |
+ ** the index into IDLIST of the primary key column. ipkColumn is |
+ ** the index of the primary key as it appears in IDLIST, not as |
+ ** is appears in the original table. (The index of the INTEGER |
+ ** PRIMARY KEY in the original table is pTab->iPKey.) |
+ */ |
+ if( pColumn ){ |
+ for(i=0; i<pColumn->nId; i++){ |
+ pColumn->a[i].idx = -1; |
+ } |
+ for(i=0; i<pColumn->nId; i++){ |
+ for(j=0; j<pTab->nCol; j++){ |
+ if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ |
+ pColumn->a[i].idx = j; |
+ if( i!=j ) bIdListInOrder = 0; |
+ if( j==pTab->iPKey ){ |
+ ipkColumn = i; assert( !withoutRowid ); |
+ } |
+ break; |
+ } |
+ } |
+ if( j>=pTab->nCol ){ |
+ if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ |
+ ipkColumn = i; |
+ bIdListInOrder = 0; |
+ }else{ |
+ sqlite3ErrorMsg(pParse, "table %S has no column named %s", |
+ pTabList, 0, pColumn->a[i].zName); |
+ pParse->checkSchema = 1; |
+ goto insert_cleanup; |
+ } |
+ } |
+ } |
+ } |
+ |
/* Figure out how many columns of data are supplied. If the data |
** is coming from a SELECT statement, then generate a co-routine that |
** produces a single row of the SELECT on each invocation. The |
** co-routine is the common header to the 3rd and 4th templates. |
*/ |
if( pSelect ){ |
- /* Data is coming from a SELECT. Generate code to implement that SELECT |
- ** as a co-routine. The code is common to both the 3rd and 4th |
- ** templates: |
- ** |
- ** EOF <- 0 |
- ** X <- A |
- ** goto B |
- ** A: setup for the SELECT |
- ** loop over the tables in the SELECT |
- ** load value into register R..R+n |
- ** yield X |
- ** end loop |
- ** cleanup after the SELECT |
- ** EOF <- 1 |
- ** yield X |
- ** halt-error |
- ** |
- ** On each invocation of the co-routine, it puts a single row of the |
- ** SELECT result into registers dest.iMem...dest.iMem+dest.nMem-1. |
- ** (These output registers are allocated by sqlite3Select().) When |
- ** the SELECT completes, it sets the EOF flag stored in regEof. |
- */ |
- int rc, j1; |
- |
- regEof = ++pParse->nMem; |
- sqlite3VdbeAddOp2(v, OP_Integer, 0, regEof); /* EOF <- 0 */ |
- VdbeComment((v, "SELECT eof flag")); |
- sqlite3SelectDestInit(&dest, SRT_Coroutine, ++pParse->nMem); |
- addrSelect = sqlite3VdbeCurrentAddr(v)+2; |
- sqlite3VdbeAddOp2(v, OP_Integer, addrSelect-1, dest.iParm); |
- j1 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); |
- VdbeComment((v, "Jump over SELECT coroutine")); |
- |
- /* Resolve the expressions in the SELECT statement and execute it. */ |
+ /* Data is coming from a SELECT. Generate a co-routine to run the SELECT */ |
+ int regYield; /* Register holding co-routine entry-point */ |
+ int addrTop; /* Top of the co-routine */ |
+ int rc; /* Result code */ |
+ |
+ regYield = ++pParse->nMem; |
+ addrTop = sqlite3VdbeCurrentAddr(v) + 1; |
+ sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); |
+ sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); |
+ dest.iSdst = bIdListInOrder ? regData : 0; |
+ dest.nSdst = pTab->nCol; |
rc = sqlite3Select(pParse, pSelect, &dest); |
+ regFromSelect = dest.iSdst; |
assert( pParse->nErr==0 || rc ); |
- if( rc || NEVER(pParse->nErr) || db->mallocFailed ){ |
- goto insert_cleanup; |
- } |
- sqlite3VdbeAddOp2(v, OP_Integer, 1, regEof); /* EOF <- 1 */ |
- sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); /* yield X */ |
- sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_INTERNAL, OE_Abort); |
- VdbeComment((v, "End of SELECT coroutine")); |
- sqlite3VdbeJumpHere(v, j1); /* label B: */ |
- |
- regFromSelect = dest.iMem; |
+ if( rc || db->mallocFailed ) goto insert_cleanup; |
+ sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); |
+ sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ |
assert( pSelect->pEList ); |
nColumn = pSelect->pEList->nExpr; |
- assert( dest.nMem==nColumn ); |
/* Set useTempTable to TRUE if the result of the SELECT statement |
** should be written into a temporary table (template 4). Set to |
- ** FALSE if each* row of the SELECT can be written directly into |
+ ** FALSE if each output row of the SELECT can be written directly into |
** the destination table (template 3). |
** |
** A temp table must be used if the table being updated is also one |
** of the tables being read by the SELECT statement. Also use a |
** temp table in the case of row triggers. |
*/ |
- if( pTrigger || readsTable(pParse, addrSelect, iDb, pTab) ){ |
+ if( pTrigger || readsTable(pParse, iDb, pTab) ){ |
useTempTable = 1; |
} |
@@ -636,28 +670,25 @@ void sqlite3Insert( |
** here is from the 4th template: |
** |
** B: open temp table |
- ** L: yield X |
- ** if EOF goto M |
+ ** L: yield X, goto M at EOF |
** insert row from R..R+n into temp table |
** goto L |
** M: ... |
*/ |
int regRec; /* Register to hold packed record */ |
int regTempRowid; /* Register to hold temp table ROWID */ |
- int addrTop; /* Label "L" */ |
- int addrIf; /* Address of jump to M */ |
+ int addrL; /* Label "L" */ |
srcTab = pParse->nTab++; |
regRec = sqlite3GetTempReg(pParse); |
regTempRowid = sqlite3GetTempReg(pParse); |
sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); |
- addrTop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); |
- addrIf = sqlite3VdbeAddOp1(v, OP_If, regEof); |
+ addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); |
sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); |
sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); |
sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); |
- sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); |
- sqlite3VdbeJumpHere(v, addrIf); |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrL); |
+ sqlite3VdbeJumpHere(v, addrL); |
sqlite3ReleaseTempReg(pParse, regRec); |
sqlite3ReleaseTempReg(pParse, regTempRowid); |
} |
@@ -678,6 +709,14 @@ void sqlite3Insert( |
} |
} |
+ /* If there is no IDLIST term but the table has an integer primary |
+ ** key, the set the ipkColumn variable to the integer primary key |
+ ** column index in the original table definition. |
+ */ |
+ if( pColumn==0 && nColumn>0 ){ |
+ ipkColumn = pTab->iPKey; |
+ } |
+ |
/* Make sure the number of columns in the source data matches the number |
** of columns to be inserted into the table. |
*/ |
@@ -696,52 +735,6 @@ void sqlite3Insert( |
sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); |
goto insert_cleanup; |
} |
- |
- /* If the INSERT statement included an IDLIST term, then make sure |
- ** all elements of the IDLIST really are columns of the table and |
- ** remember the column indices. |
- ** |
- ** If the table has an INTEGER PRIMARY KEY column and that column |
- ** is named in the IDLIST, then record in the keyColumn variable |
- ** the index into IDLIST of the primary key column. keyColumn is |
- ** the index of the primary key as it appears in IDLIST, not as |
- ** is appears in the original table. (The index of the primary |
- ** key in the original table is pTab->iPKey.) |
- */ |
- if( pColumn ){ |
- for(i=0; i<pColumn->nId; i++){ |
- pColumn->a[i].idx = -1; |
- } |
- for(i=0; i<pColumn->nId; i++){ |
- for(j=0; j<pTab->nCol; j++){ |
- if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ |
- pColumn->a[i].idx = j; |
- if( j==pTab->iPKey ){ |
- keyColumn = i; |
- } |
- break; |
- } |
- } |
- if( j>=pTab->nCol ){ |
- if( sqlite3IsRowid(pColumn->a[i].zName) ){ |
- keyColumn = i; |
- }else{ |
- sqlite3ErrorMsg(pParse, "table %S has no column named %s", |
- pTabList, 0, pColumn->a[i].zName); |
- pParse->checkSchema = 1; |
- goto insert_cleanup; |
- } |
- } |
- } |
- } |
- |
- /* If there is no IDLIST term but the table has an integer primary |
- ** key, the set the keyColumn variable to the primary key column index |
- ** in the original table definition. |
- */ |
- if( pColumn==0 && nColumn>0 ){ |
- keyColumn = pTab->iPKey; |
- } |
/* Initialize the count of rows to be inserted |
*/ |
@@ -753,9 +746,8 @@ void sqlite3Insert( |
/* If this is not a view, open the table and and all indices */ |
if( !isView ){ |
int nIdx; |
- |
- baseCur = pParse->nTab; |
- nIdx = sqlite3OpenTableAndIndices(pParse, pTab, baseCur, OP_OpenWrite); |
+ nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, -1, 0, |
+ &iDataCur, &iIdxCur); |
aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1)); |
if( aRegIdx==0 ){ |
goto insert_cleanup; |
@@ -770,39 +762,27 @@ void sqlite3Insert( |
/* This block codes the top of loop only. The complete loop is the |
** following pseudocode (template 4): |
** |
- ** rewind temp table |
+ ** rewind temp table, if empty goto D |
** C: loop over rows of intermediate table |
** transfer values form intermediate table into <table> |
** end loop |
** D: ... |
*/ |
- addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); |
+ addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); |
addrCont = sqlite3VdbeCurrentAddr(v); |
}else if( pSelect ){ |
/* This block codes the top of loop only. The complete loop is the |
** following pseudocode (template 3): |
** |
- ** C: yield X |
- ** if EOF goto D |
+ ** C: yield X, at EOF goto D |
** insert the select result into <table> from R..R+n |
** goto C |
** D: ... |
*/ |
- addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); |
- addrInsTop = sqlite3VdbeAddOp1(v, OP_If, regEof); |
+ addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); |
+ VdbeCoverage(v); |
} |
- /* Allocate registers for holding the rowid of the new row, |
- ** the content of the new row, and the assemblied row record. |
- */ |
- regRowid = regIns = pParse->nMem+1; |
- pParse->nMem += pTab->nCol + 1; |
- if( IsVirtual(pTab) ){ |
- regRowid++; |
- pParse->nMem++; |
- } |
- regData = regRowid+1; |
- |
/* Run the BEFORE and INSTEAD OF triggers, if there are any |
*/ |
endOfLoop = sqlite3VdbeMakeLabel(v); |
@@ -815,20 +795,21 @@ void sqlite3Insert( |
** we do not know what the unique ID will be (because the insert has |
** not happened yet) so we substitute a rowid of -1 |
*/ |
- if( keyColumn<0 ){ |
+ if( ipkColumn<0 ){ |
sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); |
}else{ |
int j1; |
+ assert( !withoutRowid ); |
if( useTempTable ){ |
- sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regCols); |
+ sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); |
}else{ |
assert( pSelect==0 ); /* Otherwise useTempTable is true */ |
- sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regCols); |
+ sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); |
} |
- j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); |
+ j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); |
sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); |
sqlite3VdbeJumpHere(v, j1); |
- sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); |
+ sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); |
} |
/* Cannot have triggers on a virtual table. If it were possible, |
@@ -862,8 +843,7 @@ void sqlite3Insert( |
** table column affinities. |
*/ |
if( !isView ){ |
- sqlite3VdbeAddOp2(v, OP_Affinity, regCols+1, pTab->nCol); |
- sqlite3TableAffinityStr(v, pTab); |
+ sqlite3TableAffinity(v, pTab, regCols+1); |
} |
/* Fire BEFORE or INSTEAD OF triggers */ |
@@ -873,29 +853,27 @@ void sqlite3Insert( |
sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); |
} |
- /* Push the record number for the new entry onto the stack. The |
- ** record number is a randomly generate integer created by NewRowid |
- ** except when the table has an INTEGER PRIMARY KEY column, in which |
- ** case the record number is the same as that column. |
+ /* Compute the content of the next row to insert into a range of |
+ ** registers beginning at regIns. |
*/ |
if( !isView ){ |
if( IsVirtual(pTab) ){ |
/* The row that the VUpdate opcode will delete: none */ |
sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); |
} |
- if( keyColumn>=0 ){ |
+ if( ipkColumn>=0 ){ |
if( useTempTable ){ |
- sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid); |
+ sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); |
}else if( pSelect ){ |
- sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+keyColumn, regRowid); |
+ sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); |
}else{ |
VdbeOp *pOp; |
- sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid); |
+ sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); |
pOp = sqlite3VdbeGetOp(v, -1); |
if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){ |
appendFlag = 1; |
pOp->opcode = OP_NewRowid; |
- pOp->p1 = baseCur; |
+ pOp->p1 = iDataCur; |
pOp->p2 = regRowid; |
pOp->p3 = regAutoinc; |
} |
@@ -906,24 +884,24 @@ void sqlite3Insert( |
if( !appendFlag ){ |
int j1; |
if( !IsVirtual(pTab) ){ |
- j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); |
- sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc); |
+ j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); |
+ sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); |
sqlite3VdbeJumpHere(v, j1); |
}else{ |
j1 = sqlite3VdbeCurrentAddr(v); |
- sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2); |
+ sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2); VdbeCoverage(v); |
} |
- sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); |
+ sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); |
} |
- }else if( IsVirtual(pTab) ){ |
+ }else if( IsVirtual(pTab) || withoutRowid ){ |
sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); |
}else{ |
- sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc); |
+ sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); |
appendFlag = 1; |
} |
autoIncStep(pParse, regAutoinc, regRowid); |
- /* Push onto the stack, data for all columns of the new entry, beginning |
+ /* Compute data for all columns of the new entry, beginning |
** with the first column. |
*/ |
nHidden = 0; |
@@ -931,10 +909,11 @@ void sqlite3Insert( |
int iRegStore = regRowid+1+i; |
if( i==pTab->iPKey ){ |
/* The value of the INTEGER PRIMARY KEY column is always a NULL. |
- ** Whenever this column is read, the record number will be substituted |
- ** in its place. So will fill this column with a NULL to avoid |
- ** taking up data space with information that will never be used. */ |
- sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore); |
+ ** Whenever this column is read, the rowid will be substituted |
+ ** in its place. Hence, fill this column with a NULL to avoid |
+ ** taking up data space with information that will never be used. |
+ ** As there may be shallow copies of this value, make it a soft-NULL */ |
+ sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); |
continue; |
} |
if( pColumn==0 ){ |
@@ -951,11 +930,13 @@ void sqlite3Insert( |
} |
} |
if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){ |
- sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore); |
+ sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore); |
}else if( useTempTable ){ |
sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore); |
}else if( pSelect ){ |
- sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore); |
+ if( regFromSelect!=regData ){ |
+ sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore); |
+ } |
}else{ |
sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore); |
} |
@@ -969,18 +950,18 @@ void sqlite3Insert( |
const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); |
sqlite3VtabMakeWritable(pParse, pTab); |
sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); |
+ sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); |
sqlite3MayAbort(pParse); |
}else |
#endif |
{ |
int isReplace; /* Set to true if constraints may cause a replace */ |
- sqlite3GenerateConstraintChecks(pParse, pTab, baseCur, regIns, aRegIdx, |
- keyColumn>=0, 0, onError, endOfLoop, &isReplace |
- ); |
- sqlite3FkCheck(pParse, pTab, 0, regIns); |
- sqlite3CompleteInsertion( |
- pParse, pTab, baseCur, regIns, aRegIdx, 0, appendFlag, isReplace==0 |
+ sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, |
+ regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace |
); |
+ sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); |
+ sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, |
+ regIns, aRegIdx, 0, appendFlag, isReplace==0); |
} |
} |
@@ -1001,7 +982,7 @@ void sqlite3Insert( |
*/ |
sqlite3VdbeResolveLabel(v, endOfLoop); |
if( useTempTable ){ |
- sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); |
+ sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); |
sqlite3VdbeJumpHere(v, addrInsTop); |
sqlite3VdbeAddOp1(v, OP_Close, srcTab); |
}else if( pSelect ){ |
@@ -1011,9 +992,9 @@ void sqlite3Insert( |
if( !IsVirtual(pTab) && !isView ){ |
/* Close all tables opened */ |
- sqlite3VdbeAddOp1(v, OP_Close, baseCur); |
- for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ |
- sqlite3VdbeAddOp1(v, OP_Close, idx+baseCur); |
+ if( iDataCur<iIdxCur ) sqlite3VdbeAddOp1(v, OP_Close, iDataCur); |
+ for(idx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ |
+ sqlite3VdbeAddOp1(v, OP_Close, idx+iIdxCur); |
} |
} |
@@ -1046,7 +1027,7 @@ insert_cleanup: |
} |
/* Make sure "isView" and other macros defined above are undefined. Otherwise |
-** thely may interfere with compilation of other functions in this file |
+** they may interfere with compilation of other functions in this file |
** (or in another file, if this file becomes part of the amalgamation). */ |
#ifdef isView |
#undef isView |
@@ -1058,36 +1039,48 @@ insert_cleanup: |
#undef tmask |
#endif |
- |
/* |
-** Generate code to do constraint checks prior to an INSERT or an UPDATE. |
-** |
-** The input is a range of consecutive registers as follows: |
+** Generate code to do constraint checks prior to an INSERT or an UPDATE |
+** on table pTab. |
** |
-** 1. The rowid of the row after the update. |
+** The regNewData parameter is the first register in a range that contains |
+** the data to be inserted or the data after the update. There will be |
+** pTab->nCol+1 registers in this range. The first register (the one |
+** that regNewData points to) will contain the new rowid, or NULL in the |
+** case of a WITHOUT ROWID table. The second register in the range will |
+** contain the content of the first table column. The third register will |
+** contain the content of the second table column. And so forth. |
** |
-** 2. The data in the first column of the entry after the update. |
+** The regOldData parameter is similar to regNewData except that it contains |
+** the data prior to an UPDATE rather than afterwards. regOldData is zero |
+** for an INSERT. This routine can distinguish between UPDATE and INSERT by |
+** checking regOldData for zero. |
** |
-** i. Data from middle columns... |
+** For an UPDATE, the pkChng boolean is true if the true primary key (the |
+** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) |
+** might be modified by the UPDATE. If pkChng is false, then the key of |
+** the iDataCur content table is guaranteed to be unchanged by the UPDATE. |
** |
-** N. The data in the last column of the entry after the update. |
+** For an INSERT, the pkChng boolean indicates whether or not the rowid |
+** was explicitly specified as part of the INSERT statement. If pkChng |
+** is zero, it means that the either rowid is computed automatically or |
+** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, |
+** pkChng will only be true if the INSERT statement provides an integer |
+** value for either the rowid column or its INTEGER PRIMARY KEY alias. |
** |
-** The regRowid parameter is the index of the register containing (1). |
-** |
-** If isUpdate is true and rowidChng is non-zero, then rowidChng contains |
-** the address of a register containing the rowid before the update takes |
-** place. isUpdate is true for UPDATEs and false for INSERTs. If isUpdate |
-** is false, indicating an INSERT statement, then a non-zero rowidChng |
-** indicates that the rowid was explicitly specified as part of the |
-** INSERT statement. If rowidChng is false, it means that the rowid is |
-** computed automatically in an insert or that the rowid value is not |
-** modified by an update. |
-** |
-** The code generated by this routine store new index entries into |
+** The code generated by this routine will store new index entries into |
** registers identified by aRegIdx[]. No index entry is created for |
** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is |
** the same as the order of indices on the linked list of indices |
-** attached to the table. |
+** at pTab->pIndex. |
+** |
+** The caller must have already opened writeable cursors on the main |
+** table and all applicable indices (that is to say, all indices for which |
+** aRegIdx[] is not zero). iDataCur is the cursor for the main table when |
+** inserting or updating a rowid table, or the cursor for the PRIMARY KEY |
+** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor |
+** for the first index in the pTab->pIndex list. Cursors for other indices |
+** are at iIdxCur+N for the N-th element of the pTab->pIndex list. |
** |
** This routine also generates code to check constraints. NOT NULL, |
** CHECK, and UNIQUE constraints are all checked. If a constraint fails, |
@@ -1097,22 +1090,23 @@ insert_cleanup: |
** Constraint type Action What Happens |
** --------------- ---------- ---------------------------------------- |
** any ROLLBACK The current transaction is rolled back and |
-** sqlite3_exec() returns immediately with a |
+** sqlite3_step() returns immediately with a |
** return code of SQLITE_CONSTRAINT. |
** |
** any ABORT Back out changes from the current command |
** only (do not do a complete rollback) then |
-** cause sqlite3_exec() to return immediately |
+** cause sqlite3_step() to return immediately |
** with SQLITE_CONSTRAINT. |
** |
-** any FAIL Sqlite_exec() returns immediately with a |
+** any FAIL Sqlite3_step() returns immediately with a |
** return code of SQLITE_CONSTRAINT. The |
** transaction is not rolled back and any |
-** prior changes are retained. |
+** changes to prior rows are retained. |
** |
-** any IGNORE The record number and data is popped from |
-** the stack and there is an immediate jump |
-** to label ignoreDest. |
+** any IGNORE The attempt in insert or update the current |
+** row is skipped, without throwing an error. |
+** Processing continues with the next row. |
+** (There is an immediate jump to ignoreDest.) |
** |
** NOT NULL REPLACE The NULL value is replace by the default |
** value for that column. If the default value |
@@ -1127,42 +1121,59 @@ insert_cleanup: |
** Or if overrideError==OE_Default, then the pParse->onError parameter |
** is used. Or if pParse->onError==OE_Default then the onError value |
** for the constraint is used. |
-** |
-** The calling routine must open a read/write cursor for pTab with |
-** cursor number "baseCur". All indices of pTab must also have open |
-** read/write cursors with cursor number baseCur+i for the i-th cursor. |
-** Except, if there is no possibility of a REPLACE action then |
-** cursors do not need to be open for indices where aRegIdx[i]==0. |
*/ |
void sqlite3GenerateConstraintChecks( |
- Parse *pParse, /* The parser context */ |
- Table *pTab, /* the table into which we are inserting */ |
- int baseCur, /* Index of a read/write cursor pointing at pTab */ |
- int regRowid, /* Index of the range of input registers */ |
- int *aRegIdx, /* Register used by each index. 0 for unused indices */ |
- int rowidChng, /* True if the rowid might collide with existing entry */ |
- int isUpdate, /* True for UPDATE, False for INSERT */ |
- int overrideError, /* Override onError to this if not OE_Default */ |
- int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ |
- int *pbMayReplace /* OUT: Set to true if constraint may cause a replace */ |
+ Parse *pParse, /* The parser context */ |
+ Table *pTab, /* The table being inserted or updated */ |
+ int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ |
+ int iDataCur, /* Canonical data cursor (main table or PK index) */ |
+ int iIdxCur, /* First index cursor */ |
+ int regNewData, /* First register in a range holding values to insert */ |
+ int regOldData, /* Previous content. 0 for INSERTs */ |
+ u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ |
+ u8 overrideError, /* Override onError to this if not OE_Default */ |
+ int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ |
+ int *pbMayReplace /* OUT: Set to true if constraint may cause a replace */ |
){ |
- int i; /* loop counter */ |
- Vdbe *v; /* VDBE under constrution */ |
- int nCol; /* Number of columns */ |
- int onError; /* Conflict resolution strategy */ |
- int j1; /* Addresss of jump instruction */ |
- int j2 = 0, j3; /* Addresses of jump instructions */ |
- int regData; /* Register containing first data column */ |
- int iCur; /* Table cursor number */ |
+ Vdbe *v; /* VDBE under constrution */ |
Index *pIdx; /* Pointer to one of the indices */ |
+ Index *pPk = 0; /* The PRIMARY KEY index */ |
+ sqlite3 *db; /* Database connection */ |
+ int i; /* loop counter */ |
+ int ix; /* Index loop counter */ |
+ int nCol; /* Number of columns */ |
+ int onError; /* Conflict resolution strategy */ |
+ int j1; /* Address of jump instruction */ |
int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ |
- int regOldRowid = (rowidChng && isUpdate) ? rowidChng : regRowid; |
- |
+ int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ |
+ int ipkTop = 0; /* Top of the rowid change constraint check */ |
+ int ipkBottom = 0; /* Bottom of the rowid change constraint check */ |
+ u8 isUpdate; /* True if this is an UPDATE operation */ |
+ u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ |
+ int regRowid = -1; /* Register holding ROWID value */ |
+ |
+ isUpdate = regOldData!=0; |
+ db = pParse->db; |
v = sqlite3GetVdbe(pParse); |
assert( v!=0 ); |
assert( pTab->pSelect==0 ); /* This table is not a VIEW */ |
nCol = pTab->nCol; |
- regData = regRowid + 1; |
+ |
+ /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for |
+ ** normal rowid tables. nPkField is the number of key fields in the |
+ ** pPk index or 1 for a rowid table. In other words, nPkField is the |
+ ** number of fields in the true primary key of the table. */ |
+ if( HasRowid(pTab) ){ |
+ pPk = 0; |
+ nPkField = 1; |
+ }else{ |
+ pPk = sqlite3PrimaryKeyIndex(pTab); |
+ nPkField = pPk->nKeyCol; |
+ } |
+ |
+ /* Record that this module has started */ |
+ VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", |
+ iDataCur, iIdxCur, regNewData, regOldData, pkChng)); |
/* Test all NOT NULL constraints. |
*/ |
@@ -1185,24 +1196,26 @@ void sqlite3GenerateConstraintChecks( |
switch( onError ){ |
case OE_Abort: |
sqlite3MayAbort(pParse); |
+ /* Fall through */ |
case OE_Rollback: |
case OE_Fail: { |
- char *zMsg; |
- sqlite3VdbeAddOp3(v, OP_HaltIfNull, |
- SQLITE_CONSTRAINT, onError, regData+i); |
- zMsg = sqlite3MPrintf(pParse->db, "%s.%s may not be NULL", |
- pTab->zName, pTab->aCol[i].zName); |
- sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC); |
+ char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, |
+ pTab->aCol[i].zName); |
+ sqlite3VdbeAddOp4(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError, |
+ regNewData+1+i, zMsg, P4_DYNAMIC); |
+ sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); |
+ VdbeCoverage(v); |
break; |
} |
case OE_Ignore: { |
- sqlite3VdbeAddOp2(v, OP_IsNull, regData+i, ignoreDest); |
+ sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest); |
+ VdbeCoverage(v); |
break; |
} |
default: { |
assert( onError==OE_Replace ); |
- j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regData+i); |
- sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regData+i); |
+ j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regNewData+1+i); VdbeCoverage(v); |
+ sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i); |
sqlite3VdbeJumpHere(v, j1); |
break; |
} |
@@ -1212,37 +1225,71 @@ void sqlite3GenerateConstraintChecks( |
/* Test all CHECK constraints |
*/ |
#ifndef SQLITE_OMIT_CHECK |
- if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){ |
- int allOk = sqlite3VdbeMakeLabel(v); |
- pParse->ckBase = regData; |
- sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, SQLITE_JUMPIFNULL); |
+ if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ |
+ ExprList *pCheck = pTab->pCheck; |
+ pParse->ckBase = regNewData+1; |
onError = overrideError!=OE_Default ? overrideError : OE_Abort; |
- if( onError==OE_Ignore ){ |
- sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); |
- }else{ |
- if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */ |
- sqlite3HaltConstraint(pParse, onError, 0, 0); |
+ for(i=0; i<pCheck->nExpr; i++){ |
+ int allOk = sqlite3VdbeMakeLabel(v); |
+ sqlite3ExprIfTrue(pParse, pCheck->a[i].pExpr, allOk, SQLITE_JUMPIFNULL); |
+ if( onError==OE_Ignore ){ |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); |
+ }else{ |
+ char *zName = pCheck->a[i].zName; |
+ if( zName==0 ) zName = pTab->zName; |
+ if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */ |
+ sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, |
+ onError, zName, P4_TRANSIENT, |
+ P5_ConstraintCheck); |
+ } |
+ sqlite3VdbeResolveLabel(v, allOk); |
} |
- sqlite3VdbeResolveLabel(v, allOk); |
} |
#endif /* !defined(SQLITE_OMIT_CHECK) */ |
- /* If we have an INTEGER PRIMARY KEY, make sure the primary key |
- ** of the new record does not previously exist. Except, if this |
- ** is an UPDATE and the primary key is not changing, that is OK. |
+ /* If rowid is changing, make sure the new rowid does not previously |
+ ** exist in the table. |
*/ |
- if( rowidChng ){ |
+ if( pkChng && pPk==0 ){ |
+ int addrRowidOk = sqlite3VdbeMakeLabel(v); |
+ |
+ /* Figure out what action to take in case of a rowid collision */ |
onError = pTab->keyConf; |
if( overrideError!=OE_Default ){ |
onError = overrideError; |
}else if( onError==OE_Default ){ |
onError = OE_Abort; |
} |
- |
+ |
if( isUpdate ){ |
- j2 = sqlite3VdbeAddOp3(v, OP_Eq, regRowid, 0, rowidChng); |
+ /* pkChng!=0 does not mean that the rowid has change, only that |
+ ** it might have changed. Skip the conflict logic below if the rowid |
+ ** is unchanged. */ |
+ sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); |
+ sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); |
+ VdbeCoverage(v); |
+ } |
+ |
+ /* If the response to a rowid conflict is REPLACE but the response |
+ ** to some other UNIQUE constraint is FAIL or IGNORE, then we need |
+ ** to defer the running of the rowid conflict checking until after |
+ ** the UNIQUE constraints have run. |
+ */ |
+ if( onError==OE_Replace && overrideError!=OE_Replace ){ |
+ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
+ if( pIdx->onError==OE_Ignore || pIdx->onError==OE_Fail ){ |
+ ipkTop = sqlite3VdbeAddOp0(v, OP_Goto); |
+ break; |
+ } |
+ } |
} |
- j3 = sqlite3VdbeAddOp3(v, OP_NotExists, baseCur, 0, regRowid); |
+ |
+ /* Check to see if the new rowid already exists in the table. Skip |
+ ** the following conflict logic if it does not. */ |
+ sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); |
+ VdbeCoverage(v); |
+ |
+ /* Generate code that deals with a rowid collision */ |
switch( onError ){ |
default: { |
onError = OE_Abort; |
@@ -1251,14 +1298,13 @@ void sqlite3GenerateConstraintChecks( |
case OE_Rollback: |
case OE_Abort: |
case OE_Fail: { |
- sqlite3HaltConstraint( |
- pParse, onError, "PRIMARY KEY must be unique", P4_STATIC); |
+ sqlite3RowidConstraint(pParse, onError, pTab); |
break; |
} |
case OE_Replace: { |
/* If there are DELETE triggers on this table and the |
** recursive-triggers flag is set, call GenerateRowDelete() to |
- ** remove the conflicting row from the the table. This will fire |
+ ** remove the conflicting row from the table. This will fire |
** the triggers and remove both the table and index b-tree entries. |
** |
** Otherwise, if there are no triggers or the recursive-triggers |
@@ -1279,62 +1325,98 @@ void sqlite3GenerateConstraintChecks( |
** table. |
*/ |
Trigger *pTrigger = 0; |
- if( pParse->db->flags&SQLITE_RecTriggers ){ |
+ if( db->flags&SQLITE_RecTriggers ){ |
pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); |
} |
if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ |
sqlite3MultiWrite(pParse); |
- sqlite3GenerateRowDelete( |
- pParse, pTab, baseCur, regRowid, 0, pTrigger, OE_Replace |
- ); |
+ sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, |
+ regNewData, 1, 0, OE_Replace, 1); |
}else if( pTab->pIndex ){ |
sqlite3MultiWrite(pParse); |
- sqlite3GenerateRowIndexDelete(pParse, pTab, baseCur, 0); |
+ sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur, 0); |
} |
seenReplace = 1; |
break; |
} |
case OE_Ignore: { |
- assert( seenReplace==0 ); |
+ /*assert( seenReplace==0 );*/ |
sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); |
break; |
} |
} |
- sqlite3VdbeJumpHere(v, j3); |
- if( isUpdate ){ |
- sqlite3VdbeJumpHere(v, j2); |
+ sqlite3VdbeResolveLabel(v, addrRowidOk); |
+ if( ipkTop ){ |
+ ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); |
+ sqlite3VdbeJumpHere(v, ipkTop); |
} |
} |
/* Test all UNIQUE constraints by creating entries for each UNIQUE |
** index and making sure that duplicate entries do not already exist. |
- ** Add the new records to the indices as we go. |
+ ** Compute the revised record entries for indices as we go. |
+ ** |
+ ** This loop also handles the case of the PRIMARY KEY index for a |
+ ** WITHOUT ROWID table. |
*/ |
- for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){ |
- int regIdx; |
- int regR; |
- |
- if( aRegIdx[iCur]==0 ) continue; /* Skip unused indices */ |
+ for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){ |
+ int regIdx; /* Range of registers hold conent for pIdx */ |
+ int regR; /* Range of registers holding conflicting PK */ |
+ int iThisCur; /* Cursor for this UNIQUE index */ |
+ int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ |
+ |
+ if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ |
+ if( bAffinityDone==0 ){ |
+ sqlite3TableAffinity(v, pTab, regNewData+1); |
+ bAffinityDone = 1; |
+ } |
+ iThisCur = iIdxCur+ix; |
+ addrUniqueOk = sqlite3VdbeMakeLabel(v); |
+ |
+ /* Skip partial indices for which the WHERE clause is not true */ |
+ if( pIdx->pPartIdxWhere ){ |
+ sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); |
+ pParse->ckBase = regNewData+1; |
+ sqlite3ExprIfFalse(pParse, pIdx->pPartIdxWhere, addrUniqueOk, |
+ SQLITE_JUMPIFNULL); |
+ pParse->ckBase = 0; |
+ } |
- /* Create a key for accessing the index entry */ |
- regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn+1); |
+ /* Create a record for this index entry as it should appear after |
+ ** the insert or update. Store that record in the aRegIdx[ix] register |
+ */ |
+ regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn); |
for(i=0; i<pIdx->nColumn; i++){ |
- int idx = pIdx->aiColumn[i]; |
- if( idx==pTab->iPKey ){ |
- sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); |
+ int iField = pIdx->aiColumn[i]; |
+ int x; |
+ if( iField<0 || iField==pTab->iPKey ){ |
+ if( regRowid==regIdx+i ) continue; /* ROWID already in regIdx+i */ |
+ x = regNewData; |
+ regRowid = pIdx->pPartIdxWhere ? -1 : regIdx+i; |
}else{ |
- sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i); |
+ x = iField + regNewData + 1; |
} |
+ sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); |
+ VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName)); |
+ } |
+ sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); |
+ VdbeComment((v, "for %s", pIdx->zName)); |
+ sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn); |
+ |
+ /* In an UPDATE operation, if this index is the PRIMARY KEY index |
+ ** of a WITHOUT ROWID table and there has been no change the |
+ ** primary key, then no collision is possible. The collision detection |
+ ** logic below can all be skipped. */ |
+ if( isUpdate && pPk==pIdx && pkChng==0 ){ |
+ sqlite3VdbeResolveLabel(v, addrUniqueOk); |
+ continue; |
} |
- sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); |
- sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]); |
- sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), P4_TRANSIENT); |
- sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn+1); |
- /* Find out what action to take in case there is an indexing conflict */ |
+ /* Find out what action to take in case there is a uniqueness conflict */ |
onError = pIdx->onError; |
if( onError==OE_None ){ |
- sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1); |
+ sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn); |
+ sqlite3VdbeResolveLabel(v, addrUniqueOk); |
continue; /* pIdx is not a UNIQUE index */ |
} |
if( overrideError!=OE_Default ){ |
@@ -1342,18 +1424,64 @@ void sqlite3GenerateConstraintChecks( |
}else if( onError==OE_Default ){ |
onError = OE_Abort; |
} |
- if( seenReplace ){ |
- if( onError==OE_Ignore ) onError = OE_Replace; |
- else if( onError==OE_Fail ) onError = OE_Abort; |
- } |
/* Check to see if the new index entry will be unique */ |
- regR = sqlite3GetTempReg(pParse); |
- sqlite3VdbeAddOp2(v, OP_SCopy, regOldRowid, regR); |
- j3 = sqlite3VdbeAddOp4(v, OP_IsUnique, baseCur+iCur+1, 0, |
- regR, SQLITE_INT_TO_PTR(regIdx), |
- P4_INT32); |
- sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1); |
+ sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, |
+ regIdx, pIdx->nKeyCol); VdbeCoverage(v); |
+ |
+ /* Generate code to handle collisions */ |
+ regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField); |
+ if( isUpdate || onError==OE_Replace ){ |
+ if( HasRowid(pTab) ){ |
+ sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); |
+ /* Conflict only if the rowid of the existing index entry |
+ ** is different from old-rowid */ |
+ if( isUpdate ){ |
+ sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); |
+ sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); |
+ VdbeCoverage(v); |
+ } |
+ }else{ |
+ int x; |
+ /* Extract the PRIMARY KEY from the end of the index entry and |
+ ** store it in registers regR..regR+nPk-1 */ |
+ if( pIdx!=pPk ){ |
+ for(i=0; i<pPk->nKeyCol; i++){ |
+ x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]); |
+ sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); |
+ VdbeComment((v, "%s.%s", pTab->zName, |
+ pTab->aCol[pPk->aiColumn[i]].zName)); |
+ } |
+ } |
+ if( isUpdate ){ |
+ /* If currently processing the PRIMARY KEY of a WITHOUT ROWID |
+ ** table, only conflict if the new PRIMARY KEY values are actually |
+ ** different from the old. |
+ ** |
+ ** For a UNIQUE index, only conflict if the PRIMARY KEY values |
+ ** of the matched index row are different from the original PRIMARY |
+ ** KEY values of this row before the update. */ |
+ int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; |
+ int op = OP_Ne; |
+ int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); |
+ |
+ for(i=0; i<pPk->nKeyCol; i++){ |
+ char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); |
+ x = pPk->aiColumn[i]; |
+ if( i==(pPk->nKeyCol-1) ){ |
+ addrJump = addrUniqueOk; |
+ op = OP_Eq; |
+ } |
+ sqlite3VdbeAddOp4(v, op, |
+ regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ |
+ ); |
+ sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); |
+ VdbeCoverageIf(v, op==OP_Eq); |
+ VdbeCoverageIf(v, op==OP_Ne); |
+ } |
+ } |
+ } |
+ } |
/* Generate code that executes if the new index entry is not unique */ |
assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail |
@@ -1362,29 +1490,10 @@ void sqlite3GenerateConstraintChecks( |
case OE_Rollback: |
case OE_Abort: |
case OE_Fail: { |
- int j; |
- StrAccum errMsg; |
- const char *zSep; |
- char *zErr; |
- |
- sqlite3StrAccumInit(&errMsg, 0, 0, 200); |
- errMsg.db = pParse->db; |
- zSep = pIdx->nColumn>1 ? "columns " : "column "; |
- for(j=0; j<pIdx->nColumn; j++){ |
- char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName; |
- sqlite3StrAccumAppend(&errMsg, zSep, -1); |
- zSep = ", "; |
- sqlite3StrAccumAppend(&errMsg, zCol, -1); |
- } |
- sqlite3StrAccumAppend(&errMsg, |
- pIdx->nColumn>1 ? " are not unique" : " is not unique", -1); |
- zErr = sqlite3StrAccumFinish(&errMsg); |
- sqlite3HaltConstraint(pParse, onError, zErr, 0); |
- sqlite3DbFree(errMsg.db, zErr); |
+ sqlite3UniqueConstraint(pParse, onError, pIdx); |
break; |
} |
case OE_Ignore: { |
- assert( seenReplace==0 ); |
sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); |
break; |
} |
@@ -1392,29 +1501,32 @@ void sqlite3GenerateConstraintChecks( |
Trigger *pTrigger = 0; |
assert( onError==OE_Replace ); |
sqlite3MultiWrite(pParse); |
- if( pParse->db->flags&SQLITE_RecTriggers ){ |
+ if( db->flags&SQLITE_RecTriggers ){ |
pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); |
} |
- sqlite3GenerateRowDelete( |
- pParse, pTab, baseCur, regR, 0, pTrigger, OE_Replace |
- ); |
+ sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, |
+ regR, nPkField, 0, OE_Replace, pIdx==pPk); |
seenReplace = 1; |
break; |
} |
} |
- sqlite3VdbeJumpHere(v, j3); |
- sqlite3ReleaseTempReg(pParse, regR); |
+ sqlite3VdbeResolveLabel(v, addrUniqueOk); |
+ sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn); |
+ if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); |
} |
- |
- if( pbMayReplace ){ |
- *pbMayReplace = seenReplace; |
+ if( ipkTop ){ |
+ sqlite3VdbeAddOp2(v, OP_Goto, 0, ipkTop+1); |
+ sqlite3VdbeJumpHere(v, ipkBottom); |
} |
+ |
+ *pbMayReplace = seenReplace; |
+ VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); |
} |
/* |
** This routine generates code to finish the INSERT or UPDATE operation |
** that was started by a prior call to sqlite3GenerateConstraintChecks. |
-** A consecutive range of registers starting at regRowid contains the |
+** A consecutive range of registers starting at regNewData contains the |
** rowid and the content to be inserted. |
** |
** The arguments to this routine should be the same as the first six |
@@ -1423,36 +1535,46 @@ void sqlite3GenerateConstraintChecks( |
void sqlite3CompleteInsertion( |
Parse *pParse, /* The parser context */ |
Table *pTab, /* the table into which we are inserting */ |
- int baseCur, /* Index of a read/write cursor pointing at pTab */ |
- int regRowid, /* Range of content */ |
+ int iDataCur, /* Cursor of the canonical data source */ |
+ int iIdxCur, /* First index cursor */ |
+ int regNewData, /* Range of content */ |
int *aRegIdx, /* Register used by each index. 0 for unused indices */ |
int isUpdate, /* True for UPDATE, False for INSERT */ |
int appendBias, /* True if this is likely to be an append */ |
int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ |
){ |
- int i; |
- Vdbe *v; |
- int nIdx; |
- Index *pIdx; |
- u8 pik_flags; |
- int regData; |
- int regRec; |
+ Vdbe *v; /* Prepared statements under construction */ |
+ Index *pIdx; /* An index being inserted or updated */ |
+ u8 pik_flags; /* flag values passed to the btree insert */ |
+ int regData; /* Content registers (after the rowid) */ |
+ int regRec; /* Register holding assembled record for the table */ |
+ int i; /* Loop counter */ |
+ u8 bAffinityDone = 0; /* True if OP_Affinity has been run already */ |
v = sqlite3GetVdbe(pParse); |
assert( v!=0 ); |
assert( pTab->pSelect==0 ); /* This table is not a VIEW */ |
- for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){} |
- for(i=nIdx-1; i>=0; i--){ |
+ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ |
if( aRegIdx[i]==0 ) continue; |
- sqlite3VdbeAddOp2(v, OP_IdxInsert, baseCur+i+1, aRegIdx[i]); |
- if( useSeekResult ){ |
- sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); |
+ bAffinityDone = 1; |
+ if( pIdx->pPartIdxWhere ){ |
+ sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); |
+ VdbeCoverage(v); |
+ } |
+ sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i]); |
+ pik_flags = 0; |
+ if( useSeekResult ) pik_flags = OPFLAG_USESEEKRESULT; |
+ if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ |
+ assert( pParse->nested==0 ); |
+ pik_flags |= OPFLAG_NCHANGE; |
} |
+ if( pik_flags ) sqlite3VdbeChangeP5(v, pik_flags); |
} |
- regData = regRowid + 1; |
+ if( !HasRowid(pTab) ) return; |
+ regData = regNewData + 1; |
regRec = sqlite3GetTempReg(pParse); |
sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec); |
- sqlite3TableAffinityStr(v, pTab); |
+ if( !bAffinityDone ) sqlite3TableAffinity(v, pTab, 0); |
sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol); |
if( pParse->nested ){ |
pik_flags = 0; |
@@ -1466,7 +1588,7 @@ void sqlite3CompleteInsertion( |
if( useSeekResult ){ |
pik_flags |= OPFLAG_USESEEKRESULT; |
} |
- sqlite3VdbeAddOp3(v, OP_Insert, baseCur, regRec, regRowid); |
+ sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, regRec, regNewData); |
if( !pParse->nested ){ |
sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_TRANSIENT); |
} |
@@ -1474,39 +1596,74 @@ void sqlite3CompleteInsertion( |
} |
/* |
-** Generate code that will open cursors for a table and for all |
-** indices of that table. The "baseCur" parameter is the cursor number used |
-** for the table. Indices are opened on subsequent cursors. |
+** Allocate cursors for the pTab table and all its indices and generate |
+** code to open and initialized those cursors. |
+** |
+** The cursor for the object that contains the complete data (normally |
+** the table itself, but the PRIMARY KEY index in the case of a WITHOUT |
+** ROWID table) is returned in *piDataCur. The first index cursor is |
+** returned in *piIdxCur. The number of indices is returned. |
** |
-** Return the number of indices on the table. |
+** Use iBase as the first cursor (either the *piDataCur for rowid tables |
+** or the first index for WITHOUT ROWID tables) if it is non-negative. |
+** If iBase is negative, then allocate the next available cursor. |
+** |
+** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. |
+** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range |
+** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the |
+** pTab->pIndex list. |
+** |
+** If pTab is a virtual table, then this routine is a no-op and the |
+** *piDataCur and *piIdxCur values are left uninitialized. |
*/ |
int sqlite3OpenTableAndIndices( |
Parse *pParse, /* Parsing context */ |
Table *pTab, /* Table to be opened */ |
- int baseCur, /* Cursor number assigned to the table */ |
- int op /* OP_OpenRead or OP_OpenWrite */ |
+ int op, /* OP_OpenRead or OP_OpenWrite */ |
+ int iBase, /* Use this for the table cursor, if there is one */ |
+ u8 *aToOpen, /* If not NULL: boolean for each table and index */ |
+ int *piDataCur, /* Write the database source cursor number here */ |
+ int *piIdxCur /* Write the first index cursor number here */ |
){ |
int i; |
int iDb; |
+ int iDataCur; |
Index *pIdx; |
Vdbe *v; |
- if( IsVirtual(pTab) ) return 0; |
+ assert( op==OP_OpenRead || op==OP_OpenWrite ); |
+ if( IsVirtual(pTab) ){ |
+ /* This routine is a no-op for virtual tables. Leave the output |
+ ** variables *piDataCur and *piIdxCur uninitialized so that valgrind |
+ ** can detect if they are used by mistake in the caller. */ |
+ return 0; |
+ } |
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
v = sqlite3GetVdbe(pParse); |
assert( v!=0 ); |
- sqlite3OpenTable(pParse, baseCur, iDb, pTab, op); |
- for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ |
- KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); |
- assert( pIdx->pSchema==pTab->pSchema ); |
- sqlite3VdbeAddOp4(v, op, i+baseCur, pIdx->tnum, iDb, |
- (char*)pKey, P4_KEYINFO_HANDOFF); |
- VdbeComment((v, "%s", pIdx->zName)); |
+ if( iBase<0 ) iBase = pParse->nTab; |
+ iDataCur = iBase++; |
+ if( piDataCur ) *piDataCur = iDataCur; |
+ if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ |
+ sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); |
+ }else{ |
+ sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); |
} |
- if( pParse->nTab<baseCur+i ){ |
- pParse->nTab = baseCur+i; |
+ if( piIdxCur ) *piIdxCur = iBase; |
+ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ |
+ int iIdxCur = iBase++; |
+ assert( pIdx->pSchema==pTab->pSchema ); |
+ if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) && piDataCur ){ |
+ *piDataCur = iIdxCur; |
+ } |
+ if( aToOpen==0 || aToOpen[i+1] ){ |
+ sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); |
+ sqlite3VdbeSetP4KeyInfo(pParse, pIdx); |
+ VdbeComment((v, "%s", pIdx->zName)); |
+ } |
} |
- return i-1; |
+ if( iBase>pParse->nTab ) pParse->nTab = iBase; |
+ return i; |
} |
@@ -1515,7 +1672,7 @@ int sqlite3OpenTableAndIndices( |
** The following global variable is incremented whenever the |
** transfer optimization is used. This is used for testing |
** purposes only - to make sure the transfer optimization really |
-** is happening when it is suppose to. |
+** is happening when it is supposed to. |
*/ |
int sqlite3_xferopt_count; |
#endif /* SQLITE_TEST */ |
@@ -1545,18 +1702,19 @@ static int xferCompatibleCollation(const char *z1, const char *z2){ |
** * The same DESC and ASC markings occurs on all columns |
** * The same onError processing (OE_Abort, OE_Ignore, etc) |
** * The same collating sequence on each column |
+** * The index has the exact same WHERE clause |
*/ |
static int xferCompatibleIndex(Index *pDest, Index *pSrc){ |
int i; |
assert( pDest && pSrc ); |
assert( pDest->pTable!=pSrc->pTable ); |
- if( pDest->nColumn!=pSrc->nColumn ){ |
+ if( pDest->nKeyCol!=pSrc->nKeyCol ){ |
return 0; /* Different number of columns */ |
} |
if( pDest->onError!=pSrc->onError ){ |
return 0; /* Different conflict resolution strategies */ |
} |
- for(i=0; i<pSrc->nColumn; i++){ |
+ for(i=0; i<pSrc->nKeyCol; i++){ |
if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ |
return 0; /* Different columns indexed */ |
} |
@@ -1567,6 +1725,9 @@ static int xferCompatibleIndex(Index *pDest, Index *pSrc){ |
return 0; /* Different collating sequences */ |
} |
} |
+ if( sqlite3ExprCompare(pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ |
+ return 0; /* Different WHERE clauses */ |
+ } |
/* If no test above fails then the indices must be compatible */ |
return 1; |
@@ -1577,31 +1738,25 @@ static int xferCompatibleIndex(Index *pDest, Index *pSrc){ |
** |
** INSERT INTO tab1 SELECT * FROM tab2; |
** |
-** This optimization is only attempted if |
-** |
-** (1) tab1 and tab2 have identical schemas including all the |
-** same indices and constraints |
-** |
-** (2) tab1 and tab2 are different tables |
-** |
-** (3) There must be no triggers on tab1 |
+** The xfer optimization transfers raw records from tab2 over to tab1. |
+** Columns are not decoded and reassembled, which greatly improves |
+** performance. Raw index records are transferred in the same way. |
** |
-** (4) The result set of the SELECT statement is "*" |
+** The xfer optimization is only attempted if tab1 and tab2 are compatible. |
+** There are lots of rules for determining compatibility - see comments |
+** embedded in the code for details. |
** |
-** (5) The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY, |
-** or LIMIT clause. |
+** This routine returns TRUE if the optimization is guaranteed to be used. |
+** Sometimes the xfer optimization will only work if the destination table |
+** is empty - a factor that can only be determined at run-time. In that |
+** case, this routine generates code for the xfer optimization but also |
+** does a test to see if the destination table is empty and jumps over the |
+** xfer optimization code if the test fails. In that case, this routine |
+** returns FALSE so that the caller will know to go ahead and generate |
+** an unoptimized transfer. This routine also returns FALSE if there |
+** is no chance that the xfer optimization can be applied. |
** |
-** (6) The SELECT statement is a simple (not a compound) select that |
-** contains only tab2 in its FROM clause |
-** |
-** This method for implementing the INSERT transfers raw records from |
-** tab2 over to tab1. The columns are not decoded. Raw records from |
-** the indices of tab2 are transfered to tab1 as well. In so doing, |
-** the resulting tab1 has much less fragmentation. |
-** |
-** This routine returns TRUE if the optimization is attempted. If any |
-** of the conditions above fail so that the optimization should not |
-** be attempted, then this routine returns FALSE. |
+** This optimization is particularly useful at making VACUUM run faster. |
*/ |
static int xferOptimization( |
Parse *pParse, /* Parser context */ |
@@ -1618,10 +1773,9 @@ static int xferOptimization( |
int iDbSrc; /* The database of pSrc */ |
int iSrc, iDest; /* Cursors from source and destination */ |
int addr1, addr2; /* Loop addresses */ |
- int emptyDestTest; /* Address of test for empty pDest */ |
- int emptySrcTest; /* Address of test for empty pSrc */ |
+ int emptyDestTest = 0; /* Address of test for empty pDest */ |
+ int emptySrcTest = 0; /* Address of test for empty pSrc */ |
Vdbe *v; /* The VDBE we are building */ |
- KeyInfo *pKey; /* Key information for an index */ |
int regAutoinc; /* Memory register used by AUTOINC */ |
int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ |
int regData, regRowid; /* Registers holding data and rowid */ |
@@ -1629,6 +1783,12 @@ static int xferOptimization( |
if( pSelect==0 ){ |
return 0; /* Must be of the form INSERT INTO ... SELECT ... */ |
} |
+ if( pParse->pWith || pSelect->pWith ){ |
+ /* Do not attempt to process this query if there are an WITH clauses |
+ ** attached to it. Proceeding may generate a false "no such table: xxx" |
+ ** error if pSelect reads from a CTE named "xxx". */ |
+ return 0; |
+ } |
if( sqlite3TriggerList(pParse, pDest) ){ |
return 0; /* tab1 must not have triggers */ |
} |
@@ -1638,10 +1798,8 @@ static int xferOptimization( |
} |
#endif |
if( onError==OE_Default ){ |
- onError = OE_Abort; |
- } |
- if( onError!=OE_Abort && onError!=OE_Rollback ){ |
- return 0; /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */ |
+ if( pDest->iPKey>=0 ) onError = pDest->keyConf; |
+ if( onError==OE_Default ) onError = OE_Abort; |
} |
assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ |
if( pSelect->pSrc->nSrc!=1 ){ |
@@ -1686,13 +1844,16 @@ static int xferOptimization( |
** we have to check the semantics. |
*/ |
pItem = pSelect->pSrc->a; |
- pSrc = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase); |
+ pSrc = sqlite3LocateTableItem(pParse, 0, pItem); |
if( pSrc==0 ){ |
return 0; /* FROM clause does not contain a real table */ |
} |
if( pSrc==pDest ){ |
return 0; /* tab1 and tab2 may not be the same table */ |
} |
+ if( HasRowid(pDest)!=HasRowid(pSrc) ){ |
+ return 0; /* source and destination must both be WITHOUT ROWID or not */ |
+ } |
#ifndef SQLITE_OMIT_VIRTUALTABLE |
if( pSrc->tabFlags & TF_Virtual ){ |
return 0; /* tab2 must not be a virtual table */ |
@@ -1708,18 +1869,27 @@ static int xferOptimization( |
return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ |
} |
for(i=0; i<pDest->nCol; i++){ |
- if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){ |
+ Column *pDestCol = &pDest->aCol[i]; |
+ Column *pSrcCol = &pSrc->aCol[i]; |
+ if( pDestCol->affinity!=pSrcCol->affinity ){ |
return 0; /* Affinity must be the same on all columns */ |
} |
- if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){ |
+ if( !xferCompatibleCollation(pDestCol->zColl, pSrcCol->zColl) ){ |
return 0; /* Collating sequence must be the same on all columns */ |
} |
- if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){ |
+ if( pDestCol->notNull && !pSrcCol->notNull ){ |
return 0; /* tab2 must be NOT NULL if tab1 is */ |
} |
+ /* Default values for second and subsequent columns need to match. */ |
+ if( i>0 |
+ && ((pDestCol->zDflt==0)!=(pSrcCol->zDflt==0) |
+ || (pDestCol->zDflt && strcmp(pDestCol->zDflt, pSrcCol->zDflt)!=0)) |
+ ){ |
+ return 0; /* Default values must be the same for all columns */ |
+ } |
} |
for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ |
- if( pDestIdx->onError!=OE_None ){ |
+ if( IsUniqueIndex(pDestIdx) ){ |
destHasUniqueIdx = 1; |
} |
for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ |
@@ -1730,18 +1900,29 @@ static int xferOptimization( |
} |
} |
#ifndef SQLITE_OMIT_CHECK |
- if( pDest->pCheck && sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){ |
+ if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ |
return 0; /* Tables have different CHECK constraints. Ticket #2252 */ |
} |
#endif |
+#ifndef SQLITE_OMIT_FOREIGN_KEY |
+ /* Disallow the transfer optimization if the destination table constains |
+ ** any foreign key constraints. This is more restrictive than necessary. |
+ ** But the main beneficiary of the transfer optimization is the VACUUM |
+ ** command, and the VACUUM command disables foreign key constraints. So |
+ ** the extra complication to make this rule less restrictive is probably |
+ ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] |
+ */ |
+ if( (pParse->db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){ |
+ return 0; |
+ } |
+#endif |
+ if( (pParse->db->flags & SQLITE_CountRows)!=0 ){ |
+ return 0; /* xfer opt does not play well with PRAGMA count_changes */ |
+ } |
- /* If we get this far, it means either: |
- ** |
- ** * We can always do the transfer if the table contains an |
- ** an integer primary key |
- ** |
- ** * We can conditionally do the transfer if the destination |
- ** table is empty. |
+ /* If we get this far, it means that the xfer optimization is at |
+ ** least a possibility, though it might only work if the destination |
+ ** table (tab1) is initially empty. |
*/ |
#ifdef SQLITE_TEST |
sqlite3_xferopt_count++; |
@@ -1752,72 +1933,82 @@ static int xferOptimization( |
iSrc = pParse->nTab++; |
iDest = pParse->nTab++; |
regAutoinc = autoIncBegin(pParse, iDbDest, pDest); |
+ regData = sqlite3GetTempReg(pParse); |
+ regRowid = sqlite3GetTempReg(pParse); |
sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); |
- if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){ |
- /* If tables do not have an INTEGER PRIMARY KEY and there |
- ** are indices to be copied and the destination is not empty, |
- ** we have to disallow the transfer optimization because the |
- ** the rowids might change which will mess up indexing. |
+ assert( HasRowid(pDest) || destHasUniqueIdx ); |
+ if( (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ |
+ || destHasUniqueIdx /* (2) */ |
+ || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ |
+ ){ |
+ /* In some circumstances, we are able to run the xfer optimization |
+ ** only if the destination table is initially empty. This code makes |
+ ** that determination. Conditions under which the destination must |
+ ** be empty: |
+ ** |
+ ** (1) There is no INTEGER PRIMARY KEY but there are indices. |
+ ** (If the destination is not initially empty, the rowid fields |
+ ** of index entries might need to change.) |
** |
- ** Or if the destination has a UNIQUE index and is not empty, |
- ** we also disallow the transfer optimization because we cannot |
- ** insure that all entries in the union of DEST and SRC will be |
- ** unique. |
+ ** (2) The destination has a unique index. (The xfer optimization |
+ ** is unable to test uniqueness.) |
+ ** |
+ ** (3) onError is something other than OE_Abort and OE_Rollback. |
*/ |
- addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); |
+ addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); |
emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); |
sqlite3VdbeJumpHere(v, addr1); |
- }else{ |
- emptyDestTest = 0; |
} |
- sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); |
- emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); |
- regData = sqlite3GetTempReg(pParse); |
- regRowid = sqlite3GetTempReg(pParse); |
- if( pDest->iPKey>=0 ){ |
- addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); |
- addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); |
- sqlite3HaltConstraint( |
- pParse, onError, "PRIMARY KEY must be unique", P4_STATIC); |
- sqlite3VdbeJumpHere(v, addr2); |
- autoIncStep(pParse, regAutoinc, regRowid); |
- }else if( pDest->pIndex==0 ){ |
- addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); |
+ if( HasRowid(pSrc) ){ |
+ sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); |
+ emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); |
+ if( pDest->iPKey>=0 ){ |
+ addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); |
+ addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); |
+ VdbeCoverage(v); |
+ sqlite3RowidConstraint(pParse, onError, pDest); |
+ sqlite3VdbeJumpHere(v, addr2); |
+ autoIncStep(pParse, regAutoinc, regRowid); |
+ }else if( pDest->pIndex==0 ){ |
+ addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); |
+ }else{ |
+ addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); |
+ assert( (pDest->tabFlags & TF_Autoincrement)==0 ); |
+ } |
+ sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData); |
+ sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); |
+ sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND); |
+ sqlite3VdbeChangeP4(v, -1, pDest->zName, 0); |
+ sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); |
+ sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); |
+ sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); |
}else{ |
- addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); |
- assert( (pDest->tabFlags & TF_Autoincrement)==0 ); |
- } |
- sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData); |
- sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); |
- sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND); |
- sqlite3VdbeChangeP4(v, -1, pDest->zName, 0); |
- sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); |
+ sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); |
+ sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); |
+ } |
for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ |
for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ |
if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; |
} |
assert( pSrcIdx ); |
- sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); |
- sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); |
- pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx); |
- sqlite3VdbeAddOp4(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc, |
- (char*)pKey, P4_KEYINFO_HANDOFF); |
+ sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); |
+ sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); |
VdbeComment((v, "%s", pSrcIdx->zName)); |
- pKey = sqlite3IndexKeyinfo(pParse, pDestIdx); |
- sqlite3VdbeAddOp4(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest, |
- (char*)pKey, P4_KEYINFO_HANDOFF); |
+ sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); |
+ sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); |
+ sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); |
VdbeComment((v, "%s", pDestIdx->zName)); |
- addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); |
+ addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); |
sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData); |
sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1); |
- sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); |
+ sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); |
sqlite3VdbeJumpHere(v, addr1); |
+ sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); |
+ sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); |
} |
- sqlite3VdbeJumpHere(v, emptySrcTest); |
+ if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); |
sqlite3ReleaseTempReg(pParse, regRowid); |
sqlite3ReleaseTempReg(pParse, regData); |
- sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); |
- sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); |
if( emptyDestTest ){ |
sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); |
sqlite3VdbeJumpHere(v, emptyDestTest); |