Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(116)

Side by Side Diff: third_party/sqlite/src/src/btree.c

Issue 949043002: Add //third_party/sqlite to dirs_to_snapshot, remove net_sql.patch (Closed) Base URL: git@github.com:domokit/mojo.git@master
Patch Set: Created 5 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « third_party/sqlite/src/src/btree.h ('k') | third_party/sqlite/src/src/btreeInt.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 /* 1 /*
2 ** 2004 April 6 2 ** 2004 April 6
3 ** 3 **
4 ** The author disclaims copyright to this source code. In place of 4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing: 5 ** a legal notice, here is a blessing:
6 ** 6 **
7 ** May you do good and not evil. 7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others. 8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give. 9 ** May you share freely, never taking more than you give.
10 ** 10 **
11 ************************************************************************* 11 *************************************************************************
12 ** This file implements a external (disk-based) database using BTrees. 12 ** This file implements an external (disk-based) database using BTrees.
13 ** See the header comment on "btreeInt.h" for additional information. 13 ** See the header comment on "btreeInt.h" for additional information.
14 ** Including a description of file format and an overview of operation. 14 ** Including a description of file format and an overview of operation.
15 */ 15 */
16 #include "btreeInt.h" 16 #include "btreeInt.h"
17 17
18 /* 18 /*
19 ** The header string that appears at the beginning of every 19 ** The header string that appears at the beginning of every
20 ** SQLite database. 20 ** SQLite database.
21 */ 21 */
22 static const char zMagicHeader[] = SQLITE_FILE_HEADER; 22 static const char zMagicHeader[] = SQLITE_FILE_HEADER;
(...skipping 13 matching lines...) Expand all
36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes. 36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37 ** But if the value is zero, make it 65536. 37 ** But if the value is zero, make it 65536.
38 ** 38 **
39 ** This routine is used to extract the "offset to cell content area" value 39 ** This routine is used to extract the "offset to cell content area" value
40 ** from the header of a btree page. If the page size is 65536 and the page 40 ** from the header of a btree page. If the page size is 65536 and the page
41 ** is empty, the offset should be 65536, but the 2-byte value stores zero. 41 ** is empty, the offset should be 65536, but the 2-byte value stores zero.
42 ** This routine makes the necessary adjustment to 65536. 42 ** This routine makes the necessary adjustment to 65536.
43 */ 43 */
44 #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1) 44 #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
45 45
46 /*
47 ** Values passed as the 5th argument to allocateBtreePage()
48 */
49 #define BTALLOC_ANY 0 /* Allocate any page */
50 #define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51 #define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53 /*
54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55 ** defined, or 0 if it is. For example:
56 **
57 ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58 */
59 #ifndef SQLITE_OMIT_AUTOVACUUM
60 #define IfNotOmitAV(expr) (expr)
61 #else
62 #define IfNotOmitAV(expr) 0
63 #endif
64
46 #ifndef SQLITE_OMIT_SHARED_CACHE 65 #ifndef SQLITE_OMIT_SHARED_CACHE
47 /* 66 /*
48 ** A list of BtShared objects that are eligible for participation 67 ** A list of BtShared objects that are eligible for participation
49 ** in shared cache. This variable has file scope during normal builds, 68 ** in shared cache. This variable has file scope during normal builds,
50 ** but the test harness needs to access it so we make it global for 69 ** but the test harness needs to access it so we make it global for
51 ** test builds. 70 ** test builds.
52 ** 71 **
53 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER. 72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
54 */ 73 */
55 #ifdef SQLITE_TEST 74 #ifdef SQLITE_TEST
(...skipping 80 matching lines...) Expand 10 before | Expand all | Expand 10 after
136 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted)) 155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
137 ){ 156 ){
138 return 1; 157 return 1;
139 } 158 }
140 159
141 /* If the client is reading or writing an index and the schema is 160 /* If the client is reading or writing an index and the schema is
142 ** not loaded, then it is too difficult to actually check to see if 161 ** not loaded, then it is too difficult to actually check to see if
143 ** the correct locks are held. So do not bother - just return true. 162 ** the correct locks are held. So do not bother - just return true.
144 ** This case does not come up very often anyhow. 163 ** This case does not come up very often anyhow.
145 */ 164 */
146 if( isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0) ){ 165 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
147 return 1; 166 return 1;
148 } 167 }
149 168
150 /* Figure out the root-page that the lock should be held on. For table 169 /* Figure out the root-page that the lock should be held on. For table
151 ** b-trees, this is just the root page of the b-tree being read or 170 ** b-trees, this is just the root page of the b-tree being read or
152 ** written. For index b-trees, it is the root page of the associated 171 ** written. For index b-trees, it is the root page of the associated
153 ** table. */ 172 ** table. */
154 if( isIndex ){ 173 if( isIndex ){
155 HashElem *p; 174 HashElem *p;
156 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){ 175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
(...skipping 79 matching lines...) Expand 10 before | Expand all | Expand 10 after
236 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE ); 255 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
237 256
238 /* This routine is a no-op if the shared-cache is not enabled */ 257 /* This routine is a no-op if the shared-cache is not enabled */
239 if( !p->sharable ){ 258 if( !p->sharable ){
240 return SQLITE_OK; 259 return SQLITE_OK;
241 } 260 }
242 261
243 /* If some other connection is holding an exclusive lock, the 262 /* If some other connection is holding an exclusive lock, the
244 ** requested lock may not be obtained. 263 ** requested lock may not be obtained.
245 */ 264 */
246 if( pBt->pWriter!=p && pBt->isExclusive ){ 265 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
247 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db); 266 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
248 return SQLITE_LOCKED_SHAREDCACHE; 267 return SQLITE_LOCKED_SHAREDCACHE;
249 } 268 }
250 269
251 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 270 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
252 /* The condition (pIter->eLock!=eLock) in the following if(...) 271 /* The condition (pIter->eLock!=eLock) in the following if(...)
253 ** statement is a simplification of: 272 ** statement is a simplification of:
254 ** 273 **
255 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK) 274 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
256 ** 275 **
257 ** since we know that if eLock==WRITE_LOCK, then no other connection 276 ** since we know that if eLock==WRITE_LOCK, then no other connection
258 ** may hold a WRITE_LOCK on any table in this file (since there can 277 ** may hold a WRITE_LOCK on any table in this file (since there can
259 ** only be a single writer). 278 ** only be a single writer).
260 */ 279 */
261 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK ); 280 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
262 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK); 281 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
263 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){ 282 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
264 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db); 283 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
265 if( eLock==WRITE_LOCK ){ 284 if( eLock==WRITE_LOCK ){
266 assert( p==pBt->pWriter ); 285 assert( p==pBt->pWriter );
267 pBt->isPending = 1; 286 pBt->btsFlags |= BTS_PENDING;
268 } 287 }
269 return SQLITE_LOCKED_SHAREDCACHE; 288 return SQLITE_LOCKED_SHAREDCACHE;
270 } 289 }
271 } 290 }
272 return SQLITE_OK; 291 return SQLITE_OK;
273 } 292 }
274 #endif /* !SQLITE_OMIT_SHARED_CACHE */ 293 #endif /* !SQLITE_OMIT_SHARED_CACHE */
275 294
276 #ifndef SQLITE_OMIT_SHARED_CACHE 295 #ifndef SQLITE_OMIT_SHARED_CACHE
277 /* 296 /*
(...skipping 67 matching lines...) Expand 10 before | Expand all | Expand 10 after
345 return SQLITE_OK; 364 return SQLITE_OK;
346 } 365 }
347 #endif /* !SQLITE_OMIT_SHARED_CACHE */ 366 #endif /* !SQLITE_OMIT_SHARED_CACHE */
348 367
349 #ifndef SQLITE_OMIT_SHARED_CACHE 368 #ifndef SQLITE_OMIT_SHARED_CACHE
350 /* 369 /*
351 ** Release all the table locks (locks obtained via calls to 370 ** Release all the table locks (locks obtained via calls to
352 ** the setSharedCacheTableLock() procedure) held by Btree object p. 371 ** the setSharedCacheTableLock() procedure) held by Btree object p.
353 ** 372 **
354 ** This function assumes that Btree p has an open read or write 373 ** This function assumes that Btree p has an open read or write
355 ** transaction. If it does not, then the BtShared.isPending variable 374 ** transaction. If it does not, then the BTS_PENDING flag
356 ** may be incorrectly cleared. 375 ** may be incorrectly cleared.
357 */ 376 */
358 static void clearAllSharedCacheTableLocks(Btree *p){ 377 static void clearAllSharedCacheTableLocks(Btree *p){
359 BtShared *pBt = p->pBt; 378 BtShared *pBt = p->pBt;
360 BtLock **ppIter = &pBt->pLock; 379 BtLock **ppIter = &pBt->pLock;
361 380
362 assert( sqlite3BtreeHoldsMutex(p) ); 381 assert( sqlite3BtreeHoldsMutex(p) );
363 assert( p->sharable || 0==*ppIter ); 382 assert( p->sharable || 0==*ppIter );
364 assert( p->inTrans>0 ); 383 assert( p->inTrans>0 );
365 384
366 while( *ppIter ){ 385 while( *ppIter ){
367 BtLock *pLock = *ppIter; 386 BtLock *pLock = *ppIter;
368 assert( pBt->isExclusive==0 || pBt->pWriter==pLock->pBtree ); 387 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
369 assert( pLock->pBtree->inTrans>=pLock->eLock ); 388 assert( pLock->pBtree->inTrans>=pLock->eLock );
370 if( pLock->pBtree==p ){ 389 if( pLock->pBtree==p ){
371 *ppIter = pLock->pNext; 390 *ppIter = pLock->pNext;
372 assert( pLock->iTable!=1 || pLock==&p->lock ); 391 assert( pLock->iTable!=1 || pLock==&p->lock );
373 if( pLock->iTable!=1 ){ 392 if( pLock->iTable!=1 ){
374 sqlite3_free(pLock); 393 sqlite3_free(pLock);
375 } 394 }
376 }else{ 395 }else{
377 ppIter = &pLock->pNext; 396 ppIter = &pLock->pNext;
378 } 397 }
379 } 398 }
380 399
381 assert( pBt->isPending==0 || pBt->pWriter ); 400 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
382 if( pBt->pWriter==p ){ 401 if( pBt->pWriter==p ){
383 pBt->pWriter = 0; 402 pBt->pWriter = 0;
384 pBt->isExclusive = 0; 403 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
385 pBt->isPending = 0;
386 }else if( pBt->nTransaction==2 ){ 404 }else if( pBt->nTransaction==2 ){
387 /* This function is called when Btree p is concluding its 405 /* This function is called when Btree p is concluding its
388 ** transaction. If there currently exists a writer, and p is not 406 ** transaction. If there currently exists a writer, and p is not
389 ** that writer, then the number of locks held by connections other 407 ** that writer, then the number of locks held by connections other
390 ** than the writer must be about to drop to zero. In this case 408 ** than the writer must be about to drop to zero. In this case
391 ** set the isPending flag to 0. 409 ** set the BTS_PENDING flag to 0.
392 ** 410 **
393 ** If there is not currently a writer, then BtShared.isPending must 411 ** If there is not currently a writer, then BTS_PENDING must
394 ** be zero already. So this next line is harmless in that case. 412 ** be zero already. So this next line is harmless in that case.
395 */ 413 */
396 pBt->isPending = 0; 414 pBt->btsFlags &= ~BTS_PENDING;
397 } 415 }
398 } 416 }
399 417
400 /* 418 /*
401 ** This function changes all write-locks held by Btree p into read-locks. 419 ** This function changes all write-locks held by Btree p into read-locks.
402 */ 420 */
403 static void downgradeAllSharedCacheTableLocks(Btree *p){ 421 static void downgradeAllSharedCacheTableLocks(Btree *p){
404 BtShared *pBt = p->pBt; 422 BtShared *pBt = p->pBt;
405 if( pBt->pWriter==p ){ 423 if( pBt->pWriter==p ){
406 BtLock *pLock; 424 BtLock *pLock;
407 pBt->pWriter = 0; 425 pBt->pWriter = 0;
408 pBt->isExclusive = 0; 426 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
409 pBt->isPending = 0;
410 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){ 427 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
411 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p ); 428 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
412 pLock->eLock = READ_LOCK; 429 pLock->eLock = READ_LOCK;
413 } 430 }
414 } 431 }
415 } 432 }
416 433
417 #endif /* SQLITE_OMIT_SHARED_CACHE */ 434 #endif /* SQLITE_OMIT_SHARED_CACHE */
418 435
419 static void releasePage(MemPage *pPage); /* Forward reference */ 436 static void releasePage(MemPage *pPage); /* Forward reference */
420 437
421 /* 438 /*
422 ***** This routine is used inside of assert() only **** 439 ***** This routine is used inside of assert() only ****
423 ** 440 **
424 ** Verify that the cursor holds the mutex on its BtShared 441 ** Verify that the cursor holds the mutex on its BtShared
425 */ 442 */
426 #ifdef SQLITE_DEBUG 443 #ifdef SQLITE_DEBUG
427 static int cursorHoldsMutex(BtCursor *p){ 444 static int cursorHoldsMutex(BtCursor *p){
428 return sqlite3_mutex_held(p->pBt->mutex); 445 return sqlite3_mutex_held(p->pBt->mutex);
429 } 446 }
430 #endif 447 #endif
431 448
432
433 #ifndef SQLITE_OMIT_INCRBLOB
434 /* 449 /*
435 ** Invalidate the overflow page-list cache for cursor pCur, if any. 450 ** Invalidate the overflow cache of the cursor passed as the first argument.
451 ** on the shared btree structure pBt.
436 */ 452 */
437 static void invalidateOverflowCache(BtCursor *pCur){ 453 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
438 assert( cursorHoldsMutex(pCur) );
439 sqlite3_free(pCur->aOverflow);
440 pCur->aOverflow = 0;
441 }
442 454
443 /* 455 /*
444 ** Invalidate the overflow page-list cache for all cursors opened 456 ** Invalidate the overflow page-list cache for all cursors opened
445 ** on the shared btree structure pBt. 457 ** on the shared btree structure pBt.
446 */ 458 */
447 static void invalidateAllOverflowCache(BtShared *pBt){ 459 static void invalidateAllOverflowCache(BtShared *pBt){
448 BtCursor *p; 460 BtCursor *p;
449 assert( sqlite3_mutex_held(pBt->mutex) ); 461 assert( sqlite3_mutex_held(pBt->mutex) );
450 for(p=pBt->pCursor; p; p=p->pNext){ 462 for(p=pBt->pCursor; p; p=p->pNext){
451 invalidateOverflowCache(p); 463 invalidateOverflowCache(p);
452 } 464 }
453 } 465 }
454 466
467 #ifndef SQLITE_OMIT_INCRBLOB
455 /* 468 /*
456 ** This function is called before modifying the contents of a table 469 ** This function is called before modifying the contents of a table
457 ** to invalidate any incrblob cursors that are open on the 470 ** to invalidate any incrblob cursors that are open on the
458 ** row or one of the rows being modified. 471 ** row or one of the rows being modified.
459 ** 472 **
460 ** If argument isClearTable is true, then the entire contents of the 473 ** If argument isClearTable is true, then the entire contents of the
461 ** table is about to be deleted. In this case invalidate all incrblob 474 ** table is about to be deleted. In this case invalidate all incrblob
462 ** cursors open on any row within the table with root-page pgnoRoot. 475 ** cursors open on any row within the table with root-page pgnoRoot.
463 ** 476 **
464 ** Otherwise, if argument isClearTable is false, then the row with 477 ** Otherwise, if argument isClearTable is false, then the row with
465 ** rowid iRow is being replaced or deleted. In this case invalidate 478 ** rowid iRow is being replaced or deleted. In this case invalidate
466 ** only those incrblob cursors open on that specific row. 479 ** only those incrblob cursors open on that specific row.
467 */ 480 */
468 static void invalidateIncrblobCursors( 481 static void invalidateIncrblobCursors(
469 Btree *pBtree, /* The database file to check */ 482 Btree *pBtree, /* The database file to check */
470 i64 iRow, /* The rowid that might be changing */ 483 i64 iRow, /* The rowid that might be changing */
471 int isClearTable /* True if all rows are being deleted */ 484 int isClearTable /* True if all rows are being deleted */
472 ){ 485 ){
473 BtCursor *p; 486 BtCursor *p;
474 BtShared *pBt = pBtree->pBt; 487 BtShared *pBt = pBtree->pBt;
475 assert( sqlite3BtreeHoldsMutex(pBtree) ); 488 assert( sqlite3BtreeHoldsMutex(pBtree) );
476 for(p=pBt->pCursor; p; p=p->pNext){ 489 for(p=pBt->pCursor; p; p=p->pNext){
477 if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){ 490 if( (p->curFlags & BTCF_Incrblob)!=0
491 && (isClearTable || p->info.nKey==iRow)
492 ){
478 p->eState = CURSOR_INVALID; 493 p->eState = CURSOR_INVALID;
479 } 494 }
480 } 495 }
481 } 496 }
482 497
483 #else 498 #else
484 /* Stub functions when INCRBLOB is omitted */ 499 /* Stub function when INCRBLOB is omitted */
485 #define invalidateOverflowCache(x)
486 #define invalidateAllOverflowCache(x)
487 #define invalidateIncrblobCursors(x,y,z) 500 #define invalidateIncrblobCursors(x,y,z)
488 #endif /* SQLITE_OMIT_INCRBLOB */ 501 #endif /* SQLITE_OMIT_INCRBLOB */
489 502
490 /* 503 /*
491 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called 504 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called
492 ** when a page that previously contained data becomes a free-list leaf 505 ** when a page that previously contained data becomes a free-list leaf
493 ** page. 506 ** page.
494 ** 507 **
495 ** The BtShared.pHasContent bitvec exists to work around an obscure 508 ** The BtShared.pHasContent bitvec exists to work around an obscure
496 ** bug caused by the interaction of two useful IO optimizations surrounding 509 ** bug caused by the interaction of two useful IO optimizations surrounding
(...skipping 55 matching lines...) Expand 10 before | Expand all | Expand 10 after
552 /* 565 /*
553 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be 566 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be
554 ** invoked at the conclusion of each write-transaction. 567 ** invoked at the conclusion of each write-transaction.
555 */ 568 */
556 static void btreeClearHasContent(BtShared *pBt){ 569 static void btreeClearHasContent(BtShared *pBt){
557 sqlite3BitvecDestroy(pBt->pHasContent); 570 sqlite3BitvecDestroy(pBt->pHasContent);
558 pBt->pHasContent = 0; 571 pBt->pHasContent = 0;
559 } 572 }
560 573
561 /* 574 /*
575 ** Release all of the apPage[] pages for a cursor.
576 */
577 static void btreeReleaseAllCursorPages(BtCursor *pCur){
578 int i;
579 for(i=0; i<=pCur->iPage; i++){
580 releasePage(pCur->apPage[i]);
581 pCur->apPage[i] = 0;
582 }
583 pCur->iPage = -1;
584 }
585
586
587 /*
562 ** Save the current cursor position in the variables BtCursor.nKey 588 ** Save the current cursor position in the variables BtCursor.nKey
563 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK. 589 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
564 ** 590 **
565 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID) 591 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
566 ** prior to calling this routine. 592 ** prior to calling this routine.
567 */ 593 */
568 static int saveCursorPosition(BtCursor *pCur){ 594 static int saveCursorPosition(BtCursor *pCur){
569 int rc; 595 int rc;
570 596
571 assert( CURSOR_VALID==pCur->eState ); 597 assert( CURSOR_VALID==pCur->eState );
572 assert( 0==pCur->pKey ); 598 assert( 0==pCur->pKey );
573 assert( cursorHoldsMutex(pCur) ); 599 assert( cursorHoldsMutex(pCur) );
574 600
575 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey); 601 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
576 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */ 602 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
577 603
578 /* If this is an intKey table, then the above call to BtreeKeySize() 604 /* If this is an intKey table, then the above call to BtreeKeySize()
579 ** stores the integer key in pCur->nKey. In this case this value is 605 ** stores the integer key in pCur->nKey. In this case this value is
580 ** all that is required. Otherwise, if pCur is not open on an intKey 606 ** all that is required. Otherwise, if pCur is not open on an intKey
581 ** table, then malloc space for and store the pCur->nKey bytes of key 607 ** table, then malloc space for and store the pCur->nKey bytes of key
582 ** data. 608 ** data.
583 */ 609 */
584 if( 0==pCur->apPage[0]->intKey ){ 610 if( 0==pCur->apPage[0]->intKey ){
585 void *pKey = sqlite3Malloc( (int)pCur->nKey ); 611 void *pKey = sqlite3Malloc( pCur->nKey );
586 if( pKey ){ 612 if( pKey ){
587 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey); 613 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
588 if( rc==SQLITE_OK ){ 614 if( rc==SQLITE_OK ){
589 pCur->pKey = pKey; 615 pCur->pKey = pKey;
590 }else{ 616 }else{
591 sqlite3_free(pKey); 617 sqlite3_free(pKey);
592 } 618 }
593 }else{ 619 }else{
594 rc = SQLITE_NOMEM; 620 rc = SQLITE_NOMEM;
595 } 621 }
596 } 622 }
597 assert( !pCur->apPage[0]->intKey || !pCur->pKey ); 623 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
598 624
599 if( rc==SQLITE_OK ){ 625 if( rc==SQLITE_OK ){
600 int i; 626 btreeReleaseAllCursorPages(pCur);
601 for(i=0; i<=pCur->iPage; i++){
602 releasePage(pCur->apPage[i]);
603 pCur->apPage[i] = 0;
604 }
605 pCur->iPage = -1;
606 pCur->eState = CURSOR_REQUIRESEEK; 627 pCur->eState = CURSOR_REQUIRESEEK;
607 } 628 }
608 629
609 invalidateOverflowCache(pCur); 630 invalidateOverflowCache(pCur);
610 return rc; 631 return rc;
611 } 632 }
612 633
634 /* Forward reference */
635 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
636
613 /* 637 /*
614 ** Save the positions of all cursors (except pExcept) that are open on 638 ** Save the positions of all cursors (except pExcept) that are open on
615 ** the table with root-page iRoot. Usually, this is called just before cursor 639 ** the table with root-page iRoot. "Saving the cursor position" means that
616 ** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()). 640 ** the location in the btree is remembered in such a way that it can be
641 ** moved back to the same spot after the btree has been modified. This
642 ** routine is called just before cursor pExcept is used to modify the
643 ** table, for example in BtreeDelete() or BtreeInsert().
644 **
645 ** Implementation note: This routine merely checks to see if any cursors
646 ** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
647 ** event that cursors are in need to being saved.
617 */ 648 */
618 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ 649 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
619 BtCursor *p; 650 BtCursor *p;
620 assert( sqlite3_mutex_held(pBt->mutex) ); 651 assert( sqlite3_mutex_held(pBt->mutex) );
621 assert( pExcept==0 || pExcept->pBt==pBt ); 652 assert( pExcept==0 || pExcept->pBt==pBt );
622 for(p=pBt->pCursor; p; p=p->pNext){ 653 for(p=pBt->pCursor; p; p=p->pNext){
623 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) && 654 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
624 p->eState==CURSOR_VALID ){ 655 }
625 int rc = saveCursorPosition(p); 656 return p ? saveCursorsOnList(p, iRoot, pExcept) : SQLITE_OK;
626 if( SQLITE_OK!=rc ){ 657 }
627 return rc; 658
659 /* This helper routine to saveAllCursors does the actual work of saving
660 ** the cursors if and when a cursor is found that actually requires saving.
661 ** The common case is that no cursors need to be saved, so this routine is
662 ** broken out from its caller to avoid unnecessary stack pointer movement.
663 */
664 static int SQLITE_NOINLINE saveCursorsOnList(
665 BtCursor *p, /* The first cursor that needs saving */
666 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
667 BtCursor *pExcept /* Do not save this cursor */
668 ){
669 do{
670 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
671 if( p->eState==CURSOR_VALID ){
672 int rc = saveCursorPosition(p);
673 if( SQLITE_OK!=rc ){
674 return rc;
675 }
676 }else{
677 testcase( p->iPage>0 );
678 btreeReleaseAllCursorPages(p);
628 } 679 }
629 } 680 }
630 } 681 p = p->pNext;
682 }while( p );
631 return SQLITE_OK; 683 return SQLITE_OK;
632 } 684 }
633 685
634 /* 686 /*
635 ** Clear the current cursor position. 687 ** Clear the current cursor position.
636 */ 688 */
637 void sqlite3BtreeClearCursor(BtCursor *pCur){ 689 void sqlite3BtreeClearCursor(BtCursor *pCur){
638 assert( cursorHoldsMutex(pCur) ); 690 assert( cursorHoldsMutex(pCur) );
639 sqlite3_free(pCur->pKey); 691 sqlite3_free(pCur->pKey);
640 pCur->pKey = 0; 692 pCur->pKey = 0;
641 pCur->eState = CURSOR_INVALID; 693 pCur->eState = CURSOR_INVALID;
642 } 694 }
643 695
644 /* 696 /*
645 ** In this version of BtreeMoveto, pKey is a packed index record 697 ** In this version of BtreeMoveto, pKey is a packed index record
646 ** such as is generated by the OP_MakeRecord opcode. Unpack the 698 ** such as is generated by the OP_MakeRecord opcode. Unpack the
647 ** record and then call BtreeMovetoUnpacked() to do the work. 699 ** record and then call BtreeMovetoUnpacked() to do the work.
648 */ 700 */
649 static int btreeMoveto( 701 static int btreeMoveto(
650 BtCursor *pCur, /* Cursor open on the btree to be searched */ 702 BtCursor *pCur, /* Cursor open on the btree to be searched */
651 const void *pKey, /* Packed key if the btree is an index */ 703 const void *pKey, /* Packed key if the btree is an index */
652 i64 nKey, /* Integer key for tables. Size of pKey for indices */ 704 i64 nKey, /* Integer key for tables. Size of pKey for indices */
653 int bias, /* Bias search to the high end */ 705 int bias, /* Bias search to the high end */
654 int *pRes /* Write search results here */ 706 int *pRes /* Write search results here */
655 ){ 707 ){
656 int rc; /* Status code */ 708 int rc; /* Status code */
657 UnpackedRecord *pIdxKey; /* Unpacked index key */ 709 UnpackedRecord *pIdxKey; /* Unpacked index key */
658 char aSpace[150]; /* Temp space for pIdxKey - to avoid a malloc */ 710 char aSpace[200]; /* Temp space for pIdxKey - to avoid a malloc */
711 char *pFree = 0;
659 712
660 if( pKey ){ 713 if( pKey ){
661 assert( nKey==(i64)(int)nKey ); 714 assert( nKey==(i64)(int)nKey );
662 pIdxKey = sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, 715 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
663 aSpace, sizeof(aSpace)); 716 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
717 );
664 if( pIdxKey==0 ) return SQLITE_NOMEM; 718 if( pIdxKey==0 ) return SQLITE_NOMEM;
719 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
720 if( pIdxKey->nField==0 ){
721 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
722 return SQLITE_CORRUPT_BKPT;
723 }
665 }else{ 724 }else{
666 pIdxKey = 0; 725 pIdxKey = 0;
667 } 726 }
668 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes); 727 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
669 if( pKey ){ 728 if( pFree ){
670 sqlite3VdbeDeleteUnpackedRecord(pIdxKey); 729 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
671 } 730 }
672 return rc; 731 return rc;
673 } 732 }
674 733
675 /* 734 /*
676 ** Restore the cursor to the position it was in (or as close to as possible) 735 ** Restore the cursor to the position it was in (or as close to as possible)
677 ** when saveCursorPosition() was called. Note that this call deletes the 736 ** when saveCursorPosition() was called. Note that this call deletes the
678 ** saved position info stored by saveCursorPosition(), so there can be 737 ** saved position info stored by saveCursorPosition(), so there can be
679 ** at most one effective restoreCursorPosition() call after each 738 ** at most one effective restoreCursorPosition() call after each
680 ** saveCursorPosition(). 739 ** saveCursorPosition().
681 */ 740 */
682 static int btreeRestoreCursorPosition(BtCursor *pCur){ 741 static int btreeRestoreCursorPosition(BtCursor *pCur){
683 int rc; 742 int rc;
684 assert( cursorHoldsMutex(pCur) ); 743 assert( cursorHoldsMutex(pCur) );
685 assert( pCur->eState>=CURSOR_REQUIRESEEK ); 744 assert( pCur->eState>=CURSOR_REQUIRESEEK );
686 if( pCur->eState==CURSOR_FAULT ){ 745 if( pCur->eState==CURSOR_FAULT ){
687 return pCur->skipNext; 746 return pCur->skipNext;
688 } 747 }
689 pCur->eState = CURSOR_INVALID; 748 pCur->eState = CURSOR_INVALID;
690 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext); 749 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
691 if( rc==SQLITE_OK ){ 750 if( rc==SQLITE_OK ){
692 sqlite3_free(pCur->pKey); 751 sqlite3_free(pCur->pKey);
693 pCur->pKey = 0; 752 pCur->pKey = 0;
694 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID ); 753 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
754 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
755 pCur->eState = CURSOR_SKIPNEXT;
756 }
695 } 757 }
696 return rc; 758 return rc;
697 } 759 }
698 760
699 #define restoreCursorPosition(p) \ 761 #define restoreCursorPosition(p) \
700 (p->eState>=CURSOR_REQUIRESEEK ? \ 762 (p->eState>=CURSOR_REQUIRESEEK ? \
701 btreeRestoreCursorPosition(p) : \ 763 btreeRestoreCursorPosition(p) : \
702 SQLITE_OK) 764 SQLITE_OK)
703 765
704 /* 766 /*
705 ** Determine whether or not a cursor has moved from the position it 767 ** Determine whether or not a cursor has moved from the position where
706 ** was last placed at. Cursors can move when the row they are pointing 768 ** it was last placed, or has been invalidated for any other reason.
707 ** at is deleted out from under them. 769 ** Cursors can move when the row they are pointing at is deleted out
770 ** from under them, for example. Cursor might also move if a btree
771 ** is rebalanced.
708 ** 772 **
709 ** This routine returns an error code if something goes wrong. The 773 ** Calling this routine with a NULL cursor pointer returns false.
710 ** integer *pHasMoved is set to one if the cursor has moved and 0 if not. 774 **
775 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
776 ** back to where it ought to be if this routine returns true.
711 */ 777 */
712 int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){ 778 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
779 return pCur->eState!=CURSOR_VALID;
780 }
781
782 /*
783 ** This routine restores a cursor back to its original position after it
784 ** has been moved by some outside activity (such as a btree rebalance or
785 ** a row having been deleted out from under the cursor).
786 **
787 ** On success, the *pDifferentRow parameter is false if the cursor is left
788 ** pointing at exactly the same row. *pDifferntRow is the row the cursor
789 ** was pointing to has been deleted, forcing the cursor to point to some
790 ** nearby row.
791 **
792 ** This routine should only be called for a cursor that just returned
793 ** TRUE from sqlite3BtreeCursorHasMoved().
794 */
795 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
713 int rc; 796 int rc;
714 797
798 assert( pCur!=0 );
799 assert( pCur->eState!=CURSOR_VALID );
715 rc = restoreCursorPosition(pCur); 800 rc = restoreCursorPosition(pCur);
716 if( rc ){ 801 if( rc ){
717 *pHasMoved = 1; 802 *pDifferentRow = 1;
718 return rc; 803 return rc;
719 } 804 }
720 if( pCur->eState!=CURSOR_VALID || pCur->skipNext!=0 ){ 805 if( pCur->eState!=CURSOR_VALID || NEVER(pCur->skipNext!=0) ){
721 *pHasMoved = 1; 806 *pDifferentRow = 1;
722 }else{ 807 }else{
723 *pHasMoved = 0; 808 *pDifferentRow = 0;
724 } 809 }
725 return SQLITE_OK; 810 return SQLITE_OK;
726 } 811 }
727 812
728 #ifndef SQLITE_OMIT_AUTOVACUUM 813 #ifndef SQLITE_OMIT_AUTOVACUUM
729 /* 814 /*
730 ** Given a page number of a regular database page, return the page 815 ** Given a page number of a regular database page, return the page
731 ** number for the pointer-map page that contains the entry for the 816 ** number for the pointer-map page that contains the entry for the
732 ** input page number. 817 ** input page number.
733 ** 818 **
(...skipping 47 matching lines...) Expand 10 before | Expand all | Expand 10 after
781 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage); 866 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
782 if( rc!=SQLITE_OK ){ 867 if( rc!=SQLITE_OK ){
783 *pRC = rc; 868 *pRC = rc;
784 return; 869 return;
785 } 870 }
786 offset = PTRMAP_PTROFFSET(iPtrmap, key); 871 offset = PTRMAP_PTROFFSET(iPtrmap, key);
787 if( offset<0 ){ 872 if( offset<0 ){
788 *pRC = SQLITE_CORRUPT_BKPT; 873 *pRC = SQLITE_CORRUPT_BKPT;
789 goto ptrmap_exit; 874 goto ptrmap_exit;
790 } 875 }
876 assert( offset <= (int)pBt->usableSize-5 );
791 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); 877 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
792 878
793 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){ 879 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
794 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent)); 880 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
795 *pRC= rc = sqlite3PagerWrite(pDbPage); 881 *pRC= rc = sqlite3PagerWrite(pDbPage);
796 if( rc==SQLITE_OK ){ 882 if( rc==SQLITE_OK ){
797 pPtrmap[offset] = eType; 883 pPtrmap[offset] = eType;
798 put4byte(&pPtrmap[offset+1], parent); 884 put4byte(&pPtrmap[offset+1], parent);
799 } 885 }
800 } 886 }
(...skipping 19 matching lines...) Expand all
820 assert( sqlite3_mutex_held(pBt->mutex) ); 906 assert( sqlite3_mutex_held(pBt->mutex) );
821 907
822 iPtrmap = PTRMAP_PAGENO(pBt, key); 908 iPtrmap = PTRMAP_PAGENO(pBt, key);
823 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage); 909 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
824 if( rc!=0 ){ 910 if( rc!=0 ){
825 return rc; 911 return rc;
826 } 912 }
827 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); 913 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
828 914
829 offset = PTRMAP_PTROFFSET(iPtrmap, key); 915 offset = PTRMAP_PTROFFSET(iPtrmap, key);
916 if( offset<0 ){
917 sqlite3PagerUnref(pDbPage);
918 return SQLITE_CORRUPT_BKPT;
919 }
920 assert( offset <= (int)pBt->usableSize-5 );
830 assert( pEType!=0 ); 921 assert( pEType!=0 );
831 *pEType = pPtrmap[offset]; 922 *pEType = pPtrmap[offset];
832 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]); 923 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
833 924
834 sqlite3PagerUnref(pDbPage); 925 sqlite3PagerUnref(pDbPage);
835 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT; 926 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
836 return SQLITE_OK; 927 return SQLITE_OK;
837 } 928 }
838 929
839 #else /* if defined SQLITE_OMIT_AUTOVACUUM */ 930 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
840 #define ptrmapPut(w,x,y,z,rc) 931 #define ptrmapPut(w,x,y,z,rc)
841 #define ptrmapGet(w,x,y,z) SQLITE_OK 932 #define ptrmapGet(w,x,y,z) SQLITE_OK
842 #define ptrmapPutOvflPtr(x, y, rc) 933 #define ptrmapPutOvflPtr(x, y, rc)
843 #endif 934 #endif
844 935
845 /* 936 /*
846 ** Given a btree page and a cell index (0 means the first cell on 937 ** Given a btree page and a cell index (0 means the first cell on
847 ** the page, 1 means the second cell, and so forth) return a pointer 938 ** the page, 1 means the second cell, and so forth) return a pointer
848 ** to the cell content. 939 ** to the cell content.
849 ** 940 **
850 ** This routine works only for pages that do not contain overflow cells. 941 ** This routine works only for pages that do not contain overflow cells.
851 */ 942 */
852 #define findCell(P,I) \ 943 #define findCell(P,I) \
853 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aData[(P)->cellOffset+2*(I)]))) 944 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)])))
945 #define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I)))))
946
854 947
855 /* 948 /*
856 ** This a more complex version of findCell() that works for 949 ** This a more complex version of findCell() that works for
857 ** pages that do contain overflow cells. 950 ** pages that do contain overflow cells.
858 */ 951 */
859 static u8 *findOverflowCell(MemPage *pPage, int iCell){ 952 static u8 *findOverflowCell(MemPage *pPage, int iCell){
860 int i; 953 int i;
861 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 954 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
862 for(i=pPage->nOverflow-1; i>=0; i--){ 955 for(i=pPage->nOverflow-1; i>=0; i--){
863 int k; 956 int k;
864 struct _OvflCell *pOvfl; 957 k = pPage->aiOvfl[i];
865 pOvfl = &pPage->aOvfl[i];
866 k = pOvfl->idx;
867 if( k<=iCell ){ 958 if( k<=iCell ){
868 if( k==iCell ){ 959 if( k==iCell ){
869 return pOvfl->pCell; 960 return pPage->apOvfl[i];
870 } 961 }
871 iCell--; 962 iCell--;
872 } 963 }
873 } 964 }
874 return findCell(pPage, iCell); 965 return findCell(pPage, iCell);
875 } 966 }
876 967
877 /* 968 /*
878 ** Parse a cell content block and fill in the CellInfo structure. There 969 ** Parse a cell content block and fill in the CellInfo structure. There
879 ** are two versions of this function. btreeParseCell() takes a 970 ** are two versions of this function. btreeParseCell() takes a
880 ** cell index as the second argument and btreeParseCellPtr() 971 ** cell index as the second argument and btreeParseCellPtr()
881 ** takes a pointer to the body of the cell as its second argument. 972 ** takes a pointer to the body of the cell as its second argument.
882 **
883 ** Within this file, the parseCell() macro can be called instead of
884 ** btreeParseCellPtr(). Using some compilers, this will be faster.
885 */ 973 */
886 static void btreeParseCellPtr( 974 static void btreeParseCellPtr(
887 MemPage *pPage, /* Page containing the cell */ 975 MemPage *pPage, /* Page containing the cell */
888 u8 *pCell, /* Pointer to the cell text. */ 976 u8 *pCell, /* Pointer to the cell text. */
889 CellInfo *pInfo /* Fill in this structure */ 977 CellInfo *pInfo /* Fill in this structure */
890 ){ 978 ){
891 u16 n; /* Number bytes in cell content header */ 979 u8 *pIter; /* For scanning through pCell */
892 u32 nPayload; /* Number of bytes of cell payload */ 980 u32 nPayload; /* Number of bytes of cell payload */
893 981
894 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 982 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
895
896 pInfo->pCell = pCell;
897 assert( pPage->leaf==0 || pPage->leaf==1 ); 983 assert( pPage->leaf==0 || pPage->leaf==1 );
898 n = pPage->childPtrSize; 984 if( pPage->intKeyLeaf ){
899 assert( n==4-4*pPage->leaf ); 985 assert( pPage->childPtrSize==0 );
900 if( pPage->intKey ){ 986 pIter = pCell + getVarint32(pCell, nPayload);
901 if( pPage->hasData ){ 987 pIter += getVarint(pIter, (u64*)&pInfo->nKey);
902 n += getVarint32(&pCell[n], nPayload); 988 }else if( pPage->noPayload ){
903 }else{ 989 assert( pPage->childPtrSize==4 );
904 nPayload = 0; 990 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
905 } 991 pInfo->nPayload = 0;
906 n += getVarint(&pCell[n], (u64*)&pInfo->nKey); 992 pInfo->nLocal = 0;
907 pInfo->nData = nPayload; 993 pInfo->iOverflow = 0;
994 pInfo->pPayload = 0;
995 return;
908 }else{ 996 }else{
909 pInfo->nData = 0; 997 pIter = pCell + pPage->childPtrSize;
910 n += getVarint32(&pCell[n], nPayload); 998 pIter += getVarint32(pIter, nPayload);
911 pInfo->nKey = nPayload; 999 pInfo->nKey = nPayload;
912 } 1000 }
913 pInfo->nPayload = nPayload; 1001 pInfo->nPayload = nPayload;
914 pInfo->nHeader = n; 1002 pInfo->pPayload = pIter;
915 testcase( nPayload==pPage->maxLocal ); 1003 testcase( nPayload==pPage->maxLocal );
916 testcase( nPayload==pPage->maxLocal+1 ); 1004 testcase( nPayload==pPage->maxLocal+1 );
917 if( likely(nPayload<=pPage->maxLocal) ){ 1005 if( nPayload<=pPage->maxLocal ){
918 /* This is the (easy) common case where the entire payload fits 1006 /* This is the (easy) common case where the entire payload fits
919 ** on the local page. No overflow is required. 1007 ** on the local page. No overflow is required.
920 */ 1008 */
921 if( (pInfo->nSize = (u16)(n+nPayload))<4 ) pInfo->nSize = 4; 1009 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1010 if( pInfo->nSize<4 ) pInfo->nSize = 4;
922 pInfo->nLocal = (u16)nPayload; 1011 pInfo->nLocal = (u16)nPayload;
923 pInfo->iOverflow = 0; 1012 pInfo->iOverflow = 0;
924 }else{ 1013 }else{
925 /* If the payload will not fit completely on the local page, we have 1014 /* If the payload will not fit completely on the local page, we have
926 ** to decide how much to store locally and how much to spill onto 1015 ** to decide how much to store locally and how much to spill onto
927 ** overflow pages. The strategy is to minimize the amount of unused 1016 ** overflow pages. The strategy is to minimize the amount of unused
928 ** space on overflow pages while keeping the amount of local storage 1017 ** space on overflow pages while keeping the amount of local storage
929 ** in between minLocal and maxLocal. 1018 ** in between minLocal and maxLocal.
930 ** 1019 **
931 ** Warning: changing the way overflow payload is distributed in any 1020 ** Warning: changing the way overflow payload is distributed in any
932 ** way will result in an incompatible file format. 1021 ** way will result in an incompatible file format.
933 */ 1022 */
934 int minLocal; /* Minimum amount of payload held locally */ 1023 int minLocal; /* Minimum amount of payload held locally */
935 int maxLocal; /* Maximum amount of payload held locally */ 1024 int maxLocal; /* Maximum amount of payload held locally */
936 int surplus; /* Overflow payload available for local storage */ 1025 int surplus; /* Overflow payload available for local storage */
937 1026
938 minLocal = pPage->minLocal; 1027 minLocal = pPage->minLocal;
939 maxLocal = pPage->maxLocal; 1028 maxLocal = pPage->maxLocal;
940 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4); 1029 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
941 testcase( surplus==maxLocal ); 1030 testcase( surplus==maxLocal );
942 testcase( surplus==maxLocal+1 ); 1031 testcase( surplus==maxLocal+1 );
943 if( surplus <= maxLocal ){ 1032 if( surplus <= maxLocal ){
944 pInfo->nLocal = (u16)surplus; 1033 pInfo->nLocal = (u16)surplus;
945 }else{ 1034 }else{
946 pInfo->nLocal = (u16)minLocal; 1035 pInfo->nLocal = (u16)minLocal;
947 } 1036 }
948 pInfo->iOverflow = (u16)(pInfo->nLocal + n); 1037 pInfo->iOverflow = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell);
949 pInfo->nSize = pInfo->iOverflow + 4; 1038 pInfo->nSize = pInfo->iOverflow + 4;
950 } 1039 }
951 } 1040 }
952 #define parseCell(pPage, iCell, pInfo) \
953 btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
954 static void btreeParseCell( 1041 static void btreeParseCell(
955 MemPage *pPage, /* Page containing the cell */ 1042 MemPage *pPage, /* Page containing the cell */
956 int iCell, /* The cell index. First cell is 0 */ 1043 int iCell, /* The cell index. First cell is 0 */
957 CellInfo *pInfo /* Fill in this structure */ 1044 CellInfo *pInfo /* Fill in this structure */
958 ){ 1045 ){
959 parseCell(pPage, iCell, pInfo); 1046 btreeParseCellPtr(pPage, findCell(pPage, iCell), pInfo);
960 } 1047 }
961 1048
962 /* 1049 /*
963 ** Compute the total number of bytes that a Cell needs in the cell 1050 ** Compute the total number of bytes that a Cell needs in the cell
964 ** data area of the btree-page. The return number includes the cell 1051 ** data area of the btree-page. The return number includes the cell
965 ** data header and the local payload, but not any overflow page or 1052 ** data header and the local payload, but not any overflow page or
966 ** the space used by the cell pointer. 1053 ** the space used by the cell pointer.
967 */ 1054 */
968 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){ 1055 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
969 u8 *pIter = &pCell[pPage->childPtrSize]; 1056 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
970 u32 nSize; 1057 u8 *pEnd; /* End mark for a varint */
1058 u32 nSize; /* Size value to return */
971 1059
972 #ifdef SQLITE_DEBUG 1060 #ifdef SQLITE_DEBUG
973 /* The value returned by this function should always be the same as 1061 /* The value returned by this function should always be the same as
974 ** the (CellInfo.nSize) value found by doing a full parse of the 1062 ** the (CellInfo.nSize) value found by doing a full parse of the
975 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1063 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
976 ** this function verifies that this invariant is not violated. */ 1064 ** this function verifies that this invariant is not violated. */
977 CellInfo debuginfo; 1065 CellInfo debuginfo;
978 btreeParseCellPtr(pPage, pCell, &debuginfo); 1066 btreeParseCellPtr(pPage, pCell, &debuginfo);
979 #endif 1067 #endif
980 1068
1069 if( pPage->noPayload ){
1070 pEnd = &pIter[9];
1071 while( (*pIter++)&0x80 && pIter<pEnd );
1072 assert( pPage->childPtrSize==4 );
1073 return (u16)(pIter - pCell);
1074 }
1075 nSize = *pIter;
1076 if( nSize>=0x80 ){
1077 pEnd = &pIter[9];
1078 nSize &= 0x7f;
1079 do{
1080 nSize = (nSize<<7) | (*++pIter & 0x7f);
1081 }while( *(pIter)>=0x80 && pIter<pEnd );
1082 }
1083 pIter++;
981 if( pPage->intKey ){ 1084 if( pPage->intKey ){
982 u8 *pEnd;
983 if( pPage->hasData ){
984 pIter += getVarint32(pIter, nSize);
985 }else{
986 nSize = 0;
987 }
988
989 /* pIter now points at the 64-bit integer key value, a variable length 1085 /* pIter now points at the 64-bit integer key value, a variable length
990 ** integer. The following block moves pIter to point at the first byte 1086 ** integer. The following block moves pIter to point at the first byte
991 ** past the end of the key value. */ 1087 ** past the end of the key value. */
992 pEnd = &pIter[9]; 1088 pEnd = &pIter[9];
993 while( (*pIter++)&0x80 && pIter<pEnd ); 1089 while( (*pIter++)&0x80 && pIter<pEnd );
994 }else{
995 pIter += getVarint32(pIter, nSize);
996 } 1090 }
997
998 testcase( nSize==pPage->maxLocal ); 1091 testcase( nSize==pPage->maxLocal );
999 testcase( nSize==pPage->maxLocal+1 ); 1092 testcase( nSize==pPage->maxLocal+1 );
1000 if( nSize>pPage->maxLocal ){ 1093 if( nSize<=pPage->maxLocal ){
1094 nSize += (u32)(pIter - pCell);
1095 if( nSize<4 ) nSize = 4;
1096 }else{
1001 int minLocal = pPage->minLocal; 1097 int minLocal = pPage->minLocal;
1002 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); 1098 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
1003 testcase( nSize==pPage->maxLocal ); 1099 testcase( nSize==pPage->maxLocal );
1004 testcase( nSize==pPage->maxLocal+1 ); 1100 testcase( nSize==pPage->maxLocal+1 );
1005 if( nSize>pPage->maxLocal ){ 1101 if( nSize>pPage->maxLocal ){
1006 nSize = minLocal; 1102 nSize = minLocal;
1007 } 1103 }
1008 nSize += 4; 1104 nSize += 4 + (u16)(pIter - pCell);
1009 } 1105 }
1010 nSize += (u32)(pIter - pCell); 1106 assert( nSize==debuginfo.nSize || CORRUPT_DB );
1011
1012 /* The minimum size of any cell is 4 bytes. */
1013 if( nSize<4 ){
1014 nSize = 4;
1015 }
1016
1017 assert( nSize==debuginfo.nSize );
1018 return (u16)nSize; 1107 return (u16)nSize;
1019 } 1108 }
1020 1109
1021 #ifdef SQLITE_DEBUG 1110 #ifdef SQLITE_DEBUG
1022 /* This variation on cellSizePtr() is used inside of assert() statements 1111 /* This variation on cellSizePtr() is used inside of assert() statements
1023 ** only. */ 1112 ** only. */
1024 static u16 cellSize(MemPage *pPage, int iCell){ 1113 static u16 cellSize(MemPage *pPage, int iCell){
1025 return cellSizePtr(pPage, findCell(pPage, iCell)); 1114 return cellSizePtr(pPage, findCell(pPage, iCell));
1026 } 1115 }
1027 #endif 1116 #endif
1028 1117
1029 #ifndef SQLITE_OMIT_AUTOVACUUM 1118 #ifndef SQLITE_OMIT_AUTOVACUUM
1030 /* 1119 /*
1031 ** If the cell pCell, part of page pPage contains a pointer 1120 ** If the cell pCell, part of page pPage contains a pointer
1032 ** to an overflow page, insert an entry into the pointer-map 1121 ** to an overflow page, insert an entry into the pointer-map
1033 ** for the overflow page. 1122 ** for the overflow page.
1034 */ 1123 */
1035 static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){ 1124 static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
1036 CellInfo info; 1125 CellInfo info;
1037 if( *pRC ) return; 1126 if( *pRC ) return;
1038 assert( pCell!=0 ); 1127 assert( pCell!=0 );
1039 btreeParseCellPtr(pPage, pCell, &info); 1128 btreeParseCellPtr(pPage, pCell, &info);
1040 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
1041 if( info.iOverflow ){ 1129 if( info.iOverflow ){
1042 Pgno ovfl = get4byte(&pCell[info.iOverflow]); 1130 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
1043 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC); 1131 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
1044 } 1132 }
1045 } 1133 }
1046 #endif 1134 #endif
1047 1135
1048 1136
1049 /* 1137 /*
1050 ** Defragment the page given. All Cells are moved to the 1138 ** Defragment the page given. All Cells are moved to the
1051 ** end of the page and all free space is collected into one 1139 ** end of the page and all free space is collected into one
1052 ** big FreeBlk that occurs in between the header and cell 1140 ** big FreeBlk that occurs in between the header and cell
1053 ** pointer array and the cell content area. 1141 ** pointer array and the cell content area.
1054 */ 1142 */
1055 static int defragmentPage(MemPage *pPage){ 1143 static int defragmentPage(MemPage *pPage){
1056 int i; /* Loop counter */ 1144 int i; /* Loop counter */
1057 int pc; /* Address of a i-th cell */ 1145 int pc; /* Address of the i-th cell */
1058 int hdr; /* Offset to the page header */ 1146 int hdr; /* Offset to the page header */
1059 int size; /* Size of a cell */ 1147 int size; /* Size of a cell */
1060 int usableSize; /* Number of usable bytes on a page */ 1148 int usableSize; /* Number of usable bytes on a page */
1061 int cellOffset; /* Offset to the cell pointer array */ 1149 int cellOffset; /* Offset to the cell pointer array */
1062 int cbrk; /* Offset to the cell content area */ 1150 int cbrk; /* Offset to the cell content area */
1063 int nCell; /* Number of cells on the page */ 1151 int nCell; /* Number of cells on the page */
1064 unsigned char *data; /* The page data */ 1152 unsigned char *data; /* The page data */
1065 unsigned char *temp; /* Temp area for cell content */ 1153 unsigned char *temp; /* Temp area for cell content */
1066 int iCellFirst; /* First allowable cell index */ 1154 int iCellFirst; /* First allowable cell index */
1067 int iCellLast; /* Last possible cell index */ 1155 int iCellLast; /* Last possible cell index */
(...skipping 70 matching lines...) Expand 10 before | Expand all | Expand 10 after
1138 ** The caller guarantees that there is sufficient space to make the 1226 ** The caller guarantees that there is sufficient space to make the
1139 ** allocation. This routine might need to defragment in order to bring 1227 ** allocation. This routine might need to defragment in order to bring
1140 ** all the space together, however. This routine will avoid using 1228 ** all the space together, however. This routine will avoid using
1141 ** the first two bytes past the cell pointer area since presumably this 1229 ** the first two bytes past the cell pointer area since presumably this
1142 ** allocation is being made in order to insert a new cell, so we will 1230 ** allocation is being made in order to insert a new cell, so we will
1143 ** also end up needing a new cell pointer. 1231 ** also end up needing a new cell pointer.
1144 */ 1232 */
1145 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){ 1233 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
1146 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */ 1234 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1147 u8 * const data = pPage->aData; /* Local cache of pPage->aData */ 1235 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1148 int nFrag; /* Number of fragmented bytes on pPage */
1149 int top; /* First byte of cell content area */ 1236 int top; /* First byte of cell content area */
1150 int gap; /* First byte of gap between cell pointers and cell content */ 1237 int gap; /* First byte of gap between cell pointers and cell content */
1151 int rc; /* Integer return code */ 1238 int rc; /* Integer return code */
1152 int usableSize; /* Usable size of the page */ 1239 int usableSize; /* Usable size of the page */
1153 1240
1154 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1241 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1155 assert( pPage->pBt ); 1242 assert( pPage->pBt );
1156 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1243 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1157 assert( nByte>=0 ); /* Minimum cell size is 4 */ 1244 assert( nByte>=0 ); /* Minimum cell size is 4 */
1158 assert( pPage->nFree>=nByte ); 1245 assert( pPage->nFree>=nByte );
1159 assert( pPage->nOverflow==0 ); 1246 assert( pPage->nOverflow==0 );
1160 usableSize = pPage->pBt->usableSize; 1247 usableSize = pPage->pBt->usableSize;
1161 assert( nByte < usableSize-8 ); 1248 assert( nByte < usableSize-8 );
1162 1249
1163 nFrag = data[hdr+7];
1164 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf ); 1250 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1165 gap = pPage->cellOffset + 2*pPage->nCell; 1251 gap = pPage->cellOffset + 2*pPage->nCell;
1166 top = get2byteNotZero(&data[hdr+5]); 1252 assert( gap<=65536 );
1167 if( gap>top ) return SQLITE_CORRUPT_BKPT; 1253 top = get2byte(&data[hdr+5]);
1254 if( gap>top ){
1255 if( top==0 ){
1256 top = 65536;
1257 }else{
1258 return SQLITE_CORRUPT_BKPT;
1259 }
1260 }
1261
1262 /* If there is enough space between gap and top for one more cell pointer
1263 ** array entry offset, and if the freelist is not empty, then search the
1264 ** freelist looking for a free slot big enough to satisfy the request.
1265 */
1168 testcase( gap+2==top ); 1266 testcase( gap+2==top );
1169 testcase( gap+1==top ); 1267 testcase( gap+1==top );
1170 testcase( gap==top ); 1268 testcase( gap==top );
1171 1269 if( gap+2<=top && (data[hdr+1] || data[hdr+2]) ){
1172 if( nFrag>=60 ){
1173 /* Always defragment highly fragmented pages */
1174 rc = defragmentPage(pPage);
1175 if( rc ) return rc;
1176 top = get2byteNotZero(&data[hdr+5]);
1177 }else if( gap+2<=top ){
1178 /* Search the freelist looking for a free slot big enough to satisfy
1179 ** the request. The allocation is made from the first free slot in
1180 ** the list that is large enough to accomadate it.
1181 */
1182 int pc, addr; 1270 int pc, addr;
1183 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){ 1271 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
1184 int size; /* Size of the free slot */ 1272 int size; /* Size of the free slot */
1185 if( pc>usableSize-4 || pc<addr+4 ){ 1273 if( pc>usableSize-4 || pc<addr+4 ){
1186 return SQLITE_CORRUPT_BKPT; 1274 return SQLITE_CORRUPT_BKPT;
1187 } 1275 }
1188 size = get2byte(&data[pc+2]); 1276 size = get2byte(&data[pc+2]);
1189 if( size>=nByte ){ 1277 if( size>=nByte ){
1190 int x = size - nByte; 1278 int x = size - nByte;
1191 testcase( x==4 ); 1279 testcase( x==4 );
1192 testcase( x==3 ); 1280 testcase( x==3 );
1193 if( x<4 ){ 1281 if( x<4 ){
1282 if( data[hdr+7]>=60 ) goto defragment_page;
1194 /* Remove the slot from the free-list. Update the number of 1283 /* Remove the slot from the free-list. Update the number of
1195 ** fragmented bytes within the page. */ 1284 ** fragmented bytes within the page. */
1196 memcpy(&data[addr], &data[pc], 2); 1285 memcpy(&data[addr], &data[pc], 2);
1197 data[hdr+7] = (u8)(nFrag + x); 1286 data[hdr+7] += (u8)x;
1198 }else if( size+pc > usableSize ){ 1287 }else if( size+pc > usableSize ){
1199 return SQLITE_CORRUPT_BKPT; 1288 return SQLITE_CORRUPT_BKPT;
1200 }else{ 1289 }else{
1201 /* The slot remains on the free-list. Reduce its size to account 1290 /* The slot remains on the free-list. Reduce its size to account
1202 ** for the portion used by the new allocation. */ 1291 ** for the portion used by the new allocation. */
1203 put2byte(&data[pc+2], x); 1292 put2byte(&data[pc+2], x);
1204 } 1293 }
1205 *pIdx = pc + x; 1294 *pIdx = pc + x;
1206 return SQLITE_OK; 1295 return SQLITE_OK;
1207 } 1296 }
1208 } 1297 }
1209 } 1298 }
1210 1299
1211 /* Check to make sure there is enough space in the gap to satisfy 1300 /* The request could not be fulfilled using a freelist slot. Check
1212 ** the allocation. If not, defragment. 1301 ** to see if defragmentation is necessary.
1213 */ 1302 */
1214 testcase( gap+2+nByte==top ); 1303 testcase( gap+2+nByte==top );
1215 if( gap+2+nByte>top ){ 1304 if( gap+2+nByte>top ){
1305 defragment_page:
1306 testcase( pPage->nCell==0 );
1216 rc = defragmentPage(pPage); 1307 rc = defragmentPage(pPage);
1217 if( rc ) return rc; 1308 if( rc ) return rc;
1218 top = get2byteNotZero(&data[hdr+5]); 1309 top = get2byteNotZero(&data[hdr+5]);
1219 assert( gap+nByte<=top ); 1310 assert( gap+nByte<=top );
1220 } 1311 }
1221 1312
1222 1313
1223 /* Allocate memory from the gap in between the cell pointer array 1314 /* Allocate memory from the gap in between the cell pointer array
1224 ** and the cell content area. The btreeInitPage() call has already 1315 ** and the cell content area. The btreeInitPage() call has already
1225 ** validated the freelist. Given that the freelist is valid, there 1316 ** validated the freelist. Given that the freelist is valid, there
1226 ** is no way that the allocation can extend off the end of the page. 1317 ** is no way that the allocation can extend off the end of the page.
1227 ** The assert() below verifies the previous sentence. 1318 ** The assert() below verifies the previous sentence.
1228 */ 1319 */
1229 top -= nByte; 1320 top -= nByte;
1230 put2byte(&data[hdr+5], top); 1321 put2byte(&data[hdr+5], top);
1231 assert( top+nByte <= (int)pPage->pBt->usableSize ); 1322 assert( top+nByte <= (int)pPage->pBt->usableSize );
1232 *pIdx = top; 1323 *pIdx = top;
1233 return SQLITE_OK; 1324 return SQLITE_OK;
1234 } 1325 }
1235 1326
1236 /* 1327 /*
1237 ** Return a section of the pPage->aData to the freelist. 1328 ** Return a section of the pPage->aData to the freelist.
1238 ** The first byte of the new free block is pPage->aDisk[start] 1329 ** The first byte of the new free block is pPage->aData[iStart]
1239 ** and the size of the block is "size" bytes. 1330 ** and the size of the block is iSize bytes.
1240 ** 1331 **
1241 ** Most of the effort here is involved in coalesing adjacent 1332 ** Adjacent freeblocks are coalesced.
1242 ** free blocks into a single big free block. 1333 **
1334 ** Note that even though the freeblock list was checked by btreeInitPage(),
1335 ** that routine will not detect overlap between cells or freeblocks. Nor
1336 ** does it detect cells or freeblocks that encrouch into the reserved bytes
1337 ** at the end of the page. So do additional corruption checks inside this
1338 ** routine and return SQLITE_CORRUPT if any problems are found.
1243 */ 1339 */
1244 static int freeSpace(MemPage *pPage, int start, int size){ 1340 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
1245 int addr, pbegin, hdr; 1341 u16 iPtr; /* Address of ptr to next freeblock */
1246 int iLast; /* Largest possible freeblock offset */ 1342 u16 iFreeBlk; /* Address of the next freeblock */
1247 unsigned char *data = pPage->aData; 1343 u8 hdr; /* Page header size. 0 or 100 */
1344 u8 nFrag = 0; /* Reduction in fragmentation */
1345 u16 iOrigSize = iSize; /* Original value of iSize */
1346 u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
1347 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
1348 unsigned char *data = pPage->aData; /* Page content */
1248 1349
1249 assert( pPage->pBt!=0 ); 1350 assert( pPage->pBt!=0 );
1250 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1351 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1251 assert( start>=pPage->hdrOffset+6+pPage->childPtrSize ); 1352 assert( iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
1252 assert( (start + size) <= (int)pPage->pBt->usableSize ); 1353 assert( iEnd <= pPage->pBt->usableSize );
1253 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1354 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1254 assert( size>=0 ); /* Minimum cell size is 4 */ 1355 assert( iSize>=4 ); /* Minimum cell size is 4 */
1356 assert( iStart<=iLast );
1255 1357
1256 if( pPage->pBt->secureDelete ){ 1358 /* Overwrite deleted information with zeros when the secure_delete
1257 /* Overwrite deleted information with zeros when the secure_delete 1359 ** option is enabled */
1258 ** option is enabled */ 1360 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
1259 memset(&data[start], 0, size); 1361 memset(&data[iStart], 0, iSize);
1260 } 1362 }
1261 1363
1262 /* Add the space back into the linked list of freeblocks. Note that 1364 /* The list of freeblocks must be in ascending order. Find the
1263 ** even though the freeblock list was checked by btreeInitPage(), 1365 ** spot on the list where iStart should be inserted.
1264 ** btreeInitPage() did not detect overlapping cells or
1265 ** freeblocks that overlapped cells. Nor does it detect when the
1266 ** cell content area exceeds the value in the page header. If these
1267 ** situations arise, then subsequent insert operations might corrupt
1268 ** the freelist. So we do need to check for corruption while scanning
1269 ** the freelist.
1270 */ 1366 */
1271 hdr = pPage->hdrOffset; 1367 hdr = pPage->hdrOffset;
1272 addr = hdr + 1; 1368 iPtr = hdr + 1;
1273 iLast = pPage->pBt->usableSize - 4; 1369 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1274 assert( start<=iLast ); 1370 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1275 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){ 1371 }else{
1276 if( pbegin<addr+4 ){ 1372 while( (iFreeBlk = get2byte(&data[iPtr]))>0 && iFreeBlk<iStart ){
1277 return SQLITE_CORRUPT_BKPT; 1373 if( iFreeBlk<iPtr+4 ) return SQLITE_CORRUPT_BKPT;
1374 iPtr = iFreeBlk;
1278 } 1375 }
1279 addr = pbegin; 1376 if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT;
1377 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1378
1379 /* At this point:
1380 ** iFreeBlk: First freeblock after iStart, or zero if none
1381 ** iPtr: The address of a pointer iFreeBlk
1382 **
1383 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1384 */
1385 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1386 nFrag = iFreeBlk - iEnd;
1387 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT;
1388 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
1389 iSize = iEnd - iStart;
1390 iFreeBlk = get2byte(&data[iFreeBlk]);
1391 }
1392
1393 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1394 ** pointer in the page header) then check to see if iStart should be
1395 ** coalesced onto the end of iPtr.
1396 */
1397 if( iPtr>hdr+1 ){
1398 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1399 if( iPtrEnd+3>=iStart ){
1400 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT;
1401 nFrag += iStart - iPtrEnd;
1402 iSize = iEnd - iPtr;
1403 iStart = iPtr;
1404 }
1405 }
1406 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT;
1407 data[hdr+7] -= nFrag;
1280 } 1408 }
1281 if( pbegin>iLast ){ 1409 if( iStart==get2byte(&data[hdr+5]) ){
1282 return SQLITE_CORRUPT_BKPT; 1410 /* The new freeblock is at the beginning of the cell content area,
1411 ** so just extend the cell content area rather than create another
1412 ** freelist entry */
1413 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT;
1414 put2byte(&data[hdr+1], iFreeBlk);
1415 put2byte(&data[hdr+5], iEnd);
1416 }else{
1417 /* Insert the new freeblock into the freelist */
1418 put2byte(&data[iPtr], iStart);
1419 put2byte(&data[iStart], iFreeBlk);
1420 put2byte(&data[iStart+2], iSize);
1283 } 1421 }
1284 assert( pbegin>addr || pbegin==0 ); 1422 pPage->nFree += iOrigSize;
1285 put2byte(&data[addr], start);
1286 put2byte(&data[start], pbegin);
1287 put2byte(&data[start+2], size);
1288 pPage->nFree = pPage->nFree + (u16)size;
1289
1290 /* Coalesce adjacent free blocks */
1291 addr = hdr + 1;
1292 while( (pbegin = get2byte(&data[addr]))>0 ){
1293 int pnext, psize, x;
1294 assert( pbegin>addr );
1295 assert( pbegin <= (int)pPage->pBt->usableSize-4 );
1296 pnext = get2byte(&data[pbegin]);
1297 psize = get2byte(&data[pbegin+2]);
1298 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1299 int frag = pnext - (pbegin+psize);
1300 if( (frag<0) || (frag>(int)data[hdr+7]) ){
1301 return SQLITE_CORRUPT_BKPT;
1302 }
1303 data[hdr+7] -= (u8)frag;
1304 x = get2byte(&data[pnext]);
1305 put2byte(&data[pbegin], x);
1306 x = pnext + get2byte(&data[pnext+2]) - pbegin;
1307 put2byte(&data[pbegin+2], x);
1308 }else{
1309 addr = pbegin;
1310 }
1311 }
1312
1313 /* If the cell content area begins with a freeblock, remove it. */
1314 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1315 int top;
1316 pbegin = get2byte(&data[hdr+1]);
1317 memcpy(&data[hdr+1], &data[pbegin], 2);
1318 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1319 put2byte(&data[hdr+5], top);
1320 }
1321 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1322 return SQLITE_OK; 1423 return SQLITE_OK;
1323 } 1424 }
1324 1425
1325 /* 1426 /*
1326 ** Decode the flags byte (the first byte of the header) for a page 1427 ** Decode the flags byte (the first byte of the header) for a page
1327 ** and initialize fields of the MemPage structure accordingly. 1428 ** and initialize fields of the MemPage structure accordingly.
1328 ** 1429 **
1329 ** Only the following combinations are supported. Anything different 1430 ** Only the following combinations are supported. Anything different
1330 ** indicates a corrupt database files: 1431 ** indicates a corrupt database files:
1331 ** 1432 **
1332 ** PTF_ZERODATA 1433 ** PTF_ZERODATA
1333 ** PTF_ZERODATA | PTF_LEAF 1434 ** PTF_ZERODATA | PTF_LEAF
1334 ** PTF_LEAFDATA | PTF_INTKEY 1435 ** PTF_LEAFDATA | PTF_INTKEY
1335 ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF 1436 ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
1336 */ 1437 */
1337 static int decodeFlags(MemPage *pPage, int flagByte){ 1438 static int decodeFlags(MemPage *pPage, int flagByte){
1338 BtShared *pBt; /* A copy of pPage->pBt */ 1439 BtShared *pBt; /* A copy of pPage->pBt */
1339 1440
1340 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); 1441 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
1341 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1442 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1342 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 ); 1443 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
1343 flagByte &= ~PTF_LEAF; 1444 flagByte &= ~PTF_LEAF;
1344 pPage->childPtrSize = 4-4*pPage->leaf; 1445 pPage->childPtrSize = 4-4*pPage->leaf;
1345 pBt = pPage->pBt; 1446 pBt = pPage->pBt;
1346 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){ 1447 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1347 pPage->intKey = 1; 1448 pPage->intKey = 1;
1348 pPage->hasData = pPage->leaf; 1449 pPage->intKeyLeaf = pPage->leaf;
1450 pPage->noPayload = !pPage->leaf;
1349 pPage->maxLocal = pBt->maxLeaf; 1451 pPage->maxLocal = pBt->maxLeaf;
1350 pPage->minLocal = pBt->minLeaf; 1452 pPage->minLocal = pBt->minLeaf;
1351 }else if( flagByte==PTF_ZERODATA ){ 1453 }else if( flagByte==PTF_ZERODATA ){
1352 pPage->intKey = 0; 1454 pPage->intKey = 0;
1353 pPage->hasData = 0; 1455 pPage->intKeyLeaf = 0;
1456 pPage->noPayload = 0;
1354 pPage->maxLocal = pBt->maxLocal; 1457 pPage->maxLocal = pBt->maxLocal;
1355 pPage->minLocal = pBt->minLocal; 1458 pPage->minLocal = pBt->minLocal;
1356 }else{ 1459 }else{
1357 return SQLITE_CORRUPT_BKPT; 1460 return SQLITE_CORRUPT_BKPT;
1358 } 1461 }
1462 pPage->max1bytePayload = pBt->max1bytePayload;
1359 return SQLITE_OK; 1463 return SQLITE_OK;
1360 } 1464 }
1361 1465
1362 /* 1466 /*
1363 ** Initialize the auxiliary information for a disk block. 1467 ** Initialize the auxiliary information for a disk block.
1364 ** 1468 **
1365 ** Return SQLITE_OK on success. If we see that the page does 1469 ** Return SQLITE_OK on success. If we see that the page does
1366 ** not contain a well-formed database page, then return 1470 ** not contain a well-formed database page, then return
1367 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not 1471 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1368 ** guarantee that the page is well-formed. It only shows that 1472 ** guarantee that the page is well-formed. It only shows that
(...skipping 22 matching lines...) Expand all
1391 pBt = pPage->pBt; 1495 pBt = pPage->pBt;
1392 1496
1393 hdr = pPage->hdrOffset; 1497 hdr = pPage->hdrOffset;
1394 data = pPage->aData; 1498 data = pPage->aData;
1395 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT; 1499 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
1396 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); 1500 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1397 pPage->maskPage = (u16)(pBt->pageSize - 1); 1501 pPage->maskPage = (u16)(pBt->pageSize - 1);
1398 pPage->nOverflow = 0; 1502 pPage->nOverflow = 0;
1399 usableSize = pBt->usableSize; 1503 usableSize = pBt->usableSize;
1400 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf; 1504 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
1505 pPage->aDataEnd = &data[usableSize];
1506 pPage->aCellIdx = &data[cellOffset];
1401 top = get2byteNotZero(&data[hdr+5]); 1507 top = get2byteNotZero(&data[hdr+5]);
1402 pPage->nCell = get2byte(&data[hdr+3]); 1508 pPage->nCell = get2byte(&data[hdr+3]);
1403 if( pPage->nCell>MX_CELL(pBt) ){ 1509 if( pPage->nCell>MX_CELL(pBt) ){
1404 /* To many cells for a single page. The page must be corrupt */ 1510 /* To many cells for a single page. The page must be corrupt */
1405 return SQLITE_CORRUPT_BKPT; 1511 return SQLITE_CORRUPT_BKPT;
1406 } 1512 }
1407 testcase( pPage->nCell==MX_CELL(pBt) ); 1513 testcase( pPage->nCell==MX_CELL(pBt) );
1408 1514
1409 /* A malformed database page might cause us to read past the end 1515 /* A malformed database page might cause us to read past the end
1410 ** of page when parsing a cell. 1516 ** of page when parsing a cell.
(...skipping 33 matching lines...) Expand 10 before | Expand all | Expand 10 after
1444 while( pc>0 ){ 1550 while( pc>0 ){
1445 u16 next, size; 1551 u16 next, size;
1446 if( pc<iCellFirst || pc>iCellLast ){ 1552 if( pc<iCellFirst || pc>iCellLast ){
1447 /* Start of free block is off the page */ 1553 /* Start of free block is off the page */
1448 return SQLITE_CORRUPT_BKPT; 1554 return SQLITE_CORRUPT_BKPT;
1449 } 1555 }
1450 next = get2byte(&data[pc]); 1556 next = get2byte(&data[pc]);
1451 size = get2byte(&data[pc+2]); 1557 size = get2byte(&data[pc+2]);
1452 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){ 1558 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1453 /* Free blocks must be in ascending order. And the last byte of 1559 /* Free blocks must be in ascending order. And the last byte of
1454 » ** the free-block must lie on the database page. */ 1560 ** the free-block must lie on the database page. */
1455 return SQLITE_CORRUPT_BKPT; 1561 return SQLITE_CORRUPT_BKPT;
1456 } 1562 }
1457 nFree = nFree + size; 1563 nFree = nFree + size;
1458 pc = next; 1564 pc = next;
1459 } 1565 }
1460 1566
1461 /* At this point, nFree contains the sum of the offset to the start 1567 /* At this point, nFree contains the sum of the offset to the start
1462 ** of the cell-content area plus the number of free bytes within 1568 ** of the cell-content area plus the number of free bytes within
1463 ** the cell-content area. If this is greater than the usable-size 1569 ** the cell-content area. If this is greater than the usable-size
1464 ** of the page, then the page must be corrupted. This check also 1570 ** of the page, then the page must be corrupted. This check also
(...skipping 17 matching lines...) Expand all
1482 unsigned char *data = pPage->aData; 1588 unsigned char *data = pPage->aData;
1483 BtShared *pBt = pPage->pBt; 1589 BtShared *pBt = pPage->pBt;
1484 u8 hdr = pPage->hdrOffset; 1590 u8 hdr = pPage->hdrOffset;
1485 u16 first; 1591 u16 first;
1486 1592
1487 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno ); 1593 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
1488 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 1594 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1489 assert( sqlite3PagerGetData(pPage->pDbPage) == data ); 1595 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
1490 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1596 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1491 assert( sqlite3_mutex_held(pBt->mutex) ); 1597 assert( sqlite3_mutex_held(pBt->mutex) );
1492 if( pBt->secureDelete ){ 1598 if( pBt->btsFlags & BTS_SECURE_DELETE ){
1493 memset(&data[hdr], 0, pBt->usableSize - hdr); 1599 memset(&data[hdr], 0, pBt->usableSize - hdr);
1494 } 1600 }
1495 data[hdr] = (char)flags; 1601 data[hdr] = (char)flags;
1496 first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0); 1602 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
1497 memset(&data[hdr+1], 0, 4); 1603 memset(&data[hdr+1], 0, 4);
1498 data[hdr+7] = 0; 1604 data[hdr+7] = 0;
1499 put2byte(&data[hdr+5], pBt->usableSize); 1605 put2byte(&data[hdr+5], pBt->usableSize);
1500 pPage->nFree = (u16)(pBt->usableSize - first); 1606 pPage->nFree = (u16)(pBt->usableSize - first);
1501 decodeFlags(pPage, flags); 1607 decodeFlags(pPage, flags);
1502 pPage->hdrOffset = hdr;
1503 pPage->cellOffset = first; 1608 pPage->cellOffset = first;
1609 pPage->aDataEnd = &data[pBt->usableSize];
1610 pPage->aCellIdx = &data[first];
1504 pPage->nOverflow = 0; 1611 pPage->nOverflow = 0;
1505 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); 1612 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1506 pPage->maskPage = (u16)(pBt->pageSize - 1); 1613 pPage->maskPage = (u16)(pBt->pageSize - 1);
1507 pPage->nCell = 0; 1614 pPage->nCell = 0;
1508 pPage->isInit = 1; 1615 pPage->isInit = 1;
1509 } 1616 }
1510 1617
1511 1618
1512 /* 1619 /*
1513 ** Convert a DbPage obtained from the pager into a MemPage used by 1620 ** Convert a DbPage obtained from the pager into a MemPage used by
(...skipping 17 matching lines...) Expand all
1531 ** the content of the page at this time. So do not go to the disk 1638 ** the content of the page at this time. So do not go to the disk
1532 ** to fetch the content. Just fill in the content with zeros for now. 1639 ** to fetch the content. Just fill in the content with zeros for now.
1533 ** If in the future we call sqlite3PagerWrite() on this page, that 1640 ** If in the future we call sqlite3PagerWrite() on this page, that
1534 ** means we have started to be concerned about content and the disk 1641 ** means we have started to be concerned about content and the disk
1535 ** read should occur at that point. 1642 ** read should occur at that point.
1536 */ 1643 */
1537 static int btreeGetPage( 1644 static int btreeGetPage(
1538 BtShared *pBt, /* The btree */ 1645 BtShared *pBt, /* The btree */
1539 Pgno pgno, /* Number of the page to fetch */ 1646 Pgno pgno, /* Number of the page to fetch */
1540 MemPage **ppPage, /* Return the page in this parameter */ 1647 MemPage **ppPage, /* Return the page in this parameter */
1541 int noContent /* Do not load page content if true */ 1648 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
1542 ){ 1649 ){
1543 int rc; 1650 int rc;
1544 DbPage *pDbPage; 1651 DbPage *pDbPage;
1545 1652
1653 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
1546 assert( sqlite3_mutex_held(pBt->mutex) ); 1654 assert( sqlite3_mutex_held(pBt->mutex) );
1547 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent); 1655 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
1548 if( rc ) return rc; 1656 if( rc ) return rc;
1549 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt); 1657 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
1550 return SQLITE_OK; 1658 return SQLITE_OK;
1551 } 1659 }
1552 1660
1553 /* 1661 /*
1554 ** Retrieve a page from the pager cache. If the requested page is not 1662 ** Retrieve a page from the pager cache. If the requested page is not
1555 ** already in the pager cache return NULL. Initialize the MemPage.pBt and 1663 ** already in the pager cache return NULL. Initialize the MemPage.pBt and
1556 ** MemPage.aData elements if needed. 1664 ** MemPage.aData elements if needed.
1557 */ 1665 */
(...skipping 10 matching lines...) Expand all
1568 /* 1676 /*
1569 ** Return the size of the database file in pages. If there is any kind of 1677 ** Return the size of the database file in pages. If there is any kind of
1570 ** error, return ((unsigned int)-1). 1678 ** error, return ((unsigned int)-1).
1571 */ 1679 */
1572 static Pgno btreePagecount(BtShared *pBt){ 1680 static Pgno btreePagecount(BtShared *pBt){
1573 return pBt->nPage; 1681 return pBt->nPage;
1574 } 1682 }
1575 u32 sqlite3BtreeLastPage(Btree *p){ 1683 u32 sqlite3BtreeLastPage(Btree *p){
1576 assert( sqlite3BtreeHoldsMutex(p) ); 1684 assert( sqlite3BtreeHoldsMutex(p) );
1577 assert( ((p->pBt->nPage)&0x8000000)==0 ); 1685 assert( ((p->pBt->nPage)&0x8000000)==0 );
1578 return (int)btreePagecount(p->pBt); 1686 return btreePagecount(p->pBt);
1579 } 1687 }
1580 1688
1581 /* 1689 /*
1582 ** Get a page from the pager and initialize it. This routine is just a 1690 ** Get a page from the pager and initialize it. This routine is just a
1583 ** convenience wrapper around separate calls to btreeGetPage() and 1691 ** convenience wrapper around separate calls to btreeGetPage() and
1584 ** btreeInitPage(). 1692 ** btreeInitPage().
1585 ** 1693 **
1586 ** If an error occurs, then the value *ppPage is set to is undefined. It 1694 ** If an error occurs, then the value *ppPage is set to is undefined. It
1587 ** may remain unchanged, or it may be set to an invalid value. 1695 ** may remain unchanged, or it may be set to an invalid value.
1588 */ 1696 */
1589 static int getAndInitPage( 1697 static int getAndInitPage(
1590 BtShared *pBt, /* The database file */ 1698 BtShared *pBt, /* The database file */
1591 Pgno pgno, /* Number of the page to get */ 1699 Pgno pgno, /* Number of the page to get */
1592 MemPage **ppPage /* Write the page pointer here */ 1700 MemPage **ppPage, /* Write the page pointer here */
1701 int bReadonly /* PAGER_GET_READONLY or 0 */
1593 ){ 1702 ){
1594 int rc; 1703 int rc;
1595 assert( sqlite3_mutex_held(pBt->mutex) ); 1704 assert( sqlite3_mutex_held(pBt->mutex) );
1705 assert( bReadonly==PAGER_GET_READONLY || bReadonly==0 );
1596 1706
1597 if( pgno>btreePagecount(pBt) ){ 1707 if( pgno>btreePagecount(pBt) ){
1598 rc = SQLITE_CORRUPT_BKPT; 1708 rc = SQLITE_CORRUPT_BKPT;
1599 }else{ 1709 }else{
1600 rc = btreeGetPage(pBt, pgno, ppPage, 0); 1710 rc = btreeGetPage(pBt, pgno, ppPage, bReadonly);
1601 if( rc==SQLITE_OK ){ 1711 if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
1602 rc = btreeInitPage(*ppPage); 1712 rc = btreeInitPage(*ppPage);
1603 if( rc!=SQLITE_OK ){ 1713 if( rc!=SQLITE_OK ){
1604 releasePage(*ppPage); 1714 releasePage(*ppPage);
1605 } 1715 }
1606 } 1716 }
1607 } 1717 }
1608 1718
1609 testcase( pgno==0 ); 1719 testcase( pgno==0 );
1610 assert( pgno!=0 || rc==SQLITE_CORRUPT ); 1720 assert( pgno!=0 || rc==SQLITE_CORRUPT );
1611 return rc; 1721 return rc;
1612 } 1722 }
1613 1723
1614 /* 1724 /*
1615 ** Release a MemPage. This should be called once for each prior 1725 ** Release a MemPage. This should be called once for each prior
1616 ** call to btreeGetPage. 1726 ** call to btreeGetPage.
1617 */ 1727 */
1618 static void releasePage(MemPage *pPage){ 1728 static void releasePage(MemPage *pPage){
1619 if( pPage ){ 1729 if( pPage ){
1620 assert( pPage->aData ); 1730 assert( pPage->aData );
1621 assert( pPage->pBt ); 1731 assert( pPage->pBt );
1732 assert( pPage->pDbPage!=0 );
1622 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 1733 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1623 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); 1734 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
1624 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1735 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1625 sqlite3PagerUnref(pPage->pDbPage); 1736 sqlite3PagerUnrefNotNull(pPage->pDbPage);
1626 } 1737 }
1627 } 1738 }
1628 1739
1629 /* 1740 /*
1630 ** During a rollback, when the pager reloads information into the cache 1741 ** During a rollback, when the pager reloads information into the cache
1631 ** so that the cache is restored to its original state at the start of 1742 ** so that the cache is restored to its original state at the start of
1632 ** the transaction, for each page restored this routine is called. 1743 ** the transaction, for each page restored this routine is called.
1633 ** 1744 **
1634 ** This routine needs to reset the extra data section at the end of the 1745 ** This routine needs to reset the extra data section at the end of the
1635 ** page to agree with the restored data. 1746 ** page to agree with the restored data.
(...skipping 32 matching lines...) Expand 10 before | Expand all | Expand 10 after
1668 ** 1779 **
1669 ** zFilename is the name of the database file. If zFilename is NULL 1780 ** zFilename is the name of the database file. If zFilename is NULL
1670 ** then an ephemeral database is created. The ephemeral database might 1781 ** then an ephemeral database is created. The ephemeral database might
1671 ** be exclusively in memory, or it might use a disk-based memory cache. 1782 ** be exclusively in memory, or it might use a disk-based memory cache.
1672 ** Either way, the ephemeral database will be automatically deleted 1783 ** Either way, the ephemeral database will be automatically deleted
1673 ** when sqlite3BtreeClose() is called. 1784 ** when sqlite3BtreeClose() is called.
1674 ** 1785 **
1675 ** If zFilename is ":memory:" then an in-memory database is created 1786 ** If zFilename is ":memory:" then an in-memory database is created
1676 ** that is automatically destroyed when it is closed. 1787 ** that is automatically destroyed when it is closed.
1677 ** 1788 **
1678 ** The "flags" parameter is a bitmask that might contain bits 1789 ** The "flags" parameter is a bitmask that might contain bits like
1679 ** BTREE_OMIT_JOURNAL and/or BTREE_NO_READLOCK. The BTREE_NO_READLOCK 1790 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
1680 ** bit is also set if the SQLITE_NoReadlock flags is set in db->flags.
1681 ** These flags are passed through into sqlite3PagerOpen() and must
1682 ** be the same values as PAGER_OMIT_JOURNAL and PAGER_NO_READLOCK.
1683 ** 1791 **
1684 ** If the database is already opened in the same database connection 1792 ** If the database is already opened in the same database connection
1685 ** and we are in shared cache mode, then the open will fail with an 1793 ** and we are in shared cache mode, then the open will fail with an
1686 ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared 1794 ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1687 ** objects in the same database connection since doing so will lead 1795 ** objects in the same database connection since doing so will lead
1688 ** to problems with locking. 1796 ** to problems with locking.
1689 */ 1797 */
1690 int sqlite3BtreeOpen( 1798 int sqlite3BtreeOpen(
1799 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
1691 const char *zFilename, /* Name of the file containing the BTree database */ 1800 const char *zFilename, /* Name of the file containing the BTree database */
1692 sqlite3 *db, /* Associated database handle */ 1801 sqlite3 *db, /* Associated database handle */
1693 Btree **ppBtree, /* Pointer to new Btree object written here */ 1802 Btree **ppBtree, /* Pointer to new Btree object written here */
1694 int flags, /* Options */ 1803 int flags, /* Options */
1695 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */ 1804 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
1696 ){ 1805 ){
1697 sqlite3_vfs *pVfs; /* The VFS to use for this btree */
1698 BtShared *pBt = 0; /* Shared part of btree structure */ 1806 BtShared *pBt = 0; /* Shared part of btree structure */
1699 Btree *p; /* Handle to return */ 1807 Btree *p; /* Handle to return */
1700 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */ 1808 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1701 int rc = SQLITE_OK; /* Result code from this function */ 1809 int rc = SQLITE_OK; /* Result code from this function */
1702 u8 nReserve; /* Byte of unused space on each page */ 1810 u8 nReserve; /* Byte of unused space on each page */
1703 unsigned char zDbHeader[100]; /* Database header content */ 1811 unsigned char zDbHeader[100]; /* Database header content */
1704 1812
1705 /* True if opening an ephemeral, temporary database */ 1813 /* True if opening an ephemeral, temporary database */
1706 const int isTempDb = zFilename==0 || zFilename[0]==0; 1814 const int isTempDb = zFilename==0 || zFilename[0]==0;
1707 1815
1708 /* Set the variable isMemdb to true for an in-memory database, or 1816 /* Set the variable isMemdb to true for an in-memory database, or
1709 ** false for a file-based database. 1817 ** false for a file-based database.
1710 */ 1818 */
1711 #ifdef SQLITE_OMIT_MEMORYDB 1819 #ifdef SQLITE_OMIT_MEMORYDB
1712 const int isMemdb = 0; 1820 const int isMemdb = 0;
1713 #else 1821 #else
1714 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0) 1822 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
1715 || (isTempDb && sqlite3TempInMemory(db)); 1823 || (isTempDb && sqlite3TempInMemory(db))
1824 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
1716 #endif 1825 #endif
1717 1826
1718 assert( db!=0 ); 1827 assert( db!=0 );
1828 assert( pVfs!=0 );
1719 assert( sqlite3_mutex_held(db->mutex) ); 1829 assert( sqlite3_mutex_held(db->mutex) );
1720 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */ 1830 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
1721 1831
1722 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */ 1832 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
1723 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 ); 1833 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
1724 1834
1725 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */ 1835 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
1726 assert( (flags & BTREE_SINGLE)==0 || isTempDb ); 1836 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
1727 1837
1728 if( db->flags & SQLITE_NoReadlock ){
1729 flags |= BTREE_NO_READLOCK;
1730 }
1731 if( isMemdb ){ 1838 if( isMemdb ){
1732 flags |= BTREE_MEMORY; 1839 flags |= BTREE_MEMORY;
1733 } 1840 }
1734 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){ 1841 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
1735 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB; 1842 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
1736 } 1843 }
1737 pVfs = db->pVfs;
1738 p = sqlite3MallocZero(sizeof(Btree)); 1844 p = sqlite3MallocZero(sizeof(Btree));
1739 if( !p ){ 1845 if( !p ){
1740 return SQLITE_NOMEM; 1846 return SQLITE_NOMEM;
1741 } 1847 }
1742 p->inTrans = TRANS_NONE; 1848 p->inTrans = TRANS_NONE;
1743 p->db = db; 1849 p->db = db;
1744 #ifndef SQLITE_OMIT_SHARED_CACHE 1850 #ifndef SQLITE_OMIT_SHARED_CACHE
1745 p->lock.pBtree = p; 1851 p->lock.pBtree = p;
1746 p->lock.iTable = 1; 1852 p->lock.iTable = 1;
1747 #endif 1853 #endif
1748 1854
1749 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 1855 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1750 /* 1856 /*
1751 ** If this Btree is a candidate for shared cache, try to find an 1857 ** If this Btree is a candidate for shared cache, try to find an
1752 ** existing BtShared object that we can share with 1858 ** existing BtShared object that we can share with
1753 */ 1859 */
1754 if( isMemdb==0 && isTempDb==0 ){ 1860 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
1755 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){ 1861 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
1756 int nFullPathname = pVfs->mxPathname+1; 1862 int nFullPathname = pVfs->mxPathname+1;
1757 char *zFullPathname = sqlite3Malloc(nFullPathname); 1863 char *zFullPathname = sqlite3Malloc(nFullPathname);
1758 sqlite3_mutex *mutexShared; 1864 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
1759 p->sharable = 1; 1865 p->sharable = 1;
1760 if( !zFullPathname ){ 1866 if( !zFullPathname ){
1761 sqlite3_free(p); 1867 sqlite3_free(p);
1762 return SQLITE_NOMEM; 1868 return SQLITE_NOMEM;
1763 } 1869 }
1764 sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname); 1870 if( isMemdb ){
1871 memcpy(zFullPathname, zFilename, sqlite3Strlen30(zFilename)+1);
1872 }else{
1873 rc = sqlite3OsFullPathname(pVfs, zFilename,
1874 nFullPathname, zFullPathname);
1875 if( rc ){
1876 sqlite3_free(zFullPathname);
1877 sqlite3_free(p);
1878 return rc;
1879 }
1880 }
1881 #if SQLITE_THREADSAFE
1765 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN); 1882 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1766 sqlite3_mutex_enter(mutexOpen); 1883 sqlite3_mutex_enter(mutexOpen);
1767 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); 1884 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
1768 sqlite3_mutex_enter(mutexShared); 1885 sqlite3_mutex_enter(mutexShared);
1886 #endif
1769 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){ 1887 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
1770 assert( pBt->nRef>0 ); 1888 assert( pBt->nRef>0 );
1771 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager)) 1889 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
1772 && sqlite3PagerVfs(pBt->pPager)==pVfs ){ 1890 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
1773 int iDb; 1891 int iDb;
1774 for(iDb=db->nDb-1; iDb>=0; iDb--){ 1892 for(iDb=db->nDb-1; iDb>=0; iDb--){
1775 Btree *pExisting = db->aDb[iDb].pBt; 1893 Btree *pExisting = db->aDb[iDb].pBt;
1776 if( pExisting && pExisting->pBt==pBt ){ 1894 if( pExisting && pExisting->pBt==pBt ){
1777 sqlite3_mutex_leave(mutexShared); 1895 sqlite3_mutex_leave(mutexShared);
1778 sqlite3_mutex_leave(mutexOpen); 1896 sqlite3_mutex_leave(mutexOpen);
1779 sqlite3_free(zFullPathname); 1897 sqlite3_free(zFullPathname);
1780 sqlite3_free(p); 1898 sqlite3_free(p);
1781 return SQLITE_CONSTRAINT; 1899 return SQLITE_CONSTRAINT;
(...skipping 32 matching lines...) Expand 10 before | Expand all | Expand 10 after
1814 assert( sizeof(Pgno)==4 ); 1932 assert( sizeof(Pgno)==4 );
1815 1933
1816 pBt = sqlite3MallocZero( sizeof(*pBt) ); 1934 pBt = sqlite3MallocZero( sizeof(*pBt) );
1817 if( pBt==0 ){ 1935 if( pBt==0 ){
1818 rc = SQLITE_NOMEM; 1936 rc = SQLITE_NOMEM;
1819 goto btree_open_out; 1937 goto btree_open_out;
1820 } 1938 }
1821 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename, 1939 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
1822 EXTRA_SIZE, flags, vfsFlags, pageReinit); 1940 EXTRA_SIZE, flags, vfsFlags, pageReinit);
1823 if( rc==SQLITE_OK ){ 1941 if( rc==SQLITE_OK ){
1942 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
1824 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader); 1943 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1825 } 1944 }
1826 if( rc!=SQLITE_OK ){ 1945 if( rc!=SQLITE_OK ){
1827 goto btree_open_out; 1946 goto btree_open_out;
1828 } 1947 }
1829 pBt->openFlags = (u8)flags; 1948 pBt->openFlags = (u8)flags;
1830 pBt->db = db; 1949 pBt->db = db;
1831 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt); 1950 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
1832 p->pBt = pBt; 1951 p->pBt = pBt;
1833 1952
1834 pBt->pCursor = 0; 1953 pBt->pCursor = 0;
1835 pBt->pPage1 = 0; 1954 pBt->pPage1 = 0;
1836 pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager); 1955 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
1837 #ifdef SQLITE_SECURE_DELETE 1956 #ifdef SQLITE_SECURE_DELETE
1838 pBt->secureDelete = 1; 1957 pBt->btsFlags |= BTS_SECURE_DELETE;
1839 #endif 1958 #endif
1840 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16); 1959 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
1841 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE 1960 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1842 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ 1961 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
1843 pBt->pageSize = 0; 1962 pBt->pageSize = 0;
1844 #ifndef SQLITE_OMIT_AUTOVACUUM 1963 #ifndef SQLITE_OMIT_AUTOVACUUM
1845 /* If the magic name ":memory:" will create an in-memory database, then 1964 /* If the magic name ":memory:" will create an in-memory database, then
1846 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if 1965 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1847 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if 1966 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1848 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a 1967 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1849 ** regular file-name. In this case the auto-vacuum applies as per normal. 1968 ** regular file-name. In this case the auto-vacuum applies as per normal.
1850 */ 1969 */
1851 if( zFilename && !isMemdb ){ 1970 if( zFilename && !isMemdb ){
1852 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0); 1971 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1853 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0); 1972 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1854 } 1973 }
1855 #endif 1974 #endif
1856 nReserve = 0; 1975 nReserve = 0;
1857 }else{ 1976 }else{
1858 nReserve = zDbHeader[20]; 1977 nReserve = zDbHeader[20];
1859 pBt->pageSizeFixed = 1; 1978 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
1860 #ifndef SQLITE_OMIT_AUTOVACUUM 1979 #ifndef SQLITE_OMIT_AUTOVACUUM
1861 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); 1980 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1862 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0); 1981 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1863 #endif 1982 #endif
1864 } 1983 }
1865 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); 1984 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
1866 if( rc ) goto btree_open_out; 1985 if( rc ) goto btree_open_out;
1867 pBt->usableSize = pBt->pageSize - nReserve; 1986 pBt->usableSize = pBt->pageSize - nReserve;
1868 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */ 1987 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
1869 1988
1870 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 1989 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1871 /* Add the new BtShared object to the linked list sharable BtShareds. 1990 /* Add the new BtShared object to the linked list sharable BtShareds.
1872 */ 1991 */
1873 if( p->sharable ){ 1992 if( p->sharable ){
1874 sqlite3_mutex *mutexShared; 1993 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
1875 pBt->nRef = 1; 1994 pBt->nRef = 1;
1876 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); 1995 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
1877 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){ 1996 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
1878 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST); 1997 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
1879 if( pBt->mutex==0 ){ 1998 if( pBt->mutex==0 ){
1880 rc = SQLITE_NOMEM; 1999 rc = SQLITE_NOMEM;
1881 db->mallocFailed = 0; 2000 db->mallocFailed = 0;
1882 goto btree_open_out; 2001 goto btree_open_out;
1883 } 2002 }
1884 } 2003 }
1885 sqlite3_mutex_enter(mutexShared); 2004 sqlite3_mutex_enter(mutexShared);
1886 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList); 2005 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
(...skipping 61 matching lines...) Expand 10 before | Expand all | Expand 10 after
1948 } 2067 }
1949 2068
1950 /* 2069 /*
1951 ** Decrement the BtShared.nRef counter. When it reaches zero, 2070 ** Decrement the BtShared.nRef counter. When it reaches zero,
1952 ** remove the BtShared structure from the sharing list. Return 2071 ** remove the BtShared structure from the sharing list. Return
1953 ** true if the BtShared.nRef counter reaches zero and return 2072 ** true if the BtShared.nRef counter reaches zero and return
1954 ** false if it is still positive. 2073 ** false if it is still positive.
1955 */ 2074 */
1956 static int removeFromSharingList(BtShared *pBt){ 2075 static int removeFromSharingList(BtShared *pBt){
1957 #ifndef SQLITE_OMIT_SHARED_CACHE 2076 #ifndef SQLITE_OMIT_SHARED_CACHE
1958 sqlite3_mutex *pMaster; 2077 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
1959 BtShared *pList; 2078 BtShared *pList;
1960 int removed = 0; 2079 int removed = 0;
1961 2080
1962 assert( sqlite3_mutex_notheld(pBt->mutex) ); 2081 assert( sqlite3_mutex_notheld(pBt->mutex) );
1963 pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); 2082 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
1964 sqlite3_mutex_enter(pMaster); 2083 sqlite3_mutex_enter(pMaster);
1965 pBt->nRef--; 2084 pBt->nRef--;
1966 if( pBt->nRef<=0 ){ 2085 if( pBt->nRef<=0 ){
1967 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){ 2086 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
1968 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext; 2087 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
1969 }else{ 2088 }else{
1970 pList = GLOBAL(BtShared*,sqlite3SharedCacheList); 2089 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
1971 while( ALWAYS(pList) && pList->pNext!=pBt ){ 2090 while( ALWAYS(pList) && pList->pNext!=pBt ){
1972 pList=pList->pNext; 2091 pList=pList->pNext;
1973 } 2092 }
1974 if( ALWAYS(pList) ){ 2093 if( ALWAYS(pList) ){
1975 pList->pNext = pBt->pNext; 2094 pList->pNext = pBt->pNext;
1976 } 2095 }
1977 } 2096 }
1978 if( SQLITE_THREADSAFE ){ 2097 if( SQLITE_THREADSAFE ){
1979 sqlite3_mutex_free(pBt->mutex); 2098 sqlite3_mutex_free(pBt->mutex);
1980 } 2099 }
1981 removed = 1; 2100 removed = 1;
1982 } 2101 }
1983 sqlite3_mutex_leave(pMaster); 2102 sqlite3_mutex_leave(pMaster);
1984 return removed; 2103 return removed;
1985 #else 2104 #else
1986 return 1; 2105 return 1;
1987 #endif 2106 #endif
1988 } 2107 }
1989 2108
1990 /* 2109 /*
1991 ** Make sure pBt->pTmpSpace points to an allocation of 2110 ** Make sure pBt->pTmpSpace points to an allocation of
1992 ** MX_CELL_SIZE(pBt) bytes. 2111 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2112 ** pointer.
1993 */ 2113 */
1994 static void allocateTempSpace(BtShared *pBt){ 2114 static void allocateTempSpace(BtShared *pBt){
1995 if( !pBt->pTmpSpace ){ 2115 if( !pBt->pTmpSpace ){
1996 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize ); 2116 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2117
2118 /* One of the uses of pBt->pTmpSpace is to format cells before
2119 ** inserting them into a leaf page (function fillInCell()). If
2120 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2121 ** by the various routines that manipulate binary cells. Which
2122 ** can mean that fillInCell() only initializes the first 2 or 3
2123 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2124 ** it into a database page. This is not actually a problem, but it
2125 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2126 ** data is passed to system call write(). So to avoid this error,
2127 ** zero the first 4 bytes of temp space here.
2128 **
2129 ** Also: Provide four bytes of initialized space before the
2130 ** beginning of pTmpSpace as an area available to prepend the
2131 ** left-child pointer to the beginning of a cell.
2132 */
2133 if( pBt->pTmpSpace ){
2134 memset(pBt->pTmpSpace, 0, 8);
2135 pBt->pTmpSpace += 4;
2136 }
1997 } 2137 }
1998 } 2138 }
1999 2139
2000 /* 2140 /*
2001 ** Free the pBt->pTmpSpace allocation 2141 ** Free the pBt->pTmpSpace allocation
2002 */ 2142 */
2003 static void freeTempSpace(BtShared *pBt){ 2143 static void freeTempSpace(BtShared *pBt){
2004 sqlite3PageFree( pBt->pTmpSpace); 2144 if( pBt->pTmpSpace ){
2005 pBt->pTmpSpace = 0; 2145 pBt->pTmpSpace -= 4;
2146 sqlite3PageFree(pBt->pTmpSpace);
2147 pBt->pTmpSpace = 0;
2148 }
2006 } 2149 }
2007 2150
2008 /* 2151 /*
2009 ** Close an open database and invalidate all cursors. 2152 ** Close an open database and invalidate all cursors.
2010 */ 2153 */
2011 int sqlite3BtreeClose(Btree *p){ 2154 int sqlite3BtreeClose(Btree *p){
2012 BtShared *pBt = p->pBt; 2155 BtShared *pBt = p->pBt;
2013 BtCursor *pCur; 2156 BtCursor *pCur;
2014 2157
2015 /* Close all cursors opened via this handle. */ 2158 /* Close all cursors opened via this handle. */
2016 assert( sqlite3_mutex_held(p->db->mutex) ); 2159 assert( sqlite3_mutex_held(p->db->mutex) );
2017 sqlite3BtreeEnter(p); 2160 sqlite3BtreeEnter(p);
2018 pCur = pBt->pCursor; 2161 pCur = pBt->pCursor;
2019 while( pCur ){ 2162 while( pCur ){
2020 BtCursor *pTmp = pCur; 2163 BtCursor *pTmp = pCur;
2021 pCur = pCur->pNext; 2164 pCur = pCur->pNext;
2022 if( pTmp->pBtree==p ){ 2165 if( pTmp->pBtree==p ){
2023 sqlite3BtreeCloseCursor(pTmp); 2166 sqlite3BtreeCloseCursor(pTmp);
2024 } 2167 }
2025 } 2168 }
2026 2169
2027 /* Rollback any active transaction and free the handle structure. 2170 /* Rollback any active transaction and free the handle structure.
2028 ** The call to sqlite3BtreeRollback() drops any table-locks held by 2171 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2029 ** this handle. 2172 ** this handle.
2030 */ 2173 */
2031 sqlite3BtreeRollback(p); 2174 sqlite3BtreeRollback(p, SQLITE_OK, 0);
2032 sqlite3BtreeLeave(p); 2175 sqlite3BtreeLeave(p);
2033 2176
2034 /* If there are still other outstanding references to the shared-btree 2177 /* If there are still other outstanding references to the shared-btree
2035 ** structure, return now. The remainder of this procedure cleans 2178 ** structure, return now. The remainder of this procedure cleans
2036 ** up the shared-btree. 2179 ** up the shared-btree.
2037 */ 2180 */
2038 assert( p->wantToLock==0 && p->locked==0 ); 2181 assert( p->wantToLock==0 && p->locked==0 );
2039 if( !p->sharable || removeFromSharingList(pBt) ){ 2182 if( !p->sharable || removeFromSharingList(pBt) ){
2040 /* The pBt is no longer on the sharing list, so we can access 2183 /* The pBt is no longer on the sharing list, so we can access
2041 ** it without having to hold the mutex. 2184 ** it without having to hold the mutex.
(...skipping 38 matching lines...) Expand 10 before | Expand all | Expand 10 after
2080 */ 2223 */
2081 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){ 2224 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2082 BtShared *pBt = p->pBt; 2225 BtShared *pBt = p->pBt;
2083 assert( sqlite3_mutex_held(p->db->mutex) ); 2226 assert( sqlite3_mutex_held(p->db->mutex) );
2084 sqlite3BtreeEnter(p); 2227 sqlite3BtreeEnter(p);
2085 sqlite3PagerSetCachesize(pBt->pPager, mxPage); 2228 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
2086 sqlite3BtreeLeave(p); 2229 sqlite3BtreeLeave(p);
2087 return SQLITE_OK; 2230 return SQLITE_OK;
2088 } 2231 }
2089 2232
2233 #if SQLITE_MAX_MMAP_SIZE>0
2234 /*
2235 ** Change the limit on the amount of the database file that may be
2236 ** memory mapped.
2237 */
2238 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
2239 BtShared *pBt = p->pBt;
2240 assert( sqlite3_mutex_held(p->db->mutex) );
2241 sqlite3BtreeEnter(p);
2242 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
2243 sqlite3BtreeLeave(p);
2244 return SQLITE_OK;
2245 }
2246 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
2247
2090 /* 2248 /*
2091 ** Change the way data is synced to disk in order to increase or decrease 2249 ** Change the way data is synced to disk in order to increase or decrease
2092 ** how well the database resists damage due to OS crashes and power 2250 ** how well the database resists damage due to OS crashes and power
2093 ** failures. Level 1 is the same as asynchronous (no syncs() occur and 2251 ** failures. Level 1 is the same as asynchronous (no syncs() occur and
2094 ** there is a high probability of damage) Level 2 is the default. There 2252 ** there is a high probability of damage) Level 2 is the default. There
2095 ** is a very low but non-zero probability of damage. Level 3 reduces the 2253 ** is a very low but non-zero probability of damage. Level 3 reduces the
2096 ** probability of damage to near zero but with a write performance reduction. 2254 ** probability of damage to near zero but with a write performance reduction.
2097 */ 2255 */
2098 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 2256 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
2099 int sqlite3BtreeSetSafetyLevel( 2257 int sqlite3BtreeSetPagerFlags(
2100 Btree *p, /* The btree to set the safety level on */ 2258 Btree *p, /* The btree to set the safety level on */
2101 int level, /* PRAGMA synchronous. 1=OFF, 2=NORMAL, 3=FULL */ 2259 unsigned pgFlags /* Various PAGER_* flags */
2102 int fullSync, /* PRAGMA fullfsync. */
2103 int ckptFullSync /* PRAGMA checkpoint_fullfync */
2104 ){ 2260 ){
2105 BtShared *pBt = p->pBt; 2261 BtShared *pBt = p->pBt;
2106 assert( sqlite3_mutex_held(p->db->mutex) ); 2262 assert( sqlite3_mutex_held(p->db->mutex) );
2107 assert( level>=1 && level<=3 );
2108 sqlite3BtreeEnter(p); 2263 sqlite3BtreeEnter(p);
2109 sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync, ckptFullSync); 2264 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
2110 sqlite3BtreeLeave(p); 2265 sqlite3BtreeLeave(p);
2111 return SQLITE_OK; 2266 return SQLITE_OK;
2112 } 2267 }
2113 #endif 2268 #endif
2114 2269
2115 /* 2270 /*
2116 ** Return TRUE if the given btree is set to safety level 1. In other 2271 ** Return TRUE if the given btree is set to safety level 1. In other
2117 ** words, return TRUE if no sync() occurs on the disk files. 2272 ** words, return TRUE if no sync() occurs on the disk files.
2118 */ 2273 */
2119 int sqlite3BtreeSyncDisabled(Btree *p){ 2274 int sqlite3BtreeSyncDisabled(Btree *p){
(...skipping 17 matching lines...) Expand all
2137 ** changed. 2292 ** changed.
2138 ** 2293 **
2139 ** Page sizes are constrained to be a power of two so that the region 2294 ** Page sizes are constrained to be a power of two so that the region
2140 ** of the database file used for locking (beginning at PENDING_BYTE, 2295 ** of the database file used for locking (beginning at PENDING_BYTE,
2141 ** the first byte past the 1GB boundary, 0x40000000) needs to occur 2296 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
2142 ** at the beginning of a page. 2297 ** at the beginning of a page.
2143 ** 2298 **
2144 ** If parameter nReserve is less than zero, then the number of reserved 2299 ** If parameter nReserve is less than zero, then the number of reserved
2145 ** bytes per page is left unchanged. 2300 ** bytes per page is left unchanged.
2146 ** 2301 **
2147 ** If the iFix!=0 then the pageSizeFixed flag is set so that the page size 2302 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
2148 ** and autovacuum mode can no longer be changed. 2303 ** and autovacuum mode can no longer be changed.
2149 */ 2304 */
2150 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){ 2305 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
2151 int rc = SQLITE_OK; 2306 int rc = SQLITE_OK;
2152 BtShared *pBt = p->pBt; 2307 BtShared *pBt = p->pBt;
2153 assert( nReserve>=-1 && nReserve<=255 ); 2308 assert( nReserve>=-1 && nReserve<=255 );
2154 sqlite3BtreeEnter(p); 2309 sqlite3BtreeEnter(p);
2155 if( pBt->pageSizeFixed ){ 2310 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
2156 sqlite3BtreeLeave(p); 2311 sqlite3BtreeLeave(p);
2157 return SQLITE_READONLY; 2312 return SQLITE_READONLY;
2158 } 2313 }
2159 if( nReserve<0 ){ 2314 if( nReserve<0 ){
2160 nReserve = pBt->pageSize - pBt->usableSize; 2315 nReserve = pBt->pageSize - pBt->usableSize;
2161 } 2316 }
2162 assert( nReserve>=0 && nReserve<=255 ); 2317 assert( nReserve>=0 && nReserve<=255 );
2163 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && 2318 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2164 ((pageSize-1)&pageSize)==0 ){ 2319 ((pageSize-1)&pageSize)==0 ){
2165 assert( (pageSize & 7)==0 ); 2320 assert( (pageSize & 7)==0 );
2166 assert( !pBt->pPage1 && !pBt->pCursor ); 2321 assert( !pBt->pPage1 && !pBt->pCursor );
2167 pBt->pageSize = (u32)pageSize; 2322 pBt->pageSize = (u32)pageSize;
2168 freeTempSpace(pBt); 2323 freeTempSpace(pBt);
2169 } 2324 }
2170 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); 2325 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2171 pBt->usableSize = pBt->pageSize - (u16)nReserve; 2326 pBt->usableSize = pBt->pageSize - (u16)nReserve;
2172 if( iFix ) pBt->pageSizeFixed = 1; 2327 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2173 sqlite3BtreeLeave(p); 2328 sqlite3BtreeLeave(p);
2174 return rc; 2329 return rc;
2175 } 2330 }
2176 2331
2177 /* 2332 /*
2178 ** Return the currently defined page size 2333 ** Return the currently defined page size
2179 */ 2334 */
2180 int sqlite3BtreeGetPageSize(Btree *p){ 2335 int sqlite3BtreeGetPageSize(Btree *p){
2181 return p->pBt->pageSize; 2336 return p->pBt->pageSize;
2182 } 2337 }
2183 2338
2339 #if defined(SQLITE_HAS_CODEC) || defined(SQLITE_DEBUG)
2340 /*
2341 ** This function is similar to sqlite3BtreeGetReserve(), except that it
2342 ** may only be called if it is guaranteed that the b-tree mutex is already
2343 ** held.
2344 **
2345 ** This is useful in one special case in the backup API code where it is
2346 ** known that the shared b-tree mutex is held, but the mutex on the
2347 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2348 ** were to be called, it might collide with some other operation on the
2349 ** database handle that owns *p, causing undefined behavior.
2350 */
2351 int sqlite3BtreeGetReserveNoMutex(Btree *p){
2352 assert( sqlite3_mutex_held(p->pBt->mutex) );
2353 return p->pBt->pageSize - p->pBt->usableSize;
2354 }
2355 #endif /* SQLITE_HAS_CODEC || SQLITE_DEBUG */
2356
2184 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) 2357 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
2185 /* 2358 /*
2186 ** Return the number of bytes of space at the end of every page that 2359 ** Return the number of bytes of space at the end of every page that
2187 ** are intentually left unused. This is the "reserved" space that is 2360 ** are intentually left unused. This is the "reserved" space that is
2188 ** sometimes used by extensions. 2361 ** sometimes used by extensions.
2189 */ 2362 */
2190 int sqlite3BtreeGetReserve(Btree *p){ 2363 int sqlite3BtreeGetReserve(Btree *p){
2191 int n; 2364 int n;
2192 sqlite3BtreeEnter(p); 2365 sqlite3BtreeEnter(p);
2193 n = p->pBt->pageSize - p->pBt->usableSize; 2366 n = p->pBt->pageSize - p->pBt->usableSize;
2194 sqlite3BtreeLeave(p); 2367 sqlite3BtreeLeave(p);
2195 return n; 2368 return n;
2196 } 2369 }
2197 2370
2198 /* 2371 /*
2199 ** Set the maximum page count for a database if mxPage is positive. 2372 ** Set the maximum page count for a database if mxPage is positive.
2200 ** No changes are made if mxPage is 0 or negative. 2373 ** No changes are made if mxPage is 0 or negative.
2201 ** Regardless of the value of mxPage, return the maximum page count. 2374 ** Regardless of the value of mxPage, return the maximum page count.
2202 */ 2375 */
2203 int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){ 2376 int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
2204 int n; 2377 int n;
2205 sqlite3BtreeEnter(p); 2378 sqlite3BtreeEnter(p);
2206 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage); 2379 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2207 sqlite3BtreeLeave(p); 2380 sqlite3BtreeLeave(p);
2208 return n; 2381 return n;
2209 } 2382 }
2210 2383
2211 /* 2384 /*
2212 ** Set the secureDelete flag if newFlag is 0 or 1. If newFlag is -1, 2385 ** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2213 ** then make no changes. Always return the value of the secureDelete 2386 ** then make no changes. Always return the value of the BTS_SECURE_DELETE
2214 ** setting after the change. 2387 ** setting after the change.
2215 */ 2388 */
2216 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){ 2389 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2217 int b; 2390 int b;
2218 if( p==0 ) return 0; 2391 if( p==0 ) return 0;
2219 sqlite3BtreeEnter(p); 2392 sqlite3BtreeEnter(p);
2220 if( newFlag>=0 ){ 2393 if( newFlag>=0 ){
2221 p->pBt->secureDelete = (newFlag!=0) ? 1 : 0; 2394 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2395 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
2222 } 2396 }
2223 b = p->pBt->secureDelete; 2397 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
2224 sqlite3BtreeLeave(p); 2398 sqlite3BtreeLeave(p);
2225 return b; 2399 return b;
2226 } 2400 }
2227 #endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */ 2401 #endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
2228 2402
2229 /* 2403 /*
2230 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum' 2404 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2231 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it 2405 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2232 ** is disabled. The default value for the auto-vacuum property is 2406 ** is disabled. The default value for the auto-vacuum property is
2233 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro. 2407 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2234 */ 2408 */
2235 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){ 2409 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
2236 #ifdef SQLITE_OMIT_AUTOVACUUM 2410 #ifdef SQLITE_OMIT_AUTOVACUUM
2237 return SQLITE_READONLY; 2411 return SQLITE_READONLY;
2238 #else 2412 #else
2239 BtShared *pBt = p->pBt; 2413 BtShared *pBt = p->pBt;
2240 int rc = SQLITE_OK; 2414 int rc = SQLITE_OK;
2241 u8 av = (u8)autoVacuum; 2415 u8 av = (u8)autoVacuum;
2242 2416
2243 sqlite3BtreeEnter(p); 2417 sqlite3BtreeEnter(p);
2244 if( pBt->pageSizeFixed && (av ?1:0)!=pBt->autoVacuum ){ 2418 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
2245 rc = SQLITE_READONLY; 2419 rc = SQLITE_READONLY;
2246 }else{ 2420 }else{
2247 pBt->autoVacuum = av ?1:0; 2421 pBt->autoVacuum = av ?1:0;
2248 pBt->incrVacuum = av==2 ?1:0; 2422 pBt->incrVacuum = av==2 ?1:0;
2249 } 2423 }
2250 sqlite3BtreeLeave(p); 2424 sqlite3BtreeLeave(p);
2251 return rc; 2425 return rc;
2252 #endif 2426 #endif
2253 } 2427 }
2254 2428
(...skipping 53 matching lines...) Expand 10 before | Expand all | Expand 10 after
2308 u32 pageSize; 2482 u32 pageSize;
2309 u32 usableSize; 2483 u32 usableSize;
2310 u8 *page1 = pPage1->aData; 2484 u8 *page1 = pPage1->aData;
2311 rc = SQLITE_NOTADB; 2485 rc = SQLITE_NOTADB;
2312 if( memcmp(page1, zMagicHeader, 16)!=0 ){ 2486 if( memcmp(page1, zMagicHeader, 16)!=0 ){
2313 goto page1_init_failed; 2487 goto page1_init_failed;
2314 } 2488 }
2315 2489
2316 #ifdef SQLITE_OMIT_WAL 2490 #ifdef SQLITE_OMIT_WAL
2317 if( page1[18]>1 ){ 2491 if( page1[18]>1 ){
2318 pBt->readOnly = 1; 2492 pBt->btsFlags |= BTS_READ_ONLY;
2319 } 2493 }
2320 if( page1[19]>1 ){ 2494 if( page1[19]>1 ){
2321 goto page1_init_failed; 2495 goto page1_init_failed;
2322 } 2496 }
2323 #else 2497 #else
2324 if( page1[18]>2 ){ 2498 if( page1[18]>2 ){
2325 pBt->readOnly = 1; 2499 pBt->btsFlags |= BTS_READ_ONLY;
2326 } 2500 }
2327 if( page1[19]>2 ){ 2501 if( page1[19]>2 ){
2328 goto page1_init_failed; 2502 goto page1_init_failed;
2329 } 2503 }
2330 2504
2331 /* If the write version is set to 2, this database should be accessed 2505 /* If the write version is set to 2, this database should be accessed
2332 ** in WAL mode. If the log is not already open, open it now. Then 2506 ** in WAL mode. If the log is not already open, open it now. Then
2333 ** return SQLITE_OK and return without populating BtShared.pPage1. 2507 ** return SQLITE_OK and return without populating BtShared.pPage1.
2334 ** The caller detects this and calls this function again. This is 2508 ** The caller detects this and calls this function again. This is
2335 ** required as the version of page 1 currently in the page1 buffer 2509 ** required as the version of page 1 currently in the page1 buffer
2336 ** may not be the latest version - there may be a newer one in the log 2510 ** may not be the latest version - there may be a newer one in the log
2337 ** file. 2511 ** file.
2338 */ 2512 */
2339 if( page1[19]==2 && pBt->doNotUseWAL==0 ){ 2513 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
2340 int isOpen = 0; 2514 int isOpen = 0;
2341 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen); 2515 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
2342 if( rc!=SQLITE_OK ){ 2516 if( rc!=SQLITE_OK ){
2343 goto page1_init_failed; 2517 goto page1_init_failed;
2344 }else if( isOpen==0 ){ 2518 }else if( isOpen==0 ){
2345 releasePage(pPage1); 2519 releasePage(pPage1);
2346 return SQLITE_OK; 2520 return SQLITE_OK;
2347 } 2521 }
2348 rc = SQLITE_NOTADB; 2522 rc = SQLITE_NOTADB;
2349 } 2523 }
(...skipping 56 matching lines...) Expand 10 before | Expand all | Expand 10 after
2406 ** 4-byte nData value 2580 ** 4-byte nData value
2407 ** 4-byte overflow page pointer 2581 ** 4-byte overflow page pointer
2408 ** So a cell consists of a 2-byte pointer, a header which is as much as 2582 ** So a cell consists of a 2-byte pointer, a header which is as much as
2409 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow 2583 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2410 ** page pointer. 2584 ** page pointer.
2411 */ 2585 */
2412 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23); 2586 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2413 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23); 2587 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2414 pBt->maxLeaf = (u16)(pBt->usableSize - 35); 2588 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2415 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23); 2589 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
2590 if( pBt->maxLocal>127 ){
2591 pBt->max1bytePayload = 127;
2592 }else{
2593 pBt->max1bytePayload = (u8)pBt->maxLocal;
2594 }
2416 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); 2595 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
2417 pBt->pPage1 = pPage1; 2596 pBt->pPage1 = pPage1;
2418 pBt->nPage = nPage; 2597 pBt->nPage = nPage;
2419 return SQLITE_OK; 2598 return SQLITE_OK;
2420 2599
2421 page1_init_failed: 2600 page1_init_failed:
2422 releasePage(pPage1); 2601 releasePage(pPage1);
2423 pBt->pPage1 = 0; 2602 pBt->pPage1 = 0;
2424 return rc; 2603 return rc;
2425 } 2604 }
2426 2605
2606 #ifndef NDEBUG
2607 /*
2608 ** Return the number of cursors open on pBt. This is for use
2609 ** in assert() expressions, so it is only compiled if NDEBUG is not
2610 ** defined.
2611 **
2612 ** Only write cursors are counted if wrOnly is true. If wrOnly is
2613 ** false then all cursors are counted.
2614 **
2615 ** For the purposes of this routine, a cursor is any cursor that
2616 ** is capable of reading or writing to the database. Cursors that
2617 ** have been tripped into the CURSOR_FAULT state are not counted.
2618 */
2619 static int countValidCursors(BtShared *pBt, int wrOnly){
2620 BtCursor *pCur;
2621 int r = 0;
2622 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
2623 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
2624 && pCur->eState!=CURSOR_FAULT ) r++;
2625 }
2626 return r;
2627 }
2628 #endif
2629
2427 /* 2630 /*
2428 ** If there are no outstanding cursors and we are not in the middle 2631 ** If there are no outstanding cursors and we are not in the middle
2429 ** of a transaction but there is a read lock on the database, then 2632 ** of a transaction but there is a read lock on the database, then
2430 ** this routine unrefs the first page of the database file which 2633 ** this routine unrefs the first page of the database file which
2431 ** has the effect of releasing the read lock. 2634 ** has the effect of releasing the read lock.
2432 ** 2635 **
2433 ** If there is a transaction in progress, this routine is a no-op. 2636 ** If there is a transaction in progress, this routine is a no-op.
2434 */ 2637 */
2435 static void unlockBtreeIfUnused(BtShared *pBt){ 2638 static void unlockBtreeIfUnused(BtShared *pBt){
2436 assert( sqlite3_mutex_held(pBt->mutex) ); 2639 assert( sqlite3_mutex_held(pBt->mutex) );
2437 assert( pBt->pCursor==0 || pBt->inTransaction>TRANS_NONE ); 2640 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
2438 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){ 2641 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
2439 assert( pBt->pPage1->aData ); 2642 MemPage *pPage1 = pBt->pPage1;
2643 assert( pPage1->aData );
2440 assert( sqlite3PagerRefcount(pBt->pPager)==1 ); 2644 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2441 assert( pBt->pPage1->aData );
2442 releasePage(pBt->pPage1);
2443 pBt->pPage1 = 0; 2645 pBt->pPage1 = 0;
2646 releasePage(pPage1);
2444 } 2647 }
2445 } 2648 }
2446 2649
2447 /* 2650 /*
2448 ** If pBt points to an empty file then convert that empty file 2651 ** If pBt points to an empty file then convert that empty file
2449 ** into a new empty database by initializing the first page of 2652 ** into a new empty database by initializing the first page of
2450 ** the database. 2653 ** the database.
2451 */ 2654 */
2452 static int newDatabase(BtShared *pBt){ 2655 static int newDatabase(BtShared *pBt){
2453 MemPage *pP1; 2656 MemPage *pP1;
(...skipping 15 matching lines...) Expand all
2469 data[17] = (u8)((pBt->pageSize>>16)&0xff); 2672 data[17] = (u8)((pBt->pageSize>>16)&0xff);
2470 data[18] = 1; 2673 data[18] = 1;
2471 data[19] = 1; 2674 data[19] = 1;
2472 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize); 2675 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2473 data[20] = (u8)(pBt->pageSize - pBt->usableSize); 2676 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
2474 data[21] = 64; 2677 data[21] = 64;
2475 data[22] = 32; 2678 data[22] = 32;
2476 data[23] = 32; 2679 data[23] = 32;
2477 memset(&data[24], 0, 100-24); 2680 memset(&data[24], 0, 100-24);
2478 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); 2681 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
2479 pBt->pageSizeFixed = 1; 2682 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2480 #ifndef SQLITE_OMIT_AUTOVACUUM 2683 #ifndef SQLITE_OMIT_AUTOVACUUM
2481 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 ); 2684 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
2482 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 ); 2685 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
2483 put4byte(&data[36 + 4*4], pBt->autoVacuum); 2686 put4byte(&data[36 + 4*4], pBt->autoVacuum);
2484 put4byte(&data[36 + 7*4], pBt->incrVacuum); 2687 put4byte(&data[36 + 7*4], pBt->incrVacuum);
2485 #endif 2688 #endif
2486 pBt->nPage = 1; 2689 pBt->nPage = 1;
2487 data[31] = 1; 2690 data[31] = 1;
2488 return SQLITE_OK; 2691 return SQLITE_OK;
2489 } 2692 }
2490 2693
2491 /* 2694 /*
2695 ** Initialize the first page of the database file (creating a database
2696 ** consisting of a single page and no schema objects). Return SQLITE_OK
2697 ** if successful, or an SQLite error code otherwise.
2698 */
2699 int sqlite3BtreeNewDb(Btree *p){
2700 int rc;
2701 sqlite3BtreeEnter(p);
2702 p->pBt->nPage = 0;
2703 rc = newDatabase(p->pBt);
2704 sqlite3BtreeLeave(p);
2705 return rc;
2706 }
2707
2708 /*
2492 ** Attempt to start a new transaction. A write-transaction 2709 ** Attempt to start a new transaction. A write-transaction
2493 ** is started if the second argument is nonzero, otherwise a read- 2710 ** is started if the second argument is nonzero, otherwise a read-
2494 ** transaction. If the second argument is 2 or more and exclusive 2711 ** transaction. If the second argument is 2 or more and exclusive
2495 ** transaction is started, meaning that no other process is allowed 2712 ** transaction is started, meaning that no other process is allowed
2496 ** to access the database. A preexisting transaction may not be 2713 ** to access the database. A preexisting transaction may not be
2497 ** upgraded to exclusive by calling this routine a second time - the 2714 ** upgraded to exclusive by calling this routine a second time - the
2498 ** exclusivity flag only works for a new transaction. 2715 ** exclusivity flag only works for a new transaction.
2499 ** 2716 **
2500 ** A write-transaction must be started before attempting any 2717 ** A write-transaction must be started before attempting any
2501 ** changes to the database. None of the following routines 2718 ** changes to the database. None of the following routines
(...skipping 29 matching lines...) Expand all
2531 sqlite3BtreeEnter(p); 2748 sqlite3BtreeEnter(p);
2532 btreeIntegrity(p); 2749 btreeIntegrity(p);
2533 2750
2534 /* If the btree is already in a write-transaction, or it 2751 /* If the btree is already in a write-transaction, or it
2535 ** is already in a read-transaction and a read-transaction 2752 ** is already in a read-transaction and a read-transaction
2536 ** is requested, this is a no-op. 2753 ** is requested, this is a no-op.
2537 */ 2754 */
2538 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){ 2755 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
2539 goto trans_begun; 2756 goto trans_begun;
2540 } 2757 }
2758 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
2541 2759
2542 /* Write transactions are not possible on a read-only database */ 2760 /* Write transactions are not possible on a read-only database */
2543 if( pBt->readOnly && wrflag ){ 2761 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
2544 rc = SQLITE_READONLY; 2762 rc = SQLITE_READONLY;
2545 goto trans_begun; 2763 goto trans_begun;
2546 } 2764 }
2547 2765
2548 #ifndef SQLITE_OMIT_SHARED_CACHE 2766 #ifndef SQLITE_OMIT_SHARED_CACHE
2549 /* If another database handle has already opened a write transaction 2767 /* If another database handle has already opened a write transaction
2550 ** on this shared-btree structure and a second write transaction is 2768 ** on this shared-btree structure and a second write transaction is
2551 ** requested, return SQLITE_LOCKED. 2769 ** requested, return SQLITE_LOCKED.
2552 */ 2770 */
2553 if( (wrflag && pBt->inTransaction==TRANS_WRITE) || pBt->isPending ){ 2771 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
2772 || (pBt->btsFlags & BTS_PENDING)!=0
2773 ){
2554 pBlock = pBt->pWriter->db; 2774 pBlock = pBt->pWriter->db;
2555 }else if( wrflag>1 ){ 2775 }else if( wrflag>1 ){
2556 BtLock *pIter; 2776 BtLock *pIter;
2557 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 2777 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2558 if( pIter->pBtree!=p ){ 2778 if( pIter->pBtree!=p ){
2559 pBlock = pIter->pBtree->db; 2779 pBlock = pIter->pBtree->db;
2560 break; 2780 break;
2561 } 2781 }
2562 } 2782 }
2563 } 2783 }
2564 if( pBlock ){ 2784 if( pBlock ){
2565 sqlite3ConnectionBlocked(p->db, pBlock); 2785 sqlite3ConnectionBlocked(p->db, pBlock);
2566 rc = SQLITE_LOCKED_SHAREDCACHE; 2786 rc = SQLITE_LOCKED_SHAREDCACHE;
2567 goto trans_begun; 2787 goto trans_begun;
2568 } 2788 }
2569 #endif 2789 #endif
2570 2790
2571 /* Any read-only or read-write transaction implies a read-lock on 2791 /* Any read-only or read-write transaction implies a read-lock on
2572 ** page 1. So if some other shared-cache client already has a write-lock 2792 ** page 1. So if some other shared-cache client already has a write-lock
2573 ** on page 1, the transaction cannot be opened. */ 2793 ** on page 1, the transaction cannot be opened. */
2574 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK); 2794 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
2575 if( SQLITE_OK!=rc ) goto trans_begun; 2795 if( SQLITE_OK!=rc ) goto trans_begun;
2576 2796
2577 pBt->initiallyEmpty = (u8)(pBt->nPage==0); 2797 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
2798 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
2578 do { 2799 do {
2579 /* Call lockBtree() until either pBt->pPage1 is populated or 2800 /* Call lockBtree() until either pBt->pPage1 is populated or
2580 ** lockBtree() returns something other than SQLITE_OK. lockBtree() 2801 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2581 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after 2802 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2582 ** reading page 1 it discovers that the page-size of the database 2803 ** reading page 1 it discovers that the page-size of the database
2583 ** file is not pBt->pageSize. In this case lockBtree() will update 2804 ** file is not pBt->pageSize. In this case lockBtree() will update
2584 ** pBt->pageSize to the page-size of the file on disk. 2805 ** pBt->pageSize to the page-size of the file on disk.
2585 */ 2806 */
2586 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) ); 2807 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
2587 2808
2588 if( rc==SQLITE_OK && wrflag ){ 2809 if( rc==SQLITE_OK && wrflag ){
2589 if( pBt->readOnly ){ 2810 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
2590 rc = SQLITE_READONLY; 2811 rc = SQLITE_READONLY;
2591 }else{ 2812 }else{
2592 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db)); 2813 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
2593 if( rc==SQLITE_OK ){ 2814 if( rc==SQLITE_OK ){
2594 rc = newDatabase(pBt); 2815 rc = newDatabase(pBt);
2595 } 2816 }
2596 } 2817 }
2597 } 2818 }
2598 2819
2599 if( rc!=SQLITE_OK ){ 2820 if( rc!=SQLITE_OK ){
2600 unlockBtreeIfUnused(pBt); 2821 unlockBtreeIfUnused(pBt);
2601 } 2822 }
2602 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE && 2823 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
2603 btreeInvokeBusyHandler(pBt) ); 2824 btreeInvokeBusyHandler(pBt) );
2604 2825
2605 if( rc==SQLITE_OK ){ 2826 if( rc==SQLITE_OK ){
2606 if( p->inTrans==TRANS_NONE ){ 2827 if( p->inTrans==TRANS_NONE ){
2607 pBt->nTransaction++; 2828 pBt->nTransaction++;
2608 #ifndef SQLITE_OMIT_SHARED_CACHE 2829 #ifndef SQLITE_OMIT_SHARED_CACHE
2609 if( p->sharable ){ 2830 if( p->sharable ){
2610 » assert( p->lock.pBtree==p && p->lock.iTable==1 ); 2831 assert( p->lock.pBtree==p && p->lock.iTable==1 );
2611 p->lock.eLock = READ_LOCK; 2832 p->lock.eLock = READ_LOCK;
2612 p->lock.pNext = pBt->pLock; 2833 p->lock.pNext = pBt->pLock;
2613 pBt->pLock = &p->lock; 2834 pBt->pLock = &p->lock;
2614 } 2835 }
2615 #endif 2836 #endif
2616 } 2837 }
2617 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); 2838 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2618 if( p->inTrans>pBt->inTransaction ){ 2839 if( p->inTrans>pBt->inTransaction ){
2619 pBt->inTransaction = p->inTrans; 2840 pBt->inTransaction = p->inTrans;
2620 } 2841 }
2621 if( wrflag ){ 2842 if( wrflag ){
2622 MemPage *pPage1 = pBt->pPage1; 2843 MemPage *pPage1 = pBt->pPage1;
2623 #ifndef SQLITE_OMIT_SHARED_CACHE 2844 #ifndef SQLITE_OMIT_SHARED_CACHE
2624 assert( !pBt->pWriter ); 2845 assert( !pBt->pWriter );
2625 pBt->pWriter = p; 2846 pBt->pWriter = p;
2626 pBt->isExclusive = (u8)(wrflag>1); 2847 pBt->btsFlags &= ~BTS_EXCLUSIVE;
2848 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
2627 #endif 2849 #endif
2628 2850
2629 /* If the db-size header field is incorrect (as it may be if an old 2851 /* If the db-size header field is incorrect (as it may be if an old
2630 ** client has been writing the database file), update it now. Doing 2852 ** client has been writing the database file), update it now. Doing
2631 ** this sooner rather than later means the database size can safely 2853 ** this sooner rather than later means the database size can safely
2632 ** re-read the database size from page 1 if a savepoint or transaction 2854 ** re-read the database size from page 1 if a savepoint or transaction
2633 ** rollback occurs within the transaction. 2855 ** rollback occurs within the transaction.
2634 */ 2856 */
2635 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){ 2857 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
2636 rc = sqlite3PagerWrite(pPage1->pDbPage); 2858 rc = sqlite3PagerWrite(pPage1->pDbPage);
(...skipping 91 matching lines...) Expand 10 before | Expand all | Expand 10 after
2728 int nCell; 2950 int nCell;
2729 2951
2730 btreeInitPage(pPage); 2952 btreeInitPage(pPage);
2731 nCell = pPage->nCell; 2953 nCell = pPage->nCell;
2732 2954
2733 for(i=0; i<nCell; i++){ 2955 for(i=0; i<nCell; i++){
2734 u8 *pCell = findCell(pPage, i); 2956 u8 *pCell = findCell(pPage, i);
2735 if( eType==PTRMAP_OVERFLOW1 ){ 2957 if( eType==PTRMAP_OVERFLOW1 ){
2736 CellInfo info; 2958 CellInfo info;
2737 btreeParseCellPtr(pPage, pCell, &info); 2959 btreeParseCellPtr(pPage, pCell, &info);
2738 if( info.iOverflow ){ 2960 if( info.iOverflow
2739 if( iFrom==get4byte(&pCell[info.iOverflow]) ){ 2961 && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
2740 put4byte(&pCell[info.iOverflow], iTo); 2962 && iFrom==get4byte(&pCell[info.iOverflow])
2741 break; 2963 ){
2742 } 2964 put4byte(&pCell[info.iOverflow], iTo);
2965 break;
2743 } 2966 }
2744 }else{ 2967 }else{
2745 if( get4byte(pCell)==iFrom ){ 2968 if( get4byte(pCell)==iFrom ){
2746 put4byte(pCell, iTo); 2969 put4byte(pCell, iTo);
2747 break; 2970 break;
2748 } 2971 }
2749 } 2972 }
2750 } 2973 }
2751 2974
2752 if( i==nCell ){ 2975 if( i==nCell ){
(...skipping 89 matching lines...) Expand 10 before | Expand all | Expand 10 after
2842 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc); 3065 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
2843 } 3066 }
2844 } 3067 }
2845 return rc; 3068 return rc;
2846 } 3069 }
2847 3070
2848 /* Forward declaration required by incrVacuumStep(). */ 3071 /* Forward declaration required by incrVacuumStep(). */
2849 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8); 3072 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
2850 3073
2851 /* 3074 /*
2852 ** Perform a single step of an incremental-vacuum. If successful, 3075 ** Perform a single step of an incremental-vacuum. If successful, return
2853 ** return SQLITE_OK. If there is no work to do (and therefore no 3076 ** SQLITE_OK. If there is no work to do (and therefore no point in
2854 ** point in calling this function again), return SQLITE_DONE. 3077 ** calling this function again), return SQLITE_DONE. Or, if an error
3078 ** occurs, return some other error code.
2855 ** 3079 **
2856 ** More specificly, this function attempts to re-organize the 3080 ** More specifically, this function attempts to re-organize the database so
2857 ** database so that the last page of the file currently in use 3081 ** that the last page of the file currently in use is no longer in use.
2858 ** is no longer in use.
2859 ** 3082 **
2860 ** If the nFin parameter is non-zero, this function assumes 3083 ** Parameter nFin is the number of pages that this database would contain
2861 ** that the caller will keep calling incrVacuumStep() until 3084 ** were this function called until it returns SQLITE_DONE.
2862 ** it returns SQLITE_DONE or an error, and that nFin is the 3085 **
2863 ** number of pages the database file will contain after this 3086 ** If the bCommit parameter is non-zero, this function assumes that the
2864 ** process is complete. If nFin is zero, it is assumed that 3087 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
2865 ** incrVacuumStep() will be called a finite amount of times 3088 ** or an error. bCommit is passed true for an auto-vacuum-on-commit
2866 ** which may or may not empty the freelist. A full autovacuum 3089 ** operation, or false for an incremental vacuum.
2867 ** has nFin>0. A "PRAGMA incremental_vacuum" has nFin==0.
2868 */ 3090 */
2869 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg){ 3091 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
2870 Pgno nFreeList; /* Number of pages still on the free-list */ 3092 Pgno nFreeList; /* Number of pages still on the free-list */
2871 int rc; 3093 int rc;
2872 3094
2873 assert( sqlite3_mutex_held(pBt->mutex) ); 3095 assert( sqlite3_mutex_held(pBt->mutex) );
2874 assert( iLastPg>nFin ); 3096 assert( iLastPg>nFin );
2875 3097
2876 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){ 3098 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
2877 u8 eType; 3099 u8 eType;
2878 Pgno iPtrPage; 3100 Pgno iPtrPage;
2879 3101
2880 nFreeList = get4byte(&pBt->pPage1->aData[36]); 3102 nFreeList = get4byte(&pBt->pPage1->aData[36]);
2881 if( nFreeList==0 ){ 3103 if( nFreeList==0 ){
2882 return SQLITE_DONE; 3104 return SQLITE_DONE;
2883 } 3105 }
2884 3106
2885 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage); 3107 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
2886 if( rc!=SQLITE_OK ){ 3108 if( rc!=SQLITE_OK ){
2887 return rc; 3109 return rc;
2888 } 3110 }
2889 if( eType==PTRMAP_ROOTPAGE ){ 3111 if( eType==PTRMAP_ROOTPAGE ){
2890 return SQLITE_CORRUPT_BKPT; 3112 return SQLITE_CORRUPT_BKPT;
2891 } 3113 }
2892 3114
2893 if( eType==PTRMAP_FREEPAGE ){ 3115 if( eType==PTRMAP_FREEPAGE ){
2894 if( nFin==0 ){ 3116 if( bCommit==0 ){
2895 /* Remove the page from the files free-list. This is not required 3117 /* Remove the page from the files free-list. This is not required
2896 ** if nFin is non-zero. In that case, the free-list will be 3118 ** if bCommit is non-zero. In that case, the free-list will be
2897 ** truncated to zero after this function returns, so it doesn't 3119 ** truncated to zero after this function returns, so it doesn't
2898 ** matter if it still contains some garbage entries. 3120 ** matter if it still contains some garbage entries.
2899 */ 3121 */
2900 Pgno iFreePg; 3122 Pgno iFreePg;
2901 MemPage *pFreePg; 3123 MemPage *pFreePg;
2902 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1); 3124 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
2903 if( rc!=SQLITE_OK ){ 3125 if( rc!=SQLITE_OK ){
2904 return rc; 3126 return rc;
2905 } 3127 }
2906 assert( iFreePg==iLastPg ); 3128 assert( iFreePg==iLastPg );
2907 releasePage(pFreePg); 3129 releasePage(pFreePg);
2908 } 3130 }
2909 } else { 3131 } else {
2910 Pgno iFreePg; /* Index of free page to move pLastPg to */ 3132 Pgno iFreePg; /* Index of free page to move pLastPg to */
2911 MemPage *pLastPg; 3133 MemPage *pLastPg;
3134 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3135 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
2912 3136
2913 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0); 3137 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
2914 if( rc!=SQLITE_OK ){ 3138 if( rc!=SQLITE_OK ){
2915 return rc; 3139 return rc;
2916 } 3140 }
2917 3141
2918 /* If nFin is zero, this loop runs exactly once and page pLastPg 3142 /* If bCommit is zero, this loop runs exactly once and page pLastPg
2919 ** is swapped with the first free page pulled off the free list. 3143 ** is swapped with the first free page pulled off the free list.
2920 ** 3144 **
2921 ** On the other hand, if nFin is greater than zero, then keep 3145 ** On the other hand, if bCommit is greater than zero, then keep
2922 ** looping until a free-page located within the first nFin pages 3146 ** looping until a free-page located within the first nFin pages
2923 ** of the file is found. 3147 ** of the file is found.
2924 */ 3148 */
3149 if( bCommit==0 ){
3150 eMode = BTALLOC_LE;
3151 iNear = nFin;
3152 }
2925 do { 3153 do {
2926 MemPage *pFreePg; 3154 MemPage *pFreePg;
2927 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0); 3155 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
2928 if( rc!=SQLITE_OK ){ 3156 if( rc!=SQLITE_OK ){
2929 releasePage(pLastPg); 3157 releasePage(pLastPg);
2930 return rc; 3158 return rc;
2931 } 3159 }
2932 releasePage(pFreePg); 3160 releasePage(pFreePg);
2933 }while( nFin!=0 && iFreePg>nFin ); 3161 }while( bCommit && iFreePg>nFin );
2934 assert( iFreePg<iLastPg ); 3162 assert( iFreePg<iLastPg );
2935 3163
2936 rc = sqlite3PagerWrite(pLastPg->pDbPage); 3164 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
2937 if( rc==SQLITE_OK ){
2938 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
2939 }
2940 releasePage(pLastPg); 3165 releasePage(pLastPg);
2941 if( rc!=SQLITE_OK ){ 3166 if( rc!=SQLITE_OK ){
2942 return rc; 3167 return rc;
2943 } 3168 }
2944 } 3169 }
2945 } 3170 }
2946 3171
2947 if( nFin==0 ){ 3172 if( bCommit==0 ){
2948 iLastPg--; 3173 do {
2949 while( iLastPg==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, iLastPg) ){
2950 if( PTRMAP_ISPAGE(pBt, iLastPg) ){
2951 MemPage *pPg;
2952 rc = btreeGetPage(pBt, iLastPg, &pPg, 0);
2953 if( rc!=SQLITE_OK ){
2954 return rc;
2955 }
2956 rc = sqlite3PagerWrite(pPg->pDbPage);
2957 releasePage(pPg);
2958 if( rc!=SQLITE_OK ){
2959 return rc;
2960 }
2961 }
2962 iLastPg--; 3174 iLastPg--;
2963 } 3175 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
2964 sqlite3PagerTruncateImage(pBt->pPager, iLastPg); 3176 pBt->bDoTruncate = 1;
2965 pBt->nPage = iLastPg; 3177 pBt->nPage = iLastPg;
2966 } 3178 }
2967 return SQLITE_OK; 3179 return SQLITE_OK;
2968 } 3180 }
2969 3181
2970 /* 3182 /*
3183 ** The database opened by the first argument is an auto-vacuum database
3184 ** nOrig pages in size containing nFree free pages. Return the expected
3185 ** size of the database in pages following an auto-vacuum operation.
3186 */
3187 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3188 int nEntry; /* Number of entries on one ptrmap page */
3189 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3190 Pgno nFin; /* Return value */
3191
3192 nEntry = pBt->usableSize/5;
3193 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3194 nFin = nOrig - nFree - nPtrmap;
3195 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3196 nFin--;
3197 }
3198 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3199 nFin--;
3200 }
3201
3202 return nFin;
3203 }
3204
3205 /*
2971 ** A write-transaction must be opened before calling this function. 3206 ** A write-transaction must be opened before calling this function.
2972 ** It performs a single unit of work towards an incremental vacuum. 3207 ** It performs a single unit of work towards an incremental vacuum.
2973 ** 3208 **
2974 ** If the incremental vacuum is finished after this function has run, 3209 ** If the incremental vacuum is finished after this function has run,
2975 ** SQLITE_DONE is returned. If it is not finished, but no error occurred, 3210 ** SQLITE_DONE is returned. If it is not finished, but no error occurred,
2976 ** SQLITE_OK is returned. Otherwise an SQLite error code. 3211 ** SQLITE_OK is returned. Otherwise an SQLite error code.
2977 */ 3212 */
2978 int sqlite3BtreeIncrVacuum(Btree *p){ 3213 int sqlite3BtreeIncrVacuum(Btree *p){
2979 int rc; 3214 int rc;
2980 BtShared *pBt = p->pBt; 3215 BtShared *pBt = p->pBt;
2981 3216
2982 sqlite3BtreeEnter(p); 3217 sqlite3BtreeEnter(p);
2983 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE ); 3218 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
2984 if( !pBt->autoVacuum ){ 3219 if( !pBt->autoVacuum ){
2985 rc = SQLITE_DONE; 3220 rc = SQLITE_DONE;
2986 }else{ 3221 }else{
2987 invalidateAllOverflowCache(pBt); 3222 Pgno nOrig = btreePagecount(pBt);
2988 rc = incrVacuumStep(pBt, 0, btreePagecount(pBt)); 3223 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
2989 if( rc==SQLITE_OK ){ 3224 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
2990 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 3225
2991 put4byte(&pBt->pPage1->aData[28], pBt->nPage); 3226 if( nOrig<nFin ){
3227 rc = SQLITE_CORRUPT_BKPT;
3228 }else if( nFree>0 ){
3229 rc = saveAllCursors(pBt, 0, 0);
3230 if( rc==SQLITE_OK ){
3231 invalidateAllOverflowCache(pBt);
3232 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3233 }
3234 if( rc==SQLITE_OK ){
3235 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3236 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3237 }
3238 }else{
3239 rc = SQLITE_DONE;
2992 } 3240 }
2993 } 3241 }
2994 sqlite3BtreeLeave(p); 3242 sqlite3BtreeLeave(p);
2995 return rc; 3243 return rc;
2996 } 3244 }
2997 3245
2998 /* 3246 /*
2999 ** This routine is called prior to sqlite3PagerCommit when a transaction 3247 ** This routine is called prior to sqlite3PagerCommit when a transaction
3000 ** is commited for an auto-vacuum database. 3248 ** is committed for an auto-vacuum database.
3001 ** 3249 **
3002 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages 3250 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3003 ** the database file should be truncated to during the commit process. 3251 ** the database file should be truncated to during the commit process.
3004 ** i.e. the database has been reorganized so that only the first *pnTrunc 3252 ** i.e. the database has been reorganized so that only the first *pnTrunc
3005 ** pages are in use. 3253 ** pages are in use.
3006 */ 3254 */
3007 static int autoVacuumCommit(BtShared *pBt){ 3255 static int autoVacuumCommit(BtShared *pBt){
3008 int rc = SQLITE_OK; 3256 int rc = SQLITE_OK;
3009 Pager *pPager = pBt->pPager; 3257 Pager *pPager = pBt->pPager;
3010 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) ); 3258 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
3011 3259
3012 assert( sqlite3_mutex_held(pBt->mutex) ); 3260 assert( sqlite3_mutex_held(pBt->mutex) );
3013 invalidateAllOverflowCache(pBt); 3261 invalidateAllOverflowCache(pBt);
3014 assert(pBt->autoVacuum); 3262 assert(pBt->autoVacuum);
3015 if( !pBt->incrVacuum ){ 3263 if( !pBt->incrVacuum ){
3016 Pgno nFin; /* Number of pages in database after autovacuuming */ 3264 Pgno nFin; /* Number of pages in database after autovacuuming */
3017 Pgno nFree; /* Number of pages on the freelist initially */ 3265 Pgno nFree; /* Number of pages on the freelist initially */
3018 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3019 Pgno iFree; /* The next page to be freed */ 3266 Pgno iFree; /* The next page to be freed */
3020 int nEntry; /* Number of entries on one ptrmap page */
3021 Pgno nOrig; /* Database size before freeing */ 3267 Pgno nOrig; /* Database size before freeing */
3022 3268
3023 nOrig = btreePagecount(pBt); 3269 nOrig = btreePagecount(pBt);
3024 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){ 3270 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3025 /* It is not possible to create a database for which the final page 3271 /* It is not possible to create a database for which the final page
3026 ** is either a pointer-map page or the pending-byte page. If one 3272 ** is either a pointer-map page or the pending-byte page. If one
3027 ** is encountered, this indicates corruption. 3273 ** is encountered, this indicates corruption.
3028 */ 3274 */
3029 return SQLITE_CORRUPT_BKPT; 3275 return SQLITE_CORRUPT_BKPT;
3030 } 3276 }
3031 3277
3032 nFree = get4byte(&pBt->pPage1->aData[36]); 3278 nFree = get4byte(&pBt->pPage1->aData[36]);
3033 nEntry = pBt->usableSize/5; 3279 nFin = finalDbSize(pBt, nOrig, nFree);
3034 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry; 3280 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
3035 nFin = nOrig - nFree - nPtrmap; 3281 if( nFin<nOrig ){
3036 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){ 3282 rc = saveAllCursors(pBt, 0, 0);
3037 nFin--;
3038 } 3283 }
3039 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3040 nFin--;
3041 }
3042 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
3043
3044 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){ 3284 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
3045 rc = incrVacuumStep(pBt, nFin, iFree); 3285 rc = incrVacuumStep(pBt, nFin, iFree, 1);
3046 } 3286 }
3047 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){ 3287 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
3048 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 3288 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3049 put4byte(&pBt->pPage1->aData[32], 0); 3289 put4byte(&pBt->pPage1->aData[32], 0);
3050 put4byte(&pBt->pPage1->aData[36], 0); 3290 put4byte(&pBt->pPage1->aData[36], 0);
3051 put4byte(&pBt->pPage1->aData[28], nFin); 3291 put4byte(&pBt->pPage1->aData[28], nFin);
3052 sqlite3PagerTruncateImage(pBt->pPager, nFin); 3292 pBt->bDoTruncate = 1;
3053 pBt->nPage = nFin; 3293 pBt->nPage = nFin;
3054 } 3294 }
3055 if( rc!=SQLITE_OK ){ 3295 if( rc!=SQLITE_OK ){
3056 sqlite3PagerRollback(pPager); 3296 sqlite3PagerRollback(pPager);
3057 } 3297 }
3058 } 3298 }
3059 3299
3060 assert( nRef==sqlite3PagerRefcount(pPager) ); 3300 assert( nRef>=sqlite3PagerRefcount(pPager) );
3061 return rc; 3301 return rc;
3062 } 3302 }
3063 3303
3064 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */ 3304 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3065 # define setChildPtrmaps(x) SQLITE_OK 3305 # define setChildPtrmaps(x) SQLITE_OK
3066 #endif 3306 #endif
3067 3307
3068 /* 3308 /*
3069 ** This routine does the first phase of a two-phase commit. This routine 3309 ** This routine does the first phase of a two-phase commit. This routine
3070 ** causes a rollback journal to be created (if it does not already exist) 3310 ** causes a rollback journal to be created (if it does not already exist)
(...skipping 26 matching lines...) Expand all
3097 BtShared *pBt = p->pBt; 3337 BtShared *pBt = p->pBt;
3098 sqlite3BtreeEnter(p); 3338 sqlite3BtreeEnter(p);
3099 #ifndef SQLITE_OMIT_AUTOVACUUM 3339 #ifndef SQLITE_OMIT_AUTOVACUUM
3100 if( pBt->autoVacuum ){ 3340 if( pBt->autoVacuum ){
3101 rc = autoVacuumCommit(pBt); 3341 rc = autoVacuumCommit(pBt);
3102 if( rc!=SQLITE_OK ){ 3342 if( rc!=SQLITE_OK ){
3103 sqlite3BtreeLeave(p); 3343 sqlite3BtreeLeave(p);
3104 return rc; 3344 return rc;
3105 } 3345 }
3106 } 3346 }
3347 if( pBt->bDoTruncate ){
3348 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3349 }
3107 #endif 3350 #endif
3108 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0); 3351 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
3109 sqlite3BtreeLeave(p); 3352 sqlite3BtreeLeave(p);
3110 } 3353 }
3111 return rc; 3354 return rc;
3112 } 3355 }
3113 3356
3114 /* 3357 /*
3115 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback() 3358 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3116 ** at the conclusion of a transaction. 3359 ** at the conclusion of a transaction.
3117 */ 3360 */
3118 static void btreeEndTransaction(Btree *p){ 3361 static void btreeEndTransaction(Btree *p){
3119 BtShared *pBt = p->pBt; 3362 BtShared *pBt = p->pBt;
3363 sqlite3 *db = p->db;
3120 assert( sqlite3BtreeHoldsMutex(p) ); 3364 assert( sqlite3BtreeHoldsMutex(p) );
3121 3365
3122 btreeClearHasContent(pBt); 3366 #ifndef SQLITE_OMIT_AUTOVACUUM
3123 if( p->inTrans>TRANS_NONE && p->db->activeVdbeCnt>1 ){ 3367 pBt->bDoTruncate = 0;
3368 #endif
3369 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
3124 /* If there are other active statements that belong to this database 3370 /* If there are other active statements that belong to this database
3125 ** handle, downgrade to a read-only transaction. The other statements 3371 ** handle, downgrade to a read-only transaction. The other statements
3126 ** may still be reading from the database. */ 3372 ** may still be reading from the database. */
3127 downgradeAllSharedCacheTableLocks(p); 3373 downgradeAllSharedCacheTableLocks(p);
3128 p->inTrans = TRANS_READ; 3374 p->inTrans = TRANS_READ;
3129 }else{ 3375 }else{
3130 /* If the handle had any kind of transaction open, decrement the 3376 /* If the handle had any kind of transaction open, decrement the
3131 ** transaction count of the shared btree. If the transaction count 3377 ** transaction count of the shared btree. If the transaction count
3132 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused() 3378 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3133 ** call below will unlock the pager. */ 3379 ** call below will unlock the pager. */
(...skipping 53 matching lines...) Expand 10 before | Expand all | Expand 10 after
3187 int rc; 3433 int rc;
3188 BtShared *pBt = p->pBt; 3434 BtShared *pBt = p->pBt;
3189 assert( pBt->inTransaction==TRANS_WRITE ); 3435 assert( pBt->inTransaction==TRANS_WRITE );
3190 assert( pBt->nTransaction>0 ); 3436 assert( pBt->nTransaction>0 );
3191 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager); 3437 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
3192 if( rc!=SQLITE_OK && bCleanup==0 ){ 3438 if( rc!=SQLITE_OK && bCleanup==0 ){
3193 sqlite3BtreeLeave(p); 3439 sqlite3BtreeLeave(p);
3194 return rc; 3440 return rc;
3195 } 3441 }
3196 pBt->inTransaction = TRANS_READ; 3442 pBt->inTransaction = TRANS_READ;
3443 btreeClearHasContent(pBt);
3197 } 3444 }
3198 3445
3199 btreeEndTransaction(p); 3446 btreeEndTransaction(p);
3200 sqlite3BtreeLeave(p); 3447 sqlite3BtreeLeave(p);
3201 return SQLITE_OK; 3448 return SQLITE_OK;
3202 } 3449 }
3203 3450
3204 /* 3451 /*
3205 ** Do both phases of a commit. 3452 ** Do both phases of a commit.
3206 */ 3453 */
3207 int sqlite3BtreeCommit(Btree *p){ 3454 int sqlite3BtreeCommit(Btree *p){
3208 int rc; 3455 int rc;
3209 sqlite3BtreeEnter(p); 3456 sqlite3BtreeEnter(p);
3210 rc = sqlite3BtreeCommitPhaseOne(p, 0); 3457 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3211 if( rc==SQLITE_OK ){ 3458 if( rc==SQLITE_OK ){
3212 rc = sqlite3BtreeCommitPhaseTwo(p, 0); 3459 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
3213 } 3460 }
3214 sqlite3BtreeLeave(p); 3461 sqlite3BtreeLeave(p);
3215 return rc; 3462 return rc;
3216 } 3463 }
3217 3464
3218 #ifndef NDEBUG
3219 /*
3220 ** Return the number of write-cursors open on this handle. This is for use
3221 ** in assert() expressions, so it is only compiled if NDEBUG is not
3222 ** defined.
3223 **
3224 ** For the purposes of this routine, a write-cursor is any cursor that
3225 ** is capable of writing to the databse. That means the cursor was
3226 ** originally opened for writing and the cursor has not be disabled
3227 ** by having its state changed to CURSOR_FAULT.
3228 */
3229 static int countWriteCursors(BtShared *pBt){
3230 BtCursor *pCur;
3231 int r = 0;
3232 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
3233 if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
3234 }
3235 return r;
3236 }
3237 #endif
3238
3239 /* 3465 /*
3240 ** This routine sets the state to CURSOR_FAULT and the error 3466 ** This routine sets the state to CURSOR_FAULT and the error
3241 ** code to errCode for every cursor on BtShared that pBtree 3467 ** code to errCode for every cursor on any BtShared that pBtree
3242 ** references. 3468 ** references. Or if the writeOnly flag is set to 1, then only
3469 ** trip write cursors and leave read cursors unchanged.
3243 ** 3470 **
3244 ** Every cursor is tripped, including cursors that belong 3471 ** Every cursor is a candidate to be tripped, including cursors
3245 ** to other database connections that happen to be sharing 3472 ** that belong to other database connections that happen to be
3246 ** the cache with pBtree. 3473 ** sharing the cache with pBtree.
3247 ** 3474 **
3248 ** This routine gets called when a rollback occurs. 3475 ** This routine gets called when a rollback occurs. If the writeOnly
3249 ** All cursors using the same cache must be tripped 3476 ** flag is true, then only write-cursors need be tripped - read-only
3250 ** to prevent them from trying to use the btree after 3477 ** cursors save their current positions so that they may continue
3251 ** the rollback. The rollback may have deleted tables 3478 ** following the rollback. Or, if writeOnly is false, all cursors are
3252 ** or moved root pages, so it is not sufficient to 3479 ** tripped. In general, writeOnly is false if the transaction being
3253 ** save the state of the cursor. The cursor must be 3480 ** rolled back modified the database schema. In this case b-tree root
3254 ** invalidated. 3481 ** pages may be moved or deleted from the database altogether, making
3482 ** it unsafe for read cursors to continue.
3483 **
3484 ** If the writeOnly flag is true and an error is encountered while
3485 ** saving the current position of a read-only cursor, all cursors,
3486 ** including all read-cursors are tripped.
3487 **
3488 ** SQLITE_OK is returned if successful, or if an error occurs while
3489 ** saving a cursor position, an SQLite error code.
3255 */ 3490 */
3256 void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){ 3491 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
3257 BtCursor *p; 3492 BtCursor *p;
3258 sqlite3BtreeEnter(pBtree); 3493 int rc = SQLITE_OK;
3259 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 3494
3260 int i; 3495 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
3261 sqlite3BtreeClearCursor(p); 3496 if( pBtree ){
3262 p->eState = CURSOR_FAULT; 3497 sqlite3BtreeEnter(pBtree);
3263 p->skipNext = errCode; 3498 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
3264 for(i=0; i<=p->iPage; i++){ 3499 int i;
3265 releasePage(p->apPage[i]); 3500 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
3266 p->apPage[i] = 0; 3501 if( p->eState==CURSOR_VALID ){
3502 rc = saveCursorPosition(p);
3503 if( rc!=SQLITE_OK ){
3504 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
3505 break;
3506 }
3507 }
3508 }else{
3509 sqlite3BtreeClearCursor(p);
3510 p->eState = CURSOR_FAULT;
3511 p->skipNext = errCode;
3512 }
3513 for(i=0; i<=p->iPage; i++){
3514 releasePage(p->apPage[i]);
3515 p->apPage[i] = 0;
3516 }
3267 } 3517 }
3518 sqlite3BtreeLeave(pBtree);
3268 } 3519 }
3269 sqlite3BtreeLeave(pBtree); 3520 return rc;
3270 } 3521 }
3271 3522
3272 /* 3523 /*
3273 ** Rollback the transaction in progress. All cursors will be 3524 ** Rollback the transaction in progress.
3274 ** invalided by this operation. Any attempt to use a cursor 3525 **
3275 ** that was open at the beginning of this operation will result 3526 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
3276 ** in an error. 3527 ** Only write cursors are tripped if writeOnly is true but all cursors are
3528 ** tripped if writeOnly is false. Any attempt to use
3529 ** a tripped cursor will result in an error.
3277 ** 3530 **
3278 ** This will release the write lock on the database file. If there 3531 ** This will release the write lock on the database file. If there
3279 ** are no active cursors, it also releases the read lock. 3532 ** are no active cursors, it also releases the read lock.
3280 */ 3533 */
3281 int sqlite3BtreeRollback(Btree *p){ 3534 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
3282 int rc; 3535 int rc;
3283 BtShared *pBt = p->pBt; 3536 BtShared *pBt = p->pBt;
3284 MemPage *pPage1; 3537 MemPage *pPage1;
3285 3538
3539 assert( writeOnly==1 || writeOnly==0 );
3540 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
3286 sqlite3BtreeEnter(p); 3541 sqlite3BtreeEnter(p);
3287 rc = saveAllCursors(pBt, 0, 0); 3542 if( tripCode==SQLITE_OK ){
3288 #ifndef SQLITE_OMIT_SHARED_CACHE 3543 rc = tripCode = saveAllCursors(pBt, 0, 0);
3289 if( rc!=SQLITE_OK ){ 3544 if( rc ) writeOnly = 0;
3290 /* This is a horrible situation. An IO or malloc() error occurred whilst 3545 }else{
3291 ** trying to save cursor positions. If this is an automatic rollback (as 3546 rc = SQLITE_OK;
3292 ** the result of a constraint, malloc() failure or IO error) then
3293 ** the cache may be internally inconsistent (not contain valid trees) so
3294 ** we cannot simply return the error to the caller. Instead, abort
3295 ** all queries that may be using any of the cursors that failed to save.
3296 */
3297 sqlite3BtreeTripAllCursors(p, rc);
3298 } 3547 }
3299 #endif 3548 if( tripCode ){
3549 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
3550 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
3551 if( rc2!=SQLITE_OK ) rc = rc2;
3552 }
3300 btreeIntegrity(p); 3553 btreeIntegrity(p);
3301 3554
3302 if( p->inTrans==TRANS_WRITE ){ 3555 if( p->inTrans==TRANS_WRITE ){
3303 int rc2; 3556 int rc2;
3304 3557
3305 assert( TRANS_WRITE==pBt->inTransaction ); 3558 assert( TRANS_WRITE==pBt->inTransaction );
3306 rc2 = sqlite3PagerRollback(pBt->pPager); 3559 rc2 = sqlite3PagerRollback(pBt->pPager);
3307 if( rc2!=SQLITE_OK ){ 3560 if( rc2!=SQLITE_OK ){
3308 rc = rc2; 3561 rc = rc2;
3309 } 3562 }
3310 3563
3311 /* The rollback may have destroyed the pPage1->aData value. So 3564 /* The rollback may have destroyed the pPage1->aData value. So
3312 ** call btreeGetPage() on page 1 again to make 3565 ** call btreeGetPage() on page 1 again to make
3313 ** sure pPage1->aData is set correctly. */ 3566 ** sure pPage1->aData is set correctly. */
3314 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){ 3567 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
3315 int nPage = get4byte(28+(u8*)pPage1->aData); 3568 int nPage = get4byte(28+(u8*)pPage1->aData);
3316 testcase( nPage==0 ); 3569 testcase( nPage==0 );
3317 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage); 3570 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3318 testcase( pBt->nPage!=nPage ); 3571 testcase( pBt->nPage!=nPage );
3319 pBt->nPage = nPage; 3572 pBt->nPage = nPage;
3320 releasePage(pPage1); 3573 releasePage(pPage1);
3321 } 3574 }
3322 assert( countWriteCursors(pBt)==0 ); 3575 assert( countValidCursors(pBt, 1)==0 );
3323 pBt->inTransaction = TRANS_READ; 3576 pBt->inTransaction = TRANS_READ;
3577 btreeClearHasContent(pBt);
3324 } 3578 }
3325 3579
3326 btreeEndTransaction(p); 3580 btreeEndTransaction(p);
3327 sqlite3BtreeLeave(p); 3581 sqlite3BtreeLeave(p);
3328 return rc; 3582 return rc;
3329 } 3583 }
3330 3584
3331 /* 3585 /*
3332 ** Start a statement subtransaction. The subtransaction can can be rolled 3586 ** Start a statement subtransaction. The subtransaction can be rolled
3333 ** back independently of the main transaction. You must start a transaction 3587 ** back independently of the main transaction. You must start a transaction
3334 ** before starting a subtransaction. The subtransaction is ended automatically 3588 ** before starting a subtransaction. The subtransaction is ended automatically
3335 ** if the main transaction commits or rolls back. 3589 ** if the main transaction commits or rolls back.
3336 ** 3590 **
3337 ** Statement subtransactions are used around individual SQL statements 3591 ** Statement subtransactions are used around individual SQL statements
3338 ** that are contained within a BEGIN...COMMIT block. If a constraint 3592 ** that are contained within a BEGIN...COMMIT block. If a constraint
3339 ** error occurs within the statement, the effect of that one statement 3593 ** error occurs within the statement, the effect of that one statement
3340 ** can be rolled back without having to rollback the entire transaction. 3594 ** can be rolled back without having to rollback the entire transaction.
3341 ** 3595 **
3342 ** A statement sub-transaction is implemented as an anonymous savepoint. The 3596 ** A statement sub-transaction is implemented as an anonymous savepoint. The
3343 ** value passed as the second parameter is the total number of savepoints, 3597 ** value passed as the second parameter is the total number of savepoints,
3344 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there 3598 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3345 ** are no active savepoints and no other statement-transactions open, 3599 ** are no active savepoints and no other statement-transactions open,
3346 ** iStatement is 1. This anonymous savepoint can be released or rolled back 3600 ** iStatement is 1. This anonymous savepoint can be released or rolled back
3347 ** using the sqlite3BtreeSavepoint() function. 3601 ** using the sqlite3BtreeSavepoint() function.
3348 */ 3602 */
3349 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){ 3603 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
3350 int rc; 3604 int rc;
3351 BtShared *pBt = p->pBt; 3605 BtShared *pBt = p->pBt;
3352 sqlite3BtreeEnter(p); 3606 sqlite3BtreeEnter(p);
3353 assert( p->inTrans==TRANS_WRITE ); 3607 assert( p->inTrans==TRANS_WRITE );
3354 assert( pBt->readOnly==0 ); 3608 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
3355 assert( iStatement>0 ); 3609 assert( iStatement>0 );
3356 assert( iStatement>p->db->nSavepoint ); 3610 assert( iStatement>p->db->nSavepoint );
3357 assert( pBt->inTransaction==TRANS_WRITE ); 3611 assert( pBt->inTransaction==TRANS_WRITE );
3358 /* At the pager level, a statement transaction is a savepoint with 3612 /* At the pager level, a statement transaction is a savepoint with
3359 ** an index greater than all savepoints created explicitly using 3613 ** an index greater than all savepoints created explicitly using
3360 ** SQL statements. It is illegal to open, release or rollback any 3614 ** SQL statements. It is illegal to open, release or rollback any
3361 ** such savepoints while the statement transaction savepoint is active. 3615 ** such savepoints while the statement transaction savepoint is active.
3362 */ 3616 */
3363 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement); 3617 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
3364 sqlite3BtreeLeave(p); 3618 sqlite3BtreeLeave(p);
(...skipping 14 matching lines...) Expand all
3379 */ 3633 */
3380 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){ 3634 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3381 int rc = SQLITE_OK; 3635 int rc = SQLITE_OK;
3382 if( p && p->inTrans==TRANS_WRITE ){ 3636 if( p && p->inTrans==TRANS_WRITE ){
3383 BtShared *pBt = p->pBt; 3637 BtShared *pBt = p->pBt;
3384 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); 3638 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3385 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) ); 3639 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3386 sqlite3BtreeEnter(p); 3640 sqlite3BtreeEnter(p);
3387 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint); 3641 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
3388 if( rc==SQLITE_OK ){ 3642 if( rc==SQLITE_OK ){
3389 if( iSavepoint<0 && pBt->initiallyEmpty ) pBt->nPage = 0; 3643 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
3644 pBt->nPage = 0;
3645 }
3390 rc = newDatabase(pBt); 3646 rc = newDatabase(pBt);
3391 pBt->nPage = get4byte(28 + pBt->pPage1->aData); 3647 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
3392 3648
3393 /* The database size was written into the offset 28 of the header 3649 /* The database size was written into the offset 28 of the header
3394 ** when the transaction started, so we know that the value at offset 3650 ** when the transaction started, so we know that the value at offset
3395 ** 28 is nonzero. */ 3651 ** 28 is nonzero. */
3396 assert( pBt->nPage>0 ); 3652 assert( pBt->nPage>0 );
3397 } 3653 }
3398 sqlite3BtreeLeave(p); 3654 sqlite3BtreeLeave(p);
3399 } 3655 }
(...skipping 49 matching lines...) Expand 10 before | Expand all | Expand 10 after
3449 ** and that no other connection has any open cursor that conflicts with 3705 ** and that no other connection has any open cursor that conflicts with
3450 ** this lock. */ 3706 ** this lock. */
3451 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) ); 3707 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
3452 assert( wrFlag==0 || !hasReadConflicts(p, iTable) ); 3708 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3453 3709
3454 /* Assert that the caller has opened the required transaction. */ 3710 /* Assert that the caller has opened the required transaction. */
3455 assert( p->inTrans>TRANS_NONE ); 3711 assert( p->inTrans>TRANS_NONE );
3456 assert( wrFlag==0 || p->inTrans==TRANS_WRITE ); 3712 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3457 assert( pBt->pPage1 && pBt->pPage1->aData ); 3713 assert( pBt->pPage1 && pBt->pPage1->aData );
3458 3714
3459 if( NEVER(wrFlag && pBt->readOnly) ){ 3715 if( NEVER(wrFlag && (pBt->btsFlags & BTS_READ_ONLY)!=0) ){
3460 return SQLITE_READONLY; 3716 return SQLITE_READONLY;
3461 } 3717 }
3718 if( wrFlag ){
3719 allocateTempSpace(pBt);
3720 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM;
3721 }
3462 if( iTable==1 && btreePagecount(pBt)==0 ){ 3722 if( iTable==1 && btreePagecount(pBt)==0 ){
3463 return SQLITE_EMPTY; 3723 assert( wrFlag==0 );
3724 iTable = 0;
3464 } 3725 }
3465 3726
3466 /* Now that no other errors can occur, finish filling in the BtCursor 3727 /* Now that no other errors can occur, finish filling in the BtCursor
3467 ** variables and link the cursor into the BtShared list. */ 3728 ** variables and link the cursor into the BtShared list. */
3468 pCur->pgnoRoot = (Pgno)iTable; 3729 pCur->pgnoRoot = (Pgno)iTable;
3469 pCur->iPage = -1; 3730 pCur->iPage = -1;
3470 pCur->pKeyInfo = pKeyInfo; 3731 pCur->pKeyInfo = pKeyInfo;
3471 pCur->pBtree = p; 3732 pCur->pBtree = p;
3472 pCur->pBt = pBt; 3733 pCur->pBt = pBt;
3473 pCur->wrFlag = (u8)wrFlag; 3734 assert( wrFlag==0 || wrFlag==BTCF_WriteFlag );
3735 pCur->curFlags = wrFlag;
3474 pCur->pNext = pBt->pCursor; 3736 pCur->pNext = pBt->pCursor;
3475 if( pCur->pNext ){ 3737 if( pCur->pNext ){
3476 pCur->pNext->pPrev = pCur; 3738 pCur->pNext->pPrev = pCur;
3477 } 3739 }
3478 pBt->pCursor = pCur; 3740 pBt->pCursor = pCur;
3479 pCur->eState = CURSOR_INVALID; 3741 pCur->eState = CURSOR_INVALID;
3480 pCur->cachedRowid = 0;
3481 return SQLITE_OK; 3742 return SQLITE_OK;
3482 } 3743 }
3483 int sqlite3BtreeCursor( 3744 int sqlite3BtreeCursor(
3484 Btree *p, /* The btree */ 3745 Btree *p, /* The btree */
3485 int iTable, /* Root page of table to open */ 3746 int iTable, /* Root page of table to open */
3486 int wrFlag, /* 1 to write. 0 read-only */ 3747 int wrFlag, /* 1 to write. 0 read-only */
3487 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */ 3748 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3488 BtCursor *pCur /* Write new cursor here */ 3749 BtCursor *pCur /* Write new cursor here */
3489 ){ 3750 ){
3490 int rc; 3751 int rc;
(...skipping 21 matching lines...) Expand all
3512 ** The simple approach here would be to memset() the entire object 3773 ** The simple approach here would be to memset() the entire object
3513 ** to zero. But it turns out that the apPage[] and aiIdx[] arrays 3774 ** to zero. But it turns out that the apPage[] and aiIdx[] arrays
3514 ** do not need to be zeroed and they are large, so we can save a lot 3775 ** do not need to be zeroed and they are large, so we can save a lot
3515 ** of run-time by skipping the initialization of those elements. 3776 ** of run-time by skipping the initialization of those elements.
3516 */ 3777 */
3517 void sqlite3BtreeCursorZero(BtCursor *p){ 3778 void sqlite3BtreeCursorZero(BtCursor *p){
3518 memset(p, 0, offsetof(BtCursor, iPage)); 3779 memset(p, 0, offsetof(BtCursor, iPage));
3519 } 3780 }
3520 3781
3521 /* 3782 /*
3522 ** Set the cached rowid value of every cursor in the same database file
3523 ** as pCur and having the same root page number as pCur. The value is
3524 ** set to iRowid.
3525 **
3526 ** Only positive rowid values are considered valid for this cache.
3527 ** The cache is initialized to zero, indicating an invalid cache.
3528 ** A btree will work fine with zero or negative rowids. We just cannot
3529 ** cache zero or negative rowids, which means tables that use zero or
3530 ** negative rowids might run a little slower. But in practice, zero
3531 ** or negative rowids are very uncommon so this should not be a problem.
3532 */
3533 void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
3534 BtCursor *p;
3535 for(p=pCur->pBt->pCursor; p; p=p->pNext){
3536 if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
3537 }
3538 assert( pCur->cachedRowid==iRowid );
3539 }
3540
3541 /*
3542 ** Return the cached rowid for the given cursor. A negative or zero
3543 ** return value indicates that the rowid cache is invalid and should be
3544 ** ignored. If the rowid cache has never before been set, then a
3545 ** zero is returned.
3546 */
3547 sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
3548 return pCur->cachedRowid;
3549 }
3550
3551 /*
3552 ** Close a cursor. The read lock on the database file is released 3783 ** Close a cursor. The read lock on the database file is released
3553 ** when the last cursor is closed. 3784 ** when the last cursor is closed.
3554 */ 3785 */
3555 int sqlite3BtreeCloseCursor(BtCursor *pCur){ 3786 int sqlite3BtreeCloseCursor(BtCursor *pCur){
3556 Btree *pBtree = pCur->pBtree; 3787 Btree *pBtree = pCur->pBtree;
3557 if( pBtree ){ 3788 if( pBtree ){
3558 int i; 3789 int i;
3559 BtShared *pBt = pCur->pBt; 3790 BtShared *pBt = pCur->pBt;
3560 sqlite3BtreeEnter(pBtree); 3791 sqlite3BtreeEnter(pBtree);
3561 sqlite3BtreeClearCursor(pCur); 3792 sqlite3BtreeClearCursor(pCur);
3562 if( pCur->pPrev ){ 3793 if( pCur->pPrev ){
3563 pCur->pPrev->pNext = pCur->pNext; 3794 pCur->pPrev->pNext = pCur->pNext;
3564 }else{ 3795 }else{
3565 pBt->pCursor = pCur->pNext; 3796 pBt->pCursor = pCur->pNext;
3566 } 3797 }
3567 if( pCur->pNext ){ 3798 if( pCur->pNext ){
3568 pCur->pNext->pPrev = pCur->pPrev; 3799 pCur->pNext->pPrev = pCur->pPrev;
3569 } 3800 }
3570 for(i=0; i<=pCur->iPage; i++){ 3801 for(i=0; i<=pCur->iPage; i++){
3571 releasePage(pCur->apPage[i]); 3802 releasePage(pCur->apPage[i]);
3572 } 3803 }
3573 unlockBtreeIfUnused(pBt); 3804 unlockBtreeIfUnused(pBt);
3574 invalidateOverflowCache(pCur); 3805 sqlite3DbFree(pBtree->db, pCur->aOverflow);
3575 /* sqlite3_free(pCur); */ 3806 /* sqlite3_free(pCur); */
3576 sqlite3BtreeLeave(pBtree); 3807 sqlite3BtreeLeave(pBtree);
3577 } 3808 }
3578 return SQLITE_OK; 3809 return SQLITE_OK;
3579 } 3810 }
3580 3811
3581 /* 3812 /*
3582 ** Make sure the BtCursor* given in the argument has a valid 3813 ** Make sure the BtCursor* given in the argument has a valid
3583 ** BtCursor.info structure. If it is not already valid, call 3814 ** BtCursor.info structure. If it is not already valid, call
3584 ** btreeParseCell() to fill it in. 3815 ** btreeParseCell() to fill it in.
3585 ** 3816 **
3586 ** BtCursor.info is a cache of the information in the current cell. 3817 ** BtCursor.info is a cache of the information in the current cell.
3587 ** Using this cache reduces the number of calls to btreeParseCell(). 3818 ** Using this cache reduces the number of calls to btreeParseCell().
3588 ** 3819 **
3589 ** 2007-06-25: There is a bug in some versions of MSVC that cause the 3820 ** 2007-06-25: There is a bug in some versions of MSVC that cause the
3590 ** compiler to crash when getCellInfo() is implemented as a macro. 3821 ** compiler to crash when getCellInfo() is implemented as a macro.
3591 ** But there is a measureable speed advantage to using the macro on gcc 3822 ** But there is a measureable speed advantage to using the macro on gcc
3592 ** (when less compiler optimizations like -Os or -O0 are used and the 3823 ** (when less compiler optimizations like -Os or -O0 are used and the
3593 ** compiler is not doing agressive inlining.) So we use a real function 3824 ** compiler is not doing aggressive inlining.) So we use a real function
3594 ** for MSVC and a macro for everything else. Ticket #2457. 3825 ** for MSVC and a macro for everything else. Ticket #2457.
3595 */ 3826 */
3596 #ifndef NDEBUG 3827 #ifndef NDEBUG
3597 static void assertCellInfo(BtCursor *pCur){ 3828 static void assertCellInfo(BtCursor *pCur){
3598 CellInfo info; 3829 CellInfo info;
3599 int iPage = pCur->iPage; 3830 int iPage = pCur->iPage;
3600 memset(&info, 0, sizeof(info)); 3831 memset(&info, 0, sizeof(info));
3601 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info); 3832 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
3602 assert( memcmp(&info, &pCur->info, sizeof(info))==0 ); 3833 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
3603 } 3834 }
3604 #else 3835 #else
3605 #define assertCellInfo(x) 3836 #define assertCellInfo(x)
3606 #endif 3837 #endif
3607 #ifdef _MSC_VER 3838 #ifdef _MSC_VER
3608 /* Use a real function in MSVC to work around bugs in that compiler. */ 3839 /* Use a real function in MSVC to work around bugs in that compiler. */
3609 static void getCellInfo(BtCursor *pCur){ 3840 static void getCellInfo(BtCursor *pCur){
3610 if( pCur->info.nSize==0 ){ 3841 if( pCur->info.nSize==0 ){
3611 int iPage = pCur->iPage; 3842 int iPage = pCur->iPage;
3612 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); 3843 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
3613 pCur->validNKey = 1; 3844 pCur->curFlags |= BTCF_ValidNKey;
3614 }else{ 3845 }else{
3615 assertCellInfo(pCur); 3846 assertCellInfo(pCur);
3616 } 3847 }
3617 } 3848 }
3618 #else /* if not _MSC_VER */ 3849 #else /* if not _MSC_VER */
3619 /* Use a macro in all other compilers so that the function is inlined */ 3850 /* Use a macro in all other compilers so that the function is inlined */
3620 #define getCellInfo(pCur) \ 3851 #define getCellInfo(pCur) \
3621 if( pCur->info.nSize==0 ){ \ 3852 if( pCur->info.nSize==0 ){ \
3622 int iPage = pCur->iPage; \ 3853 int iPage = pCur->iPage; \
3623 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \ 3854 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
3624 pCur->validNKey = 1; \ 3855 pCur->curFlags |= BTCF_ValidNKey; \
3625 }else{ \ 3856 }else{ \
3626 assertCellInfo(pCur); \ 3857 assertCellInfo(pCur); \
3627 } 3858 }
3628 #endif /* _MSC_VER */ 3859 #endif /* _MSC_VER */
3629 3860
3630 #ifndef NDEBUG /* The next routine used only within assert() statements */ 3861 #ifndef NDEBUG /* The next routine used only within assert() statements */
3631 /* 3862 /*
3632 ** Return true if the given BtCursor is valid. A valid cursor is one 3863 ** Return true if the given BtCursor is valid. A valid cursor is one
3633 ** that is currently pointing to a row in a (non-empty) table. 3864 ** that is currently pointing to a row in a (non-empty) table.
3634 ** This is a verification routine is used only within assert() statements. 3865 ** This is a verification routine is used only within assert() statements.
(...skipping 10 matching lines...) Expand all
3645 ** 3876 **
3646 ** For a table with the INTKEY flag set, this routine returns the key 3877 ** For a table with the INTKEY flag set, this routine returns the key
3647 ** itself, not the number of bytes in the key. 3878 ** itself, not the number of bytes in the key.
3648 ** 3879 **
3649 ** The caller must position the cursor prior to invoking this routine. 3880 ** The caller must position the cursor prior to invoking this routine.
3650 ** 3881 **
3651 ** This routine cannot fail. It always returns SQLITE_OK. 3882 ** This routine cannot fail. It always returns SQLITE_OK.
3652 */ 3883 */
3653 int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){ 3884 int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
3654 assert( cursorHoldsMutex(pCur) ); 3885 assert( cursorHoldsMutex(pCur) );
3655 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID ); 3886 assert( pCur->eState==CURSOR_VALID );
3656 if( pCur->eState!=CURSOR_VALID ){ 3887 getCellInfo(pCur);
3657 *pSize = 0; 3888 *pSize = pCur->info.nKey;
3658 }else{
3659 getCellInfo(pCur);
3660 *pSize = pCur->info.nKey;
3661 }
3662 return SQLITE_OK; 3889 return SQLITE_OK;
3663 } 3890 }
3664 3891
3665 /* 3892 /*
3666 ** Set *pSize to the number of bytes of data in the entry the 3893 ** Set *pSize to the number of bytes of data in the entry the
3667 ** cursor currently points to. 3894 ** cursor currently points to.
3668 ** 3895 **
3669 ** The caller must guarantee that the cursor is pointing to a non-NULL 3896 ** The caller must guarantee that the cursor is pointing to a non-NULL
3670 ** valid entry. In other words, the calling procedure must guarantee 3897 ** valid entry. In other words, the calling procedure must guarantee
3671 ** that the cursor has Cursor.eState==CURSOR_VALID. 3898 ** that the cursor has Cursor.eState==CURSOR_VALID.
3672 ** 3899 **
3673 ** Failure is not possible. This function always returns SQLITE_OK. 3900 ** Failure is not possible. This function always returns SQLITE_OK.
3674 ** It might just as well be a procedure (returning void) but we continue 3901 ** It might just as well be a procedure (returning void) but we continue
3675 ** to return an integer result code for historical reasons. 3902 ** to return an integer result code for historical reasons.
3676 */ 3903 */
3677 int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){ 3904 int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
3678 assert( cursorHoldsMutex(pCur) ); 3905 assert( cursorHoldsMutex(pCur) );
3679 assert( pCur->eState==CURSOR_VALID ); 3906 assert( pCur->eState==CURSOR_VALID );
3907 assert( pCur->apPage[pCur->iPage]->intKeyLeaf==1 );
3680 getCellInfo(pCur); 3908 getCellInfo(pCur);
3681 *pSize = pCur->info.nData; 3909 *pSize = pCur->info.nPayload;
3682 return SQLITE_OK; 3910 return SQLITE_OK;
3683 } 3911 }
3684 3912
3685 /* 3913 /*
3686 ** Given the page number of an overflow page in the database (parameter 3914 ** Given the page number of an overflow page in the database (parameter
3687 ** ovfl), this function finds the page number of the next page in the 3915 ** ovfl), this function finds the page number of the next page in the
3688 ** linked list of overflow pages. If possible, it uses the auto-vacuum 3916 ** linked list of overflow pages. If possible, it uses the auto-vacuum
3689 ** pointer-map data instead of reading the content of page ovfl to do so. 3917 ** pointer-map data instead of reading the content of page ovfl to do so.
3690 ** 3918 **
3691 ** If an error occurs an SQLite error code is returned. Otherwise: 3919 ** If an error occurs an SQLite error code is returned. Otherwise:
(...skipping 43 matching lines...) Expand 10 before | Expand all | Expand 10 after
3735 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){ 3963 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
3736 next = iGuess; 3964 next = iGuess;
3737 rc = SQLITE_DONE; 3965 rc = SQLITE_DONE;
3738 } 3966 }
3739 } 3967 }
3740 } 3968 }
3741 #endif 3969 #endif
3742 3970
3743 assert( next==0 || rc==SQLITE_DONE ); 3971 assert( next==0 || rc==SQLITE_DONE );
3744 if( rc==SQLITE_OK ){ 3972 if( rc==SQLITE_OK ){
3745 rc = btreeGetPage(pBt, ovfl, &pPage, 0); 3973 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
3746 assert( rc==SQLITE_OK || pPage==0 ); 3974 assert( rc==SQLITE_OK || pPage==0 );
3747 if( rc==SQLITE_OK ){ 3975 if( rc==SQLITE_OK ){
3748 next = get4byte(pPage->aData); 3976 next = get4byte(pPage->aData);
3749 } 3977 }
3750 } 3978 }
3751 3979
3752 *pPgnoNext = next; 3980 *pPgnoNext = next;
3753 if( ppPage ){ 3981 if( ppPage ){
3754 *ppPage = pPage; 3982 *ppPage = pPage;
3755 }else{ 3983 }else{
(...skipping 29 matching lines...) Expand all
3785 memcpy(pPayload, pBuf, nByte); 4013 memcpy(pPayload, pBuf, nByte);
3786 }else{ 4014 }else{
3787 /* Copy data from page to buffer (a read operation) */ 4015 /* Copy data from page to buffer (a read operation) */
3788 memcpy(pBuf, pPayload, nByte); 4016 memcpy(pBuf, pPayload, nByte);
3789 } 4017 }
3790 return SQLITE_OK; 4018 return SQLITE_OK;
3791 } 4019 }
3792 4020
3793 /* 4021 /*
3794 ** This function is used to read or overwrite payload information 4022 ** This function is used to read or overwrite payload information
3795 ** for the entry that the pCur cursor is pointing to. If the eOp 4023 ** for the entry that the pCur cursor is pointing to. The eOp
3796 ** parameter is 0, this is a read operation (data copied into 4024 ** argument is interpreted as follows:
3797 ** buffer pBuf). If it is non-zero, a write (data copied from 4025 **
3798 ** buffer pBuf). 4026 ** 0: The operation is a read. Populate the overflow cache.
4027 ** 1: The operation is a write. Populate the overflow cache.
4028 ** 2: The operation is a read. Do not populate the overflow cache.
3799 ** 4029 **
3800 ** A total of "amt" bytes are read or written beginning at "offset". 4030 ** A total of "amt" bytes are read or written beginning at "offset".
3801 ** Data is read to or from the buffer pBuf. 4031 ** Data is read to or from the buffer pBuf.
3802 ** 4032 **
3803 ** The content being read or written might appear on the main page 4033 ** The content being read or written might appear on the main page
3804 ** or be scattered out on multiple overflow pages. 4034 ** or be scattered out on multiple overflow pages.
3805 ** 4035 **
3806 ** If the BtCursor.isIncrblobHandle flag is set, and the current 4036 ** If the current cursor entry uses one or more overflow pages and the
3807 ** cursor entry uses one or more overflow pages, this function 4037 ** eOp argument is not 2, this function may allocate space for and lazily
3808 ** allocates space for and lazily popluates the overflow page-list 4038 ** populates the overflow page-list cache array (BtCursor.aOverflow).
3809 ** cache array (BtCursor.aOverflow). Subsequent calls use this 4039 ** Subsequent calls use this cache to make seeking to the supplied offset
3810 ** cache to make seeking to the supplied offset more efficient. 4040 ** more efficient.
3811 ** 4041 **
3812 ** Once an overflow page-list cache has been allocated, it may be 4042 ** Once an overflow page-list cache has been allocated, it may be
3813 ** invalidated if some other cursor writes to the same table, or if 4043 ** invalidated if some other cursor writes to the same table, or if
3814 ** the cursor is moved to a different row. Additionally, in auto-vacuum 4044 ** the cursor is moved to a different row. Additionally, in auto-vacuum
3815 ** mode, the following events may invalidate an overflow page-list cache. 4045 ** mode, the following events may invalidate an overflow page-list cache.
3816 ** 4046 **
3817 ** * An incremental vacuum, 4047 ** * An incremental vacuum,
3818 ** * A commit in auto_vacuum="full" mode, 4048 ** * A commit in auto_vacuum="full" mode,
3819 ** * Creating a table (may require moving an overflow page). 4049 ** * Creating a table (may require moving an overflow page).
3820 */ 4050 */
3821 static int accessPayload( 4051 static int accessPayload(
3822 BtCursor *pCur, /* Cursor pointing to entry to read from */ 4052 BtCursor *pCur, /* Cursor pointing to entry to read from */
3823 u32 offset, /* Begin reading this far into payload */ 4053 u32 offset, /* Begin reading this far into payload */
3824 u32 amt, /* Read this many bytes */ 4054 u32 amt, /* Read this many bytes */
3825 unsigned char *pBuf, /* Write the bytes into this buffer */ 4055 unsigned char *pBuf, /* Write the bytes into this buffer */
3826 int eOp /* zero to read. non-zero to write. */ 4056 int eOp /* zero to read. non-zero to write. */
3827 ){ 4057 ){
3828 unsigned char *aPayload; 4058 unsigned char *aPayload;
3829 int rc = SQLITE_OK; 4059 int rc = SQLITE_OK;
3830 u32 nKey;
3831 int iIdx = 0; 4060 int iIdx = 0;
3832 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */ 4061 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
3833 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */ 4062 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
4063 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4064 unsigned char * const pBufStart = pBuf;
4065 int bEnd; /* True if reading to end of data */
4066 #endif
3834 4067
3835 assert( pPage ); 4068 assert( pPage );
3836 assert( pCur->eState==CURSOR_VALID ); 4069 assert( pCur->eState==CURSOR_VALID );
3837 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell ); 4070 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
3838 assert( cursorHoldsMutex(pCur) ); 4071 assert( cursorHoldsMutex(pCur) );
4072 assert( eOp!=2 || offset==0 ); /* Always start from beginning for eOp==2 */
3839 4073
3840 getCellInfo(pCur); 4074 getCellInfo(pCur);
3841 aPayload = pCur->info.pCell + pCur->info.nHeader; 4075 aPayload = pCur->info.pPayload;
3842 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey); 4076 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4077 bEnd = offset+amt==pCur->info.nPayload;
4078 #endif
4079 assert( offset+amt <= pCur->info.nPayload );
3843 4080
3844 if( NEVER(offset+amt > nKey+pCur->info.nData) 4081 if( &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] ){
3845 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
3846 ){
3847 /* Trying to read or write past the end of the data is an error */ 4082 /* Trying to read or write past the end of the data is an error */
3848 return SQLITE_CORRUPT_BKPT; 4083 return SQLITE_CORRUPT_BKPT;
3849 } 4084 }
3850 4085
3851 /* Check if data must be read/written to/from the btree page itself. */ 4086 /* Check if data must be read/written to/from the btree page itself. */
3852 if( offset<pCur->info.nLocal ){ 4087 if( offset<pCur->info.nLocal ){
3853 int a = amt; 4088 int a = amt;
3854 if( a+offset>pCur->info.nLocal ){ 4089 if( a+offset>pCur->info.nLocal ){
3855 a = pCur->info.nLocal - offset; 4090 a = pCur->info.nLocal - offset;
3856 } 4091 }
3857 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage); 4092 rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage);
3858 offset = 0; 4093 offset = 0;
3859 pBuf += a; 4094 pBuf += a;
3860 amt -= a; 4095 amt -= a;
3861 }else{ 4096 }else{
3862 offset -= pCur->info.nLocal; 4097 offset -= pCur->info.nLocal;
3863 } 4098 }
3864 4099
3865 if( rc==SQLITE_OK && amt>0 ){ 4100 if( rc==SQLITE_OK && amt>0 ){
3866 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */ 4101 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
3867 Pgno nextPage; 4102 Pgno nextPage;
3868 4103
3869 nextPage = get4byte(&aPayload[pCur->info.nLocal]); 4104 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
3870 4105
3871 #ifndef SQLITE_OMIT_INCRBLOB 4106 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
3872 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[] 4107 ** Except, do not allocate aOverflow[] for eOp==2.
3873 ** has not been allocated, allocate it now. The array is sized at 4108 **
3874 ** one entry for each overflow page in the overflow chain. The 4109 ** The aOverflow[] array is sized at one entry for each overflow page
3875 ** page number of the first overflow page is stored in aOverflow[0], 4110 ** in the overflow chain. The page number of the first overflow page is
3876 ** etc. A value of 0 in the aOverflow[] array means "not yet known" 4111 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
3877 ** (the cache is lazily populated). 4112 ** means "not yet known" (the cache is lazily populated).
3878 */ 4113 */
3879 if( pCur->isIncrblobHandle && !pCur->aOverflow ){ 4114 if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){
3880 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize; 4115 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
3881 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl); 4116 if( nOvfl>pCur->nOvflAlloc ){
3882 /* nOvfl is always positive. If it were zero, fetchPayload would have 4117 Pgno *aNew = (Pgno*)sqlite3DbRealloc(
3883 ** been used instead of this routine. */ 4118 pCur->pBtree->db, pCur->aOverflow, nOvfl*2*sizeof(Pgno)
3884 if( ALWAYS(nOvfl) && !pCur->aOverflow ){ 4119 );
3885 rc = SQLITE_NOMEM; 4120 if( aNew==0 ){
4121 rc = SQLITE_NOMEM;
4122 }else{
4123 pCur->nOvflAlloc = nOvfl*2;
4124 pCur->aOverflow = aNew;
4125 }
4126 }
4127 if( rc==SQLITE_OK ){
4128 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4129 pCur->curFlags |= BTCF_ValidOvfl;
3886 } 4130 }
3887 } 4131 }
3888 4132
3889 /* If the overflow page-list cache has been allocated and the 4133 /* If the overflow page-list cache has been allocated and the
3890 ** entry for the first required overflow page is valid, skip 4134 ** entry for the first required overflow page is valid, skip
3891 ** directly to it. 4135 ** directly to it.
3892 */ 4136 */
3893 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){ 4137 if( (pCur->curFlags & BTCF_ValidOvfl)!=0
4138 && pCur->aOverflow[offset/ovflSize]
4139 ){
3894 iIdx = (offset/ovflSize); 4140 iIdx = (offset/ovflSize);
3895 nextPage = pCur->aOverflow[iIdx]; 4141 nextPage = pCur->aOverflow[iIdx];
3896 offset = (offset%ovflSize); 4142 offset = (offset%ovflSize);
3897 } 4143 }
3898 #endif
3899 4144
3900 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){ 4145 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
3901 4146
3902 #ifndef SQLITE_OMIT_INCRBLOB
3903 /* If required, populate the overflow page-list cache. */ 4147 /* If required, populate the overflow page-list cache. */
3904 if( pCur->aOverflow ){ 4148 if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){
3905 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage); 4149 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
3906 pCur->aOverflow[iIdx] = nextPage; 4150 pCur->aOverflow[iIdx] = nextPage;
3907 } 4151 }
3908 #endif
3909 4152
3910 if( offset>=ovflSize ){ 4153 if( offset>=ovflSize ){
3911 /* The only reason to read this page is to obtain the page 4154 /* The only reason to read this page is to obtain the page
3912 ** number for the next page in the overflow chain. The page 4155 ** number for the next page in the overflow chain. The page
3913 ** data is not required. So first try to lookup the overflow 4156 ** data is not required. So first try to lookup the overflow
3914 ** page-list cache, if any, then fall back to the getOverflowPage() 4157 ** page-list cache, if any, then fall back to the getOverflowPage()
3915 ** function. 4158 ** function.
4159 **
4160 ** Note that the aOverflow[] array must be allocated because eOp!=2
4161 ** here. If eOp==2, then offset==0 and this branch is never taken.
3916 */ 4162 */
3917 #ifndef SQLITE_OMIT_INCRBLOB 4163 assert( eOp!=2 );
3918 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){ 4164 assert( pCur->curFlags & BTCF_ValidOvfl );
4165 if( pCur->aOverflow[iIdx+1] ){
3919 nextPage = pCur->aOverflow[iIdx+1]; 4166 nextPage = pCur->aOverflow[iIdx+1];
3920 } else 4167 }else{
3921 #endif
3922 rc = getOverflowPage(pBt, nextPage, 0, &nextPage); 4168 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
4169 }
3923 offset -= ovflSize; 4170 offset -= ovflSize;
3924 }else{ 4171 }else{
3925 /* Need to read this page properly. It contains some of the 4172 /* Need to read this page properly. It contains some of the
3926 ** range of data that is being read (eOp==0) or written (eOp!=0). 4173 ** range of data that is being read (eOp==0) or written (eOp!=0).
3927 */ 4174 */
3928 DbPage *pDbPage; 4175 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4176 sqlite3_file *fd;
4177 #endif
3929 int a = amt; 4178 int a = amt;
3930 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage); 4179 if( a + offset > ovflSize ){
3931 if( rc==SQLITE_OK ){ 4180 a = ovflSize - offset;
3932 aPayload = sqlite3PagerGetData(pDbPage); 4181 }
3933 nextPage = get4byte(aPayload); 4182
3934 if( a + offset > ovflSize ){ 4183 #ifdef SQLITE_DIRECT_OVERFLOW_READ
3935 a = ovflSize - offset; 4184 /* If all the following are true:
4185 **
4186 ** 1) this is a read operation, and
4187 ** 2) data is required from the start of this overflow page, and
4188 ** 3) the database is file-backed, and
4189 ** 4) there is no open write-transaction, and
4190 ** 5) the database is not a WAL database,
4191 ** 6) all data from the page is being read.
4192 ** 7) at least 4 bytes have already been read into the output buffer
4193 **
4194 ** then data can be read directly from the database file into the
4195 ** output buffer, bypassing the page-cache altogether. This speeds
4196 ** up loading large records that span many overflow pages.
4197 */
4198 if( (eOp&0x01)==0 /* (1) */
4199 && offset==0 /* (2) */
4200 && (bEnd || a==ovflSize) /* (6) */
4201 && pBt->inTransaction==TRANS_READ /* (4) */
4202 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
4203 && pBt->pPage1->aData[19]==0x01 /* (5) */
4204 && &pBuf[-4]>=pBufStart /* (7) */
4205 ){
4206 u8 aSave[4];
4207 u8 *aWrite = &pBuf[-4];
4208 assert( aWrite>=pBufStart ); /* hence (7) */
4209 memcpy(aSave, aWrite, 4);
4210 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
4211 nextPage = get4byte(aWrite);
4212 memcpy(aWrite, aSave, 4);
4213 }else
4214 #endif
4215
4216 {
4217 DbPage *pDbPage;
4218 rc = sqlite3PagerAcquire(pBt->pPager, nextPage, &pDbPage,
4219 ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0)
4220 );
4221 if( rc==SQLITE_OK ){
4222 aPayload = sqlite3PagerGetData(pDbPage);
4223 nextPage = get4byte(aPayload);
4224 rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage);
4225 sqlite3PagerUnref(pDbPage);
4226 offset = 0;
3936 } 4227 }
3937 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
3938 sqlite3PagerUnref(pDbPage);
3939 offset = 0;
3940 amt -= a;
3941 pBuf += a;
3942 } 4228 }
4229 amt -= a;
4230 pBuf += a;
3943 } 4231 }
3944 } 4232 }
3945 } 4233 }
3946 4234
3947 if( rc==SQLITE_OK && amt>0 ){ 4235 if( rc==SQLITE_OK && amt>0 ){
3948 return SQLITE_CORRUPT_BKPT; 4236 return SQLITE_CORRUPT_BKPT;
3949 } 4237 }
3950 return rc; 4238 return rc;
3951 } 4239 }
3952 4240
3953 /* 4241 /*
3954 ** Read part of the key associated with cursor pCur. Exactly 4242 ** Read part of the key associated with cursor pCur. Exactly
3955 ** "amt" bytes will be transfered into pBuf[]. The transfer 4243 ** "amt" bytes will be transferred into pBuf[]. The transfer
3956 ** begins at "offset". 4244 ** begins at "offset".
3957 ** 4245 **
3958 ** The caller must ensure that pCur is pointing to a valid row 4246 ** The caller must ensure that pCur is pointing to a valid row
3959 ** in the table. 4247 ** in the table.
3960 ** 4248 **
3961 ** Return SQLITE_OK on success or an error code if anything goes 4249 ** Return SQLITE_OK on success or an error code if anything goes
3962 ** wrong. An error is returned if "offset+amt" is larger than 4250 ** wrong. An error is returned if "offset+amt" is larger than
3963 ** the available payload. 4251 ** the available payload.
3964 */ 4252 */
3965 int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ 4253 int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
(...skipping 29 matching lines...) Expand all
3995 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] ); 4283 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3996 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); 4284 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
3997 rc = accessPayload(pCur, offset, amt, pBuf, 0); 4285 rc = accessPayload(pCur, offset, amt, pBuf, 0);
3998 } 4286 }
3999 return rc; 4287 return rc;
4000 } 4288 }
4001 4289
4002 /* 4290 /*
4003 ** Return a pointer to payload information from the entry that the 4291 ** Return a pointer to payload information from the entry that the
4004 ** pCur cursor is pointing to. The pointer is to the beginning of 4292 ** pCur cursor is pointing to. The pointer is to the beginning of
4005 ** the key if skipKey==0 and it points to the beginning of data if 4293 ** the key if index btrees (pPage->intKey==0) and is the data for
4006 ** skipKey==1. The number of bytes of available key/data is written 4294 ** table btrees (pPage->intKey==1). The number of bytes of available
4007 ** into *pAmt. If *pAmt==0, then the value returned will not be 4295 ** key/data is written into *pAmt. If *pAmt==0, then the value
4008 ** a valid pointer. 4296 ** returned will not be a valid pointer.
4009 ** 4297 **
4010 ** This routine is an optimization. It is common for the entire key 4298 ** This routine is an optimization. It is common for the entire key
4011 ** and data to fit on the local page and for there to be no overflow 4299 ** and data to fit on the local page and for there to be no overflow
4012 ** pages. When that is so, this routine can be used to access the 4300 ** pages. When that is so, this routine can be used to access the
4013 ** key and data without making a copy. If the key and/or data spills 4301 ** key and data without making a copy. If the key and/or data spills
4014 ** onto overflow pages, then accessPayload() must be used to reassemble 4302 ** onto overflow pages, then accessPayload() must be used to reassemble
4015 ** the key/data and copy it into a preallocated buffer. 4303 ** the key/data and copy it into a preallocated buffer.
4016 ** 4304 **
4017 ** The pointer returned by this routine looks directly into the cached 4305 ** The pointer returned by this routine looks directly into the cached
4018 ** page of the database. The data might change or move the next time 4306 ** page of the database. The data might change or move the next time
4019 ** any btree routine is called. 4307 ** any btree routine is called.
4020 */ 4308 */
4021 static const unsigned char *fetchPayload( 4309 static const void *fetchPayload(
4022 BtCursor *pCur, /* Cursor pointing to entry to read from */ 4310 BtCursor *pCur, /* Cursor pointing to entry to read from */
4023 int *pAmt, /* Write the number of available bytes here */ 4311 u32 *pAmt /* Write the number of available bytes here */
4024 int skipKey /* read beginning at data if this is true */
4025 ){ 4312 ){
4026 unsigned char *aPayload;
4027 MemPage *pPage;
4028 u32 nKey;
4029 u32 nLocal;
4030
4031 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]); 4313 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
4032 assert( pCur->eState==CURSOR_VALID ); 4314 assert( pCur->eState==CURSOR_VALID );
4315 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
4033 assert( cursorHoldsMutex(pCur) ); 4316 assert( cursorHoldsMutex(pCur) );
4034 pPage = pCur->apPage[pCur->iPage]; 4317 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4035 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell ); 4318 assert( pCur->info.nSize>0 );
4036 if( NEVER(pCur->info.nSize==0) ){ 4319 *pAmt = pCur->info.nLocal;
4037 btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage], 4320 return (void*)pCur->info.pPayload;
4038 &pCur->info);
4039 }
4040 aPayload = pCur->info.pCell;
4041 aPayload += pCur->info.nHeader;
4042 if( pPage->intKey ){
4043 nKey = 0;
4044 }else{
4045 nKey = (int)pCur->info.nKey;
4046 }
4047 if( skipKey ){
4048 aPayload += nKey;
4049 nLocal = pCur->info.nLocal - nKey;
4050 }else{
4051 nLocal = pCur->info.nLocal;
4052 assert( nLocal<=nKey );
4053 }
4054 *pAmt = nLocal;
4055 return aPayload;
4056 } 4321 }
4057 4322
4058 4323
4059 /* 4324 /*
4060 ** For the entry that cursor pCur is point to, return as 4325 ** For the entry that cursor pCur is point to, return as
4061 ** many bytes of the key or data as are available on the local 4326 ** many bytes of the key or data as are available on the local
4062 ** b-tree page. Write the number of available bytes into *pAmt. 4327 ** b-tree page. Write the number of available bytes into *pAmt.
4063 ** 4328 **
4064 ** The pointer returned is ephemeral. The key/data may move 4329 ** The pointer returned is ephemeral. The key/data may move
4065 ** or be destroyed on the next call to any Btree routine, 4330 ** or be destroyed on the next call to any Btree routine,
4066 ** including calls from other threads against the same cache. 4331 ** including calls from other threads against the same cache.
4067 ** Hence, a mutex on the BtShared should be held prior to calling 4332 ** Hence, a mutex on the BtShared should be held prior to calling
4068 ** this routine. 4333 ** this routine.
4069 ** 4334 **
4070 ** These routines is used to get quick access to key and data 4335 ** These routines is used to get quick access to key and data
4071 ** in the common case where no overflow pages are used. 4336 ** in the common case where no overflow pages are used.
4072 */ 4337 */
4073 const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){ 4338 const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){
4074 const void *p = 0; 4339 return fetchPayload(pCur, pAmt);
4075 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
4076 assert( cursorHoldsMutex(pCur) );
4077 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
4078 p = (const void*)fetchPayload(pCur, pAmt, 0);
4079 }
4080 return p;
4081 } 4340 }
4082 const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){ 4341 const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){
4083 const void *p = 0; 4342 return fetchPayload(pCur, pAmt);
4084 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
4085 assert( cursorHoldsMutex(pCur) );
4086 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
4087 p = (const void*)fetchPayload(pCur, pAmt, 1);
4088 }
4089 return p;
4090 } 4343 }
4091 4344
4092 4345
4093 /* 4346 /*
4094 ** Move the cursor down to a new child page. The newPgno argument is the 4347 ** Move the cursor down to a new child page. The newPgno argument is the
4095 ** page number of the child page to move to. 4348 ** page number of the child page to move to.
4096 ** 4349 **
4097 ** This function returns SQLITE_CORRUPT if the page-header flags field of 4350 ** This function returns SQLITE_CORRUPT if the page-header flags field of
4098 ** the new child page does not match the flags field of the parent (i.e. 4351 ** the new child page does not match the flags field of the parent (i.e.
4099 ** if an intkey page appears to be the parent of a non-intkey page, or 4352 ** if an intkey page appears to be the parent of a non-intkey page, or
4100 ** vice-versa). 4353 ** vice-versa).
4101 */ 4354 */
4102 static int moveToChild(BtCursor *pCur, u32 newPgno){ 4355 static int moveToChild(BtCursor *pCur, u32 newPgno){
4103 int rc; 4356 int rc;
4104 int i = pCur->iPage; 4357 int i = pCur->iPage;
4105 MemPage *pNewPage; 4358 MemPage *pNewPage;
4106 BtShared *pBt = pCur->pBt; 4359 BtShared *pBt = pCur->pBt;
4107 4360
4108 assert( cursorHoldsMutex(pCur) ); 4361 assert( cursorHoldsMutex(pCur) );
4109 assert( pCur->eState==CURSOR_VALID ); 4362 assert( pCur->eState==CURSOR_VALID );
4110 assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); 4363 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
4364 assert( pCur->iPage>=0 );
4111 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ 4365 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4112 return SQLITE_CORRUPT_BKPT; 4366 return SQLITE_CORRUPT_BKPT;
4113 } 4367 }
4114 rc = getAndInitPage(pBt, newPgno, &pNewPage); 4368 rc = getAndInitPage(pBt, newPgno, &pNewPage,
4369 (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0);
4115 if( rc ) return rc; 4370 if( rc ) return rc;
4116 pCur->apPage[i+1] = pNewPage; 4371 pCur->apPage[i+1] = pNewPage;
4117 pCur->aiIdx[i+1] = 0; 4372 pCur->aiIdx[i+1] = 0;
4118 pCur->iPage++; 4373 pCur->iPage++;
4119 4374
4120 pCur->info.nSize = 0; 4375 pCur->info.nSize = 0;
4121 pCur->validNKey = 0; 4376 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
4122 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){ 4377 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
4123 return SQLITE_CORRUPT_BKPT; 4378 return SQLITE_CORRUPT_BKPT;
4124 } 4379 }
4125 return SQLITE_OK; 4380 return SQLITE_OK;
4126 } 4381 }
4127 4382
4128 #ifndef NDEBUG 4383 #if 0
4129 /* 4384 /*
4130 ** Page pParent is an internal (non-leaf) tree page. This function 4385 ** Page pParent is an internal (non-leaf) tree page. This function
4131 ** asserts that page number iChild is the left-child if the iIdx'th 4386 ** asserts that page number iChild is the left-child if the iIdx'th
4132 ** cell in page pParent. Or, if iIdx is equal to the total number of 4387 ** cell in page pParent. Or, if iIdx is equal to the total number of
4133 ** cells in pParent, that page number iChild is the right-child of 4388 ** cells in pParent, that page number iChild is the right-child of
4134 ** the page. 4389 ** the page.
4135 */ 4390 */
4136 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){ 4391 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4137 assert( iIdx<=pParent->nCell ); 4392 assert( iIdx<=pParent->nCell );
4138 if( iIdx==pParent->nCell ){ 4393 if( iIdx==pParent->nCell ){
(...skipping 12 matching lines...) Expand all
4151 ** pCur->idx is set to the cell index that contains the pointer 4406 ** pCur->idx is set to the cell index that contains the pointer
4152 ** to the page we are coming from. If we are coming from the 4407 ** to the page we are coming from. If we are coming from the
4153 ** right-most child page then pCur->idx is set to one more than 4408 ** right-most child page then pCur->idx is set to one more than
4154 ** the largest cell index. 4409 ** the largest cell index.
4155 */ 4410 */
4156 static void moveToParent(BtCursor *pCur){ 4411 static void moveToParent(BtCursor *pCur){
4157 assert( cursorHoldsMutex(pCur) ); 4412 assert( cursorHoldsMutex(pCur) );
4158 assert( pCur->eState==CURSOR_VALID ); 4413 assert( pCur->eState==CURSOR_VALID );
4159 assert( pCur->iPage>0 ); 4414 assert( pCur->iPage>0 );
4160 assert( pCur->apPage[pCur->iPage] ); 4415 assert( pCur->apPage[pCur->iPage] );
4416
4417 /* UPDATE: It is actually possible for the condition tested by the assert
4418 ** below to be untrue if the database file is corrupt. This can occur if
4419 ** one cursor has modified page pParent while a reference to it is held
4420 ** by a second cursor. Which can only happen if a single page is linked
4421 ** into more than one b-tree structure in a corrupt database. */
4422 #if 0
4161 assertParentIndex( 4423 assertParentIndex(
4162 pCur->apPage[pCur->iPage-1], 4424 pCur->apPage[pCur->iPage-1],
4163 pCur->aiIdx[pCur->iPage-1], 4425 pCur->aiIdx[pCur->iPage-1],
4164 pCur->apPage[pCur->iPage]->pgno 4426 pCur->apPage[pCur->iPage]->pgno
4165 ); 4427 );
4428 #endif
4429 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
4430
4166 releasePage(pCur->apPage[pCur->iPage]); 4431 releasePage(pCur->apPage[pCur->iPage]);
4167 pCur->iPage--; 4432 pCur->iPage--;
4168 pCur->info.nSize = 0; 4433 pCur->info.nSize = 0;
4169 pCur->validNKey = 0; 4434 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
4170 } 4435 }
4171 4436
4172 /* 4437 /*
4173 ** Move the cursor to point to the root page of its b-tree structure. 4438 ** Move the cursor to point to the root page of its b-tree structure.
4174 ** 4439 **
4175 ** If the table has a virtual root page, then the cursor is moved to point 4440 ** If the table has a virtual root page, then the cursor is moved to point
4176 ** to the virtual root page instead of the actual root page. A table has a 4441 ** to the virtual root page instead of the actual root page. A table has a
4177 ** virtual root page when the actual root page contains no cells and a 4442 ** virtual root page when the actual root page contains no cells and a
4178 ** single child page. This can only happen with the table rooted at page 1. 4443 ** single child page. This can only happen with the table rooted at page 1.
4179 ** 4444 **
4180 ** If the b-tree structure is empty, the cursor state is set to 4445 ** If the b-tree structure is empty, the cursor state is set to
4181 ** CURSOR_INVALID. Otherwise, the cursor is set to point to the first 4446 ** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4182 ** cell located on the root (or virtual root) page and the cursor state 4447 ** cell located on the root (or virtual root) page and the cursor state
4183 ** is set to CURSOR_VALID. 4448 ** is set to CURSOR_VALID.
4184 ** 4449 **
4185 ** If this function returns successfully, it may be assumed that the 4450 ** If this function returns successfully, it may be assumed that the
4186 ** page-header flags indicate that the [virtual] root-page is the expected 4451 ** page-header flags indicate that the [virtual] root-page is the expected
4187 ** kind of b-tree page (i.e. if when opening the cursor the caller did not 4452 ** kind of b-tree page (i.e. if when opening the cursor the caller did not
4188 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D, 4453 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4189 ** indicating a table b-tree, or if the caller did specify a KeyInfo 4454 ** indicating a table b-tree, or if the caller did specify a KeyInfo
4190 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index 4455 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4191 ** b-tree). 4456 ** b-tree).
4192 */ 4457 */
4193 static int moveToRoot(BtCursor *pCur){ 4458 static int moveToRoot(BtCursor *pCur){
4194 MemPage *pRoot; 4459 MemPage *pRoot;
4195 int rc = SQLITE_OK; 4460 int rc = SQLITE_OK;
4196 Btree *p = pCur->pBtree;
4197 BtShared *pBt = p->pBt;
4198 4461
4199 assert( cursorHoldsMutex(pCur) ); 4462 assert( cursorHoldsMutex(pCur) );
4200 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK ); 4463 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4201 assert( CURSOR_VALID < CURSOR_REQUIRESEEK ); 4464 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4202 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK ); 4465 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4203 if( pCur->eState>=CURSOR_REQUIRESEEK ){ 4466 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4204 if( pCur->eState==CURSOR_FAULT ){ 4467 if( pCur->eState==CURSOR_FAULT ){
4205 assert( pCur->skipNext!=SQLITE_OK ); 4468 assert( pCur->skipNext!=SQLITE_OK );
4206 return pCur->skipNext; 4469 return pCur->skipNext;
4207 } 4470 }
4208 sqlite3BtreeClearCursor(pCur); 4471 sqlite3BtreeClearCursor(pCur);
4209 } 4472 }
4210 4473
4211 if( pCur->iPage>=0 ){ 4474 if( pCur->iPage>=0 ){
4212 int i; 4475 while( pCur->iPage ) releasePage(pCur->apPage[pCur->iPage--]);
4213 for(i=1; i<=pCur->iPage; i++){ 4476 }else if( pCur->pgnoRoot==0 ){
4214 releasePage(pCur->apPage[i]); 4477 pCur->eState = CURSOR_INVALID;
4215 } 4478 return SQLITE_OK;
4216 pCur->iPage = 0;
4217 }else{ 4479 }else{
4218 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]); 4480 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
4481 (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0);
4219 if( rc!=SQLITE_OK ){ 4482 if( rc!=SQLITE_OK ){
4220 pCur->eState = CURSOR_INVALID; 4483 pCur->eState = CURSOR_INVALID;
4221 return rc; 4484 return rc;
4222 } 4485 }
4223 pCur->iPage = 0; 4486 pCur->iPage = 0;
4224
4225 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4226 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4227 ** NULL, the caller expects a table b-tree. If this is not the case,
4228 ** return an SQLITE_CORRUPT error. */
4229 assert( pCur->apPage[0]->intKey==1 || pCur->apPage[0]->intKey==0 );
4230 if( (pCur->pKeyInfo==0)!=pCur->apPage[0]->intKey ){
4231 return SQLITE_CORRUPT_BKPT;
4232 }
4233 } 4487 }
4234
4235 /* Assert that the root page is of the correct type. This must be the
4236 ** case as the call to this function that loaded the root-page (either
4237 ** this call or a previous invocation) would have detected corruption
4238 ** if the assumption were not true, and it is not possible for the flags
4239 ** byte to have been modified while this cursor is holding a reference
4240 ** to the page. */
4241 pRoot = pCur->apPage[0]; 4488 pRoot = pCur->apPage[0];
4242 assert( pRoot->pgno==pCur->pgnoRoot ); 4489 assert( pRoot->pgno==pCur->pgnoRoot );
4243 assert( pRoot->isInit && (pCur->pKeyInfo==0)==pRoot->intKey ); 4490
4491 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4492 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4493 ** NULL, the caller expects a table b-tree. If this is not the case,
4494 ** return an SQLITE_CORRUPT error.
4495 **
4496 ** Earlier versions of SQLite assumed that this test could not fail
4497 ** if the root page was already loaded when this function was called (i.e.
4498 ** if pCur->iPage>=0). But this is not so if the database is corrupted
4499 ** in such a way that page pRoot is linked into a second b-tree table
4500 ** (or the freelist). */
4501 assert( pRoot->intKey==1 || pRoot->intKey==0 );
4502 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
4503 return SQLITE_CORRUPT_BKPT;
4504 }
4244 4505
4245 pCur->aiIdx[0] = 0; 4506 pCur->aiIdx[0] = 0;
4246 pCur->info.nSize = 0; 4507 pCur->info.nSize = 0;
4247 pCur->atLast = 0; 4508 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
4248 pCur->validNKey = 0;
4249 4509
4250 if( pRoot->nCell==0 && !pRoot->leaf ){ 4510 if( pRoot->nCell>0 ){
4511 pCur->eState = CURSOR_VALID;
4512 }else if( !pRoot->leaf ){
4251 Pgno subpage; 4513 Pgno subpage;
4252 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT; 4514 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
4253 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); 4515 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
4254 pCur->eState = CURSOR_VALID; 4516 pCur->eState = CURSOR_VALID;
4255 rc = moveToChild(pCur, subpage); 4517 rc = moveToChild(pCur, subpage);
4256 }else{ 4518 }else{
4257 pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID); 4519 pCur->eState = CURSOR_INVALID;
4258 } 4520 }
4259 return rc; 4521 return rc;
4260 } 4522 }
4261 4523
4262 /* 4524 /*
4263 ** Move the cursor down to the left-most leaf entry beneath the 4525 ** Move the cursor down to the left-most leaf entry beneath the
4264 ** entry to which it is currently pointing. 4526 ** entry to which it is currently pointing.
4265 ** 4527 **
4266 ** The left-most leaf is the one with the smallest key - the first 4528 ** The left-most leaf is the one with the smallest key - the first
4267 ** in ascending order. 4529 ** in ascending order.
(...skipping 23 matching lines...) Expand all
4291 ** The right-most entry is the one with the largest key - the last 4553 ** The right-most entry is the one with the largest key - the last
4292 ** key in ascending order. 4554 ** key in ascending order.
4293 */ 4555 */
4294 static int moveToRightmost(BtCursor *pCur){ 4556 static int moveToRightmost(BtCursor *pCur){
4295 Pgno pgno; 4557 Pgno pgno;
4296 int rc = SQLITE_OK; 4558 int rc = SQLITE_OK;
4297 MemPage *pPage = 0; 4559 MemPage *pPage = 0;
4298 4560
4299 assert( cursorHoldsMutex(pCur) ); 4561 assert( cursorHoldsMutex(pCur) );
4300 assert( pCur->eState==CURSOR_VALID ); 4562 assert( pCur->eState==CURSOR_VALID );
4301 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){ 4563 while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4302 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 4564 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
4303 pCur->aiIdx[pCur->iPage] = pPage->nCell; 4565 pCur->aiIdx[pCur->iPage] = pPage->nCell;
4304 rc = moveToChild(pCur, pgno); 4566 rc = moveToChild(pCur, pgno);
4567 if( rc ) return rc;
4305 } 4568 }
4306 if( rc==SQLITE_OK ){ 4569 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
4307 pCur->aiIdx[pCur->iPage] = pPage->nCell-1; 4570 assert( pCur->info.nSize==0 );
4308 pCur->info.nSize = 0; 4571 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
4309 pCur->validNKey = 0; 4572 return SQLITE_OK;
4310 }
4311 return rc;
4312 } 4573 }
4313 4574
4314 /* Move the cursor to the first entry in the table. Return SQLITE_OK 4575 /* Move the cursor to the first entry in the table. Return SQLITE_OK
4315 ** on success. Set *pRes to 0 if the cursor actually points to something 4576 ** on success. Set *pRes to 0 if the cursor actually points to something
4316 ** or set *pRes to 1 if the table is empty. 4577 ** or set *pRes to 1 if the table is empty.
4317 */ 4578 */
4318 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ 4579 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
4319 int rc; 4580 int rc;
4320 4581
4321 assert( cursorHoldsMutex(pCur) ); 4582 assert( cursorHoldsMutex(pCur) );
4322 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 4583 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
4323 rc = moveToRoot(pCur); 4584 rc = moveToRoot(pCur);
4324 if( rc==SQLITE_OK ){ 4585 if( rc==SQLITE_OK ){
4325 if( pCur->eState==CURSOR_INVALID ){ 4586 if( pCur->eState==CURSOR_INVALID ){
4326 assert( pCur->apPage[pCur->iPage]->nCell==0 ); 4587 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
4327 *pRes = 1; 4588 *pRes = 1;
4328 }else{ 4589 }else{
4329 assert( pCur->apPage[pCur->iPage]->nCell>0 ); 4590 assert( pCur->apPage[pCur->iPage]->nCell>0 );
4330 *pRes = 0; 4591 *pRes = 0;
4331 rc = moveToLeftmost(pCur); 4592 rc = moveToLeftmost(pCur);
4332 } 4593 }
4333 } 4594 }
4334 return rc; 4595 return rc;
4335 } 4596 }
4336 4597
4337 /* Move the cursor to the last entry in the table. Return SQLITE_OK 4598 /* Move the cursor to the last entry in the table. Return SQLITE_OK
4338 ** on success. Set *pRes to 0 if the cursor actually points to something 4599 ** on success. Set *pRes to 0 if the cursor actually points to something
4339 ** or set *pRes to 1 if the table is empty. 4600 ** or set *pRes to 1 if the table is empty.
4340 */ 4601 */
4341 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ 4602 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
4342 int rc; 4603 int rc;
4343 4604
4344 assert( cursorHoldsMutex(pCur) ); 4605 assert( cursorHoldsMutex(pCur) );
4345 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 4606 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
4346 4607
4347 /* If the cursor already points to the last entry, this is a no-op. */ 4608 /* If the cursor already points to the last entry, this is a no-op. */
4348 if( CURSOR_VALID==pCur->eState && pCur->atLast ){ 4609 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
4349 #ifdef SQLITE_DEBUG 4610 #ifdef SQLITE_DEBUG
4350 /* This block serves to assert() that the cursor really does point 4611 /* This block serves to assert() that the cursor really does point
4351 ** to the last entry in the b-tree. */ 4612 ** to the last entry in the b-tree. */
4352 int ii; 4613 int ii;
4353 for(ii=0; ii<pCur->iPage; ii++){ 4614 for(ii=0; ii<pCur->iPage; ii++){
4354 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell ); 4615 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4355 } 4616 }
4356 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 ); 4617 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4357 assert( pCur->apPage[pCur->iPage]->leaf ); 4618 assert( pCur->apPage[pCur->iPage]->leaf );
4358 #endif 4619 #endif
4359 return SQLITE_OK; 4620 return SQLITE_OK;
4360 } 4621 }
4361 4622
4362 rc = moveToRoot(pCur); 4623 rc = moveToRoot(pCur);
4363 if( rc==SQLITE_OK ){ 4624 if( rc==SQLITE_OK ){
4364 if( CURSOR_INVALID==pCur->eState ){ 4625 if( CURSOR_INVALID==pCur->eState ){
4365 assert( pCur->apPage[pCur->iPage]->nCell==0 ); 4626 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
4366 *pRes = 1; 4627 *pRes = 1;
4367 }else{ 4628 }else{
4368 assert( pCur->eState==CURSOR_VALID ); 4629 assert( pCur->eState==CURSOR_VALID );
4369 *pRes = 0; 4630 *pRes = 0;
4370 rc = moveToRightmost(pCur); 4631 rc = moveToRightmost(pCur);
4371 pCur->atLast = rc==SQLITE_OK ?1:0; 4632 if( rc==SQLITE_OK ){
4633 pCur->curFlags |= BTCF_AtLast;
4634 }else{
4635 pCur->curFlags &= ~BTCF_AtLast;
4636 }
4637
4372 } 4638 }
4373 } 4639 }
4374 return rc; 4640 return rc;
4375 } 4641 }
4376 4642
4377 /* Move the cursor so that it points to an entry near the key 4643 /* Move the cursor so that it points to an entry near the key
4378 ** specified by pIdxKey or intKey. Return a success code. 4644 ** specified by pIdxKey or intKey. Return a success code.
4379 ** 4645 **
4380 ** For INTKEY tables, the intKey parameter is used. pIdxKey 4646 ** For INTKEY tables, the intKey parameter is used. pIdxKey
4381 ** must be NULL. For index tables, pIdxKey is used and intKey 4647 ** must be NULL. For index tables, pIdxKey is used and intKey
(...skipping 21 matching lines...) Expand all
4403 ** 4669 **
4404 */ 4670 */
4405 int sqlite3BtreeMovetoUnpacked( 4671 int sqlite3BtreeMovetoUnpacked(
4406 BtCursor *pCur, /* The cursor to be moved */ 4672 BtCursor *pCur, /* The cursor to be moved */
4407 UnpackedRecord *pIdxKey, /* Unpacked index key */ 4673 UnpackedRecord *pIdxKey, /* Unpacked index key */
4408 i64 intKey, /* The table key */ 4674 i64 intKey, /* The table key */
4409 int biasRight, /* If true, bias the search to the high end */ 4675 int biasRight, /* If true, bias the search to the high end */
4410 int *pRes /* Write search results here */ 4676 int *pRes /* Write search results here */
4411 ){ 4677 ){
4412 int rc; 4678 int rc;
4679 RecordCompare xRecordCompare;
4413 4680
4414 assert( cursorHoldsMutex(pCur) ); 4681 assert( cursorHoldsMutex(pCur) );
4415 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 4682 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
4416 assert( pRes ); 4683 assert( pRes );
4417 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) ); 4684 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
4418 4685
4419 /* If the cursor is already positioned at the point we are trying 4686 /* If the cursor is already positioned at the point we are trying
4420 ** to move to, then just return without doing any work */ 4687 ** to move to, then just return without doing any work */
4421 if( pCur->eState==CURSOR_VALID && pCur->validNKey 4688 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
4422 && pCur->apPage[0]->intKey 4689 && pCur->apPage[0]->intKey
4423 ){ 4690 ){
4424 if( pCur->info.nKey==intKey ){ 4691 if( pCur->info.nKey==intKey ){
4425 *pRes = 0; 4692 *pRes = 0;
4426 return SQLITE_OK; 4693 return SQLITE_OK;
4427 } 4694 }
4428 if( pCur->atLast && pCur->info.nKey<intKey ){ 4695 if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){
4429 *pRes = -1; 4696 *pRes = -1;
4430 return SQLITE_OK; 4697 return SQLITE_OK;
4431 } 4698 }
4432 } 4699 }
4433 4700
4701 if( pIdxKey ){
4702 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
4703 pIdxKey->errCode = 0;
4704 assert( pIdxKey->default_rc==1
4705 || pIdxKey->default_rc==0
4706 || pIdxKey->default_rc==-1
4707 );
4708 }else{
4709 xRecordCompare = 0; /* All keys are integers */
4710 }
4711
4434 rc = moveToRoot(pCur); 4712 rc = moveToRoot(pCur);
4435 if( rc ){ 4713 if( rc ){
4436 return rc; 4714 return rc;
4437 } 4715 }
4438 assert( pCur->apPage[pCur->iPage] ); 4716 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
4439 assert( pCur->apPage[pCur->iPage]->isInit ); 4717 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
4440 assert( pCur->apPage[pCur->iPage]->nCell>0 || pCur->eState==CURSOR_INVALID ); 4718 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
4441 if( pCur->eState==CURSOR_INVALID ){ 4719 if( pCur->eState==CURSOR_INVALID ){
4442 *pRes = -1; 4720 *pRes = -1;
4443 assert( pCur->apPage[pCur->iPage]->nCell==0 ); 4721 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
4444 return SQLITE_OK; 4722 return SQLITE_OK;
4445 } 4723 }
4446 assert( pCur->apPage[0]->intKey || pIdxKey ); 4724 assert( pCur->apPage[0]->intKey || pIdxKey );
4447 for(;;){ 4725 for(;;){
4448 int lwr, upr; 4726 int lwr, upr, idx, c;
4449 Pgno chldPg; 4727 Pgno chldPg;
4450 MemPage *pPage = pCur->apPage[pCur->iPage]; 4728 MemPage *pPage = pCur->apPage[pCur->iPage];
4451 int c; 4729 u8 *pCell; /* Pointer to current cell in pPage */
4452 4730
4453 /* pPage->nCell must be greater than zero. If this is the root-page 4731 /* pPage->nCell must be greater than zero. If this is the root-page
4454 ** the cursor would have been INVALID above and this for(;;) loop 4732 ** the cursor would have been INVALID above and this for(;;) loop
4455 ** not run. If this is not the root-page, then the moveToChild() routine 4733 ** not run. If this is not the root-page, then the moveToChild() routine
4456 ** would have already detected db corruption. Similarly, pPage must 4734 ** would have already detected db corruption. Similarly, pPage must
4457 ** be the right kind (index or table) of b-tree page. Otherwise 4735 ** be the right kind (index or table) of b-tree page. Otherwise
4458 ** a moveToChild() or moveToRoot() call would have detected corruption. */ 4736 ** a moveToChild() or moveToRoot() call would have detected corruption. */
4459 assert( pPage->nCell>0 ); 4737 assert( pPage->nCell>0 );
4460 assert( pPage->intKey==(pIdxKey==0) ); 4738 assert( pPage->intKey==(pIdxKey==0) );
4461 lwr = 0; 4739 lwr = 0;
4462 upr = pPage->nCell-1; 4740 upr = pPage->nCell-1;
4463 if( biasRight ){ 4741 assert( biasRight==0 || biasRight==1 );
4464 pCur->aiIdx[pCur->iPage] = (u16)upr; 4742 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
4465 }else{ 4743 pCur->aiIdx[pCur->iPage] = (u16)idx;
4466 pCur->aiIdx[pCur->iPage] = (u16)((upr+lwr)/2); 4744 if( xRecordCompare==0 ){
4467 } 4745 for(;;){
4468 for(;;){
4469 int idx = pCur->aiIdx[pCur->iPage]; /* Index of current cell in pPage */
4470 u8 *pCell; /* Pointer to current cell in pPage */
4471
4472 pCur->info.nSize = 0;
4473 pCell = findCell(pPage, idx) + pPage->childPtrSize;
4474 if( pPage->intKey ){
4475 i64 nCellKey; 4746 i64 nCellKey;
4476 if( pPage->hasData ){ 4747 pCell = findCell(pPage, idx) + pPage->childPtrSize;
4477 u32 dummy; 4748 if( pPage->intKeyLeaf ){
4478 pCell += getVarint32(pCell, dummy); 4749 while( 0x80 <= *(pCell++) ){
4750 if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
4751 }
4479 } 4752 }
4480 getVarint(pCell, (u64*)&nCellKey); 4753 getVarint(pCell, (u64*)&nCellKey);
4481 if( nCellKey==intKey ){ 4754 if( nCellKey<intKey ){
4482 c = 0; 4755 lwr = idx+1;
4483 }else if( nCellKey<intKey ){ 4756 if( lwr>upr ){ c = -1; break; }
4484 c = -1; 4757 }else if( nCellKey>intKey ){
4758 upr = idx-1;
4759 if( lwr>upr ){ c = +1; break; }
4485 }else{ 4760 }else{
4486 assert( nCellKey>intKey ); 4761 assert( nCellKey==intKey );
4487 c = +1; 4762 pCur->curFlags |= BTCF_ValidNKey;
4763 pCur->info.nKey = nCellKey;
4764 pCur->aiIdx[pCur->iPage] = (u16)idx;
4765 if( !pPage->leaf ){
4766 lwr = idx;
4767 goto moveto_next_layer;
4768 }else{
4769 *pRes = 0;
4770 rc = SQLITE_OK;
4771 goto moveto_finish;
4772 }
4488 } 4773 }
4489 pCur->validNKey = 1; 4774 assert( lwr+upr>=0 );
4490 pCur->info.nKey = nCellKey; 4775 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
4491 }else{ 4776 }
4777 }else{
4778 for(;;){
4779 int nCell;
4780 pCell = findCell(pPage, idx) + pPage->childPtrSize;
4781
4492 /* The maximum supported page-size is 65536 bytes. This means that 4782 /* The maximum supported page-size is 65536 bytes. This means that
4493 ** the maximum number of record bytes stored on an index B-Tree 4783 ** the maximum number of record bytes stored on an index B-Tree
4494 ** page is less than 16384 bytes and may be stored as a 2-byte 4784 ** page is less than 16384 bytes and may be stored as a 2-byte
4495 ** varint. This information is used to attempt to avoid parsing 4785 ** varint. This information is used to attempt to avoid parsing
4496 ** the entire cell by checking for the cases where the record is 4786 ** the entire cell by checking for the cases where the record is
4497 ** stored entirely within the b-tree page by inspecting the first 4787 ** stored entirely within the b-tree page by inspecting the first
4498 ** 2 bytes of the cell. 4788 ** 2 bytes of the cell.
4499 */ 4789 */
4500 int nCell = pCell[0]; 4790 nCell = pCell[0];
4501 if( !(nCell & 0x80) && nCell<=pPage->maxLocal ){ 4791 if( nCell<=pPage->max1bytePayload ){
4502 /* This branch runs if the record-size field of the cell is a 4792 /* This branch runs if the record-size field of the cell is a
4503 ** single byte varint and the record fits entirely on the main 4793 ** single byte varint and the record fits entirely on the main
4504 ** b-tree page. */ 4794 ** b-tree page. */
4505 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey); 4795 testcase( pCell+nCell+1==pPage->aDataEnd );
4796 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
4506 }else if( !(pCell[1] & 0x80) 4797 }else if( !(pCell[1] & 0x80)
4507 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal 4798 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
4508 ){ 4799 ){
4509 /* The record-size field is a 2 byte varint and the record 4800 /* The record-size field is a 2 byte varint and the record
4510 ** fits entirely on the main b-tree page. */ 4801 ** fits entirely on the main b-tree page. */
4511 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey); 4802 testcase( pCell+nCell+2==pPage->aDataEnd );
4803 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
4512 }else{ 4804 }else{
4513 /* The record flows over onto one or more overflow pages. In 4805 /* The record flows over onto one or more overflow pages. In
4514 ** this case the whole cell needs to be parsed, a buffer allocated 4806 ** this case the whole cell needs to be parsed, a buffer allocated
4515 ** and accessPayload() used to retrieve the record into the 4807 ** and accessPayload() used to retrieve the record into the
4516 ** buffer before VdbeRecordCompare() can be called. */ 4808 ** buffer before VdbeRecordCompare() can be called. */
4517 void *pCellKey; 4809 void *pCellKey;
4518 u8 * const pCellBody = pCell - pPage->childPtrSize; 4810 u8 * const pCellBody = pCell - pPage->childPtrSize;
4519 btreeParseCellPtr(pPage, pCellBody, &pCur->info); 4811 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
4520 nCell = (int)pCur->info.nKey; 4812 nCell = (int)pCur->info.nKey;
4521 pCellKey = sqlite3Malloc( nCell ); 4813 pCellKey = sqlite3Malloc( nCell );
4522 if( pCellKey==0 ){ 4814 if( pCellKey==0 ){
4523 rc = SQLITE_NOMEM; 4815 rc = SQLITE_NOMEM;
4524 goto moveto_finish; 4816 goto moveto_finish;
4525 } 4817 }
4526 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0); 4818 pCur->aiIdx[pCur->iPage] = (u16)idx;
4819 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2);
4527 if( rc ){ 4820 if( rc ){
4528 sqlite3_free(pCellKey); 4821 sqlite3_free(pCellKey);
4529 goto moveto_finish; 4822 goto moveto_finish;
4530 } 4823 }
4531 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey); 4824 c = xRecordCompare(nCell, pCellKey, pIdxKey);
4532 sqlite3_free(pCellKey); 4825 sqlite3_free(pCellKey);
4533 } 4826 }
4534 } 4827 assert(
4535 if( c==0 ){ 4828 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
4536 if( pPage->intKey && !pPage->leaf ){ 4829 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
4537 lwr = idx; 4830 );
4538 upr = lwr - 1; 4831 if( c<0 ){
4539 break; 4832 lwr = idx+1;
4833 }else if( c>0 ){
4834 upr = idx-1;
4540 }else{ 4835 }else{
4836 assert( c==0 );
4541 *pRes = 0; 4837 *pRes = 0;
4542 rc = SQLITE_OK; 4838 rc = SQLITE_OK;
4839 pCur->aiIdx[pCur->iPage] = (u16)idx;
4840 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT;
4543 goto moveto_finish; 4841 goto moveto_finish;
4544 } 4842 }
4843 if( lwr>upr ) break;
4844 assert( lwr+upr>=0 );
4845 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
4545 } 4846 }
4546 if( c<0 ){
4547 lwr = idx+1;
4548 }else{
4549 upr = idx-1;
4550 }
4551 if( lwr>upr ){
4552 break;
4553 }
4554 pCur->aiIdx[pCur->iPage] = (u16)((lwr+upr)/2);
4555 } 4847 }
4556 assert( lwr==upr+1 ); 4848 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
4557 assert( pPage->isInit ); 4849 assert( pPage->isInit );
4558 if( pPage->leaf ){ 4850 if( pPage->leaf ){
4559 chldPg = 0; 4851 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4560 }else if( lwr>=pPage->nCell ){ 4852 pCur->aiIdx[pCur->iPage] = (u16)idx;
4853 *pRes = c;
4854 rc = SQLITE_OK;
4855 goto moveto_finish;
4856 }
4857 moveto_next_layer:
4858 if( lwr>=pPage->nCell ){
4561 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); 4859 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
4562 }else{ 4860 }else{
4563 chldPg = get4byte(findCell(pPage, lwr)); 4861 chldPg = get4byte(findCell(pPage, lwr));
4564 } 4862 }
4565 if( chldPg==0 ){
4566 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4567 *pRes = c;
4568 rc = SQLITE_OK;
4569 goto moveto_finish;
4570 }
4571 pCur->aiIdx[pCur->iPage] = (u16)lwr; 4863 pCur->aiIdx[pCur->iPage] = (u16)lwr;
4572 pCur->info.nSize = 0;
4573 pCur->validNKey = 0;
4574 rc = moveToChild(pCur, chldPg); 4864 rc = moveToChild(pCur, chldPg);
4575 if( rc ) goto moveto_finish; 4865 if( rc ) break;
4576 } 4866 }
4577 moveto_finish: 4867 moveto_finish:
4868 pCur->info.nSize = 0;
4869 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
4578 return rc; 4870 return rc;
4579 } 4871 }
4580 4872
4581 4873
4582 /* 4874 /*
4583 ** Return TRUE if the cursor is not pointing at an entry of the table. 4875 ** Return TRUE if the cursor is not pointing at an entry of the table.
4584 ** 4876 **
4585 ** TRUE will be returned after a call to sqlite3BtreeNext() moves 4877 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
4586 ** past the last entry in the table or sqlite3BtreePrev() moves past 4878 ** past the last entry in the table or sqlite3BtreePrev() moves past
4587 ** the first entry. TRUE is also returned if the table is empty. 4879 ** the first entry. TRUE is also returned if the table is empty.
4588 */ 4880 */
4589 int sqlite3BtreeEof(BtCursor *pCur){ 4881 int sqlite3BtreeEof(BtCursor *pCur){
4590 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries 4882 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4591 ** have been deleted? This API will need to change to return an error code 4883 ** have been deleted? This API will need to change to return an error code
4592 ** as well as the boolean result value. 4884 ** as well as the boolean result value.
4593 */ 4885 */
4594 return (CURSOR_VALID!=pCur->eState); 4886 return (CURSOR_VALID!=pCur->eState);
4595 } 4887 }
4596 4888
4597 /* 4889 /*
4598 ** Advance the cursor to the next entry in the database. If 4890 ** Advance the cursor to the next entry in the database. If
4599 ** successful then set *pRes=0. If the cursor 4891 ** successful then set *pRes=0. If the cursor
4600 ** was already pointing to the last entry in the database before 4892 ** was already pointing to the last entry in the database before
4601 ** this routine was called, then set *pRes=1. 4893 ** this routine was called, then set *pRes=1.
4894 **
4895 ** The main entry point is sqlite3BtreeNext(). That routine is optimized
4896 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx
4897 ** to the next cell on the current page. The (slower) btreeNext() helper
4898 ** routine is called when it is necessary to move to a different page or
4899 ** to restore the cursor.
4900 **
4901 ** The calling function will set *pRes to 0 or 1. The initial *pRes value
4902 ** will be 1 if the cursor being stepped corresponds to an SQL index and
4903 ** if this routine could have been skipped if that SQL index had been
4904 ** a unique index. Otherwise the caller will have set *pRes to zero.
4905 ** Zero is the common case. The btree implementation is free to use the
4906 ** initial *pRes value as a hint to improve performance, but the current
4907 ** SQLite btree implementation does not. (Note that the comdb2 btree
4908 ** implementation does use this hint, however.)
4602 */ 4909 */
4603 int sqlite3BtreeNext(BtCursor *pCur, int *pRes){ 4910 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){
4604 int rc; 4911 int rc;
4605 int idx; 4912 int idx;
4606 MemPage *pPage; 4913 MemPage *pPage;
4607 4914
4608 assert( cursorHoldsMutex(pCur) ); 4915 assert( cursorHoldsMutex(pCur) );
4609 rc = restoreCursorPosition(pCur); 4916 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
4610 if( rc!=SQLITE_OK ){ 4917 assert( *pRes==0 );
4611 return rc; 4918 if( pCur->eState!=CURSOR_VALID ){
4919 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
4920 rc = restoreCursorPosition(pCur);
4921 if( rc!=SQLITE_OK ){
4922 return rc;
4923 }
4924 if( CURSOR_INVALID==pCur->eState ){
4925 *pRes = 1;
4926 return SQLITE_OK;
4927 }
4928 if( pCur->skipNext ){
4929 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
4930 pCur->eState = CURSOR_VALID;
4931 if( pCur->skipNext>0 ){
4932 pCur->skipNext = 0;
4933 return SQLITE_OK;
4934 }
4935 pCur->skipNext = 0;
4936 }
4612 } 4937 }
4613 assert( pRes!=0 );
4614 if( CURSOR_INVALID==pCur->eState ){
4615 *pRes = 1;
4616 return SQLITE_OK;
4617 }
4618 if( pCur->skipNext>0 ){
4619 pCur->skipNext = 0;
4620 *pRes = 0;
4621 return SQLITE_OK;
4622 }
4623 pCur->skipNext = 0;
4624 4938
4625 pPage = pCur->apPage[pCur->iPage]; 4939 pPage = pCur->apPage[pCur->iPage];
4626 idx = ++pCur->aiIdx[pCur->iPage]; 4940 idx = ++pCur->aiIdx[pCur->iPage];
4627 assert( pPage->isInit ); 4941 assert( pPage->isInit );
4628 assert( idx<=pPage->nCell );
4629 4942
4630 pCur->info.nSize = 0; 4943 /* If the database file is corrupt, it is possible for the value of idx
4631 pCur->validNKey = 0; 4944 ** to be invalid here. This can only occur if a second cursor modifies
4945 ** the page while cursor pCur is holding a reference to it. Which can
4946 ** only happen if the database is corrupt in such a way as to link the
4947 ** page into more than one b-tree structure. */
4948 testcase( idx>pPage->nCell );
4949
4632 if( idx>=pPage->nCell ){ 4950 if( idx>=pPage->nCell ){
4633 if( !pPage->leaf ){ 4951 if( !pPage->leaf ){
4634 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); 4952 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
4635 if( rc ) return rc; 4953 if( rc ) return rc;
4636 rc = moveToLeftmost(pCur); 4954 return moveToLeftmost(pCur);
4637 *pRes = 0;
4638 return rc;
4639 } 4955 }
4640 do{ 4956 do{
4641 if( pCur->iPage==0 ){ 4957 if( pCur->iPage==0 ){
4642 *pRes = 1; 4958 *pRes = 1;
4643 pCur->eState = CURSOR_INVALID; 4959 pCur->eState = CURSOR_INVALID;
4644 return SQLITE_OK; 4960 return SQLITE_OK;
4645 } 4961 }
4646 moveToParent(pCur); 4962 moveToParent(pCur);
4647 pPage = pCur->apPage[pCur->iPage]; 4963 pPage = pCur->apPage[pCur->iPage];
4648 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell ); 4964 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
4649 *pRes = 0;
4650 if( pPage->intKey ){ 4965 if( pPage->intKey ){
4651 rc = sqlite3BtreeNext(pCur, pRes); 4966 return sqlite3BtreeNext(pCur, pRes);
4652 }else{ 4967 }else{
4653 rc = SQLITE_OK; 4968 return SQLITE_OK;
4654 } 4969 }
4655 return rc;
4656 } 4970 }
4657 *pRes = 0;
4658 if( pPage->leaf ){ 4971 if( pPage->leaf ){
4659 return SQLITE_OK; 4972 return SQLITE_OK;
4973 }else{
4974 return moveToLeftmost(pCur);
4660 } 4975 }
4661 rc = moveToLeftmost(pCur);
4662 return rc;
4663 } 4976 }
4664 4977 int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
4978 MemPage *pPage;
4979 assert( cursorHoldsMutex(pCur) );
4980 assert( pRes!=0 );
4981 assert( *pRes==0 || *pRes==1 );
4982 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
4983 pCur->info.nSize = 0;
4984 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
4985 *pRes = 0;
4986 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
4987 pPage = pCur->apPage[pCur->iPage];
4988 if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){
4989 pCur->aiIdx[pCur->iPage]--;
4990 return btreeNext(pCur, pRes);
4991 }
4992 if( pPage->leaf ){
4993 return SQLITE_OK;
4994 }else{
4995 return moveToLeftmost(pCur);
4996 }
4997 }
4665 4998
4666 /* 4999 /*
4667 ** Step the cursor to the back to the previous entry in the database. If 5000 ** Step the cursor to the back to the previous entry in the database. If
4668 ** successful then set *pRes=0. If the cursor 5001 ** successful then set *pRes=0. If the cursor
4669 ** was already pointing to the first entry in the database before 5002 ** was already pointing to the first entry in the database before
4670 ** this routine was called, then set *pRes=1. 5003 ** this routine was called, then set *pRes=1.
5004 **
5005 ** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5006 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx
5007 ** to the previous cell on the current page. The (slower) btreePrevious()
5008 ** helper routine is called when it is necessary to move to a different page
5009 ** or to restore the cursor.
5010 **
5011 ** The calling function will set *pRes to 0 or 1. The initial *pRes value
5012 ** will be 1 if the cursor being stepped corresponds to an SQL index and
5013 ** if this routine could have been skipped if that SQL index had been
5014 ** a unique index. Otherwise the caller will have set *pRes to zero.
5015 ** Zero is the common case. The btree implementation is free to use the
5016 ** initial *pRes value as a hint to improve performance, but the current
5017 ** SQLite btree implementation does not. (Note that the comdb2 btree
5018 ** implementation does use this hint, however.)
4671 */ 5019 */
4672 int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){ 5020 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){
4673 int rc; 5021 int rc;
4674 MemPage *pPage; 5022 MemPage *pPage;
4675 5023
4676 assert( cursorHoldsMutex(pCur) ); 5024 assert( cursorHoldsMutex(pCur) );
4677 rc = restoreCursorPosition(pCur); 5025 assert( pRes!=0 );
4678 if( rc!=SQLITE_OK ){ 5026 assert( *pRes==0 );
4679 return rc; 5027 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5028 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5029 assert( pCur->info.nSize==0 );
5030 if( pCur->eState!=CURSOR_VALID ){
5031 rc = restoreCursorPosition(pCur);
5032 if( rc!=SQLITE_OK ){
5033 return rc;
5034 }
5035 if( CURSOR_INVALID==pCur->eState ){
5036 *pRes = 1;
5037 return SQLITE_OK;
5038 }
5039 if( pCur->skipNext ){
5040 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5041 pCur->eState = CURSOR_VALID;
5042 if( pCur->skipNext<0 ){
5043 pCur->skipNext = 0;
5044 return SQLITE_OK;
5045 }
5046 pCur->skipNext = 0;
5047 }
4680 } 5048 }
4681 pCur->atLast = 0;
4682 if( CURSOR_INVALID==pCur->eState ){
4683 *pRes = 1;
4684 return SQLITE_OK;
4685 }
4686 if( pCur->skipNext<0 ){
4687 pCur->skipNext = 0;
4688 *pRes = 0;
4689 return SQLITE_OK;
4690 }
4691 pCur->skipNext = 0;
4692 5049
4693 pPage = pCur->apPage[pCur->iPage]; 5050 pPage = pCur->apPage[pCur->iPage];
4694 assert( pPage->isInit ); 5051 assert( pPage->isInit );
4695 if( !pPage->leaf ){ 5052 if( !pPage->leaf ){
4696 int idx = pCur->aiIdx[pCur->iPage]; 5053 int idx = pCur->aiIdx[pCur->iPage];
4697 rc = moveToChild(pCur, get4byte(findCell(pPage, idx))); 5054 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
4698 if( rc ){ 5055 if( rc ) return rc;
4699 return rc;
4700 }
4701 rc = moveToRightmost(pCur); 5056 rc = moveToRightmost(pCur);
4702 }else{ 5057 }else{
4703 while( pCur->aiIdx[pCur->iPage]==0 ){ 5058 while( pCur->aiIdx[pCur->iPage]==0 ){
4704 if( pCur->iPage==0 ){ 5059 if( pCur->iPage==0 ){
4705 pCur->eState = CURSOR_INVALID; 5060 pCur->eState = CURSOR_INVALID;
4706 *pRes = 1; 5061 *pRes = 1;
4707 return SQLITE_OK; 5062 return SQLITE_OK;
4708 } 5063 }
4709 moveToParent(pCur); 5064 moveToParent(pCur);
4710 } 5065 }
4711 pCur->info.nSize = 0; 5066 assert( pCur->info.nSize==0 );
4712 pCur->validNKey = 0; 5067 assert( (pCur->curFlags & (BTCF_ValidNKey|BTCF_ValidOvfl))==0 );
4713 5068
4714 pCur->aiIdx[pCur->iPage]--; 5069 pCur->aiIdx[pCur->iPage]--;
4715 pPage = pCur->apPage[pCur->iPage]; 5070 pPage = pCur->apPage[pCur->iPage];
4716 if( pPage->intKey && !pPage->leaf ){ 5071 if( pPage->intKey && !pPage->leaf ){
4717 rc = sqlite3BtreePrevious(pCur, pRes); 5072 rc = sqlite3BtreePrevious(pCur, pRes);
4718 }else{ 5073 }else{
4719 rc = SQLITE_OK; 5074 rc = SQLITE_OK;
4720 } 5075 }
4721 } 5076 }
5077 return rc;
5078 }
5079 int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
5080 assert( cursorHoldsMutex(pCur) );
5081 assert( pRes!=0 );
5082 assert( *pRes==0 || *pRes==1 );
5083 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
4722 *pRes = 0; 5084 *pRes = 0;
4723 return rc; 5085 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5086 pCur->info.nSize = 0;
5087 if( pCur->eState!=CURSOR_VALID
5088 || pCur->aiIdx[pCur->iPage]==0
5089 || pCur->apPage[pCur->iPage]->leaf==0
5090 ){
5091 return btreePrevious(pCur, pRes);
5092 }
5093 pCur->aiIdx[pCur->iPage]--;
5094 return SQLITE_OK;
4724 } 5095 }
4725 5096
4726 /* 5097 /*
4727 ** Allocate a new page from the database file. 5098 ** Allocate a new page from the database file.
4728 ** 5099 **
4729 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite() 5100 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
4730 ** has already been called on the new page.) The new page has also 5101 ** has already been called on the new page.) The new page has also
4731 ** been referenced and the calling routine is responsible for calling 5102 ** been referenced and the calling routine is responsible for calling
4732 ** sqlite3PagerUnref() on the new page when it is done. 5103 ** sqlite3PagerUnref() on the new page when it is done.
4733 ** 5104 **
4734 ** SQLITE_OK is returned on success. Any other return value indicates 5105 ** SQLITE_OK is returned on success. Any other return value indicates
4735 ** an error. *ppPage and *pPgno are undefined in the event of an error. 5106 ** an error. *ppPage and *pPgno are undefined in the event of an error.
4736 ** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned. 5107 ** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
4737 ** 5108 **
4738 ** If the "nearby" parameter is not 0, then a (feeble) effort is made to 5109 ** If the "nearby" parameter is not 0, then an effort is made to
4739 ** locate a page close to the page number "nearby". This can be used in an 5110 ** locate a page close to the page number "nearby". This can be used in an
4740 ** attempt to keep related pages close to each other in the database file, 5111 ** attempt to keep related pages close to each other in the database file,
4741 ** which in turn can make database access faster. 5112 ** which in turn can make database access faster.
4742 ** 5113 **
4743 ** If the "exact" parameter is not 0, and the page-number nearby exists 5114 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
4744 ** anywhere on the free-list, then it is guarenteed to be returned. This 5115 ** anywhere on the free-list, then it is guaranteed to be returned. If
4745 ** is only used by auto-vacuum databases when allocating a new table. 5116 ** eMode is BTALLOC_LT then the page returned will be less than or equal
5117 ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5118 ** are no restrictions on which page is returned.
4746 */ 5119 */
4747 static int allocateBtreePage( 5120 static int allocateBtreePage(
4748 BtShared *pBt, 5121 BtShared *pBt, /* The btree */
4749 MemPage **ppPage, 5122 MemPage **ppPage, /* Store pointer to the allocated page here */
4750 Pgno *pPgno, 5123 Pgno *pPgno, /* Store the page number here */
4751 Pgno nearby, 5124 Pgno nearby, /* Search for a page near this one */
4752 u8 exact 5125 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
4753 ){ 5126 ){
4754 MemPage *pPage1; 5127 MemPage *pPage1;
4755 int rc; 5128 int rc;
4756 u32 n; /* Number of pages on the freelist */ 5129 u32 n; /* Number of pages on the freelist */
4757 u32 k; /* Number of leaves on the trunk of the freelist */ 5130 u32 k; /* Number of leaves on the trunk of the freelist */
4758 MemPage *pTrunk = 0; 5131 MemPage *pTrunk = 0;
4759 MemPage *pPrevTrunk = 0; 5132 MemPage *pPrevTrunk = 0;
4760 Pgno mxPage; /* Total size of the database file */ 5133 Pgno mxPage; /* Total size of the database file */
4761 5134
4762 assert( sqlite3_mutex_held(pBt->mutex) ); 5135 assert( sqlite3_mutex_held(pBt->mutex) );
5136 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
4763 pPage1 = pBt->pPage1; 5137 pPage1 = pBt->pPage1;
4764 mxPage = btreePagecount(pBt); 5138 mxPage = btreePagecount(pBt);
4765 n = get4byte(&pPage1->aData[36]); 5139 n = get4byte(&pPage1->aData[36]);
4766 testcase( n==mxPage-1 ); 5140 testcase( n==mxPage-1 );
4767 if( n>=mxPage ){ 5141 if( n>=mxPage ){
4768 return SQLITE_CORRUPT_BKPT; 5142 return SQLITE_CORRUPT_BKPT;
4769 } 5143 }
4770 if( n>0 ){ 5144 if( n>0 ){
4771 /* There are pages on the freelist. Reuse one of those pages. */ 5145 /* There are pages on the freelist. Reuse one of those pages. */
4772 Pgno iTrunk; 5146 Pgno iTrunk;
4773 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */ 5147 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
4774 5148
4775 /* If the 'exact' parameter was true and a query of the pointer-map 5149 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
4776 ** shows that the page 'nearby' is somewhere on the free-list, then 5150 ** shows that the page 'nearby' is somewhere on the free-list, then
4777 ** the entire-list will be searched for that page. 5151 ** the entire-list will be searched for that page.
4778 */ 5152 */
4779 #ifndef SQLITE_OMIT_AUTOVACUUM 5153 #ifndef SQLITE_OMIT_AUTOVACUUM
4780 if( exact && nearby<=mxPage ){ 5154 if( eMode==BTALLOC_EXACT ){
4781 u8 eType; 5155 if( nearby<=mxPage ){
4782 assert( nearby>0 ); 5156 u8 eType;
4783 assert( pBt->autoVacuum ); 5157 assert( nearby>0 );
4784 rc = ptrmapGet(pBt, nearby, &eType, 0); 5158 assert( pBt->autoVacuum );
4785 if( rc ) return rc; 5159 rc = ptrmapGet(pBt, nearby, &eType, 0);
4786 if( eType==PTRMAP_FREEPAGE ){ 5160 if( rc ) return rc;
4787 searchList = 1; 5161 if( eType==PTRMAP_FREEPAGE ){
5162 searchList = 1;
5163 }
4788 } 5164 }
4789 *pPgno = nearby; 5165 }else if( eMode==BTALLOC_LE ){
5166 searchList = 1;
4790 } 5167 }
4791 #endif 5168 #endif
4792 5169
4793 /* Decrement the free-list count by 1. Set iTrunk to the index of the 5170 /* Decrement the free-list count by 1. Set iTrunk to the index of the
4794 ** first free-list trunk page. iPrevTrunk is initially 1. 5171 ** first free-list trunk page. iPrevTrunk is initially 1.
4795 */ 5172 */
4796 rc = sqlite3PagerWrite(pPage1->pDbPage); 5173 rc = sqlite3PagerWrite(pPage1->pDbPage);
4797 if( rc ) return rc; 5174 if( rc ) return rc;
4798 put4byte(&pPage1->aData[36], n-1); 5175 put4byte(&pPage1->aData[36], n-1);
4799 5176
4800 /* The code within this loop is run only once if the 'searchList' variable 5177 /* The code within this loop is run only once if the 'searchList' variable
4801 ** is not true. Otherwise, it runs once for each trunk-page on the 5178 ** is not true. Otherwise, it runs once for each trunk-page on the
4802 ** free-list until the page 'nearby' is located. 5179 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5180 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
4803 */ 5181 */
4804 do { 5182 do {
4805 pPrevTrunk = pTrunk; 5183 pPrevTrunk = pTrunk;
4806 if( pPrevTrunk ){ 5184 if( pPrevTrunk ){
4807 iTrunk = get4byte(&pPrevTrunk->aData[0]); 5185 iTrunk = get4byte(&pPrevTrunk->aData[0]);
4808 }else{ 5186 }else{
4809 iTrunk = get4byte(&pPage1->aData[32]); 5187 iTrunk = get4byte(&pPage1->aData[32]);
4810 } 5188 }
4811 testcase( iTrunk==mxPage ); 5189 testcase( iTrunk==mxPage );
4812 if( iTrunk>mxPage ){ 5190 if( iTrunk>mxPage ){
4813 rc = SQLITE_CORRUPT_BKPT; 5191 rc = SQLITE_CORRUPT_BKPT;
4814 }else{ 5192 }else{
4815 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); 5193 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
4816 } 5194 }
4817 if( rc ){ 5195 if( rc ){
4818 pTrunk = 0; 5196 pTrunk = 0;
4819 goto end_allocate_page; 5197 goto end_allocate_page;
4820 } 5198 }
5199 assert( pTrunk!=0 );
5200 assert( pTrunk->aData!=0 );
4821 5201
4822 k = get4byte(&pTrunk->aData[4]); /* # of leaves on this trunk page */ 5202 k = get4byte(&pTrunk->aData[4]); /* # of leaves on this trunk page */
4823 if( k==0 && !searchList ){ 5203 if( k==0 && !searchList ){
4824 /* The trunk has no leaves and the list is not being searched. 5204 /* The trunk has no leaves and the list is not being searched.
4825 ** So extract the trunk page itself and use it as the newly 5205 ** So extract the trunk page itself and use it as the newly
4826 ** allocated page */ 5206 ** allocated page */
4827 assert( pPrevTrunk==0 ); 5207 assert( pPrevTrunk==0 );
4828 rc = sqlite3PagerWrite(pTrunk->pDbPage); 5208 rc = sqlite3PagerWrite(pTrunk->pDbPage);
4829 if( rc ){ 5209 if( rc ){
4830 goto end_allocate_page; 5210 goto end_allocate_page;
4831 } 5211 }
4832 *pPgno = iTrunk; 5212 *pPgno = iTrunk;
4833 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); 5213 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4834 *ppPage = pTrunk; 5214 *ppPage = pTrunk;
4835 pTrunk = 0; 5215 pTrunk = 0;
4836 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); 5216 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
4837 }else if( k>(u32)(pBt->usableSize/4 - 2) ){ 5217 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
4838 /* Value of k is out of range. Database corruption */ 5218 /* Value of k is out of range. Database corruption */
4839 rc = SQLITE_CORRUPT_BKPT; 5219 rc = SQLITE_CORRUPT_BKPT;
4840 goto end_allocate_page; 5220 goto end_allocate_page;
4841 #ifndef SQLITE_OMIT_AUTOVACUUM 5221 #ifndef SQLITE_OMIT_AUTOVACUUM
4842 }else if( searchList && nearby==iTrunk ){ 5222 }else if( searchList
5223 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5224 ){
4843 /* The list is being searched and this trunk page is the page 5225 /* The list is being searched and this trunk page is the page
4844 ** to allocate, regardless of whether it has leaves. 5226 ** to allocate, regardless of whether it has leaves.
4845 */ 5227 */
4846 assert( *pPgno==iTrunk ); 5228 *pPgno = iTrunk;
4847 *ppPage = pTrunk; 5229 *ppPage = pTrunk;
4848 searchList = 0; 5230 searchList = 0;
4849 rc = sqlite3PagerWrite(pTrunk->pDbPage); 5231 rc = sqlite3PagerWrite(pTrunk->pDbPage);
4850 if( rc ){ 5232 if( rc ){
4851 goto end_allocate_page; 5233 goto end_allocate_page;
4852 } 5234 }
4853 if( k==0 ){ 5235 if( k==0 ){
4854 if( !pPrevTrunk ){ 5236 if( !pPrevTrunk ){
4855 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); 5237 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4856 }else{ 5238 }else{
(...skipping 42 matching lines...) Expand 10 before | Expand all | Expand 10 after
4899 pTrunk = 0; 5281 pTrunk = 0;
4900 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); 5282 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
4901 #endif 5283 #endif
4902 }else if( k>0 ){ 5284 }else if( k>0 ){
4903 /* Extract a leaf from the trunk */ 5285 /* Extract a leaf from the trunk */
4904 u32 closest; 5286 u32 closest;
4905 Pgno iPage; 5287 Pgno iPage;
4906 unsigned char *aData = pTrunk->aData; 5288 unsigned char *aData = pTrunk->aData;
4907 if( nearby>0 ){ 5289 if( nearby>0 ){
4908 u32 i; 5290 u32 i;
4909 int dist;
4910 closest = 0; 5291 closest = 0;
4911 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby); 5292 if( eMode==BTALLOC_LE ){
4912 for(i=1; i<k; i++){ 5293 for(i=0; i<k; i++){
4913 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby); 5294 iPage = get4byte(&aData[8+i*4]);
4914 if( d2<dist ){ 5295 if( iPage<=nearby ){
4915 closest = i; 5296 closest = i;
4916 dist = d2; 5297 break;
5298 }
5299 }
5300 }else{
5301 int dist;
5302 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5303 for(i=1; i<k; i++){
5304 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5305 if( d2<dist ){
5306 closest = i;
5307 dist = d2;
5308 }
4917 } 5309 }
4918 } 5310 }
4919 }else{ 5311 }else{
4920 closest = 0; 5312 closest = 0;
4921 } 5313 }
4922 5314
4923 iPage = get4byte(&aData[8+closest*4]); 5315 iPage = get4byte(&aData[8+closest*4]);
4924 testcase( iPage==mxPage ); 5316 testcase( iPage==mxPage );
4925 if( iPage>mxPage ){ 5317 if( iPage>mxPage ){
4926 rc = SQLITE_CORRUPT_BKPT; 5318 rc = SQLITE_CORRUPT_BKPT;
4927 goto end_allocate_page; 5319 goto end_allocate_page;
4928 } 5320 }
4929 testcase( iPage==mxPage ); 5321 testcase( iPage==mxPage );
4930 if( !searchList || iPage==nearby ){ 5322 if( !searchList
5323 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5324 ){
4931 int noContent; 5325 int noContent;
4932 *pPgno = iPage; 5326 *pPgno = iPage;
4933 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d" 5327 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
4934 ": %d more free pages\n", 5328 ": %d more free pages\n",
4935 *pPgno, closest+1, k, pTrunk->pgno, n-1)); 5329 *pPgno, closest+1, k, pTrunk->pgno, n-1));
4936 rc = sqlite3PagerWrite(pTrunk->pDbPage); 5330 rc = sqlite3PagerWrite(pTrunk->pDbPage);
4937 if( rc ) goto end_allocate_page; 5331 if( rc ) goto end_allocate_page;
4938 if( closest<k-1 ){ 5332 if( closest<k-1 ){
4939 memcpy(&aData[8+closest*4], &aData[4+k*4], 4); 5333 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
4940 } 5334 }
4941 put4byte(&aData[4], k-1); 5335 put4byte(&aData[4], k-1);
4942 noContent = !btreeGetHasContent(pBt, *pPgno); 5336 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
4943 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent); 5337 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
4944 if( rc==SQLITE_OK ){ 5338 if( rc==SQLITE_OK ){
4945 rc = sqlite3PagerWrite((*ppPage)->pDbPage); 5339 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
4946 if( rc!=SQLITE_OK ){ 5340 if( rc!=SQLITE_OK ){
4947 releasePage(*ppPage); 5341 releasePage(*ppPage);
4948 } 5342 }
4949 } 5343 }
4950 searchList = 0; 5344 searchList = 0;
4951 } 5345 }
4952 } 5346 }
4953 releasePage(pPrevTrunk); 5347 releasePage(pPrevTrunk);
4954 pPrevTrunk = 0; 5348 pPrevTrunk = 0;
4955 }while( searchList ); 5349 }while( searchList );
4956 }else{ 5350 }else{
4957 /* There are no pages on the freelist, so create a new page at the 5351 /* There are no pages on the freelist, so append a new page to the
4958 ** end of the file */ 5352 ** database image.
5353 **
5354 ** Normally, new pages allocated by this block can be requested from the
5355 ** pager layer with the 'no-content' flag set. This prevents the pager
5356 ** from trying to read the pages content from disk. However, if the
5357 ** current transaction has already run one or more incremental-vacuum
5358 ** steps, then the page we are about to allocate may contain content
5359 ** that is required in the event of a rollback. In this case, do
5360 ** not set the no-content flag. This causes the pager to load and journal
5361 ** the current page content before overwriting it.
5362 **
5363 ** Note that the pager will not actually attempt to load or journal
5364 ** content for any page that really does lie past the end of the database
5365 ** file on disk. So the effects of disabling the no-content optimization
5366 ** here are confined to those pages that lie between the end of the
5367 ** database image and the end of the database file.
5368 */
5369 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
5370
4959 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 5371 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
4960 if( rc ) return rc; 5372 if( rc ) return rc;
4961 pBt->nPage++; 5373 pBt->nPage++;
4962 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++; 5374 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
4963 5375
4964 #ifndef SQLITE_OMIT_AUTOVACUUM 5376 #ifndef SQLITE_OMIT_AUTOVACUUM
4965 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){ 5377 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
4966 /* If *pPgno refers to a pointer-map page, allocate two new pages 5378 /* If *pPgno refers to a pointer-map page, allocate two new pages
4967 ** at the end of the file instead of one. The first allocated page 5379 ** at the end of the file instead of one. The first allocated page
4968 ** becomes a new pointer-map page, the second is used by the caller. 5380 ** becomes a new pointer-map page, the second is used by the caller.
4969 */ 5381 */
4970 MemPage *pPg = 0; 5382 MemPage *pPg = 0;
4971 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage)); 5383 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
4972 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) ); 5384 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
4973 rc = btreeGetPage(pBt, pBt->nPage, &pPg, 1); 5385 rc = btreeGetPage(pBt, pBt->nPage, &pPg, bNoContent);
4974 if( rc==SQLITE_OK ){ 5386 if( rc==SQLITE_OK ){
4975 rc = sqlite3PagerWrite(pPg->pDbPage); 5387 rc = sqlite3PagerWrite(pPg->pDbPage);
4976 releasePage(pPg); 5388 releasePage(pPg);
4977 } 5389 }
4978 if( rc ) return rc; 5390 if( rc ) return rc;
4979 pBt->nPage++; 5391 pBt->nPage++;
4980 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; } 5392 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
4981 } 5393 }
4982 #endif 5394 #endif
4983 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage); 5395 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
4984 *pPgno = pBt->nPage; 5396 *pPgno = pBt->nPage;
4985 5397
4986 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); 5398 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
4987 rc = btreeGetPage(pBt, *pPgno, ppPage, 1); 5399 rc = btreeGetPage(pBt, *pPgno, ppPage, bNoContent);
4988 if( rc ) return rc; 5400 if( rc ) return rc;
4989 rc = sqlite3PagerWrite((*ppPage)->pDbPage); 5401 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
4990 if( rc!=SQLITE_OK ){ 5402 if( rc!=SQLITE_OK ){
4991 releasePage(*ppPage); 5403 releasePage(*ppPage);
4992 } 5404 }
4993 TRACE(("ALLOCATE: %d from end of file\n", *pPgno)); 5405 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
4994 } 5406 }
4995 5407
4996 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); 5408 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
4997 5409
4998 end_allocate_page: 5410 end_allocate_page:
4999 releasePage(pTrunk); 5411 releasePage(pTrunk);
5000 releasePage(pPrevTrunk); 5412 releasePage(pPrevTrunk);
5001 if( rc==SQLITE_OK ){ 5413 if( rc==SQLITE_OK ){
5002 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){ 5414 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
5003 releasePage(*ppPage); 5415 releasePage(*ppPage);
5416 *ppPage = 0;
5004 return SQLITE_CORRUPT_BKPT; 5417 return SQLITE_CORRUPT_BKPT;
5005 } 5418 }
5006 (*ppPage)->isInit = 0; 5419 (*ppPage)->isInit = 0;
5007 }else{ 5420 }else{
5008 *ppPage = 0; 5421 *ppPage = 0;
5009 } 5422 }
5010 assert( rc!=SQLITE_OK || sqlite3PagerIswriteable((*ppPage)->pDbPage) ); 5423 assert( rc!=SQLITE_OK || sqlite3PagerIswriteable((*ppPage)->pDbPage) );
5011 return rc; 5424 return rc;
5012 } 5425 }
5013 5426
(...skipping 27 matching lines...) Expand all
5041 }else{ 5454 }else{
5042 pPage = btreePageLookup(pBt, iPage); 5455 pPage = btreePageLookup(pBt, iPage);
5043 } 5456 }
5044 5457
5045 /* Increment the free page count on pPage1 */ 5458 /* Increment the free page count on pPage1 */
5046 rc = sqlite3PagerWrite(pPage1->pDbPage); 5459 rc = sqlite3PagerWrite(pPage1->pDbPage);
5047 if( rc ) goto freepage_out; 5460 if( rc ) goto freepage_out;
5048 nFree = get4byte(&pPage1->aData[36]); 5461 nFree = get4byte(&pPage1->aData[36]);
5049 put4byte(&pPage1->aData[36], nFree+1); 5462 put4byte(&pPage1->aData[36], nFree+1);
5050 5463
5051 if( pBt->secureDelete ){ 5464 if( pBt->btsFlags & BTS_SECURE_DELETE ){
5052 /* If the secure_delete option is enabled, then 5465 /* If the secure_delete option is enabled, then
5053 ** always fully overwrite deleted information with zeros. 5466 ** always fully overwrite deleted information with zeros.
5054 */ 5467 */
5055 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) ) 5468 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
5056 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0) 5469 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
5057 ){ 5470 ){
5058 goto freepage_out; 5471 goto freepage_out;
5059 } 5472 }
5060 memset(pPage->aData, 0, pPage->pBt->pageSize); 5473 memset(pPage->aData, 0, pPage->pBt->pageSize);
5061 } 5474 }
(...skipping 40 matching lines...) Expand 10 before | Expand all | Expand 10 after
5102 ** to maintain backwards compatibility with older versions of SQLite, 5515 ** to maintain backwards compatibility with older versions of SQLite,
5103 ** we will continue to restrict the number of entries to usableSize/4 - 8 5516 ** we will continue to restrict the number of entries to usableSize/4 - 8
5104 ** for now. At some point in the future (once everyone has upgraded 5517 ** for now. At some point in the future (once everyone has upgraded
5105 ** to 3.6.0 or later) we should consider fixing the conditional above 5518 ** to 3.6.0 or later) we should consider fixing the conditional above
5106 ** to read "usableSize/4-2" instead of "usableSize/4-8". 5519 ** to read "usableSize/4-2" instead of "usableSize/4-8".
5107 */ 5520 */
5108 rc = sqlite3PagerWrite(pTrunk->pDbPage); 5521 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5109 if( rc==SQLITE_OK ){ 5522 if( rc==SQLITE_OK ){
5110 put4byte(&pTrunk->aData[4], nLeaf+1); 5523 put4byte(&pTrunk->aData[4], nLeaf+1);
5111 put4byte(&pTrunk->aData[8+nLeaf*4], iPage); 5524 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
5112 if( pPage && !pBt->secureDelete ){ 5525 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
5113 sqlite3PagerDontWrite(pPage->pDbPage); 5526 sqlite3PagerDontWrite(pPage->pDbPage);
5114 } 5527 }
5115 rc = btreeSetHasContent(pBt, iPage); 5528 rc = btreeSetHasContent(pBt, iPage);
5116 } 5529 }
5117 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno)); 5530 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
5118 goto freepage_out; 5531 goto freepage_out;
5119 } 5532 }
5120 } 5533 }
5121 5534
5122 /* If control flows to this point, then it was not possible to add the 5535 /* If control flows to this point, then it was not possible to add the
(...skipping 22 matching lines...) Expand all
5145 releasePage(pTrunk); 5558 releasePage(pTrunk);
5146 return rc; 5559 return rc;
5147 } 5560 }
5148 static void freePage(MemPage *pPage, int *pRC){ 5561 static void freePage(MemPage *pPage, int *pRC){
5149 if( (*pRC)==SQLITE_OK ){ 5562 if( (*pRC)==SQLITE_OK ){
5150 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno); 5563 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5151 } 5564 }
5152 } 5565 }
5153 5566
5154 /* 5567 /*
5155 ** Free any overflow pages associated with the given Cell. 5568 ** Free any overflow pages associated with the given Cell. Write the
5569 ** local Cell size (the number of bytes on the original page, omitting
5570 ** overflow) into *pnSize.
5156 */ 5571 */
5157 static int clearCell(MemPage *pPage, unsigned char *pCell){ 5572 static int clearCell(
5573 MemPage *pPage, /* The page that contains the Cell */
5574 unsigned char *pCell, /* First byte of the Cell */
5575 u16 *pnSize /* Write the size of the Cell here */
5576 ){
5158 BtShared *pBt = pPage->pBt; 5577 BtShared *pBt = pPage->pBt;
5159 CellInfo info; 5578 CellInfo info;
5160 Pgno ovflPgno; 5579 Pgno ovflPgno;
5161 int rc; 5580 int rc;
5162 int nOvfl; 5581 int nOvfl;
5163 u32 ovflPageSize; 5582 u32 ovflPageSize;
5164 5583
5165 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 5584 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
5166 btreeParseCellPtr(pPage, pCell, &info); 5585 btreeParseCellPtr(pPage, pCell, &info);
5586 *pnSize = info.nSize;
5167 if( info.iOverflow==0 ){ 5587 if( info.iOverflow==0 ){
5168 return SQLITE_OK; /* No overflow pages. Return without doing anything */ 5588 return SQLITE_OK; /* No overflow pages. Return without doing anything */
5169 } 5589 }
5590 if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
5591 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */
5592 }
5170 ovflPgno = get4byte(&pCell[info.iOverflow]); 5593 ovflPgno = get4byte(&pCell[info.iOverflow]);
5171 assert( pBt->usableSize > 4 ); 5594 assert( pBt->usableSize > 4 );
5172 ovflPageSize = pBt->usableSize - 4; 5595 ovflPageSize = pBt->usableSize - 4;
5173 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize; 5596 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
5174 assert( ovflPgno==0 || nOvfl>0 ); 5597 assert( ovflPgno==0 || nOvfl>0 );
5175 while( nOvfl-- ){ 5598 while( nOvfl-- ){
5176 Pgno iNext = 0; 5599 Pgno iNext = 0;
5177 MemPage *pOvfl = 0; 5600 MemPage *pOvfl = 0;
5178 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){ 5601 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
5179 /* 0 is not a legal page number and page 1 cannot be an 5602 /* 0 is not a legal page number and page 1 cannot be an
(...skipping 57 matching lines...) Expand 10 before | Expand all | Expand 10 after
5237 const u8 *pSrc; 5660 const u8 *pSrc;
5238 int nSrc, n, rc; 5661 int nSrc, n, rc;
5239 int spaceLeft; 5662 int spaceLeft;
5240 MemPage *pOvfl = 0; 5663 MemPage *pOvfl = 0;
5241 MemPage *pToRelease = 0; 5664 MemPage *pToRelease = 0;
5242 unsigned char *pPrior; 5665 unsigned char *pPrior;
5243 unsigned char *pPayload; 5666 unsigned char *pPayload;
5244 BtShared *pBt = pPage->pBt; 5667 BtShared *pBt = pPage->pBt;
5245 Pgno pgnoOvfl = 0; 5668 Pgno pgnoOvfl = 0;
5246 int nHeader; 5669 int nHeader;
5247 CellInfo info;
5248 5670
5249 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 5671 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
5250 5672
5251 /* pPage is not necessarily writeable since pCell might be auxiliary 5673 /* pPage is not necessarily writeable since pCell might be auxiliary
5252 ** buffer space that is separate from the pPage buffer area */ 5674 ** buffer space that is separate from the pPage buffer area */
5253 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize] 5675 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5254 || sqlite3PagerIswriteable(pPage->pDbPage) ); 5676 || sqlite3PagerIswriteable(pPage->pDbPage) );
5255 5677
5256 /* Fill in the header. */ 5678 /* Fill in the header. */
5257 nHeader = 0; 5679 nHeader = pPage->childPtrSize;
5258 if( !pPage->leaf ){ 5680 nPayload = nData + nZero;
5259 nHeader += 4; 5681 if( pPage->intKeyLeaf ){
5260 } 5682 nHeader += putVarint32(&pCell[nHeader], nPayload);
5261 if( pPage->hasData ){
5262 nHeader += putVarint(&pCell[nHeader], nData+nZero);
5263 }else{ 5683 }else{
5264 nData = nZero = 0; 5684 assert( nData==0 );
5685 assert( nZero==0 );
5265 } 5686 }
5266 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey); 5687 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
5267 btreeParseCellPtr(pPage, pCell, &info);
5268 assert( info.nHeader==nHeader );
5269 assert( info.nKey==nKey );
5270 assert( info.nData==(u32)(nData+nZero) );
5271 5688
5272 /* Fill in the payload */ 5689 /* Fill in the payload size */
5273 nPayload = nData + nZero;
5274 if( pPage->intKey ){ 5690 if( pPage->intKey ){
5275 pSrc = pData; 5691 pSrc = pData;
5276 nSrc = nData; 5692 nSrc = nData;
5277 nData = 0; 5693 nData = 0;
5278 }else{ 5694 }else{
5279 if( NEVER(nKey>0x7fffffff || pKey==0) ){ 5695 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5280 return SQLITE_CORRUPT_BKPT; 5696 return SQLITE_CORRUPT_BKPT;
5281 } 5697 }
5282 nPayload += (int)nKey; 5698 nPayload = (int)nKey;
5283 pSrc = pKey; 5699 pSrc = pKey;
5284 nSrc = (int)nKey; 5700 nSrc = (int)nKey;
5285 } 5701 }
5286 *pnSize = info.nSize; 5702 if( nPayload<=pPage->maxLocal ){
5287 spaceLeft = info.nLocal; 5703 n = nHeader + nPayload;
5704 testcase( n==3 );
5705 testcase( n==4 );
5706 if( n<4 ) n = 4;
5707 *pnSize = n;
5708 spaceLeft = nPayload;
5709 pPrior = pCell;
5710 }else{
5711 int mn = pPage->minLocal;
5712 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
5713 testcase( n==pPage->maxLocal );
5714 testcase( n==pPage->maxLocal+1 );
5715 if( n > pPage->maxLocal ) n = mn;
5716 spaceLeft = n;
5717 *pnSize = n + nHeader + 4;
5718 pPrior = &pCell[nHeader+n];
5719 }
5288 pPayload = &pCell[nHeader]; 5720 pPayload = &pCell[nHeader];
5289 pPrior = &pCell[info.iOverflow];
5290 5721
5722 /* At this point variables should be set as follows:
5723 **
5724 ** nPayload Total payload size in bytes
5725 ** pPayload Begin writing payload here
5726 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
5727 ** that means content must spill into overflow pages.
5728 ** *pnSize Size of the local cell (not counting overflow pages)
5729 ** pPrior Where to write the pgno of the first overflow page
5730 **
5731 ** Use a call to btreeParseCellPtr() to verify that the values above
5732 ** were computed correctly.
5733 */
5734 #if SQLITE_DEBUG
5735 {
5736 CellInfo info;
5737 btreeParseCellPtr(pPage, pCell, &info);
5738 assert( nHeader=(int)(info.pPayload - pCell) );
5739 assert( info.nKey==nKey );
5740 assert( *pnSize == info.nSize );
5741 assert( spaceLeft == info.nLocal );
5742 assert( pPrior == &pCell[info.iOverflow] );
5743 }
5744 #endif
5745
5746 /* Write the payload into the local Cell and any extra into overflow pages */
5291 while( nPayload>0 ){ 5747 while( nPayload>0 ){
5292 if( spaceLeft==0 ){ 5748 if( spaceLeft==0 ){
5293 #ifndef SQLITE_OMIT_AUTOVACUUM 5749 #ifndef SQLITE_OMIT_AUTOVACUUM
5294 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */ 5750 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
5295 if( pBt->autoVacuum ){ 5751 if( pBt->autoVacuum ){
5296 do{ 5752 do{
5297 pgnoOvfl++; 5753 pgnoOvfl++;
5298 } while( 5754 } while(
5299 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) 5755 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5300 ); 5756 );
5301 } 5757 }
5302 #endif 5758 #endif
5303 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0); 5759 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
5304 #ifndef SQLITE_OMIT_AUTOVACUUM 5760 #ifndef SQLITE_OMIT_AUTOVACUUM
5305 /* If the database supports auto-vacuum, and the second or subsequent 5761 /* If the database supports auto-vacuum, and the second or subsequent
5306 ** overflow page is being allocated, add an entry to the pointer-map 5762 ** overflow page is being allocated, add an entry to the pointer-map
5307 ** for that page now. 5763 ** for that page now.
5308 ** 5764 **
5309 ** If this is the first overflow page, then write a partial entry 5765 ** If this is the first overflow page, then write a partial entry
5310 ** to the pointer-map. If we write nothing to this pointer-map slot, 5766 ** to the pointer-map. If we write nothing to this pointer-map slot,
5311 ** then the optimistic overflow chain processing in clearCell() 5767 ** then the optimistic overflow chain processing in clearCell()
5312 ** may misinterpret the uninitialised values and delete the 5768 ** may misinterpret the uninitialized values and delete the
5313 ** wrong pages from the database. 5769 ** wrong pages from the database.
5314 */ 5770 */
5315 if( pBt->autoVacuum && rc==SQLITE_OK ){ 5771 if( pBt->autoVacuum && rc==SQLITE_OK ){
5316 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1); 5772 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
5317 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc); 5773 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
5318 if( rc ){ 5774 if( rc ){
5319 releasePage(pOvfl); 5775 releasePage(pOvfl);
5320 } 5776 }
5321 } 5777 }
5322 #endif 5778 #endif
(...skipping 54 matching lines...) Expand 10 before | Expand all | Expand 10 after
5377 5833
5378 /* 5834 /*
5379 ** Remove the i-th cell from pPage. This routine effects pPage only. 5835 ** Remove the i-th cell from pPage. This routine effects pPage only.
5380 ** The cell content is not freed or deallocated. It is assumed that 5836 ** The cell content is not freed or deallocated. It is assumed that
5381 ** the cell content has been copied someplace else. This routine just 5837 ** the cell content has been copied someplace else. This routine just
5382 ** removes the reference to the cell from pPage. 5838 ** removes the reference to the cell from pPage.
5383 ** 5839 **
5384 ** "sz" must be the number of bytes in the cell. 5840 ** "sz" must be the number of bytes in the cell.
5385 */ 5841 */
5386 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){ 5842 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
5387 int i; /* Loop counter */
5388 u32 pc; /* Offset to cell content of cell being deleted */ 5843 u32 pc; /* Offset to cell content of cell being deleted */
5389 u8 *data; /* pPage->aData */ 5844 u8 *data; /* pPage->aData */
5390 u8 *ptr; /* Used to move bytes around within data[] */ 5845 u8 *ptr; /* Used to move bytes around within data[] */
5391 int rc; /* The return code */ 5846 int rc; /* The return code */
5392 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */ 5847 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
5393 5848
5394 if( *pRC ) return; 5849 if( *pRC ) return;
5395 5850
5396 assert( idx>=0 && idx<pPage->nCell ); 5851 assert( idx>=0 && idx<pPage->nCell );
5397 assert( sz==cellSize(pPage, idx) ); 5852 assert( sz==cellSize(pPage, idx) );
5398 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 5853 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
5399 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 5854 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
5400 data = pPage->aData; 5855 data = pPage->aData;
5401 ptr = &data[pPage->cellOffset + 2*idx]; 5856 ptr = &pPage->aCellIdx[2*idx];
5402 pc = get2byte(ptr); 5857 pc = get2byte(ptr);
5403 hdr = pPage->hdrOffset; 5858 hdr = pPage->hdrOffset;
5404 testcase( pc==get2byte(&data[hdr+5]) ); 5859 testcase( pc==get2byte(&data[hdr+5]) );
5405 testcase( pc+sz==pPage->pBt->usableSize ); 5860 testcase( pc+sz==pPage->pBt->usableSize );
5406 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){ 5861 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
5407 *pRC = SQLITE_CORRUPT_BKPT; 5862 *pRC = SQLITE_CORRUPT_BKPT;
5408 return; 5863 return;
5409 } 5864 }
5410 rc = freeSpace(pPage, pc, sz); 5865 rc = freeSpace(pPage, pc, sz);
5411 if( rc ){ 5866 if( rc ){
5412 *pRC = rc; 5867 *pRC = rc;
5413 return; 5868 return;
5414 } 5869 }
5415 for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
5416 ptr[0] = ptr[2];
5417 ptr[1] = ptr[3];
5418 }
5419 pPage->nCell--; 5870 pPage->nCell--;
5871 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
5420 put2byte(&data[hdr+3], pPage->nCell); 5872 put2byte(&data[hdr+3], pPage->nCell);
5421 pPage->nFree += 2; 5873 pPage->nFree += 2;
5422 } 5874 }
5423 5875
5424 /* 5876 /*
5425 ** Insert a new cell on pPage at cell index "i". pCell points to the 5877 ** Insert a new cell on pPage at cell index "i". pCell points to the
5426 ** content of the cell. 5878 ** content of the cell.
5427 ** 5879 **
5428 ** If the cell content will fit on the page, then put it there. If it 5880 ** If the cell content will fit on the page, then put it there. If it
5429 ** will not fit, then make a copy of the cell content into pTemp if 5881 ** will not fit, then make a copy of the cell content into pTemp if
5430 ** pTemp is not null. Regardless of pTemp, allocate a new entry 5882 ** pTemp is not null. Regardless of pTemp, allocate a new entry
5431 ** in pPage->aOvfl[] and make it point to the cell content (either 5883 ** in pPage->apOvfl[] and make it point to the cell content (either
5432 ** in pTemp or the original pCell) and also record its index. 5884 ** in pTemp or the original pCell) and also record its index.
5433 ** Allocating a new entry in pPage->aCell[] implies that 5885 ** Allocating a new entry in pPage->aCell[] implies that
5434 ** pPage->nOverflow is incremented. 5886 ** pPage->nOverflow is incremented.
5435 **
5436 ** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5437 ** cell. The caller will overwrite them after this function returns. If
5438 ** nSkip is non-zero, then pCell may not point to an invalid memory location
5439 ** (but pCell+nSkip is always valid).
5440 */ 5887 */
5441 static void insertCell( 5888 static void insertCell(
5442 MemPage *pPage, /* Page into which we are copying */ 5889 MemPage *pPage, /* Page into which we are copying */
5443 int i, /* New cell becomes the i-th cell of the page */ 5890 int i, /* New cell becomes the i-th cell of the page */
5444 u8 *pCell, /* Content of the new cell */ 5891 u8 *pCell, /* Content of the new cell */
5445 int sz, /* Bytes of content in pCell */ 5892 int sz, /* Bytes of content in pCell */
5446 u8 *pTemp, /* Temp storage space for pCell, if needed */ 5893 u8 *pTemp, /* Temp storage space for pCell, if needed */
5447 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */ 5894 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
5448 int *pRC /* Read and write return code from here */ 5895 int *pRC /* Read and write return code from here */
5449 ){ 5896 ){
5450 int idx = 0; /* Where to write new cell content in data[] */ 5897 int idx = 0; /* Where to write new cell content in data[] */
5451 int j; /* Loop counter */ 5898 int j; /* Loop counter */
5452 int end; /* First byte past the last cell pointer in data[] */ 5899 int end; /* First byte past the last cell pointer in data[] */
5453 int ins; /* Index in data[] where new cell pointer is inserted */ 5900 int ins; /* Index in data[] where new cell pointer is inserted */
5454 int cellOffset; /* Address of first cell pointer in data[] */ 5901 int cellOffset; /* Address of first cell pointer in data[] */
5455 u8 *data; /* The content of the whole page */ 5902 u8 *data; /* The content of the whole page */
5456 u8 *ptr; /* Used for moving information around in data[] */
5457
5458 int nSkip = (iChild ? 4 : 0);
5459 5903
5460 if( *pRC ) return; 5904 if( *pRC ) return;
5461 5905
5462 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); 5906 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
5463 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921 ); 5907 assert( MX_CELL(pPage->pBt)<=10921 );
5464 assert( pPage->nOverflow<=ArraySize(pPage->aOvfl) ); 5908 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
5909 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
5910 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
5465 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 5911 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
5466 /* The cell should normally be sized correctly. However, when moving a 5912 /* The cell should normally be sized correctly. However, when moving a
5467 ** malformed cell from a leaf page to an interior page, if the cell size 5913 ** malformed cell from a leaf page to an interior page, if the cell size
5468 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size 5914 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
5469 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence 5915 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
5470 ** the term after the || in the following assert(). */ 5916 ** the term after the || in the following assert(). */
5471 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) ); 5917 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
5472 if( pPage->nOverflow || sz+2>pPage->nFree ){ 5918 if( pPage->nOverflow || sz+2>pPage->nFree ){
5473 if( pTemp ){ 5919 if( pTemp ){
5474 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip); 5920 memcpy(pTemp, pCell, sz);
5475 pCell = pTemp; 5921 pCell = pTemp;
5476 } 5922 }
5477 if( iChild ){ 5923 if( iChild ){
5478 put4byte(pCell, iChild); 5924 put4byte(pCell, iChild);
5479 } 5925 }
5480 j = pPage->nOverflow++; 5926 j = pPage->nOverflow++;
5481 assert( j<(int)(sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0])) ); 5927 assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
5482 pPage->aOvfl[j].pCell = pCell; 5928 pPage->apOvfl[j] = pCell;
5483 pPage->aOvfl[j].idx = (u16)i; 5929 pPage->aiOvfl[j] = (u16)i;
5484 }else{ 5930 }else{
5485 int rc = sqlite3PagerWrite(pPage->pDbPage); 5931 int rc = sqlite3PagerWrite(pPage->pDbPage);
5486 if( rc!=SQLITE_OK ){ 5932 if( rc!=SQLITE_OK ){
5487 *pRC = rc; 5933 *pRC = rc;
5488 return; 5934 return;
5489 } 5935 }
5490 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 5936 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
5491 data = pPage->aData; 5937 data = pPage->aData;
5492 cellOffset = pPage->cellOffset; 5938 cellOffset = pPage->cellOffset;
5493 end = cellOffset + 2*pPage->nCell; 5939 end = cellOffset + 2*pPage->nCell;
5494 ins = cellOffset + 2*i; 5940 ins = cellOffset + 2*i;
5495 rc = allocateSpace(pPage, sz, &idx); 5941 rc = allocateSpace(pPage, sz, &idx);
5496 if( rc ){ *pRC = rc; return; } 5942 if( rc ){ *pRC = rc; return; }
5497 /* The allocateSpace() routine guarantees the following two properties 5943 /* The allocateSpace() routine guarantees the following two properties
5498 ** if it returns success */ 5944 ** if it returns success */
5499 assert( idx >= end+2 ); 5945 assert( idx >= end+2 );
5500 assert( idx+sz <= (int)pPage->pBt->usableSize ); 5946 assert( idx+sz <= (int)pPage->pBt->usableSize );
5501 pPage->nCell++; 5947 pPage->nCell++;
5502 pPage->nFree -= (u16)(2 + sz); 5948 pPage->nFree -= (u16)(2 + sz);
5503 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip); 5949 memcpy(&data[idx], pCell, sz);
5504 if( iChild ){ 5950 if( iChild ){
5505 put4byte(&data[idx], iChild); 5951 put4byte(&data[idx], iChild);
5506 } 5952 }
5507 for(j=end, ptr=&data[j]; j>ins; j-=2, ptr-=2){ 5953 memmove(&data[ins+2], &data[ins], end-ins);
5508 ptr[0] = ptr[-2];
5509 ptr[1] = ptr[-1];
5510 }
5511 put2byte(&data[ins], idx); 5954 put2byte(&data[ins], idx);
5512 put2byte(&data[pPage->hdrOffset+3], pPage->nCell); 5955 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
5513 #ifndef SQLITE_OMIT_AUTOVACUUM 5956 #ifndef SQLITE_OMIT_AUTOVACUUM
5514 if( pPage->pBt->autoVacuum ){ 5957 if( pPage->pBt->autoVacuum ){
5515 /* The cell may contain a pointer to an overflow page. If so, write 5958 /* The cell may contain a pointer to an overflow page. If so, write
5516 ** the entry for the overflow page into the pointer map. 5959 ** the entry for the overflow page into the pointer map.
5517 */ 5960 */
5518 ptrmapPutOvflPtr(pPage, pCell, pRC); 5961 ptrmapPutOvflPtr(pPage, pCell, pRC);
5519 } 5962 }
5520 #endif 5963 #endif
5521 } 5964 }
5522 } 5965 }
5523 5966
5524 /* 5967 /*
5525 ** Add a list of cells to a page. The page should be initially empty. 5968 ** Add a list of cells to a page. The page should be initially empty.
5526 ** The cells are guaranteed to fit on the page. 5969 ** The cells are guaranteed to fit on the page.
5527 */ 5970 */
5528 static void assemblePage( 5971 static void assemblePage(
5529 MemPage *pPage, /* The page to be assemblied */ 5972 MemPage *pPage, /* The page to be assembled */
5530 int nCell, /* The number of cells to add to this page */ 5973 int nCell, /* The number of cells to add to this page */
5531 u8 **apCell, /* Pointers to cell bodies */ 5974 u8 **apCell, /* Pointers to cell bodies */
5532 u16 *aSize /* Sizes of the cells */ 5975 u16 *aSize /* Sizes of the cells */
5533 ){ 5976 ){
5534 int i; /* Loop counter */ 5977 int i; /* Loop counter */
5535 u8 *pCellptr; /* Address of next cell pointer */ 5978 u8 *pCellptr; /* Address of next cell pointer */
5536 int cellbody; /* Address of next cell body */ 5979 int cellbody; /* Address of next cell body */
5537 u8 * const data = pPage->aData; /* Pointer to data for pPage */ 5980 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5538 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */ 5981 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5539 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */ 5982 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
5540 5983
5541 assert( pPage->nOverflow==0 ); 5984 assert( pPage->nOverflow==0 );
5542 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 5985 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
5543 assert( nCell>=0 && nCell<=(int)MX_CELL(pPage->pBt) 5986 assert( nCell>=0 && nCell<=(int)MX_CELL(pPage->pBt)
5544 && (int)MX_CELL(pPage->pBt)<=10921); 5987 && (int)MX_CELL(pPage->pBt)<=10921);
5545 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 5988 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
5546 5989
5547 /* Check that the page has just been zeroed by zeroPage() */ 5990 /* Check that the page has just been zeroed by zeroPage() */
5548 assert( pPage->nCell==0 ); 5991 assert( pPage->nCell==0 );
5549 assert( get2byteNotZero(&data[hdr+5])==nUsable ); 5992 assert( get2byteNotZero(&data[hdr+5])==nUsable );
5550 5993
5551 pCellptr = &data[pPage->cellOffset + nCell*2]; 5994 pCellptr = &pPage->aCellIdx[nCell*2];
5552 cellbody = nUsable; 5995 cellbody = nUsable;
5553 for(i=nCell-1; i>=0; i--){ 5996 for(i=nCell-1; i>=0; i--){
5997 u16 sz = aSize[i];
5554 pCellptr -= 2; 5998 pCellptr -= 2;
5555 cellbody -= aSize[i]; 5999 cellbody -= sz;
5556 put2byte(pCellptr, cellbody); 6000 put2byte(pCellptr, cellbody);
5557 memcpy(&data[cellbody], apCell[i], aSize[i]); 6001 memcpy(&data[cellbody], apCell[i], sz);
5558 } 6002 }
5559 put2byte(&data[hdr+3], nCell); 6003 put2byte(&data[hdr+3], nCell);
5560 put2byte(&data[hdr+5], cellbody); 6004 put2byte(&data[hdr+5], cellbody);
5561 pPage->nFree -= (nCell*2 + nUsable - cellbody); 6005 pPage->nFree -= (nCell*2 + nUsable - cellbody);
5562 pPage->nCell = (u16)nCell; 6006 pPage->nCell = (u16)nCell;
5563 } 6007 }
5564 6008
5565 /* 6009 /*
5566 ** The following parameters determine how many adjacent pages get involved 6010 ** The following parameters determine how many adjacent pages get involved
5567 ** in a balancing operation. NN is the number of neighbors on either side 6011 ** in a balancing operation. NN is the number of neighbors on either side
(...skipping 38 matching lines...) Expand 10 before | Expand all | Expand 10 after
5606 BtShared *const pBt = pPage->pBt; /* B-Tree Database */ 6050 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
5607 MemPage *pNew; /* Newly allocated page */ 6051 MemPage *pNew; /* Newly allocated page */
5608 int rc; /* Return Code */ 6052 int rc; /* Return Code */
5609 Pgno pgnoNew; /* Page number of pNew */ 6053 Pgno pgnoNew; /* Page number of pNew */
5610 6054
5611 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6055 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
5612 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 6056 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
5613 assert( pPage->nOverflow==1 ); 6057 assert( pPage->nOverflow==1 );
5614 6058
5615 /* This error condition is now caught prior to reaching this function */ 6059 /* This error condition is now caught prior to reaching this function */
5616 if( pPage->nCell<=0 ) return SQLITE_CORRUPT_BKPT; 6060 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT;
5617 6061
5618 /* Allocate a new page. This page will become the right-sibling of 6062 /* Allocate a new page. This page will become the right-sibling of
5619 ** pPage. Make the parent page writable, so that the new divider cell 6063 ** pPage. Make the parent page writable, so that the new divider cell
5620 ** may be inserted. If both these operations are successful, proceed. 6064 ** may be inserted. If both these operations are successful, proceed.
5621 */ 6065 */
5622 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); 6066 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
5623 6067
5624 if( rc==SQLITE_OK ){ 6068 if( rc==SQLITE_OK ){
5625 6069
5626 u8 *pOut = &pSpace[4]; 6070 u8 *pOut = &pSpace[4];
5627 u8 *pCell = pPage->aOvfl[0].pCell; 6071 u8 *pCell = pPage->apOvfl[0];
5628 u16 szCell = cellSizePtr(pPage, pCell); 6072 u16 szCell = cellSizePtr(pPage, pCell);
5629 u8 *pStop; 6073 u8 *pStop;
5630 6074
5631 assert( sqlite3PagerIswriteable(pNew->pDbPage) ); 6075 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
5632 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) ); 6076 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
5633 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF); 6077 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
5634 assemblePage(pNew, 1, &pCell, &szCell); 6078 assemblePage(pNew, 1, &pCell, &szCell);
5635 6079
5636 /* If this is an auto-vacuum database, update the pointer map 6080 /* If this is an auto-vacuum database, update the pointer map
5637 ** with entries for the new page, and any pointer from the 6081 ** with entries for the new page, and any pointer from the
(...skipping 89 matching lines...) Expand 10 before | Expand all | Expand 10 after
5727 6171
5728 /* 6172 /*
5729 ** This function is used to copy the contents of the b-tree node stored 6173 ** This function is used to copy the contents of the b-tree node stored
5730 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then 6174 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then
5731 ** the pointer-map entries for each child page are updated so that the 6175 ** the pointer-map entries for each child page are updated so that the
5732 ** parent page stored in the pointer map is page pTo. If pFrom contained 6176 ** parent page stored in the pointer map is page pTo. If pFrom contained
5733 ** any cells with overflow page pointers, then the corresponding pointer 6177 ** any cells with overflow page pointers, then the corresponding pointer
5734 ** map entries are also updated so that the parent page is page pTo. 6178 ** map entries are also updated so that the parent page is page pTo.
5735 ** 6179 **
5736 ** If pFrom is currently carrying any overflow cells (entries in the 6180 ** If pFrom is currently carrying any overflow cells (entries in the
5737 ** MemPage.aOvfl[] array), they are not copied to pTo. 6181 ** MemPage.apOvfl[] array), they are not copied to pTo.
5738 ** 6182 **
5739 ** Before returning, page pTo is reinitialized using btreeInitPage(). 6183 ** Before returning, page pTo is reinitialized using btreeInitPage().
5740 ** 6184 **
5741 ** The performance of this function is not critical. It is only used by 6185 ** The performance of this function is not critical. It is only used by
5742 ** the balance_shallower() and balance_deeper() procedures, neither of 6186 ** the balance_shallower() and balance_deeper() procedures, neither of
5743 ** which are called often under normal circumstances. 6187 ** which are called often under normal circumstances.
5744 */ 6188 */
5745 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){ 6189 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
5746 if( (*pRC)==SQLITE_OK ){ 6190 if( (*pRC)==SQLITE_OK ){
5747 BtShared * const pBt = pFrom->pBt; 6191 BtShared * const pBt = pFrom->pBt;
(...skipping 68 matching lines...) Expand 10 before | Expand all | Expand 10 after
5816 ** page (pParent) the parent page becomes overfull, this buffer is 6260 ** page (pParent) the parent page becomes overfull, this buffer is
5817 ** used to store the parent's overflow cells. Because this function inserts 6261 ** used to store the parent's overflow cells. Because this function inserts
5818 ** a maximum of four divider cells into the parent page, and the maximum 6262 ** a maximum of four divider cells into the parent page, and the maximum
5819 ** size of a cell stored within an internal node is always less than 1/4 6263 ** size of a cell stored within an internal node is always less than 1/4
5820 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large 6264 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
5821 ** enough for all overflow cells. 6265 ** enough for all overflow cells.
5822 ** 6266 **
5823 ** If aOvflSpace is set to a null pointer, this function returns 6267 ** If aOvflSpace is set to a null pointer, this function returns
5824 ** SQLITE_NOMEM. 6268 ** SQLITE_NOMEM.
5825 */ 6269 */
6270 #if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6271 #pragma optimize("", off)
6272 #endif
5826 static int balance_nonroot( 6273 static int balance_nonroot(
5827 MemPage *pParent, /* Parent page of siblings being balanced */ 6274 MemPage *pParent, /* Parent page of siblings being balanced */
5828 int iParentIdx, /* Index of "the page" in pParent */ 6275 int iParentIdx, /* Index of "the page" in pParent */
5829 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */ 6276 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
5830 int isRoot /* True if pParent is a root-page */ 6277 int isRoot, /* True if pParent is a root-page */
6278 int bBulk /* True if this call is part of a bulk load */
5831 ){ 6279 ){
5832 BtShared *pBt; /* The whole database */ 6280 BtShared *pBt; /* The whole database */
5833 int nCell = 0; /* Number of cells in apCell[] */ 6281 int nCell = 0; /* Number of cells in apCell[] */
5834 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */ 6282 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
5835 int nNew = 0; /* Number of pages in apNew[] */ 6283 int nNew = 0; /* Number of pages in apNew[] */
5836 int nOld; /* Number of pages in apOld[] */ 6284 int nOld; /* Number of pages in apOld[] */
5837 int i, j, k; /* Loop counters */ 6285 int i, j, k; /* Loop counters */
5838 int nxDiv; /* Next divider slot in pParent->aCell[] */ 6286 int nxDiv; /* Next divider slot in pParent->aCell[] */
5839 int rc = SQLITE_OK; /* The return code */ 6287 int rc = SQLITE_OK; /* The return code */
5840 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */ 6288 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
(...skipping 23 matching lines...) Expand all
5864 #if 0 6312 #if 0
5865 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno)); 6313 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
5866 #endif 6314 #endif
5867 6315
5868 /* At this point pParent may have at most one overflow cell. And if 6316 /* At this point pParent may have at most one overflow cell. And if
5869 ** this overflow cell is present, it must be the cell with 6317 ** this overflow cell is present, it must be the cell with
5870 ** index iParentIdx. This scenario comes about when this function 6318 ** index iParentIdx. This scenario comes about when this function
5871 ** is called (indirectly) from sqlite3BtreeDelete(). 6319 ** is called (indirectly) from sqlite3BtreeDelete().
5872 */ 6320 */
5873 assert( pParent->nOverflow==0 || pParent->nOverflow==1 ); 6321 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
5874 assert( pParent->nOverflow==0 || pParent->aOvfl[0].idx==iParentIdx ); 6322 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
5875 6323
5876 if( !aOvflSpace ){ 6324 if( !aOvflSpace ){
5877 return SQLITE_NOMEM; 6325 return SQLITE_NOMEM;
5878 } 6326 }
5879 6327
5880 /* Find the sibling pages to balance. Also locate the cells in pParent 6328 /* Find the sibling pages to balance. Also locate the cells in pParent
5881 ** that divide the siblings. An attempt is made to find NN siblings on 6329 ** that divide the siblings. An attempt is made to find NN siblings on
5882 ** either side of pPage. More siblings are taken from one side, however, 6330 ** either side of pPage. More siblings are taken from one side, however,
5883 ** if there are fewer than NN siblings on the other side. If pParent 6331 ** if there are fewer than NN siblings on the other side. If pParent
5884 ** has NB or fewer children then all children of pParent are taken. 6332 ** has NB or fewer children then all children of pParent are taken.
5885 ** 6333 **
5886 ** This loop also drops the divider cells from the parent page. This 6334 ** This loop also drops the divider cells from the parent page. This
5887 ** way, the remainder of the function does not have to deal with any 6335 ** way, the remainder of the function does not have to deal with any
5888 ** overflow cells in the parent page, since if any existed they will 6336 ** overflow cells in the parent page, since if any existed they will
5889 ** have already been removed. 6337 ** have already been removed.
5890 */ 6338 */
5891 i = pParent->nOverflow + pParent->nCell; 6339 i = pParent->nOverflow + pParent->nCell;
5892 if( i<2 ){ 6340 if( i<2 ){
5893 nxDiv = 0; 6341 nxDiv = 0;
5894 nOld = i+1;
5895 }else{ 6342 }else{
5896 nOld = 3; 6343 assert( bBulk==0 || bBulk==1 );
5897 if( iParentIdx==0 ){ 6344 if( iParentIdx==0 ){
5898 nxDiv = 0; 6345 nxDiv = 0;
5899 }else if( iParentIdx==i ){ 6346 }else if( iParentIdx==i ){
5900 nxDiv = i-2; 6347 nxDiv = i-2+bBulk;
5901 }else{ 6348 }else{
6349 assert( bBulk==0 );
5902 nxDiv = iParentIdx-1; 6350 nxDiv = iParentIdx-1;
5903 } 6351 }
5904 i = 2; 6352 i = 2-bBulk;
5905 } 6353 }
6354 nOld = i+1;
5906 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){ 6355 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
5907 pRight = &pParent->aData[pParent->hdrOffset+8]; 6356 pRight = &pParent->aData[pParent->hdrOffset+8];
5908 }else{ 6357 }else{
5909 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow); 6358 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
5910 } 6359 }
5911 pgno = get4byte(pRight); 6360 pgno = get4byte(pRight);
5912 while( 1 ){ 6361 while( 1 ){
5913 rc = getAndInitPage(pBt, pgno, &apOld[i]); 6362 rc = getAndInitPage(pBt, pgno, &apOld[i], 0);
5914 if( rc ){ 6363 if( rc ){
5915 memset(apOld, 0, (i+1)*sizeof(MemPage*)); 6364 memset(apOld, 0, (i+1)*sizeof(MemPage*));
5916 goto balance_cleanup; 6365 goto balance_cleanup;
5917 } 6366 }
5918 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow; 6367 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
5919 if( (i--)==0 ) break; 6368 if( (i--)==0 ) break;
5920 6369
5921 if( i+nxDiv==pParent->aOvfl[0].idx && pParent->nOverflow ){ 6370 if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
5922 apDiv[i] = pParent->aOvfl[0].pCell; 6371 apDiv[i] = pParent->apOvfl[0];
5923 pgno = get4byte(apDiv[i]); 6372 pgno = get4byte(apDiv[i]);
5924 szNew[i] = cellSizePtr(pParent, apDiv[i]); 6373 szNew[i] = cellSizePtr(pParent, apDiv[i]);
5925 pParent->nOverflow = 0; 6374 pParent->nOverflow = 0;
5926 }else{ 6375 }else{
5927 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow); 6376 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
5928 pgno = get4byte(apDiv[i]); 6377 pgno = get4byte(apDiv[i]);
5929 szNew[i] = cellSizePtr(pParent, apDiv[i]); 6378 szNew[i] = cellSizePtr(pParent, apDiv[i]);
5930 6379
5931 /* Drop the cell from the parent page. apDiv[i] still points to 6380 /* Drop the cell from the parent page. apDiv[i] still points to
5932 ** the cell within the parent, even though it has been dropped. 6381 ** the cell within the parent, even though it has been dropped.
5933 ** This is safe because dropping a cell only overwrites the first 6382 ** This is safe because dropping a cell only overwrites the first
5934 ** four bytes of it, and this function does not need the first 6383 ** four bytes of it, and this function does not need the first
5935 ** four bytes of the divider cell. So the pointer is safe to use 6384 ** four bytes of the divider cell. So the pointer is safe to use
5936 ** later on. 6385 ** later on.
5937 ** 6386 **
5938 ** Unless SQLite is compiled in secure-delete mode. In this case, 6387 ** But not if we are in secure-delete mode. In secure-delete mode,
5939 ** the dropCell() routine will overwrite the entire cell with zeroes. 6388 ** the dropCell() routine will overwrite the entire cell with zeroes.
5940 ** In this case, temporarily copy the cell into the aOvflSpace[] 6389 ** In this case, temporarily copy the cell into the aOvflSpace[]
5941 ** buffer. It will be copied out again as soon as the aSpace[] buffer 6390 ** buffer. It will be copied out again as soon as the aSpace[] buffer
5942 ** is allocated. */ 6391 ** is allocated. */
5943 if( pBt->secureDelete ){ 6392 if( pBt->btsFlags & BTS_SECURE_DELETE ){
5944 int iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aDat a); 6393 int iOff;
6394
6395 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
5945 if( (iOff+szNew[i])>(int)pBt->usableSize ){ 6396 if( (iOff+szNew[i])>(int)pBt->usableSize ){
5946 rc = SQLITE_CORRUPT_BKPT; 6397 rc = SQLITE_CORRUPT_BKPT;
5947 memset(apOld, 0, (i+1)*sizeof(MemPage*)); 6398 memset(apOld, 0, (i+1)*sizeof(MemPage*));
5948 goto balance_cleanup; 6399 goto balance_cleanup;
5949 }else{ 6400 }else{
5950 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]); 6401 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
5951 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData]; 6402 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
5952 } 6403 }
5953 } 6404 }
5954 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc); 6405 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
(...skipping 18 matching lines...) Expand all
5973 rc = SQLITE_NOMEM; 6424 rc = SQLITE_NOMEM;
5974 goto balance_cleanup; 6425 goto balance_cleanup;
5975 } 6426 }
5976 szCell = (u16*)&apCell[nMaxCells]; 6427 szCell = (u16*)&apCell[nMaxCells];
5977 aSpace1 = (u8*)&szCell[nMaxCells]; 6428 aSpace1 = (u8*)&szCell[nMaxCells];
5978 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) ); 6429 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
5979 6430
5980 /* 6431 /*
5981 ** Load pointers to all cells on sibling pages and the divider cells 6432 ** Load pointers to all cells on sibling pages and the divider cells
5982 ** into the local apCell[] array. Make copies of the divider cells 6433 ** into the local apCell[] array. Make copies of the divider cells
5983 ** into space obtained from aSpace1[] and remove the the divider Cells 6434 ** into space obtained from aSpace1[] and remove the divider cells
5984 ** from pParent. 6435 ** from pParent.
5985 ** 6436 **
5986 ** If the siblings are on leaf pages, then the child pointers of the 6437 ** If the siblings are on leaf pages, then the child pointers of the
5987 ** divider cells are stripped from the cells before they are copied 6438 ** divider cells are stripped from the cells before they are copied
5988 ** into aSpace1[]. In this way, all cells in apCell[] are without 6439 ** into aSpace1[]. In this way, all cells in apCell[] are without
5989 ** child pointers. If siblings are not leaves, then all cell in 6440 ** child pointers. If siblings are not leaves, then all cell in
5990 ** apCell[] include child pointers. Either way, all cells in apCell[] 6441 ** apCell[] include child pointers. Either way, all cells in apCell[]
5991 ** are alike. 6442 ** are alike.
5992 ** 6443 **
5993 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. 6444 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
5994 ** leafData: 1 if pPage holds key+data and pParent holds only keys. 6445 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
5995 */ 6446 */
5996 leafCorrection = apOld[0]->leaf*4; 6447 leafCorrection = apOld[0]->leaf*4;
5997 leafData = apOld[0]->hasData; 6448 leafData = apOld[0]->intKeyLeaf;
5998 for(i=0; i<nOld; i++){ 6449 for(i=0; i<nOld; i++){
5999 int limit; 6450 int limit;
6000 6451
6001 /* Before doing anything else, take a copy of the i'th original sibling 6452 /* Before doing anything else, take a copy of the i'th original sibling
6002 ** The rest of this function will use data from the copies rather 6453 ** The rest of this function will use data from the copies rather
6003 ** that the original pages since the original pages will be in the 6454 ** that the original pages since the original pages will be in the
6004 ** process of being overwritten. */ 6455 ** process of being overwritten. */
6005 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i]; 6456 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
6006 memcpy(pOld, apOld[i], sizeof(MemPage)); 6457 memcpy(pOld, apOld[i], sizeof(MemPage));
6007 pOld->aData = (void*)&pOld[1]; 6458 pOld->aData = (void*)&pOld[1];
6008 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize); 6459 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
6009 6460
6010 limit = pOld->nCell+pOld->nOverflow; 6461 limit = pOld->nCell+pOld->nOverflow;
6011 for(j=0; j<limit; j++){ 6462 if( pOld->nOverflow>0 ){
6012 assert( nCell<nMaxCells ); 6463 for(j=0; j<limit; j++){
6013 apCell[nCell] = findOverflowCell(pOld, j); 6464 assert( nCell<nMaxCells );
6014 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]); 6465 apCell[nCell] = findOverflowCell(pOld, j);
6015 nCell++; 6466 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6016 } 6467 nCell++;
6468 }
6469 }else{
6470 u8 *aData = pOld->aData;
6471 u16 maskPage = pOld->maskPage;
6472 u16 cellOffset = pOld->cellOffset;
6473 for(j=0; j<limit; j++){
6474 assert( nCell<nMaxCells );
6475 apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j);
6476 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6477 nCell++;
6478 }
6479 }
6017 if( i<nOld-1 && !leafData){ 6480 if( i<nOld-1 && !leafData){
6018 u16 sz = (u16)szNew[i]; 6481 u16 sz = (u16)szNew[i];
6019 u8 *pTemp; 6482 u8 *pTemp;
6020 assert( nCell<nMaxCells ); 6483 assert( nCell<nMaxCells );
6021 szCell[nCell] = sz; 6484 szCell[nCell] = sz;
6022 pTemp = &aSpace1[iSpace1]; 6485 pTemp = &aSpace1[iSpace1];
6023 iSpace1 += sz; 6486 iSpace1 += sz;
6024 assert( sz<=pBt->maxLocal+23 ); 6487 assert( sz<=pBt->maxLocal+23 );
6025 assert( iSpace1 <= (int)pBt->pageSize ); 6488 assert( iSpace1 <= (int)pBt->pageSize );
6026 memcpy(pTemp, apDiv[i], sz); 6489 memcpy(pTemp, apDiv[i], sz);
(...skipping 63 matching lines...) Expand 10 before | Expand all | Expand 10 after
6090 for(i=k-1; i>0; i--){ 6553 for(i=k-1; i>0; i--){
6091 int szRight = szNew[i]; /* Size of sibling on the right */ 6554 int szRight = szNew[i]; /* Size of sibling on the right */
6092 int szLeft = szNew[i-1]; /* Size of sibling on the left */ 6555 int szLeft = szNew[i-1]; /* Size of sibling on the left */
6093 int r; /* Index of right-most cell in left sibling */ 6556 int r; /* Index of right-most cell in left sibling */
6094 int d; /* Index of first cell to the left of right sibling */ 6557 int d; /* Index of first cell to the left of right sibling */
6095 6558
6096 r = cntNew[i-1] - 1; 6559 r = cntNew[i-1] - 1;
6097 d = r + 1 - leafData; 6560 d = r + 1 - leafData;
6098 assert( d<nMaxCells ); 6561 assert( d<nMaxCells );
6099 assert( r<nMaxCells ); 6562 assert( r<nMaxCells );
6100 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){ 6563 while( szRight==0
6564 || (!bBulk && szRight+szCell[d]+2<=szLeft-(szCell[r]+2))
6565 ){
6101 szRight += szCell[d] + 2; 6566 szRight += szCell[d] + 2;
6102 szLeft -= szCell[r] + 2; 6567 szLeft -= szCell[r] + 2;
6103 cntNew[i-1]--; 6568 cntNew[i-1]--;
6104 r = cntNew[i-1] - 1; 6569 r = cntNew[i-1] - 1;
6105 d = r + 1 - leafData; 6570 d = r + 1 - leafData;
6106 } 6571 }
6107 szNew[i] = szRight; 6572 szNew[i] = szRight;
6108 szNew[i-1] = szLeft; 6573 szNew[i-1] = szLeft;
6109 } 6574 }
6110 6575
6111 /* Either we found one or more cells (cntnew[0])>0) or pPage is 6576 /* Either we found one or more cells (cntnew[0])>0) or pPage is
6112 ** a virtual root page. A virtual root page is when the real root 6577 ** a virtual root page. A virtual root page is when the real root
6113 ** page is page 1 and we are the only child of that page. 6578 ** page is page 1 and we are the only child of that page.
6579 **
6580 ** UPDATE: The assert() below is not necessarily true if the database
6581 ** file is corrupt. The corruption will be detected and reported later
6582 ** in this procedure so there is no need to act upon it now.
6114 */ 6583 */
6584 #if 0
6115 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) ); 6585 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
6586 #endif
6116 6587
6117 TRACE(("BALANCE: old: %d %d %d ", 6588 TRACE(("BALANCE: old: %d %d %d ",
6118 apOld[0]->pgno, 6589 apOld[0]->pgno,
6119 nOld>=2 ? apOld[1]->pgno : 0, 6590 nOld>=2 ? apOld[1]->pgno : 0,
6120 nOld>=3 ? apOld[2]->pgno : 0 6591 nOld>=3 ? apOld[2]->pgno : 0
6121 )); 6592 ));
6122 6593
6123 /* 6594 /*
6124 ** Allocate k new pages. Reuse old pages where possible. 6595 ** Allocate k new pages. Reuse old pages where possible.
6125 */ 6596 */
6126 if( apOld[0]->pgno<=1 ){ 6597 if( apOld[0]->pgno<=1 ){
6127 rc = SQLITE_CORRUPT_BKPT; 6598 rc = SQLITE_CORRUPT_BKPT;
6128 goto balance_cleanup; 6599 goto balance_cleanup;
6129 } 6600 }
6130 pageFlags = apOld[0]->aData[0]; 6601 pageFlags = apOld[0]->aData[0];
6131 for(i=0; i<k; i++){ 6602 for(i=0; i<k; i++){
6132 MemPage *pNew; 6603 MemPage *pNew;
6133 if( i<nOld ){ 6604 if( i<nOld ){
6134 pNew = apNew[i] = apOld[i]; 6605 pNew = apNew[i] = apOld[i];
6135 apOld[i] = 0; 6606 apOld[i] = 0;
6136 rc = sqlite3PagerWrite(pNew->pDbPage); 6607 rc = sqlite3PagerWrite(pNew->pDbPage);
6137 nNew++; 6608 nNew++;
6138 if( rc ) goto balance_cleanup; 6609 if( rc ) goto balance_cleanup;
6139 }else{ 6610 }else{
6140 assert( i>0 ); 6611 assert( i>0 );
6141 rc = allocateBtreePage(pBt, &pNew, &pgno, pgno, 0); 6612 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
6142 if( rc ) goto balance_cleanup; 6613 if( rc ) goto balance_cleanup;
6143 apNew[i] = pNew; 6614 apNew[i] = pNew;
6144 nNew++; 6615 nNew++;
6145 6616
6146 /* Set the pointer-map entry for the new sibling page. */ 6617 /* Set the pointer-map entry for the new sibling page. */
6147 if( ISAUTOVACUUM ){ 6618 if( ISAUTOVACUUM ){
6148 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc); 6619 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
6149 if( rc!=SQLITE_OK ){ 6620 if( rc!=SQLITE_OK ){
6150 goto balance_cleanup; 6621 goto balance_cleanup;
6151 } 6622 }
6152 } 6623 }
6153 } 6624 }
6154 } 6625 }
6155 6626
6156 /* Free any old pages that were not reused as new pages. 6627 /* Free any old pages that were not reused as new pages.
6157 */ 6628 */
6158 while( i<nOld ){ 6629 while( i<nOld ){
6159 freePage(apOld[i], &rc); 6630 freePage(apOld[i], &rc);
6160 if( rc ) goto balance_cleanup; 6631 if( rc ) goto balance_cleanup;
6161 releasePage(apOld[i]); 6632 releasePage(apOld[i]);
6162 apOld[i] = 0; 6633 apOld[i] = 0;
6163 i++; 6634 i++;
6164 } 6635 }
6165 6636
6166 /* 6637 /*
6167 ** Put the new pages in accending order. This helps to 6638 ** Put the new pages in ascending order. This helps to
6168 ** keep entries in the disk file in order so that a scan 6639 ** keep entries in the disk file in order so that a scan
6169 ** of the table is a linear scan through the file. That 6640 ** of the table is a linear scan through the file. That
6170 ** in turn helps the operating system to deliver pages 6641 ** in turn helps the operating system to deliver pages
6171 ** from the disk more rapidly. 6642 ** from the disk more rapidly.
6172 ** 6643 **
6173 ** An O(n^2) insertion sort algorithm is used, but since 6644 ** An O(n^2) insertion sort algorithm is used, but since
6174 ** n is never more than NB (a small constant), that should 6645 ** n is never more than NB (a small constant), that should
6175 ** not be a problem. 6646 ** not be a problem.
6176 ** 6647 **
6177 ** When NB==3, this one optimization makes the database 6648 ** When NB==3, this one optimization makes the database
(...skipping 155 matching lines...) Expand 10 before | Expand all | Expand 10 after
6333 ** 6804 **
6334 ** Cases 1 and 2 are dealt with above by other code. The next 6805 ** Cases 1 and 2 are dealt with above by other code. The next
6335 ** block deals with cases 3 and 4 and the one after that, case 5. Since 6806 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6336 ** setting a pointer map entry is a relatively expensive operation, this 6807 ** setting a pointer map entry is a relatively expensive operation, this
6337 ** code only sets pointer map entries for child or overflow pages that have 6808 ** code only sets pointer map entries for child or overflow pages that have
6338 ** actually moved between pages. */ 6809 ** actually moved between pages. */
6339 MemPage *pNew = apNew[0]; 6810 MemPage *pNew = apNew[0];
6340 MemPage *pOld = apCopy[0]; 6811 MemPage *pOld = apCopy[0];
6341 int nOverflow = pOld->nOverflow; 6812 int nOverflow = pOld->nOverflow;
6342 int iNextOld = pOld->nCell + nOverflow; 6813 int iNextOld = pOld->nCell + nOverflow;
6343 int iOverflow = (nOverflow ? pOld->aOvfl[0].idx : -1); 6814 int iOverflow = (nOverflow ? pOld->aiOvfl[0] : -1);
6344 j = 0; /* Current 'old' sibling page */ 6815 j = 0; /* Current 'old' sibling page */
6345 k = 0; /* Current 'new' sibling page */ 6816 k = 0; /* Current 'new' sibling page */
6346 for(i=0; i<nCell; i++){ 6817 for(i=0; i<nCell; i++){
6347 int isDivider = 0; 6818 int isDivider = 0;
6348 while( i==iNextOld ){ 6819 while( i==iNextOld ){
6349 /* Cell i is the cell immediately following the last cell on old 6820 /* Cell i is the cell immediately following the last cell on old
6350 ** sibling page j. If the siblings are not leaf pages of an 6821 ** sibling page j. If the siblings are not leaf pages of an
6351 ** intkey b-tree, then cell i was a divider cell. */ 6822 ** intkey b-tree, then cell i was a divider cell. */
6823 assert( j+1 < ArraySize(apCopy) );
6824 assert( j+1 < nOld );
6352 pOld = apCopy[++j]; 6825 pOld = apCopy[++j];
6353 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow; 6826 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6354 if( pOld->nOverflow ){ 6827 if( pOld->nOverflow ){
6355 nOverflow = pOld->nOverflow; 6828 nOverflow = pOld->nOverflow;
6356 iOverflow = i + !leafData + pOld->aOvfl[0].idx; 6829 iOverflow = i + !leafData + pOld->aiOvfl[0];
6357 } 6830 }
6358 isDivider = !leafData; 6831 isDivider = !leafData;
6359 } 6832 }
6360 6833
6361 assert(nOverflow>0 || iOverflow<i ); 6834 assert(nOverflow>0 || iOverflow<i );
6362 assert(nOverflow<2 || pOld->aOvfl[0].idx==pOld->aOvfl[1].idx-1); 6835 assert(nOverflow<2 || pOld->aiOvfl[0]==pOld->aiOvfl[1]-1);
6363 assert(nOverflow<3 || pOld->aOvfl[1].idx==pOld->aOvfl[2].idx-1); 6836 assert(nOverflow<3 || pOld->aiOvfl[1]==pOld->aiOvfl[2]-1);
6364 if( i==iOverflow ){ 6837 if( i==iOverflow ){
6365 isDivider = 1; 6838 isDivider = 1;
6366 if( (--nOverflow)>0 ){ 6839 if( (--nOverflow)>0 ){
6367 iOverflow++; 6840 iOverflow++;
6368 } 6841 }
6369 } 6842 }
6370 6843
6371 if( i==cntNew[k] ){ 6844 if( i==cntNew[k] ){
6372 /* Cell i is the cell immediately following the last cell on new 6845 /* Cell i is the cell immediately following the last cell on new
6373 ** sibling page k. If the siblings are not leaf pages of an 6846 ** sibling page k. If the siblings are not leaf pages of an
(...skipping 46 matching lines...) Expand 10 before | Expand all | Expand 10 after
6420 sqlite3ScratchFree(apCell); 6893 sqlite3ScratchFree(apCell);
6421 for(i=0; i<nOld; i++){ 6894 for(i=0; i<nOld; i++){
6422 releasePage(apOld[i]); 6895 releasePage(apOld[i]);
6423 } 6896 }
6424 for(i=0; i<nNew; i++){ 6897 for(i=0; i<nNew; i++){
6425 releasePage(apNew[i]); 6898 releasePage(apNew[i]);
6426 } 6899 }
6427 6900
6428 return rc; 6901 return rc;
6429 } 6902 }
6903 #if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6904 #pragma optimize("", on)
6905 #endif
6430 6906
6431 6907
6432 /* 6908 /*
6433 ** This function is called when the root page of a b-tree structure is 6909 ** This function is called when the root page of a b-tree structure is
6434 ** overfull (has one or more overflow pages). 6910 ** overfull (has one or more overflow pages).
6435 ** 6911 **
6436 ** A new child page is allocated and the contents of the current root 6912 ** A new child page is allocated and the contents of the current root
6437 ** page, including overflow cells, are copied into the child. The root 6913 ** page, including overflow cells, are copied into the child. The root
6438 ** page is then overwritten to make it an empty page with the right-child 6914 ** page is then overwritten to make it an empty page with the right-child
6439 ** pointer pointing to the new page. 6915 ** pointer pointing to the new page.
(...skipping 34 matching lines...) Expand 10 before | Expand all | Expand 10 after
6474 releasePage(pChild); 6950 releasePage(pChild);
6475 return rc; 6951 return rc;
6476 } 6952 }
6477 assert( sqlite3PagerIswriteable(pChild->pDbPage) ); 6953 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6478 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); 6954 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6479 assert( pChild->nCell==pRoot->nCell ); 6955 assert( pChild->nCell==pRoot->nCell );
6480 6956
6481 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno)); 6957 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6482 6958
6483 /* Copy the overflow cells from pRoot to pChild */ 6959 /* Copy the overflow cells from pRoot to pChild */
6484 memcpy(pChild->aOvfl, pRoot->aOvfl, pRoot->nOverflow*sizeof(pRoot->aOvfl[0])); 6960 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
6961 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
6962 memcpy(pChild->apOvfl, pRoot->apOvfl,
6963 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
6485 pChild->nOverflow = pRoot->nOverflow; 6964 pChild->nOverflow = pRoot->nOverflow;
6486 6965
6487 /* Zero the contents of pRoot. Then install pChild as the right-child. */ 6966 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6488 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF); 6967 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6489 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild); 6968 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6490 6969
6491 *ppChild = pChild; 6970 *ppChild = pChild;
6492 return SQLITE_OK; 6971 return SQLITE_OK;
6493 } 6972 }
6494 6973
(...skipping 40 matching lines...) Expand 10 before | Expand all | Expand 10 after
6535 } 7014 }
6536 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){ 7015 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6537 break; 7016 break;
6538 }else{ 7017 }else{
6539 MemPage * const pParent = pCur->apPage[iPage-1]; 7018 MemPage * const pParent = pCur->apPage[iPage-1];
6540 int const iIdx = pCur->aiIdx[iPage-1]; 7019 int const iIdx = pCur->aiIdx[iPage-1];
6541 7020
6542 rc = sqlite3PagerWrite(pParent->pDbPage); 7021 rc = sqlite3PagerWrite(pParent->pDbPage);
6543 if( rc==SQLITE_OK ){ 7022 if( rc==SQLITE_OK ){
6544 #ifndef SQLITE_OMIT_QUICKBALANCE 7023 #ifndef SQLITE_OMIT_QUICKBALANCE
6545 if( pPage->hasData 7024 if( pPage->intKeyLeaf
6546 && pPage->nOverflow==1 7025 && pPage->nOverflow==1
6547 && pPage->aOvfl[0].idx==pPage->nCell 7026 && pPage->aiOvfl[0]==pPage->nCell
6548 && pParent->pgno!=1 7027 && pParent->pgno!=1
6549 && pParent->nCell==iIdx 7028 && pParent->nCell==iIdx
6550 ){ 7029 ){
6551 /* Call balance_quick() to create a new sibling of pPage on which 7030 /* Call balance_quick() to create a new sibling of pPage on which
6552 ** to store the overflow cell. balance_quick() inserts a new cell 7031 ** to store the overflow cell. balance_quick() inserts a new cell
6553 ** into pParent, which may cause pParent overflow. If this 7032 ** into pParent, which may cause pParent overflow. If this
6554 ** happens, the next interation of the do-loop will balance pParent 7033 ** happens, the next iteration of the do-loop will balance pParent
6555 ** use either balance_nonroot() or balance_deeper(). Until this 7034 ** use either balance_nonroot() or balance_deeper(). Until this
6556 ** happens, the overflow cell is stored in the aBalanceQuickSpace[] 7035 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6557 ** buffer. 7036 ** buffer.
6558 ** 7037 **
6559 ** The purpose of the following assert() is to check that only a 7038 ** The purpose of the following assert() is to check that only a
6560 ** single call to balance_quick() is made for each call to this 7039 ** single call to balance_quick() is made for each call to this
6561 ** function. If this were not verified, a subtle bug involving reuse 7040 ** function. If this were not verified, a subtle bug involving reuse
6562 ** of the aBalanceQuickSpace[] might sneak in. 7041 ** of the aBalanceQuickSpace[] might sneak in.
6563 */ 7042 */
6564 assert( (balance_quick_called++)==0 ); 7043 assert( (balance_quick_called++)==0 );
(...skipping 12 matching lines...) Expand all
6577 ** A subsequent iteration of the do-loop will deal with this by 7056 ** A subsequent iteration of the do-loop will deal with this by
6578 ** calling balance_nonroot() (balance_deeper() may be called first, 7057 ** calling balance_nonroot() (balance_deeper() may be called first,
6579 ** but it doesn't deal with overflow cells - just moves them to a 7058 ** but it doesn't deal with overflow cells - just moves them to a
6580 ** different page). Once this subsequent call to balance_nonroot() 7059 ** different page). Once this subsequent call to balance_nonroot()
6581 ** has completed, it is safe to release the pSpace buffer used by 7060 ** has completed, it is safe to release the pSpace buffer used by
6582 ** the previous call, as the overflow cell data will have been 7061 ** the previous call, as the overflow cell data will have been
6583 ** copied either into the body of a database page or into the new 7062 ** copied either into the body of a database page or into the new
6584 ** pSpace buffer passed to the latter call to balance_nonroot(). 7063 ** pSpace buffer passed to the latter call to balance_nonroot().
6585 */ 7064 */
6586 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize); 7065 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
6587 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1); 7066 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, pCur->hints);
6588 if( pFree ){ 7067 if( pFree ){
6589 /* If pFree is not NULL, it points to the pSpace buffer used 7068 /* If pFree is not NULL, it points to the pSpace buffer used
6590 ** by a previous call to balance_nonroot(). Its contents are 7069 ** by a previous call to balance_nonroot(). Its contents are
6591 ** now stored either on real database pages or within the 7070 ** now stored either on real database pages or within the
6592 ** new pSpace buffer, so it may be safely freed here. */ 7071 ** new pSpace buffer, so it may be safely freed here. */
6593 sqlite3PageFree(pFree); 7072 sqlite3PageFree(pFree);
6594 } 7073 }
6595 7074
6596 /* The pSpace buffer will be freed after the next call to 7075 /* The pSpace buffer will be freed after the next call to
6597 ** balance_nonroot(), or just before this function returns, whichever 7076 ** balance_nonroot(), or just before this function returns, whichever
(...skipping 23 matching lines...) Expand all
6621 ** define what table the record should be inserted into. The cursor 7100 ** define what table the record should be inserted into. The cursor
6622 ** is left pointing at a random location. 7101 ** is left pointing at a random location.
6623 ** 7102 **
6624 ** For an INTKEY table, only the nKey value of the key is used. pKey is 7103 ** For an INTKEY table, only the nKey value of the key is used. pKey is
6625 ** ignored. For a ZERODATA table, the pData and nData are both ignored. 7104 ** ignored. For a ZERODATA table, the pData and nData are both ignored.
6626 ** 7105 **
6627 ** If the seekResult parameter is non-zero, then a successful call to 7106 ** If the seekResult parameter is non-zero, then a successful call to
6628 ** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already 7107 ** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
6629 ** been performed. seekResult is the search result returned (a negative 7108 ** been performed. seekResult is the search result returned (a negative
6630 ** number if pCur points at an entry that is smaller than (pKey, nKey), or 7109 ** number if pCur points at an entry that is smaller than (pKey, nKey), or
6631 ** a positive value if pCur points at an etry that is larger than 7110 ** a positive value if pCur points at an entry that is larger than
6632 ** (pKey, nKey)). 7111 ** (pKey, nKey)).
6633 ** 7112 **
6634 ** If the seekResult parameter is non-zero, then the caller guarantees that 7113 ** If the seekResult parameter is non-zero, then the caller guarantees that
6635 ** cursor pCur is pointing at the existing copy of a row that is to be 7114 ** cursor pCur is pointing at the existing copy of a row that is to be
6636 ** overwritten. If the seekResult parameter is 0, then cursor pCur may 7115 ** overwritten. If the seekResult parameter is 0, then cursor pCur may
6637 ** point to any entry or to no entry at all and so this function has to seek 7116 ** point to any entry or to no entry at all and so this function has to seek
6638 ** the cursor before the new key can be inserted. 7117 ** the cursor before the new key can be inserted.
6639 */ 7118 */
6640 int sqlite3BtreeInsert( 7119 int sqlite3BtreeInsert(
6641 BtCursor *pCur, /* Insert data into the table of this cursor */ 7120 BtCursor *pCur, /* Insert data into the table of this cursor */
(...skipping 12 matching lines...) Expand all
6654 BtShared *pBt = p->pBt; 7133 BtShared *pBt = p->pBt;
6655 unsigned char *oldCell; 7134 unsigned char *oldCell;
6656 unsigned char *newCell = 0; 7135 unsigned char *newCell = 0;
6657 7136
6658 if( pCur->eState==CURSOR_FAULT ){ 7137 if( pCur->eState==CURSOR_FAULT ){
6659 assert( pCur->skipNext!=SQLITE_OK ); 7138 assert( pCur->skipNext!=SQLITE_OK );
6660 return pCur->skipNext; 7139 return pCur->skipNext;
6661 } 7140 }
6662 7141
6663 assert( cursorHoldsMutex(pCur) ); 7142 assert( cursorHoldsMutex(pCur) );
6664 assert( pCur->wrFlag && pBt->inTransaction==TRANS_WRITE && !pBt->readOnly ); 7143 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
7144 && pBt->inTransaction==TRANS_WRITE
7145 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
6665 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); 7146 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6666 7147
6667 /* Assert that the caller has been consistent. If this cursor was opened 7148 /* Assert that the caller has been consistent. If this cursor was opened
6668 ** expecting an index b-tree, then the caller should be inserting blob 7149 ** expecting an index b-tree, then the caller should be inserting blob
6669 ** keys with no associated data. If the cursor was opened expecting an 7150 ** keys with no associated data. If the cursor was opened expecting an
6670 ** intkey table, the caller should be inserting integer keys with a 7151 ** intkey table, the caller should be inserting integer keys with a
6671 ** blob of associated data. */ 7152 ** blob of associated data. */
6672 assert( (pKey==0)==(pCur->pKeyInfo==0) ); 7153 assert( (pKey==0)==(pCur->pKeyInfo==0) );
6673 7154
6674 /* If this is an insert into a table b-tree, invalidate any incrblob
6675 ** cursors open on the row being replaced (assuming this is a replace
6676 ** operation - if it is not, the following is a no-op). */
6677 if( pCur->pKeyInfo==0 ){
6678 invalidateIncrblobCursors(p, nKey, 0);
6679 }
6680
6681 /* Save the positions of any other cursors open on this table. 7155 /* Save the positions of any other cursors open on this table.
6682 ** 7156 **
6683 ** In some cases, the call to btreeMoveto() below is a no-op. For 7157 ** In some cases, the call to btreeMoveto() below is a no-op. For
6684 ** example, when inserting data into a table with auto-generated integer 7158 ** example, when inserting data into a table with auto-generated integer
6685 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the 7159 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
6686 ** integer key to use. It then calls this function to actually insert the 7160 ** integer key to use. It then calls this function to actually insert the
6687 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes 7161 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
6688 ** that the cursor is already where it needs to be and returns without 7162 ** that the cursor is already where it needs to be and returns without
6689 ** doing any work. To avoid thwarting these optimizations, it is important 7163 ** doing any work. To avoid thwarting these optimizations, it is important
6690 ** not to clear the cursor here. 7164 ** not to clear the cursor here.
6691 */ 7165 */
6692 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); 7166 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6693 if( rc ) return rc; 7167 if( rc ) return rc;
7168
7169 if( pCur->pKeyInfo==0 ){
7170 /* If this is an insert into a table b-tree, invalidate any incrblob
7171 ** cursors open on the row being replaced */
7172 invalidateIncrblobCursors(p, nKey, 0);
7173
7174 /* If the cursor is currently on the last row and we are appending a
7175 ** new row onto the end, set the "loc" to avoid an unnecessary btreeMoveto()
7176 ** call */
7177 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0
7178 && pCur->info.nKey==nKey-1 ){
7179 loc = -1;
7180 }
7181 }
7182
6694 if( !loc ){ 7183 if( !loc ){
6695 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc); 7184 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
6696 if( rc ) return rc; 7185 if( rc ) return rc;
6697 } 7186 }
6698 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) ); 7187 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
6699 7188
6700 pPage = pCur->apPage[pCur->iPage]; 7189 pPage = pCur->apPage[pCur->iPage];
6701 assert( pPage->intKey || nKey>=0 ); 7190 assert( pPage->intKey || nKey>=0 );
6702 assert( pPage->leaf || !pPage->intKey ); 7191 assert( pPage->leaf || !pPage->intKey );
6703 7192
6704 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", 7193 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
6705 pCur->pgnoRoot, nKey, nData, pPage->pgno, 7194 pCur->pgnoRoot, nKey, nData, pPage->pgno,
6706 loc==0 ? "overwrite" : "new entry")); 7195 loc==0 ? "overwrite" : "new entry"));
6707 assert( pPage->isInit ); 7196 assert( pPage->isInit );
6708 allocateTempSpace(pBt);
6709 newCell = pBt->pTmpSpace; 7197 newCell = pBt->pTmpSpace;
6710 if( newCell==0 ) return SQLITE_NOMEM; 7198 assert( newCell!=0 );
6711 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew); 7199 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
6712 if( rc ) goto end_insert; 7200 if( rc ) goto end_insert;
6713 assert( szNew==cellSizePtr(pPage, newCell) ); 7201 assert( szNew==cellSizePtr(pPage, newCell) );
6714 assert( szNew <= MX_CELL_SIZE(pBt) ); 7202 assert( szNew <= MX_CELL_SIZE(pBt) );
6715 idx = pCur->aiIdx[pCur->iPage]; 7203 idx = pCur->aiIdx[pCur->iPage];
6716 if( loc==0 ){ 7204 if( loc==0 ){
6717 u16 szOld; 7205 u16 szOld;
6718 assert( idx<pPage->nCell ); 7206 assert( idx<pPage->nCell );
6719 rc = sqlite3PagerWrite(pPage->pDbPage); 7207 rc = sqlite3PagerWrite(pPage->pDbPage);
6720 if( rc ){ 7208 if( rc ){
6721 goto end_insert; 7209 goto end_insert;
6722 } 7210 }
6723 oldCell = findCell(pPage, idx); 7211 oldCell = findCell(pPage, idx);
6724 if( !pPage->leaf ){ 7212 if( !pPage->leaf ){
6725 memcpy(newCell, oldCell, 4); 7213 memcpy(newCell, oldCell, 4);
6726 } 7214 }
6727 szOld = cellSizePtr(pPage, oldCell); 7215 rc = clearCell(pPage, oldCell, &szOld);
6728 rc = clearCell(pPage, oldCell);
6729 dropCell(pPage, idx, szOld, &rc); 7216 dropCell(pPage, idx, szOld, &rc);
6730 if( rc ) goto end_insert; 7217 if( rc ) goto end_insert;
6731 }else if( loc<0 && pPage->nCell>0 ){ 7218 }else if( loc<0 && pPage->nCell>0 ){
6732 assert( pPage->leaf ); 7219 assert( pPage->leaf );
6733 idx = ++pCur->aiIdx[pCur->iPage]; 7220 idx = ++pCur->aiIdx[pCur->iPage];
6734 }else{ 7221 }else{
6735 assert( pPage->leaf ); 7222 assert( pPage->leaf );
6736 } 7223 }
6737 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc); 7224 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
6738 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 ); 7225 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
6739 7226
6740 /* If no error has occured and pPage has an overflow cell, call balance() 7227 /* If no error has occurred and pPage has an overflow cell, call balance()
6741 ** to redistribute the cells within the tree. Since balance() may move 7228 ** to redistribute the cells within the tree. Since balance() may move
6742 ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey 7229 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
6743 ** variables. 7230 ** variables.
6744 ** 7231 **
6745 ** Previous versions of SQLite called moveToRoot() to move the cursor 7232 ** Previous versions of SQLite called moveToRoot() to move the cursor
6746 ** back to the root page as balance() used to invalidate the contents 7233 ** back to the root page as balance() used to invalidate the contents
6747 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that, 7234 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
6748 ** set the cursor state to "invalid". This makes common insert operations 7235 ** set the cursor state to "invalid". This makes common insert operations
6749 ** slightly faster. 7236 ** slightly faster.
6750 ** 7237 **
6751 ** There is a subtle but important optimization here too. When inserting 7238 ** There is a subtle but important optimization here too. When inserting
6752 ** multiple records into an intkey b-tree using a single cursor (as can 7239 ** multiple records into an intkey b-tree using a single cursor (as can
6753 ** happen while processing an "INSERT INTO ... SELECT" statement), it 7240 ** happen while processing an "INSERT INTO ... SELECT" statement), it
6754 ** is advantageous to leave the cursor pointing to the last entry in 7241 ** is advantageous to leave the cursor pointing to the last entry in
6755 ** the b-tree if possible. If the cursor is left pointing to the last 7242 ** the b-tree if possible. If the cursor is left pointing to the last
6756 ** entry in the table, and the next row inserted has an integer key 7243 ** entry in the table, and the next row inserted has an integer key
6757 ** larger than the largest existing key, it is possible to insert the 7244 ** larger than the largest existing key, it is possible to insert the
6758 ** row without seeking the cursor. This can be a big performance boost. 7245 ** row without seeking the cursor. This can be a big performance boost.
6759 */ 7246 */
6760 pCur->info.nSize = 0; 7247 pCur->info.nSize = 0;
6761 pCur->validNKey = 0;
6762 if( rc==SQLITE_OK && pPage->nOverflow ){ 7248 if( rc==SQLITE_OK && pPage->nOverflow ){
7249 pCur->curFlags &= ~(BTCF_ValidNKey);
6763 rc = balance(pCur); 7250 rc = balance(pCur);
6764 7251
6765 /* Must make sure nOverflow is reset to zero even if the balance() 7252 /* Must make sure nOverflow is reset to zero even if the balance()
6766 ** fails. Internal data structure corruption will result otherwise. 7253 ** fails. Internal data structure corruption will result otherwise.
6767 ** Also, set the cursor state to invalid. This stops saveCursorPosition() 7254 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
6768 ** from trying to save the current position of the cursor. */ 7255 ** from trying to save the current position of the cursor. */
6769 pCur->apPage[pCur->iPage]->nOverflow = 0; 7256 pCur->apPage[pCur->iPage]->nOverflow = 0;
6770 pCur->eState = CURSOR_INVALID; 7257 pCur->eState = CURSOR_INVALID;
6771 } 7258 }
6772 assert( pCur->apPage[pCur->iPage]->nOverflow==0 ); 7259 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
6773 7260
6774 end_insert: 7261 end_insert:
6775 return rc; 7262 return rc;
6776 } 7263 }
6777 7264
6778 /* 7265 /*
6779 ** Delete the entry that the cursor is pointing to. The cursor 7266 ** Delete the entry that the cursor is pointing to. The cursor
6780 ** is left pointing at a arbitrary location. 7267 ** is left pointing at an arbitrary location.
6781 */ 7268 */
6782 int sqlite3BtreeDelete(BtCursor *pCur){ 7269 int sqlite3BtreeDelete(BtCursor *pCur){
6783 Btree *p = pCur->pBtree; 7270 Btree *p = pCur->pBtree;
6784 BtShared *pBt = p->pBt; 7271 BtShared *pBt = p->pBt;
6785 int rc; /* Return code */ 7272 int rc; /* Return code */
6786 MemPage *pPage; /* Page to delete cell from */ 7273 MemPage *pPage; /* Page to delete cell from */
6787 unsigned char *pCell; /* Pointer to cell to delete */ 7274 unsigned char *pCell; /* Pointer to cell to delete */
6788 int iCellIdx; /* Index of cell to delete */ 7275 int iCellIdx; /* Index of cell to delete */
6789 int iCellDepth; /* Depth of node containing pCell */ 7276 int iCellDepth; /* Depth of node containing pCell */
7277 u16 szCell; /* Size of the cell being deleted */
6790 7278
6791 assert( cursorHoldsMutex(pCur) ); 7279 assert( cursorHoldsMutex(pCur) );
6792 assert( pBt->inTransaction==TRANS_WRITE ); 7280 assert( pBt->inTransaction==TRANS_WRITE );
6793 assert( !pBt->readOnly ); 7281 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
6794 assert( pCur->wrFlag ); 7282 assert( pCur->curFlags & BTCF_WriteFlag );
6795 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); 7283 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6796 assert( !hasReadConflicts(p, pCur->pgnoRoot) ); 7284 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
6797 7285
6798 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell) 7286 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
6799 || NEVER(pCur->eState!=CURSOR_VALID) 7287 || NEVER(pCur->eState!=CURSOR_VALID)
6800 ){ 7288 ){
6801 return SQLITE_ERROR; /* Something has gone awry. */ 7289 return SQLITE_ERROR; /* Something has gone awry. */
6802 } 7290 }
6803 7291
6804 /* If this is a delete operation to remove a row from a table b-tree,
6805 ** invalidate any incrblob cursors open on the row being deleted. */
6806 if( pCur->pKeyInfo==0 ){
6807 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
6808 }
6809
6810 iCellDepth = pCur->iPage; 7292 iCellDepth = pCur->iPage;
6811 iCellIdx = pCur->aiIdx[iCellDepth]; 7293 iCellIdx = pCur->aiIdx[iCellDepth];
6812 pPage = pCur->apPage[iCellDepth]; 7294 pPage = pCur->apPage[iCellDepth];
6813 pCell = findCell(pPage, iCellIdx); 7295 pCell = findCell(pPage, iCellIdx);
6814 7296
6815 /* If the page containing the entry to delete is not a leaf page, move 7297 /* If the page containing the entry to delete is not a leaf page, move
6816 ** the cursor to the largest entry in the tree that is smaller than 7298 ** the cursor to the largest entry in the tree that is smaller than
6817 ** the entry being deleted. This cell will replace the cell being deleted 7299 ** the entry being deleted. This cell will replace the cell being deleted
6818 ** from the internal node. The 'previous' entry is used for this instead 7300 ** from the internal node. The 'previous' entry is used for this instead
6819 ** of the 'next' entry, as the previous entry is always a part of the 7301 ** of the 'next' entry, as the previous entry is always a part of the
6820 ** sub-tree headed by the child page of the cell being deleted. This makes 7302 ** sub-tree headed by the child page of the cell being deleted. This makes
6821 ** balancing the tree following the delete operation easier. */ 7303 ** balancing the tree following the delete operation easier. */
6822 if( !pPage->leaf ){ 7304 if( !pPage->leaf ){
6823 int notUsed; 7305 int notUsed = 0;
6824 rc = sqlite3BtreePrevious(pCur, &notUsed); 7306 rc = sqlite3BtreePrevious(pCur, &notUsed);
6825 if( rc ) return rc; 7307 if( rc ) return rc;
6826 } 7308 }
6827 7309
6828 /* Save the positions of any other cursors open on this table before 7310 /* Save the positions of any other cursors open on this table before
6829 ** making any modifications. Make the page containing the entry to be 7311 ** making any modifications. Make the page containing the entry to be
6830 ** deleted writable. Then free any overflow pages associated with the 7312 ** deleted writable. Then free any overflow pages associated with the
6831 ** entry and finally remove the cell itself from within the page. 7313 ** entry and finally remove the cell itself from within the page.
6832 */ 7314 */
6833 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); 7315 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6834 if( rc ) return rc; 7316 if( rc ) return rc;
7317
7318 /* If this is a delete operation to remove a row from a table b-tree,
7319 ** invalidate any incrblob cursors open on the row being deleted. */
7320 if( pCur->pKeyInfo==0 ){
7321 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
7322 }
7323
6835 rc = sqlite3PagerWrite(pPage->pDbPage); 7324 rc = sqlite3PagerWrite(pPage->pDbPage);
6836 if( rc ) return rc; 7325 if( rc ) return rc;
6837 rc = clearCell(pPage, pCell); 7326 rc = clearCell(pPage, pCell, &szCell);
6838 dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell), &rc); 7327 dropCell(pPage, iCellIdx, szCell, &rc);
6839 if( rc ) return rc; 7328 if( rc ) return rc;
6840 7329
6841 /* If the cell deleted was not located on a leaf page, then the cursor 7330 /* If the cell deleted was not located on a leaf page, then the cursor
6842 ** is currently pointing to the largest entry in the sub-tree headed 7331 ** is currently pointing to the largest entry in the sub-tree headed
6843 ** by the child-page of the cell that was just deleted from an internal 7332 ** by the child-page of the cell that was just deleted from an internal
6844 ** node. The cell from the leaf node needs to be moved to the internal 7333 ** node. The cell from the leaf node needs to be moved to the internal
6845 ** node to replace the deleted cell. */ 7334 ** node to replace the deleted cell. */
6846 if( !pPage->leaf ){ 7335 if( !pPage->leaf ){
6847 MemPage *pLeaf = pCur->apPage[pCur->iPage]; 7336 MemPage *pLeaf = pCur->apPage[pCur->iPage];
6848 int nCell; 7337 int nCell;
6849 Pgno n = pCur->apPage[iCellDepth+1]->pgno; 7338 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
6850 unsigned char *pTmp; 7339 unsigned char *pTmp;
6851 7340
6852 pCell = findCell(pLeaf, pLeaf->nCell-1); 7341 pCell = findCell(pLeaf, pLeaf->nCell-1);
6853 nCell = cellSizePtr(pLeaf, pCell); 7342 nCell = cellSizePtr(pLeaf, pCell);
6854 assert( MX_CELL_SIZE(pBt) >= nCell ); 7343 assert( MX_CELL_SIZE(pBt) >= nCell );
6855
6856 allocateTempSpace(pBt);
6857 pTmp = pBt->pTmpSpace; 7344 pTmp = pBt->pTmpSpace;
6858 7345 assert( pTmp!=0 );
6859 rc = sqlite3PagerWrite(pLeaf->pDbPage); 7346 rc = sqlite3PagerWrite(pLeaf->pDbPage);
6860 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc); 7347 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
6861 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc); 7348 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
6862 if( rc ) return rc; 7349 if( rc ) return rc;
6863 } 7350 }
6864 7351
6865 /* Balance the tree. If the entry deleted was located on a leaf page, 7352 /* Balance the tree. If the entry deleted was located on a leaf page,
6866 ** then the cursor still points to that page. In this case the first 7353 ** then the cursor still points to that page. In this case the first
6867 ** call to balance() repairs the tree, and the if(...) condition is 7354 ** call to balance() repairs the tree, and the if(...) condition is
6868 ** never true. 7355 ** never true.
(...skipping 35 matching lines...) Expand 10 before | Expand all | Expand 10 after
6904 */ 7391 */
6905 static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){ 7392 static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
6906 BtShared *pBt = p->pBt; 7393 BtShared *pBt = p->pBt;
6907 MemPage *pRoot; 7394 MemPage *pRoot;
6908 Pgno pgnoRoot; 7395 Pgno pgnoRoot;
6909 int rc; 7396 int rc;
6910 int ptfFlags; /* Page-type flage for the root page of new table */ 7397 int ptfFlags; /* Page-type flage for the root page of new table */
6911 7398
6912 assert( sqlite3BtreeHoldsMutex(p) ); 7399 assert( sqlite3BtreeHoldsMutex(p) );
6913 assert( pBt->inTransaction==TRANS_WRITE ); 7400 assert( pBt->inTransaction==TRANS_WRITE );
6914 assert( !pBt->readOnly ); 7401 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
6915 7402
6916 #ifdef SQLITE_OMIT_AUTOVACUUM 7403 #ifdef SQLITE_OMIT_AUTOVACUUM
6917 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); 7404 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
6918 if( rc ){ 7405 if( rc ){
6919 return rc; 7406 return rc;
6920 } 7407 }
6921 #else 7408 #else
6922 if( pBt->autoVacuum ){ 7409 if( pBt->autoVacuum ){
6923 Pgno pgnoMove; /* Move a page here to make room for the root-page */ 7410 Pgno pgnoMove; /* Move a page here to make room for the root-page */
6924 MemPage *pPageMove; /* The page to move to. */ 7411 MemPage *pPageMove; /* The page to move to. */
(...skipping 18 matching lines...) Expand all
6943 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) || 7430 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
6944 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){ 7431 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
6945 pgnoRoot++; 7432 pgnoRoot++;
6946 } 7433 }
6947 assert( pgnoRoot>=3 ); 7434 assert( pgnoRoot>=3 );
6948 7435
6949 /* Allocate a page. The page that currently resides at pgnoRoot will 7436 /* Allocate a page. The page that currently resides at pgnoRoot will
6950 ** be moved to the allocated page (unless the allocated page happens 7437 ** be moved to the allocated page (unless the allocated page happens
6951 ** to reside at pgnoRoot). 7438 ** to reside at pgnoRoot).
6952 */ 7439 */
6953 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1); 7440 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
6954 if( rc!=SQLITE_OK ){ 7441 if( rc!=SQLITE_OK ){
6955 return rc; 7442 return rc;
6956 } 7443 }
6957 7444
6958 if( pgnoMove!=pgnoRoot ){ 7445 if( pgnoMove!=pgnoRoot ){
6959 /* pgnoRoot is the page that will be used for the root-page of 7446 /* pgnoRoot is the page that will be used for the root-page of
6960 ** the new table (assuming an error did not occur). But we were 7447 ** the new table (assuming an error did not occur). But we were
6961 ** allocated pgnoMove. If required (i.e. if it was not allocated 7448 ** allocated pgnoMove. If required (i.e. if it was not allocated
6962 ** by extending the file), the current page at position pgnoMove 7449 ** by extending the file), the current page at position pgnoMove
6963 ** is already journaled. 7450 ** is already journaled.
6964 */ 7451 */
6965 u8 eType = 0; 7452 u8 eType = 0;
6966 Pgno iPtrPage = 0; 7453 Pgno iPtrPage = 0;
6967 7454
7455 /* Save the positions of any open cursors. This is required in
7456 ** case they are holding a reference to an xFetch reference
7457 ** corresponding to page pgnoRoot. */
7458 rc = saveAllCursors(pBt, 0, 0);
6968 releasePage(pPageMove); 7459 releasePage(pPageMove);
7460 if( rc!=SQLITE_OK ){
7461 return rc;
7462 }
6969 7463
6970 /* Move the page currently at pgnoRoot to pgnoMove. */ 7464 /* Move the page currently at pgnoRoot to pgnoMove. */
6971 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); 7465 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
6972 if( rc!=SQLITE_OK ){ 7466 if( rc!=SQLITE_OK ){
6973 return rc; 7467 return rc;
6974 } 7468 }
6975 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage); 7469 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
6976 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){ 7470 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
6977 rc = SQLITE_CORRUPT_BKPT; 7471 rc = SQLITE_CORRUPT_BKPT;
6978 } 7472 }
(...skipping 73 matching lines...) Expand 10 before | Expand all | Expand 10 after
7052 static int clearDatabasePage( 7546 static int clearDatabasePage(
7053 BtShared *pBt, /* The BTree that contains the table */ 7547 BtShared *pBt, /* The BTree that contains the table */
7054 Pgno pgno, /* Page number to clear */ 7548 Pgno pgno, /* Page number to clear */
7055 int freePageFlag, /* Deallocate page if true */ 7549 int freePageFlag, /* Deallocate page if true */
7056 int *pnChange /* Add number of Cells freed to this counter */ 7550 int *pnChange /* Add number of Cells freed to this counter */
7057 ){ 7551 ){
7058 MemPage *pPage; 7552 MemPage *pPage;
7059 int rc; 7553 int rc;
7060 unsigned char *pCell; 7554 unsigned char *pCell;
7061 int i; 7555 int i;
7556 int hdr;
7557 u16 szCell;
7062 7558
7063 assert( sqlite3_mutex_held(pBt->mutex) ); 7559 assert( sqlite3_mutex_held(pBt->mutex) );
7064 if( pgno>btreePagecount(pBt) ){ 7560 if( pgno>btreePagecount(pBt) ){
7065 return SQLITE_CORRUPT_BKPT; 7561 return SQLITE_CORRUPT_BKPT;
7066 } 7562 }
7067 7563
7068 rc = getAndInitPage(pBt, pgno, &pPage); 7564 rc = getAndInitPage(pBt, pgno, &pPage, 0);
7069 if( rc ) return rc; 7565 if( rc ) return rc;
7566 hdr = pPage->hdrOffset;
7070 for(i=0; i<pPage->nCell; i++){ 7567 for(i=0; i<pPage->nCell; i++){
7071 pCell = findCell(pPage, i); 7568 pCell = findCell(pPage, i);
7072 if( !pPage->leaf ){ 7569 if( !pPage->leaf ){
7073 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange); 7570 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
7074 if( rc ) goto cleardatabasepage_out; 7571 if( rc ) goto cleardatabasepage_out;
7075 } 7572 }
7076 rc = clearCell(pPage, pCell); 7573 rc = clearCell(pPage, pCell, &szCell);
7077 if( rc ) goto cleardatabasepage_out; 7574 if( rc ) goto cleardatabasepage_out;
7078 } 7575 }
7079 if( !pPage->leaf ){ 7576 if( !pPage->leaf ){
7080 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange); 7577 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
7081 if( rc ) goto cleardatabasepage_out; 7578 if( rc ) goto cleardatabasepage_out;
7082 }else if( pnChange ){ 7579 }else if( pnChange ){
7083 assert( pPage->intKey ); 7580 assert( pPage->intKey );
7084 *pnChange += pPage->nCell; 7581 *pnChange += pPage->nCell;
7085 } 7582 }
7086 if( freePageFlag ){ 7583 if( freePageFlag ){
7087 freePage(pPage, &rc); 7584 freePage(pPage, &rc);
7088 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){ 7585 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
7089 zeroPage(pPage, pPage->aData[0] | PTF_LEAF); 7586 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
7090 } 7587 }
7091 7588
7092 cleardatabasepage_out: 7589 cleardatabasepage_out:
7093 releasePage(pPage); 7590 releasePage(pPage);
7094 return rc; 7591 return rc;
7095 } 7592 }
7096 7593
7097 /* 7594 /*
7098 ** Delete all information from a single table in the database. iTable is 7595 ** Delete all information from a single table in the database. iTable is
7099 ** the page number of the root of the table. After this routine returns, 7596 ** the page number of the root of the table. After this routine returns,
7100 ** the root page is empty, but still exists. 7597 ** the root page is empty, but still exists.
7101 ** 7598 **
7102 ** This routine will fail with SQLITE_LOCKED if there are any open 7599 ** This routine will fail with SQLITE_LOCKED if there are any open
7103 ** read cursors on the table. Open write cursors are moved to the 7600 ** read cursors on the table. Open write cursors are moved to the
7104 ** root of the table. 7601 ** root of the table.
7105 ** 7602 **
7106 ** If pnChange is not NULL, then table iTable must be an intkey table. The 7603 ** If pnChange is not NULL, then table iTable must be an intkey table. The
7107 ** integer value pointed to by pnChange is incremented by the number of 7604 ** integer value pointed to by pnChange is incremented by the number of
7108 ** entries in the table. 7605 ** entries in the table.
7109 */ 7606 */
7110 int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){ 7607 int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
7111 int rc; 7608 int rc;
7112 BtShared *pBt = p->pBt; 7609 BtShared *pBt = p->pBt;
7113 sqlite3BtreeEnter(p); 7610 sqlite3BtreeEnter(p);
7114 assert( p->inTrans==TRANS_WRITE ); 7611 assert( p->inTrans==TRANS_WRITE );
7115 7612
7116 /* Invalidate all incrblob cursors open on table iTable (assuming iTable 7613 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
7117 ** is the root of a table b-tree - if it is not, the following call is
7118 ** a no-op). */
7119 invalidateIncrblobCursors(p, 0, 1);
7120 7614
7121 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
7122 if( SQLITE_OK==rc ){ 7615 if( SQLITE_OK==rc ){
7616 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
7617 ** is the root of a table b-tree - if it is not, the following call is
7618 ** a no-op). */
7619 invalidateIncrblobCursors(p, 0, 1);
7123 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange); 7620 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
7124 } 7621 }
7125 sqlite3BtreeLeave(p); 7622 sqlite3BtreeLeave(p);
7126 return rc; 7623 return rc;
7127 } 7624 }
7128 7625
7129 /* 7626 /*
7627 ** Delete all information from the single table that pCur is open on.
7628 **
7629 ** This routine only work for pCur on an ephemeral table.
7630 */
7631 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
7632 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
7633 }
7634
7635 /*
7130 ** Erase all information in a table and add the root of the table to 7636 ** Erase all information in a table and add the root of the table to
7131 ** the freelist. Except, the root of the principle table (the one on 7637 ** the freelist. Except, the root of the principle table (the one on
7132 ** page 1) is never added to the freelist. 7638 ** page 1) is never added to the freelist.
7133 ** 7639 **
7134 ** This routine will fail with SQLITE_LOCKED if there are any open 7640 ** This routine will fail with SQLITE_LOCKED if there are any open
7135 ** cursors on the table. 7641 ** cursors on the table.
7136 ** 7642 **
7137 ** If AUTOVACUUM is enabled and the page at iTable is not the last 7643 ** If AUTOVACUUM is enabled and the page at iTable is not the last
7138 ** root page in the database file, then the last root page 7644 ** root page in the database file, then the last root page
7139 ** in the database file is moved into the slot formerly occupied by 7645 ** in the database file is moved into the slot formerly occupied by
(...skipping 138 matching lines...) Expand 10 before | Expand all | Expand 10 after
7278 assert( p->inTrans>TRANS_NONE ); 7784 assert( p->inTrans>TRANS_NONE );
7279 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) ); 7785 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
7280 assert( pBt->pPage1 ); 7786 assert( pBt->pPage1 );
7281 assert( idx>=0 && idx<=15 ); 7787 assert( idx>=0 && idx<=15 );
7282 7788
7283 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]); 7789 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
7284 7790
7285 /* If auto-vacuum is disabled in this build and this is an auto-vacuum 7791 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7286 ** database, mark the database as read-only. */ 7792 ** database, mark the database as read-only. */
7287 #ifdef SQLITE_OMIT_AUTOVACUUM 7793 #ifdef SQLITE_OMIT_AUTOVACUUM
7288 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ) pBt->readOnly = 1; 7794 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
7795 pBt->btsFlags |= BTS_READ_ONLY;
7796 }
7289 #endif 7797 #endif
7290 7798
7291 sqlite3BtreeLeave(p); 7799 sqlite3BtreeLeave(p);
7292 } 7800 }
7293 7801
7294 /* 7802 /*
7295 ** Write meta-information back into the database. Meta[0] is 7803 ** Write meta-information back into the database. Meta[0] is
7296 ** read-only and may not be written. 7804 ** read-only and may not be written.
7297 */ 7805 */
7298 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){ 7806 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
(...skipping 25 matching lines...) Expand all
7324 ** The first argument, pCur, is a cursor opened on some b-tree. Count the 7832 ** The first argument, pCur, is a cursor opened on some b-tree. Count the
7325 ** number of entries in the b-tree and write the result to *pnEntry. 7833 ** number of entries in the b-tree and write the result to *pnEntry.
7326 ** 7834 **
7327 ** SQLITE_OK is returned if the operation is successfully executed. 7835 ** SQLITE_OK is returned if the operation is successfully executed.
7328 ** Otherwise, if an error is encountered (i.e. an IO error or database 7836 ** Otherwise, if an error is encountered (i.e. an IO error or database
7329 ** corruption) an SQLite error code is returned. 7837 ** corruption) an SQLite error code is returned.
7330 */ 7838 */
7331 int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){ 7839 int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7332 i64 nEntry = 0; /* Value to return in *pnEntry */ 7840 i64 nEntry = 0; /* Value to return in *pnEntry */
7333 int rc; /* Return code */ 7841 int rc; /* Return code */
7842
7843 if( pCur->pgnoRoot==0 ){
7844 *pnEntry = 0;
7845 return SQLITE_OK;
7846 }
7334 rc = moveToRoot(pCur); 7847 rc = moveToRoot(pCur);
7335 7848
7336 /* Unless an error occurs, the following loop runs one iteration for each 7849 /* Unless an error occurs, the following loop runs one iteration for each
7337 ** page in the B-Tree structure (not including overflow pages). 7850 ** page in the B-Tree structure (not including overflow pages).
7338 */ 7851 */
7339 while( rc==SQLITE_OK ){ 7852 while( rc==SQLITE_OK ){
7340 int iIdx; /* Index of child node in parent */ 7853 int iIdx; /* Index of child node in parent */
7341 MemPage *pPage; /* Current page of the b-tree */ 7854 MemPage *pPage; /* Current page of the b-tree */
7342 7855
7343 /* If this is a leaf page or the tree is not an int-key tree, then 7856 /* If this is a leaf page or the tree is not an int-key tree, then
(...skipping 52 matching lines...) Expand 10 before | Expand all | Expand 10 after
7396 Pager *sqlite3BtreePager(Btree *p){ 7909 Pager *sqlite3BtreePager(Btree *p){
7397 return p->pBt->pPager; 7910 return p->pBt->pPager;
7398 } 7911 }
7399 7912
7400 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 7913 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
7401 /* 7914 /*
7402 ** Append a message to the error message string. 7915 ** Append a message to the error message string.
7403 */ 7916 */
7404 static void checkAppendMsg( 7917 static void checkAppendMsg(
7405 IntegrityCk *pCheck, 7918 IntegrityCk *pCheck,
7406 char *zMsg1,
7407 const char *zFormat, 7919 const char *zFormat,
7408 ... 7920 ...
7409 ){ 7921 ){
7410 va_list ap; 7922 va_list ap;
7923 char zBuf[200];
7411 if( !pCheck->mxErr ) return; 7924 if( !pCheck->mxErr ) return;
7412 pCheck->mxErr--; 7925 pCheck->mxErr--;
7413 pCheck->nErr++; 7926 pCheck->nErr++;
7414 va_start(ap, zFormat); 7927 va_start(ap, zFormat);
7415 if( pCheck->errMsg.nChar ){ 7928 if( pCheck->errMsg.nChar ){
7416 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1); 7929 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
7417 } 7930 }
7418 if( zMsg1 ){ 7931 if( pCheck->zPfx ){
7419 sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1); 7932 sqlite3_snprintf(sizeof(zBuf), zBuf, pCheck->zPfx, pCheck->v1, pCheck->v2);
7933 sqlite3StrAccumAppendAll(&pCheck->errMsg, zBuf);
7420 } 7934 }
7421 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap); 7935 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7422 va_end(ap); 7936 va_end(ap);
7423 if( pCheck->errMsg.mallocFailed ){ 7937 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
7424 pCheck->mallocFailed = 1; 7938 pCheck->mallocFailed = 1;
7425 } 7939 }
7426 } 7940 }
7427 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 7941 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
7428 7942
7429 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 7943 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
7944
7945 /*
7946 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
7947 ** corresponds to page iPg is already set.
7948 */
7949 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
7950 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
7951 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
7952 }
7953
7954 /*
7955 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
7956 */
7957 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
7958 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
7959 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
7960 }
7961
7962
7430 /* 7963 /*
7431 ** Add 1 to the reference count for page iPage. If this is the second 7964 ** Add 1 to the reference count for page iPage. If this is the second
7432 ** reference to the page, add an error message to pCheck->zErrMsg. 7965 ** reference to the page, add an error message to pCheck->zErrMsg.
7433 ** Return 1 if there are 2 ore more references to the page and 0 if 7966 ** Return 1 if there are 2 or more references to the page and 0 if
7434 ** if this is the first reference to the page. 7967 ** if this is the first reference to the page.
7435 ** 7968 **
7436 ** Also check that the page number is in bounds. 7969 ** Also check that the page number is in bounds.
7437 */ 7970 */
7438 static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){ 7971 static int checkRef(IntegrityCk *pCheck, Pgno iPage){
7439 if( iPage==0 ) return 1; 7972 if( iPage==0 ) return 1;
7440 if( iPage>pCheck->nPage ){ 7973 if( iPage>pCheck->nPage ){
7441 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage); 7974 checkAppendMsg(pCheck, "invalid page number %d", iPage);
7442 return 1; 7975 return 1;
7443 } 7976 }
7444 if( pCheck->anRef[iPage]==1 ){ 7977 if( getPageReferenced(pCheck, iPage) ){
7445 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage); 7978 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
7446 return 1; 7979 return 1;
7447 } 7980 }
7448 return (pCheck->anRef[iPage]++)>1; 7981 setPageReferenced(pCheck, iPage);
7982 return 0;
7449 } 7983 }
7450 7984
7451 #ifndef SQLITE_OMIT_AUTOVACUUM 7985 #ifndef SQLITE_OMIT_AUTOVACUUM
7452 /* 7986 /*
7453 ** Check that the entry in the pointer-map for page iChild maps to 7987 ** Check that the entry in the pointer-map for page iChild maps to
7454 ** page iParent, pointer type ptrType. If not, append an error message 7988 ** page iParent, pointer type ptrType. If not, append an error message
7455 ** to pCheck. 7989 ** to pCheck.
7456 */ 7990 */
7457 static void checkPtrmap( 7991 static void checkPtrmap(
7458 IntegrityCk *pCheck, /* Integrity check context */ 7992 IntegrityCk *pCheck, /* Integrity check context */
7459 Pgno iChild, /* Child page number */ 7993 Pgno iChild, /* Child page number */
7460 u8 eType, /* Expected pointer map type */ 7994 u8 eType, /* Expected pointer map type */
7461 Pgno iParent, /* Expected pointer map parent page number */ 7995 Pgno iParent /* Expected pointer map parent page number */
7462 char *zContext /* Context description (used for error msg) */
7463 ){ 7996 ){
7464 int rc; 7997 int rc;
7465 u8 ePtrmapType; 7998 u8 ePtrmapType;
7466 Pgno iPtrmapParent; 7999 Pgno iPtrmapParent;
7467 8000
7468 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent); 8001 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7469 if( rc!=SQLITE_OK ){ 8002 if( rc!=SQLITE_OK ){
7470 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1; 8003 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
7471 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild); 8004 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
7472 return; 8005 return;
7473 } 8006 }
7474 8007
7475 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){ 8008 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7476 checkAppendMsg(pCheck, zContext, 8009 checkAppendMsg(pCheck,
7477 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", 8010 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7478 iChild, eType, iParent, ePtrmapType, iPtrmapParent); 8011 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7479 } 8012 }
7480 } 8013 }
7481 #endif 8014 #endif
7482 8015
7483 /* 8016 /*
7484 ** Check the integrity of the freelist or of an overflow page list. 8017 ** Check the integrity of the freelist or of an overflow page list.
7485 ** Verify that the number of pages on the list is N. 8018 ** Verify that the number of pages on the list is N.
7486 */ 8019 */
7487 static void checkList( 8020 static void checkList(
7488 IntegrityCk *pCheck, /* Integrity checking context */ 8021 IntegrityCk *pCheck, /* Integrity checking context */
7489 int isFreeList, /* True for a freelist. False for overflow page list */ 8022 int isFreeList, /* True for a freelist. False for overflow page list */
7490 int iPage, /* Page number for first page in the list */ 8023 int iPage, /* Page number for first page in the list */
7491 int N, /* Expected number of pages in the list */ 8024 int N /* Expected number of pages in the list */
7492 char *zContext /* Context for error messages */
7493 ){ 8025 ){
7494 int i; 8026 int i;
7495 int expected = N; 8027 int expected = N;
7496 int iFirst = iPage; 8028 int iFirst = iPage;
7497 while( N-- > 0 && pCheck->mxErr ){ 8029 while( N-- > 0 && pCheck->mxErr ){
7498 DbPage *pOvflPage; 8030 DbPage *pOvflPage;
7499 unsigned char *pOvflData; 8031 unsigned char *pOvflData;
7500 if( iPage<1 ){ 8032 if( iPage<1 ){
7501 checkAppendMsg(pCheck, zContext, 8033 checkAppendMsg(pCheck,
7502 "%d of %d pages missing from overflow list starting at %d", 8034 "%d of %d pages missing from overflow list starting at %d",
7503 N+1, expected, iFirst); 8035 N+1, expected, iFirst);
7504 break; 8036 break;
7505 } 8037 }
7506 if( checkRef(pCheck, iPage, zContext) ) break; 8038 if( checkRef(pCheck, iPage) ) break;
7507 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){ 8039 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
7508 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage); 8040 checkAppendMsg(pCheck, "failed to get page %d", iPage);
7509 break; 8041 break;
7510 } 8042 }
7511 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage); 8043 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
7512 if( isFreeList ){ 8044 if( isFreeList ){
7513 int n = get4byte(&pOvflData[4]); 8045 int n = get4byte(&pOvflData[4]);
7514 #ifndef SQLITE_OMIT_AUTOVACUUM 8046 #ifndef SQLITE_OMIT_AUTOVACUUM
7515 if( pCheck->pBt->autoVacuum ){ 8047 if( pCheck->pBt->autoVacuum ){
7516 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext); 8048 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
7517 } 8049 }
7518 #endif 8050 #endif
7519 if( n>(int)pCheck->pBt->usableSize/4-2 ){ 8051 if( n>(int)pCheck->pBt->usableSize/4-2 ){
7520 checkAppendMsg(pCheck, zContext, 8052 checkAppendMsg(pCheck,
7521 "freelist leaf count too big on page %d", iPage); 8053 "freelist leaf count too big on page %d", iPage);
7522 N--; 8054 N--;
7523 }else{ 8055 }else{
7524 for(i=0; i<n; i++){ 8056 for(i=0; i<n; i++){
7525 Pgno iFreePage = get4byte(&pOvflData[8+i*4]); 8057 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
7526 #ifndef SQLITE_OMIT_AUTOVACUUM 8058 #ifndef SQLITE_OMIT_AUTOVACUUM
7527 if( pCheck->pBt->autoVacuum ){ 8059 if( pCheck->pBt->autoVacuum ){
7528 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext); 8060 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
7529 } 8061 }
7530 #endif 8062 #endif
7531 checkRef(pCheck, iFreePage, zContext); 8063 checkRef(pCheck, iFreePage);
7532 } 8064 }
7533 N -= n; 8065 N -= n;
7534 } 8066 }
7535 } 8067 }
7536 #ifndef SQLITE_OMIT_AUTOVACUUM 8068 #ifndef SQLITE_OMIT_AUTOVACUUM
7537 else{ 8069 else{
7538 /* If this database supports auto-vacuum and iPage is not the last 8070 /* If this database supports auto-vacuum and iPage is not the last
7539 ** page in this overflow list, check that the pointer-map entry for 8071 ** page in this overflow list, check that the pointer-map entry for
7540 ** the following page matches iPage. 8072 ** the following page matches iPage.
7541 */ 8073 */
7542 if( pCheck->pBt->autoVacuum && N>0 ){ 8074 if( pCheck->pBt->autoVacuum && N>0 ){
7543 i = get4byte(pOvflData); 8075 i = get4byte(pOvflData);
7544 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext); 8076 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
7545 } 8077 }
7546 } 8078 }
7547 #endif 8079 #endif
7548 iPage = get4byte(pOvflData); 8080 iPage = get4byte(pOvflData);
7549 sqlite3PagerUnref(pOvflPage); 8081 sqlite3PagerUnref(pOvflPage);
7550 } 8082 }
7551 } 8083 }
7552 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 8084 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
7553 8085
7554 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 8086 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
(...skipping 11 matching lines...) Expand all
7566 ** NO 4. Make sure no key is greater than or equal to zUpperBound. 8098 ** NO 4. Make sure no key is greater than or equal to zUpperBound.
7567 ** 5. Check the integrity of overflow pages. 8099 ** 5. Check the integrity of overflow pages.
7568 ** 6. Recursively call checkTreePage on all children. 8100 ** 6. Recursively call checkTreePage on all children.
7569 ** 7. Verify that the depth of all children is the same. 8101 ** 7. Verify that the depth of all children is the same.
7570 ** 8. Make sure this page is at least 33% full or else it is 8102 ** 8. Make sure this page is at least 33% full or else it is
7571 ** the root of the tree. 8103 ** the root of the tree.
7572 */ 8104 */
7573 static int checkTreePage( 8105 static int checkTreePage(
7574 IntegrityCk *pCheck, /* Context for the sanity check */ 8106 IntegrityCk *pCheck, /* Context for the sanity check */
7575 int iPage, /* Page number of the page to check */ 8107 int iPage, /* Page number of the page to check */
7576 char *zParentContext, /* Parent context */
7577 i64 *pnParentMinKey, 8108 i64 *pnParentMinKey,
7578 i64 *pnParentMaxKey 8109 i64 *pnParentMaxKey
7579 ){ 8110 ){
7580 MemPage *pPage; 8111 MemPage *pPage;
7581 int i, rc, depth, d2, pgno, cnt; 8112 int i, rc, depth, d2, pgno, cnt;
7582 int hdr, cellStart; 8113 int hdr, cellStart;
7583 int nCell; 8114 int nCell;
7584 u8 *data; 8115 u8 *data;
7585 BtShared *pBt; 8116 BtShared *pBt;
7586 int usableSize; 8117 int usableSize;
7587 char zContext[100];
7588 char *hit = 0; 8118 char *hit = 0;
7589 i64 nMinKey = 0; 8119 i64 nMinKey = 0;
7590 i64 nMaxKey = 0; 8120 i64 nMaxKey = 0;
7591 8121 const char *saved_zPfx = pCheck->zPfx;
7592 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage); 8122 int saved_v1 = pCheck->v1;
8123 int saved_v2 = pCheck->v2;
7593 8124
7594 /* Check that the page exists 8125 /* Check that the page exists
7595 */ 8126 */
7596 pBt = pCheck->pBt; 8127 pBt = pCheck->pBt;
7597 usableSize = pBt->usableSize; 8128 usableSize = pBt->usableSize;
7598 if( iPage==0 ) return 0; 8129 if( iPage==0 ) return 0;
7599 if( checkRef(pCheck, iPage, zParentContext) ) return 0; 8130 if( checkRef(pCheck, iPage) ) return 0;
8131 pCheck->zPfx = "Page %d: ";
8132 pCheck->v1 = iPage;
7600 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){ 8133 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
7601 checkAppendMsg(pCheck, zContext, 8134 checkAppendMsg(pCheck,
7602 "unable to get the page. error code=%d", rc); 8135 "unable to get the page. error code=%d", rc);
7603 return 0; 8136 depth = -1;
8137 goto end_of_check;
7604 } 8138 }
7605 8139
7606 /* Clear MemPage.isInit to make sure the corruption detection code in 8140 /* Clear MemPage.isInit to make sure the corruption detection code in
7607 ** btreeInitPage() is executed. */ 8141 ** btreeInitPage() is executed. */
7608 pPage->isInit = 0; 8142 pPage->isInit = 0;
7609 if( (rc = btreeInitPage(pPage))!=0 ){ 8143 if( (rc = btreeInitPage(pPage))!=0 ){
7610 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */ 8144 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
7611 checkAppendMsg(pCheck, zContext, 8145 checkAppendMsg(pCheck,
7612 "btreeInitPage() returns error code %d", rc); 8146 "btreeInitPage() returns error code %d", rc);
7613 releasePage(pPage); 8147 releasePage(pPage);
7614 return 0; 8148 depth = -1;
8149 goto end_of_check;
7615 } 8150 }
7616 8151
7617 /* Check out all the cells. 8152 /* Check out all the cells.
7618 */ 8153 */
7619 depth = 0; 8154 depth = 0;
7620 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){ 8155 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
7621 u8 *pCell; 8156 u8 *pCell;
7622 u32 sz; 8157 u32 sz;
7623 CellInfo info; 8158 CellInfo info;
7624 8159
7625 /* Check payload overflow pages 8160 /* Check payload overflow pages
7626 */ 8161 */
7627 sqlite3_snprintf(sizeof(zContext), zContext, 8162 pCheck->zPfx = "On tree page %d cell %d: ";
7628 "On tree page %d cell %d: ", iPage, i); 8163 pCheck->v1 = iPage;
8164 pCheck->v2 = i;
7629 pCell = findCell(pPage,i); 8165 pCell = findCell(pPage,i);
7630 btreeParseCellPtr(pPage, pCell, &info); 8166 btreeParseCellPtr(pPage, pCell, &info);
7631 sz = info.nData; 8167 sz = info.nPayload;
7632 if( !pPage->intKey ) sz += (int)info.nKey;
7633 /* For intKey pages, check that the keys are in order. 8168 /* For intKey pages, check that the keys are in order.
7634 */ 8169 */
7635 else if( i==0 ) nMinKey = nMaxKey = info.nKey; 8170 if( pPage->intKey ){
7636 else{ 8171 if( i==0 ){
7637 if( info.nKey <= nMaxKey ){ 8172 nMinKey = nMaxKey = info.nKey;
7638 checkAppendMsg(pCheck, zContext, 8173 }else if( info.nKey <= nMaxKey ){
7639 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey); 8174 checkAppendMsg(pCheck,
8175 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
7640 } 8176 }
7641 nMaxKey = info.nKey; 8177 nMaxKey = info.nKey;
7642 } 8178 }
7643 assert( sz==info.nPayload );
7644 if( (sz>info.nLocal) 8179 if( (sz>info.nLocal)
7645 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize]) 8180 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
7646 ){ 8181 ){
7647 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4); 8182 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
7648 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]); 8183 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
7649 #ifndef SQLITE_OMIT_AUTOVACUUM 8184 #ifndef SQLITE_OMIT_AUTOVACUUM
7650 if( pBt->autoVacuum ){ 8185 if( pBt->autoVacuum ){
7651 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext); 8186 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
7652 } 8187 }
7653 #endif 8188 #endif
7654 checkList(pCheck, 0, pgnoOvfl, nPage, zContext); 8189 checkList(pCheck, 0, pgnoOvfl, nPage);
7655 } 8190 }
7656 8191
7657 /* Check sanity of left child page. 8192 /* Check sanity of left child page.
7658 */ 8193 */
7659 if( !pPage->leaf ){ 8194 if( !pPage->leaf ){
7660 pgno = get4byte(pCell); 8195 pgno = get4byte(pCell);
7661 #ifndef SQLITE_OMIT_AUTOVACUUM 8196 #ifndef SQLITE_OMIT_AUTOVACUUM
7662 if( pBt->autoVacuum ){ 8197 if( pBt->autoVacuum ){
7663 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext); 8198 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
7664 } 8199 }
7665 #endif 8200 #endif
7666 d2 = checkTreePage(pCheck, pgno, zContext, &nMinKey, i==0 ? NULL : &nMaxKe y); 8201 d2 = checkTreePage(pCheck, pgno, &nMinKey, i==0?NULL:&nMaxKey);
7667 if( i>0 && d2!=depth ){ 8202 if( i>0 && d2!=depth ){
7668 checkAppendMsg(pCheck, zContext, "Child page depth differs"); 8203 checkAppendMsg(pCheck, "Child page depth differs");
7669 } 8204 }
7670 depth = d2; 8205 depth = d2;
7671 } 8206 }
7672 } 8207 }
7673 8208
7674 if( !pPage->leaf ){ 8209 if( !pPage->leaf ){
7675 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 8210 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7676 sqlite3_snprintf(sizeof(zContext), zContext, 8211 pCheck->zPfx = "On page %d at right child: ";
7677 "On page %d at right child: ", iPage); 8212 pCheck->v1 = iPage;
7678 #ifndef SQLITE_OMIT_AUTOVACUUM 8213 #ifndef SQLITE_OMIT_AUTOVACUUM
7679 if( pBt->autoVacuum ){ 8214 if( pBt->autoVacuum ){
7680 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext); 8215 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
7681 } 8216 }
7682 #endif 8217 #endif
7683 checkTreePage(pCheck, pgno, zContext, NULL, !pPage->nCell ? NULL : &nMaxKey) ; 8218 checkTreePage(pCheck, pgno, NULL, !pPage->nCell?NULL:&nMaxKey);
7684 } 8219 }
7685 8220
7686 /* For intKey leaf pages, check that the min/max keys are in order 8221 /* For intKey leaf pages, check that the min/max keys are in order
7687 ** with any left/parent/right pages. 8222 ** with any left/parent/right pages.
7688 */ 8223 */
8224 pCheck->zPfx = "Page %d: ";
8225 pCheck->v1 = iPage;
7689 if( pPage->leaf && pPage->intKey ){ 8226 if( pPage->leaf && pPage->intKey ){
7690 /* if we are a left child page */ 8227 /* if we are a left child page */
7691 if( pnParentMinKey ){ 8228 if( pnParentMinKey ){
7692 /* if we are the left most child page */ 8229 /* if we are the left most child page */
7693 if( !pnParentMaxKey ){ 8230 if( !pnParentMaxKey ){
7694 if( nMaxKey > *pnParentMinKey ){ 8231 if( nMaxKey > *pnParentMinKey ){
7695 checkAppendMsg(pCheck, zContext, 8232 checkAppendMsg(pCheck,
7696 "Rowid %lld out of order (max larger than parent min of %lld)", 8233 "Rowid %lld out of order (max larger than parent min of %lld)",
7697 nMaxKey, *pnParentMinKey); 8234 nMaxKey, *pnParentMinKey);
7698 } 8235 }
7699 }else{ 8236 }else{
7700 if( nMinKey <= *pnParentMinKey ){ 8237 if( nMinKey <= *pnParentMinKey ){
7701 checkAppendMsg(pCheck, zContext, 8238 checkAppendMsg(pCheck,
7702 "Rowid %lld out of order (min less than parent min of %lld)", 8239 "Rowid %lld out of order (min less than parent min of %lld)",
7703 nMinKey, *pnParentMinKey); 8240 nMinKey, *pnParentMinKey);
7704 } 8241 }
7705 if( nMaxKey > *pnParentMaxKey ){ 8242 if( nMaxKey > *pnParentMaxKey ){
7706 checkAppendMsg(pCheck, zContext, 8243 checkAppendMsg(pCheck,
7707 "Rowid %lld out of order (max larger than parent max of %lld)", 8244 "Rowid %lld out of order (max larger than parent max of %lld)",
7708 nMaxKey, *pnParentMaxKey); 8245 nMaxKey, *pnParentMaxKey);
7709 } 8246 }
7710 *pnParentMinKey = nMaxKey; 8247 *pnParentMinKey = nMaxKey;
7711 } 8248 }
7712 /* else if we're a right child page */ 8249 /* else if we're a right child page */
7713 } else if( pnParentMaxKey ){ 8250 } else if( pnParentMaxKey ){
7714 if( nMinKey <= *pnParentMaxKey ){ 8251 if( nMinKey <= *pnParentMaxKey ){
7715 checkAppendMsg(pCheck, zContext, 8252 checkAppendMsg(pCheck,
7716 "Rowid %lld out of order (min less than parent max of %lld)", 8253 "Rowid %lld out of order (min less than parent max of %lld)",
7717 nMinKey, *pnParentMaxKey); 8254 nMinKey, *pnParentMaxKey);
7718 } 8255 }
7719 } 8256 }
7720 } 8257 }
7721 8258
7722 /* Check for complete coverage of the page 8259 /* Check for complete coverage of the page
7723 */ 8260 */
7724 data = pPage->aData; 8261 data = pPage->aData;
7725 hdr = pPage->hdrOffset; 8262 hdr = pPage->hdrOffset;
7726 hit = sqlite3PageMalloc( pBt->pageSize ); 8263 hit = sqlite3PageMalloc( pBt->pageSize );
8264 pCheck->zPfx = 0;
7727 if( hit==0 ){ 8265 if( hit==0 ){
7728 pCheck->mallocFailed = 1; 8266 pCheck->mallocFailed = 1;
7729 }else{ 8267 }else{
7730 int contentOffset = get2byteNotZero(&data[hdr+5]); 8268 int contentOffset = get2byteNotZero(&data[hdr+5]);
7731 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */ 8269 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
7732 memset(hit+contentOffset, 0, usableSize-contentOffset); 8270 memset(hit+contentOffset, 0, usableSize-contentOffset);
7733 memset(hit, 1, contentOffset); 8271 memset(hit, 1, contentOffset);
7734 nCell = get2byte(&data[hdr+3]); 8272 nCell = get2byte(&data[hdr+3]);
7735 cellStart = hdr + 12 - 4*pPage->leaf; 8273 cellStart = hdr + 12 - 4*pPage->leaf;
7736 for(i=0; i<nCell; i++){ 8274 for(i=0; i<nCell; i++){
7737 int pc = get2byte(&data[cellStart+i*2]); 8275 int pc = get2byte(&data[cellStart+i*2]);
7738 u32 size = 65536; 8276 u32 size = 65536;
7739 int j; 8277 int j;
7740 if( pc<=usableSize-4 ){ 8278 if( pc<=usableSize-4 ){
7741 size = cellSizePtr(pPage, &data[pc]); 8279 size = cellSizePtr(pPage, &data[pc]);
7742 } 8280 }
7743 if( (int)(pc+size-1)>=usableSize ){ 8281 if( (int)(pc+size-1)>=usableSize ){
7744 checkAppendMsg(pCheck, 0, 8282 pCheck->zPfx = 0;
8283 checkAppendMsg(pCheck,
7745 "Corruption detected in cell %d on page %d",i,iPage); 8284 "Corruption detected in cell %d on page %d",i,iPage);
7746 }else{ 8285 }else{
7747 for(j=pc+size-1; j>=pc; j--) hit[j]++; 8286 for(j=pc+size-1; j>=pc; j--) hit[j]++;
7748 } 8287 }
7749 } 8288 }
7750 i = get2byte(&data[hdr+1]); 8289 i = get2byte(&data[hdr+1]);
7751 while( i>0 ){ 8290 while( i>0 ){
7752 int size, j; 8291 int size, j;
7753 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */ 8292 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
7754 size = get2byte(&data[i+2]); 8293 size = get2byte(&data[i+2]);
7755 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */ 8294 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
7756 for(j=i+size-1; j>=i; j--) hit[j]++; 8295 for(j=i+size-1; j>=i; j--) hit[j]++;
7757 j = get2byte(&data[i]); 8296 j = get2byte(&data[i]);
7758 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */ 8297 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
7759 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */ 8298 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
7760 i = j; 8299 i = j;
7761 } 8300 }
7762 for(i=cnt=0; i<usableSize; i++){ 8301 for(i=cnt=0; i<usableSize; i++){
7763 if( hit[i]==0 ){ 8302 if( hit[i]==0 ){
7764 cnt++; 8303 cnt++;
7765 }else if( hit[i]>1 ){ 8304 }else if( hit[i]>1 ){
7766 checkAppendMsg(pCheck, 0, 8305 checkAppendMsg(pCheck,
7767 "Multiple uses for byte %d of page %d", i, iPage); 8306 "Multiple uses for byte %d of page %d", i, iPage);
7768 break; 8307 break;
7769 } 8308 }
7770 } 8309 }
7771 if( cnt!=data[hdr+7] ){ 8310 if( cnt!=data[hdr+7] ){
7772 checkAppendMsg(pCheck, 0, 8311 checkAppendMsg(pCheck,
7773 "Fragmentation of %d bytes reported as %d on page %d", 8312 "Fragmentation of %d bytes reported as %d on page %d",
7774 cnt, data[hdr+7], iPage); 8313 cnt, data[hdr+7], iPage);
7775 } 8314 }
7776 } 8315 }
7777 sqlite3PageFree(hit); 8316 sqlite3PageFree(hit);
7778 releasePage(pPage); 8317 releasePage(pPage);
8318
8319 end_of_check:
8320 pCheck->zPfx = saved_zPfx;
8321 pCheck->v1 = saved_v1;
8322 pCheck->v2 = saved_v2;
7779 return depth+1; 8323 return depth+1;
7780 } 8324 }
7781 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 8325 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
7782 8326
7783 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 8327 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
7784 /* 8328 /*
7785 ** This routine does a complete check of the given BTree file. aRoot[] is 8329 ** This routine does a complete check of the given BTree file. aRoot[] is
7786 ** an array of pages numbers were each page number is the root page of 8330 ** an array of pages numbers were each page number is the root page of
7787 ** a table. nRoot is the number of entries in aRoot. 8331 ** a table. nRoot is the number of entries in aRoot.
7788 ** 8332 **
(...skipping 20 matching lines...) Expand all
7809 8353
7810 sqlite3BtreeEnter(p); 8354 sqlite3BtreeEnter(p);
7811 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE ); 8355 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
7812 nRef = sqlite3PagerRefcount(pBt->pPager); 8356 nRef = sqlite3PagerRefcount(pBt->pPager);
7813 sCheck.pBt = pBt; 8357 sCheck.pBt = pBt;
7814 sCheck.pPager = pBt->pPager; 8358 sCheck.pPager = pBt->pPager;
7815 sCheck.nPage = btreePagecount(sCheck.pBt); 8359 sCheck.nPage = btreePagecount(sCheck.pBt);
7816 sCheck.mxErr = mxErr; 8360 sCheck.mxErr = mxErr;
7817 sCheck.nErr = 0; 8361 sCheck.nErr = 0;
7818 sCheck.mallocFailed = 0; 8362 sCheck.mallocFailed = 0;
8363 sCheck.zPfx = 0;
8364 sCheck.v1 = 0;
8365 sCheck.v2 = 0;
7819 *pnErr = 0; 8366 *pnErr = 0;
7820 if( sCheck.nPage==0 ){ 8367 if( sCheck.nPage==0 ){
7821 sqlite3BtreeLeave(p); 8368 sqlite3BtreeLeave(p);
7822 return 0; 8369 return 0;
7823 } 8370 }
7824 sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) ); 8371
7825 if( !sCheck.anRef ){ 8372 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
8373 if( !sCheck.aPgRef ){
7826 *pnErr = 1; 8374 *pnErr = 1;
7827 sqlite3BtreeLeave(p); 8375 sqlite3BtreeLeave(p);
7828 return 0; 8376 return 0;
7829 } 8377 }
7830 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
7831 i = PENDING_BYTE_PAGE(pBt); 8378 i = PENDING_BYTE_PAGE(pBt);
7832 if( i<=sCheck.nPage ){ 8379 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
7833 sCheck.anRef[i] = 1; 8380 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
7834 }
7835 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
7836 sCheck.errMsg.useMalloc = 2; 8381 sCheck.errMsg.useMalloc = 2;
7837 8382
7838 /* Check the integrity of the freelist 8383 /* Check the integrity of the freelist
7839 */ 8384 */
8385 sCheck.zPfx = "Main freelist: ";
7840 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), 8386 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
7841 get4byte(&pBt->pPage1->aData[36]), "Main freelist: "); 8387 get4byte(&pBt->pPage1->aData[36]));
8388 sCheck.zPfx = 0;
7842 8389
7843 /* Check all the tables. 8390 /* Check all the tables.
7844 */ 8391 */
7845 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){ 8392 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
7846 if( aRoot[i]==0 ) continue; 8393 if( aRoot[i]==0 ) continue;
7847 #ifndef SQLITE_OMIT_AUTOVACUUM 8394 #ifndef SQLITE_OMIT_AUTOVACUUM
7848 if( pBt->autoVacuum && aRoot[i]>1 ){ 8395 if( pBt->autoVacuum && aRoot[i]>1 ){
7849 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0); 8396 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
7850 } 8397 }
7851 #endif 8398 #endif
7852 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL); 8399 sCheck.zPfx = "List of tree roots: ";
8400 checkTreePage(&sCheck, aRoot[i], NULL, NULL);
8401 sCheck.zPfx = 0;
7853 } 8402 }
7854 8403
7855 /* Make sure every page in the file is referenced 8404 /* Make sure every page in the file is referenced
7856 */ 8405 */
7857 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){ 8406 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
7858 #ifdef SQLITE_OMIT_AUTOVACUUM 8407 #ifdef SQLITE_OMIT_AUTOVACUUM
7859 if( sCheck.anRef[i]==0 ){ 8408 if( getPageReferenced(&sCheck, i)==0 ){
7860 checkAppendMsg(&sCheck, 0, "Page %d is never used", i); 8409 checkAppendMsg(&sCheck, "Page %d is never used", i);
7861 } 8410 }
7862 #else 8411 #else
7863 /* If the database supports auto-vacuum, make sure no tables contain 8412 /* If the database supports auto-vacuum, make sure no tables contain
7864 ** references to pointer-map pages. 8413 ** references to pointer-map pages.
7865 */ 8414 */
7866 if( sCheck.anRef[i]==0 && 8415 if( getPageReferenced(&sCheck, i)==0 &&
7867 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){ 8416 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
7868 checkAppendMsg(&sCheck, 0, "Page %d is never used", i); 8417 checkAppendMsg(&sCheck, "Page %d is never used", i);
7869 } 8418 }
7870 if( sCheck.anRef[i]!=0 && 8419 if( getPageReferenced(&sCheck, i)!=0 &&
7871 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){ 8420 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
7872 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i); 8421 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
7873 } 8422 }
7874 #endif 8423 #endif
7875 } 8424 }
7876 8425
7877 /* Make sure this analysis did not leave any unref() pages. 8426 /* Make sure this analysis did not leave any unref() pages.
7878 ** This is an internal consistency check; an integrity check 8427 ** This is an internal consistency check; an integrity check
7879 ** of the integrity check. 8428 ** of the integrity check.
7880 */ 8429 */
7881 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){ 8430 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
7882 checkAppendMsg(&sCheck, 0, 8431 checkAppendMsg(&sCheck,
7883 "Outstanding page count goes from %d to %d during this analysis", 8432 "Outstanding page count goes from %d to %d during this analysis",
7884 nRef, sqlite3PagerRefcount(pBt->pPager) 8433 nRef, sqlite3PagerRefcount(pBt->pPager)
7885 ); 8434 );
7886 } 8435 }
7887 8436
7888 /* Clean up and report errors. 8437 /* Clean up and report errors.
7889 */ 8438 */
7890 sqlite3BtreeLeave(p); 8439 sqlite3BtreeLeave(p);
7891 sqlite3_free(sCheck.anRef); 8440 sqlite3_free(sCheck.aPgRef);
7892 if( sCheck.mallocFailed ){ 8441 if( sCheck.mallocFailed ){
7893 sqlite3StrAccumReset(&sCheck.errMsg); 8442 sqlite3StrAccumReset(&sCheck.errMsg);
7894 *pnErr = sCheck.nErr+1; 8443 *pnErr = sCheck.nErr+1;
7895 return 0; 8444 return 0;
7896 } 8445 }
7897 *pnErr = sCheck.nErr; 8446 *pnErr = sCheck.nErr;
7898 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg); 8447 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
7899 return sqlite3StrAccumFinish(&sCheck.errMsg); 8448 return sqlite3StrAccumFinish(&sCheck.errMsg);
7900 } 8449 }
7901 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 8450 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
7902 8451
7903 /* 8452 /*
7904 ** Return the full pathname of the underlying database file. 8453 ** Return the full pathname of the underlying database file. Return
8454 ** an empty string if the database is in-memory or a TEMP database.
7905 ** 8455 **
7906 ** The pager filename is invariant as long as the pager is 8456 ** The pager filename is invariant as long as the pager is
7907 ** open so it is safe to access without the BtShared mutex. 8457 ** open so it is safe to access without the BtShared mutex.
7908 */ 8458 */
7909 const char *sqlite3BtreeGetFilename(Btree *p){ 8459 const char *sqlite3BtreeGetFilename(Btree *p){
7910 assert( p->pBt->pPager!=0 ); 8460 assert( p->pBt->pPager!=0 );
7911 return sqlite3PagerFilename(p->pBt->pPager); 8461 return sqlite3PagerFilename(p->pBt->pPager, 1);
7912 } 8462 }
7913 8463
7914 /* 8464 /*
7915 ** Return the pathname of the journal file for this database. The return 8465 ** Return the pathname of the journal file for this database. The return
7916 ** value of this routine is the same regardless of whether the journal file 8466 ** value of this routine is the same regardless of whether the journal file
7917 ** has been created or not. 8467 ** has been created or not.
7918 ** 8468 **
7919 ** The pager journal filename is invariant as long as the pager is 8469 ** The pager journal filename is invariant as long as the pager is
7920 ** open so it is safe to access without the BtShared mutex. 8470 ** open so it is safe to access without the BtShared mutex.
7921 */ 8471 */
(...skipping 130 matching lines...) Expand 10 before | Expand all | Expand 10 after
8052 ** 8602 **
8053 ** Only the data content may only be modified, it is not possible to 8603 ** Only the data content may only be modified, it is not possible to
8054 ** change the length of the data stored. If this function is called with 8604 ** change the length of the data stored. If this function is called with
8055 ** parameters that attempt to write past the end of the existing data, 8605 ** parameters that attempt to write past the end of the existing data,
8056 ** no modifications are made and SQLITE_CORRUPT is returned. 8606 ** no modifications are made and SQLITE_CORRUPT is returned.
8057 */ 8607 */
8058 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){ 8608 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
8059 int rc; 8609 int rc;
8060 assert( cursorHoldsMutex(pCsr) ); 8610 assert( cursorHoldsMutex(pCsr) );
8061 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) ); 8611 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
8062 assert( pCsr->isIncrblobHandle ); 8612 assert( pCsr->curFlags & BTCF_Incrblob );
8063 8613
8064 rc = restoreCursorPosition(pCsr); 8614 rc = restoreCursorPosition(pCsr);
8065 if( rc!=SQLITE_OK ){ 8615 if( rc!=SQLITE_OK ){
8066 return rc; 8616 return rc;
8067 } 8617 }
8068 assert( pCsr->eState!=CURSOR_REQUIRESEEK ); 8618 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
8069 if( pCsr->eState!=CURSOR_VALID ){ 8619 if( pCsr->eState!=CURSOR_VALID ){
8070 return SQLITE_ABORT; 8620 return SQLITE_ABORT;
8071 } 8621 }
8072 8622
8623 /* Save the positions of all other cursors open on this table. This is
8624 ** required in case any of them are holding references to an xFetch
8625 ** version of the b-tree page modified by the accessPayload call below.
8626 **
8627 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
8628 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
8629 ** saveAllCursors can only return SQLITE_OK.
8630 */
8631 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
8632 assert( rc==SQLITE_OK );
8633
8073 /* Check some assumptions: 8634 /* Check some assumptions:
8074 ** (a) the cursor is open for writing, 8635 ** (a) the cursor is open for writing,
8075 ** (b) there is a read/write transaction open, 8636 ** (b) there is a read/write transaction open,
8076 ** (c) the connection holds a write-lock on the table (if required), 8637 ** (c) the connection holds a write-lock on the table (if required),
8077 ** (d) there are no conflicting read-locks, and 8638 ** (d) there are no conflicting read-locks, and
8078 ** (e) the cursor points at a valid row of an intKey table. 8639 ** (e) the cursor points at a valid row of an intKey table.
8079 */ 8640 */
8080 if( !pCsr->wrFlag ){ 8641 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
8081 return SQLITE_READONLY; 8642 return SQLITE_READONLY;
8082 } 8643 }
8083 assert( !pCsr->pBt->readOnly && pCsr->pBt->inTransaction==TRANS_WRITE ); 8644 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
8645 && pCsr->pBt->inTransaction==TRANS_WRITE );
8084 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) ); 8646 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
8085 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) ); 8647 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
8086 assert( pCsr->apPage[pCsr->iPage]->intKey ); 8648 assert( pCsr->apPage[pCsr->iPage]->intKey );
8087 8649
8088 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1); 8650 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
8089 } 8651 }
8090 8652
8091 /* 8653 /*
8092 ** Set a flag on this cursor to cache the locations of pages from the 8654 ** Mark this cursor as an incremental blob cursor.
8093 ** overflow list for the current row. This is used by cursors opened
8094 ** for incremental blob IO only.
8095 **
8096 ** This function sets a flag only. The actual page location cache
8097 ** (stored in BtCursor.aOverflow[]) is allocated and used by function
8098 ** accessPayload() (the worker function for sqlite3BtreeData() and
8099 ** sqlite3BtreePutData()).
8100 */ 8655 */
8101 void sqlite3BtreeCacheOverflow(BtCursor *pCur){ 8656 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
8102 assert( cursorHoldsMutex(pCur) ); 8657 pCur->curFlags |= BTCF_Incrblob;
8103 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
8104 invalidateOverflowCache(pCur);
8105 pCur->isIncrblobHandle = 1;
8106 } 8658 }
8107 #endif 8659 #endif
8108 8660
8109 /* 8661 /*
8110 ** Set both the "read version" (single byte at byte offset 18) and 8662 ** Set both the "read version" (single byte at byte offset 18) and
8111 ** "write version" (single byte at byte offset 19) fields in the database 8663 ** "write version" (single byte at byte offset 19) fields in the database
8112 ** header to iVersion. 8664 ** header to iVersion.
8113 */ 8665 */
8114 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){ 8666 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
8115 BtShared *pBt = pBtree->pBt; 8667 BtShared *pBt = pBtree->pBt;
8116 int rc; /* Return code */ 8668 int rc; /* Return code */
8117 8669
8118 assert( pBtree->inTrans==TRANS_NONE );
8119 assert( iVersion==1 || iVersion==2 ); 8670 assert( iVersion==1 || iVersion==2 );
8120 8671
8121 /* If setting the version fields to 1, do not automatically open the 8672 /* If setting the version fields to 1, do not automatically open the
8122 ** WAL connection, even if the version fields are currently set to 2. 8673 ** WAL connection, even if the version fields are currently set to 2.
8123 */ 8674 */
8124 pBt->doNotUseWAL = (u8)(iVersion==1); 8675 pBt->btsFlags &= ~BTS_NO_WAL;
8676 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
8125 8677
8126 rc = sqlite3BtreeBeginTrans(pBtree, 0); 8678 rc = sqlite3BtreeBeginTrans(pBtree, 0);
8127 if( rc==SQLITE_OK ){ 8679 if( rc==SQLITE_OK ){
8128 u8 *aData = pBt->pPage1->aData; 8680 u8 *aData = pBt->pPage1->aData;
8129 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){ 8681 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
8130 rc = sqlite3BtreeBeginTrans(pBtree, 2); 8682 rc = sqlite3BtreeBeginTrans(pBtree, 2);
8131 if( rc==SQLITE_OK ){ 8683 if( rc==SQLITE_OK ){
8132 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 8684 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8133 if( rc==SQLITE_OK ){ 8685 if( rc==SQLITE_OK ){
8134 aData[18] = (u8)iVersion; 8686 aData[18] = (u8)iVersion;
8135 aData[19] = (u8)iVersion; 8687 aData[19] = (u8)iVersion;
8136 } 8688 }
8137 } 8689 }
8138 } 8690 }
8139 } 8691 }
8140 8692
8141 pBt->doNotUseWAL = 0; 8693 pBt->btsFlags &= ~BTS_NO_WAL;
8142 return rc; 8694 return rc;
8143 } 8695 }
8696
8697 /*
8698 ** set the mask of hint flags for cursor pCsr. Currently the only valid
8699 ** values are 0 and BTREE_BULKLOAD.
8700 */
8701 void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){
8702 assert( mask==BTREE_BULKLOAD || mask==0 );
8703 pCsr->hints = mask;
8704 }
8705
8706 /*
8707 ** Return true if the given Btree is read-only.
8708 */
8709 int sqlite3BtreeIsReadonly(Btree *p){
8710 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
8711 }
OLDNEW
« no previous file with comments | « third_party/sqlite/src/src/btree.h ('k') | third_party/sqlite/src/src/btreeInt.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698