OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2012-11-13 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ****************************************************************************** |
| 12 ** |
| 13 ** The code in this file implements a compact but reasonably |
| 14 ** efficient regular-expression matcher for posix extended regular |
| 15 ** expressions against UTF8 text. |
| 16 ** |
| 17 ** This file is an SQLite extension. It registers a single function |
| 18 ** named "regexp(A,B)" where A is the regular expression and B is the |
| 19 ** string to be matched. By registering this function, SQLite will also |
| 20 ** then implement the "B regexp A" operator. Note that with the function |
| 21 ** the regular expression comes first, but with the operator it comes |
| 22 ** second. |
| 23 ** |
| 24 ** The following regular expression syntax is supported: |
| 25 ** |
| 26 ** X* zero or more occurrences of X |
| 27 ** X+ one or more occurrences of X |
| 28 ** X? zero or one occurrences of X |
| 29 ** X{p,q} between p and q occurrences of X |
| 30 ** (X) match X |
| 31 ** X|Y X or Y |
| 32 ** ^X X occurring at the beginning of the string |
| 33 ** X$ X occurring at the end of the string |
| 34 ** . Match any single character |
| 35 ** \c Character c where c is one of \{}()[]|*+?. |
| 36 ** \c C-language escapes for c in afnrtv. ex: \t or \n |
| 37 ** \uXXXX Where XXXX is exactly 4 hex digits, unicode value XXXX |
| 38 ** \xXX Where XX is exactly 2 hex digits, unicode value XX |
| 39 ** [abc] Any single character from the set abc |
| 40 ** [^abc] Any single character not in the set abc |
| 41 ** [a-z] Any single character in the range a-z |
| 42 ** [^a-z] Any single character not in the range a-z |
| 43 ** \b Word boundary |
| 44 ** \w Word character. [A-Za-z0-9_] |
| 45 ** \W Non-word character |
| 46 ** \d Digit |
| 47 ** \D Non-digit |
| 48 ** \s Whitespace character |
| 49 ** \S Non-whitespace character |
| 50 ** |
| 51 ** A nondeterministic finite automaton (NFA) is used for matching, so the |
| 52 ** performance is bounded by O(N*M) where N is the size of the regular |
| 53 ** expression and M is the size of the input string. The matcher never |
| 54 ** exhibits exponential behavior. Note that the X{p,q} operator expands |
| 55 ** to p copies of X following by q-p copies of X? and that the size of the |
| 56 ** regular expression in the O(N*M) performance bound is computed after |
| 57 ** this expansion. |
| 58 */ |
| 59 #include <string.h> |
| 60 #include <stdlib.h> |
| 61 #include "sqlite3ext.h" |
| 62 SQLITE_EXTENSION_INIT1 |
| 63 |
| 64 /* |
| 65 ** The following #defines change the names of some functions implemented in |
| 66 ** this file to prevent name collisions with C-library functions of the |
| 67 ** same name. |
| 68 */ |
| 69 #define re_match sqlite3re_match |
| 70 #define re_compile sqlite3re_compile |
| 71 #define re_free sqlite3re_free |
| 72 |
| 73 /* The end-of-input character */ |
| 74 #define RE_EOF 0 /* End of input */ |
| 75 |
| 76 /* The NFA is implemented as sequence of opcodes taken from the following |
| 77 ** set. Each opcode has a single integer argument. |
| 78 */ |
| 79 #define RE_OP_MATCH 1 /* Match the one character in the argument */ |
| 80 #define RE_OP_ANY 2 /* Match any one character. (Implements ".") */ |
| 81 #define RE_OP_ANYSTAR 3 /* Special optimized version of .* */ |
| 82 #define RE_OP_FORK 4 /* Continue to both next and opcode at iArg */ |
| 83 #define RE_OP_GOTO 5 /* Jump to opcode at iArg */ |
| 84 #define RE_OP_ACCEPT 6 /* Halt and indicate a successful match */ |
| 85 #define RE_OP_CC_INC 7 /* Beginning of a [...] character class */ |
| 86 #define RE_OP_CC_EXC 8 /* Beginning of a [^...] character class */ |
| 87 #define RE_OP_CC_VALUE 9 /* Single value in a character class */ |
| 88 #define RE_OP_CC_RANGE 10 /* Range of values in a character class */ |
| 89 #define RE_OP_WORD 11 /* Perl word character [A-Za-z0-9_] */ |
| 90 #define RE_OP_NOTWORD 12 /* Not a perl word character */ |
| 91 #define RE_OP_DIGIT 13 /* digit: [0-9] */ |
| 92 #define RE_OP_NOTDIGIT 14 /* Not a digit */ |
| 93 #define RE_OP_SPACE 15 /* space: [ \t\n\r\v\f] */ |
| 94 #define RE_OP_NOTSPACE 16 /* Not a digit */ |
| 95 #define RE_OP_BOUNDARY 17 /* Boundary between word and non-word */ |
| 96 |
| 97 /* Each opcode is a "state" in the NFA */ |
| 98 typedef unsigned short ReStateNumber; |
| 99 |
| 100 /* Because this is an NFA and not a DFA, multiple states can be active at |
| 101 ** once. An instance of the following object records all active states in |
| 102 ** the NFA. The implementation is optimized for the common case where the |
| 103 ** number of actives states is small. |
| 104 */ |
| 105 typedef struct ReStateSet { |
| 106 unsigned nState; /* Number of current states */ |
| 107 ReStateNumber *aState; /* Current states */ |
| 108 } ReStateSet; |
| 109 |
| 110 /* An input string read one character at a time. |
| 111 */ |
| 112 typedef struct ReInput ReInput; |
| 113 struct ReInput { |
| 114 const unsigned char *z; /* All text */ |
| 115 int i; /* Next byte to read */ |
| 116 int mx; /* EOF when i>=mx */ |
| 117 }; |
| 118 |
| 119 /* A compiled NFA (or an NFA that is in the process of being compiled) is |
| 120 ** an instance of the following object. |
| 121 */ |
| 122 typedef struct ReCompiled ReCompiled; |
| 123 struct ReCompiled { |
| 124 ReInput sIn; /* Regular expression text */ |
| 125 const char *zErr; /* Error message to return */ |
| 126 char *aOp; /* Operators for the virtual machine */ |
| 127 int *aArg; /* Arguments to each operator */ |
| 128 unsigned (*xNextChar)(ReInput*); /* Next character function */ |
| 129 unsigned char zInit[12]; /* Initial text to match */ |
| 130 int nInit; /* Number of characters in zInit */ |
| 131 unsigned nState; /* Number of entries in aOp[] and aArg[] */ |
| 132 unsigned nAlloc; /* Slots allocated for aOp[] and aArg[] */ |
| 133 }; |
| 134 |
| 135 /* Add a state to the given state set if it is not already there */ |
| 136 static void re_add_state(ReStateSet *pSet, int newState){ |
| 137 unsigned i; |
| 138 for(i=0; i<pSet->nState; i++) if( pSet->aState[i]==newState ) return; |
| 139 pSet->aState[pSet->nState++] = newState; |
| 140 } |
| 141 |
| 142 /* Extract the next unicode character from *pzIn and return it. Advance |
| 143 ** *pzIn to the first byte past the end of the character returned. To |
| 144 ** be clear: this routine converts utf8 to unicode. This routine is |
| 145 ** optimized for the common case where the next character is a single byte. |
| 146 */ |
| 147 static unsigned re_next_char(ReInput *p){ |
| 148 unsigned c; |
| 149 if( p->i>=p->mx ) return 0; |
| 150 c = p->z[p->i++]; |
| 151 if( c>=0x80 ){ |
| 152 if( (c&0xe0)==0xc0 && p->i<p->mx && (p->z[p->i]&0xc0)==0x80 ){ |
| 153 c = (c&0x1f)<<6 | (p->z[p->i++]&0x3f); |
| 154 if( c<0x80 ) c = 0xfffd; |
| 155 }else if( (c&0xf0)==0xe0 && p->i+1<p->mx && (p->z[p->i]&0xc0)==0x80 |
| 156 && (p->z[p->i+1]&0xc0)==0x80 ){ |
| 157 c = (c&0x0f)<<12 | ((p->z[p->i]&0x3f)<<6) | (p->z[p->i+1]&0x3f); |
| 158 p->i += 2; |
| 159 if( c<=0x3ff || (c>=0xd800 && c<=0xdfff) ) c = 0xfffd; |
| 160 }else if( (c&0xf8)==0xf0 && p->i+3<p->mx && (p->z[p->i]&0xc0)==0x80 |
| 161 && (p->z[p->i+1]&0xc0)==0x80 && (p->z[p->i+2]&0xc0)==0x80 ){ |
| 162 c = (c&0x07)<<18 | ((p->z[p->i]&0x3f)<<12) | ((p->z[p->i+1]&0x3f)<<6) |
| 163 | (p->z[p->i+2]&0x3f); |
| 164 p->i += 3; |
| 165 if( c<=0xffff || c>0x10ffff ) c = 0xfffd; |
| 166 }else{ |
| 167 c = 0xfffd; |
| 168 } |
| 169 } |
| 170 return c; |
| 171 } |
| 172 static unsigned re_next_char_nocase(ReInput *p){ |
| 173 unsigned c = re_next_char(p); |
| 174 if( c>='A' && c<='Z' ) c += 'a' - 'A'; |
| 175 return c; |
| 176 } |
| 177 |
| 178 /* Return true if c is a perl "word" character: [A-Za-z0-9_] */ |
| 179 static int re_word_char(int c){ |
| 180 return (c>='0' && c<='9') || (c>='a' && c<='z') |
| 181 || (c>='A' && c<='Z') || c=='_'; |
| 182 } |
| 183 |
| 184 /* Return true if c is a "digit" character: [0-9] */ |
| 185 static int re_digit_char(int c){ |
| 186 return (c>='0' && c<='9'); |
| 187 } |
| 188 |
| 189 /* Return true if c is a perl "space" character: [ \t\r\n\v\f] */ |
| 190 static int re_space_char(int c){ |
| 191 return c==' ' || c=='\t' || c=='\n' || c=='\r' || c=='\v' || c=='\f'; |
| 192 } |
| 193 |
| 194 /* Run a compiled regular expression on the zero-terminated input |
| 195 ** string zIn[]. Return true on a match and false if there is no match. |
| 196 */ |
| 197 static int re_match(ReCompiled *pRe, const unsigned char *zIn, int nIn){ |
| 198 ReStateSet aStateSet[2], *pThis, *pNext; |
| 199 ReStateNumber aSpace[100]; |
| 200 ReStateNumber *pToFree; |
| 201 unsigned int i = 0; |
| 202 unsigned int iSwap = 0; |
| 203 int c = RE_EOF+1; |
| 204 int cPrev = 0; |
| 205 int rc = 0; |
| 206 ReInput in; |
| 207 |
| 208 in.z = zIn; |
| 209 in.i = 0; |
| 210 in.mx = nIn>=0 ? nIn : (int)strlen((char const*)zIn); |
| 211 |
| 212 /* Look for the initial prefix match, if there is one. */ |
| 213 if( pRe->nInit ){ |
| 214 unsigned char x = pRe->zInit[0]; |
| 215 while( in.i+pRe->nInit<=in.mx |
| 216 && (zIn[in.i]!=x || |
| 217 strncmp((const char*)zIn+in.i, (const char*)pRe->zInit, pRe->nInit)!=0) |
| 218 ){ |
| 219 in.i++; |
| 220 } |
| 221 if( in.i+pRe->nInit>in.mx ) return 0; |
| 222 } |
| 223 |
| 224 if( pRe->nState<=(sizeof(aSpace)/(sizeof(aSpace[0])*2)) ){ |
| 225 pToFree = 0; |
| 226 aStateSet[0].aState = aSpace; |
| 227 }else{ |
| 228 pToFree = sqlite3_malloc( sizeof(ReStateNumber)*2*pRe->nState ); |
| 229 if( pToFree==0 ) return -1; |
| 230 aStateSet[0].aState = pToFree; |
| 231 } |
| 232 aStateSet[1].aState = &aStateSet[0].aState[pRe->nState]; |
| 233 pNext = &aStateSet[1]; |
| 234 pNext->nState = 0; |
| 235 re_add_state(pNext, 0); |
| 236 while( c!=RE_EOF && pNext->nState>0 ){ |
| 237 cPrev = c; |
| 238 c = pRe->xNextChar(&in); |
| 239 pThis = pNext; |
| 240 pNext = &aStateSet[iSwap]; |
| 241 iSwap = 1 - iSwap; |
| 242 pNext->nState = 0; |
| 243 for(i=0; i<pThis->nState; i++){ |
| 244 int x = pThis->aState[i]; |
| 245 switch( pRe->aOp[x] ){ |
| 246 case RE_OP_MATCH: { |
| 247 if( pRe->aArg[x]==c ) re_add_state(pNext, x+1); |
| 248 break; |
| 249 } |
| 250 case RE_OP_ANY: { |
| 251 re_add_state(pNext, x+1); |
| 252 break; |
| 253 } |
| 254 case RE_OP_WORD: { |
| 255 if( re_word_char(c) ) re_add_state(pNext, x+1); |
| 256 break; |
| 257 } |
| 258 case RE_OP_NOTWORD: { |
| 259 if( !re_word_char(c) ) re_add_state(pNext, x+1); |
| 260 break; |
| 261 } |
| 262 case RE_OP_DIGIT: { |
| 263 if( re_digit_char(c) ) re_add_state(pNext, x+1); |
| 264 break; |
| 265 } |
| 266 case RE_OP_NOTDIGIT: { |
| 267 if( !re_digit_char(c) ) re_add_state(pNext, x+1); |
| 268 break; |
| 269 } |
| 270 case RE_OP_SPACE: { |
| 271 if( re_space_char(c) ) re_add_state(pNext, x+1); |
| 272 break; |
| 273 } |
| 274 case RE_OP_NOTSPACE: { |
| 275 if( !re_space_char(c) ) re_add_state(pNext, x+1); |
| 276 break; |
| 277 } |
| 278 case RE_OP_BOUNDARY: { |
| 279 if( re_word_char(c)!=re_word_char(cPrev) ) re_add_state(pThis, x+1); |
| 280 break; |
| 281 } |
| 282 case RE_OP_ANYSTAR: { |
| 283 re_add_state(pNext, x); |
| 284 re_add_state(pThis, x+1); |
| 285 break; |
| 286 } |
| 287 case RE_OP_FORK: { |
| 288 re_add_state(pThis, x+pRe->aArg[x]); |
| 289 re_add_state(pThis, x+1); |
| 290 break; |
| 291 } |
| 292 case RE_OP_GOTO: { |
| 293 re_add_state(pThis, x+pRe->aArg[x]); |
| 294 break; |
| 295 } |
| 296 case RE_OP_ACCEPT: { |
| 297 rc = 1; |
| 298 goto re_match_end; |
| 299 } |
| 300 case RE_OP_CC_INC: |
| 301 case RE_OP_CC_EXC: { |
| 302 int j = 1; |
| 303 int n = pRe->aArg[x]; |
| 304 int hit = 0; |
| 305 for(j=1; j>0 && j<n; j++){ |
| 306 if( pRe->aOp[x+j]==RE_OP_CC_VALUE ){ |
| 307 if( pRe->aArg[x+j]==c ){ |
| 308 hit = 1; |
| 309 j = -1; |
| 310 } |
| 311 }else{ |
| 312 if( pRe->aArg[x+j]<=c && pRe->aArg[x+j+1]>=c ){ |
| 313 hit = 1; |
| 314 j = -1; |
| 315 }else{ |
| 316 j++; |
| 317 } |
| 318 } |
| 319 } |
| 320 if( pRe->aOp[x]==RE_OP_CC_EXC ) hit = !hit; |
| 321 if( hit ) re_add_state(pNext, x+n); |
| 322 break; |
| 323 } |
| 324 } |
| 325 } |
| 326 } |
| 327 for(i=0; i<pNext->nState; i++){ |
| 328 if( pRe->aOp[pNext->aState[i]]==RE_OP_ACCEPT ){ rc = 1; break; } |
| 329 } |
| 330 re_match_end: |
| 331 sqlite3_free(pToFree); |
| 332 return rc; |
| 333 } |
| 334 |
| 335 /* Resize the opcode and argument arrays for an RE under construction. |
| 336 */ |
| 337 static int re_resize(ReCompiled *p, int N){ |
| 338 char *aOp; |
| 339 int *aArg; |
| 340 aOp = sqlite3_realloc(p->aOp, N*sizeof(p->aOp[0])); |
| 341 if( aOp==0 ) return 1; |
| 342 p->aOp = aOp; |
| 343 aArg = sqlite3_realloc(p->aArg, N*sizeof(p->aArg[0])); |
| 344 if( aArg==0 ) return 1; |
| 345 p->aArg = aArg; |
| 346 p->nAlloc = N; |
| 347 return 0; |
| 348 } |
| 349 |
| 350 /* Insert a new opcode and argument into an RE under construction. The |
| 351 ** insertion point is just prior to existing opcode iBefore. |
| 352 */ |
| 353 static int re_insert(ReCompiled *p, int iBefore, int op, int arg){ |
| 354 int i; |
| 355 if( p->nAlloc<=p->nState && re_resize(p, p->nAlloc*2) ) return 0; |
| 356 for(i=p->nState; i>iBefore; i--){ |
| 357 p->aOp[i] = p->aOp[i-1]; |
| 358 p->aArg[i] = p->aArg[i-1]; |
| 359 } |
| 360 p->nState++; |
| 361 p->aOp[iBefore] = op; |
| 362 p->aArg[iBefore] = arg; |
| 363 return iBefore; |
| 364 } |
| 365 |
| 366 /* Append a new opcode and argument to the end of the RE under construction. |
| 367 */ |
| 368 static int re_append(ReCompiled *p, int op, int arg){ |
| 369 return re_insert(p, p->nState, op, arg); |
| 370 } |
| 371 |
| 372 /* Make a copy of N opcodes starting at iStart onto the end of the RE |
| 373 ** under construction. |
| 374 */ |
| 375 static void re_copy(ReCompiled *p, int iStart, int N){ |
| 376 if( p->nState+N>=p->nAlloc && re_resize(p, p->nAlloc*2+N) ) return; |
| 377 memcpy(&p->aOp[p->nState], &p->aOp[iStart], N*sizeof(p->aOp[0])); |
| 378 memcpy(&p->aArg[p->nState], &p->aArg[iStart], N*sizeof(p->aArg[0])); |
| 379 p->nState += N; |
| 380 } |
| 381 |
| 382 /* Return true if c is a hexadecimal digit character: [0-9a-fA-F] |
| 383 ** If c is a hex digit, also set *pV = (*pV)*16 + valueof(c). If |
| 384 ** c is not a hex digit *pV is unchanged. |
| 385 */ |
| 386 static int re_hex(int c, int *pV){ |
| 387 if( c>='0' && c<='9' ){ |
| 388 c -= '0'; |
| 389 }else if( c>='a' && c<='f' ){ |
| 390 c -= 'a' - 10; |
| 391 }else if( c>='A' && c<='F' ){ |
| 392 c -= 'A' - 10; |
| 393 }else{ |
| 394 return 0; |
| 395 } |
| 396 *pV = (*pV)*16 + (c & 0xff); |
| 397 return 1; |
| 398 } |
| 399 |
| 400 /* A backslash character has been seen, read the next character and |
| 401 ** return its interpretation. |
| 402 */ |
| 403 static unsigned re_esc_char(ReCompiled *p){ |
| 404 static const char zEsc[] = "afnrtv\\()*.+?[$^{|}]"; |
| 405 static const char zTrans[] = "\a\f\n\r\t\v"; |
| 406 int i, v = 0; |
| 407 char c; |
| 408 if( p->sIn.i>=p->sIn.mx ) return 0; |
| 409 c = p->sIn.z[p->sIn.i]; |
| 410 if( c=='u' && p->sIn.i+4<p->sIn.mx ){ |
| 411 const unsigned char *zIn = p->sIn.z + p->sIn.i; |
| 412 if( re_hex(zIn[1],&v) |
| 413 && re_hex(zIn[2],&v) |
| 414 && re_hex(zIn[3],&v) |
| 415 && re_hex(zIn[4],&v) |
| 416 ){ |
| 417 p->sIn.i += 5; |
| 418 return v; |
| 419 } |
| 420 } |
| 421 if( c=='x' && p->sIn.i+2<p->sIn.mx ){ |
| 422 const unsigned char *zIn = p->sIn.z + p->sIn.i; |
| 423 if( re_hex(zIn[1],&v) |
| 424 && re_hex(zIn[2],&v) |
| 425 ){ |
| 426 p->sIn.i += 3; |
| 427 return v; |
| 428 } |
| 429 } |
| 430 for(i=0; zEsc[i] && zEsc[i]!=c; i++){} |
| 431 if( zEsc[i] ){ |
| 432 if( i<6 ) c = zTrans[i]; |
| 433 p->sIn.i++; |
| 434 }else{ |
| 435 p->zErr = "unknown \\ escape"; |
| 436 } |
| 437 return c; |
| 438 } |
| 439 |
| 440 /* Forward declaration */ |
| 441 static const char *re_subcompile_string(ReCompiled*); |
| 442 |
| 443 /* Peek at the next byte of input */ |
| 444 static unsigned char rePeek(ReCompiled *p){ |
| 445 return p->sIn.i<p->sIn.mx ? p->sIn.z[p->sIn.i] : 0; |
| 446 } |
| 447 |
| 448 /* Compile RE text into a sequence of opcodes. Continue up to the |
| 449 ** first unmatched ")" character, then return. If an error is found, |
| 450 ** return a pointer to the error message string. |
| 451 */ |
| 452 static const char *re_subcompile_re(ReCompiled *p){ |
| 453 const char *zErr; |
| 454 int iStart, iEnd, iGoto; |
| 455 iStart = p->nState; |
| 456 zErr = re_subcompile_string(p); |
| 457 if( zErr ) return zErr; |
| 458 while( rePeek(p)=='|' ){ |
| 459 iEnd = p->nState; |
| 460 re_insert(p, iStart, RE_OP_FORK, iEnd + 2 - iStart); |
| 461 iGoto = re_append(p, RE_OP_GOTO, 0); |
| 462 p->sIn.i++; |
| 463 zErr = re_subcompile_string(p); |
| 464 if( zErr ) return zErr; |
| 465 p->aArg[iGoto] = p->nState - iGoto; |
| 466 } |
| 467 return 0; |
| 468 } |
| 469 |
| 470 /* Compile an element of regular expression text (anything that can be |
| 471 ** an operand to the "|" operator). Return NULL on success or a pointer |
| 472 ** to the error message if there is a problem. |
| 473 */ |
| 474 static const char *re_subcompile_string(ReCompiled *p){ |
| 475 int iPrev = -1; |
| 476 int iStart; |
| 477 unsigned c; |
| 478 const char *zErr; |
| 479 while( (c = p->xNextChar(&p->sIn))!=0 ){ |
| 480 iStart = p->nState; |
| 481 switch( c ){ |
| 482 case '|': |
| 483 case '$': |
| 484 case ')': { |
| 485 p->sIn.i--; |
| 486 return 0; |
| 487 } |
| 488 case '(': { |
| 489 zErr = re_subcompile_re(p); |
| 490 if( zErr ) return zErr; |
| 491 if( rePeek(p)!=')' ) return "unmatched '('"; |
| 492 p->sIn.i++; |
| 493 break; |
| 494 } |
| 495 case '.': { |
| 496 if( rePeek(p)=='*' ){ |
| 497 re_append(p, RE_OP_ANYSTAR, 0); |
| 498 p->sIn.i++; |
| 499 }else{ |
| 500 re_append(p, RE_OP_ANY, 0); |
| 501 } |
| 502 break; |
| 503 } |
| 504 case '*': { |
| 505 if( iPrev<0 ) return "'*' without operand"; |
| 506 re_insert(p, iPrev, RE_OP_GOTO, p->nState - iPrev + 1); |
| 507 re_append(p, RE_OP_FORK, iPrev - p->nState + 1); |
| 508 break; |
| 509 } |
| 510 case '+': { |
| 511 if( iPrev<0 ) return "'+' without operand"; |
| 512 re_append(p, RE_OP_FORK, iPrev - p->nState); |
| 513 break; |
| 514 } |
| 515 case '?': { |
| 516 if( iPrev<0 ) return "'?' without operand"; |
| 517 re_insert(p, iPrev, RE_OP_FORK, p->nState - iPrev+1); |
| 518 break; |
| 519 } |
| 520 case '{': { |
| 521 int m = 0, n = 0; |
| 522 int sz, j; |
| 523 if( iPrev<0 ) return "'{m,n}' without operand"; |
| 524 while( (c=rePeek(p))>='0' && c<='9' ){ m = m*10 + c - '0'; p->sIn.i++; } |
| 525 n = m; |
| 526 if( c==',' ){ |
| 527 p->sIn.i++; |
| 528 n = 0; |
| 529 while( (c=rePeek(p))>='0' && c<='9' ){ n = n*10 + c-'0'; p->sIn.i++; } |
| 530 } |
| 531 if( c!='}' ) return "unmatched '{'"; |
| 532 if( n>0 && n<m ) return "n less than m in '{m,n}'"; |
| 533 p->sIn.i++; |
| 534 sz = p->nState - iPrev; |
| 535 if( m==0 ){ |
| 536 if( n==0 ) return "both m and n are zero in '{m,n}'"; |
| 537 re_insert(p, iPrev, RE_OP_FORK, sz+1); |
| 538 n--; |
| 539 }else{ |
| 540 for(j=1; j<m; j++) re_copy(p, iPrev, sz); |
| 541 } |
| 542 for(j=m; j<n; j++){ |
| 543 re_append(p, RE_OP_FORK, sz+1); |
| 544 re_copy(p, iPrev, sz); |
| 545 } |
| 546 if( n==0 && m>0 ){ |
| 547 re_append(p, RE_OP_FORK, -sz); |
| 548 } |
| 549 break; |
| 550 } |
| 551 case '[': { |
| 552 int iFirst = p->nState; |
| 553 if( rePeek(p)=='^' ){ |
| 554 re_append(p, RE_OP_CC_EXC, 0); |
| 555 p->sIn.i++; |
| 556 }else{ |
| 557 re_append(p, RE_OP_CC_INC, 0); |
| 558 } |
| 559 while( (c = p->xNextChar(&p->sIn))!=0 ){ |
| 560 if( c=='[' && rePeek(p)==':' ){ |
| 561 return "POSIX character classes not supported"; |
| 562 } |
| 563 if( c=='\\' ) c = re_esc_char(p); |
| 564 if( rePeek(p)=='-' ){ |
| 565 re_append(p, RE_OP_CC_RANGE, c); |
| 566 p->sIn.i++; |
| 567 c = p->xNextChar(&p->sIn); |
| 568 if( c=='\\' ) c = re_esc_char(p); |
| 569 re_append(p, RE_OP_CC_RANGE, c); |
| 570 }else{ |
| 571 re_append(p, RE_OP_CC_VALUE, c); |
| 572 } |
| 573 if( rePeek(p)==']' ){ p->sIn.i++; break; } |
| 574 } |
| 575 if( c==0 ) return "unclosed '['"; |
| 576 p->aArg[iFirst] = p->nState - iFirst; |
| 577 break; |
| 578 } |
| 579 case '\\': { |
| 580 int specialOp = 0; |
| 581 switch( rePeek(p) ){ |
| 582 case 'b': specialOp = RE_OP_BOUNDARY; break; |
| 583 case 'd': specialOp = RE_OP_DIGIT; break; |
| 584 case 'D': specialOp = RE_OP_NOTDIGIT; break; |
| 585 case 's': specialOp = RE_OP_SPACE; break; |
| 586 case 'S': specialOp = RE_OP_NOTSPACE; break; |
| 587 case 'w': specialOp = RE_OP_WORD; break; |
| 588 case 'W': specialOp = RE_OP_NOTWORD; break; |
| 589 } |
| 590 if( specialOp ){ |
| 591 p->sIn.i++; |
| 592 re_append(p, specialOp, 0); |
| 593 }else{ |
| 594 c = re_esc_char(p); |
| 595 re_append(p, RE_OP_MATCH, c); |
| 596 } |
| 597 break; |
| 598 } |
| 599 default: { |
| 600 re_append(p, RE_OP_MATCH, c); |
| 601 break; |
| 602 } |
| 603 } |
| 604 iPrev = iStart; |
| 605 } |
| 606 return 0; |
| 607 } |
| 608 |
| 609 /* Free and reclaim all the memory used by a previously compiled |
| 610 ** regular expression. Applications should invoke this routine once |
| 611 ** for every call to re_compile() to avoid memory leaks. |
| 612 */ |
| 613 void re_free(ReCompiled *pRe){ |
| 614 if( pRe ){ |
| 615 sqlite3_free(pRe->aOp); |
| 616 sqlite3_free(pRe->aArg); |
| 617 sqlite3_free(pRe); |
| 618 } |
| 619 } |
| 620 |
| 621 /* |
| 622 ** Compile a textual regular expression in zIn[] into a compiled regular |
| 623 ** expression suitable for us by re_match() and return a pointer to the |
| 624 ** compiled regular expression in *ppRe. Return NULL on success or an |
| 625 ** error message if something goes wrong. |
| 626 */ |
| 627 const char *re_compile(ReCompiled **ppRe, const char *zIn, int noCase){ |
| 628 ReCompiled *pRe; |
| 629 const char *zErr; |
| 630 int i, j; |
| 631 |
| 632 *ppRe = 0; |
| 633 pRe = sqlite3_malloc( sizeof(*pRe) ); |
| 634 if( pRe==0 ){ |
| 635 return "out of memory"; |
| 636 } |
| 637 memset(pRe, 0, sizeof(*pRe)); |
| 638 pRe->xNextChar = noCase ? re_next_char_nocase : re_next_char; |
| 639 if( re_resize(pRe, 30) ){ |
| 640 re_free(pRe); |
| 641 return "out of memory"; |
| 642 } |
| 643 if( zIn[0]=='^' ){ |
| 644 zIn++; |
| 645 }else{ |
| 646 re_append(pRe, RE_OP_ANYSTAR, 0); |
| 647 } |
| 648 pRe->sIn.z = (unsigned char*)zIn; |
| 649 pRe->sIn.i = 0; |
| 650 pRe->sIn.mx = (int)strlen(zIn); |
| 651 zErr = re_subcompile_re(pRe); |
| 652 if( zErr ){ |
| 653 re_free(pRe); |
| 654 return zErr; |
| 655 } |
| 656 if( rePeek(pRe)=='$' && pRe->sIn.i+1>=pRe->sIn.mx ){ |
| 657 re_append(pRe, RE_OP_MATCH, RE_EOF); |
| 658 re_append(pRe, RE_OP_ACCEPT, 0); |
| 659 *ppRe = pRe; |
| 660 }else if( pRe->sIn.i>=pRe->sIn.mx ){ |
| 661 re_append(pRe, RE_OP_ACCEPT, 0); |
| 662 *ppRe = pRe; |
| 663 }else{ |
| 664 re_free(pRe); |
| 665 return "unrecognized character"; |
| 666 } |
| 667 |
| 668 /* The following is a performance optimization. If the regex begins with |
| 669 ** ".*" (if the input regex lacks an initial "^") and afterwards there are |
| 670 ** one or more matching characters, enter those matching characters into |
| 671 ** zInit[]. The re_match() routine can then search ahead in the input |
| 672 ** string looking for the initial match without having to run the whole |
| 673 ** regex engine over the string. Do not worry able trying to match |
| 674 ** unicode characters beyond plane 0 - those are very rare and this is |
| 675 ** just an optimization. */ |
| 676 if( pRe->aOp[0]==RE_OP_ANYSTAR ){ |
| 677 for(j=0, i=1; j<sizeof(pRe->zInit)-2 && pRe->aOp[i]==RE_OP_MATCH; i++){ |
| 678 unsigned x = pRe->aArg[i]; |
| 679 if( x<=127 ){ |
| 680 pRe->zInit[j++] = x; |
| 681 }else if( x<=0xfff ){ |
| 682 pRe->zInit[j++] = 0xc0 | (x>>6); |
| 683 pRe->zInit[j++] = 0x80 | (x&0x3f); |
| 684 }else if( x<=0xffff ){ |
| 685 pRe->zInit[j++] = 0xd0 | (x>>12); |
| 686 pRe->zInit[j++] = 0x80 | ((x>>6)&0x3f); |
| 687 pRe->zInit[j++] = 0x80 | (x&0x3f); |
| 688 }else{ |
| 689 break; |
| 690 } |
| 691 } |
| 692 if( j>0 && pRe->zInit[j-1]==0 ) j--; |
| 693 pRe->nInit = j; |
| 694 } |
| 695 return pRe->zErr; |
| 696 } |
| 697 |
| 698 /* |
| 699 ** Implementation of the regexp() SQL function. This function implements |
| 700 ** the build-in REGEXP operator. The first argument to the function is the |
| 701 ** pattern and the second argument is the string. So, the SQL statements: |
| 702 ** |
| 703 ** A REGEXP B |
| 704 ** |
| 705 ** is implemented as regexp(B,A). |
| 706 */ |
| 707 static void re_sql_func( |
| 708 sqlite3_context *context, |
| 709 int argc, |
| 710 sqlite3_value **argv |
| 711 ){ |
| 712 ReCompiled *pRe; /* Compiled regular expression */ |
| 713 const char *zPattern; /* The regular expression */ |
| 714 const unsigned char *zStr;/* String being searched */ |
| 715 const char *zErr; /* Compile error message */ |
| 716 int setAux = 0; /* True to invoke sqlite3_set_auxdata() */ |
| 717 |
| 718 pRe = sqlite3_get_auxdata(context, 0); |
| 719 if( pRe==0 ){ |
| 720 zPattern = (const char*)sqlite3_value_text(argv[0]); |
| 721 if( zPattern==0 ) return; |
| 722 zErr = re_compile(&pRe, zPattern, 0); |
| 723 if( zErr ){ |
| 724 re_free(pRe); |
| 725 sqlite3_result_error(context, zErr, -1); |
| 726 return; |
| 727 } |
| 728 if( pRe==0 ){ |
| 729 sqlite3_result_error_nomem(context); |
| 730 return; |
| 731 } |
| 732 setAux = 1; |
| 733 } |
| 734 zStr = (const unsigned char*)sqlite3_value_text(argv[1]); |
| 735 if( zStr!=0 ){ |
| 736 sqlite3_result_int(context, re_match(pRe, zStr, -1)); |
| 737 } |
| 738 if( setAux ){ |
| 739 sqlite3_set_auxdata(context, 0, pRe, (void(*)(void*))re_free); |
| 740 } |
| 741 } |
| 742 |
| 743 /* |
| 744 ** Invoke this routine to register the regexp() function with the |
| 745 ** SQLite database connection. |
| 746 */ |
| 747 #ifdef _WIN32 |
| 748 __declspec(dllexport) |
| 749 #endif |
| 750 int sqlite3_regexp_init( |
| 751 sqlite3 *db, |
| 752 char **pzErrMsg, |
| 753 const sqlite3_api_routines *pApi |
| 754 ){ |
| 755 int rc = SQLITE_OK; |
| 756 SQLITE_EXTENSION_INIT2(pApi); |
| 757 rc = sqlite3_create_function(db, "regexp", 2, SQLITE_UTF8, 0, |
| 758 re_sql_func, 0, 0); |
| 759 return rc; |
| 760 } |
OLD | NEW |