OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2004 April 13 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** This file contains routines used to translate between UTF-8, |
| 13 ** UTF-16, UTF-16BE, and UTF-16LE. |
| 14 ** |
| 15 ** Notes on UTF-8: |
| 16 ** |
| 17 ** Byte-0 Byte-1 Byte-2 Byte-3 Value |
| 18 ** 0xxxxxxx 00000000 00000000 0xxxxxxx |
| 19 ** 110yyyyy 10xxxxxx 00000000 00000yyy yyxxxxxx |
| 20 ** 1110zzzz 10yyyyyy 10xxxxxx 00000000 zzzzyyyy yyxxxxxx |
| 21 ** 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx 000uuuuu zzzzyyyy yyxxxxxx |
| 22 ** |
| 23 ** |
| 24 ** Notes on UTF-16: (with wwww+1==uuuuu) |
| 25 ** |
| 26 ** Word-0 Word-1 Value |
| 27 ** 110110ww wwzzzzyy 110111yy yyxxxxxx 000uuuuu zzzzyyyy yyxxxxxx |
| 28 ** zzzzyyyy yyxxxxxx 00000000 zzzzyyyy yyxxxxxx |
| 29 ** |
| 30 ** |
| 31 ** BOM or Byte Order Mark: |
| 32 ** 0xff 0xfe little-endian utf-16 follows |
| 33 ** 0xfe 0xff big-endian utf-16 follows |
| 34 ** |
| 35 */ |
| 36 #include "sqliteInt.h" |
| 37 #include <assert.h> |
| 38 #include "vdbeInt.h" |
| 39 |
| 40 #ifndef SQLITE_AMALGAMATION |
| 41 /* |
| 42 ** The following constant value is used by the SQLITE_BIGENDIAN and |
| 43 ** SQLITE_LITTLEENDIAN macros. |
| 44 */ |
| 45 const int sqlite3one = 1; |
| 46 #endif /* SQLITE_AMALGAMATION */ |
| 47 |
| 48 /* |
| 49 ** This lookup table is used to help decode the first byte of |
| 50 ** a multi-byte UTF8 character. |
| 51 */ |
| 52 static const unsigned char sqlite3Utf8Trans1[] = { |
| 53 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, |
| 54 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, |
| 55 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, |
| 56 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, |
| 57 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, |
| 58 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, |
| 59 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, |
| 60 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00, |
| 61 }; |
| 62 |
| 63 |
| 64 #define WRITE_UTF8(zOut, c) { \ |
| 65 if( c<0x00080 ){ \ |
| 66 *zOut++ = (u8)(c&0xFF); \ |
| 67 } \ |
| 68 else if( c<0x00800 ){ \ |
| 69 *zOut++ = 0xC0 + (u8)((c>>6)&0x1F); \ |
| 70 *zOut++ = 0x80 + (u8)(c & 0x3F); \ |
| 71 } \ |
| 72 else if( c<0x10000 ){ \ |
| 73 *zOut++ = 0xE0 + (u8)((c>>12)&0x0F); \ |
| 74 *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \ |
| 75 *zOut++ = 0x80 + (u8)(c & 0x3F); \ |
| 76 }else{ \ |
| 77 *zOut++ = 0xF0 + (u8)((c>>18) & 0x07); \ |
| 78 *zOut++ = 0x80 + (u8)((c>>12) & 0x3F); \ |
| 79 *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \ |
| 80 *zOut++ = 0x80 + (u8)(c & 0x3F); \ |
| 81 } \ |
| 82 } |
| 83 |
| 84 #define WRITE_UTF16LE(zOut, c) { \ |
| 85 if( c<=0xFFFF ){ \ |
| 86 *zOut++ = (u8)(c&0x00FF); \ |
| 87 *zOut++ = (u8)((c>>8)&0x00FF); \ |
| 88 }else{ \ |
| 89 *zOut++ = (u8)(((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \ |
| 90 *zOut++ = (u8)(0x00D8 + (((c-0x10000)>>18)&0x03)); \ |
| 91 *zOut++ = (u8)(c&0x00FF); \ |
| 92 *zOut++ = (u8)(0x00DC + ((c>>8)&0x03)); \ |
| 93 } \ |
| 94 } |
| 95 |
| 96 #define WRITE_UTF16BE(zOut, c) { \ |
| 97 if( c<=0xFFFF ){ \ |
| 98 *zOut++ = (u8)((c>>8)&0x00FF); \ |
| 99 *zOut++ = (u8)(c&0x00FF); \ |
| 100 }else{ \ |
| 101 *zOut++ = (u8)(0x00D8 + (((c-0x10000)>>18)&0x03)); \ |
| 102 *zOut++ = (u8)(((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \ |
| 103 *zOut++ = (u8)(0x00DC + ((c>>8)&0x03)); \ |
| 104 *zOut++ = (u8)(c&0x00FF); \ |
| 105 } \ |
| 106 } |
| 107 |
| 108 #define READ_UTF16LE(zIn, TERM, c){ \ |
| 109 c = (*zIn++); \ |
| 110 c += ((*zIn++)<<8); \ |
| 111 if( c>=0xD800 && c<0xE000 && TERM ){ \ |
| 112 int c2 = (*zIn++); \ |
| 113 c2 += ((*zIn++)<<8); \ |
| 114 c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \ |
| 115 } \ |
| 116 } |
| 117 |
| 118 #define READ_UTF16BE(zIn, TERM, c){ \ |
| 119 c = ((*zIn++)<<8); \ |
| 120 c += (*zIn++); \ |
| 121 if( c>=0xD800 && c<0xE000 && TERM ){ \ |
| 122 int c2 = ((*zIn++)<<8); \ |
| 123 c2 += (*zIn++); \ |
| 124 c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \ |
| 125 } \ |
| 126 } |
| 127 |
| 128 /* |
| 129 ** Translate a single UTF-8 character. Return the unicode value. |
| 130 ** |
| 131 ** During translation, assume that the byte that zTerm points |
| 132 ** is a 0x00. |
| 133 ** |
| 134 ** Write a pointer to the next unread byte back into *pzNext. |
| 135 ** |
| 136 ** Notes On Invalid UTF-8: |
| 137 ** |
| 138 ** * This routine never allows a 7-bit character (0x00 through 0x7f) to |
| 139 ** be encoded as a multi-byte character. Any multi-byte character that |
| 140 ** attempts to encode a value between 0x00 and 0x7f is rendered as 0xfffd. |
| 141 ** |
| 142 ** * This routine never allows a UTF16 surrogate value to be encoded. |
| 143 ** If a multi-byte character attempts to encode a value between |
| 144 ** 0xd800 and 0xe000 then it is rendered as 0xfffd. |
| 145 ** |
| 146 ** * Bytes in the range of 0x80 through 0xbf which occur as the first |
| 147 ** byte of a character are interpreted as single-byte characters |
| 148 ** and rendered as themselves even though they are technically |
| 149 ** invalid characters. |
| 150 ** |
| 151 ** * This routine accepts over-length UTF8 encodings |
| 152 ** for unicode values 0x80 and greater. It does not change over-length |
| 153 ** encodings to 0xfffd as some systems recommend. |
| 154 */ |
| 155 #define READ_UTF8(zIn, zTerm, c) \ |
| 156 c = *(zIn++); \ |
| 157 if( c>=0xc0 ){ \ |
| 158 c = sqlite3Utf8Trans1[c-0xc0]; \ |
| 159 while( zIn!=zTerm && (*zIn & 0xc0)==0x80 ){ \ |
| 160 c = (c<<6) + (0x3f & *(zIn++)); \ |
| 161 } \ |
| 162 if( c<0x80 \ |
| 163 || (c&0xFFFFF800)==0xD800 \ |
| 164 || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } \ |
| 165 } |
| 166 u32 sqlite3Utf8Read( |
| 167 const unsigned char **pz /* Pointer to string from which to read char */ |
| 168 ){ |
| 169 unsigned int c; |
| 170 |
| 171 /* Same as READ_UTF8() above but without the zTerm parameter. |
| 172 ** For this routine, we assume the UTF8 string is always zero-terminated. |
| 173 */ |
| 174 c = *((*pz)++); |
| 175 if( c>=0xc0 ){ |
| 176 c = sqlite3Utf8Trans1[c-0xc0]; |
| 177 while( (*(*pz) & 0xc0)==0x80 ){ |
| 178 c = (c<<6) + (0x3f & *((*pz)++)); |
| 179 } |
| 180 if( c<0x80 |
| 181 || (c&0xFFFFF800)==0xD800 |
| 182 || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } |
| 183 } |
| 184 return c; |
| 185 } |
| 186 |
| 187 |
| 188 |
| 189 |
| 190 /* |
| 191 ** If the TRANSLATE_TRACE macro is defined, the value of each Mem is |
| 192 ** printed on stderr on the way into and out of sqlite3VdbeMemTranslate(). |
| 193 */ |
| 194 /* #define TRANSLATE_TRACE 1 */ |
| 195 |
| 196 #ifndef SQLITE_OMIT_UTF16 |
| 197 /* |
| 198 ** This routine transforms the internal text encoding used by pMem to |
| 199 ** desiredEnc. It is an error if the string is already of the desired |
| 200 ** encoding, or if *pMem does not contain a string value. |
| 201 */ |
| 202 SQLITE_NOINLINE int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){ |
| 203 int len; /* Maximum length of output string in bytes */ |
| 204 unsigned char *zOut; /* Output buffer */ |
| 205 unsigned char *zIn; /* Input iterator */ |
| 206 unsigned char *zTerm; /* End of input */ |
| 207 unsigned char *z; /* Output iterator */ |
| 208 unsigned int c; |
| 209 |
| 210 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
| 211 assert( pMem->flags&MEM_Str ); |
| 212 assert( pMem->enc!=desiredEnc ); |
| 213 assert( pMem->enc!=0 ); |
| 214 assert( pMem->n>=0 ); |
| 215 |
| 216 #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) |
| 217 { |
| 218 char zBuf[100]; |
| 219 sqlite3VdbeMemPrettyPrint(pMem, zBuf); |
| 220 fprintf(stderr, "INPUT: %s\n", zBuf); |
| 221 } |
| 222 #endif |
| 223 |
| 224 /* If the translation is between UTF-16 little and big endian, then |
| 225 ** all that is required is to swap the byte order. This case is handled |
| 226 ** differently from the others. |
| 227 */ |
| 228 if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){ |
| 229 u8 temp; |
| 230 int rc; |
| 231 rc = sqlite3VdbeMemMakeWriteable(pMem); |
| 232 if( rc!=SQLITE_OK ){ |
| 233 assert( rc==SQLITE_NOMEM ); |
| 234 return SQLITE_NOMEM; |
| 235 } |
| 236 zIn = (u8*)pMem->z; |
| 237 zTerm = &zIn[pMem->n&~1]; |
| 238 while( zIn<zTerm ){ |
| 239 temp = *zIn; |
| 240 *zIn = *(zIn+1); |
| 241 zIn++; |
| 242 *zIn++ = temp; |
| 243 } |
| 244 pMem->enc = desiredEnc; |
| 245 goto translate_out; |
| 246 } |
| 247 |
| 248 /* Set len to the maximum number of bytes required in the output buffer. */ |
| 249 if( desiredEnc==SQLITE_UTF8 ){ |
| 250 /* When converting from UTF-16, the maximum growth results from |
| 251 ** translating a 2-byte character to a 4-byte UTF-8 character. |
| 252 ** A single byte is required for the output string |
| 253 ** nul-terminator. |
| 254 */ |
| 255 pMem->n &= ~1; |
| 256 len = pMem->n * 2 + 1; |
| 257 }else{ |
| 258 /* When converting from UTF-8 to UTF-16 the maximum growth is caused |
| 259 ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16 |
| 260 ** character. Two bytes are required in the output buffer for the |
| 261 ** nul-terminator. |
| 262 */ |
| 263 len = pMem->n * 2 + 2; |
| 264 } |
| 265 |
| 266 /* Set zIn to point at the start of the input buffer and zTerm to point 1 |
| 267 ** byte past the end. |
| 268 ** |
| 269 ** Variable zOut is set to point at the output buffer, space obtained |
| 270 ** from sqlite3_malloc(). |
| 271 */ |
| 272 zIn = (u8*)pMem->z; |
| 273 zTerm = &zIn[pMem->n]; |
| 274 zOut = sqlite3DbMallocRaw(pMem->db, len); |
| 275 if( !zOut ){ |
| 276 return SQLITE_NOMEM; |
| 277 } |
| 278 z = zOut; |
| 279 |
| 280 if( pMem->enc==SQLITE_UTF8 ){ |
| 281 if( desiredEnc==SQLITE_UTF16LE ){ |
| 282 /* UTF-8 -> UTF-16 Little-endian */ |
| 283 while( zIn<zTerm ){ |
| 284 READ_UTF8(zIn, zTerm, c); |
| 285 WRITE_UTF16LE(z, c); |
| 286 } |
| 287 }else{ |
| 288 assert( desiredEnc==SQLITE_UTF16BE ); |
| 289 /* UTF-8 -> UTF-16 Big-endian */ |
| 290 while( zIn<zTerm ){ |
| 291 READ_UTF8(zIn, zTerm, c); |
| 292 WRITE_UTF16BE(z, c); |
| 293 } |
| 294 } |
| 295 pMem->n = (int)(z - zOut); |
| 296 *z++ = 0; |
| 297 }else{ |
| 298 assert( desiredEnc==SQLITE_UTF8 ); |
| 299 if( pMem->enc==SQLITE_UTF16LE ){ |
| 300 /* UTF-16 Little-endian -> UTF-8 */ |
| 301 while( zIn<zTerm ){ |
| 302 READ_UTF16LE(zIn, zIn<zTerm, c); |
| 303 WRITE_UTF8(z, c); |
| 304 } |
| 305 }else{ |
| 306 /* UTF-16 Big-endian -> UTF-8 */ |
| 307 while( zIn<zTerm ){ |
| 308 READ_UTF16BE(zIn, zIn<zTerm, c); |
| 309 WRITE_UTF8(z, c); |
| 310 } |
| 311 } |
| 312 pMem->n = (int)(z - zOut); |
| 313 } |
| 314 *z = 0; |
| 315 assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len ); |
| 316 |
| 317 c = pMem->flags; |
| 318 sqlite3VdbeMemRelease(pMem); |
| 319 pMem->flags = MEM_Str|MEM_Term|(c&MEM_AffMask); |
| 320 pMem->enc = desiredEnc; |
| 321 pMem->z = (char*)zOut; |
| 322 pMem->zMalloc = pMem->z; |
| 323 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->z); |
| 324 |
| 325 translate_out: |
| 326 #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) |
| 327 { |
| 328 char zBuf[100]; |
| 329 sqlite3VdbeMemPrettyPrint(pMem, zBuf); |
| 330 fprintf(stderr, "OUTPUT: %s\n", zBuf); |
| 331 } |
| 332 #endif |
| 333 return SQLITE_OK; |
| 334 } |
| 335 |
| 336 /* |
| 337 ** This routine checks for a byte-order mark at the beginning of the |
| 338 ** UTF-16 string stored in *pMem. If one is present, it is removed and |
| 339 ** the encoding of the Mem adjusted. This routine does not do any |
| 340 ** byte-swapping, it just sets Mem.enc appropriately. |
| 341 ** |
| 342 ** The allocation (static, dynamic etc.) and encoding of the Mem may be |
| 343 ** changed by this function. |
| 344 */ |
| 345 int sqlite3VdbeMemHandleBom(Mem *pMem){ |
| 346 int rc = SQLITE_OK; |
| 347 u8 bom = 0; |
| 348 |
| 349 assert( pMem->n>=0 ); |
| 350 if( pMem->n>1 ){ |
| 351 u8 b1 = *(u8 *)pMem->z; |
| 352 u8 b2 = *(((u8 *)pMem->z) + 1); |
| 353 if( b1==0xFE && b2==0xFF ){ |
| 354 bom = SQLITE_UTF16BE; |
| 355 } |
| 356 if( b1==0xFF && b2==0xFE ){ |
| 357 bom = SQLITE_UTF16LE; |
| 358 } |
| 359 } |
| 360 |
| 361 if( bom ){ |
| 362 rc = sqlite3VdbeMemMakeWriteable(pMem); |
| 363 if( rc==SQLITE_OK ){ |
| 364 pMem->n -= 2; |
| 365 memmove(pMem->z, &pMem->z[2], pMem->n); |
| 366 pMem->z[pMem->n] = '\0'; |
| 367 pMem->z[pMem->n+1] = '\0'; |
| 368 pMem->flags |= MEM_Term; |
| 369 pMem->enc = bom; |
| 370 } |
| 371 } |
| 372 return rc; |
| 373 } |
| 374 #endif /* SQLITE_OMIT_UTF16 */ |
| 375 |
| 376 /* |
| 377 ** pZ is a UTF-8 encoded unicode string. If nByte is less than zero, |
| 378 ** return the number of unicode characters in pZ up to (but not including) |
| 379 ** the first 0x00 byte. If nByte is not less than zero, return the |
| 380 ** number of unicode characters in the first nByte of pZ (or up to |
| 381 ** the first 0x00, whichever comes first). |
| 382 */ |
| 383 int sqlite3Utf8CharLen(const char *zIn, int nByte){ |
| 384 int r = 0; |
| 385 const u8 *z = (const u8*)zIn; |
| 386 const u8 *zTerm; |
| 387 if( nByte>=0 ){ |
| 388 zTerm = &z[nByte]; |
| 389 }else{ |
| 390 zTerm = (const u8*)(-1); |
| 391 } |
| 392 assert( z<=zTerm ); |
| 393 while( *z!=0 && z<zTerm ){ |
| 394 SQLITE_SKIP_UTF8(z); |
| 395 r++; |
| 396 } |
| 397 return r; |
| 398 } |
| 399 |
| 400 /* This test function is not currently used by the automated test-suite. |
| 401 ** Hence it is only available in debug builds. |
| 402 */ |
| 403 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) |
| 404 /* |
| 405 ** Translate UTF-8 to UTF-8. |
| 406 ** |
| 407 ** This has the effect of making sure that the string is well-formed |
| 408 ** UTF-8. Miscoded characters are removed. |
| 409 ** |
| 410 ** The translation is done in-place and aborted if the output |
| 411 ** overruns the input. |
| 412 */ |
| 413 int sqlite3Utf8To8(unsigned char *zIn){ |
| 414 unsigned char *zOut = zIn; |
| 415 unsigned char *zStart = zIn; |
| 416 u32 c; |
| 417 |
| 418 while( zIn[0] && zOut<=zIn ){ |
| 419 c = sqlite3Utf8Read((const u8**)&zIn); |
| 420 if( c!=0xfffd ){ |
| 421 WRITE_UTF8(zOut, c); |
| 422 } |
| 423 } |
| 424 *zOut = 0; |
| 425 return (int)(zOut - zStart); |
| 426 } |
| 427 #endif |
| 428 |
| 429 #ifndef SQLITE_OMIT_UTF16 |
| 430 /* |
| 431 ** Convert a UTF-16 string in the native encoding into a UTF-8 string. |
| 432 ** Memory to hold the UTF-8 string is obtained from sqlite3_malloc and must |
| 433 ** be freed by the calling function. |
| 434 ** |
| 435 ** NULL is returned if there is an allocation error. |
| 436 */ |
| 437 char *sqlite3Utf16to8(sqlite3 *db, const void *z, int nByte, u8 enc){ |
| 438 Mem m; |
| 439 memset(&m, 0, sizeof(m)); |
| 440 m.db = db; |
| 441 sqlite3VdbeMemSetStr(&m, z, nByte, enc, SQLITE_STATIC); |
| 442 sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8); |
| 443 if( db->mallocFailed ){ |
| 444 sqlite3VdbeMemRelease(&m); |
| 445 m.z = 0; |
| 446 } |
| 447 assert( (m.flags & MEM_Term)!=0 || db->mallocFailed ); |
| 448 assert( (m.flags & MEM_Str)!=0 || db->mallocFailed ); |
| 449 assert( m.z || db->mallocFailed ); |
| 450 return m.z; |
| 451 } |
| 452 |
| 453 /* |
| 454 ** zIn is a UTF-16 encoded unicode string at least nChar characters long. |
| 455 ** Return the number of bytes in the first nChar unicode characters |
| 456 ** in pZ. nChar must be non-negative. |
| 457 */ |
| 458 int sqlite3Utf16ByteLen(const void *zIn, int nChar){ |
| 459 int c; |
| 460 unsigned char const *z = zIn; |
| 461 int n = 0; |
| 462 |
| 463 if( SQLITE_UTF16NATIVE==SQLITE_UTF16BE ){ |
| 464 while( n<nChar ){ |
| 465 READ_UTF16BE(z, 1, c); |
| 466 n++; |
| 467 } |
| 468 }else{ |
| 469 while( n<nChar ){ |
| 470 READ_UTF16LE(z, 1, c); |
| 471 n++; |
| 472 } |
| 473 } |
| 474 return (int)(z-(unsigned char const *)zIn); |
| 475 } |
| 476 |
| 477 #if defined(SQLITE_TEST) |
| 478 /* |
| 479 ** This routine is called from the TCL test function "translate_selftest". |
| 480 ** It checks that the primitives for serializing and deserializing |
| 481 ** characters in each encoding are inverses of each other. |
| 482 */ |
| 483 void sqlite3UtfSelfTest(void){ |
| 484 unsigned int i, t; |
| 485 unsigned char zBuf[20]; |
| 486 unsigned char *z; |
| 487 int n; |
| 488 unsigned int c; |
| 489 |
| 490 for(i=0; i<0x00110000; i++){ |
| 491 z = zBuf; |
| 492 WRITE_UTF8(z, i); |
| 493 n = (int)(z-zBuf); |
| 494 assert( n>0 && n<=4 ); |
| 495 z[0] = 0; |
| 496 z = zBuf; |
| 497 c = sqlite3Utf8Read((const u8**)&z); |
| 498 t = i; |
| 499 if( i>=0xD800 && i<=0xDFFF ) t = 0xFFFD; |
| 500 if( (i&0xFFFFFFFE)==0xFFFE ) t = 0xFFFD; |
| 501 assert( c==t ); |
| 502 assert( (z-zBuf)==n ); |
| 503 } |
| 504 for(i=0; i<0x00110000; i++){ |
| 505 if( i>=0xD800 && i<0xE000 ) continue; |
| 506 z = zBuf; |
| 507 WRITE_UTF16LE(z, i); |
| 508 n = (int)(z-zBuf); |
| 509 assert( n>0 && n<=4 ); |
| 510 z[0] = 0; |
| 511 z = zBuf; |
| 512 READ_UTF16LE(z, 1, c); |
| 513 assert( c==i ); |
| 514 assert( (z-zBuf)==n ); |
| 515 } |
| 516 for(i=0; i<0x00110000; i++){ |
| 517 if( i>=0xD800 && i<0xE000 ) continue; |
| 518 z = zBuf; |
| 519 WRITE_UTF16BE(z, i); |
| 520 n = (int)(z-zBuf); |
| 521 assert( n>0 && n<=4 ); |
| 522 z[0] = 0; |
| 523 z = zBuf; |
| 524 READ_UTF16BE(z, 1, c); |
| 525 assert( c==i ); |
| 526 assert( (z-zBuf)==n ); |
| 527 } |
| 528 } |
| 529 #endif /* SQLITE_TEST */ |
| 530 #endif /* SQLITE_OMIT_UTF16 */ |
OLD | NEW |