OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2007 October 14 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** This file contains the C functions that implement a memory |
| 13 ** allocation subsystem for use by SQLite. |
| 14 ** |
| 15 ** This version of the memory allocation subsystem omits all |
| 16 ** use of malloc(). The application gives SQLite a block of memory |
| 17 ** before calling sqlite3_initialize() from which allocations |
| 18 ** are made and returned by the xMalloc() and xRealloc() |
| 19 ** implementations. Once sqlite3_initialize() has been called, |
| 20 ** the amount of memory available to SQLite is fixed and cannot |
| 21 ** be changed. |
| 22 ** |
| 23 ** This version of the memory allocation subsystem is included |
| 24 ** in the build only if SQLITE_ENABLE_MEMSYS5 is defined. |
| 25 ** |
| 26 ** This memory allocator uses the following algorithm: |
| 27 ** |
| 28 ** 1. All memory allocations sizes are rounded up to a power of 2. |
| 29 ** |
| 30 ** 2. If two adjacent free blocks are the halves of a larger block, |
| 31 ** then the two blocks are coalesced into the single larger block. |
| 32 ** |
| 33 ** 3. New memory is allocated from the first available free block. |
| 34 ** |
| 35 ** This algorithm is described in: J. M. Robson. "Bounds for Some Functions |
| 36 ** Concerning Dynamic Storage Allocation". Journal of the Association for |
| 37 ** Computing Machinery, Volume 21, Number 8, July 1974, pages 491-499. |
| 38 ** |
| 39 ** Let n be the size of the largest allocation divided by the minimum |
| 40 ** allocation size (after rounding all sizes up to a power of 2.) Let M |
| 41 ** be the maximum amount of memory ever outstanding at one time. Let |
| 42 ** N be the total amount of memory available for allocation. Robson |
| 43 ** proved that this memory allocator will never breakdown due to |
| 44 ** fragmentation as long as the following constraint holds: |
| 45 ** |
| 46 ** N >= M*(1 + log2(n)/2) - n + 1 |
| 47 ** |
| 48 ** The sqlite3_status() logic tracks the maximum values of n and M so |
| 49 ** that an application can, at any time, verify this constraint. |
| 50 */ |
| 51 #include "sqliteInt.h" |
| 52 |
| 53 /* |
| 54 ** This version of the memory allocator is used only when |
| 55 ** SQLITE_ENABLE_MEMSYS5 is defined. |
| 56 */ |
| 57 #ifdef SQLITE_ENABLE_MEMSYS5 |
| 58 |
| 59 /* |
| 60 ** A minimum allocation is an instance of the following structure. |
| 61 ** Larger allocations are an array of these structures where the |
| 62 ** size of the array is a power of 2. |
| 63 ** |
| 64 ** The size of this object must be a power of two. That fact is |
| 65 ** verified in memsys5Init(). |
| 66 */ |
| 67 typedef struct Mem5Link Mem5Link; |
| 68 struct Mem5Link { |
| 69 int next; /* Index of next free chunk */ |
| 70 int prev; /* Index of previous free chunk */ |
| 71 }; |
| 72 |
| 73 /* |
| 74 ** Maximum size of any allocation is ((1<<LOGMAX)*mem5.szAtom). Since |
| 75 ** mem5.szAtom is always at least 8 and 32-bit integers are used, |
| 76 ** it is not actually possible to reach this limit. |
| 77 */ |
| 78 #define LOGMAX 30 |
| 79 |
| 80 /* |
| 81 ** Masks used for mem5.aCtrl[] elements. |
| 82 */ |
| 83 #define CTRL_LOGSIZE 0x1f /* Log2 Size of this block */ |
| 84 #define CTRL_FREE 0x20 /* True if not checked out */ |
| 85 |
| 86 /* |
| 87 ** All of the static variables used by this module are collected |
| 88 ** into a single structure named "mem5". This is to keep the |
| 89 ** static variables organized and to reduce namespace pollution |
| 90 ** when this module is combined with other in the amalgamation. |
| 91 */ |
| 92 static SQLITE_WSD struct Mem5Global { |
| 93 /* |
| 94 ** Memory available for allocation |
| 95 */ |
| 96 int szAtom; /* Smallest possible allocation in bytes */ |
| 97 int nBlock; /* Number of szAtom sized blocks in zPool */ |
| 98 u8 *zPool; /* Memory available to be allocated */ |
| 99 |
| 100 /* |
| 101 ** Mutex to control access to the memory allocation subsystem. |
| 102 */ |
| 103 sqlite3_mutex *mutex; |
| 104 |
| 105 /* |
| 106 ** Performance statistics |
| 107 */ |
| 108 u64 nAlloc; /* Total number of calls to malloc */ |
| 109 u64 totalAlloc; /* Total of all malloc calls - includes internal frag */ |
| 110 u64 totalExcess; /* Total internal fragmentation */ |
| 111 u32 currentOut; /* Current checkout, including internal fragmentation */ |
| 112 u32 currentCount; /* Current number of distinct checkouts */ |
| 113 u32 maxOut; /* Maximum instantaneous currentOut */ |
| 114 u32 maxCount; /* Maximum instantaneous currentCount */ |
| 115 u32 maxRequest; /* Largest allocation (exclusive of internal frag) */ |
| 116 |
| 117 /* |
| 118 ** Lists of free blocks. aiFreelist[0] is a list of free blocks of |
| 119 ** size mem5.szAtom. aiFreelist[1] holds blocks of size szAtom*2. |
| 120 ** and so forth. |
| 121 */ |
| 122 int aiFreelist[LOGMAX+1]; |
| 123 |
| 124 /* |
| 125 ** Space for tracking which blocks are checked out and the size |
| 126 ** of each block. One byte per block. |
| 127 */ |
| 128 u8 *aCtrl; |
| 129 |
| 130 } mem5; |
| 131 |
| 132 /* |
| 133 ** Access the static variable through a macro for SQLITE_OMIT_WSD. |
| 134 */ |
| 135 #define mem5 GLOBAL(struct Mem5Global, mem5) |
| 136 |
| 137 /* |
| 138 ** Assuming mem5.zPool is divided up into an array of Mem5Link |
| 139 ** structures, return a pointer to the idx-th such link. |
| 140 */ |
| 141 #define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.szAtom])) |
| 142 |
| 143 /* |
| 144 ** Unlink the chunk at mem5.aPool[i] from list it is currently |
| 145 ** on. It should be found on mem5.aiFreelist[iLogsize]. |
| 146 */ |
| 147 static void memsys5Unlink(int i, int iLogsize){ |
| 148 int next, prev; |
| 149 assert( i>=0 && i<mem5.nBlock ); |
| 150 assert( iLogsize>=0 && iLogsize<=LOGMAX ); |
| 151 assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize ); |
| 152 |
| 153 next = MEM5LINK(i)->next; |
| 154 prev = MEM5LINK(i)->prev; |
| 155 if( prev<0 ){ |
| 156 mem5.aiFreelist[iLogsize] = next; |
| 157 }else{ |
| 158 MEM5LINK(prev)->next = next; |
| 159 } |
| 160 if( next>=0 ){ |
| 161 MEM5LINK(next)->prev = prev; |
| 162 } |
| 163 } |
| 164 |
| 165 /* |
| 166 ** Link the chunk at mem5.aPool[i] so that is on the iLogsize |
| 167 ** free list. |
| 168 */ |
| 169 static void memsys5Link(int i, int iLogsize){ |
| 170 int x; |
| 171 assert( sqlite3_mutex_held(mem5.mutex) ); |
| 172 assert( i>=0 && i<mem5.nBlock ); |
| 173 assert( iLogsize>=0 && iLogsize<=LOGMAX ); |
| 174 assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize ); |
| 175 |
| 176 x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize]; |
| 177 MEM5LINK(i)->prev = -1; |
| 178 if( x>=0 ){ |
| 179 assert( x<mem5.nBlock ); |
| 180 MEM5LINK(x)->prev = i; |
| 181 } |
| 182 mem5.aiFreelist[iLogsize] = i; |
| 183 } |
| 184 |
| 185 /* |
| 186 ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex |
| 187 ** will already be held (obtained by code in malloc.c) if |
| 188 ** sqlite3GlobalConfig.bMemStat is true. |
| 189 */ |
| 190 static void memsys5Enter(void){ |
| 191 sqlite3_mutex_enter(mem5.mutex); |
| 192 } |
| 193 static void memsys5Leave(void){ |
| 194 sqlite3_mutex_leave(mem5.mutex); |
| 195 } |
| 196 |
| 197 /* |
| 198 ** Return the size of an outstanding allocation, in bytes. The |
| 199 ** size returned omits the 8-byte header overhead. This only |
| 200 ** works for chunks that are currently checked out. |
| 201 */ |
| 202 static int memsys5Size(void *p){ |
| 203 int iSize = 0; |
| 204 if( p ){ |
| 205 int i = (int)(((u8 *)p-mem5.zPool)/mem5.szAtom); |
| 206 assert( i>=0 && i<mem5.nBlock ); |
| 207 iSize = mem5.szAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE)); |
| 208 } |
| 209 return iSize; |
| 210 } |
| 211 |
| 212 /* |
| 213 ** Return a block of memory of at least nBytes in size. |
| 214 ** Return NULL if unable. Return NULL if nBytes==0. |
| 215 ** |
| 216 ** The caller guarantees that nByte is positive. |
| 217 ** |
| 218 ** The caller has obtained a mutex prior to invoking this |
| 219 ** routine so there is never any chance that two or more |
| 220 ** threads can be in this routine at the same time. |
| 221 */ |
| 222 static void *memsys5MallocUnsafe(int nByte){ |
| 223 int i; /* Index of a mem5.aPool[] slot */ |
| 224 int iBin; /* Index into mem5.aiFreelist[] */ |
| 225 int iFullSz; /* Size of allocation rounded up to power of 2 */ |
| 226 int iLogsize; /* Log2 of iFullSz/POW2_MIN */ |
| 227 |
| 228 /* nByte must be a positive */ |
| 229 assert( nByte>0 ); |
| 230 |
| 231 /* Keep track of the maximum allocation request. Even unfulfilled |
| 232 ** requests are counted */ |
| 233 if( (u32)nByte>mem5.maxRequest ){ |
| 234 mem5.maxRequest = nByte; |
| 235 } |
| 236 |
| 237 /* Abort if the requested allocation size is larger than the largest |
| 238 ** power of two that we can represent using 32-bit signed integers. |
| 239 */ |
| 240 if( nByte > 0x40000000 ){ |
| 241 return 0; |
| 242 } |
| 243 |
| 244 /* Round nByte up to the next valid power of two */ |
| 245 for(iFullSz=mem5.szAtom, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){
} |
| 246 |
| 247 /* Make sure mem5.aiFreelist[iLogsize] contains at least one free |
| 248 ** block. If not, then split a block of the next larger power of |
| 249 ** two in order to create a new free block of size iLogsize. |
| 250 */ |
| 251 for(iBin=iLogsize; iBin<=LOGMAX && mem5.aiFreelist[iBin]<0; iBin++){} |
| 252 if( iBin>LOGMAX ){ |
| 253 testcase( sqlite3GlobalConfig.xLog!=0 ); |
| 254 sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes", nByte); |
| 255 return 0; |
| 256 } |
| 257 i = mem5.aiFreelist[iBin]; |
| 258 memsys5Unlink(i, iBin); |
| 259 while( iBin>iLogsize ){ |
| 260 int newSize; |
| 261 |
| 262 iBin--; |
| 263 newSize = 1 << iBin; |
| 264 mem5.aCtrl[i+newSize] = CTRL_FREE | iBin; |
| 265 memsys5Link(i+newSize, iBin); |
| 266 } |
| 267 mem5.aCtrl[i] = iLogsize; |
| 268 |
| 269 /* Update allocator performance statistics. */ |
| 270 mem5.nAlloc++; |
| 271 mem5.totalAlloc += iFullSz; |
| 272 mem5.totalExcess += iFullSz - nByte; |
| 273 mem5.currentCount++; |
| 274 mem5.currentOut += iFullSz; |
| 275 if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount; |
| 276 if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut; |
| 277 |
| 278 #ifdef SQLITE_DEBUG |
| 279 /* Make sure the allocated memory does not assume that it is set to zero |
| 280 ** or retains a value from a previous allocation */ |
| 281 memset(&mem5.zPool[i*mem5.szAtom], 0xAA, iFullSz); |
| 282 #endif |
| 283 |
| 284 /* Return a pointer to the allocated memory. */ |
| 285 return (void*)&mem5.zPool[i*mem5.szAtom]; |
| 286 } |
| 287 |
| 288 /* |
| 289 ** Free an outstanding memory allocation. |
| 290 */ |
| 291 static void memsys5FreeUnsafe(void *pOld){ |
| 292 u32 size, iLogsize; |
| 293 int iBlock; |
| 294 |
| 295 /* Set iBlock to the index of the block pointed to by pOld in |
| 296 ** the array of mem5.szAtom byte blocks pointed to by mem5.zPool. |
| 297 */ |
| 298 iBlock = (int)(((u8 *)pOld-mem5.zPool)/mem5.szAtom); |
| 299 |
| 300 /* Check that the pointer pOld points to a valid, non-free block. */ |
| 301 assert( iBlock>=0 && iBlock<mem5.nBlock ); |
| 302 assert( ((u8 *)pOld-mem5.zPool)%mem5.szAtom==0 ); |
| 303 assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 ); |
| 304 |
| 305 iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE; |
| 306 size = 1<<iLogsize; |
| 307 assert( iBlock+size-1<(u32)mem5.nBlock ); |
| 308 |
| 309 mem5.aCtrl[iBlock] |= CTRL_FREE; |
| 310 mem5.aCtrl[iBlock+size-1] |= CTRL_FREE; |
| 311 assert( mem5.currentCount>0 ); |
| 312 assert( mem5.currentOut>=(size*mem5.szAtom) ); |
| 313 mem5.currentCount--; |
| 314 mem5.currentOut -= size*mem5.szAtom; |
| 315 assert( mem5.currentOut>0 || mem5.currentCount==0 ); |
| 316 assert( mem5.currentCount>0 || mem5.currentOut==0 ); |
| 317 |
| 318 mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize; |
| 319 while( ALWAYS(iLogsize<LOGMAX) ){ |
| 320 int iBuddy; |
| 321 if( (iBlock>>iLogsize) & 1 ){ |
| 322 iBuddy = iBlock - size; |
| 323 }else{ |
| 324 iBuddy = iBlock + size; |
| 325 } |
| 326 assert( iBuddy>=0 ); |
| 327 if( (iBuddy+(1<<iLogsize))>mem5.nBlock ) break; |
| 328 if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break; |
| 329 memsys5Unlink(iBuddy, iLogsize); |
| 330 iLogsize++; |
| 331 if( iBuddy<iBlock ){ |
| 332 mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize; |
| 333 mem5.aCtrl[iBlock] = 0; |
| 334 iBlock = iBuddy; |
| 335 }else{ |
| 336 mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize; |
| 337 mem5.aCtrl[iBuddy] = 0; |
| 338 } |
| 339 size *= 2; |
| 340 } |
| 341 |
| 342 #ifdef SQLITE_DEBUG |
| 343 /* Overwrite freed memory with the 0x55 bit pattern to verify that it is |
| 344 ** not used after being freed */ |
| 345 memset(&mem5.zPool[iBlock*mem5.szAtom], 0x55, size); |
| 346 #endif |
| 347 |
| 348 memsys5Link(iBlock, iLogsize); |
| 349 } |
| 350 |
| 351 /* |
| 352 ** Allocate nBytes of memory. |
| 353 */ |
| 354 static void *memsys5Malloc(int nBytes){ |
| 355 sqlite3_int64 *p = 0; |
| 356 if( nBytes>0 ){ |
| 357 memsys5Enter(); |
| 358 p = memsys5MallocUnsafe(nBytes); |
| 359 memsys5Leave(); |
| 360 } |
| 361 return (void*)p; |
| 362 } |
| 363 |
| 364 /* |
| 365 ** Free memory. |
| 366 ** |
| 367 ** The outer layer memory allocator prevents this routine from |
| 368 ** being called with pPrior==0. |
| 369 */ |
| 370 static void memsys5Free(void *pPrior){ |
| 371 assert( pPrior!=0 ); |
| 372 memsys5Enter(); |
| 373 memsys5FreeUnsafe(pPrior); |
| 374 memsys5Leave(); |
| 375 } |
| 376 |
| 377 /* |
| 378 ** Change the size of an existing memory allocation. |
| 379 ** |
| 380 ** The outer layer memory allocator prevents this routine from |
| 381 ** being called with pPrior==0. |
| 382 ** |
| 383 ** nBytes is always a value obtained from a prior call to |
| 384 ** memsys5Round(). Hence nBytes is always a non-negative power |
| 385 ** of two. If nBytes==0 that means that an oversize allocation |
| 386 ** (an allocation larger than 0x40000000) was requested and this |
| 387 ** routine should return 0 without freeing pPrior. |
| 388 */ |
| 389 static void *memsys5Realloc(void *pPrior, int nBytes){ |
| 390 int nOld; |
| 391 void *p; |
| 392 assert( pPrior!=0 ); |
| 393 assert( (nBytes&(nBytes-1))==0 ); /* EV: R-46199-30249 */ |
| 394 assert( nBytes>=0 ); |
| 395 if( nBytes==0 ){ |
| 396 return 0; |
| 397 } |
| 398 nOld = memsys5Size(pPrior); |
| 399 if( nBytes<=nOld ){ |
| 400 return pPrior; |
| 401 } |
| 402 memsys5Enter(); |
| 403 p = memsys5MallocUnsafe(nBytes); |
| 404 if( p ){ |
| 405 memcpy(p, pPrior, nOld); |
| 406 memsys5FreeUnsafe(pPrior); |
| 407 } |
| 408 memsys5Leave(); |
| 409 return p; |
| 410 } |
| 411 |
| 412 /* |
| 413 ** Round up a request size to the next valid allocation size. If |
| 414 ** the allocation is too large to be handled by this allocation system, |
| 415 ** return 0. |
| 416 ** |
| 417 ** All allocations must be a power of two and must be expressed by a |
| 418 ** 32-bit signed integer. Hence the largest allocation is 0x40000000 |
| 419 ** or 1073741824 bytes. |
| 420 */ |
| 421 static int memsys5Roundup(int n){ |
| 422 int iFullSz; |
| 423 if( n > 0x40000000 ) return 0; |
| 424 for(iFullSz=mem5.szAtom; iFullSz<n; iFullSz *= 2); |
| 425 return iFullSz; |
| 426 } |
| 427 |
| 428 /* |
| 429 ** Return the ceiling of the logarithm base 2 of iValue. |
| 430 ** |
| 431 ** Examples: memsys5Log(1) -> 0 |
| 432 ** memsys5Log(2) -> 1 |
| 433 ** memsys5Log(4) -> 2 |
| 434 ** memsys5Log(5) -> 3 |
| 435 ** memsys5Log(8) -> 3 |
| 436 ** memsys5Log(9) -> 4 |
| 437 */ |
| 438 static int memsys5Log(int iValue){ |
| 439 int iLog; |
| 440 for(iLog=0; (iLog<(int)((sizeof(int)*8)-1)) && (1<<iLog)<iValue; iLog++); |
| 441 return iLog; |
| 442 } |
| 443 |
| 444 /* |
| 445 ** Initialize the memory allocator. |
| 446 ** |
| 447 ** This routine is not threadsafe. The caller must be holding a mutex |
| 448 ** to prevent multiple threads from entering at the same time. |
| 449 */ |
| 450 static int memsys5Init(void *NotUsed){ |
| 451 int ii; /* Loop counter */ |
| 452 int nByte; /* Number of bytes of memory available to this allocator */ |
| 453 u8 *zByte; /* Memory usable by this allocator */ |
| 454 int nMinLog; /* Log base 2 of minimum allocation size in bytes */ |
| 455 int iOffset; /* An offset into mem5.aCtrl[] */ |
| 456 |
| 457 UNUSED_PARAMETER(NotUsed); |
| 458 |
| 459 /* For the purposes of this routine, disable the mutex */ |
| 460 mem5.mutex = 0; |
| 461 |
| 462 /* The size of a Mem5Link object must be a power of two. Verify that |
| 463 ** this is case. |
| 464 */ |
| 465 assert( (sizeof(Mem5Link)&(sizeof(Mem5Link)-1))==0 ); |
| 466 |
| 467 nByte = sqlite3GlobalConfig.nHeap; |
| 468 zByte = (u8*)sqlite3GlobalConfig.pHeap; |
| 469 assert( zByte!=0 ); /* sqlite3_config() does not allow otherwise */ |
| 470 |
| 471 /* boundaries on sqlite3GlobalConfig.mnReq are enforced in sqlite3_config() */ |
| 472 nMinLog = memsys5Log(sqlite3GlobalConfig.mnReq); |
| 473 mem5.szAtom = (1<<nMinLog); |
| 474 while( (int)sizeof(Mem5Link)>mem5.szAtom ){ |
| 475 mem5.szAtom = mem5.szAtom << 1; |
| 476 } |
| 477 |
| 478 mem5.nBlock = (nByte / (mem5.szAtom+sizeof(u8))); |
| 479 mem5.zPool = zByte; |
| 480 mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.szAtom]; |
| 481 |
| 482 for(ii=0; ii<=LOGMAX; ii++){ |
| 483 mem5.aiFreelist[ii] = -1; |
| 484 } |
| 485 |
| 486 iOffset = 0; |
| 487 for(ii=LOGMAX; ii>=0; ii--){ |
| 488 int nAlloc = (1<<ii); |
| 489 if( (iOffset+nAlloc)<=mem5.nBlock ){ |
| 490 mem5.aCtrl[iOffset] = ii | CTRL_FREE; |
| 491 memsys5Link(iOffset, ii); |
| 492 iOffset += nAlloc; |
| 493 } |
| 494 assert((iOffset+nAlloc)>mem5.nBlock); |
| 495 } |
| 496 |
| 497 /* If a mutex is required for normal operation, allocate one */ |
| 498 if( sqlite3GlobalConfig.bMemstat==0 ){ |
| 499 mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); |
| 500 } |
| 501 |
| 502 return SQLITE_OK; |
| 503 } |
| 504 |
| 505 /* |
| 506 ** Deinitialize this module. |
| 507 */ |
| 508 static void memsys5Shutdown(void *NotUsed){ |
| 509 UNUSED_PARAMETER(NotUsed); |
| 510 mem5.mutex = 0; |
| 511 return; |
| 512 } |
| 513 |
| 514 #ifdef SQLITE_TEST |
| 515 /* |
| 516 ** Open the file indicated and write a log of all unfreed memory |
| 517 ** allocations into that log. |
| 518 */ |
| 519 void sqlite3Memsys5Dump(const char *zFilename){ |
| 520 FILE *out; |
| 521 int i, j, n; |
| 522 int nMinLog; |
| 523 |
| 524 if( zFilename==0 || zFilename[0]==0 ){ |
| 525 out = stdout; |
| 526 }else{ |
| 527 out = fopen(zFilename, "w"); |
| 528 if( out==0 ){ |
| 529 fprintf(stderr, "** Unable to output memory debug output log: %s **\n", |
| 530 zFilename); |
| 531 return; |
| 532 } |
| 533 } |
| 534 memsys5Enter(); |
| 535 nMinLog = memsys5Log(mem5.szAtom); |
| 536 for(i=0; i<=LOGMAX && i+nMinLog<32; i++){ |
| 537 for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){} |
| 538 fprintf(out, "freelist items of size %d: %d\n", mem5.szAtom << i, n); |
| 539 } |
| 540 fprintf(out, "mem5.nAlloc = %llu\n", mem5.nAlloc); |
| 541 fprintf(out, "mem5.totalAlloc = %llu\n", mem5.totalAlloc); |
| 542 fprintf(out, "mem5.totalExcess = %llu\n", mem5.totalExcess); |
| 543 fprintf(out, "mem5.currentOut = %u\n", mem5.currentOut); |
| 544 fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount); |
| 545 fprintf(out, "mem5.maxOut = %u\n", mem5.maxOut); |
| 546 fprintf(out, "mem5.maxCount = %u\n", mem5.maxCount); |
| 547 fprintf(out, "mem5.maxRequest = %u\n", mem5.maxRequest); |
| 548 memsys5Leave(); |
| 549 if( out==stdout ){ |
| 550 fflush(stdout); |
| 551 }else{ |
| 552 fclose(out); |
| 553 } |
| 554 } |
| 555 #endif |
| 556 |
| 557 /* |
| 558 ** This routine is the only routine in this file with external |
| 559 ** linkage. It returns a pointer to a static sqlite3_mem_methods |
| 560 ** struct populated with the memsys5 methods. |
| 561 */ |
| 562 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){ |
| 563 static const sqlite3_mem_methods memsys5Methods = { |
| 564 memsys5Malloc, |
| 565 memsys5Free, |
| 566 memsys5Realloc, |
| 567 memsys5Size, |
| 568 memsys5Roundup, |
| 569 memsys5Init, |
| 570 memsys5Shutdown, |
| 571 0 |
| 572 }; |
| 573 return &memsys5Methods; |
| 574 } |
| 575 |
| 576 #endif /* SQLITE_ENABLE_MEMSYS5 */ |
OLD | NEW |