OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2004 April 6 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** This file implements an external (disk-based) database using BTrees. |
| 13 ** See the header comment on "btreeInt.h" for additional information. |
| 14 ** Including a description of file format and an overview of operation. |
| 15 */ |
| 16 #include "btreeInt.h" |
| 17 |
| 18 /* |
| 19 ** The header string that appears at the beginning of every |
| 20 ** SQLite database. |
| 21 */ |
| 22 static const char zMagicHeader[] = SQLITE_FILE_HEADER; |
| 23 |
| 24 /* |
| 25 ** Set this global variable to 1 to enable tracing using the TRACE |
| 26 ** macro. |
| 27 */ |
| 28 #if 0 |
| 29 int sqlite3BtreeTrace=1; /* True to enable tracing */ |
| 30 # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);} |
| 31 #else |
| 32 # define TRACE(X) |
| 33 #endif |
| 34 |
| 35 /* |
| 36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes. |
| 37 ** But if the value is zero, make it 65536. |
| 38 ** |
| 39 ** This routine is used to extract the "offset to cell content area" value |
| 40 ** from the header of a btree page. If the page size is 65536 and the page |
| 41 ** is empty, the offset should be 65536, but the 2-byte value stores zero. |
| 42 ** This routine makes the necessary adjustment to 65536. |
| 43 */ |
| 44 #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1) |
| 45 |
| 46 /* |
| 47 ** Values passed as the 5th argument to allocateBtreePage() |
| 48 */ |
| 49 #define BTALLOC_ANY 0 /* Allocate any page */ |
| 50 #define BTALLOC_EXACT 1 /* Allocate exact page if possible */ |
| 51 #define BTALLOC_LE 2 /* Allocate any page <= the parameter */ |
| 52 |
| 53 /* |
| 54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not |
| 55 ** defined, or 0 if it is. For example: |
| 56 ** |
| 57 ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum); |
| 58 */ |
| 59 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 60 #define IfNotOmitAV(expr) (expr) |
| 61 #else |
| 62 #define IfNotOmitAV(expr) 0 |
| 63 #endif |
| 64 |
| 65 #ifndef SQLITE_OMIT_SHARED_CACHE |
| 66 /* |
| 67 ** A list of BtShared objects that are eligible for participation |
| 68 ** in shared cache. This variable has file scope during normal builds, |
| 69 ** but the test harness needs to access it so we make it global for |
| 70 ** test builds. |
| 71 ** |
| 72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER. |
| 73 */ |
| 74 #ifdef SQLITE_TEST |
| 75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; |
| 76 #else |
| 77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; |
| 78 #endif |
| 79 #endif /* SQLITE_OMIT_SHARED_CACHE */ |
| 80 |
| 81 #ifndef SQLITE_OMIT_SHARED_CACHE |
| 82 /* |
| 83 ** Enable or disable the shared pager and schema features. |
| 84 ** |
| 85 ** This routine has no effect on existing database connections. |
| 86 ** The shared cache setting effects only future calls to |
| 87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2(). |
| 88 */ |
| 89 int sqlite3_enable_shared_cache(int enable){ |
| 90 sqlite3GlobalConfig.sharedCacheEnabled = enable; |
| 91 return SQLITE_OK; |
| 92 } |
| 93 #endif |
| 94 |
| 95 |
| 96 |
| 97 #ifdef SQLITE_OMIT_SHARED_CACHE |
| 98 /* |
| 99 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(), |
| 100 ** and clearAllSharedCacheTableLocks() |
| 101 ** manipulate entries in the BtShared.pLock linked list used to store |
| 102 ** shared-cache table level locks. If the library is compiled with the |
| 103 ** shared-cache feature disabled, then there is only ever one user |
| 104 ** of each BtShared structure and so this locking is not necessary. |
| 105 ** So define the lock related functions as no-ops. |
| 106 */ |
| 107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK |
| 108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK |
| 109 #define clearAllSharedCacheTableLocks(a) |
| 110 #define downgradeAllSharedCacheTableLocks(a) |
| 111 #define hasSharedCacheTableLock(a,b,c,d) 1 |
| 112 #define hasReadConflicts(a, b) 0 |
| 113 #endif |
| 114 |
| 115 #ifndef SQLITE_OMIT_SHARED_CACHE |
| 116 |
| 117 #ifdef SQLITE_DEBUG |
| 118 /* |
| 119 **** This function is only used as part of an assert() statement. *** |
| 120 ** |
| 121 ** Check to see if pBtree holds the required locks to read or write to the |
| 122 ** table with root page iRoot. Return 1 if it does and 0 if not. |
| 123 ** |
| 124 ** For example, when writing to a table with root-page iRoot via |
| 125 ** Btree connection pBtree: |
| 126 ** |
| 127 ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) ); |
| 128 ** |
| 129 ** When writing to an index that resides in a sharable database, the |
| 130 ** caller should have first obtained a lock specifying the root page of |
| 131 ** the corresponding table. This makes things a bit more complicated, |
| 132 ** as this module treats each table as a separate structure. To determine |
| 133 ** the table corresponding to the index being written, this |
| 134 ** function has to search through the database schema. |
| 135 ** |
| 136 ** Instead of a lock on the table/index rooted at page iRoot, the caller may |
| 137 ** hold a write-lock on the schema table (root page 1). This is also |
| 138 ** acceptable. |
| 139 */ |
| 140 static int hasSharedCacheTableLock( |
| 141 Btree *pBtree, /* Handle that must hold lock */ |
| 142 Pgno iRoot, /* Root page of b-tree */ |
| 143 int isIndex, /* True if iRoot is the root of an index b-tree */ |
| 144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */ |
| 145 ){ |
| 146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema; |
| 147 Pgno iTab = 0; |
| 148 BtLock *pLock; |
| 149 |
| 150 /* If this database is not shareable, or if the client is reading |
| 151 ** and has the read-uncommitted flag set, then no lock is required. |
| 152 ** Return true immediately. |
| 153 */ |
| 154 if( (pBtree->sharable==0) |
| 155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted)) |
| 156 ){ |
| 157 return 1; |
| 158 } |
| 159 |
| 160 /* If the client is reading or writing an index and the schema is |
| 161 ** not loaded, then it is too difficult to actually check to see if |
| 162 ** the correct locks are held. So do not bother - just return true. |
| 163 ** This case does not come up very often anyhow. |
| 164 */ |
| 165 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){ |
| 166 return 1; |
| 167 } |
| 168 |
| 169 /* Figure out the root-page that the lock should be held on. For table |
| 170 ** b-trees, this is just the root page of the b-tree being read or |
| 171 ** written. For index b-trees, it is the root page of the associated |
| 172 ** table. */ |
| 173 if( isIndex ){ |
| 174 HashElem *p; |
| 175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){ |
| 176 Index *pIdx = (Index *)sqliteHashData(p); |
| 177 if( pIdx->tnum==(int)iRoot ){ |
| 178 iTab = pIdx->pTable->tnum; |
| 179 } |
| 180 } |
| 181 }else{ |
| 182 iTab = iRoot; |
| 183 } |
| 184 |
| 185 /* Search for the required lock. Either a write-lock on root-page iTab, a |
| 186 ** write-lock on the schema table, or (if the client is reading) a |
| 187 ** read-lock on iTab will suffice. Return 1 if any of these are found. */ |
| 188 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){ |
| 189 if( pLock->pBtree==pBtree |
| 190 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1)) |
| 191 && pLock->eLock>=eLockType |
| 192 ){ |
| 193 return 1; |
| 194 } |
| 195 } |
| 196 |
| 197 /* Failed to find the required lock. */ |
| 198 return 0; |
| 199 } |
| 200 #endif /* SQLITE_DEBUG */ |
| 201 |
| 202 #ifdef SQLITE_DEBUG |
| 203 /* |
| 204 **** This function may be used as part of assert() statements only. **** |
| 205 ** |
| 206 ** Return true if it would be illegal for pBtree to write into the |
| 207 ** table or index rooted at iRoot because other shared connections are |
| 208 ** simultaneously reading that same table or index. |
| 209 ** |
| 210 ** It is illegal for pBtree to write if some other Btree object that |
| 211 ** shares the same BtShared object is currently reading or writing |
| 212 ** the iRoot table. Except, if the other Btree object has the |
| 213 ** read-uncommitted flag set, then it is OK for the other object to |
| 214 ** have a read cursor. |
| 215 ** |
| 216 ** For example, before writing to any part of the table or index |
| 217 ** rooted at page iRoot, one should call: |
| 218 ** |
| 219 ** assert( !hasReadConflicts(pBtree, iRoot) ); |
| 220 */ |
| 221 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){ |
| 222 BtCursor *p; |
| 223 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ |
| 224 if( p->pgnoRoot==iRoot |
| 225 && p->pBtree!=pBtree |
| 226 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted) |
| 227 ){ |
| 228 return 1; |
| 229 } |
| 230 } |
| 231 return 0; |
| 232 } |
| 233 #endif /* #ifdef SQLITE_DEBUG */ |
| 234 |
| 235 /* |
| 236 ** Query to see if Btree handle p may obtain a lock of type eLock |
| 237 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return |
| 238 ** SQLITE_OK if the lock may be obtained (by calling |
| 239 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not. |
| 240 */ |
| 241 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){ |
| 242 BtShared *pBt = p->pBt; |
| 243 BtLock *pIter; |
| 244 |
| 245 assert( sqlite3BtreeHoldsMutex(p) ); |
| 246 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); |
| 247 assert( p->db!=0 ); |
| 248 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 ); |
| 249 |
| 250 /* If requesting a write-lock, then the Btree must have an open write |
| 251 ** transaction on this file. And, obviously, for this to be so there |
| 252 ** must be an open write transaction on the file itself. |
| 253 */ |
| 254 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) ); |
| 255 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE ); |
| 256 |
| 257 /* This routine is a no-op if the shared-cache is not enabled */ |
| 258 if( !p->sharable ){ |
| 259 return SQLITE_OK; |
| 260 } |
| 261 |
| 262 /* If some other connection is holding an exclusive lock, the |
| 263 ** requested lock may not be obtained. |
| 264 */ |
| 265 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){ |
| 266 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db); |
| 267 return SQLITE_LOCKED_SHAREDCACHE; |
| 268 } |
| 269 |
| 270 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ |
| 271 /* The condition (pIter->eLock!=eLock) in the following if(...) |
| 272 ** statement is a simplification of: |
| 273 ** |
| 274 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK) |
| 275 ** |
| 276 ** since we know that if eLock==WRITE_LOCK, then no other connection |
| 277 ** may hold a WRITE_LOCK on any table in this file (since there can |
| 278 ** only be a single writer). |
| 279 */ |
| 280 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK ); |
| 281 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK); |
| 282 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){ |
| 283 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db); |
| 284 if( eLock==WRITE_LOCK ){ |
| 285 assert( p==pBt->pWriter ); |
| 286 pBt->btsFlags |= BTS_PENDING; |
| 287 } |
| 288 return SQLITE_LOCKED_SHAREDCACHE; |
| 289 } |
| 290 } |
| 291 return SQLITE_OK; |
| 292 } |
| 293 #endif /* !SQLITE_OMIT_SHARED_CACHE */ |
| 294 |
| 295 #ifndef SQLITE_OMIT_SHARED_CACHE |
| 296 /* |
| 297 ** Add a lock on the table with root-page iTable to the shared-btree used |
| 298 ** by Btree handle p. Parameter eLock must be either READ_LOCK or |
| 299 ** WRITE_LOCK. |
| 300 ** |
| 301 ** This function assumes the following: |
| 302 ** |
| 303 ** (a) The specified Btree object p is connected to a sharable |
| 304 ** database (one with the BtShared.sharable flag set), and |
| 305 ** |
| 306 ** (b) No other Btree objects hold a lock that conflicts |
| 307 ** with the requested lock (i.e. querySharedCacheTableLock() has |
| 308 ** already been called and returned SQLITE_OK). |
| 309 ** |
| 310 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM |
| 311 ** is returned if a malloc attempt fails. |
| 312 */ |
| 313 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){ |
| 314 BtShared *pBt = p->pBt; |
| 315 BtLock *pLock = 0; |
| 316 BtLock *pIter; |
| 317 |
| 318 assert( sqlite3BtreeHoldsMutex(p) ); |
| 319 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); |
| 320 assert( p->db!=0 ); |
| 321 |
| 322 /* A connection with the read-uncommitted flag set will never try to |
| 323 ** obtain a read-lock using this function. The only read-lock obtained |
| 324 ** by a connection in read-uncommitted mode is on the sqlite_master |
| 325 ** table, and that lock is obtained in BtreeBeginTrans(). */ |
| 326 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK ); |
| 327 |
| 328 /* This function should only be called on a sharable b-tree after it |
| 329 ** has been determined that no other b-tree holds a conflicting lock. */ |
| 330 assert( p->sharable ); |
| 331 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) ); |
| 332 |
| 333 /* First search the list for an existing lock on this table. */ |
| 334 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ |
| 335 if( pIter->iTable==iTable && pIter->pBtree==p ){ |
| 336 pLock = pIter; |
| 337 break; |
| 338 } |
| 339 } |
| 340 |
| 341 /* If the above search did not find a BtLock struct associating Btree p |
| 342 ** with table iTable, allocate one and link it into the list. |
| 343 */ |
| 344 if( !pLock ){ |
| 345 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock)); |
| 346 if( !pLock ){ |
| 347 return SQLITE_NOMEM; |
| 348 } |
| 349 pLock->iTable = iTable; |
| 350 pLock->pBtree = p; |
| 351 pLock->pNext = pBt->pLock; |
| 352 pBt->pLock = pLock; |
| 353 } |
| 354 |
| 355 /* Set the BtLock.eLock variable to the maximum of the current lock |
| 356 ** and the requested lock. This means if a write-lock was already held |
| 357 ** and a read-lock requested, we don't incorrectly downgrade the lock. |
| 358 */ |
| 359 assert( WRITE_LOCK>READ_LOCK ); |
| 360 if( eLock>pLock->eLock ){ |
| 361 pLock->eLock = eLock; |
| 362 } |
| 363 |
| 364 return SQLITE_OK; |
| 365 } |
| 366 #endif /* !SQLITE_OMIT_SHARED_CACHE */ |
| 367 |
| 368 #ifndef SQLITE_OMIT_SHARED_CACHE |
| 369 /* |
| 370 ** Release all the table locks (locks obtained via calls to |
| 371 ** the setSharedCacheTableLock() procedure) held by Btree object p. |
| 372 ** |
| 373 ** This function assumes that Btree p has an open read or write |
| 374 ** transaction. If it does not, then the BTS_PENDING flag |
| 375 ** may be incorrectly cleared. |
| 376 */ |
| 377 static void clearAllSharedCacheTableLocks(Btree *p){ |
| 378 BtShared *pBt = p->pBt; |
| 379 BtLock **ppIter = &pBt->pLock; |
| 380 |
| 381 assert( sqlite3BtreeHoldsMutex(p) ); |
| 382 assert( p->sharable || 0==*ppIter ); |
| 383 assert( p->inTrans>0 ); |
| 384 |
| 385 while( *ppIter ){ |
| 386 BtLock *pLock = *ppIter; |
| 387 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree ); |
| 388 assert( pLock->pBtree->inTrans>=pLock->eLock ); |
| 389 if( pLock->pBtree==p ){ |
| 390 *ppIter = pLock->pNext; |
| 391 assert( pLock->iTable!=1 || pLock==&p->lock ); |
| 392 if( pLock->iTable!=1 ){ |
| 393 sqlite3_free(pLock); |
| 394 } |
| 395 }else{ |
| 396 ppIter = &pLock->pNext; |
| 397 } |
| 398 } |
| 399 |
| 400 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter ); |
| 401 if( pBt->pWriter==p ){ |
| 402 pBt->pWriter = 0; |
| 403 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); |
| 404 }else if( pBt->nTransaction==2 ){ |
| 405 /* This function is called when Btree p is concluding its |
| 406 ** transaction. If there currently exists a writer, and p is not |
| 407 ** that writer, then the number of locks held by connections other |
| 408 ** than the writer must be about to drop to zero. In this case |
| 409 ** set the BTS_PENDING flag to 0. |
| 410 ** |
| 411 ** If there is not currently a writer, then BTS_PENDING must |
| 412 ** be zero already. So this next line is harmless in that case. |
| 413 */ |
| 414 pBt->btsFlags &= ~BTS_PENDING; |
| 415 } |
| 416 } |
| 417 |
| 418 /* |
| 419 ** This function changes all write-locks held by Btree p into read-locks. |
| 420 */ |
| 421 static void downgradeAllSharedCacheTableLocks(Btree *p){ |
| 422 BtShared *pBt = p->pBt; |
| 423 if( pBt->pWriter==p ){ |
| 424 BtLock *pLock; |
| 425 pBt->pWriter = 0; |
| 426 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); |
| 427 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){ |
| 428 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p ); |
| 429 pLock->eLock = READ_LOCK; |
| 430 } |
| 431 } |
| 432 } |
| 433 |
| 434 #endif /* SQLITE_OMIT_SHARED_CACHE */ |
| 435 |
| 436 static void releasePage(MemPage *pPage); /* Forward reference */ |
| 437 |
| 438 /* |
| 439 ***** This routine is used inside of assert() only **** |
| 440 ** |
| 441 ** Verify that the cursor holds the mutex on its BtShared |
| 442 */ |
| 443 #ifdef SQLITE_DEBUG |
| 444 static int cursorHoldsMutex(BtCursor *p){ |
| 445 return sqlite3_mutex_held(p->pBt->mutex); |
| 446 } |
| 447 #endif |
| 448 |
| 449 /* |
| 450 ** Invalidate the overflow cache of the cursor passed as the first argument. |
| 451 ** on the shared btree structure pBt. |
| 452 */ |
| 453 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl) |
| 454 |
| 455 /* |
| 456 ** Invalidate the overflow page-list cache for all cursors opened |
| 457 ** on the shared btree structure pBt. |
| 458 */ |
| 459 static void invalidateAllOverflowCache(BtShared *pBt){ |
| 460 BtCursor *p; |
| 461 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 462 for(p=pBt->pCursor; p; p=p->pNext){ |
| 463 invalidateOverflowCache(p); |
| 464 } |
| 465 } |
| 466 |
| 467 #ifndef SQLITE_OMIT_INCRBLOB |
| 468 /* |
| 469 ** This function is called before modifying the contents of a table |
| 470 ** to invalidate any incrblob cursors that are open on the |
| 471 ** row or one of the rows being modified. |
| 472 ** |
| 473 ** If argument isClearTable is true, then the entire contents of the |
| 474 ** table is about to be deleted. In this case invalidate all incrblob |
| 475 ** cursors open on any row within the table with root-page pgnoRoot. |
| 476 ** |
| 477 ** Otherwise, if argument isClearTable is false, then the row with |
| 478 ** rowid iRow is being replaced or deleted. In this case invalidate |
| 479 ** only those incrblob cursors open on that specific row. |
| 480 */ |
| 481 static void invalidateIncrblobCursors( |
| 482 Btree *pBtree, /* The database file to check */ |
| 483 i64 iRow, /* The rowid that might be changing */ |
| 484 int isClearTable /* True if all rows are being deleted */ |
| 485 ){ |
| 486 BtCursor *p; |
| 487 BtShared *pBt = pBtree->pBt; |
| 488 assert( sqlite3BtreeHoldsMutex(pBtree) ); |
| 489 for(p=pBt->pCursor; p; p=p->pNext){ |
| 490 if( (p->curFlags & BTCF_Incrblob)!=0 |
| 491 && (isClearTable || p->info.nKey==iRow) |
| 492 ){ |
| 493 p->eState = CURSOR_INVALID; |
| 494 } |
| 495 } |
| 496 } |
| 497 |
| 498 #else |
| 499 /* Stub function when INCRBLOB is omitted */ |
| 500 #define invalidateIncrblobCursors(x,y,z) |
| 501 #endif /* SQLITE_OMIT_INCRBLOB */ |
| 502 |
| 503 /* |
| 504 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called |
| 505 ** when a page that previously contained data becomes a free-list leaf |
| 506 ** page. |
| 507 ** |
| 508 ** The BtShared.pHasContent bitvec exists to work around an obscure |
| 509 ** bug caused by the interaction of two useful IO optimizations surrounding |
| 510 ** free-list leaf pages: |
| 511 ** |
| 512 ** 1) When all data is deleted from a page and the page becomes |
| 513 ** a free-list leaf page, the page is not written to the database |
| 514 ** (as free-list leaf pages contain no meaningful data). Sometimes |
| 515 ** such a page is not even journalled (as it will not be modified, |
| 516 ** why bother journalling it?). |
| 517 ** |
| 518 ** 2) When a free-list leaf page is reused, its content is not read |
| 519 ** from the database or written to the journal file (why should it |
| 520 ** be, if it is not at all meaningful?). |
| 521 ** |
| 522 ** By themselves, these optimizations work fine and provide a handy |
| 523 ** performance boost to bulk delete or insert operations. However, if |
| 524 ** a page is moved to the free-list and then reused within the same |
| 525 ** transaction, a problem comes up. If the page is not journalled when |
| 526 ** it is moved to the free-list and it is also not journalled when it |
| 527 ** is extracted from the free-list and reused, then the original data |
| 528 ** may be lost. In the event of a rollback, it may not be possible |
| 529 ** to restore the database to its original configuration. |
| 530 ** |
| 531 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is |
| 532 ** moved to become a free-list leaf page, the corresponding bit is |
| 533 ** set in the bitvec. Whenever a leaf page is extracted from the free-list, |
| 534 ** optimization 2 above is omitted if the corresponding bit is already |
| 535 ** set in BtShared.pHasContent. The contents of the bitvec are cleared |
| 536 ** at the end of every transaction. |
| 537 */ |
| 538 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){ |
| 539 int rc = SQLITE_OK; |
| 540 if( !pBt->pHasContent ){ |
| 541 assert( pgno<=pBt->nPage ); |
| 542 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage); |
| 543 if( !pBt->pHasContent ){ |
| 544 rc = SQLITE_NOMEM; |
| 545 } |
| 546 } |
| 547 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){ |
| 548 rc = sqlite3BitvecSet(pBt->pHasContent, pgno); |
| 549 } |
| 550 return rc; |
| 551 } |
| 552 |
| 553 /* |
| 554 ** Query the BtShared.pHasContent vector. |
| 555 ** |
| 556 ** This function is called when a free-list leaf page is removed from the |
| 557 ** free-list for reuse. It returns false if it is safe to retrieve the |
| 558 ** page from the pager layer with the 'no-content' flag set. True otherwise. |
| 559 */ |
| 560 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){ |
| 561 Bitvec *p = pBt->pHasContent; |
| 562 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno))); |
| 563 } |
| 564 |
| 565 /* |
| 566 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be |
| 567 ** invoked at the conclusion of each write-transaction. |
| 568 */ |
| 569 static void btreeClearHasContent(BtShared *pBt){ |
| 570 sqlite3BitvecDestroy(pBt->pHasContent); |
| 571 pBt->pHasContent = 0; |
| 572 } |
| 573 |
| 574 /* |
| 575 ** Release all of the apPage[] pages for a cursor. |
| 576 */ |
| 577 static void btreeReleaseAllCursorPages(BtCursor *pCur){ |
| 578 int i; |
| 579 for(i=0; i<=pCur->iPage; i++){ |
| 580 releasePage(pCur->apPage[i]); |
| 581 pCur->apPage[i] = 0; |
| 582 } |
| 583 pCur->iPage = -1; |
| 584 } |
| 585 |
| 586 |
| 587 /* |
| 588 ** Save the current cursor position in the variables BtCursor.nKey |
| 589 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK. |
| 590 ** |
| 591 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID) |
| 592 ** prior to calling this routine. |
| 593 */ |
| 594 static int saveCursorPosition(BtCursor *pCur){ |
| 595 int rc; |
| 596 |
| 597 assert( CURSOR_VALID==pCur->eState ); |
| 598 assert( 0==pCur->pKey ); |
| 599 assert( cursorHoldsMutex(pCur) ); |
| 600 |
| 601 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey); |
| 602 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */ |
| 603 |
| 604 /* If this is an intKey table, then the above call to BtreeKeySize() |
| 605 ** stores the integer key in pCur->nKey. In this case this value is |
| 606 ** all that is required. Otherwise, if pCur is not open on an intKey |
| 607 ** table, then malloc space for and store the pCur->nKey bytes of key |
| 608 ** data. |
| 609 */ |
| 610 if( 0==pCur->apPage[0]->intKey ){ |
| 611 void *pKey = sqlite3Malloc( pCur->nKey ); |
| 612 if( pKey ){ |
| 613 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey); |
| 614 if( rc==SQLITE_OK ){ |
| 615 pCur->pKey = pKey; |
| 616 }else{ |
| 617 sqlite3_free(pKey); |
| 618 } |
| 619 }else{ |
| 620 rc = SQLITE_NOMEM; |
| 621 } |
| 622 } |
| 623 assert( !pCur->apPage[0]->intKey || !pCur->pKey ); |
| 624 |
| 625 if( rc==SQLITE_OK ){ |
| 626 btreeReleaseAllCursorPages(pCur); |
| 627 pCur->eState = CURSOR_REQUIRESEEK; |
| 628 } |
| 629 |
| 630 invalidateOverflowCache(pCur); |
| 631 return rc; |
| 632 } |
| 633 |
| 634 /* Forward reference */ |
| 635 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*); |
| 636 |
| 637 /* |
| 638 ** Save the positions of all cursors (except pExcept) that are open on |
| 639 ** the table with root-page iRoot. "Saving the cursor position" means that |
| 640 ** the location in the btree is remembered in such a way that it can be |
| 641 ** moved back to the same spot after the btree has been modified. This |
| 642 ** routine is called just before cursor pExcept is used to modify the |
| 643 ** table, for example in BtreeDelete() or BtreeInsert(). |
| 644 ** |
| 645 ** Implementation note: This routine merely checks to see if any cursors |
| 646 ** need to be saved. It calls out to saveCursorsOnList() in the (unusual) |
| 647 ** event that cursors are in need to being saved. |
| 648 */ |
| 649 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ |
| 650 BtCursor *p; |
| 651 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 652 assert( pExcept==0 || pExcept->pBt==pBt ); |
| 653 for(p=pBt->pCursor; p; p=p->pNext){ |
| 654 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break; |
| 655 } |
| 656 return p ? saveCursorsOnList(p, iRoot, pExcept) : SQLITE_OK; |
| 657 } |
| 658 |
| 659 /* This helper routine to saveAllCursors does the actual work of saving |
| 660 ** the cursors if and when a cursor is found that actually requires saving. |
| 661 ** The common case is that no cursors need to be saved, so this routine is |
| 662 ** broken out from its caller to avoid unnecessary stack pointer movement. |
| 663 */ |
| 664 static int SQLITE_NOINLINE saveCursorsOnList( |
| 665 BtCursor *p, /* The first cursor that needs saving */ |
| 666 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */ |
| 667 BtCursor *pExcept /* Do not save this cursor */ |
| 668 ){ |
| 669 do{ |
| 670 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){ |
| 671 if( p->eState==CURSOR_VALID ){ |
| 672 int rc = saveCursorPosition(p); |
| 673 if( SQLITE_OK!=rc ){ |
| 674 return rc; |
| 675 } |
| 676 }else{ |
| 677 testcase( p->iPage>0 ); |
| 678 btreeReleaseAllCursorPages(p); |
| 679 } |
| 680 } |
| 681 p = p->pNext; |
| 682 }while( p ); |
| 683 return SQLITE_OK; |
| 684 } |
| 685 |
| 686 /* |
| 687 ** Clear the current cursor position. |
| 688 */ |
| 689 void sqlite3BtreeClearCursor(BtCursor *pCur){ |
| 690 assert( cursorHoldsMutex(pCur) ); |
| 691 sqlite3_free(pCur->pKey); |
| 692 pCur->pKey = 0; |
| 693 pCur->eState = CURSOR_INVALID; |
| 694 } |
| 695 |
| 696 /* |
| 697 ** In this version of BtreeMoveto, pKey is a packed index record |
| 698 ** such as is generated by the OP_MakeRecord opcode. Unpack the |
| 699 ** record and then call BtreeMovetoUnpacked() to do the work. |
| 700 */ |
| 701 static int btreeMoveto( |
| 702 BtCursor *pCur, /* Cursor open on the btree to be searched */ |
| 703 const void *pKey, /* Packed key if the btree is an index */ |
| 704 i64 nKey, /* Integer key for tables. Size of pKey for indices */ |
| 705 int bias, /* Bias search to the high end */ |
| 706 int *pRes /* Write search results here */ |
| 707 ){ |
| 708 int rc; /* Status code */ |
| 709 UnpackedRecord *pIdxKey; /* Unpacked index key */ |
| 710 char aSpace[200]; /* Temp space for pIdxKey - to avoid a malloc */ |
| 711 char *pFree = 0; |
| 712 |
| 713 if( pKey ){ |
| 714 assert( nKey==(i64)(int)nKey ); |
| 715 pIdxKey = sqlite3VdbeAllocUnpackedRecord( |
| 716 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree |
| 717 ); |
| 718 if( pIdxKey==0 ) return SQLITE_NOMEM; |
| 719 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey); |
| 720 if( pIdxKey->nField==0 ){ |
| 721 sqlite3DbFree(pCur->pKeyInfo->db, pFree); |
| 722 return SQLITE_CORRUPT_BKPT; |
| 723 } |
| 724 }else{ |
| 725 pIdxKey = 0; |
| 726 } |
| 727 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes); |
| 728 if( pFree ){ |
| 729 sqlite3DbFree(pCur->pKeyInfo->db, pFree); |
| 730 } |
| 731 return rc; |
| 732 } |
| 733 |
| 734 /* |
| 735 ** Restore the cursor to the position it was in (or as close to as possible) |
| 736 ** when saveCursorPosition() was called. Note that this call deletes the |
| 737 ** saved position info stored by saveCursorPosition(), so there can be |
| 738 ** at most one effective restoreCursorPosition() call after each |
| 739 ** saveCursorPosition(). |
| 740 */ |
| 741 static int btreeRestoreCursorPosition(BtCursor *pCur){ |
| 742 int rc; |
| 743 assert( cursorHoldsMutex(pCur) ); |
| 744 assert( pCur->eState>=CURSOR_REQUIRESEEK ); |
| 745 if( pCur->eState==CURSOR_FAULT ){ |
| 746 return pCur->skipNext; |
| 747 } |
| 748 pCur->eState = CURSOR_INVALID; |
| 749 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext); |
| 750 if( rc==SQLITE_OK ){ |
| 751 sqlite3_free(pCur->pKey); |
| 752 pCur->pKey = 0; |
| 753 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID ); |
| 754 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){ |
| 755 pCur->eState = CURSOR_SKIPNEXT; |
| 756 } |
| 757 } |
| 758 return rc; |
| 759 } |
| 760 |
| 761 #define restoreCursorPosition(p) \ |
| 762 (p->eState>=CURSOR_REQUIRESEEK ? \ |
| 763 btreeRestoreCursorPosition(p) : \ |
| 764 SQLITE_OK) |
| 765 |
| 766 /* |
| 767 ** Determine whether or not a cursor has moved from the position where |
| 768 ** it was last placed, or has been invalidated for any other reason. |
| 769 ** Cursors can move when the row they are pointing at is deleted out |
| 770 ** from under them, for example. Cursor might also move if a btree |
| 771 ** is rebalanced. |
| 772 ** |
| 773 ** Calling this routine with a NULL cursor pointer returns false. |
| 774 ** |
| 775 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor |
| 776 ** back to where it ought to be if this routine returns true. |
| 777 */ |
| 778 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){ |
| 779 return pCur->eState!=CURSOR_VALID; |
| 780 } |
| 781 |
| 782 /* |
| 783 ** This routine restores a cursor back to its original position after it |
| 784 ** has been moved by some outside activity (such as a btree rebalance or |
| 785 ** a row having been deleted out from under the cursor). |
| 786 ** |
| 787 ** On success, the *pDifferentRow parameter is false if the cursor is left |
| 788 ** pointing at exactly the same row. *pDifferntRow is the row the cursor |
| 789 ** was pointing to has been deleted, forcing the cursor to point to some |
| 790 ** nearby row. |
| 791 ** |
| 792 ** This routine should only be called for a cursor that just returned |
| 793 ** TRUE from sqlite3BtreeCursorHasMoved(). |
| 794 */ |
| 795 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){ |
| 796 int rc; |
| 797 |
| 798 assert( pCur!=0 ); |
| 799 assert( pCur->eState!=CURSOR_VALID ); |
| 800 rc = restoreCursorPosition(pCur); |
| 801 if( rc ){ |
| 802 *pDifferentRow = 1; |
| 803 return rc; |
| 804 } |
| 805 if( pCur->eState!=CURSOR_VALID || NEVER(pCur->skipNext!=0) ){ |
| 806 *pDifferentRow = 1; |
| 807 }else{ |
| 808 *pDifferentRow = 0; |
| 809 } |
| 810 return SQLITE_OK; |
| 811 } |
| 812 |
| 813 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 814 /* |
| 815 ** Given a page number of a regular database page, return the page |
| 816 ** number for the pointer-map page that contains the entry for the |
| 817 ** input page number. |
| 818 ** |
| 819 ** Return 0 (not a valid page) for pgno==1 since there is |
| 820 ** no pointer map associated with page 1. The integrity_check logic |
| 821 ** requires that ptrmapPageno(*,1)!=1. |
| 822 */ |
| 823 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){ |
| 824 int nPagesPerMapPage; |
| 825 Pgno iPtrMap, ret; |
| 826 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 827 if( pgno<2 ) return 0; |
| 828 nPagesPerMapPage = (pBt->usableSize/5)+1; |
| 829 iPtrMap = (pgno-2)/nPagesPerMapPage; |
| 830 ret = (iPtrMap*nPagesPerMapPage) + 2; |
| 831 if( ret==PENDING_BYTE_PAGE(pBt) ){ |
| 832 ret++; |
| 833 } |
| 834 return ret; |
| 835 } |
| 836 |
| 837 /* |
| 838 ** Write an entry into the pointer map. |
| 839 ** |
| 840 ** This routine updates the pointer map entry for page number 'key' |
| 841 ** so that it maps to type 'eType' and parent page number 'pgno'. |
| 842 ** |
| 843 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is |
| 844 ** a no-op. If an error occurs, the appropriate error code is written |
| 845 ** into *pRC. |
| 846 */ |
| 847 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){ |
| 848 DbPage *pDbPage; /* The pointer map page */ |
| 849 u8 *pPtrmap; /* The pointer map data */ |
| 850 Pgno iPtrmap; /* The pointer map page number */ |
| 851 int offset; /* Offset in pointer map page */ |
| 852 int rc; /* Return code from subfunctions */ |
| 853 |
| 854 if( *pRC ) return; |
| 855 |
| 856 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 857 /* The master-journal page number must never be used as a pointer map page */ |
| 858 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) ); |
| 859 |
| 860 assert( pBt->autoVacuum ); |
| 861 if( key==0 ){ |
| 862 *pRC = SQLITE_CORRUPT_BKPT; |
| 863 return; |
| 864 } |
| 865 iPtrmap = PTRMAP_PAGENO(pBt, key); |
| 866 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage); |
| 867 if( rc!=SQLITE_OK ){ |
| 868 *pRC = rc; |
| 869 return; |
| 870 } |
| 871 offset = PTRMAP_PTROFFSET(iPtrmap, key); |
| 872 if( offset<0 ){ |
| 873 *pRC = SQLITE_CORRUPT_BKPT; |
| 874 goto ptrmap_exit; |
| 875 } |
| 876 assert( offset <= (int)pBt->usableSize-5 ); |
| 877 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); |
| 878 |
| 879 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){ |
| 880 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent)); |
| 881 *pRC= rc = sqlite3PagerWrite(pDbPage); |
| 882 if( rc==SQLITE_OK ){ |
| 883 pPtrmap[offset] = eType; |
| 884 put4byte(&pPtrmap[offset+1], parent); |
| 885 } |
| 886 } |
| 887 |
| 888 ptrmap_exit: |
| 889 sqlite3PagerUnref(pDbPage); |
| 890 } |
| 891 |
| 892 /* |
| 893 ** Read an entry from the pointer map. |
| 894 ** |
| 895 ** This routine retrieves the pointer map entry for page 'key', writing |
| 896 ** the type and parent page number to *pEType and *pPgno respectively. |
| 897 ** An error code is returned if something goes wrong, otherwise SQLITE_OK. |
| 898 */ |
| 899 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){ |
| 900 DbPage *pDbPage; /* The pointer map page */ |
| 901 int iPtrmap; /* Pointer map page index */ |
| 902 u8 *pPtrmap; /* Pointer map page data */ |
| 903 int offset; /* Offset of entry in pointer map */ |
| 904 int rc; |
| 905 |
| 906 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 907 |
| 908 iPtrmap = PTRMAP_PAGENO(pBt, key); |
| 909 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage); |
| 910 if( rc!=0 ){ |
| 911 return rc; |
| 912 } |
| 913 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); |
| 914 |
| 915 offset = PTRMAP_PTROFFSET(iPtrmap, key); |
| 916 if( offset<0 ){ |
| 917 sqlite3PagerUnref(pDbPage); |
| 918 return SQLITE_CORRUPT_BKPT; |
| 919 } |
| 920 assert( offset <= (int)pBt->usableSize-5 ); |
| 921 assert( pEType!=0 ); |
| 922 *pEType = pPtrmap[offset]; |
| 923 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]); |
| 924 |
| 925 sqlite3PagerUnref(pDbPage); |
| 926 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT; |
| 927 return SQLITE_OK; |
| 928 } |
| 929 |
| 930 #else /* if defined SQLITE_OMIT_AUTOVACUUM */ |
| 931 #define ptrmapPut(w,x,y,z,rc) |
| 932 #define ptrmapGet(w,x,y,z) SQLITE_OK |
| 933 #define ptrmapPutOvflPtr(x, y, rc) |
| 934 #endif |
| 935 |
| 936 /* |
| 937 ** Given a btree page and a cell index (0 means the first cell on |
| 938 ** the page, 1 means the second cell, and so forth) return a pointer |
| 939 ** to the cell content. |
| 940 ** |
| 941 ** This routine works only for pages that do not contain overflow cells. |
| 942 */ |
| 943 #define findCell(P,I) \ |
| 944 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)]))) |
| 945 #define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I))))) |
| 946 |
| 947 |
| 948 /* |
| 949 ** This a more complex version of findCell() that works for |
| 950 ** pages that do contain overflow cells. |
| 951 */ |
| 952 static u8 *findOverflowCell(MemPage *pPage, int iCell){ |
| 953 int i; |
| 954 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 955 for(i=pPage->nOverflow-1; i>=0; i--){ |
| 956 int k; |
| 957 k = pPage->aiOvfl[i]; |
| 958 if( k<=iCell ){ |
| 959 if( k==iCell ){ |
| 960 return pPage->apOvfl[i]; |
| 961 } |
| 962 iCell--; |
| 963 } |
| 964 } |
| 965 return findCell(pPage, iCell); |
| 966 } |
| 967 |
| 968 /* |
| 969 ** Parse a cell content block and fill in the CellInfo structure. There |
| 970 ** are two versions of this function. btreeParseCell() takes a |
| 971 ** cell index as the second argument and btreeParseCellPtr() |
| 972 ** takes a pointer to the body of the cell as its second argument. |
| 973 */ |
| 974 static void btreeParseCellPtr( |
| 975 MemPage *pPage, /* Page containing the cell */ |
| 976 u8 *pCell, /* Pointer to the cell text. */ |
| 977 CellInfo *pInfo /* Fill in this structure */ |
| 978 ){ |
| 979 u8 *pIter; /* For scanning through pCell */ |
| 980 u32 nPayload; /* Number of bytes of cell payload */ |
| 981 |
| 982 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 983 assert( pPage->leaf==0 || pPage->leaf==1 ); |
| 984 if( pPage->intKeyLeaf ){ |
| 985 assert( pPage->childPtrSize==0 ); |
| 986 pIter = pCell + getVarint32(pCell, nPayload); |
| 987 pIter += getVarint(pIter, (u64*)&pInfo->nKey); |
| 988 }else if( pPage->noPayload ){ |
| 989 assert( pPage->childPtrSize==4 ); |
| 990 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey); |
| 991 pInfo->nPayload = 0; |
| 992 pInfo->nLocal = 0; |
| 993 pInfo->iOverflow = 0; |
| 994 pInfo->pPayload = 0; |
| 995 return; |
| 996 }else{ |
| 997 pIter = pCell + pPage->childPtrSize; |
| 998 pIter += getVarint32(pIter, nPayload); |
| 999 pInfo->nKey = nPayload; |
| 1000 } |
| 1001 pInfo->nPayload = nPayload; |
| 1002 pInfo->pPayload = pIter; |
| 1003 testcase( nPayload==pPage->maxLocal ); |
| 1004 testcase( nPayload==pPage->maxLocal+1 ); |
| 1005 if( nPayload<=pPage->maxLocal ){ |
| 1006 /* This is the (easy) common case where the entire payload fits |
| 1007 ** on the local page. No overflow is required. |
| 1008 */ |
| 1009 pInfo->nSize = nPayload + (u16)(pIter - pCell); |
| 1010 if( pInfo->nSize<4 ) pInfo->nSize = 4; |
| 1011 pInfo->nLocal = (u16)nPayload; |
| 1012 pInfo->iOverflow = 0; |
| 1013 }else{ |
| 1014 /* If the payload will not fit completely on the local page, we have |
| 1015 ** to decide how much to store locally and how much to spill onto |
| 1016 ** overflow pages. The strategy is to minimize the amount of unused |
| 1017 ** space on overflow pages while keeping the amount of local storage |
| 1018 ** in between minLocal and maxLocal. |
| 1019 ** |
| 1020 ** Warning: changing the way overflow payload is distributed in any |
| 1021 ** way will result in an incompatible file format. |
| 1022 */ |
| 1023 int minLocal; /* Minimum amount of payload held locally */ |
| 1024 int maxLocal; /* Maximum amount of payload held locally */ |
| 1025 int surplus; /* Overflow payload available for local storage */ |
| 1026 |
| 1027 minLocal = pPage->minLocal; |
| 1028 maxLocal = pPage->maxLocal; |
| 1029 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4); |
| 1030 testcase( surplus==maxLocal ); |
| 1031 testcase( surplus==maxLocal+1 ); |
| 1032 if( surplus <= maxLocal ){ |
| 1033 pInfo->nLocal = (u16)surplus; |
| 1034 }else{ |
| 1035 pInfo->nLocal = (u16)minLocal; |
| 1036 } |
| 1037 pInfo->iOverflow = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell); |
| 1038 pInfo->nSize = pInfo->iOverflow + 4; |
| 1039 } |
| 1040 } |
| 1041 static void btreeParseCell( |
| 1042 MemPage *pPage, /* Page containing the cell */ |
| 1043 int iCell, /* The cell index. First cell is 0 */ |
| 1044 CellInfo *pInfo /* Fill in this structure */ |
| 1045 ){ |
| 1046 btreeParseCellPtr(pPage, findCell(pPage, iCell), pInfo); |
| 1047 } |
| 1048 |
| 1049 /* |
| 1050 ** Compute the total number of bytes that a Cell needs in the cell |
| 1051 ** data area of the btree-page. The return number includes the cell |
| 1052 ** data header and the local payload, but not any overflow page or |
| 1053 ** the space used by the cell pointer. |
| 1054 */ |
| 1055 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){ |
| 1056 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */ |
| 1057 u8 *pEnd; /* End mark for a varint */ |
| 1058 u32 nSize; /* Size value to return */ |
| 1059 |
| 1060 #ifdef SQLITE_DEBUG |
| 1061 /* The value returned by this function should always be the same as |
| 1062 ** the (CellInfo.nSize) value found by doing a full parse of the |
| 1063 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of |
| 1064 ** this function verifies that this invariant is not violated. */ |
| 1065 CellInfo debuginfo; |
| 1066 btreeParseCellPtr(pPage, pCell, &debuginfo); |
| 1067 #endif |
| 1068 |
| 1069 if( pPage->noPayload ){ |
| 1070 pEnd = &pIter[9]; |
| 1071 while( (*pIter++)&0x80 && pIter<pEnd ); |
| 1072 assert( pPage->childPtrSize==4 ); |
| 1073 return (u16)(pIter - pCell); |
| 1074 } |
| 1075 nSize = *pIter; |
| 1076 if( nSize>=0x80 ){ |
| 1077 pEnd = &pIter[9]; |
| 1078 nSize &= 0x7f; |
| 1079 do{ |
| 1080 nSize = (nSize<<7) | (*++pIter & 0x7f); |
| 1081 }while( *(pIter)>=0x80 && pIter<pEnd ); |
| 1082 } |
| 1083 pIter++; |
| 1084 if( pPage->intKey ){ |
| 1085 /* pIter now points at the 64-bit integer key value, a variable length |
| 1086 ** integer. The following block moves pIter to point at the first byte |
| 1087 ** past the end of the key value. */ |
| 1088 pEnd = &pIter[9]; |
| 1089 while( (*pIter++)&0x80 && pIter<pEnd ); |
| 1090 } |
| 1091 testcase( nSize==pPage->maxLocal ); |
| 1092 testcase( nSize==pPage->maxLocal+1 ); |
| 1093 if( nSize<=pPage->maxLocal ){ |
| 1094 nSize += (u32)(pIter - pCell); |
| 1095 if( nSize<4 ) nSize = 4; |
| 1096 }else{ |
| 1097 int minLocal = pPage->minLocal; |
| 1098 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); |
| 1099 testcase( nSize==pPage->maxLocal ); |
| 1100 testcase( nSize==pPage->maxLocal+1 ); |
| 1101 if( nSize>pPage->maxLocal ){ |
| 1102 nSize = minLocal; |
| 1103 } |
| 1104 nSize += 4 + (u16)(pIter - pCell); |
| 1105 } |
| 1106 assert( nSize==debuginfo.nSize || CORRUPT_DB ); |
| 1107 return (u16)nSize; |
| 1108 } |
| 1109 |
| 1110 #ifdef SQLITE_DEBUG |
| 1111 /* This variation on cellSizePtr() is used inside of assert() statements |
| 1112 ** only. */ |
| 1113 static u16 cellSize(MemPage *pPage, int iCell){ |
| 1114 return cellSizePtr(pPage, findCell(pPage, iCell)); |
| 1115 } |
| 1116 #endif |
| 1117 |
| 1118 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 1119 /* |
| 1120 ** If the cell pCell, part of page pPage contains a pointer |
| 1121 ** to an overflow page, insert an entry into the pointer-map |
| 1122 ** for the overflow page. |
| 1123 */ |
| 1124 static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){ |
| 1125 CellInfo info; |
| 1126 if( *pRC ) return; |
| 1127 assert( pCell!=0 ); |
| 1128 btreeParseCellPtr(pPage, pCell, &info); |
| 1129 if( info.iOverflow ){ |
| 1130 Pgno ovfl = get4byte(&pCell[info.iOverflow]); |
| 1131 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC); |
| 1132 } |
| 1133 } |
| 1134 #endif |
| 1135 |
| 1136 |
| 1137 /* |
| 1138 ** Defragment the page given. All Cells are moved to the |
| 1139 ** end of the page and all free space is collected into one |
| 1140 ** big FreeBlk that occurs in between the header and cell |
| 1141 ** pointer array and the cell content area. |
| 1142 */ |
| 1143 static int defragmentPage(MemPage *pPage){ |
| 1144 int i; /* Loop counter */ |
| 1145 int pc; /* Address of the i-th cell */ |
| 1146 int hdr; /* Offset to the page header */ |
| 1147 int size; /* Size of a cell */ |
| 1148 int usableSize; /* Number of usable bytes on a page */ |
| 1149 int cellOffset; /* Offset to the cell pointer array */ |
| 1150 int cbrk; /* Offset to the cell content area */ |
| 1151 int nCell; /* Number of cells on the page */ |
| 1152 unsigned char *data; /* The page data */ |
| 1153 unsigned char *temp; /* Temp area for cell content */ |
| 1154 int iCellFirst; /* First allowable cell index */ |
| 1155 int iCellLast; /* Last possible cell index */ |
| 1156 |
| 1157 |
| 1158 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
| 1159 assert( pPage->pBt!=0 ); |
| 1160 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); |
| 1161 assert( pPage->nOverflow==0 ); |
| 1162 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 1163 temp = sqlite3PagerTempSpace(pPage->pBt->pPager); |
| 1164 data = pPage->aData; |
| 1165 hdr = pPage->hdrOffset; |
| 1166 cellOffset = pPage->cellOffset; |
| 1167 nCell = pPage->nCell; |
| 1168 assert( nCell==get2byte(&data[hdr+3]) ); |
| 1169 usableSize = pPage->pBt->usableSize; |
| 1170 cbrk = get2byte(&data[hdr+5]); |
| 1171 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk); |
| 1172 cbrk = usableSize; |
| 1173 iCellFirst = cellOffset + 2*nCell; |
| 1174 iCellLast = usableSize - 4; |
| 1175 for(i=0; i<nCell; i++){ |
| 1176 u8 *pAddr; /* The i-th cell pointer */ |
| 1177 pAddr = &data[cellOffset + i*2]; |
| 1178 pc = get2byte(pAddr); |
| 1179 testcase( pc==iCellFirst ); |
| 1180 testcase( pc==iCellLast ); |
| 1181 #if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK) |
| 1182 /* These conditions have already been verified in btreeInitPage() |
| 1183 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined |
| 1184 */ |
| 1185 if( pc<iCellFirst || pc>iCellLast ){ |
| 1186 return SQLITE_CORRUPT_BKPT; |
| 1187 } |
| 1188 #endif |
| 1189 assert( pc>=iCellFirst && pc<=iCellLast ); |
| 1190 size = cellSizePtr(pPage, &temp[pc]); |
| 1191 cbrk -= size; |
| 1192 #if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK) |
| 1193 if( cbrk<iCellFirst ){ |
| 1194 return SQLITE_CORRUPT_BKPT; |
| 1195 } |
| 1196 #else |
| 1197 if( cbrk<iCellFirst || pc+size>usableSize ){ |
| 1198 return SQLITE_CORRUPT_BKPT; |
| 1199 } |
| 1200 #endif |
| 1201 assert( cbrk+size<=usableSize && cbrk>=iCellFirst ); |
| 1202 testcase( cbrk+size==usableSize ); |
| 1203 testcase( pc+size==usableSize ); |
| 1204 memcpy(&data[cbrk], &temp[pc], size); |
| 1205 put2byte(pAddr, cbrk); |
| 1206 } |
| 1207 assert( cbrk>=iCellFirst ); |
| 1208 put2byte(&data[hdr+5], cbrk); |
| 1209 data[hdr+1] = 0; |
| 1210 data[hdr+2] = 0; |
| 1211 data[hdr+7] = 0; |
| 1212 memset(&data[iCellFirst], 0, cbrk-iCellFirst); |
| 1213 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
| 1214 if( cbrk-iCellFirst!=pPage->nFree ){ |
| 1215 return SQLITE_CORRUPT_BKPT; |
| 1216 } |
| 1217 return SQLITE_OK; |
| 1218 } |
| 1219 |
| 1220 /* |
| 1221 ** Allocate nByte bytes of space from within the B-Tree page passed |
| 1222 ** as the first argument. Write into *pIdx the index into pPage->aData[] |
| 1223 ** of the first byte of allocated space. Return either SQLITE_OK or |
| 1224 ** an error code (usually SQLITE_CORRUPT). |
| 1225 ** |
| 1226 ** The caller guarantees that there is sufficient space to make the |
| 1227 ** allocation. This routine might need to defragment in order to bring |
| 1228 ** all the space together, however. This routine will avoid using |
| 1229 ** the first two bytes past the cell pointer area since presumably this |
| 1230 ** allocation is being made in order to insert a new cell, so we will |
| 1231 ** also end up needing a new cell pointer. |
| 1232 */ |
| 1233 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){ |
| 1234 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */ |
| 1235 u8 * const data = pPage->aData; /* Local cache of pPage->aData */ |
| 1236 int top; /* First byte of cell content area */ |
| 1237 int gap; /* First byte of gap between cell pointers and cell content */ |
| 1238 int rc; /* Integer return code */ |
| 1239 int usableSize; /* Usable size of the page */ |
| 1240 |
| 1241 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
| 1242 assert( pPage->pBt ); |
| 1243 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 1244 assert( nByte>=0 ); /* Minimum cell size is 4 */ |
| 1245 assert( pPage->nFree>=nByte ); |
| 1246 assert( pPage->nOverflow==0 ); |
| 1247 usableSize = pPage->pBt->usableSize; |
| 1248 assert( nByte < usableSize-8 ); |
| 1249 |
| 1250 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf ); |
| 1251 gap = pPage->cellOffset + 2*pPage->nCell; |
| 1252 assert( gap<=65536 ); |
| 1253 top = get2byte(&data[hdr+5]); |
| 1254 if( gap>top ){ |
| 1255 if( top==0 ){ |
| 1256 top = 65536; |
| 1257 }else{ |
| 1258 return SQLITE_CORRUPT_BKPT; |
| 1259 } |
| 1260 } |
| 1261 |
| 1262 /* If there is enough space between gap and top for one more cell pointer |
| 1263 ** array entry offset, and if the freelist is not empty, then search the |
| 1264 ** freelist looking for a free slot big enough to satisfy the request. |
| 1265 */ |
| 1266 testcase( gap+2==top ); |
| 1267 testcase( gap+1==top ); |
| 1268 testcase( gap==top ); |
| 1269 if( gap+2<=top && (data[hdr+1] || data[hdr+2]) ){ |
| 1270 int pc, addr; |
| 1271 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){ |
| 1272 int size; /* Size of the free slot */ |
| 1273 if( pc>usableSize-4 || pc<addr+4 ){ |
| 1274 return SQLITE_CORRUPT_BKPT; |
| 1275 } |
| 1276 size = get2byte(&data[pc+2]); |
| 1277 if( size>=nByte ){ |
| 1278 int x = size - nByte; |
| 1279 testcase( x==4 ); |
| 1280 testcase( x==3 ); |
| 1281 if( x<4 ){ |
| 1282 if( data[hdr+7]>=60 ) goto defragment_page; |
| 1283 /* Remove the slot from the free-list. Update the number of |
| 1284 ** fragmented bytes within the page. */ |
| 1285 memcpy(&data[addr], &data[pc], 2); |
| 1286 data[hdr+7] += (u8)x; |
| 1287 }else if( size+pc > usableSize ){ |
| 1288 return SQLITE_CORRUPT_BKPT; |
| 1289 }else{ |
| 1290 /* The slot remains on the free-list. Reduce its size to account |
| 1291 ** for the portion used by the new allocation. */ |
| 1292 put2byte(&data[pc+2], x); |
| 1293 } |
| 1294 *pIdx = pc + x; |
| 1295 return SQLITE_OK; |
| 1296 } |
| 1297 } |
| 1298 } |
| 1299 |
| 1300 /* The request could not be fulfilled using a freelist slot. Check |
| 1301 ** to see if defragmentation is necessary. |
| 1302 */ |
| 1303 testcase( gap+2+nByte==top ); |
| 1304 if( gap+2+nByte>top ){ |
| 1305 defragment_page: |
| 1306 testcase( pPage->nCell==0 ); |
| 1307 rc = defragmentPage(pPage); |
| 1308 if( rc ) return rc; |
| 1309 top = get2byteNotZero(&data[hdr+5]); |
| 1310 assert( gap+nByte<=top ); |
| 1311 } |
| 1312 |
| 1313 |
| 1314 /* Allocate memory from the gap in between the cell pointer array |
| 1315 ** and the cell content area. The btreeInitPage() call has already |
| 1316 ** validated the freelist. Given that the freelist is valid, there |
| 1317 ** is no way that the allocation can extend off the end of the page. |
| 1318 ** The assert() below verifies the previous sentence. |
| 1319 */ |
| 1320 top -= nByte; |
| 1321 put2byte(&data[hdr+5], top); |
| 1322 assert( top+nByte <= (int)pPage->pBt->usableSize ); |
| 1323 *pIdx = top; |
| 1324 return SQLITE_OK; |
| 1325 } |
| 1326 |
| 1327 /* |
| 1328 ** Return a section of the pPage->aData to the freelist. |
| 1329 ** The first byte of the new free block is pPage->aData[iStart] |
| 1330 ** and the size of the block is iSize bytes. |
| 1331 ** |
| 1332 ** Adjacent freeblocks are coalesced. |
| 1333 ** |
| 1334 ** Note that even though the freeblock list was checked by btreeInitPage(), |
| 1335 ** that routine will not detect overlap between cells or freeblocks. Nor |
| 1336 ** does it detect cells or freeblocks that encrouch into the reserved bytes |
| 1337 ** at the end of the page. So do additional corruption checks inside this |
| 1338 ** routine and return SQLITE_CORRUPT if any problems are found. |
| 1339 */ |
| 1340 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){ |
| 1341 u16 iPtr; /* Address of ptr to next freeblock */ |
| 1342 u16 iFreeBlk; /* Address of the next freeblock */ |
| 1343 u8 hdr; /* Page header size. 0 or 100 */ |
| 1344 u8 nFrag = 0; /* Reduction in fragmentation */ |
| 1345 u16 iOrigSize = iSize; /* Original value of iSize */ |
| 1346 u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */ |
| 1347 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */ |
| 1348 unsigned char *data = pPage->aData; /* Page content */ |
| 1349 |
| 1350 assert( pPage->pBt!=0 ); |
| 1351 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
| 1352 assert( iStart>=pPage->hdrOffset+6+pPage->childPtrSize ); |
| 1353 assert( iEnd <= pPage->pBt->usableSize ); |
| 1354 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 1355 assert( iSize>=4 ); /* Minimum cell size is 4 */ |
| 1356 assert( iStart<=iLast ); |
| 1357 |
| 1358 /* Overwrite deleted information with zeros when the secure_delete |
| 1359 ** option is enabled */ |
| 1360 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){ |
| 1361 memset(&data[iStart], 0, iSize); |
| 1362 } |
| 1363 |
| 1364 /* The list of freeblocks must be in ascending order. Find the |
| 1365 ** spot on the list where iStart should be inserted. |
| 1366 */ |
| 1367 hdr = pPage->hdrOffset; |
| 1368 iPtr = hdr + 1; |
| 1369 if( data[iPtr+1]==0 && data[iPtr]==0 ){ |
| 1370 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */ |
| 1371 }else{ |
| 1372 while( (iFreeBlk = get2byte(&data[iPtr]))>0 && iFreeBlk<iStart ){ |
| 1373 if( iFreeBlk<iPtr+4 ) return SQLITE_CORRUPT_BKPT; |
| 1374 iPtr = iFreeBlk; |
| 1375 } |
| 1376 if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT; |
| 1377 assert( iFreeBlk>iPtr || iFreeBlk==0 ); |
| 1378 |
| 1379 /* At this point: |
| 1380 ** iFreeBlk: First freeblock after iStart, or zero if none |
| 1381 ** iPtr: The address of a pointer iFreeBlk |
| 1382 ** |
| 1383 ** Check to see if iFreeBlk should be coalesced onto the end of iStart. |
| 1384 */ |
| 1385 if( iFreeBlk && iEnd+3>=iFreeBlk ){ |
| 1386 nFrag = iFreeBlk - iEnd; |
| 1387 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT; |
| 1388 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]); |
| 1389 iSize = iEnd - iStart; |
| 1390 iFreeBlk = get2byte(&data[iFreeBlk]); |
| 1391 } |
| 1392 |
| 1393 /* If iPtr is another freeblock (that is, if iPtr is not the freelist |
| 1394 ** pointer in the page header) then check to see if iStart should be |
| 1395 ** coalesced onto the end of iPtr. |
| 1396 */ |
| 1397 if( iPtr>hdr+1 ){ |
| 1398 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]); |
| 1399 if( iPtrEnd+3>=iStart ){ |
| 1400 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT; |
| 1401 nFrag += iStart - iPtrEnd; |
| 1402 iSize = iEnd - iPtr; |
| 1403 iStart = iPtr; |
| 1404 } |
| 1405 } |
| 1406 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT; |
| 1407 data[hdr+7] -= nFrag; |
| 1408 } |
| 1409 if( iStart==get2byte(&data[hdr+5]) ){ |
| 1410 /* The new freeblock is at the beginning of the cell content area, |
| 1411 ** so just extend the cell content area rather than create another |
| 1412 ** freelist entry */ |
| 1413 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT; |
| 1414 put2byte(&data[hdr+1], iFreeBlk); |
| 1415 put2byte(&data[hdr+5], iEnd); |
| 1416 }else{ |
| 1417 /* Insert the new freeblock into the freelist */ |
| 1418 put2byte(&data[iPtr], iStart); |
| 1419 put2byte(&data[iStart], iFreeBlk); |
| 1420 put2byte(&data[iStart+2], iSize); |
| 1421 } |
| 1422 pPage->nFree += iOrigSize; |
| 1423 return SQLITE_OK; |
| 1424 } |
| 1425 |
| 1426 /* |
| 1427 ** Decode the flags byte (the first byte of the header) for a page |
| 1428 ** and initialize fields of the MemPage structure accordingly. |
| 1429 ** |
| 1430 ** Only the following combinations are supported. Anything different |
| 1431 ** indicates a corrupt database files: |
| 1432 ** |
| 1433 ** PTF_ZERODATA |
| 1434 ** PTF_ZERODATA | PTF_LEAF |
| 1435 ** PTF_LEAFDATA | PTF_INTKEY |
| 1436 ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF |
| 1437 */ |
| 1438 static int decodeFlags(MemPage *pPage, int flagByte){ |
| 1439 BtShared *pBt; /* A copy of pPage->pBt */ |
| 1440 |
| 1441 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); |
| 1442 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 1443 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 ); |
| 1444 flagByte &= ~PTF_LEAF; |
| 1445 pPage->childPtrSize = 4-4*pPage->leaf; |
| 1446 pBt = pPage->pBt; |
| 1447 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){ |
| 1448 pPage->intKey = 1; |
| 1449 pPage->intKeyLeaf = pPage->leaf; |
| 1450 pPage->noPayload = !pPage->leaf; |
| 1451 pPage->maxLocal = pBt->maxLeaf; |
| 1452 pPage->minLocal = pBt->minLeaf; |
| 1453 }else if( flagByte==PTF_ZERODATA ){ |
| 1454 pPage->intKey = 0; |
| 1455 pPage->intKeyLeaf = 0; |
| 1456 pPage->noPayload = 0; |
| 1457 pPage->maxLocal = pBt->maxLocal; |
| 1458 pPage->minLocal = pBt->minLocal; |
| 1459 }else{ |
| 1460 return SQLITE_CORRUPT_BKPT; |
| 1461 } |
| 1462 pPage->max1bytePayload = pBt->max1bytePayload; |
| 1463 return SQLITE_OK; |
| 1464 } |
| 1465 |
| 1466 /* |
| 1467 ** Initialize the auxiliary information for a disk block. |
| 1468 ** |
| 1469 ** Return SQLITE_OK on success. If we see that the page does |
| 1470 ** not contain a well-formed database page, then return |
| 1471 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not |
| 1472 ** guarantee that the page is well-formed. It only shows that |
| 1473 ** we failed to detect any corruption. |
| 1474 */ |
| 1475 static int btreeInitPage(MemPage *pPage){ |
| 1476 |
| 1477 assert( pPage->pBt!=0 ); |
| 1478 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 1479 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); |
| 1480 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); |
| 1481 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); |
| 1482 |
| 1483 if( !pPage->isInit ){ |
| 1484 u16 pc; /* Address of a freeblock within pPage->aData[] */ |
| 1485 u8 hdr; /* Offset to beginning of page header */ |
| 1486 u8 *data; /* Equal to pPage->aData */ |
| 1487 BtShared *pBt; /* The main btree structure */ |
| 1488 int usableSize; /* Amount of usable space on each page */ |
| 1489 u16 cellOffset; /* Offset from start of page to first cell pointer */ |
| 1490 int nFree; /* Number of unused bytes on the page */ |
| 1491 int top; /* First byte of the cell content area */ |
| 1492 int iCellFirst; /* First allowable cell or freeblock offset */ |
| 1493 int iCellLast; /* Last possible cell or freeblock offset */ |
| 1494 |
| 1495 pBt = pPage->pBt; |
| 1496 |
| 1497 hdr = pPage->hdrOffset; |
| 1498 data = pPage->aData; |
| 1499 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT; |
| 1500 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); |
| 1501 pPage->maskPage = (u16)(pBt->pageSize - 1); |
| 1502 pPage->nOverflow = 0; |
| 1503 usableSize = pBt->usableSize; |
| 1504 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf; |
| 1505 pPage->aDataEnd = &data[usableSize]; |
| 1506 pPage->aCellIdx = &data[cellOffset]; |
| 1507 top = get2byteNotZero(&data[hdr+5]); |
| 1508 pPage->nCell = get2byte(&data[hdr+3]); |
| 1509 if( pPage->nCell>MX_CELL(pBt) ){ |
| 1510 /* To many cells for a single page. The page must be corrupt */ |
| 1511 return SQLITE_CORRUPT_BKPT; |
| 1512 } |
| 1513 testcase( pPage->nCell==MX_CELL(pBt) ); |
| 1514 |
| 1515 /* A malformed database page might cause us to read past the end |
| 1516 ** of page when parsing a cell. |
| 1517 ** |
| 1518 ** The following block of code checks early to see if a cell extends |
| 1519 ** past the end of a page boundary and causes SQLITE_CORRUPT to be |
| 1520 ** returned if it does. |
| 1521 */ |
| 1522 iCellFirst = cellOffset + 2*pPage->nCell; |
| 1523 iCellLast = usableSize - 4; |
| 1524 #if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK) |
| 1525 { |
| 1526 int i; /* Index into the cell pointer array */ |
| 1527 int sz; /* Size of a cell */ |
| 1528 |
| 1529 if( !pPage->leaf ) iCellLast--; |
| 1530 for(i=0; i<pPage->nCell; i++){ |
| 1531 pc = get2byte(&data[cellOffset+i*2]); |
| 1532 testcase( pc==iCellFirst ); |
| 1533 testcase( pc==iCellLast ); |
| 1534 if( pc<iCellFirst || pc>iCellLast ){ |
| 1535 return SQLITE_CORRUPT_BKPT; |
| 1536 } |
| 1537 sz = cellSizePtr(pPage, &data[pc]); |
| 1538 testcase( pc+sz==usableSize ); |
| 1539 if( pc+sz>usableSize ){ |
| 1540 return SQLITE_CORRUPT_BKPT; |
| 1541 } |
| 1542 } |
| 1543 if( !pPage->leaf ) iCellLast++; |
| 1544 } |
| 1545 #endif |
| 1546 |
| 1547 /* Compute the total free space on the page */ |
| 1548 pc = get2byte(&data[hdr+1]); |
| 1549 nFree = data[hdr+7] + top; |
| 1550 while( pc>0 ){ |
| 1551 u16 next, size; |
| 1552 if( pc<iCellFirst || pc>iCellLast ){ |
| 1553 /* Start of free block is off the page */ |
| 1554 return SQLITE_CORRUPT_BKPT; |
| 1555 } |
| 1556 next = get2byte(&data[pc]); |
| 1557 size = get2byte(&data[pc+2]); |
| 1558 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){ |
| 1559 /* Free blocks must be in ascending order. And the last byte of |
| 1560 ** the free-block must lie on the database page. */ |
| 1561 return SQLITE_CORRUPT_BKPT; |
| 1562 } |
| 1563 nFree = nFree + size; |
| 1564 pc = next; |
| 1565 } |
| 1566 |
| 1567 /* At this point, nFree contains the sum of the offset to the start |
| 1568 ** of the cell-content area plus the number of free bytes within |
| 1569 ** the cell-content area. If this is greater than the usable-size |
| 1570 ** of the page, then the page must be corrupted. This check also |
| 1571 ** serves to verify that the offset to the start of the cell-content |
| 1572 ** area, according to the page header, lies within the page. |
| 1573 */ |
| 1574 if( nFree>usableSize ){ |
| 1575 return SQLITE_CORRUPT_BKPT; |
| 1576 } |
| 1577 pPage->nFree = (u16)(nFree - iCellFirst); |
| 1578 pPage->isInit = 1; |
| 1579 } |
| 1580 return SQLITE_OK; |
| 1581 } |
| 1582 |
| 1583 /* |
| 1584 ** Set up a raw page so that it looks like a database page holding |
| 1585 ** no entries. |
| 1586 */ |
| 1587 static void zeroPage(MemPage *pPage, int flags){ |
| 1588 unsigned char *data = pPage->aData; |
| 1589 BtShared *pBt = pPage->pBt; |
| 1590 u8 hdr = pPage->hdrOffset; |
| 1591 u16 first; |
| 1592 |
| 1593 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno ); |
| 1594 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); |
| 1595 assert( sqlite3PagerGetData(pPage->pDbPage) == data ); |
| 1596 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
| 1597 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 1598 if( pBt->btsFlags & BTS_SECURE_DELETE ){ |
| 1599 memset(&data[hdr], 0, pBt->usableSize - hdr); |
| 1600 } |
| 1601 data[hdr] = (char)flags; |
| 1602 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8); |
| 1603 memset(&data[hdr+1], 0, 4); |
| 1604 data[hdr+7] = 0; |
| 1605 put2byte(&data[hdr+5], pBt->usableSize); |
| 1606 pPage->nFree = (u16)(pBt->usableSize - first); |
| 1607 decodeFlags(pPage, flags); |
| 1608 pPage->cellOffset = first; |
| 1609 pPage->aDataEnd = &data[pBt->usableSize]; |
| 1610 pPage->aCellIdx = &data[first]; |
| 1611 pPage->nOverflow = 0; |
| 1612 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); |
| 1613 pPage->maskPage = (u16)(pBt->pageSize - 1); |
| 1614 pPage->nCell = 0; |
| 1615 pPage->isInit = 1; |
| 1616 } |
| 1617 |
| 1618 |
| 1619 /* |
| 1620 ** Convert a DbPage obtained from the pager into a MemPage used by |
| 1621 ** the btree layer. |
| 1622 */ |
| 1623 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){ |
| 1624 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); |
| 1625 pPage->aData = sqlite3PagerGetData(pDbPage); |
| 1626 pPage->pDbPage = pDbPage; |
| 1627 pPage->pBt = pBt; |
| 1628 pPage->pgno = pgno; |
| 1629 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0; |
| 1630 return pPage; |
| 1631 } |
| 1632 |
| 1633 /* |
| 1634 ** Get a page from the pager. Initialize the MemPage.pBt and |
| 1635 ** MemPage.aData elements if needed. |
| 1636 ** |
| 1637 ** If the noContent flag is set, it means that we do not care about |
| 1638 ** the content of the page at this time. So do not go to the disk |
| 1639 ** to fetch the content. Just fill in the content with zeros for now. |
| 1640 ** If in the future we call sqlite3PagerWrite() on this page, that |
| 1641 ** means we have started to be concerned about content and the disk |
| 1642 ** read should occur at that point. |
| 1643 */ |
| 1644 static int btreeGetPage( |
| 1645 BtShared *pBt, /* The btree */ |
| 1646 Pgno pgno, /* Number of the page to fetch */ |
| 1647 MemPage **ppPage, /* Return the page in this parameter */ |
| 1648 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ |
| 1649 ){ |
| 1650 int rc; |
| 1651 DbPage *pDbPage; |
| 1652 |
| 1653 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY ); |
| 1654 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 1655 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, flags); |
| 1656 if( rc ) return rc; |
| 1657 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt); |
| 1658 return SQLITE_OK; |
| 1659 } |
| 1660 |
| 1661 /* |
| 1662 ** Retrieve a page from the pager cache. If the requested page is not |
| 1663 ** already in the pager cache return NULL. Initialize the MemPage.pBt and |
| 1664 ** MemPage.aData elements if needed. |
| 1665 */ |
| 1666 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){ |
| 1667 DbPage *pDbPage; |
| 1668 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 1669 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno); |
| 1670 if( pDbPage ){ |
| 1671 return btreePageFromDbPage(pDbPage, pgno, pBt); |
| 1672 } |
| 1673 return 0; |
| 1674 } |
| 1675 |
| 1676 /* |
| 1677 ** Return the size of the database file in pages. If there is any kind of |
| 1678 ** error, return ((unsigned int)-1). |
| 1679 */ |
| 1680 static Pgno btreePagecount(BtShared *pBt){ |
| 1681 return pBt->nPage; |
| 1682 } |
| 1683 u32 sqlite3BtreeLastPage(Btree *p){ |
| 1684 assert( sqlite3BtreeHoldsMutex(p) ); |
| 1685 assert( ((p->pBt->nPage)&0x8000000)==0 ); |
| 1686 return btreePagecount(p->pBt); |
| 1687 } |
| 1688 |
| 1689 /* |
| 1690 ** Get a page from the pager and initialize it. This routine is just a |
| 1691 ** convenience wrapper around separate calls to btreeGetPage() and |
| 1692 ** btreeInitPage(). |
| 1693 ** |
| 1694 ** If an error occurs, then the value *ppPage is set to is undefined. It |
| 1695 ** may remain unchanged, or it may be set to an invalid value. |
| 1696 */ |
| 1697 static int getAndInitPage( |
| 1698 BtShared *pBt, /* The database file */ |
| 1699 Pgno pgno, /* Number of the page to get */ |
| 1700 MemPage **ppPage, /* Write the page pointer here */ |
| 1701 int bReadonly /* PAGER_GET_READONLY or 0 */ |
| 1702 ){ |
| 1703 int rc; |
| 1704 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 1705 assert( bReadonly==PAGER_GET_READONLY || bReadonly==0 ); |
| 1706 |
| 1707 if( pgno>btreePagecount(pBt) ){ |
| 1708 rc = SQLITE_CORRUPT_BKPT; |
| 1709 }else{ |
| 1710 rc = btreeGetPage(pBt, pgno, ppPage, bReadonly); |
| 1711 if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){ |
| 1712 rc = btreeInitPage(*ppPage); |
| 1713 if( rc!=SQLITE_OK ){ |
| 1714 releasePage(*ppPage); |
| 1715 } |
| 1716 } |
| 1717 } |
| 1718 |
| 1719 testcase( pgno==0 ); |
| 1720 assert( pgno!=0 || rc==SQLITE_CORRUPT ); |
| 1721 return rc; |
| 1722 } |
| 1723 |
| 1724 /* |
| 1725 ** Release a MemPage. This should be called once for each prior |
| 1726 ** call to btreeGetPage. |
| 1727 */ |
| 1728 static void releasePage(MemPage *pPage){ |
| 1729 if( pPage ){ |
| 1730 assert( pPage->aData ); |
| 1731 assert( pPage->pBt ); |
| 1732 assert( pPage->pDbPage!=0 ); |
| 1733 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); |
| 1734 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); |
| 1735 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 1736 sqlite3PagerUnrefNotNull(pPage->pDbPage); |
| 1737 } |
| 1738 } |
| 1739 |
| 1740 /* |
| 1741 ** During a rollback, when the pager reloads information into the cache |
| 1742 ** so that the cache is restored to its original state at the start of |
| 1743 ** the transaction, for each page restored this routine is called. |
| 1744 ** |
| 1745 ** This routine needs to reset the extra data section at the end of the |
| 1746 ** page to agree with the restored data. |
| 1747 */ |
| 1748 static void pageReinit(DbPage *pData){ |
| 1749 MemPage *pPage; |
| 1750 pPage = (MemPage *)sqlite3PagerGetExtra(pData); |
| 1751 assert( sqlite3PagerPageRefcount(pData)>0 ); |
| 1752 if( pPage->isInit ){ |
| 1753 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 1754 pPage->isInit = 0; |
| 1755 if( sqlite3PagerPageRefcount(pData)>1 ){ |
| 1756 /* pPage might not be a btree page; it might be an overflow page |
| 1757 ** or ptrmap page or a free page. In those cases, the following |
| 1758 ** call to btreeInitPage() will likely return SQLITE_CORRUPT. |
| 1759 ** But no harm is done by this. And it is very important that |
| 1760 ** btreeInitPage() be called on every btree page so we make |
| 1761 ** the call for every page that comes in for re-initing. */ |
| 1762 btreeInitPage(pPage); |
| 1763 } |
| 1764 } |
| 1765 } |
| 1766 |
| 1767 /* |
| 1768 ** Invoke the busy handler for a btree. |
| 1769 */ |
| 1770 static int btreeInvokeBusyHandler(void *pArg){ |
| 1771 BtShared *pBt = (BtShared*)pArg; |
| 1772 assert( pBt->db ); |
| 1773 assert( sqlite3_mutex_held(pBt->db->mutex) ); |
| 1774 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler); |
| 1775 } |
| 1776 |
| 1777 /* |
| 1778 ** Open a database file. |
| 1779 ** |
| 1780 ** zFilename is the name of the database file. If zFilename is NULL |
| 1781 ** then an ephemeral database is created. The ephemeral database might |
| 1782 ** be exclusively in memory, or it might use a disk-based memory cache. |
| 1783 ** Either way, the ephemeral database will be automatically deleted |
| 1784 ** when sqlite3BtreeClose() is called. |
| 1785 ** |
| 1786 ** If zFilename is ":memory:" then an in-memory database is created |
| 1787 ** that is automatically destroyed when it is closed. |
| 1788 ** |
| 1789 ** The "flags" parameter is a bitmask that might contain bits like |
| 1790 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY. |
| 1791 ** |
| 1792 ** If the database is already opened in the same database connection |
| 1793 ** and we are in shared cache mode, then the open will fail with an |
| 1794 ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared |
| 1795 ** objects in the same database connection since doing so will lead |
| 1796 ** to problems with locking. |
| 1797 */ |
| 1798 int sqlite3BtreeOpen( |
| 1799 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */ |
| 1800 const char *zFilename, /* Name of the file containing the BTree database */ |
| 1801 sqlite3 *db, /* Associated database handle */ |
| 1802 Btree **ppBtree, /* Pointer to new Btree object written here */ |
| 1803 int flags, /* Options */ |
| 1804 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */ |
| 1805 ){ |
| 1806 BtShared *pBt = 0; /* Shared part of btree structure */ |
| 1807 Btree *p; /* Handle to return */ |
| 1808 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */ |
| 1809 int rc = SQLITE_OK; /* Result code from this function */ |
| 1810 u8 nReserve; /* Byte of unused space on each page */ |
| 1811 unsigned char zDbHeader[100]; /* Database header content */ |
| 1812 |
| 1813 /* True if opening an ephemeral, temporary database */ |
| 1814 const int isTempDb = zFilename==0 || zFilename[0]==0; |
| 1815 |
| 1816 /* Set the variable isMemdb to true for an in-memory database, or |
| 1817 ** false for a file-based database. |
| 1818 */ |
| 1819 #ifdef SQLITE_OMIT_MEMORYDB |
| 1820 const int isMemdb = 0; |
| 1821 #else |
| 1822 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0) |
| 1823 || (isTempDb && sqlite3TempInMemory(db)) |
| 1824 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0; |
| 1825 #endif |
| 1826 |
| 1827 assert( db!=0 ); |
| 1828 assert( pVfs!=0 ); |
| 1829 assert( sqlite3_mutex_held(db->mutex) ); |
| 1830 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */ |
| 1831 |
| 1832 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */ |
| 1833 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 ); |
| 1834 |
| 1835 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */ |
| 1836 assert( (flags & BTREE_SINGLE)==0 || isTempDb ); |
| 1837 |
| 1838 if( isMemdb ){ |
| 1839 flags |= BTREE_MEMORY; |
| 1840 } |
| 1841 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){ |
| 1842 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB; |
| 1843 } |
| 1844 p = sqlite3MallocZero(sizeof(Btree)); |
| 1845 if( !p ){ |
| 1846 return SQLITE_NOMEM; |
| 1847 } |
| 1848 p->inTrans = TRANS_NONE; |
| 1849 p->db = db; |
| 1850 #ifndef SQLITE_OMIT_SHARED_CACHE |
| 1851 p->lock.pBtree = p; |
| 1852 p->lock.iTable = 1; |
| 1853 #endif |
| 1854 |
| 1855 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) |
| 1856 /* |
| 1857 ** If this Btree is a candidate for shared cache, try to find an |
| 1858 ** existing BtShared object that we can share with |
| 1859 */ |
| 1860 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){ |
| 1861 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){ |
| 1862 int nFullPathname = pVfs->mxPathname+1; |
| 1863 char *zFullPathname = sqlite3Malloc(nFullPathname); |
| 1864 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) |
| 1865 p->sharable = 1; |
| 1866 if( !zFullPathname ){ |
| 1867 sqlite3_free(p); |
| 1868 return SQLITE_NOMEM; |
| 1869 } |
| 1870 if( isMemdb ){ |
| 1871 memcpy(zFullPathname, zFilename, sqlite3Strlen30(zFilename)+1); |
| 1872 }else{ |
| 1873 rc = sqlite3OsFullPathname(pVfs, zFilename, |
| 1874 nFullPathname, zFullPathname); |
| 1875 if( rc ){ |
| 1876 sqlite3_free(zFullPathname); |
| 1877 sqlite3_free(p); |
| 1878 return rc; |
| 1879 } |
| 1880 } |
| 1881 #if SQLITE_THREADSAFE |
| 1882 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN); |
| 1883 sqlite3_mutex_enter(mutexOpen); |
| 1884 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); |
| 1885 sqlite3_mutex_enter(mutexShared); |
| 1886 #endif |
| 1887 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){ |
| 1888 assert( pBt->nRef>0 ); |
| 1889 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0)) |
| 1890 && sqlite3PagerVfs(pBt->pPager)==pVfs ){ |
| 1891 int iDb; |
| 1892 for(iDb=db->nDb-1; iDb>=0; iDb--){ |
| 1893 Btree *pExisting = db->aDb[iDb].pBt; |
| 1894 if( pExisting && pExisting->pBt==pBt ){ |
| 1895 sqlite3_mutex_leave(mutexShared); |
| 1896 sqlite3_mutex_leave(mutexOpen); |
| 1897 sqlite3_free(zFullPathname); |
| 1898 sqlite3_free(p); |
| 1899 return SQLITE_CONSTRAINT; |
| 1900 } |
| 1901 } |
| 1902 p->pBt = pBt; |
| 1903 pBt->nRef++; |
| 1904 break; |
| 1905 } |
| 1906 } |
| 1907 sqlite3_mutex_leave(mutexShared); |
| 1908 sqlite3_free(zFullPathname); |
| 1909 } |
| 1910 #ifdef SQLITE_DEBUG |
| 1911 else{ |
| 1912 /* In debug mode, we mark all persistent databases as sharable |
| 1913 ** even when they are not. This exercises the locking code and |
| 1914 ** gives more opportunity for asserts(sqlite3_mutex_held()) |
| 1915 ** statements to find locking problems. |
| 1916 */ |
| 1917 p->sharable = 1; |
| 1918 } |
| 1919 #endif |
| 1920 } |
| 1921 #endif |
| 1922 if( pBt==0 ){ |
| 1923 /* |
| 1924 ** The following asserts make sure that structures used by the btree are |
| 1925 ** the right size. This is to guard against size changes that result |
| 1926 ** when compiling on a different architecture. |
| 1927 */ |
| 1928 assert( sizeof(i64)==8 || sizeof(i64)==4 ); |
| 1929 assert( sizeof(u64)==8 || sizeof(u64)==4 ); |
| 1930 assert( sizeof(u32)==4 ); |
| 1931 assert( sizeof(u16)==2 ); |
| 1932 assert( sizeof(Pgno)==4 ); |
| 1933 |
| 1934 pBt = sqlite3MallocZero( sizeof(*pBt) ); |
| 1935 if( pBt==0 ){ |
| 1936 rc = SQLITE_NOMEM; |
| 1937 goto btree_open_out; |
| 1938 } |
| 1939 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename, |
| 1940 EXTRA_SIZE, flags, vfsFlags, pageReinit); |
| 1941 if( rc==SQLITE_OK ){ |
| 1942 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap); |
| 1943 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader); |
| 1944 } |
| 1945 if( rc!=SQLITE_OK ){ |
| 1946 goto btree_open_out; |
| 1947 } |
| 1948 pBt->openFlags = (u8)flags; |
| 1949 pBt->db = db; |
| 1950 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt); |
| 1951 p->pBt = pBt; |
| 1952 |
| 1953 pBt->pCursor = 0; |
| 1954 pBt->pPage1 = 0; |
| 1955 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY; |
| 1956 #ifdef SQLITE_SECURE_DELETE |
| 1957 pBt->btsFlags |= BTS_SECURE_DELETE; |
| 1958 #endif |
| 1959 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16); |
| 1960 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE |
| 1961 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ |
| 1962 pBt->pageSize = 0; |
| 1963 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 1964 /* If the magic name ":memory:" will create an in-memory database, then |
| 1965 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if |
| 1966 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if |
| 1967 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a |
| 1968 ** regular file-name. In this case the auto-vacuum applies as per normal. |
| 1969 */ |
| 1970 if( zFilename && !isMemdb ){ |
| 1971 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0); |
| 1972 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0); |
| 1973 } |
| 1974 #endif |
| 1975 nReserve = 0; |
| 1976 }else{ |
| 1977 nReserve = zDbHeader[20]; |
| 1978 pBt->btsFlags |= BTS_PAGESIZE_FIXED; |
| 1979 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 1980 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); |
| 1981 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0); |
| 1982 #endif |
| 1983 } |
| 1984 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); |
| 1985 if( rc ) goto btree_open_out; |
| 1986 pBt->usableSize = pBt->pageSize - nReserve; |
| 1987 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */ |
| 1988 |
| 1989 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) |
| 1990 /* Add the new BtShared object to the linked list sharable BtShareds. |
| 1991 */ |
| 1992 if( p->sharable ){ |
| 1993 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) |
| 1994 pBt->nRef = 1; |
| 1995 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);) |
| 1996 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){ |
| 1997 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST); |
| 1998 if( pBt->mutex==0 ){ |
| 1999 rc = SQLITE_NOMEM; |
| 2000 db->mallocFailed = 0; |
| 2001 goto btree_open_out; |
| 2002 } |
| 2003 } |
| 2004 sqlite3_mutex_enter(mutexShared); |
| 2005 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList); |
| 2006 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt; |
| 2007 sqlite3_mutex_leave(mutexShared); |
| 2008 } |
| 2009 #endif |
| 2010 } |
| 2011 |
| 2012 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) |
| 2013 /* If the new Btree uses a sharable pBtShared, then link the new |
| 2014 ** Btree into the list of all sharable Btrees for the same connection. |
| 2015 ** The list is kept in ascending order by pBt address. |
| 2016 */ |
| 2017 if( p->sharable ){ |
| 2018 int i; |
| 2019 Btree *pSib; |
| 2020 for(i=0; i<db->nDb; i++){ |
| 2021 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){ |
| 2022 while( pSib->pPrev ){ pSib = pSib->pPrev; } |
| 2023 if( p->pBt<pSib->pBt ){ |
| 2024 p->pNext = pSib; |
| 2025 p->pPrev = 0; |
| 2026 pSib->pPrev = p; |
| 2027 }else{ |
| 2028 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){ |
| 2029 pSib = pSib->pNext; |
| 2030 } |
| 2031 p->pNext = pSib->pNext; |
| 2032 p->pPrev = pSib; |
| 2033 if( p->pNext ){ |
| 2034 p->pNext->pPrev = p; |
| 2035 } |
| 2036 pSib->pNext = p; |
| 2037 } |
| 2038 break; |
| 2039 } |
| 2040 } |
| 2041 } |
| 2042 #endif |
| 2043 *ppBtree = p; |
| 2044 |
| 2045 btree_open_out: |
| 2046 if( rc!=SQLITE_OK ){ |
| 2047 if( pBt && pBt->pPager ){ |
| 2048 sqlite3PagerClose(pBt->pPager); |
| 2049 } |
| 2050 sqlite3_free(pBt); |
| 2051 sqlite3_free(p); |
| 2052 *ppBtree = 0; |
| 2053 }else{ |
| 2054 /* If the B-Tree was successfully opened, set the pager-cache size to the |
| 2055 ** default value. Except, when opening on an existing shared pager-cache, |
| 2056 ** do not change the pager-cache size. |
| 2057 */ |
| 2058 if( sqlite3BtreeSchema(p, 0, 0)==0 ){ |
| 2059 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE); |
| 2060 } |
| 2061 } |
| 2062 if( mutexOpen ){ |
| 2063 assert( sqlite3_mutex_held(mutexOpen) ); |
| 2064 sqlite3_mutex_leave(mutexOpen); |
| 2065 } |
| 2066 return rc; |
| 2067 } |
| 2068 |
| 2069 /* |
| 2070 ** Decrement the BtShared.nRef counter. When it reaches zero, |
| 2071 ** remove the BtShared structure from the sharing list. Return |
| 2072 ** true if the BtShared.nRef counter reaches zero and return |
| 2073 ** false if it is still positive. |
| 2074 */ |
| 2075 static int removeFromSharingList(BtShared *pBt){ |
| 2076 #ifndef SQLITE_OMIT_SHARED_CACHE |
| 2077 MUTEX_LOGIC( sqlite3_mutex *pMaster; ) |
| 2078 BtShared *pList; |
| 2079 int removed = 0; |
| 2080 |
| 2081 assert( sqlite3_mutex_notheld(pBt->mutex) ); |
| 2082 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); ) |
| 2083 sqlite3_mutex_enter(pMaster); |
| 2084 pBt->nRef--; |
| 2085 if( pBt->nRef<=0 ){ |
| 2086 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){ |
| 2087 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext; |
| 2088 }else{ |
| 2089 pList = GLOBAL(BtShared*,sqlite3SharedCacheList); |
| 2090 while( ALWAYS(pList) && pList->pNext!=pBt ){ |
| 2091 pList=pList->pNext; |
| 2092 } |
| 2093 if( ALWAYS(pList) ){ |
| 2094 pList->pNext = pBt->pNext; |
| 2095 } |
| 2096 } |
| 2097 if( SQLITE_THREADSAFE ){ |
| 2098 sqlite3_mutex_free(pBt->mutex); |
| 2099 } |
| 2100 removed = 1; |
| 2101 } |
| 2102 sqlite3_mutex_leave(pMaster); |
| 2103 return removed; |
| 2104 #else |
| 2105 return 1; |
| 2106 #endif |
| 2107 } |
| 2108 |
| 2109 /* |
| 2110 ** Make sure pBt->pTmpSpace points to an allocation of |
| 2111 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child |
| 2112 ** pointer. |
| 2113 */ |
| 2114 static void allocateTempSpace(BtShared *pBt){ |
| 2115 if( !pBt->pTmpSpace ){ |
| 2116 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize ); |
| 2117 |
| 2118 /* One of the uses of pBt->pTmpSpace is to format cells before |
| 2119 ** inserting them into a leaf page (function fillInCell()). If |
| 2120 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes |
| 2121 ** by the various routines that manipulate binary cells. Which |
| 2122 ** can mean that fillInCell() only initializes the first 2 or 3 |
| 2123 ** bytes of pTmpSpace, but that the first 4 bytes are copied from |
| 2124 ** it into a database page. This is not actually a problem, but it |
| 2125 ** does cause a valgrind error when the 1 or 2 bytes of unitialized |
| 2126 ** data is passed to system call write(). So to avoid this error, |
| 2127 ** zero the first 4 bytes of temp space here. |
| 2128 ** |
| 2129 ** Also: Provide four bytes of initialized space before the |
| 2130 ** beginning of pTmpSpace as an area available to prepend the |
| 2131 ** left-child pointer to the beginning of a cell. |
| 2132 */ |
| 2133 if( pBt->pTmpSpace ){ |
| 2134 memset(pBt->pTmpSpace, 0, 8); |
| 2135 pBt->pTmpSpace += 4; |
| 2136 } |
| 2137 } |
| 2138 } |
| 2139 |
| 2140 /* |
| 2141 ** Free the pBt->pTmpSpace allocation |
| 2142 */ |
| 2143 static void freeTempSpace(BtShared *pBt){ |
| 2144 if( pBt->pTmpSpace ){ |
| 2145 pBt->pTmpSpace -= 4; |
| 2146 sqlite3PageFree(pBt->pTmpSpace); |
| 2147 pBt->pTmpSpace = 0; |
| 2148 } |
| 2149 } |
| 2150 |
| 2151 /* |
| 2152 ** Close an open database and invalidate all cursors. |
| 2153 */ |
| 2154 int sqlite3BtreeClose(Btree *p){ |
| 2155 BtShared *pBt = p->pBt; |
| 2156 BtCursor *pCur; |
| 2157 |
| 2158 /* Close all cursors opened via this handle. */ |
| 2159 assert( sqlite3_mutex_held(p->db->mutex) ); |
| 2160 sqlite3BtreeEnter(p); |
| 2161 pCur = pBt->pCursor; |
| 2162 while( pCur ){ |
| 2163 BtCursor *pTmp = pCur; |
| 2164 pCur = pCur->pNext; |
| 2165 if( pTmp->pBtree==p ){ |
| 2166 sqlite3BtreeCloseCursor(pTmp); |
| 2167 } |
| 2168 } |
| 2169 |
| 2170 /* Rollback any active transaction and free the handle structure. |
| 2171 ** The call to sqlite3BtreeRollback() drops any table-locks held by |
| 2172 ** this handle. |
| 2173 */ |
| 2174 sqlite3BtreeRollback(p, SQLITE_OK, 0); |
| 2175 sqlite3BtreeLeave(p); |
| 2176 |
| 2177 /* If there are still other outstanding references to the shared-btree |
| 2178 ** structure, return now. The remainder of this procedure cleans |
| 2179 ** up the shared-btree. |
| 2180 */ |
| 2181 assert( p->wantToLock==0 && p->locked==0 ); |
| 2182 if( !p->sharable || removeFromSharingList(pBt) ){ |
| 2183 /* The pBt is no longer on the sharing list, so we can access |
| 2184 ** it without having to hold the mutex. |
| 2185 ** |
| 2186 ** Clean out and delete the BtShared object. |
| 2187 */ |
| 2188 assert( !pBt->pCursor ); |
| 2189 sqlite3PagerClose(pBt->pPager); |
| 2190 if( pBt->xFreeSchema && pBt->pSchema ){ |
| 2191 pBt->xFreeSchema(pBt->pSchema); |
| 2192 } |
| 2193 sqlite3DbFree(0, pBt->pSchema); |
| 2194 freeTempSpace(pBt); |
| 2195 sqlite3_free(pBt); |
| 2196 } |
| 2197 |
| 2198 #ifndef SQLITE_OMIT_SHARED_CACHE |
| 2199 assert( p->wantToLock==0 ); |
| 2200 assert( p->locked==0 ); |
| 2201 if( p->pPrev ) p->pPrev->pNext = p->pNext; |
| 2202 if( p->pNext ) p->pNext->pPrev = p->pPrev; |
| 2203 #endif |
| 2204 |
| 2205 sqlite3_free(p); |
| 2206 return SQLITE_OK; |
| 2207 } |
| 2208 |
| 2209 /* |
| 2210 ** Change the limit on the number of pages allowed in the cache. |
| 2211 ** |
| 2212 ** The maximum number of cache pages is set to the absolute |
| 2213 ** value of mxPage. If mxPage is negative, the pager will |
| 2214 ** operate asynchronously - it will not stop to do fsync()s |
| 2215 ** to insure data is written to the disk surface before |
| 2216 ** continuing. Transactions still work if synchronous is off, |
| 2217 ** and the database cannot be corrupted if this program |
| 2218 ** crashes. But if the operating system crashes or there is |
| 2219 ** an abrupt power failure when synchronous is off, the database |
| 2220 ** could be left in an inconsistent and unrecoverable state. |
| 2221 ** Synchronous is on by default so database corruption is not |
| 2222 ** normally a worry. |
| 2223 */ |
| 2224 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){ |
| 2225 BtShared *pBt = p->pBt; |
| 2226 assert( sqlite3_mutex_held(p->db->mutex) ); |
| 2227 sqlite3BtreeEnter(p); |
| 2228 sqlite3PagerSetCachesize(pBt->pPager, mxPage); |
| 2229 sqlite3BtreeLeave(p); |
| 2230 return SQLITE_OK; |
| 2231 } |
| 2232 |
| 2233 #if SQLITE_MAX_MMAP_SIZE>0 |
| 2234 /* |
| 2235 ** Change the limit on the amount of the database file that may be |
| 2236 ** memory mapped. |
| 2237 */ |
| 2238 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){ |
| 2239 BtShared *pBt = p->pBt; |
| 2240 assert( sqlite3_mutex_held(p->db->mutex) ); |
| 2241 sqlite3BtreeEnter(p); |
| 2242 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap); |
| 2243 sqlite3BtreeLeave(p); |
| 2244 return SQLITE_OK; |
| 2245 } |
| 2246 #endif /* SQLITE_MAX_MMAP_SIZE>0 */ |
| 2247 |
| 2248 /* |
| 2249 ** Change the way data is synced to disk in order to increase or decrease |
| 2250 ** how well the database resists damage due to OS crashes and power |
| 2251 ** failures. Level 1 is the same as asynchronous (no syncs() occur and |
| 2252 ** there is a high probability of damage) Level 2 is the default. There |
| 2253 ** is a very low but non-zero probability of damage. Level 3 reduces the |
| 2254 ** probability of damage to near zero but with a write performance reduction. |
| 2255 */ |
| 2256 #ifndef SQLITE_OMIT_PAGER_PRAGMAS |
| 2257 int sqlite3BtreeSetPagerFlags( |
| 2258 Btree *p, /* The btree to set the safety level on */ |
| 2259 unsigned pgFlags /* Various PAGER_* flags */ |
| 2260 ){ |
| 2261 BtShared *pBt = p->pBt; |
| 2262 assert( sqlite3_mutex_held(p->db->mutex) ); |
| 2263 sqlite3BtreeEnter(p); |
| 2264 sqlite3PagerSetFlags(pBt->pPager, pgFlags); |
| 2265 sqlite3BtreeLeave(p); |
| 2266 return SQLITE_OK; |
| 2267 } |
| 2268 #endif |
| 2269 |
| 2270 /* |
| 2271 ** Return TRUE if the given btree is set to safety level 1. In other |
| 2272 ** words, return TRUE if no sync() occurs on the disk files. |
| 2273 */ |
| 2274 int sqlite3BtreeSyncDisabled(Btree *p){ |
| 2275 BtShared *pBt = p->pBt; |
| 2276 int rc; |
| 2277 assert( sqlite3_mutex_held(p->db->mutex) ); |
| 2278 sqlite3BtreeEnter(p); |
| 2279 assert( pBt && pBt->pPager ); |
| 2280 rc = sqlite3PagerNosync(pBt->pPager); |
| 2281 sqlite3BtreeLeave(p); |
| 2282 return rc; |
| 2283 } |
| 2284 |
| 2285 /* |
| 2286 ** Change the default pages size and the number of reserved bytes per page. |
| 2287 ** Or, if the page size has already been fixed, return SQLITE_READONLY |
| 2288 ** without changing anything. |
| 2289 ** |
| 2290 ** The page size must be a power of 2 between 512 and 65536. If the page |
| 2291 ** size supplied does not meet this constraint then the page size is not |
| 2292 ** changed. |
| 2293 ** |
| 2294 ** Page sizes are constrained to be a power of two so that the region |
| 2295 ** of the database file used for locking (beginning at PENDING_BYTE, |
| 2296 ** the first byte past the 1GB boundary, 0x40000000) needs to occur |
| 2297 ** at the beginning of a page. |
| 2298 ** |
| 2299 ** If parameter nReserve is less than zero, then the number of reserved |
| 2300 ** bytes per page is left unchanged. |
| 2301 ** |
| 2302 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size |
| 2303 ** and autovacuum mode can no longer be changed. |
| 2304 */ |
| 2305 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){ |
| 2306 int rc = SQLITE_OK; |
| 2307 BtShared *pBt = p->pBt; |
| 2308 assert( nReserve>=-1 && nReserve<=255 ); |
| 2309 sqlite3BtreeEnter(p); |
| 2310 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){ |
| 2311 sqlite3BtreeLeave(p); |
| 2312 return SQLITE_READONLY; |
| 2313 } |
| 2314 if( nReserve<0 ){ |
| 2315 nReserve = pBt->pageSize - pBt->usableSize; |
| 2316 } |
| 2317 assert( nReserve>=0 && nReserve<=255 ); |
| 2318 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && |
| 2319 ((pageSize-1)&pageSize)==0 ){ |
| 2320 assert( (pageSize & 7)==0 ); |
| 2321 assert( !pBt->pPage1 && !pBt->pCursor ); |
| 2322 pBt->pageSize = (u32)pageSize; |
| 2323 freeTempSpace(pBt); |
| 2324 } |
| 2325 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); |
| 2326 pBt->usableSize = pBt->pageSize - (u16)nReserve; |
| 2327 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED; |
| 2328 sqlite3BtreeLeave(p); |
| 2329 return rc; |
| 2330 } |
| 2331 |
| 2332 /* |
| 2333 ** Return the currently defined page size |
| 2334 */ |
| 2335 int sqlite3BtreeGetPageSize(Btree *p){ |
| 2336 return p->pBt->pageSize; |
| 2337 } |
| 2338 |
| 2339 #if defined(SQLITE_HAS_CODEC) || defined(SQLITE_DEBUG) |
| 2340 /* |
| 2341 ** This function is similar to sqlite3BtreeGetReserve(), except that it |
| 2342 ** may only be called if it is guaranteed that the b-tree mutex is already |
| 2343 ** held. |
| 2344 ** |
| 2345 ** This is useful in one special case in the backup API code where it is |
| 2346 ** known that the shared b-tree mutex is held, but the mutex on the |
| 2347 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter() |
| 2348 ** were to be called, it might collide with some other operation on the |
| 2349 ** database handle that owns *p, causing undefined behavior. |
| 2350 */ |
| 2351 int sqlite3BtreeGetReserveNoMutex(Btree *p){ |
| 2352 assert( sqlite3_mutex_held(p->pBt->mutex) ); |
| 2353 return p->pBt->pageSize - p->pBt->usableSize; |
| 2354 } |
| 2355 #endif /* SQLITE_HAS_CODEC || SQLITE_DEBUG */ |
| 2356 |
| 2357 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) |
| 2358 /* |
| 2359 ** Return the number of bytes of space at the end of every page that |
| 2360 ** are intentually left unused. This is the "reserved" space that is |
| 2361 ** sometimes used by extensions. |
| 2362 */ |
| 2363 int sqlite3BtreeGetReserve(Btree *p){ |
| 2364 int n; |
| 2365 sqlite3BtreeEnter(p); |
| 2366 n = p->pBt->pageSize - p->pBt->usableSize; |
| 2367 sqlite3BtreeLeave(p); |
| 2368 return n; |
| 2369 } |
| 2370 |
| 2371 /* |
| 2372 ** Set the maximum page count for a database if mxPage is positive. |
| 2373 ** No changes are made if mxPage is 0 or negative. |
| 2374 ** Regardless of the value of mxPage, return the maximum page count. |
| 2375 */ |
| 2376 int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){ |
| 2377 int n; |
| 2378 sqlite3BtreeEnter(p); |
| 2379 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage); |
| 2380 sqlite3BtreeLeave(p); |
| 2381 return n; |
| 2382 } |
| 2383 |
| 2384 /* |
| 2385 ** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1, |
| 2386 ** then make no changes. Always return the value of the BTS_SECURE_DELETE |
| 2387 ** setting after the change. |
| 2388 */ |
| 2389 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){ |
| 2390 int b; |
| 2391 if( p==0 ) return 0; |
| 2392 sqlite3BtreeEnter(p); |
| 2393 if( newFlag>=0 ){ |
| 2394 p->pBt->btsFlags &= ~BTS_SECURE_DELETE; |
| 2395 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE; |
| 2396 } |
| 2397 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0; |
| 2398 sqlite3BtreeLeave(p); |
| 2399 return b; |
| 2400 } |
| 2401 #endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */ |
| 2402 |
| 2403 /* |
| 2404 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum' |
| 2405 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it |
| 2406 ** is disabled. The default value for the auto-vacuum property is |
| 2407 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro. |
| 2408 */ |
| 2409 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){ |
| 2410 #ifdef SQLITE_OMIT_AUTOVACUUM |
| 2411 return SQLITE_READONLY; |
| 2412 #else |
| 2413 BtShared *pBt = p->pBt; |
| 2414 int rc = SQLITE_OK; |
| 2415 u8 av = (u8)autoVacuum; |
| 2416 |
| 2417 sqlite3BtreeEnter(p); |
| 2418 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){ |
| 2419 rc = SQLITE_READONLY; |
| 2420 }else{ |
| 2421 pBt->autoVacuum = av ?1:0; |
| 2422 pBt->incrVacuum = av==2 ?1:0; |
| 2423 } |
| 2424 sqlite3BtreeLeave(p); |
| 2425 return rc; |
| 2426 #endif |
| 2427 } |
| 2428 |
| 2429 /* |
| 2430 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is |
| 2431 ** enabled 1 is returned. Otherwise 0. |
| 2432 */ |
| 2433 int sqlite3BtreeGetAutoVacuum(Btree *p){ |
| 2434 #ifdef SQLITE_OMIT_AUTOVACUUM |
| 2435 return BTREE_AUTOVACUUM_NONE; |
| 2436 #else |
| 2437 int rc; |
| 2438 sqlite3BtreeEnter(p); |
| 2439 rc = ( |
| 2440 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE: |
| 2441 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL: |
| 2442 BTREE_AUTOVACUUM_INCR |
| 2443 ); |
| 2444 sqlite3BtreeLeave(p); |
| 2445 return rc; |
| 2446 #endif |
| 2447 } |
| 2448 |
| 2449 |
| 2450 /* |
| 2451 ** Get a reference to pPage1 of the database file. This will |
| 2452 ** also acquire a readlock on that file. |
| 2453 ** |
| 2454 ** SQLITE_OK is returned on success. If the file is not a |
| 2455 ** well-formed database file, then SQLITE_CORRUPT is returned. |
| 2456 ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM |
| 2457 ** is returned if we run out of memory. |
| 2458 */ |
| 2459 static int lockBtree(BtShared *pBt){ |
| 2460 int rc; /* Result code from subfunctions */ |
| 2461 MemPage *pPage1; /* Page 1 of the database file */ |
| 2462 int nPage; /* Number of pages in the database */ |
| 2463 int nPageFile = 0; /* Number of pages in the database file */ |
| 2464 int nPageHeader; /* Number of pages in the database according to hdr */ |
| 2465 |
| 2466 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 2467 assert( pBt->pPage1==0 ); |
| 2468 rc = sqlite3PagerSharedLock(pBt->pPager); |
| 2469 if( rc!=SQLITE_OK ) return rc; |
| 2470 rc = btreeGetPage(pBt, 1, &pPage1, 0); |
| 2471 if( rc!=SQLITE_OK ) return rc; |
| 2472 |
| 2473 /* Do some checking to help insure the file we opened really is |
| 2474 ** a valid database file. |
| 2475 */ |
| 2476 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData); |
| 2477 sqlite3PagerPagecount(pBt->pPager, &nPageFile); |
| 2478 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){ |
| 2479 nPage = nPageFile; |
| 2480 } |
| 2481 if( nPage>0 ){ |
| 2482 u32 pageSize; |
| 2483 u32 usableSize; |
| 2484 u8 *page1 = pPage1->aData; |
| 2485 rc = SQLITE_NOTADB; |
| 2486 if( memcmp(page1, zMagicHeader, 16)!=0 ){ |
| 2487 goto page1_init_failed; |
| 2488 } |
| 2489 |
| 2490 #ifdef SQLITE_OMIT_WAL |
| 2491 if( page1[18]>1 ){ |
| 2492 pBt->btsFlags |= BTS_READ_ONLY; |
| 2493 } |
| 2494 if( page1[19]>1 ){ |
| 2495 goto page1_init_failed; |
| 2496 } |
| 2497 #else |
| 2498 if( page1[18]>2 ){ |
| 2499 pBt->btsFlags |= BTS_READ_ONLY; |
| 2500 } |
| 2501 if( page1[19]>2 ){ |
| 2502 goto page1_init_failed; |
| 2503 } |
| 2504 |
| 2505 /* If the write version is set to 2, this database should be accessed |
| 2506 ** in WAL mode. If the log is not already open, open it now. Then |
| 2507 ** return SQLITE_OK and return without populating BtShared.pPage1. |
| 2508 ** The caller detects this and calls this function again. This is |
| 2509 ** required as the version of page 1 currently in the page1 buffer |
| 2510 ** may not be the latest version - there may be a newer one in the log |
| 2511 ** file. |
| 2512 */ |
| 2513 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){ |
| 2514 int isOpen = 0; |
| 2515 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen); |
| 2516 if( rc!=SQLITE_OK ){ |
| 2517 goto page1_init_failed; |
| 2518 }else if( isOpen==0 ){ |
| 2519 releasePage(pPage1); |
| 2520 return SQLITE_OK; |
| 2521 } |
| 2522 rc = SQLITE_NOTADB; |
| 2523 } |
| 2524 #endif |
| 2525 |
| 2526 /* The maximum embedded fraction must be exactly 25%. And the minimum |
| 2527 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data. |
| 2528 ** The original design allowed these amounts to vary, but as of |
| 2529 ** version 3.6.0, we require them to be fixed. |
| 2530 */ |
| 2531 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){ |
| 2532 goto page1_init_failed; |
| 2533 } |
| 2534 pageSize = (page1[16]<<8) | (page1[17]<<16); |
| 2535 if( ((pageSize-1)&pageSize)!=0 |
| 2536 || pageSize>SQLITE_MAX_PAGE_SIZE |
| 2537 || pageSize<=256 |
| 2538 ){ |
| 2539 goto page1_init_failed; |
| 2540 } |
| 2541 assert( (pageSize & 7)==0 ); |
| 2542 usableSize = pageSize - page1[20]; |
| 2543 if( (u32)pageSize!=pBt->pageSize ){ |
| 2544 /* After reading the first page of the database assuming a page size |
| 2545 ** of BtShared.pageSize, we have discovered that the page-size is |
| 2546 ** actually pageSize. Unlock the database, leave pBt->pPage1 at |
| 2547 ** zero and return SQLITE_OK. The caller will call this function |
| 2548 ** again with the correct page-size. |
| 2549 */ |
| 2550 releasePage(pPage1); |
| 2551 pBt->usableSize = usableSize; |
| 2552 pBt->pageSize = pageSize; |
| 2553 freeTempSpace(pBt); |
| 2554 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, |
| 2555 pageSize-usableSize); |
| 2556 return rc; |
| 2557 } |
| 2558 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){ |
| 2559 rc = SQLITE_CORRUPT_BKPT; |
| 2560 goto page1_init_failed; |
| 2561 } |
| 2562 if( usableSize<480 ){ |
| 2563 goto page1_init_failed; |
| 2564 } |
| 2565 pBt->pageSize = pageSize; |
| 2566 pBt->usableSize = usableSize; |
| 2567 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 2568 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0); |
| 2569 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0); |
| 2570 #endif |
| 2571 } |
| 2572 |
| 2573 /* maxLocal is the maximum amount of payload to store locally for |
| 2574 ** a cell. Make sure it is small enough so that at least minFanout |
| 2575 ** cells can will fit on one page. We assume a 10-byte page header. |
| 2576 ** Besides the payload, the cell must store: |
| 2577 ** 2-byte pointer to the cell |
| 2578 ** 4-byte child pointer |
| 2579 ** 9-byte nKey value |
| 2580 ** 4-byte nData value |
| 2581 ** 4-byte overflow page pointer |
| 2582 ** So a cell consists of a 2-byte pointer, a header which is as much as |
| 2583 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow |
| 2584 ** page pointer. |
| 2585 */ |
| 2586 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23); |
| 2587 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23); |
| 2588 pBt->maxLeaf = (u16)(pBt->usableSize - 35); |
| 2589 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23); |
| 2590 if( pBt->maxLocal>127 ){ |
| 2591 pBt->max1bytePayload = 127; |
| 2592 }else{ |
| 2593 pBt->max1bytePayload = (u8)pBt->maxLocal; |
| 2594 } |
| 2595 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); |
| 2596 pBt->pPage1 = pPage1; |
| 2597 pBt->nPage = nPage; |
| 2598 return SQLITE_OK; |
| 2599 |
| 2600 page1_init_failed: |
| 2601 releasePage(pPage1); |
| 2602 pBt->pPage1 = 0; |
| 2603 return rc; |
| 2604 } |
| 2605 |
| 2606 #ifndef NDEBUG |
| 2607 /* |
| 2608 ** Return the number of cursors open on pBt. This is for use |
| 2609 ** in assert() expressions, so it is only compiled if NDEBUG is not |
| 2610 ** defined. |
| 2611 ** |
| 2612 ** Only write cursors are counted if wrOnly is true. If wrOnly is |
| 2613 ** false then all cursors are counted. |
| 2614 ** |
| 2615 ** For the purposes of this routine, a cursor is any cursor that |
| 2616 ** is capable of reading or writing to the database. Cursors that |
| 2617 ** have been tripped into the CURSOR_FAULT state are not counted. |
| 2618 */ |
| 2619 static int countValidCursors(BtShared *pBt, int wrOnly){ |
| 2620 BtCursor *pCur; |
| 2621 int r = 0; |
| 2622 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ |
| 2623 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0) |
| 2624 && pCur->eState!=CURSOR_FAULT ) r++; |
| 2625 } |
| 2626 return r; |
| 2627 } |
| 2628 #endif |
| 2629 |
| 2630 /* |
| 2631 ** If there are no outstanding cursors and we are not in the middle |
| 2632 ** of a transaction but there is a read lock on the database, then |
| 2633 ** this routine unrefs the first page of the database file which |
| 2634 ** has the effect of releasing the read lock. |
| 2635 ** |
| 2636 ** If there is a transaction in progress, this routine is a no-op. |
| 2637 */ |
| 2638 static void unlockBtreeIfUnused(BtShared *pBt){ |
| 2639 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 2640 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE ); |
| 2641 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){ |
| 2642 MemPage *pPage1 = pBt->pPage1; |
| 2643 assert( pPage1->aData ); |
| 2644 assert( sqlite3PagerRefcount(pBt->pPager)==1 ); |
| 2645 pBt->pPage1 = 0; |
| 2646 releasePage(pPage1); |
| 2647 } |
| 2648 } |
| 2649 |
| 2650 /* |
| 2651 ** If pBt points to an empty file then convert that empty file |
| 2652 ** into a new empty database by initializing the first page of |
| 2653 ** the database. |
| 2654 */ |
| 2655 static int newDatabase(BtShared *pBt){ |
| 2656 MemPage *pP1; |
| 2657 unsigned char *data; |
| 2658 int rc; |
| 2659 |
| 2660 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 2661 if( pBt->nPage>0 ){ |
| 2662 return SQLITE_OK; |
| 2663 } |
| 2664 pP1 = pBt->pPage1; |
| 2665 assert( pP1!=0 ); |
| 2666 data = pP1->aData; |
| 2667 rc = sqlite3PagerWrite(pP1->pDbPage); |
| 2668 if( rc ) return rc; |
| 2669 memcpy(data, zMagicHeader, sizeof(zMagicHeader)); |
| 2670 assert( sizeof(zMagicHeader)==16 ); |
| 2671 data[16] = (u8)((pBt->pageSize>>8)&0xff); |
| 2672 data[17] = (u8)((pBt->pageSize>>16)&0xff); |
| 2673 data[18] = 1; |
| 2674 data[19] = 1; |
| 2675 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize); |
| 2676 data[20] = (u8)(pBt->pageSize - pBt->usableSize); |
| 2677 data[21] = 64; |
| 2678 data[22] = 32; |
| 2679 data[23] = 32; |
| 2680 memset(&data[24], 0, 100-24); |
| 2681 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); |
| 2682 pBt->btsFlags |= BTS_PAGESIZE_FIXED; |
| 2683 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 2684 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 ); |
| 2685 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 ); |
| 2686 put4byte(&data[36 + 4*4], pBt->autoVacuum); |
| 2687 put4byte(&data[36 + 7*4], pBt->incrVacuum); |
| 2688 #endif |
| 2689 pBt->nPage = 1; |
| 2690 data[31] = 1; |
| 2691 return SQLITE_OK; |
| 2692 } |
| 2693 |
| 2694 /* |
| 2695 ** Initialize the first page of the database file (creating a database |
| 2696 ** consisting of a single page and no schema objects). Return SQLITE_OK |
| 2697 ** if successful, or an SQLite error code otherwise. |
| 2698 */ |
| 2699 int sqlite3BtreeNewDb(Btree *p){ |
| 2700 int rc; |
| 2701 sqlite3BtreeEnter(p); |
| 2702 p->pBt->nPage = 0; |
| 2703 rc = newDatabase(p->pBt); |
| 2704 sqlite3BtreeLeave(p); |
| 2705 return rc; |
| 2706 } |
| 2707 |
| 2708 /* |
| 2709 ** Attempt to start a new transaction. A write-transaction |
| 2710 ** is started if the second argument is nonzero, otherwise a read- |
| 2711 ** transaction. If the second argument is 2 or more and exclusive |
| 2712 ** transaction is started, meaning that no other process is allowed |
| 2713 ** to access the database. A preexisting transaction may not be |
| 2714 ** upgraded to exclusive by calling this routine a second time - the |
| 2715 ** exclusivity flag only works for a new transaction. |
| 2716 ** |
| 2717 ** A write-transaction must be started before attempting any |
| 2718 ** changes to the database. None of the following routines |
| 2719 ** will work unless a transaction is started first: |
| 2720 ** |
| 2721 ** sqlite3BtreeCreateTable() |
| 2722 ** sqlite3BtreeCreateIndex() |
| 2723 ** sqlite3BtreeClearTable() |
| 2724 ** sqlite3BtreeDropTable() |
| 2725 ** sqlite3BtreeInsert() |
| 2726 ** sqlite3BtreeDelete() |
| 2727 ** sqlite3BtreeUpdateMeta() |
| 2728 ** |
| 2729 ** If an initial attempt to acquire the lock fails because of lock contention |
| 2730 ** and the database was previously unlocked, then invoke the busy handler |
| 2731 ** if there is one. But if there was previously a read-lock, do not |
| 2732 ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is |
| 2733 ** returned when there is already a read-lock in order to avoid a deadlock. |
| 2734 ** |
| 2735 ** Suppose there are two processes A and B. A has a read lock and B has |
| 2736 ** a reserved lock. B tries to promote to exclusive but is blocked because |
| 2737 ** of A's read lock. A tries to promote to reserved but is blocked by B. |
| 2738 ** One or the other of the two processes must give way or there can be |
| 2739 ** no progress. By returning SQLITE_BUSY and not invoking the busy callback |
| 2740 ** when A already has a read lock, we encourage A to give up and let B |
| 2741 ** proceed. |
| 2742 */ |
| 2743 int sqlite3BtreeBeginTrans(Btree *p, int wrflag){ |
| 2744 sqlite3 *pBlock = 0; |
| 2745 BtShared *pBt = p->pBt; |
| 2746 int rc = SQLITE_OK; |
| 2747 |
| 2748 sqlite3BtreeEnter(p); |
| 2749 btreeIntegrity(p); |
| 2750 |
| 2751 /* If the btree is already in a write-transaction, or it |
| 2752 ** is already in a read-transaction and a read-transaction |
| 2753 ** is requested, this is a no-op. |
| 2754 */ |
| 2755 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){ |
| 2756 goto trans_begun; |
| 2757 } |
| 2758 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 ); |
| 2759 |
| 2760 /* Write transactions are not possible on a read-only database */ |
| 2761 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){ |
| 2762 rc = SQLITE_READONLY; |
| 2763 goto trans_begun; |
| 2764 } |
| 2765 |
| 2766 #ifndef SQLITE_OMIT_SHARED_CACHE |
| 2767 /* If another database handle has already opened a write transaction |
| 2768 ** on this shared-btree structure and a second write transaction is |
| 2769 ** requested, return SQLITE_LOCKED. |
| 2770 */ |
| 2771 if( (wrflag && pBt->inTransaction==TRANS_WRITE) |
| 2772 || (pBt->btsFlags & BTS_PENDING)!=0 |
| 2773 ){ |
| 2774 pBlock = pBt->pWriter->db; |
| 2775 }else if( wrflag>1 ){ |
| 2776 BtLock *pIter; |
| 2777 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ |
| 2778 if( pIter->pBtree!=p ){ |
| 2779 pBlock = pIter->pBtree->db; |
| 2780 break; |
| 2781 } |
| 2782 } |
| 2783 } |
| 2784 if( pBlock ){ |
| 2785 sqlite3ConnectionBlocked(p->db, pBlock); |
| 2786 rc = SQLITE_LOCKED_SHAREDCACHE; |
| 2787 goto trans_begun; |
| 2788 } |
| 2789 #endif |
| 2790 |
| 2791 /* Any read-only or read-write transaction implies a read-lock on |
| 2792 ** page 1. So if some other shared-cache client already has a write-lock |
| 2793 ** on page 1, the transaction cannot be opened. */ |
| 2794 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK); |
| 2795 if( SQLITE_OK!=rc ) goto trans_begun; |
| 2796 |
| 2797 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY; |
| 2798 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY; |
| 2799 do { |
| 2800 /* Call lockBtree() until either pBt->pPage1 is populated or |
| 2801 ** lockBtree() returns something other than SQLITE_OK. lockBtree() |
| 2802 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after |
| 2803 ** reading page 1 it discovers that the page-size of the database |
| 2804 ** file is not pBt->pageSize. In this case lockBtree() will update |
| 2805 ** pBt->pageSize to the page-size of the file on disk. |
| 2806 */ |
| 2807 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) ); |
| 2808 |
| 2809 if( rc==SQLITE_OK && wrflag ){ |
| 2810 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){ |
| 2811 rc = SQLITE_READONLY; |
| 2812 }else{ |
| 2813 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db)); |
| 2814 if( rc==SQLITE_OK ){ |
| 2815 rc = newDatabase(pBt); |
| 2816 } |
| 2817 } |
| 2818 } |
| 2819 |
| 2820 if( rc!=SQLITE_OK ){ |
| 2821 unlockBtreeIfUnused(pBt); |
| 2822 } |
| 2823 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE && |
| 2824 btreeInvokeBusyHandler(pBt) ); |
| 2825 |
| 2826 if( rc==SQLITE_OK ){ |
| 2827 if( p->inTrans==TRANS_NONE ){ |
| 2828 pBt->nTransaction++; |
| 2829 #ifndef SQLITE_OMIT_SHARED_CACHE |
| 2830 if( p->sharable ){ |
| 2831 assert( p->lock.pBtree==p && p->lock.iTable==1 ); |
| 2832 p->lock.eLock = READ_LOCK; |
| 2833 p->lock.pNext = pBt->pLock; |
| 2834 pBt->pLock = &p->lock; |
| 2835 } |
| 2836 #endif |
| 2837 } |
| 2838 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); |
| 2839 if( p->inTrans>pBt->inTransaction ){ |
| 2840 pBt->inTransaction = p->inTrans; |
| 2841 } |
| 2842 if( wrflag ){ |
| 2843 MemPage *pPage1 = pBt->pPage1; |
| 2844 #ifndef SQLITE_OMIT_SHARED_CACHE |
| 2845 assert( !pBt->pWriter ); |
| 2846 pBt->pWriter = p; |
| 2847 pBt->btsFlags &= ~BTS_EXCLUSIVE; |
| 2848 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE; |
| 2849 #endif |
| 2850 |
| 2851 /* If the db-size header field is incorrect (as it may be if an old |
| 2852 ** client has been writing the database file), update it now. Doing |
| 2853 ** this sooner rather than later means the database size can safely |
| 2854 ** re-read the database size from page 1 if a savepoint or transaction |
| 2855 ** rollback occurs within the transaction. |
| 2856 */ |
| 2857 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){ |
| 2858 rc = sqlite3PagerWrite(pPage1->pDbPage); |
| 2859 if( rc==SQLITE_OK ){ |
| 2860 put4byte(&pPage1->aData[28], pBt->nPage); |
| 2861 } |
| 2862 } |
| 2863 } |
| 2864 } |
| 2865 |
| 2866 |
| 2867 trans_begun: |
| 2868 if( rc==SQLITE_OK && wrflag ){ |
| 2869 /* This call makes sure that the pager has the correct number of |
| 2870 ** open savepoints. If the second parameter is greater than 0 and |
| 2871 ** the sub-journal is not already open, then it will be opened here. |
| 2872 */ |
| 2873 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint); |
| 2874 } |
| 2875 |
| 2876 btreeIntegrity(p); |
| 2877 sqlite3BtreeLeave(p); |
| 2878 return rc; |
| 2879 } |
| 2880 |
| 2881 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 2882 |
| 2883 /* |
| 2884 ** Set the pointer-map entries for all children of page pPage. Also, if |
| 2885 ** pPage contains cells that point to overflow pages, set the pointer |
| 2886 ** map entries for the overflow pages as well. |
| 2887 */ |
| 2888 static int setChildPtrmaps(MemPage *pPage){ |
| 2889 int i; /* Counter variable */ |
| 2890 int nCell; /* Number of cells in page pPage */ |
| 2891 int rc; /* Return code */ |
| 2892 BtShared *pBt = pPage->pBt; |
| 2893 u8 isInitOrig = pPage->isInit; |
| 2894 Pgno pgno = pPage->pgno; |
| 2895 |
| 2896 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 2897 rc = btreeInitPage(pPage); |
| 2898 if( rc!=SQLITE_OK ){ |
| 2899 goto set_child_ptrmaps_out; |
| 2900 } |
| 2901 nCell = pPage->nCell; |
| 2902 |
| 2903 for(i=0; i<nCell; i++){ |
| 2904 u8 *pCell = findCell(pPage, i); |
| 2905 |
| 2906 ptrmapPutOvflPtr(pPage, pCell, &rc); |
| 2907 |
| 2908 if( !pPage->leaf ){ |
| 2909 Pgno childPgno = get4byte(pCell); |
| 2910 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); |
| 2911 } |
| 2912 } |
| 2913 |
| 2914 if( !pPage->leaf ){ |
| 2915 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
| 2916 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); |
| 2917 } |
| 2918 |
| 2919 set_child_ptrmaps_out: |
| 2920 pPage->isInit = isInitOrig; |
| 2921 return rc; |
| 2922 } |
| 2923 |
| 2924 /* |
| 2925 ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so |
| 2926 ** that it points to iTo. Parameter eType describes the type of pointer to |
| 2927 ** be modified, as follows: |
| 2928 ** |
| 2929 ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child |
| 2930 ** page of pPage. |
| 2931 ** |
| 2932 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow |
| 2933 ** page pointed to by one of the cells on pPage. |
| 2934 ** |
| 2935 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next |
| 2936 ** overflow page in the list. |
| 2937 */ |
| 2938 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){ |
| 2939 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 2940 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
| 2941 if( eType==PTRMAP_OVERFLOW2 ){ |
| 2942 /* The pointer is always the first 4 bytes of the page in this case. */ |
| 2943 if( get4byte(pPage->aData)!=iFrom ){ |
| 2944 return SQLITE_CORRUPT_BKPT; |
| 2945 } |
| 2946 put4byte(pPage->aData, iTo); |
| 2947 }else{ |
| 2948 u8 isInitOrig = pPage->isInit; |
| 2949 int i; |
| 2950 int nCell; |
| 2951 |
| 2952 btreeInitPage(pPage); |
| 2953 nCell = pPage->nCell; |
| 2954 |
| 2955 for(i=0; i<nCell; i++){ |
| 2956 u8 *pCell = findCell(pPage, i); |
| 2957 if( eType==PTRMAP_OVERFLOW1 ){ |
| 2958 CellInfo info; |
| 2959 btreeParseCellPtr(pPage, pCell, &info); |
| 2960 if( info.iOverflow |
| 2961 && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage |
| 2962 && iFrom==get4byte(&pCell[info.iOverflow]) |
| 2963 ){ |
| 2964 put4byte(&pCell[info.iOverflow], iTo); |
| 2965 break; |
| 2966 } |
| 2967 }else{ |
| 2968 if( get4byte(pCell)==iFrom ){ |
| 2969 put4byte(pCell, iTo); |
| 2970 break; |
| 2971 } |
| 2972 } |
| 2973 } |
| 2974 |
| 2975 if( i==nCell ){ |
| 2976 if( eType!=PTRMAP_BTREE || |
| 2977 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){ |
| 2978 return SQLITE_CORRUPT_BKPT; |
| 2979 } |
| 2980 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo); |
| 2981 } |
| 2982 |
| 2983 pPage->isInit = isInitOrig; |
| 2984 } |
| 2985 return SQLITE_OK; |
| 2986 } |
| 2987 |
| 2988 |
| 2989 /* |
| 2990 ** Move the open database page pDbPage to location iFreePage in the |
| 2991 ** database. The pDbPage reference remains valid. |
| 2992 ** |
| 2993 ** The isCommit flag indicates that there is no need to remember that |
| 2994 ** the journal needs to be sync()ed before database page pDbPage->pgno |
| 2995 ** can be written to. The caller has already promised not to write to that |
| 2996 ** page. |
| 2997 */ |
| 2998 static int relocatePage( |
| 2999 BtShared *pBt, /* Btree */ |
| 3000 MemPage *pDbPage, /* Open page to move */ |
| 3001 u8 eType, /* Pointer map 'type' entry for pDbPage */ |
| 3002 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */ |
| 3003 Pgno iFreePage, /* The location to move pDbPage to */ |
| 3004 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */ |
| 3005 ){ |
| 3006 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */ |
| 3007 Pgno iDbPage = pDbPage->pgno; |
| 3008 Pager *pPager = pBt->pPager; |
| 3009 int rc; |
| 3010 |
| 3011 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || |
| 3012 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ); |
| 3013 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 3014 assert( pDbPage->pBt==pBt ); |
| 3015 |
| 3016 /* Move page iDbPage from its current location to page number iFreePage */ |
| 3017 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", |
| 3018 iDbPage, iFreePage, iPtrPage, eType)); |
| 3019 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit); |
| 3020 if( rc!=SQLITE_OK ){ |
| 3021 return rc; |
| 3022 } |
| 3023 pDbPage->pgno = iFreePage; |
| 3024 |
| 3025 /* If pDbPage was a btree-page, then it may have child pages and/or cells |
| 3026 ** that point to overflow pages. The pointer map entries for all these |
| 3027 ** pages need to be changed. |
| 3028 ** |
| 3029 ** If pDbPage is an overflow page, then the first 4 bytes may store a |
| 3030 ** pointer to a subsequent overflow page. If this is the case, then |
| 3031 ** the pointer map needs to be updated for the subsequent overflow page. |
| 3032 */ |
| 3033 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){ |
| 3034 rc = setChildPtrmaps(pDbPage); |
| 3035 if( rc!=SQLITE_OK ){ |
| 3036 return rc; |
| 3037 } |
| 3038 }else{ |
| 3039 Pgno nextOvfl = get4byte(pDbPage->aData); |
| 3040 if( nextOvfl!=0 ){ |
| 3041 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc); |
| 3042 if( rc!=SQLITE_OK ){ |
| 3043 return rc; |
| 3044 } |
| 3045 } |
| 3046 } |
| 3047 |
| 3048 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so |
| 3049 ** that it points at iFreePage. Also fix the pointer map entry for |
| 3050 ** iPtrPage. |
| 3051 */ |
| 3052 if( eType!=PTRMAP_ROOTPAGE ){ |
| 3053 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0); |
| 3054 if( rc!=SQLITE_OK ){ |
| 3055 return rc; |
| 3056 } |
| 3057 rc = sqlite3PagerWrite(pPtrPage->pDbPage); |
| 3058 if( rc!=SQLITE_OK ){ |
| 3059 releasePage(pPtrPage); |
| 3060 return rc; |
| 3061 } |
| 3062 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType); |
| 3063 releasePage(pPtrPage); |
| 3064 if( rc==SQLITE_OK ){ |
| 3065 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc); |
| 3066 } |
| 3067 } |
| 3068 return rc; |
| 3069 } |
| 3070 |
| 3071 /* Forward declaration required by incrVacuumStep(). */ |
| 3072 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8); |
| 3073 |
| 3074 /* |
| 3075 ** Perform a single step of an incremental-vacuum. If successful, return |
| 3076 ** SQLITE_OK. If there is no work to do (and therefore no point in |
| 3077 ** calling this function again), return SQLITE_DONE. Or, if an error |
| 3078 ** occurs, return some other error code. |
| 3079 ** |
| 3080 ** More specifically, this function attempts to re-organize the database so |
| 3081 ** that the last page of the file currently in use is no longer in use. |
| 3082 ** |
| 3083 ** Parameter nFin is the number of pages that this database would contain |
| 3084 ** were this function called until it returns SQLITE_DONE. |
| 3085 ** |
| 3086 ** If the bCommit parameter is non-zero, this function assumes that the |
| 3087 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE |
| 3088 ** or an error. bCommit is passed true for an auto-vacuum-on-commit |
| 3089 ** operation, or false for an incremental vacuum. |
| 3090 */ |
| 3091 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){ |
| 3092 Pgno nFreeList; /* Number of pages still on the free-list */ |
| 3093 int rc; |
| 3094 |
| 3095 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 3096 assert( iLastPg>nFin ); |
| 3097 |
| 3098 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){ |
| 3099 u8 eType; |
| 3100 Pgno iPtrPage; |
| 3101 |
| 3102 nFreeList = get4byte(&pBt->pPage1->aData[36]); |
| 3103 if( nFreeList==0 ){ |
| 3104 return SQLITE_DONE; |
| 3105 } |
| 3106 |
| 3107 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage); |
| 3108 if( rc!=SQLITE_OK ){ |
| 3109 return rc; |
| 3110 } |
| 3111 if( eType==PTRMAP_ROOTPAGE ){ |
| 3112 return SQLITE_CORRUPT_BKPT; |
| 3113 } |
| 3114 |
| 3115 if( eType==PTRMAP_FREEPAGE ){ |
| 3116 if( bCommit==0 ){ |
| 3117 /* Remove the page from the files free-list. This is not required |
| 3118 ** if bCommit is non-zero. In that case, the free-list will be |
| 3119 ** truncated to zero after this function returns, so it doesn't |
| 3120 ** matter if it still contains some garbage entries. |
| 3121 */ |
| 3122 Pgno iFreePg; |
| 3123 MemPage *pFreePg; |
| 3124 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT); |
| 3125 if( rc!=SQLITE_OK ){ |
| 3126 return rc; |
| 3127 } |
| 3128 assert( iFreePg==iLastPg ); |
| 3129 releasePage(pFreePg); |
| 3130 } |
| 3131 } else { |
| 3132 Pgno iFreePg; /* Index of free page to move pLastPg to */ |
| 3133 MemPage *pLastPg; |
| 3134 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */ |
| 3135 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */ |
| 3136 |
| 3137 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0); |
| 3138 if( rc!=SQLITE_OK ){ |
| 3139 return rc; |
| 3140 } |
| 3141 |
| 3142 /* If bCommit is zero, this loop runs exactly once and page pLastPg |
| 3143 ** is swapped with the first free page pulled off the free list. |
| 3144 ** |
| 3145 ** On the other hand, if bCommit is greater than zero, then keep |
| 3146 ** looping until a free-page located within the first nFin pages |
| 3147 ** of the file is found. |
| 3148 */ |
| 3149 if( bCommit==0 ){ |
| 3150 eMode = BTALLOC_LE; |
| 3151 iNear = nFin; |
| 3152 } |
| 3153 do { |
| 3154 MemPage *pFreePg; |
| 3155 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode); |
| 3156 if( rc!=SQLITE_OK ){ |
| 3157 releasePage(pLastPg); |
| 3158 return rc; |
| 3159 } |
| 3160 releasePage(pFreePg); |
| 3161 }while( bCommit && iFreePg>nFin ); |
| 3162 assert( iFreePg<iLastPg ); |
| 3163 |
| 3164 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit); |
| 3165 releasePage(pLastPg); |
| 3166 if( rc!=SQLITE_OK ){ |
| 3167 return rc; |
| 3168 } |
| 3169 } |
| 3170 } |
| 3171 |
| 3172 if( bCommit==0 ){ |
| 3173 do { |
| 3174 iLastPg--; |
| 3175 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) ); |
| 3176 pBt->bDoTruncate = 1; |
| 3177 pBt->nPage = iLastPg; |
| 3178 } |
| 3179 return SQLITE_OK; |
| 3180 } |
| 3181 |
| 3182 /* |
| 3183 ** The database opened by the first argument is an auto-vacuum database |
| 3184 ** nOrig pages in size containing nFree free pages. Return the expected |
| 3185 ** size of the database in pages following an auto-vacuum operation. |
| 3186 */ |
| 3187 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){ |
| 3188 int nEntry; /* Number of entries on one ptrmap page */ |
| 3189 Pgno nPtrmap; /* Number of PtrMap pages to be freed */ |
| 3190 Pgno nFin; /* Return value */ |
| 3191 |
| 3192 nEntry = pBt->usableSize/5; |
| 3193 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry; |
| 3194 nFin = nOrig - nFree - nPtrmap; |
| 3195 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){ |
| 3196 nFin--; |
| 3197 } |
| 3198 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){ |
| 3199 nFin--; |
| 3200 } |
| 3201 |
| 3202 return nFin; |
| 3203 } |
| 3204 |
| 3205 /* |
| 3206 ** A write-transaction must be opened before calling this function. |
| 3207 ** It performs a single unit of work towards an incremental vacuum. |
| 3208 ** |
| 3209 ** If the incremental vacuum is finished after this function has run, |
| 3210 ** SQLITE_DONE is returned. If it is not finished, but no error occurred, |
| 3211 ** SQLITE_OK is returned. Otherwise an SQLite error code. |
| 3212 */ |
| 3213 int sqlite3BtreeIncrVacuum(Btree *p){ |
| 3214 int rc; |
| 3215 BtShared *pBt = p->pBt; |
| 3216 |
| 3217 sqlite3BtreeEnter(p); |
| 3218 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE ); |
| 3219 if( !pBt->autoVacuum ){ |
| 3220 rc = SQLITE_DONE; |
| 3221 }else{ |
| 3222 Pgno nOrig = btreePagecount(pBt); |
| 3223 Pgno nFree = get4byte(&pBt->pPage1->aData[36]); |
| 3224 Pgno nFin = finalDbSize(pBt, nOrig, nFree); |
| 3225 |
| 3226 if( nOrig<nFin ){ |
| 3227 rc = SQLITE_CORRUPT_BKPT; |
| 3228 }else if( nFree>0 ){ |
| 3229 rc = saveAllCursors(pBt, 0, 0); |
| 3230 if( rc==SQLITE_OK ){ |
| 3231 invalidateAllOverflowCache(pBt); |
| 3232 rc = incrVacuumStep(pBt, nFin, nOrig, 0); |
| 3233 } |
| 3234 if( rc==SQLITE_OK ){ |
| 3235 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); |
| 3236 put4byte(&pBt->pPage1->aData[28], pBt->nPage); |
| 3237 } |
| 3238 }else{ |
| 3239 rc = SQLITE_DONE; |
| 3240 } |
| 3241 } |
| 3242 sqlite3BtreeLeave(p); |
| 3243 return rc; |
| 3244 } |
| 3245 |
| 3246 /* |
| 3247 ** This routine is called prior to sqlite3PagerCommit when a transaction |
| 3248 ** is committed for an auto-vacuum database. |
| 3249 ** |
| 3250 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages |
| 3251 ** the database file should be truncated to during the commit process. |
| 3252 ** i.e. the database has been reorganized so that only the first *pnTrunc |
| 3253 ** pages are in use. |
| 3254 */ |
| 3255 static int autoVacuumCommit(BtShared *pBt){ |
| 3256 int rc = SQLITE_OK; |
| 3257 Pager *pPager = pBt->pPager; |
| 3258 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) ); |
| 3259 |
| 3260 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 3261 invalidateAllOverflowCache(pBt); |
| 3262 assert(pBt->autoVacuum); |
| 3263 if( !pBt->incrVacuum ){ |
| 3264 Pgno nFin; /* Number of pages in database after autovacuuming */ |
| 3265 Pgno nFree; /* Number of pages on the freelist initially */ |
| 3266 Pgno iFree; /* The next page to be freed */ |
| 3267 Pgno nOrig; /* Database size before freeing */ |
| 3268 |
| 3269 nOrig = btreePagecount(pBt); |
| 3270 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){ |
| 3271 /* It is not possible to create a database for which the final page |
| 3272 ** is either a pointer-map page or the pending-byte page. If one |
| 3273 ** is encountered, this indicates corruption. |
| 3274 */ |
| 3275 return SQLITE_CORRUPT_BKPT; |
| 3276 } |
| 3277 |
| 3278 nFree = get4byte(&pBt->pPage1->aData[36]); |
| 3279 nFin = finalDbSize(pBt, nOrig, nFree); |
| 3280 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT; |
| 3281 if( nFin<nOrig ){ |
| 3282 rc = saveAllCursors(pBt, 0, 0); |
| 3283 } |
| 3284 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){ |
| 3285 rc = incrVacuumStep(pBt, nFin, iFree, 1); |
| 3286 } |
| 3287 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){ |
| 3288 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); |
| 3289 put4byte(&pBt->pPage1->aData[32], 0); |
| 3290 put4byte(&pBt->pPage1->aData[36], 0); |
| 3291 put4byte(&pBt->pPage1->aData[28], nFin); |
| 3292 pBt->bDoTruncate = 1; |
| 3293 pBt->nPage = nFin; |
| 3294 } |
| 3295 if( rc!=SQLITE_OK ){ |
| 3296 sqlite3PagerRollback(pPager); |
| 3297 } |
| 3298 } |
| 3299 |
| 3300 assert( nRef>=sqlite3PagerRefcount(pPager) ); |
| 3301 return rc; |
| 3302 } |
| 3303 |
| 3304 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */ |
| 3305 # define setChildPtrmaps(x) SQLITE_OK |
| 3306 #endif |
| 3307 |
| 3308 /* |
| 3309 ** This routine does the first phase of a two-phase commit. This routine |
| 3310 ** causes a rollback journal to be created (if it does not already exist) |
| 3311 ** and populated with enough information so that if a power loss occurs |
| 3312 ** the database can be restored to its original state by playing back |
| 3313 ** the journal. Then the contents of the journal are flushed out to |
| 3314 ** the disk. After the journal is safely on oxide, the changes to the |
| 3315 ** database are written into the database file and flushed to oxide. |
| 3316 ** At the end of this call, the rollback journal still exists on the |
| 3317 ** disk and we are still holding all locks, so the transaction has not |
| 3318 ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the |
| 3319 ** commit process. |
| 3320 ** |
| 3321 ** This call is a no-op if no write-transaction is currently active on pBt. |
| 3322 ** |
| 3323 ** Otherwise, sync the database file for the btree pBt. zMaster points to |
| 3324 ** the name of a master journal file that should be written into the |
| 3325 ** individual journal file, or is NULL, indicating no master journal file |
| 3326 ** (single database transaction). |
| 3327 ** |
| 3328 ** When this is called, the master journal should already have been |
| 3329 ** created, populated with this journal pointer and synced to disk. |
| 3330 ** |
| 3331 ** Once this is routine has returned, the only thing required to commit |
| 3332 ** the write-transaction for this database file is to delete the journal. |
| 3333 */ |
| 3334 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){ |
| 3335 int rc = SQLITE_OK; |
| 3336 if( p->inTrans==TRANS_WRITE ){ |
| 3337 BtShared *pBt = p->pBt; |
| 3338 sqlite3BtreeEnter(p); |
| 3339 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 3340 if( pBt->autoVacuum ){ |
| 3341 rc = autoVacuumCommit(pBt); |
| 3342 if( rc!=SQLITE_OK ){ |
| 3343 sqlite3BtreeLeave(p); |
| 3344 return rc; |
| 3345 } |
| 3346 } |
| 3347 if( pBt->bDoTruncate ){ |
| 3348 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage); |
| 3349 } |
| 3350 #endif |
| 3351 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0); |
| 3352 sqlite3BtreeLeave(p); |
| 3353 } |
| 3354 return rc; |
| 3355 } |
| 3356 |
| 3357 /* |
| 3358 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback() |
| 3359 ** at the conclusion of a transaction. |
| 3360 */ |
| 3361 static void btreeEndTransaction(Btree *p){ |
| 3362 BtShared *pBt = p->pBt; |
| 3363 sqlite3 *db = p->db; |
| 3364 assert( sqlite3BtreeHoldsMutex(p) ); |
| 3365 |
| 3366 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 3367 pBt->bDoTruncate = 0; |
| 3368 #endif |
| 3369 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){ |
| 3370 /* If there are other active statements that belong to this database |
| 3371 ** handle, downgrade to a read-only transaction. The other statements |
| 3372 ** may still be reading from the database. */ |
| 3373 downgradeAllSharedCacheTableLocks(p); |
| 3374 p->inTrans = TRANS_READ; |
| 3375 }else{ |
| 3376 /* If the handle had any kind of transaction open, decrement the |
| 3377 ** transaction count of the shared btree. If the transaction count |
| 3378 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused() |
| 3379 ** call below will unlock the pager. */ |
| 3380 if( p->inTrans!=TRANS_NONE ){ |
| 3381 clearAllSharedCacheTableLocks(p); |
| 3382 pBt->nTransaction--; |
| 3383 if( 0==pBt->nTransaction ){ |
| 3384 pBt->inTransaction = TRANS_NONE; |
| 3385 } |
| 3386 } |
| 3387 |
| 3388 /* Set the current transaction state to TRANS_NONE and unlock the |
| 3389 ** pager if this call closed the only read or write transaction. */ |
| 3390 p->inTrans = TRANS_NONE; |
| 3391 unlockBtreeIfUnused(pBt); |
| 3392 } |
| 3393 |
| 3394 btreeIntegrity(p); |
| 3395 } |
| 3396 |
| 3397 /* |
| 3398 ** Commit the transaction currently in progress. |
| 3399 ** |
| 3400 ** This routine implements the second phase of a 2-phase commit. The |
| 3401 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should |
| 3402 ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne() |
| 3403 ** routine did all the work of writing information out to disk and flushing the |
| 3404 ** contents so that they are written onto the disk platter. All this |
| 3405 ** routine has to do is delete or truncate or zero the header in the |
| 3406 ** the rollback journal (which causes the transaction to commit) and |
| 3407 ** drop locks. |
| 3408 ** |
| 3409 ** Normally, if an error occurs while the pager layer is attempting to |
| 3410 ** finalize the underlying journal file, this function returns an error and |
| 3411 ** the upper layer will attempt a rollback. However, if the second argument |
| 3412 ** is non-zero then this b-tree transaction is part of a multi-file |
| 3413 ** transaction. In this case, the transaction has already been committed |
| 3414 ** (by deleting a master journal file) and the caller will ignore this |
| 3415 ** functions return code. So, even if an error occurs in the pager layer, |
| 3416 ** reset the b-tree objects internal state to indicate that the write |
| 3417 ** transaction has been closed. This is quite safe, as the pager will have |
| 3418 ** transitioned to the error state. |
| 3419 ** |
| 3420 ** This will release the write lock on the database file. If there |
| 3421 ** are no active cursors, it also releases the read lock. |
| 3422 */ |
| 3423 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){ |
| 3424 |
| 3425 if( p->inTrans==TRANS_NONE ) return SQLITE_OK; |
| 3426 sqlite3BtreeEnter(p); |
| 3427 btreeIntegrity(p); |
| 3428 |
| 3429 /* If the handle has a write-transaction open, commit the shared-btrees |
| 3430 ** transaction and set the shared state to TRANS_READ. |
| 3431 */ |
| 3432 if( p->inTrans==TRANS_WRITE ){ |
| 3433 int rc; |
| 3434 BtShared *pBt = p->pBt; |
| 3435 assert( pBt->inTransaction==TRANS_WRITE ); |
| 3436 assert( pBt->nTransaction>0 ); |
| 3437 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager); |
| 3438 if( rc!=SQLITE_OK && bCleanup==0 ){ |
| 3439 sqlite3BtreeLeave(p); |
| 3440 return rc; |
| 3441 } |
| 3442 pBt->inTransaction = TRANS_READ; |
| 3443 btreeClearHasContent(pBt); |
| 3444 } |
| 3445 |
| 3446 btreeEndTransaction(p); |
| 3447 sqlite3BtreeLeave(p); |
| 3448 return SQLITE_OK; |
| 3449 } |
| 3450 |
| 3451 /* |
| 3452 ** Do both phases of a commit. |
| 3453 */ |
| 3454 int sqlite3BtreeCommit(Btree *p){ |
| 3455 int rc; |
| 3456 sqlite3BtreeEnter(p); |
| 3457 rc = sqlite3BtreeCommitPhaseOne(p, 0); |
| 3458 if( rc==SQLITE_OK ){ |
| 3459 rc = sqlite3BtreeCommitPhaseTwo(p, 0); |
| 3460 } |
| 3461 sqlite3BtreeLeave(p); |
| 3462 return rc; |
| 3463 } |
| 3464 |
| 3465 /* |
| 3466 ** This routine sets the state to CURSOR_FAULT and the error |
| 3467 ** code to errCode for every cursor on any BtShared that pBtree |
| 3468 ** references. Or if the writeOnly flag is set to 1, then only |
| 3469 ** trip write cursors and leave read cursors unchanged. |
| 3470 ** |
| 3471 ** Every cursor is a candidate to be tripped, including cursors |
| 3472 ** that belong to other database connections that happen to be |
| 3473 ** sharing the cache with pBtree. |
| 3474 ** |
| 3475 ** This routine gets called when a rollback occurs. If the writeOnly |
| 3476 ** flag is true, then only write-cursors need be tripped - read-only |
| 3477 ** cursors save their current positions so that they may continue |
| 3478 ** following the rollback. Or, if writeOnly is false, all cursors are |
| 3479 ** tripped. In general, writeOnly is false if the transaction being |
| 3480 ** rolled back modified the database schema. In this case b-tree root |
| 3481 ** pages may be moved or deleted from the database altogether, making |
| 3482 ** it unsafe for read cursors to continue. |
| 3483 ** |
| 3484 ** If the writeOnly flag is true and an error is encountered while |
| 3485 ** saving the current position of a read-only cursor, all cursors, |
| 3486 ** including all read-cursors are tripped. |
| 3487 ** |
| 3488 ** SQLITE_OK is returned if successful, or if an error occurs while |
| 3489 ** saving a cursor position, an SQLite error code. |
| 3490 */ |
| 3491 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){ |
| 3492 BtCursor *p; |
| 3493 int rc = SQLITE_OK; |
| 3494 |
| 3495 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 ); |
| 3496 if( pBtree ){ |
| 3497 sqlite3BtreeEnter(pBtree); |
| 3498 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ |
| 3499 int i; |
| 3500 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){ |
| 3501 if( p->eState==CURSOR_VALID ){ |
| 3502 rc = saveCursorPosition(p); |
| 3503 if( rc!=SQLITE_OK ){ |
| 3504 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0); |
| 3505 break; |
| 3506 } |
| 3507 } |
| 3508 }else{ |
| 3509 sqlite3BtreeClearCursor(p); |
| 3510 p->eState = CURSOR_FAULT; |
| 3511 p->skipNext = errCode; |
| 3512 } |
| 3513 for(i=0; i<=p->iPage; i++){ |
| 3514 releasePage(p->apPage[i]); |
| 3515 p->apPage[i] = 0; |
| 3516 } |
| 3517 } |
| 3518 sqlite3BtreeLeave(pBtree); |
| 3519 } |
| 3520 return rc; |
| 3521 } |
| 3522 |
| 3523 /* |
| 3524 ** Rollback the transaction in progress. |
| 3525 ** |
| 3526 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped). |
| 3527 ** Only write cursors are tripped if writeOnly is true but all cursors are |
| 3528 ** tripped if writeOnly is false. Any attempt to use |
| 3529 ** a tripped cursor will result in an error. |
| 3530 ** |
| 3531 ** This will release the write lock on the database file. If there |
| 3532 ** are no active cursors, it also releases the read lock. |
| 3533 */ |
| 3534 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){ |
| 3535 int rc; |
| 3536 BtShared *pBt = p->pBt; |
| 3537 MemPage *pPage1; |
| 3538 |
| 3539 assert( writeOnly==1 || writeOnly==0 ); |
| 3540 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK ); |
| 3541 sqlite3BtreeEnter(p); |
| 3542 if( tripCode==SQLITE_OK ){ |
| 3543 rc = tripCode = saveAllCursors(pBt, 0, 0); |
| 3544 if( rc ) writeOnly = 0; |
| 3545 }else{ |
| 3546 rc = SQLITE_OK; |
| 3547 } |
| 3548 if( tripCode ){ |
| 3549 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly); |
| 3550 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) ); |
| 3551 if( rc2!=SQLITE_OK ) rc = rc2; |
| 3552 } |
| 3553 btreeIntegrity(p); |
| 3554 |
| 3555 if( p->inTrans==TRANS_WRITE ){ |
| 3556 int rc2; |
| 3557 |
| 3558 assert( TRANS_WRITE==pBt->inTransaction ); |
| 3559 rc2 = sqlite3PagerRollback(pBt->pPager); |
| 3560 if( rc2!=SQLITE_OK ){ |
| 3561 rc = rc2; |
| 3562 } |
| 3563 |
| 3564 /* The rollback may have destroyed the pPage1->aData value. So |
| 3565 ** call btreeGetPage() on page 1 again to make |
| 3566 ** sure pPage1->aData is set correctly. */ |
| 3567 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){ |
| 3568 int nPage = get4byte(28+(u8*)pPage1->aData); |
| 3569 testcase( nPage==0 ); |
| 3570 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage); |
| 3571 testcase( pBt->nPage!=nPage ); |
| 3572 pBt->nPage = nPage; |
| 3573 releasePage(pPage1); |
| 3574 } |
| 3575 assert( countValidCursors(pBt, 1)==0 ); |
| 3576 pBt->inTransaction = TRANS_READ; |
| 3577 btreeClearHasContent(pBt); |
| 3578 } |
| 3579 |
| 3580 btreeEndTransaction(p); |
| 3581 sqlite3BtreeLeave(p); |
| 3582 return rc; |
| 3583 } |
| 3584 |
| 3585 /* |
| 3586 ** Start a statement subtransaction. The subtransaction can be rolled |
| 3587 ** back independently of the main transaction. You must start a transaction |
| 3588 ** before starting a subtransaction. The subtransaction is ended automatically |
| 3589 ** if the main transaction commits or rolls back. |
| 3590 ** |
| 3591 ** Statement subtransactions are used around individual SQL statements |
| 3592 ** that are contained within a BEGIN...COMMIT block. If a constraint |
| 3593 ** error occurs within the statement, the effect of that one statement |
| 3594 ** can be rolled back without having to rollback the entire transaction. |
| 3595 ** |
| 3596 ** A statement sub-transaction is implemented as an anonymous savepoint. The |
| 3597 ** value passed as the second parameter is the total number of savepoints, |
| 3598 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there |
| 3599 ** are no active savepoints and no other statement-transactions open, |
| 3600 ** iStatement is 1. This anonymous savepoint can be released or rolled back |
| 3601 ** using the sqlite3BtreeSavepoint() function. |
| 3602 */ |
| 3603 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){ |
| 3604 int rc; |
| 3605 BtShared *pBt = p->pBt; |
| 3606 sqlite3BtreeEnter(p); |
| 3607 assert( p->inTrans==TRANS_WRITE ); |
| 3608 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); |
| 3609 assert( iStatement>0 ); |
| 3610 assert( iStatement>p->db->nSavepoint ); |
| 3611 assert( pBt->inTransaction==TRANS_WRITE ); |
| 3612 /* At the pager level, a statement transaction is a savepoint with |
| 3613 ** an index greater than all savepoints created explicitly using |
| 3614 ** SQL statements. It is illegal to open, release or rollback any |
| 3615 ** such savepoints while the statement transaction savepoint is active. |
| 3616 */ |
| 3617 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement); |
| 3618 sqlite3BtreeLeave(p); |
| 3619 return rc; |
| 3620 } |
| 3621 |
| 3622 /* |
| 3623 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK |
| 3624 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the |
| 3625 ** savepoint identified by parameter iSavepoint, depending on the value |
| 3626 ** of op. |
| 3627 ** |
| 3628 ** Normally, iSavepoint is greater than or equal to zero. However, if op is |
| 3629 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the |
| 3630 ** contents of the entire transaction are rolled back. This is different |
| 3631 ** from a normal transaction rollback, as no locks are released and the |
| 3632 ** transaction remains open. |
| 3633 */ |
| 3634 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){ |
| 3635 int rc = SQLITE_OK; |
| 3636 if( p && p->inTrans==TRANS_WRITE ){ |
| 3637 BtShared *pBt = p->pBt; |
| 3638 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); |
| 3639 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) ); |
| 3640 sqlite3BtreeEnter(p); |
| 3641 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint); |
| 3642 if( rc==SQLITE_OK ){ |
| 3643 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){ |
| 3644 pBt->nPage = 0; |
| 3645 } |
| 3646 rc = newDatabase(pBt); |
| 3647 pBt->nPage = get4byte(28 + pBt->pPage1->aData); |
| 3648 |
| 3649 /* The database size was written into the offset 28 of the header |
| 3650 ** when the transaction started, so we know that the value at offset |
| 3651 ** 28 is nonzero. */ |
| 3652 assert( pBt->nPage>0 ); |
| 3653 } |
| 3654 sqlite3BtreeLeave(p); |
| 3655 } |
| 3656 return rc; |
| 3657 } |
| 3658 |
| 3659 /* |
| 3660 ** Create a new cursor for the BTree whose root is on the page |
| 3661 ** iTable. If a read-only cursor is requested, it is assumed that |
| 3662 ** the caller already has at least a read-only transaction open |
| 3663 ** on the database already. If a write-cursor is requested, then |
| 3664 ** the caller is assumed to have an open write transaction. |
| 3665 ** |
| 3666 ** If wrFlag==0, then the cursor can only be used for reading. |
| 3667 ** If wrFlag==1, then the cursor can be used for reading or for |
| 3668 ** writing if other conditions for writing are also met. These |
| 3669 ** are the conditions that must be met in order for writing to |
| 3670 ** be allowed: |
| 3671 ** |
| 3672 ** 1: The cursor must have been opened with wrFlag==1 |
| 3673 ** |
| 3674 ** 2: Other database connections that share the same pager cache |
| 3675 ** but which are not in the READ_UNCOMMITTED state may not have |
| 3676 ** cursors open with wrFlag==0 on the same table. Otherwise |
| 3677 ** the changes made by this write cursor would be visible to |
| 3678 ** the read cursors in the other database connection. |
| 3679 ** |
| 3680 ** 3: The database must be writable (not on read-only media) |
| 3681 ** |
| 3682 ** 4: There must be an active transaction. |
| 3683 ** |
| 3684 ** No checking is done to make sure that page iTable really is the |
| 3685 ** root page of a b-tree. If it is not, then the cursor acquired |
| 3686 ** will not work correctly. |
| 3687 ** |
| 3688 ** It is assumed that the sqlite3BtreeCursorZero() has been called |
| 3689 ** on pCur to initialize the memory space prior to invoking this routine. |
| 3690 */ |
| 3691 static int btreeCursor( |
| 3692 Btree *p, /* The btree */ |
| 3693 int iTable, /* Root page of table to open */ |
| 3694 int wrFlag, /* 1 to write. 0 read-only */ |
| 3695 struct KeyInfo *pKeyInfo, /* First arg to comparison function */ |
| 3696 BtCursor *pCur /* Space for new cursor */ |
| 3697 ){ |
| 3698 BtShared *pBt = p->pBt; /* Shared b-tree handle */ |
| 3699 |
| 3700 assert( sqlite3BtreeHoldsMutex(p) ); |
| 3701 assert( wrFlag==0 || wrFlag==1 ); |
| 3702 |
| 3703 /* The following assert statements verify that if this is a sharable |
| 3704 ** b-tree database, the connection is holding the required table locks, |
| 3705 ** and that no other connection has any open cursor that conflicts with |
| 3706 ** this lock. */ |
| 3707 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) ); |
| 3708 assert( wrFlag==0 || !hasReadConflicts(p, iTable) ); |
| 3709 |
| 3710 /* Assert that the caller has opened the required transaction. */ |
| 3711 assert( p->inTrans>TRANS_NONE ); |
| 3712 assert( wrFlag==0 || p->inTrans==TRANS_WRITE ); |
| 3713 assert( pBt->pPage1 && pBt->pPage1->aData ); |
| 3714 |
| 3715 if( NEVER(wrFlag && (pBt->btsFlags & BTS_READ_ONLY)!=0) ){ |
| 3716 return SQLITE_READONLY; |
| 3717 } |
| 3718 if( wrFlag ){ |
| 3719 allocateTempSpace(pBt); |
| 3720 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM; |
| 3721 } |
| 3722 if( iTable==1 && btreePagecount(pBt)==0 ){ |
| 3723 assert( wrFlag==0 ); |
| 3724 iTable = 0; |
| 3725 } |
| 3726 |
| 3727 /* Now that no other errors can occur, finish filling in the BtCursor |
| 3728 ** variables and link the cursor into the BtShared list. */ |
| 3729 pCur->pgnoRoot = (Pgno)iTable; |
| 3730 pCur->iPage = -1; |
| 3731 pCur->pKeyInfo = pKeyInfo; |
| 3732 pCur->pBtree = p; |
| 3733 pCur->pBt = pBt; |
| 3734 assert( wrFlag==0 || wrFlag==BTCF_WriteFlag ); |
| 3735 pCur->curFlags = wrFlag; |
| 3736 pCur->pNext = pBt->pCursor; |
| 3737 if( pCur->pNext ){ |
| 3738 pCur->pNext->pPrev = pCur; |
| 3739 } |
| 3740 pBt->pCursor = pCur; |
| 3741 pCur->eState = CURSOR_INVALID; |
| 3742 return SQLITE_OK; |
| 3743 } |
| 3744 int sqlite3BtreeCursor( |
| 3745 Btree *p, /* The btree */ |
| 3746 int iTable, /* Root page of table to open */ |
| 3747 int wrFlag, /* 1 to write. 0 read-only */ |
| 3748 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */ |
| 3749 BtCursor *pCur /* Write new cursor here */ |
| 3750 ){ |
| 3751 int rc; |
| 3752 sqlite3BtreeEnter(p); |
| 3753 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); |
| 3754 sqlite3BtreeLeave(p); |
| 3755 return rc; |
| 3756 } |
| 3757 |
| 3758 /* |
| 3759 ** Return the size of a BtCursor object in bytes. |
| 3760 ** |
| 3761 ** This interfaces is needed so that users of cursors can preallocate |
| 3762 ** sufficient storage to hold a cursor. The BtCursor object is opaque |
| 3763 ** to users so they cannot do the sizeof() themselves - they must call |
| 3764 ** this routine. |
| 3765 */ |
| 3766 int sqlite3BtreeCursorSize(void){ |
| 3767 return ROUND8(sizeof(BtCursor)); |
| 3768 } |
| 3769 |
| 3770 /* |
| 3771 ** Initialize memory that will be converted into a BtCursor object. |
| 3772 ** |
| 3773 ** The simple approach here would be to memset() the entire object |
| 3774 ** to zero. But it turns out that the apPage[] and aiIdx[] arrays |
| 3775 ** do not need to be zeroed and they are large, so we can save a lot |
| 3776 ** of run-time by skipping the initialization of those elements. |
| 3777 */ |
| 3778 void sqlite3BtreeCursorZero(BtCursor *p){ |
| 3779 memset(p, 0, offsetof(BtCursor, iPage)); |
| 3780 } |
| 3781 |
| 3782 /* |
| 3783 ** Close a cursor. The read lock on the database file is released |
| 3784 ** when the last cursor is closed. |
| 3785 */ |
| 3786 int sqlite3BtreeCloseCursor(BtCursor *pCur){ |
| 3787 Btree *pBtree = pCur->pBtree; |
| 3788 if( pBtree ){ |
| 3789 int i; |
| 3790 BtShared *pBt = pCur->pBt; |
| 3791 sqlite3BtreeEnter(pBtree); |
| 3792 sqlite3BtreeClearCursor(pCur); |
| 3793 if( pCur->pPrev ){ |
| 3794 pCur->pPrev->pNext = pCur->pNext; |
| 3795 }else{ |
| 3796 pBt->pCursor = pCur->pNext; |
| 3797 } |
| 3798 if( pCur->pNext ){ |
| 3799 pCur->pNext->pPrev = pCur->pPrev; |
| 3800 } |
| 3801 for(i=0; i<=pCur->iPage; i++){ |
| 3802 releasePage(pCur->apPage[i]); |
| 3803 } |
| 3804 unlockBtreeIfUnused(pBt); |
| 3805 sqlite3DbFree(pBtree->db, pCur->aOverflow); |
| 3806 /* sqlite3_free(pCur); */ |
| 3807 sqlite3BtreeLeave(pBtree); |
| 3808 } |
| 3809 return SQLITE_OK; |
| 3810 } |
| 3811 |
| 3812 /* |
| 3813 ** Make sure the BtCursor* given in the argument has a valid |
| 3814 ** BtCursor.info structure. If it is not already valid, call |
| 3815 ** btreeParseCell() to fill it in. |
| 3816 ** |
| 3817 ** BtCursor.info is a cache of the information in the current cell. |
| 3818 ** Using this cache reduces the number of calls to btreeParseCell(). |
| 3819 ** |
| 3820 ** 2007-06-25: There is a bug in some versions of MSVC that cause the |
| 3821 ** compiler to crash when getCellInfo() is implemented as a macro. |
| 3822 ** But there is a measureable speed advantage to using the macro on gcc |
| 3823 ** (when less compiler optimizations like -Os or -O0 are used and the |
| 3824 ** compiler is not doing aggressive inlining.) So we use a real function |
| 3825 ** for MSVC and a macro for everything else. Ticket #2457. |
| 3826 */ |
| 3827 #ifndef NDEBUG |
| 3828 static void assertCellInfo(BtCursor *pCur){ |
| 3829 CellInfo info; |
| 3830 int iPage = pCur->iPage; |
| 3831 memset(&info, 0, sizeof(info)); |
| 3832 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info); |
| 3833 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 ); |
| 3834 } |
| 3835 #else |
| 3836 #define assertCellInfo(x) |
| 3837 #endif |
| 3838 #ifdef _MSC_VER |
| 3839 /* Use a real function in MSVC to work around bugs in that compiler. */ |
| 3840 static void getCellInfo(BtCursor *pCur){ |
| 3841 if( pCur->info.nSize==0 ){ |
| 3842 int iPage = pCur->iPage; |
| 3843 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); |
| 3844 pCur->curFlags |= BTCF_ValidNKey; |
| 3845 }else{ |
| 3846 assertCellInfo(pCur); |
| 3847 } |
| 3848 } |
| 3849 #else /* if not _MSC_VER */ |
| 3850 /* Use a macro in all other compilers so that the function is inlined */ |
| 3851 #define getCellInfo(pCur) \ |
| 3852 if( pCur->info.nSize==0 ){ \ |
| 3853 int iPage = pCur->iPage; \ |
| 3854 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \ |
| 3855 pCur->curFlags |= BTCF_ValidNKey; \ |
| 3856 }else{ \ |
| 3857 assertCellInfo(pCur); \ |
| 3858 } |
| 3859 #endif /* _MSC_VER */ |
| 3860 |
| 3861 #ifndef NDEBUG /* The next routine used only within assert() statements */ |
| 3862 /* |
| 3863 ** Return true if the given BtCursor is valid. A valid cursor is one |
| 3864 ** that is currently pointing to a row in a (non-empty) table. |
| 3865 ** This is a verification routine is used only within assert() statements. |
| 3866 */ |
| 3867 int sqlite3BtreeCursorIsValid(BtCursor *pCur){ |
| 3868 return pCur && pCur->eState==CURSOR_VALID; |
| 3869 } |
| 3870 #endif /* NDEBUG */ |
| 3871 |
| 3872 /* |
| 3873 ** Set *pSize to the size of the buffer needed to hold the value of |
| 3874 ** the key for the current entry. If the cursor is not pointing |
| 3875 ** to a valid entry, *pSize is set to 0. |
| 3876 ** |
| 3877 ** For a table with the INTKEY flag set, this routine returns the key |
| 3878 ** itself, not the number of bytes in the key. |
| 3879 ** |
| 3880 ** The caller must position the cursor prior to invoking this routine. |
| 3881 ** |
| 3882 ** This routine cannot fail. It always returns SQLITE_OK. |
| 3883 */ |
| 3884 int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){ |
| 3885 assert( cursorHoldsMutex(pCur) ); |
| 3886 assert( pCur->eState==CURSOR_VALID ); |
| 3887 getCellInfo(pCur); |
| 3888 *pSize = pCur->info.nKey; |
| 3889 return SQLITE_OK; |
| 3890 } |
| 3891 |
| 3892 /* |
| 3893 ** Set *pSize to the number of bytes of data in the entry the |
| 3894 ** cursor currently points to. |
| 3895 ** |
| 3896 ** The caller must guarantee that the cursor is pointing to a non-NULL |
| 3897 ** valid entry. In other words, the calling procedure must guarantee |
| 3898 ** that the cursor has Cursor.eState==CURSOR_VALID. |
| 3899 ** |
| 3900 ** Failure is not possible. This function always returns SQLITE_OK. |
| 3901 ** It might just as well be a procedure (returning void) but we continue |
| 3902 ** to return an integer result code for historical reasons. |
| 3903 */ |
| 3904 int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){ |
| 3905 assert( cursorHoldsMutex(pCur) ); |
| 3906 assert( pCur->eState==CURSOR_VALID ); |
| 3907 assert( pCur->apPage[pCur->iPage]->intKeyLeaf==1 ); |
| 3908 getCellInfo(pCur); |
| 3909 *pSize = pCur->info.nPayload; |
| 3910 return SQLITE_OK; |
| 3911 } |
| 3912 |
| 3913 /* |
| 3914 ** Given the page number of an overflow page in the database (parameter |
| 3915 ** ovfl), this function finds the page number of the next page in the |
| 3916 ** linked list of overflow pages. If possible, it uses the auto-vacuum |
| 3917 ** pointer-map data instead of reading the content of page ovfl to do so. |
| 3918 ** |
| 3919 ** If an error occurs an SQLite error code is returned. Otherwise: |
| 3920 ** |
| 3921 ** The page number of the next overflow page in the linked list is |
| 3922 ** written to *pPgnoNext. If page ovfl is the last page in its linked |
| 3923 ** list, *pPgnoNext is set to zero. |
| 3924 ** |
| 3925 ** If ppPage is not NULL, and a reference to the MemPage object corresponding |
| 3926 ** to page number pOvfl was obtained, then *ppPage is set to point to that |
| 3927 ** reference. It is the responsibility of the caller to call releasePage() |
| 3928 ** on *ppPage to free the reference. In no reference was obtained (because |
| 3929 ** the pointer-map was used to obtain the value for *pPgnoNext), then |
| 3930 ** *ppPage is set to zero. |
| 3931 */ |
| 3932 static int getOverflowPage( |
| 3933 BtShared *pBt, /* The database file */ |
| 3934 Pgno ovfl, /* Current overflow page number */ |
| 3935 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */ |
| 3936 Pgno *pPgnoNext /* OUT: Next overflow page number */ |
| 3937 ){ |
| 3938 Pgno next = 0; |
| 3939 MemPage *pPage = 0; |
| 3940 int rc = SQLITE_OK; |
| 3941 |
| 3942 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 3943 assert(pPgnoNext); |
| 3944 |
| 3945 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 3946 /* Try to find the next page in the overflow list using the |
| 3947 ** autovacuum pointer-map pages. Guess that the next page in |
| 3948 ** the overflow list is page number (ovfl+1). If that guess turns |
| 3949 ** out to be wrong, fall back to loading the data of page |
| 3950 ** number ovfl to determine the next page number. |
| 3951 */ |
| 3952 if( pBt->autoVacuum ){ |
| 3953 Pgno pgno; |
| 3954 Pgno iGuess = ovfl+1; |
| 3955 u8 eType; |
| 3956 |
| 3957 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){ |
| 3958 iGuess++; |
| 3959 } |
| 3960 |
| 3961 if( iGuess<=btreePagecount(pBt) ){ |
| 3962 rc = ptrmapGet(pBt, iGuess, &eType, &pgno); |
| 3963 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){ |
| 3964 next = iGuess; |
| 3965 rc = SQLITE_DONE; |
| 3966 } |
| 3967 } |
| 3968 } |
| 3969 #endif |
| 3970 |
| 3971 assert( next==0 || rc==SQLITE_DONE ); |
| 3972 if( rc==SQLITE_OK ){ |
| 3973 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0); |
| 3974 assert( rc==SQLITE_OK || pPage==0 ); |
| 3975 if( rc==SQLITE_OK ){ |
| 3976 next = get4byte(pPage->aData); |
| 3977 } |
| 3978 } |
| 3979 |
| 3980 *pPgnoNext = next; |
| 3981 if( ppPage ){ |
| 3982 *ppPage = pPage; |
| 3983 }else{ |
| 3984 releasePage(pPage); |
| 3985 } |
| 3986 return (rc==SQLITE_DONE ? SQLITE_OK : rc); |
| 3987 } |
| 3988 |
| 3989 /* |
| 3990 ** Copy data from a buffer to a page, or from a page to a buffer. |
| 3991 ** |
| 3992 ** pPayload is a pointer to data stored on database page pDbPage. |
| 3993 ** If argument eOp is false, then nByte bytes of data are copied |
| 3994 ** from pPayload to the buffer pointed at by pBuf. If eOp is true, |
| 3995 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes |
| 3996 ** of data are copied from the buffer pBuf to pPayload. |
| 3997 ** |
| 3998 ** SQLITE_OK is returned on success, otherwise an error code. |
| 3999 */ |
| 4000 static int copyPayload( |
| 4001 void *pPayload, /* Pointer to page data */ |
| 4002 void *pBuf, /* Pointer to buffer */ |
| 4003 int nByte, /* Number of bytes to copy */ |
| 4004 int eOp, /* 0 -> copy from page, 1 -> copy to page */ |
| 4005 DbPage *pDbPage /* Page containing pPayload */ |
| 4006 ){ |
| 4007 if( eOp ){ |
| 4008 /* Copy data from buffer to page (a write operation) */ |
| 4009 int rc = sqlite3PagerWrite(pDbPage); |
| 4010 if( rc!=SQLITE_OK ){ |
| 4011 return rc; |
| 4012 } |
| 4013 memcpy(pPayload, pBuf, nByte); |
| 4014 }else{ |
| 4015 /* Copy data from page to buffer (a read operation) */ |
| 4016 memcpy(pBuf, pPayload, nByte); |
| 4017 } |
| 4018 return SQLITE_OK; |
| 4019 } |
| 4020 |
| 4021 /* |
| 4022 ** This function is used to read or overwrite payload information |
| 4023 ** for the entry that the pCur cursor is pointing to. The eOp |
| 4024 ** argument is interpreted as follows: |
| 4025 ** |
| 4026 ** 0: The operation is a read. Populate the overflow cache. |
| 4027 ** 1: The operation is a write. Populate the overflow cache. |
| 4028 ** 2: The operation is a read. Do not populate the overflow cache. |
| 4029 ** |
| 4030 ** A total of "amt" bytes are read or written beginning at "offset". |
| 4031 ** Data is read to or from the buffer pBuf. |
| 4032 ** |
| 4033 ** The content being read or written might appear on the main page |
| 4034 ** or be scattered out on multiple overflow pages. |
| 4035 ** |
| 4036 ** If the current cursor entry uses one or more overflow pages and the |
| 4037 ** eOp argument is not 2, this function may allocate space for and lazily |
| 4038 ** populates the overflow page-list cache array (BtCursor.aOverflow). |
| 4039 ** Subsequent calls use this cache to make seeking to the supplied offset |
| 4040 ** more efficient. |
| 4041 ** |
| 4042 ** Once an overflow page-list cache has been allocated, it may be |
| 4043 ** invalidated if some other cursor writes to the same table, or if |
| 4044 ** the cursor is moved to a different row. Additionally, in auto-vacuum |
| 4045 ** mode, the following events may invalidate an overflow page-list cache. |
| 4046 ** |
| 4047 ** * An incremental vacuum, |
| 4048 ** * A commit in auto_vacuum="full" mode, |
| 4049 ** * Creating a table (may require moving an overflow page). |
| 4050 */ |
| 4051 static int accessPayload( |
| 4052 BtCursor *pCur, /* Cursor pointing to entry to read from */ |
| 4053 u32 offset, /* Begin reading this far into payload */ |
| 4054 u32 amt, /* Read this many bytes */ |
| 4055 unsigned char *pBuf, /* Write the bytes into this buffer */ |
| 4056 int eOp /* zero to read. non-zero to write. */ |
| 4057 ){ |
| 4058 unsigned char *aPayload; |
| 4059 int rc = SQLITE_OK; |
| 4060 int iIdx = 0; |
| 4061 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */ |
| 4062 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */ |
| 4063 #ifdef SQLITE_DIRECT_OVERFLOW_READ |
| 4064 unsigned char * const pBufStart = pBuf; |
| 4065 int bEnd; /* True if reading to end of data */ |
| 4066 #endif |
| 4067 |
| 4068 assert( pPage ); |
| 4069 assert( pCur->eState==CURSOR_VALID ); |
| 4070 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell ); |
| 4071 assert( cursorHoldsMutex(pCur) ); |
| 4072 assert( eOp!=2 || offset==0 ); /* Always start from beginning for eOp==2 */ |
| 4073 |
| 4074 getCellInfo(pCur); |
| 4075 aPayload = pCur->info.pPayload; |
| 4076 #ifdef SQLITE_DIRECT_OVERFLOW_READ |
| 4077 bEnd = offset+amt==pCur->info.nPayload; |
| 4078 #endif |
| 4079 assert( offset+amt <= pCur->info.nPayload ); |
| 4080 |
| 4081 if( &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] ){ |
| 4082 /* Trying to read or write past the end of the data is an error */ |
| 4083 return SQLITE_CORRUPT_BKPT; |
| 4084 } |
| 4085 |
| 4086 /* Check if data must be read/written to/from the btree page itself. */ |
| 4087 if( offset<pCur->info.nLocal ){ |
| 4088 int a = amt; |
| 4089 if( a+offset>pCur->info.nLocal ){ |
| 4090 a = pCur->info.nLocal - offset; |
| 4091 } |
| 4092 rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage); |
| 4093 offset = 0; |
| 4094 pBuf += a; |
| 4095 amt -= a; |
| 4096 }else{ |
| 4097 offset -= pCur->info.nLocal; |
| 4098 } |
| 4099 |
| 4100 if( rc==SQLITE_OK && amt>0 ){ |
| 4101 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */ |
| 4102 Pgno nextPage; |
| 4103 |
| 4104 nextPage = get4byte(&aPayload[pCur->info.nLocal]); |
| 4105 |
| 4106 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now. |
| 4107 ** Except, do not allocate aOverflow[] for eOp==2. |
| 4108 ** |
| 4109 ** The aOverflow[] array is sized at one entry for each overflow page |
| 4110 ** in the overflow chain. The page number of the first overflow page is |
| 4111 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array |
| 4112 ** means "not yet known" (the cache is lazily populated). |
| 4113 */ |
| 4114 if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){ |
| 4115 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize; |
| 4116 if( nOvfl>pCur->nOvflAlloc ){ |
| 4117 Pgno *aNew = (Pgno*)sqlite3DbRealloc( |
| 4118 pCur->pBtree->db, pCur->aOverflow, nOvfl*2*sizeof(Pgno) |
| 4119 ); |
| 4120 if( aNew==0 ){ |
| 4121 rc = SQLITE_NOMEM; |
| 4122 }else{ |
| 4123 pCur->nOvflAlloc = nOvfl*2; |
| 4124 pCur->aOverflow = aNew; |
| 4125 } |
| 4126 } |
| 4127 if( rc==SQLITE_OK ){ |
| 4128 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno)); |
| 4129 pCur->curFlags |= BTCF_ValidOvfl; |
| 4130 } |
| 4131 } |
| 4132 |
| 4133 /* If the overflow page-list cache has been allocated and the |
| 4134 ** entry for the first required overflow page is valid, skip |
| 4135 ** directly to it. |
| 4136 */ |
| 4137 if( (pCur->curFlags & BTCF_ValidOvfl)!=0 |
| 4138 && pCur->aOverflow[offset/ovflSize] |
| 4139 ){ |
| 4140 iIdx = (offset/ovflSize); |
| 4141 nextPage = pCur->aOverflow[iIdx]; |
| 4142 offset = (offset%ovflSize); |
| 4143 } |
| 4144 |
| 4145 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){ |
| 4146 |
| 4147 /* If required, populate the overflow page-list cache. */ |
| 4148 if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){ |
| 4149 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage); |
| 4150 pCur->aOverflow[iIdx] = nextPage; |
| 4151 } |
| 4152 |
| 4153 if( offset>=ovflSize ){ |
| 4154 /* The only reason to read this page is to obtain the page |
| 4155 ** number for the next page in the overflow chain. The page |
| 4156 ** data is not required. So first try to lookup the overflow |
| 4157 ** page-list cache, if any, then fall back to the getOverflowPage() |
| 4158 ** function. |
| 4159 ** |
| 4160 ** Note that the aOverflow[] array must be allocated because eOp!=2 |
| 4161 ** here. If eOp==2, then offset==0 and this branch is never taken. |
| 4162 */ |
| 4163 assert( eOp!=2 ); |
| 4164 assert( pCur->curFlags & BTCF_ValidOvfl ); |
| 4165 if( pCur->aOverflow[iIdx+1] ){ |
| 4166 nextPage = pCur->aOverflow[iIdx+1]; |
| 4167 }else{ |
| 4168 rc = getOverflowPage(pBt, nextPage, 0, &nextPage); |
| 4169 } |
| 4170 offset -= ovflSize; |
| 4171 }else{ |
| 4172 /* Need to read this page properly. It contains some of the |
| 4173 ** range of data that is being read (eOp==0) or written (eOp!=0). |
| 4174 */ |
| 4175 #ifdef SQLITE_DIRECT_OVERFLOW_READ |
| 4176 sqlite3_file *fd; |
| 4177 #endif |
| 4178 int a = amt; |
| 4179 if( a + offset > ovflSize ){ |
| 4180 a = ovflSize - offset; |
| 4181 } |
| 4182 |
| 4183 #ifdef SQLITE_DIRECT_OVERFLOW_READ |
| 4184 /* If all the following are true: |
| 4185 ** |
| 4186 ** 1) this is a read operation, and |
| 4187 ** 2) data is required from the start of this overflow page, and |
| 4188 ** 3) the database is file-backed, and |
| 4189 ** 4) there is no open write-transaction, and |
| 4190 ** 5) the database is not a WAL database, |
| 4191 ** 6) all data from the page is being read. |
| 4192 ** 7) at least 4 bytes have already been read into the output buffer |
| 4193 ** |
| 4194 ** then data can be read directly from the database file into the |
| 4195 ** output buffer, bypassing the page-cache altogether. This speeds |
| 4196 ** up loading large records that span many overflow pages. |
| 4197 */ |
| 4198 if( (eOp&0x01)==0 /* (1) */ |
| 4199 && offset==0 /* (2) */ |
| 4200 && (bEnd || a==ovflSize) /* (6) */ |
| 4201 && pBt->inTransaction==TRANS_READ /* (4) */ |
| 4202 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */ |
| 4203 && pBt->pPage1->aData[19]==0x01 /* (5) */ |
| 4204 && &pBuf[-4]>=pBufStart /* (7) */ |
| 4205 ){ |
| 4206 u8 aSave[4]; |
| 4207 u8 *aWrite = &pBuf[-4]; |
| 4208 assert( aWrite>=pBufStart ); /* hence (7) */ |
| 4209 memcpy(aSave, aWrite, 4); |
| 4210 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1)); |
| 4211 nextPage = get4byte(aWrite); |
| 4212 memcpy(aWrite, aSave, 4); |
| 4213 }else |
| 4214 #endif |
| 4215 |
| 4216 { |
| 4217 DbPage *pDbPage; |
| 4218 rc = sqlite3PagerAcquire(pBt->pPager, nextPage, &pDbPage, |
| 4219 ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0) |
| 4220 ); |
| 4221 if( rc==SQLITE_OK ){ |
| 4222 aPayload = sqlite3PagerGetData(pDbPage); |
| 4223 nextPage = get4byte(aPayload); |
| 4224 rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage); |
| 4225 sqlite3PagerUnref(pDbPage); |
| 4226 offset = 0; |
| 4227 } |
| 4228 } |
| 4229 amt -= a; |
| 4230 pBuf += a; |
| 4231 } |
| 4232 } |
| 4233 } |
| 4234 |
| 4235 if( rc==SQLITE_OK && amt>0 ){ |
| 4236 return SQLITE_CORRUPT_BKPT; |
| 4237 } |
| 4238 return rc; |
| 4239 } |
| 4240 |
| 4241 /* |
| 4242 ** Read part of the key associated with cursor pCur. Exactly |
| 4243 ** "amt" bytes will be transferred into pBuf[]. The transfer |
| 4244 ** begins at "offset". |
| 4245 ** |
| 4246 ** The caller must ensure that pCur is pointing to a valid row |
| 4247 ** in the table. |
| 4248 ** |
| 4249 ** Return SQLITE_OK on success or an error code if anything goes |
| 4250 ** wrong. An error is returned if "offset+amt" is larger than |
| 4251 ** the available payload. |
| 4252 */ |
| 4253 int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ |
| 4254 assert( cursorHoldsMutex(pCur) ); |
| 4255 assert( pCur->eState==CURSOR_VALID ); |
| 4256 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] ); |
| 4257 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); |
| 4258 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0); |
| 4259 } |
| 4260 |
| 4261 /* |
| 4262 ** Read part of the data associated with cursor pCur. Exactly |
| 4263 ** "amt" bytes will be transfered into pBuf[]. The transfer |
| 4264 ** begins at "offset". |
| 4265 ** |
| 4266 ** Return SQLITE_OK on success or an error code if anything goes |
| 4267 ** wrong. An error is returned if "offset+amt" is larger than |
| 4268 ** the available payload. |
| 4269 */ |
| 4270 int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ |
| 4271 int rc; |
| 4272 |
| 4273 #ifndef SQLITE_OMIT_INCRBLOB |
| 4274 if ( pCur->eState==CURSOR_INVALID ){ |
| 4275 return SQLITE_ABORT; |
| 4276 } |
| 4277 #endif |
| 4278 |
| 4279 assert( cursorHoldsMutex(pCur) ); |
| 4280 rc = restoreCursorPosition(pCur); |
| 4281 if( rc==SQLITE_OK ){ |
| 4282 assert( pCur->eState==CURSOR_VALID ); |
| 4283 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] ); |
| 4284 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); |
| 4285 rc = accessPayload(pCur, offset, amt, pBuf, 0); |
| 4286 } |
| 4287 return rc; |
| 4288 } |
| 4289 |
| 4290 /* |
| 4291 ** Return a pointer to payload information from the entry that the |
| 4292 ** pCur cursor is pointing to. The pointer is to the beginning of |
| 4293 ** the key if index btrees (pPage->intKey==0) and is the data for |
| 4294 ** table btrees (pPage->intKey==1). The number of bytes of available |
| 4295 ** key/data is written into *pAmt. If *pAmt==0, then the value |
| 4296 ** returned will not be a valid pointer. |
| 4297 ** |
| 4298 ** This routine is an optimization. It is common for the entire key |
| 4299 ** and data to fit on the local page and for there to be no overflow |
| 4300 ** pages. When that is so, this routine can be used to access the |
| 4301 ** key and data without making a copy. If the key and/or data spills |
| 4302 ** onto overflow pages, then accessPayload() must be used to reassemble |
| 4303 ** the key/data and copy it into a preallocated buffer. |
| 4304 ** |
| 4305 ** The pointer returned by this routine looks directly into the cached |
| 4306 ** page of the database. The data might change or move the next time |
| 4307 ** any btree routine is called. |
| 4308 */ |
| 4309 static const void *fetchPayload( |
| 4310 BtCursor *pCur, /* Cursor pointing to entry to read from */ |
| 4311 u32 *pAmt /* Write the number of available bytes here */ |
| 4312 ){ |
| 4313 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]); |
| 4314 assert( pCur->eState==CURSOR_VALID ); |
| 4315 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); |
| 4316 assert( cursorHoldsMutex(pCur) ); |
| 4317 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); |
| 4318 assert( pCur->info.nSize>0 ); |
| 4319 *pAmt = pCur->info.nLocal; |
| 4320 return (void*)pCur->info.pPayload; |
| 4321 } |
| 4322 |
| 4323 |
| 4324 /* |
| 4325 ** For the entry that cursor pCur is point to, return as |
| 4326 ** many bytes of the key or data as are available on the local |
| 4327 ** b-tree page. Write the number of available bytes into *pAmt. |
| 4328 ** |
| 4329 ** The pointer returned is ephemeral. The key/data may move |
| 4330 ** or be destroyed on the next call to any Btree routine, |
| 4331 ** including calls from other threads against the same cache. |
| 4332 ** Hence, a mutex on the BtShared should be held prior to calling |
| 4333 ** this routine. |
| 4334 ** |
| 4335 ** These routines is used to get quick access to key and data |
| 4336 ** in the common case where no overflow pages are used. |
| 4337 */ |
| 4338 const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){ |
| 4339 return fetchPayload(pCur, pAmt); |
| 4340 } |
| 4341 const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){ |
| 4342 return fetchPayload(pCur, pAmt); |
| 4343 } |
| 4344 |
| 4345 |
| 4346 /* |
| 4347 ** Move the cursor down to a new child page. The newPgno argument is the |
| 4348 ** page number of the child page to move to. |
| 4349 ** |
| 4350 ** This function returns SQLITE_CORRUPT if the page-header flags field of |
| 4351 ** the new child page does not match the flags field of the parent (i.e. |
| 4352 ** if an intkey page appears to be the parent of a non-intkey page, or |
| 4353 ** vice-versa). |
| 4354 */ |
| 4355 static int moveToChild(BtCursor *pCur, u32 newPgno){ |
| 4356 int rc; |
| 4357 int i = pCur->iPage; |
| 4358 MemPage *pNewPage; |
| 4359 BtShared *pBt = pCur->pBt; |
| 4360 |
| 4361 assert( cursorHoldsMutex(pCur) ); |
| 4362 assert( pCur->eState==CURSOR_VALID ); |
| 4363 assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); |
| 4364 assert( pCur->iPage>=0 ); |
| 4365 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ |
| 4366 return SQLITE_CORRUPT_BKPT; |
| 4367 } |
| 4368 rc = getAndInitPage(pBt, newPgno, &pNewPage, |
| 4369 (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0); |
| 4370 if( rc ) return rc; |
| 4371 pCur->apPage[i+1] = pNewPage; |
| 4372 pCur->aiIdx[i+1] = 0; |
| 4373 pCur->iPage++; |
| 4374 |
| 4375 pCur->info.nSize = 0; |
| 4376 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); |
| 4377 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){ |
| 4378 return SQLITE_CORRUPT_BKPT; |
| 4379 } |
| 4380 return SQLITE_OK; |
| 4381 } |
| 4382 |
| 4383 #if 0 |
| 4384 /* |
| 4385 ** Page pParent is an internal (non-leaf) tree page. This function |
| 4386 ** asserts that page number iChild is the left-child if the iIdx'th |
| 4387 ** cell in page pParent. Or, if iIdx is equal to the total number of |
| 4388 ** cells in pParent, that page number iChild is the right-child of |
| 4389 ** the page. |
| 4390 */ |
| 4391 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){ |
| 4392 assert( iIdx<=pParent->nCell ); |
| 4393 if( iIdx==pParent->nCell ){ |
| 4394 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild ); |
| 4395 }else{ |
| 4396 assert( get4byte(findCell(pParent, iIdx))==iChild ); |
| 4397 } |
| 4398 } |
| 4399 #else |
| 4400 # define assertParentIndex(x,y,z) |
| 4401 #endif |
| 4402 |
| 4403 /* |
| 4404 ** Move the cursor up to the parent page. |
| 4405 ** |
| 4406 ** pCur->idx is set to the cell index that contains the pointer |
| 4407 ** to the page we are coming from. If we are coming from the |
| 4408 ** right-most child page then pCur->idx is set to one more than |
| 4409 ** the largest cell index. |
| 4410 */ |
| 4411 static void moveToParent(BtCursor *pCur){ |
| 4412 assert( cursorHoldsMutex(pCur) ); |
| 4413 assert( pCur->eState==CURSOR_VALID ); |
| 4414 assert( pCur->iPage>0 ); |
| 4415 assert( pCur->apPage[pCur->iPage] ); |
| 4416 |
| 4417 /* UPDATE: It is actually possible for the condition tested by the assert |
| 4418 ** below to be untrue if the database file is corrupt. This can occur if |
| 4419 ** one cursor has modified page pParent while a reference to it is held |
| 4420 ** by a second cursor. Which can only happen if a single page is linked |
| 4421 ** into more than one b-tree structure in a corrupt database. */ |
| 4422 #if 0 |
| 4423 assertParentIndex( |
| 4424 pCur->apPage[pCur->iPage-1], |
| 4425 pCur->aiIdx[pCur->iPage-1], |
| 4426 pCur->apPage[pCur->iPage]->pgno |
| 4427 ); |
| 4428 #endif |
| 4429 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell ); |
| 4430 |
| 4431 releasePage(pCur->apPage[pCur->iPage]); |
| 4432 pCur->iPage--; |
| 4433 pCur->info.nSize = 0; |
| 4434 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); |
| 4435 } |
| 4436 |
| 4437 /* |
| 4438 ** Move the cursor to point to the root page of its b-tree structure. |
| 4439 ** |
| 4440 ** If the table has a virtual root page, then the cursor is moved to point |
| 4441 ** to the virtual root page instead of the actual root page. A table has a |
| 4442 ** virtual root page when the actual root page contains no cells and a |
| 4443 ** single child page. This can only happen with the table rooted at page 1. |
| 4444 ** |
| 4445 ** If the b-tree structure is empty, the cursor state is set to |
| 4446 ** CURSOR_INVALID. Otherwise, the cursor is set to point to the first |
| 4447 ** cell located on the root (or virtual root) page and the cursor state |
| 4448 ** is set to CURSOR_VALID. |
| 4449 ** |
| 4450 ** If this function returns successfully, it may be assumed that the |
| 4451 ** page-header flags indicate that the [virtual] root-page is the expected |
| 4452 ** kind of b-tree page (i.e. if when opening the cursor the caller did not |
| 4453 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D, |
| 4454 ** indicating a table b-tree, or if the caller did specify a KeyInfo |
| 4455 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index |
| 4456 ** b-tree). |
| 4457 */ |
| 4458 static int moveToRoot(BtCursor *pCur){ |
| 4459 MemPage *pRoot; |
| 4460 int rc = SQLITE_OK; |
| 4461 |
| 4462 assert( cursorHoldsMutex(pCur) ); |
| 4463 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK ); |
| 4464 assert( CURSOR_VALID < CURSOR_REQUIRESEEK ); |
| 4465 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK ); |
| 4466 if( pCur->eState>=CURSOR_REQUIRESEEK ){ |
| 4467 if( pCur->eState==CURSOR_FAULT ){ |
| 4468 assert( pCur->skipNext!=SQLITE_OK ); |
| 4469 return pCur->skipNext; |
| 4470 } |
| 4471 sqlite3BtreeClearCursor(pCur); |
| 4472 } |
| 4473 |
| 4474 if( pCur->iPage>=0 ){ |
| 4475 while( pCur->iPage ) releasePage(pCur->apPage[pCur->iPage--]); |
| 4476 }else if( pCur->pgnoRoot==0 ){ |
| 4477 pCur->eState = CURSOR_INVALID; |
| 4478 return SQLITE_OK; |
| 4479 }else{ |
| 4480 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0], |
| 4481 (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0); |
| 4482 if( rc!=SQLITE_OK ){ |
| 4483 pCur->eState = CURSOR_INVALID; |
| 4484 return rc; |
| 4485 } |
| 4486 pCur->iPage = 0; |
| 4487 } |
| 4488 pRoot = pCur->apPage[0]; |
| 4489 assert( pRoot->pgno==pCur->pgnoRoot ); |
| 4490 |
| 4491 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor |
| 4492 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is |
| 4493 ** NULL, the caller expects a table b-tree. If this is not the case, |
| 4494 ** return an SQLITE_CORRUPT error. |
| 4495 ** |
| 4496 ** Earlier versions of SQLite assumed that this test could not fail |
| 4497 ** if the root page was already loaded when this function was called (i.e. |
| 4498 ** if pCur->iPage>=0). But this is not so if the database is corrupted |
| 4499 ** in such a way that page pRoot is linked into a second b-tree table |
| 4500 ** (or the freelist). */ |
| 4501 assert( pRoot->intKey==1 || pRoot->intKey==0 ); |
| 4502 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){ |
| 4503 return SQLITE_CORRUPT_BKPT; |
| 4504 } |
| 4505 |
| 4506 pCur->aiIdx[0] = 0; |
| 4507 pCur->info.nSize = 0; |
| 4508 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl); |
| 4509 |
| 4510 if( pRoot->nCell>0 ){ |
| 4511 pCur->eState = CURSOR_VALID; |
| 4512 }else if( !pRoot->leaf ){ |
| 4513 Pgno subpage; |
| 4514 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT; |
| 4515 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); |
| 4516 pCur->eState = CURSOR_VALID; |
| 4517 rc = moveToChild(pCur, subpage); |
| 4518 }else{ |
| 4519 pCur->eState = CURSOR_INVALID; |
| 4520 } |
| 4521 return rc; |
| 4522 } |
| 4523 |
| 4524 /* |
| 4525 ** Move the cursor down to the left-most leaf entry beneath the |
| 4526 ** entry to which it is currently pointing. |
| 4527 ** |
| 4528 ** The left-most leaf is the one with the smallest key - the first |
| 4529 ** in ascending order. |
| 4530 */ |
| 4531 static int moveToLeftmost(BtCursor *pCur){ |
| 4532 Pgno pgno; |
| 4533 int rc = SQLITE_OK; |
| 4534 MemPage *pPage; |
| 4535 |
| 4536 assert( cursorHoldsMutex(pCur) ); |
| 4537 assert( pCur->eState==CURSOR_VALID ); |
| 4538 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){ |
| 4539 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell ); |
| 4540 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage])); |
| 4541 rc = moveToChild(pCur, pgno); |
| 4542 } |
| 4543 return rc; |
| 4544 } |
| 4545 |
| 4546 /* |
| 4547 ** Move the cursor down to the right-most leaf entry beneath the |
| 4548 ** page to which it is currently pointing. Notice the difference |
| 4549 ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost() |
| 4550 ** finds the left-most entry beneath the *entry* whereas moveToRightmost() |
| 4551 ** finds the right-most entry beneath the *page*. |
| 4552 ** |
| 4553 ** The right-most entry is the one with the largest key - the last |
| 4554 ** key in ascending order. |
| 4555 */ |
| 4556 static int moveToRightmost(BtCursor *pCur){ |
| 4557 Pgno pgno; |
| 4558 int rc = SQLITE_OK; |
| 4559 MemPage *pPage = 0; |
| 4560 |
| 4561 assert( cursorHoldsMutex(pCur) ); |
| 4562 assert( pCur->eState==CURSOR_VALID ); |
| 4563 while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){ |
| 4564 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
| 4565 pCur->aiIdx[pCur->iPage] = pPage->nCell; |
| 4566 rc = moveToChild(pCur, pgno); |
| 4567 if( rc ) return rc; |
| 4568 } |
| 4569 pCur->aiIdx[pCur->iPage] = pPage->nCell-1; |
| 4570 assert( pCur->info.nSize==0 ); |
| 4571 assert( (pCur->curFlags & BTCF_ValidNKey)==0 ); |
| 4572 return SQLITE_OK; |
| 4573 } |
| 4574 |
| 4575 /* Move the cursor to the first entry in the table. Return SQLITE_OK |
| 4576 ** on success. Set *pRes to 0 if the cursor actually points to something |
| 4577 ** or set *pRes to 1 if the table is empty. |
| 4578 */ |
| 4579 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ |
| 4580 int rc; |
| 4581 |
| 4582 assert( cursorHoldsMutex(pCur) ); |
| 4583 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); |
| 4584 rc = moveToRoot(pCur); |
| 4585 if( rc==SQLITE_OK ){ |
| 4586 if( pCur->eState==CURSOR_INVALID ){ |
| 4587 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 ); |
| 4588 *pRes = 1; |
| 4589 }else{ |
| 4590 assert( pCur->apPage[pCur->iPage]->nCell>0 ); |
| 4591 *pRes = 0; |
| 4592 rc = moveToLeftmost(pCur); |
| 4593 } |
| 4594 } |
| 4595 return rc; |
| 4596 } |
| 4597 |
| 4598 /* Move the cursor to the last entry in the table. Return SQLITE_OK |
| 4599 ** on success. Set *pRes to 0 if the cursor actually points to something |
| 4600 ** or set *pRes to 1 if the table is empty. |
| 4601 */ |
| 4602 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ |
| 4603 int rc; |
| 4604 |
| 4605 assert( cursorHoldsMutex(pCur) ); |
| 4606 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); |
| 4607 |
| 4608 /* If the cursor already points to the last entry, this is a no-op. */ |
| 4609 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){ |
| 4610 #ifdef SQLITE_DEBUG |
| 4611 /* This block serves to assert() that the cursor really does point |
| 4612 ** to the last entry in the b-tree. */ |
| 4613 int ii; |
| 4614 for(ii=0; ii<pCur->iPage; ii++){ |
| 4615 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell ); |
| 4616 } |
| 4617 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 ); |
| 4618 assert( pCur->apPage[pCur->iPage]->leaf ); |
| 4619 #endif |
| 4620 return SQLITE_OK; |
| 4621 } |
| 4622 |
| 4623 rc = moveToRoot(pCur); |
| 4624 if( rc==SQLITE_OK ){ |
| 4625 if( CURSOR_INVALID==pCur->eState ){ |
| 4626 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 ); |
| 4627 *pRes = 1; |
| 4628 }else{ |
| 4629 assert( pCur->eState==CURSOR_VALID ); |
| 4630 *pRes = 0; |
| 4631 rc = moveToRightmost(pCur); |
| 4632 if( rc==SQLITE_OK ){ |
| 4633 pCur->curFlags |= BTCF_AtLast; |
| 4634 }else{ |
| 4635 pCur->curFlags &= ~BTCF_AtLast; |
| 4636 } |
| 4637 |
| 4638 } |
| 4639 } |
| 4640 return rc; |
| 4641 } |
| 4642 |
| 4643 /* Move the cursor so that it points to an entry near the key |
| 4644 ** specified by pIdxKey or intKey. Return a success code. |
| 4645 ** |
| 4646 ** For INTKEY tables, the intKey parameter is used. pIdxKey |
| 4647 ** must be NULL. For index tables, pIdxKey is used and intKey |
| 4648 ** is ignored. |
| 4649 ** |
| 4650 ** If an exact match is not found, then the cursor is always |
| 4651 ** left pointing at a leaf page which would hold the entry if it |
| 4652 ** were present. The cursor might point to an entry that comes |
| 4653 ** before or after the key. |
| 4654 ** |
| 4655 ** An integer is written into *pRes which is the result of |
| 4656 ** comparing the key with the entry to which the cursor is |
| 4657 ** pointing. The meaning of the integer written into |
| 4658 ** *pRes is as follows: |
| 4659 ** |
| 4660 ** *pRes<0 The cursor is left pointing at an entry that |
| 4661 ** is smaller than intKey/pIdxKey or if the table is empty |
| 4662 ** and the cursor is therefore left point to nothing. |
| 4663 ** |
| 4664 ** *pRes==0 The cursor is left pointing at an entry that |
| 4665 ** exactly matches intKey/pIdxKey. |
| 4666 ** |
| 4667 ** *pRes>0 The cursor is left pointing at an entry that |
| 4668 ** is larger than intKey/pIdxKey. |
| 4669 ** |
| 4670 */ |
| 4671 int sqlite3BtreeMovetoUnpacked( |
| 4672 BtCursor *pCur, /* The cursor to be moved */ |
| 4673 UnpackedRecord *pIdxKey, /* Unpacked index key */ |
| 4674 i64 intKey, /* The table key */ |
| 4675 int biasRight, /* If true, bias the search to the high end */ |
| 4676 int *pRes /* Write search results here */ |
| 4677 ){ |
| 4678 int rc; |
| 4679 RecordCompare xRecordCompare; |
| 4680 |
| 4681 assert( cursorHoldsMutex(pCur) ); |
| 4682 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); |
| 4683 assert( pRes ); |
| 4684 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) ); |
| 4685 |
| 4686 /* If the cursor is already positioned at the point we are trying |
| 4687 ** to move to, then just return without doing any work */ |
| 4688 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 |
| 4689 && pCur->apPage[0]->intKey |
| 4690 ){ |
| 4691 if( pCur->info.nKey==intKey ){ |
| 4692 *pRes = 0; |
| 4693 return SQLITE_OK; |
| 4694 } |
| 4695 if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){ |
| 4696 *pRes = -1; |
| 4697 return SQLITE_OK; |
| 4698 } |
| 4699 } |
| 4700 |
| 4701 if( pIdxKey ){ |
| 4702 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey); |
| 4703 pIdxKey->errCode = 0; |
| 4704 assert( pIdxKey->default_rc==1 |
| 4705 || pIdxKey->default_rc==0 |
| 4706 || pIdxKey->default_rc==-1 |
| 4707 ); |
| 4708 }else{ |
| 4709 xRecordCompare = 0; /* All keys are integers */ |
| 4710 } |
| 4711 |
| 4712 rc = moveToRoot(pCur); |
| 4713 if( rc ){ |
| 4714 return rc; |
| 4715 } |
| 4716 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] ); |
| 4717 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit ); |
| 4718 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 ); |
| 4719 if( pCur->eState==CURSOR_INVALID ){ |
| 4720 *pRes = -1; |
| 4721 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 ); |
| 4722 return SQLITE_OK; |
| 4723 } |
| 4724 assert( pCur->apPage[0]->intKey || pIdxKey ); |
| 4725 for(;;){ |
| 4726 int lwr, upr, idx, c; |
| 4727 Pgno chldPg; |
| 4728 MemPage *pPage = pCur->apPage[pCur->iPage]; |
| 4729 u8 *pCell; /* Pointer to current cell in pPage */ |
| 4730 |
| 4731 /* pPage->nCell must be greater than zero. If this is the root-page |
| 4732 ** the cursor would have been INVALID above and this for(;;) loop |
| 4733 ** not run. If this is not the root-page, then the moveToChild() routine |
| 4734 ** would have already detected db corruption. Similarly, pPage must |
| 4735 ** be the right kind (index or table) of b-tree page. Otherwise |
| 4736 ** a moveToChild() or moveToRoot() call would have detected corruption. */ |
| 4737 assert( pPage->nCell>0 ); |
| 4738 assert( pPage->intKey==(pIdxKey==0) ); |
| 4739 lwr = 0; |
| 4740 upr = pPage->nCell-1; |
| 4741 assert( biasRight==0 || biasRight==1 ); |
| 4742 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */ |
| 4743 pCur->aiIdx[pCur->iPage] = (u16)idx; |
| 4744 if( xRecordCompare==0 ){ |
| 4745 for(;;){ |
| 4746 i64 nCellKey; |
| 4747 pCell = findCell(pPage, idx) + pPage->childPtrSize; |
| 4748 if( pPage->intKeyLeaf ){ |
| 4749 while( 0x80 <= *(pCell++) ){ |
| 4750 if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT; |
| 4751 } |
| 4752 } |
| 4753 getVarint(pCell, (u64*)&nCellKey); |
| 4754 if( nCellKey<intKey ){ |
| 4755 lwr = idx+1; |
| 4756 if( lwr>upr ){ c = -1; break; } |
| 4757 }else if( nCellKey>intKey ){ |
| 4758 upr = idx-1; |
| 4759 if( lwr>upr ){ c = +1; break; } |
| 4760 }else{ |
| 4761 assert( nCellKey==intKey ); |
| 4762 pCur->curFlags |= BTCF_ValidNKey; |
| 4763 pCur->info.nKey = nCellKey; |
| 4764 pCur->aiIdx[pCur->iPage] = (u16)idx; |
| 4765 if( !pPage->leaf ){ |
| 4766 lwr = idx; |
| 4767 goto moveto_next_layer; |
| 4768 }else{ |
| 4769 *pRes = 0; |
| 4770 rc = SQLITE_OK; |
| 4771 goto moveto_finish; |
| 4772 } |
| 4773 } |
| 4774 assert( lwr+upr>=0 ); |
| 4775 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */ |
| 4776 } |
| 4777 }else{ |
| 4778 for(;;){ |
| 4779 int nCell; |
| 4780 pCell = findCell(pPage, idx) + pPage->childPtrSize; |
| 4781 |
| 4782 /* The maximum supported page-size is 65536 bytes. This means that |
| 4783 ** the maximum number of record bytes stored on an index B-Tree |
| 4784 ** page is less than 16384 bytes and may be stored as a 2-byte |
| 4785 ** varint. This information is used to attempt to avoid parsing |
| 4786 ** the entire cell by checking for the cases where the record is |
| 4787 ** stored entirely within the b-tree page by inspecting the first |
| 4788 ** 2 bytes of the cell. |
| 4789 */ |
| 4790 nCell = pCell[0]; |
| 4791 if( nCell<=pPage->max1bytePayload ){ |
| 4792 /* This branch runs if the record-size field of the cell is a |
| 4793 ** single byte varint and the record fits entirely on the main |
| 4794 ** b-tree page. */ |
| 4795 testcase( pCell+nCell+1==pPage->aDataEnd ); |
| 4796 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey); |
| 4797 }else if( !(pCell[1] & 0x80) |
| 4798 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal |
| 4799 ){ |
| 4800 /* The record-size field is a 2 byte varint and the record |
| 4801 ** fits entirely on the main b-tree page. */ |
| 4802 testcase( pCell+nCell+2==pPage->aDataEnd ); |
| 4803 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey); |
| 4804 }else{ |
| 4805 /* The record flows over onto one or more overflow pages. In |
| 4806 ** this case the whole cell needs to be parsed, a buffer allocated |
| 4807 ** and accessPayload() used to retrieve the record into the |
| 4808 ** buffer before VdbeRecordCompare() can be called. */ |
| 4809 void *pCellKey; |
| 4810 u8 * const pCellBody = pCell - pPage->childPtrSize; |
| 4811 btreeParseCellPtr(pPage, pCellBody, &pCur->info); |
| 4812 nCell = (int)pCur->info.nKey; |
| 4813 pCellKey = sqlite3Malloc( nCell ); |
| 4814 if( pCellKey==0 ){ |
| 4815 rc = SQLITE_NOMEM; |
| 4816 goto moveto_finish; |
| 4817 } |
| 4818 pCur->aiIdx[pCur->iPage] = (u16)idx; |
| 4819 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2); |
| 4820 if( rc ){ |
| 4821 sqlite3_free(pCellKey); |
| 4822 goto moveto_finish; |
| 4823 } |
| 4824 c = xRecordCompare(nCell, pCellKey, pIdxKey); |
| 4825 sqlite3_free(pCellKey); |
| 4826 } |
| 4827 assert( |
| 4828 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0) |
| 4829 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed) |
| 4830 ); |
| 4831 if( c<0 ){ |
| 4832 lwr = idx+1; |
| 4833 }else if( c>0 ){ |
| 4834 upr = idx-1; |
| 4835 }else{ |
| 4836 assert( c==0 ); |
| 4837 *pRes = 0; |
| 4838 rc = SQLITE_OK; |
| 4839 pCur->aiIdx[pCur->iPage] = (u16)idx; |
| 4840 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT; |
| 4841 goto moveto_finish; |
| 4842 } |
| 4843 if( lwr>upr ) break; |
| 4844 assert( lwr+upr>=0 ); |
| 4845 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */ |
| 4846 } |
| 4847 } |
| 4848 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) ); |
| 4849 assert( pPage->isInit ); |
| 4850 if( pPage->leaf ){ |
| 4851 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); |
| 4852 pCur->aiIdx[pCur->iPage] = (u16)idx; |
| 4853 *pRes = c; |
| 4854 rc = SQLITE_OK; |
| 4855 goto moveto_finish; |
| 4856 } |
| 4857 moveto_next_layer: |
| 4858 if( lwr>=pPage->nCell ){ |
| 4859 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
| 4860 }else{ |
| 4861 chldPg = get4byte(findCell(pPage, lwr)); |
| 4862 } |
| 4863 pCur->aiIdx[pCur->iPage] = (u16)lwr; |
| 4864 rc = moveToChild(pCur, chldPg); |
| 4865 if( rc ) break; |
| 4866 } |
| 4867 moveto_finish: |
| 4868 pCur->info.nSize = 0; |
| 4869 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); |
| 4870 return rc; |
| 4871 } |
| 4872 |
| 4873 |
| 4874 /* |
| 4875 ** Return TRUE if the cursor is not pointing at an entry of the table. |
| 4876 ** |
| 4877 ** TRUE will be returned after a call to sqlite3BtreeNext() moves |
| 4878 ** past the last entry in the table or sqlite3BtreePrev() moves past |
| 4879 ** the first entry. TRUE is also returned if the table is empty. |
| 4880 */ |
| 4881 int sqlite3BtreeEof(BtCursor *pCur){ |
| 4882 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries |
| 4883 ** have been deleted? This API will need to change to return an error code |
| 4884 ** as well as the boolean result value. |
| 4885 */ |
| 4886 return (CURSOR_VALID!=pCur->eState); |
| 4887 } |
| 4888 |
| 4889 /* |
| 4890 ** Advance the cursor to the next entry in the database. If |
| 4891 ** successful then set *pRes=0. If the cursor |
| 4892 ** was already pointing to the last entry in the database before |
| 4893 ** this routine was called, then set *pRes=1. |
| 4894 ** |
| 4895 ** The main entry point is sqlite3BtreeNext(). That routine is optimized |
| 4896 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx |
| 4897 ** to the next cell on the current page. The (slower) btreeNext() helper |
| 4898 ** routine is called when it is necessary to move to a different page or |
| 4899 ** to restore the cursor. |
| 4900 ** |
| 4901 ** The calling function will set *pRes to 0 or 1. The initial *pRes value |
| 4902 ** will be 1 if the cursor being stepped corresponds to an SQL index and |
| 4903 ** if this routine could have been skipped if that SQL index had been |
| 4904 ** a unique index. Otherwise the caller will have set *pRes to zero. |
| 4905 ** Zero is the common case. The btree implementation is free to use the |
| 4906 ** initial *pRes value as a hint to improve performance, but the current |
| 4907 ** SQLite btree implementation does not. (Note that the comdb2 btree |
| 4908 ** implementation does use this hint, however.) |
| 4909 */ |
| 4910 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){ |
| 4911 int rc; |
| 4912 int idx; |
| 4913 MemPage *pPage; |
| 4914 |
| 4915 assert( cursorHoldsMutex(pCur) ); |
| 4916 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); |
| 4917 assert( *pRes==0 ); |
| 4918 if( pCur->eState!=CURSOR_VALID ){ |
| 4919 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); |
| 4920 rc = restoreCursorPosition(pCur); |
| 4921 if( rc!=SQLITE_OK ){ |
| 4922 return rc; |
| 4923 } |
| 4924 if( CURSOR_INVALID==pCur->eState ){ |
| 4925 *pRes = 1; |
| 4926 return SQLITE_OK; |
| 4927 } |
| 4928 if( pCur->skipNext ){ |
| 4929 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT ); |
| 4930 pCur->eState = CURSOR_VALID; |
| 4931 if( pCur->skipNext>0 ){ |
| 4932 pCur->skipNext = 0; |
| 4933 return SQLITE_OK; |
| 4934 } |
| 4935 pCur->skipNext = 0; |
| 4936 } |
| 4937 } |
| 4938 |
| 4939 pPage = pCur->apPage[pCur->iPage]; |
| 4940 idx = ++pCur->aiIdx[pCur->iPage]; |
| 4941 assert( pPage->isInit ); |
| 4942 |
| 4943 /* If the database file is corrupt, it is possible for the value of idx |
| 4944 ** to be invalid here. This can only occur if a second cursor modifies |
| 4945 ** the page while cursor pCur is holding a reference to it. Which can |
| 4946 ** only happen if the database is corrupt in such a way as to link the |
| 4947 ** page into more than one b-tree structure. */ |
| 4948 testcase( idx>pPage->nCell ); |
| 4949 |
| 4950 if( idx>=pPage->nCell ){ |
| 4951 if( !pPage->leaf ){ |
| 4952 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); |
| 4953 if( rc ) return rc; |
| 4954 return moveToLeftmost(pCur); |
| 4955 } |
| 4956 do{ |
| 4957 if( pCur->iPage==0 ){ |
| 4958 *pRes = 1; |
| 4959 pCur->eState = CURSOR_INVALID; |
| 4960 return SQLITE_OK; |
| 4961 } |
| 4962 moveToParent(pCur); |
| 4963 pPage = pCur->apPage[pCur->iPage]; |
| 4964 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell ); |
| 4965 if( pPage->intKey ){ |
| 4966 return sqlite3BtreeNext(pCur, pRes); |
| 4967 }else{ |
| 4968 return SQLITE_OK; |
| 4969 } |
| 4970 } |
| 4971 if( pPage->leaf ){ |
| 4972 return SQLITE_OK; |
| 4973 }else{ |
| 4974 return moveToLeftmost(pCur); |
| 4975 } |
| 4976 } |
| 4977 int sqlite3BtreeNext(BtCursor *pCur, int *pRes){ |
| 4978 MemPage *pPage; |
| 4979 assert( cursorHoldsMutex(pCur) ); |
| 4980 assert( pRes!=0 ); |
| 4981 assert( *pRes==0 || *pRes==1 ); |
| 4982 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); |
| 4983 pCur->info.nSize = 0; |
| 4984 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); |
| 4985 *pRes = 0; |
| 4986 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes); |
| 4987 pPage = pCur->apPage[pCur->iPage]; |
| 4988 if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){ |
| 4989 pCur->aiIdx[pCur->iPage]--; |
| 4990 return btreeNext(pCur, pRes); |
| 4991 } |
| 4992 if( pPage->leaf ){ |
| 4993 return SQLITE_OK; |
| 4994 }else{ |
| 4995 return moveToLeftmost(pCur); |
| 4996 } |
| 4997 } |
| 4998 |
| 4999 /* |
| 5000 ** Step the cursor to the back to the previous entry in the database. If |
| 5001 ** successful then set *pRes=0. If the cursor |
| 5002 ** was already pointing to the first entry in the database before |
| 5003 ** this routine was called, then set *pRes=1. |
| 5004 ** |
| 5005 ** The main entry point is sqlite3BtreePrevious(). That routine is optimized |
| 5006 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx |
| 5007 ** to the previous cell on the current page. The (slower) btreePrevious() |
| 5008 ** helper routine is called when it is necessary to move to a different page |
| 5009 ** or to restore the cursor. |
| 5010 ** |
| 5011 ** The calling function will set *pRes to 0 or 1. The initial *pRes value |
| 5012 ** will be 1 if the cursor being stepped corresponds to an SQL index and |
| 5013 ** if this routine could have been skipped if that SQL index had been |
| 5014 ** a unique index. Otherwise the caller will have set *pRes to zero. |
| 5015 ** Zero is the common case. The btree implementation is free to use the |
| 5016 ** initial *pRes value as a hint to improve performance, but the current |
| 5017 ** SQLite btree implementation does not. (Note that the comdb2 btree |
| 5018 ** implementation does use this hint, however.) |
| 5019 */ |
| 5020 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){ |
| 5021 int rc; |
| 5022 MemPage *pPage; |
| 5023 |
| 5024 assert( cursorHoldsMutex(pCur) ); |
| 5025 assert( pRes!=0 ); |
| 5026 assert( *pRes==0 ); |
| 5027 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); |
| 5028 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 ); |
| 5029 assert( pCur->info.nSize==0 ); |
| 5030 if( pCur->eState!=CURSOR_VALID ){ |
| 5031 rc = restoreCursorPosition(pCur); |
| 5032 if( rc!=SQLITE_OK ){ |
| 5033 return rc; |
| 5034 } |
| 5035 if( CURSOR_INVALID==pCur->eState ){ |
| 5036 *pRes = 1; |
| 5037 return SQLITE_OK; |
| 5038 } |
| 5039 if( pCur->skipNext ){ |
| 5040 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT ); |
| 5041 pCur->eState = CURSOR_VALID; |
| 5042 if( pCur->skipNext<0 ){ |
| 5043 pCur->skipNext = 0; |
| 5044 return SQLITE_OK; |
| 5045 } |
| 5046 pCur->skipNext = 0; |
| 5047 } |
| 5048 } |
| 5049 |
| 5050 pPage = pCur->apPage[pCur->iPage]; |
| 5051 assert( pPage->isInit ); |
| 5052 if( !pPage->leaf ){ |
| 5053 int idx = pCur->aiIdx[pCur->iPage]; |
| 5054 rc = moveToChild(pCur, get4byte(findCell(pPage, idx))); |
| 5055 if( rc ) return rc; |
| 5056 rc = moveToRightmost(pCur); |
| 5057 }else{ |
| 5058 while( pCur->aiIdx[pCur->iPage]==0 ){ |
| 5059 if( pCur->iPage==0 ){ |
| 5060 pCur->eState = CURSOR_INVALID; |
| 5061 *pRes = 1; |
| 5062 return SQLITE_OK; |
| 5063 } |
| 5064 moveToParent(pCur); |
| 5065 } |
| 5066 assert( pCur->info.nSize==0 ); |
| 5067 assert( (pCur->curFlags & (BTCF_ValidNKey|BTCF_ValidOvfl))==0 ); |
| 5068 |
| 5069 pCur->aiIdx[pCur->iPage]--; |
| 5070 pPage = pCur->apPage[pCur->iPage]; |
| 5071 if( pPage->intKey && !pPage->leaf ){ |
| 5072 rc = sqlite3BtreePrevious(pCur, pRes); |
| 5073 }else{ |
| 5074 rc = SQLITE_OK; |
| 5075 } |
| 5076 } |
| 5077 return rc; |
| 5078 } |
| 5079 int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){ |
| 5080 assert( cursorHoldsMutex(pCur) ); |
| 5081 assert( pRes!=0 ); |
| 5082 assert( *pRes==0 || *pRes==1 ); |
| 5083 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); |
| 5084 *pRes = 0; |
| 5085 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey); |
| 5086 pCur->info.nSize = 0; |
| 5087 if( pCur->eState!=CURSOR_VALID |
| 5088 || pCur->aiIdx[pCur->iPage]==0 |
| 5089 || pCur->apPage[pCur->iPage]->leaf==0 |
| 5090 ){ |
| 5091 return btreePrevious(pCur, pRes); |
| 5092 } |
| 5093 pCur->aiIdx[pCur->iPage]--; |
| 5094 return SQLITE_OK; |
| 5095 } |
| 5096 |
| 5097 /* |
| 5098 ** Allocate a new page from the database file. |
| 5099 ** |
| 5100 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite() |
| 5101 ** has already been called on the new page.) The new page has also |
| 5102 ** been referenced and the calling routine is responsible for calling |
| 5103 ** sqlite3PagerUnref() on the new page when it is done. |
| 5104 ** |
| 5105 ** SQLITE_OK is returned on success. Any other return value indicates |
| 5106 ** an error. *ppPage and *pPgno are undefined in the event of an error. |
| 5107 ** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned. |
| 5108 ** |
| 5109 ** If the "nearby" parameter is not 0, then an effort is made to |
| 5110 ** locate a page close to the page number "nearby". This can be used in an |
| 5111 ** attempt to keep related pages close to each other in the database file, |
| 5112 ** which in turn can make database access faster. |
| 5113 ** |
| 5114 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists |
| 5115 ** anywhere on the free-list, then it is guaranteed to be returned. If |
| 5116 ** eMode is BTALLOC_LT then the page returned will be less than or equal |
| 5117 ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there |
| 5118 ** are no restrictions on which page is returned. |
| 5119 */ |
| 5120 static int allocateBtreePage( |
| 5121 BtShared *pBt, /* The btree */ |
| 5122 MemPage **ppPage, /* Store pointer to the allocated page here */ |
| 5123 Pgno *pPgno, /* Store the page number here */ |
| 5124 Pgno nearby, /* Search for a page near this one */ |
| 5125 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */ |
| 5126 ){ |
| 5127 MemPage *pPage1; |
| 5128 int rc; |
| 5129 u32 n; /* Number of pages on the freelist */ |
| 5130 u32 k; /* Number of leaves on the trunk of the freelist */ |
| 5131 MemPage *pTrunk = 0; |
| 5132 MemPage *pPrevTrunk = 0; |
| 5133 Pgno mxPage; /* Total size of the database file */ |
| 5134 |
| 5135 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 5136 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) ); |
| 5137 pPage1 = pBt->pPage1; |
| 5138 mxPage = btreePagecount(pBt); |
| 5139 n = get4byte(&pPage1->aData[36]); |
| 5140 testcase( n==mxPage-1 ); |
| 5141 if( n>=mxPage ){ |
| 5142 return SQLITE_CORRUPT_BKPT; |
| 5143 } |
| 5144 if( n>0 ){ |
| 5145 /* There are pages on the freelist. Reuse one of those pages. */ |
| 5146 Pgno iTrunk; |
| 5147 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */ |
| 5148 |
| 5149 /* If eMode==BTALLOC_EXACT and a query of the pointer-map |
| 5150 ** shows that the page 'nearby' is somewhere on the free-list, then |
| 5151 ** the entire-list will be searched for that page. |
| 5152 */ |
| 5153 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 5154 if( eMode==BTALLOC_EXACT ){ |
| 5155 if( nearby<=mxPage ){ |
| 5156 u8 eType; |
| 5157 assert( nearby>0 ); |
| 5158 assert( pBt->autoVacuum ); |
| 5159 rc = ptrmapGet(pBt, nearby, &eType, 0); |
| 5160 if( rc ) return rc; |
| 5161 if( eType==PTRMAP_FREEPAGE ){ |
| 5162 searchList = 1; |
| 5163 } |
| 5164 } |
| 5165 }else if( eMode==BTALLOC_LE ){ |
| 5166 searchList = 1; |
| 5167 } |
| 5168 #endif |
| 5169 |
| 5170 /* Decrement the free-list count by 1. Set iTrunk to the index of the |
| 5171 ** first free-list trunk page. iPrevTrunk is initially 1. |
| 5172 */ |
| 5173 rc = sqlite3PagerWrite(pPage1->pDbPage); |
| 5174 if( rc ) return rc; |
| 5175 put4byte(&pPage1->aData[36], n-1); |
| 5176 |
| 5177 /* The code within this loop is run only once if the 'searchList' variable |
| 5178 ** is not true. Otherwise, it runs once for each trunk-page on the |
| 5179 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT) |
| 5180 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT) |
| 5181 */ |
| 5182 do { |
| 5183 pPrevTrunk = pTrunk; |
| 5184 if( pPrevTrunk ){ |
| 5185 iTrunk = get4byte(&pPrevTrunk->aData[0]); |
| 5186 }else{ |
| 5187 iTrunk = get4byte(&pPage1->aData[32]); |
| 5188 } |
| 5189 testcase( iTrunk==mxPage ); |
| 5190 if( iTrunk>mxPage ){ |
| 5191 rc = SQLITE_CORRUPT_BKPT; |
| 5192 }else{ |
| 5193 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); |
| 5194 } |
| 5195 if( rc ){ |
| 5196 pTrunk = 0; |
| 5197 goto end_allocate_page; |
| 5198 } |
| 5199 assert( pTrunk!=0 ); |
| 5200 assert( pTrunk->aData!=0 ); |
| 5201 |
| 5202 k = get4byte(&pTrunk->aData[4]); /* # of leaves on this trunk page */ |
| 5203 if( k==0 && !searchList ){ |
| 5204 /* The trunk has no leaves and the list is not being searched. |
| 5205 ** So extract the trunk page itself and use it as the newly |
| 5206 ** allocated page */ |
| 5207 assert( pPrevTrunk==0 ); |
| 5208 rc = sqlite3PagerWrite(pTrunk->pDbPage); |
| 5209 if( rc ){ |
| 5210 goto end_allocate_page; |
| 5211 } |
| 5212 *pPgno = iTrunk; |
| 5213 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); |
| 5214 *ppPage = pTrunk; |
| 5215 pTrunk = 0; |
| 5216 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); |
| 5217 }else if( k>(u32)(pBt->usableSize/4 - 2) ){ |
| 5218 /* Value of k is out of range. Database corruption */ |
| 5219 rc = SQLITE_CORRUPT_BKPT; |
| 5220 goto end_allocate_page; |
| 5221 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 5222 }else if( searchList |
| 5223 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE)) |
| 5224 ){ |
| 5225 /* The list is being searched and this trunk page is the page |
| 5226 ** to allocate, regardless of whether it has leaves. |
| 5227 */ |
| 5228 *pPgno = iTrunk; |
| 5229 *ppPage = pTrunk; |
| 5230 searchList = 0; |
| 5231 rc = sqlite3PagerWrite(pTrunk->pDbPage); |
| 5232 if( rc ){ |
| 5233 goto end_allocate_page; |
| 5234 } |
| 5235 if( k==0 ){ |
| 5236 if( !pPrevTrunk ){ |
| 5237 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); |
| 5238 }else{ |
| 5239 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); |
| 5240 if( rc!=SQLITE_OK ){ |
| 5241 goto end_allocate_page; |
| 5242 } |
| 5243 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4); |
| 5244 } |
| 5245 }else{ |
| 5246 /* The trunk page is required by the caller but it contains |
| 5247 ** pointers to free-list leaves. The first leaf becomes a trunk |
| 5248 ** page in this case. |
| 5249 */ |
| 5250 MemPage *pNewTrunk; |
| 5251 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]); |
| 5252 if( iNewTrunk>mxPage ){ |
| 5253 rc = SQLITE_CORRUPT_BKPT; |
| 5254 goto end_allocate_page; |
| 5255 } |
| 5256 testcase( iNewTrunk==mxPage ); |
| 5257 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0); |
| 5258 if( rc!=SQLITE_OK ){ |
| 5259 goto end_allocate_page; |
| 5260 } |
| 5261 rc = sqlite3PagerWrite(pNewTrunk->pDbPage); |
| 5262 if( rc!=SQLITE_OK ){ |
| 5263 releasePage(pNewTrunk); |
| 5264 goto end_allocate_page; |
| 5265 } |
| 5266 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4); |
| 5267 put4byte(&pNewTrunk->aData[4], k-1); |
| 5268 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4); |
| 5269 releasePage(pNewTrunk); |
| 5270 if( !pPrevTrunk ){ |
| 5271 assert( sqlite3PagerIswriteable(pPage1->pDbPage) ); |
| 5272 put4byte(&pPage1->aData[32], iNewTrunk); |
| 5273 }else{ |
| 5274 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); |
| 5275 if( rc ){ |
| 5276 goto end_allocate_page; |
| 5277 } |
| 5278 put4byte(&pPrevTrunk->aData[0], iNewTrunk); |
| 5279 } |
| 5280 } |
| 5281 pTrunk = 0; |
| 5282 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); |
| 5283 #endif |
| 5284 }else if( k>0 ){ |
| 5285 /* Extract a leaf from the trunk */ |
| 5286 u32 closest; |
| 5287 Pgno iPage; |
| 5288 unsigned char *aData = pTrunk->aData; |
| 5289 if( nearby>0 ){ |
| 5290 u32 i; |
| 5291 closest = 0; |
| 5292 if( eMode==BTALLOC_LE ){ |
| 5293 for(i=0; i<k; i++){ |
| 5294 iPage = get4byte(&aData[8+i*4]); |
| 5295 if( iPage<=nearby ){ |
| 5296 closest = i; |
| 5297 break; |
| 5298 } |
| 5299 } |
| 5300 }else{ |
| 5301 int dist; |
| 5302 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby); |
| 5303 for(i=1; i<k; i++){ |
| 5304 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby); |
| 5305 if( d2<dist ){ |
| 5306 closest = i; |
| 5307 dist = d2; |
| 5308 } |
| 5309 } |
| 5310 } |
| 5311 }else{ |
| 5312 closest = 0; |
| 5313 } |
| 5314 |
| 5315 iPage = get4byte(&aData[8+closest*4]); |
| 5316 testcase( iPage==mxPage ); |
| 5317 if( iPage>mxPage ){ |
| 5318 rc = SQLITE_CORRUPT_BKPT; |
| 5319 goto end_allocate_page; |
| 5320 } |
| 5321 testcase( iPage==mxPage ); |
| 5322 if( !searchList |
| 5323 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE)) |
| 5324 ){ |
| 5325 int noContent; |
| 5326 *pPgno = iPage; |
| 5327 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d" |
| 5328 ": %d more free pages\n", |
| 5329 *pPgno, closest+1, k, pTrunk->pgno, n-1)); |
| 5330 rc = sqlite3PagerWrite(pTrunk->pDbPage); |
| 5331 if( rc ) goto end_allocate_page; |
| 5332 if( closest<k-1 ){ |
| 5333 memcpy(&aData[8+closest*4], &aData[4+k*4], 4); |
| 5334 } |
| 5335 put4byte(&aData[4], k-1); |
| 5336 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0; |
| 5337 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent); |
| 5338 if( rc==SQLITE_OK ){ |
| 5339 rc = sqlite3PagerWrite((*ppPage)->pDbPage); |
| 5340 if( rc!=SQLITE_OK ){ |
| 5341 releasePage(*ppPage); |
| 5342 } |
| 5343 } |
| 5344 searchList = 0; |
| 5345 } |
| 5346 } |
| 5347 releasePage(pPrevTrunk); |
| 5348 pPrevTrunk = 0; |
| 5349 }while( searchList ); |
| 5350 }else{ |
| 5351 /* There are no pages on the freelist, so append a new page to the |
| 5352 ** database image. |
| 5353 ** |
| 5354 ** Normally, new pages allocated by this block can be requested from the |
| 5355 ** pager layer with the 'no-content' flag set. This prevents the pager |
| 5356 ** from trying to read the pages content from disk. However, if the |
| 5357 ** current transaction has already run one or more incremental-vacuum |
| 5358 ** steps, then the page we are about to allocate may contain content |
| 5359 ** that is required in the event of a rollback. In this case, do |
| 5360 ** not set the no-content flag. This causes the pager to load and journal |
| 5361 ** the current page content before overwriting it. |
| 5362 ** |
| 5363 ** Note that the pager will not actually attempt to load or journal |
| 5364 ** content for any page that really does lie past the end of the database |
| 5365 ** file on disk. So the effects of disabling the no-content optimization |
| 5366 ** here are confined to those pages that lie between the end of the |
| 5367 ** database image and the end of the database file. |
| 5368 */ |
| 5369 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0; |
| 5370 |
| 5371 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); |
| 5372 if( rc ) return rc; |
| 5373 pBt->nPage++; |
| 5374 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++; |
| 5375 |
| 5376 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 5377 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){ |
| 5378 /* If *pPgno refers to a pointer-map page, allocate two new pages |
| 5379 ** at the end of the file instead of one. The first allocated page |
| 5380 ** becomes a new pointer-map page, the second is used by the caller. |
| 5381 */ |
| 5382 MemPage *pPg = 0; |
| 5383 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage)); |
| 5384 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) ); |
| 5385 rc = btreeGetPage(pBt, pBt->nPage, &pPg, bNoContent); |
| 5386 if( rc==SQLITE_OK ){ |
| 5387 rc = sqlite3PagerWrite(pPg->pDbPage); |
| 5388 releasePage(pPg); |
| 5389 } |
| 5390 if( rc ) return rc; |
| 5391 pBt->nPage++; |
| 5392 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; } |
| 5393 } |
| 5394 #endif |
| 5395 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage); |
| 5396 *pPgno = pBt->nPage; |
| 5397 |
| 5398 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); |
| 5399 rc = btreeGetPage(pBt, *pPgno, ppPage, bNoContent); |
| 5400 if( rc ) return rc; |
| 5401 rc = sqlite3PagerWrite((*ppPage)->pDbPage); |
| 5402 if( rc!=SQLITE_OK ){ |
| 5403 releasePage(*ppPage); |
| 5404 } |
| 5405 TRACE(("ALLOCATE: %d from end of file\n", *pPgno)); |
| 5406 } |
| 5407 |
| 5408 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); |
| 5409 |
| 5410 end_allocate_page: |
| 5411 releasePage(pTrunk); |
| 5412 releasePage(pPrevTrunk); |
| 5413 if( rc==SQLITE_OK ){ |
| 5414 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){ |
| 5415 releasePage(*ppPage); |
| 5416 *ppPage = 0; |
| 5417 return SQLITE_CORRUPT_BKPT; |
| 5418 } |
| 5419 (*ppPage)->isInit = 0; |
| 5420 }else{ |
| 5421 *ppPage = 0; |
| 5422 } |
| 5423 assert( rc!=SQLITE_OK || sqlite3PagerIswriteable((*ppPage)->pDbPage) ); |
| 5424 return rc; |
| 5425 } |
| 5426 |
| 5427 /* |
| 5428 ** This function is used to add page iPage to the database file free-list. |
| 5429 ** It is assumed that the page is not already a part of the free-list. |
| 5430 ** |
| 5431 ** The value passed as the second argument to this function is optional. |
| 5432 ** If the caller happens to have a pointer to the MemPage object |
| 5433 ** corresponding to page iPage handy, it may pass it as the second value. |
| 5434 ** Otherwise, it may pass NULL. |
| 5435 ** |
| 5436 ** If a pointer to a MemPage object is passed as the second argument, |
| 5437 ** its reference count is not altered by this function. |
| 5438 */ |
| 5439 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){ |
| 5440 MemPage *pTrunk = 0; /* Free-list trunk page */ |
| 5441 Pgno iTrunk = 0; /* Page number of free-list trunk page */ |
| 5442 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */ |
| 5443 MemPage *pPage; /* Page being freed. May be NULL. */ |
| 5444 int rc; /* Return Code */ |
| 5445 int nFree; /* Initial number of pages on free-list */ |
| 5446 |
| 5447 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 5448 assert( iPage>1 ); |
| 5449 assert( !pMemPage || pMemPage->pgno==iPage ); |
| 5450 |
| 5451 if( pMemPage ){ |
| 5452 pPage = pMemPage; |
| 5453 sqlite3PagerRef(pPage->pDbPage); |
| 5454 }else{ |
| 5455 pPage = btreePageLookup(pBt, iPage); |
| 5456 } |
| 5457 |
| 5458 /* Increment the free page count on pPage1 */ |
| 5459 rc = sqlite3PagerWrite(pPage1->pDbPage); |
| 5460 if( rc ) goto freepage_out; |
| 5461 nFree = get4byte(&pPage1->aData[36]); |
| 5462 put4byte(&pPage1->aData[36], nFree+1); |
| 5463 |
| 5464 if( pBt->btsFlags & BTS_SECURE_DELETE ){ |
| 5465 /* If the secure_delete option is enabled, then |
| 5466 ** always fully overwrite deleted information with zeros. |
| 5467 */ |
| 5468 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) ) |
| 5469 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0) |
| 5470 ){ |
| 5471 goto freepage_out; |
| 5472 } |
| 5473 memset(pPage->aData, 0, pPage->pBt->pageSize); |
| 5474 } |
| 5475 |
| 5476 /* If the database supports auto-vacuum, write an entry in the pointer-map |
| 5477 ** to indicate that the page is free. |
| 5478 */ |
| 5479 if( ISAUTOVACUUM ){ |
| 5480 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc); |
| 5481 if( rc ) goto freepage_out; |
| 5482 } |
| 5483 |
| 5484 /* Now manipulate the actual database free-list structure. There are two |
| 5485 ** possibilities. If the free-list is currently empty, or if the first |
| 5486 ** trunk page in the free-list is full, then this page will become a |
| 5487 ** new free-list trunk page. Otherwise, it will become a leaf of the |
| 5488 ** first trunk page in the current free-list. This block tests if it |
| 5489 ** is possible to add the page as a new free-list leaf. |
| 5490 */ |
| 5491 if( nFree!=0 ){ |
| 5492 u32 nLeaf; /* Initial number of leaf cells on trunk page */ |
| 5493 |
| 5494 iTrunk = get4byte(&pPage1->aData[32]); |
| 5495 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); |
| 5496 if( rc!=SQLITE_OK ){ |
| 5497 goto freepage_out; |
| 5498 } |
| 5499 |
| 5500 nLeaf = get4byte(&pTrunk->aData[4]); |
| 5501 assert( pBt->usableSize>32 ); |
| 5502 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){ |
| 5503 rc = SQLITE_CORRUPT_BKPT; |
| 5504 goto freepage_out; |
| 5505 } |
| 5506 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){ |
| 5507 /* In this case there is room on the trunk page to insert the page |
| 5508 ** being freed as a new leaf. |
| 5509 ** |
| 5510 ** Note that the trunk page is not really full until it contains |
| 5511 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have |
| 5512 ** coded. But due to a coding error in versions of SQLite prior to |
| 5513 ** 3.6.0, databases with freelist trunk pages holding more than |
| 5514 ** usableSize/4 - 8 entries will be reported as corrupt. In order |
| 5515 ** to maintain backwards compatibility with older versions of SQLite, |
| 5516 ** we will continue to restrict the number of entries to usableSize/4 - 8 |
| 5517 ** for now. At some point in the future (once everyone has upgraded |
| 5518 ** to 3.6.0 or later) we should consider fixing the conditional above |
| 5519 ** to read "usableSize/4-2" instead of "usableSize/4-8". |
| 5520 */ |
| 5521 rc = sqlite3PagerWrite(pTrunk->pDbPage); |
| 5522 if( rc==SQLITE_OK ){ |
| 5523 put4byte(&pTrunk->aData[4], nLeaf+1); |
| 5524 put4byte(&pTrunk->aData[8+nLeaf*4], iPage); |
| 5525 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){ |
| 5526 sqlite3PagerDontWrite(pPage->pDbPage); |
| 5527 } |
| 5528 rc = btreeSetHasContent(pBt, iPage); |
| 5529 } |
| 5530 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno)); |
| 5531 goto freepage_out; |
| 5532 } |
| 5533 } |
| 5534 |
| 5535 /* If control flows to this point, then it was not possible to add the |
| 5536 ** the page being freed as a leaf page of the first trunk in the free-list. |
| 5537 ** Possibly because the free-list is empty, or possibly because the |
| 5538 ** first trunk in the free-list is full. Either way, the page being freed |
| 5539 ** will become the new first trunk page in the free-list. |
| 5540 */ |
| 5541 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){ |
| 5542 goto freepage_out; |
| 5543 } |
| 5544 rc = sqlite3PagerWrite(pPage->pDbPage); |
| 5545 if( rc!=SQLITE_OK ){ |
| 5546 goto freepage_out; |
| 5547 } |
| 5548 put4byte(pPage->aData, iTrunk); |
| 5549 put4byte(&pPage->aData[4], 0); |
| 5550 put4byte(&pPage1->aData[32], iPage); |
| 5551 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk)); |
| 5552 |
| 5553 freepage_out: |
| 5554 if( pPage ){ |
| 5555 pPage->isInit = 0; |
| 5556 } |
| 5557 releasePage(pPage); |
| 5558 releasePage(pTrunk); |
| 5559 return rc; |
| 5560 } |
| 5561 static void freePage(MemPage *pPage, int *pRC){ |
| 5562 if( (*pRC)==SQLITE_OK ){ |
| 5563 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno); |
| 5564 } |
| 5565 } |
| 5566 |
| 5567 /* |
| 5568 ** Free any overflow pages associated with the given Cell. Write the |
| 5569 ** local Cell size (the number of bytes on the original page, omitting |
| 5570 ** overflow) into *pnSize. |
| 5571 */ |
| 5572 static int clearCell( |
| 5573 MemPage *pPage, /* The page that contains the Cell */ |
| 5574 unsigned char *pCell, /* First byte of the Cell */ |
| 5575 u16 *pnSize /* Write the size of the Cell here */ |
| 5576 ){ |
| 5577 BtShared *pBt = pPage->pBt; |
| 5578 CellInfo info; |
| 5579 Pgno ovflPgno; |
| 5580 int rc; |
| 5581 int nOvfl; |
| 5582 u32 ovflPageSize; |
| 5583 |
| 5584 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 5585 btreeParseCellPtr(pPage, pCell, &info); |
| 5586 *pnSize = info.nSize; |
| 5587 if( info.iOverflow==0 ){ |
| 5588 return SQLITE_OK; /* No overflow pages. Return without doing anything */ |
| 5589 } |
| 5590 if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){ |
| 5591 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */ |
| 5592 } |
| 5593 ovflPgno = get4byte(&pCell[info.iOverflow]); |
| 5594 assert( pBt->usableSize > 4 ); |
| 5595 ovflPageSize = pBt->usableSize - 4; |
| 5596 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize; |
| 5597 assert( ovflPgno==0 || nOvfl>0 ); |
| 5598 while( nOvfl-- ){ |
| 5599 Pgno iNext = 0; |
| 5600 MemPage *pOvfl = 0; |
| 5601 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){ |
| 5602 /* 0 is not a legal page number and page 1 cannot be an |
| 5603 ** overflow page. Therefore if ovflPgno<2 or past the end of the |
| 5604 ** file the database must be corrupt. */ |
| 5605 return SQLITE_CORRUPT_BKPT; |
| 5606 } |
| 5607 if( nOvfl ){ |
| 5608 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext); |
| 5609 if( rc ) return rc; |
| 5610 } |
| 5611 |
| 5612 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) ) |
| 5613 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1 |
| 5614 ){ |
| 5615 /* There is no reason any cursor should have an outstanding reference |
| 5616 ** to an overflow page belonging to a cell that is being deleted/updated. |
| 5617 ** So if there exists more than one reference to this page, then it |
| 5618 ** must not really be an overflow page and the database must be corrupt. |
| 5619 ** It is helpful to detect this before calling freePage2(), as |
| 5620 ** freePage2() may zero the page contents if secure-delete mode is |
| 5621 ** enabled. If this 'overflow' page happens to be a page that the |
| 5622 ** caller is iterating through or using in some other way, this |
| 5623 ** can be problematic. |
| 5624 */ |
| 5625 rc = SQLITE_CORRUPT_BKPT; |
| 5626 }else{ |
| 5627 rc = freePage2(pBt, pOvfl, ovflPgno); |
| 5628 } |
| 5629 |
| 5630 if( pOvfl ){ |
| 5631 sqlite3PagerUnref(pOvfl->pDbPage); |
| 5632 } |
| 5633 if( rc ) return rc; |
| 5634 ovflPgno = iNext; |
| 5635 } |
| 5636 return SQLITE_OK; |
| 5637 } |
| 5638 |
| 5639 /* |
| 5640 ** Create the byte sequence used to represent a cell on page pPage |
| 5641 ** and write that byte sequence into pCell[]. Overflow pages are |
| 5642 ** allocated and filled in as necessary. The calling procedure |
| 5643 ** is responsible for making sure sufficient space has been allocated |
| 5644 ** for pCell[]. |
| 5645 ** |
| 5646 ** Note that pCell does not necessary need to point to the pPage->aData |
| 5647 ** area. pCell might point to some temporary storage. The cell will |
| 5648 ** be constructed in this temporary area then copied into pPage->aData |
| 5649 ** later. |
| 5650 */ |
| 5651 static int fillInCell( |
| 5652 MemPage *pPage, /* The page that contains the cell */ |
| 5653 unsigned char *pCell, /* Complete text of the cell */ |
| 5654 const void *pKey, i64 nKey, /* The key */ |
| 5655 const void *pData,int nData, /* The data */ |
| 5656 int nZero, /* Extra zero bytes to append to pData */ |
| 5657 int *pnSize /* Write cell size here */ |
| 5658 ){ |
| 5659 int nPayload; |
| 5660 const u8 *pSrc; |
| 5661 int nSrc, n, rc; |
| 5662 int spaceLeft; |
| 5663 MemPage *pOvfl = 0; |
| 5664 MemPage *pToRelease = 0; |
| 5665 unsigned char *pPrior; |
| 5666 unsigned char *pPayload; |
| 5667 BtShared *pBt = pPage->pBt; |
| 5668 Pgno pgnoOvfl = 0; |
| 5669 int nHeader; |
| 5670 |
| 5671 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 5672 |
| 5673 /* pPage is not necessarily writeable since pCell might be auxiliary |
| 5674 ** buffer space that is separate from the pPage buffer area */ |
| 5675 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize] |
| 5676 || sqlite3PagerIswriteable(pPage->pDbPage) ); |
| 5677 |
| 5678 /* Fill in the header. */ |
| 5679 nHeader = pPage->childPtrSize; |
| 5680 nPayload = nData + nZero; |
| 5681 if( pPage->intKeyLeaf ){ |
| 5682 nHeader += putVarint32(&pCell[nHeader], nPayload); |
| 5683 }else{ |
| 5684 assert( nData==0 ); |
| 5685 assert( nZero==0 ); |
| 5686 } |
| 5687 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey); |
| 5688 |
| 5689 /* Fill in the payload size */ |
| 5690 if( pPage->intKey ){ |
| 5691 pSrc = pData; |
| 5692 nSrc = nData; |
| 5693 nData = 0; |
| 5694 }else{ |
| 5695 if( NEVER(nKey>0x7fffffff || pKey==0) ){ |
| 5696 return SQLITE_CORRUPT_BKPT; |
| 5697 } |
| 5698 nPayload = (int)nKey; |
| 5699 pSrc = pKey; |
| 5700 nSrc = (int)nKey; |
| 5701 } |
| 5702 if( nPayload<=pPage->maxLocal ){ |
| 5703 n = nHeader + nPayload; |
| 5704 testcase( n==3 ); |
| 5705 testcase( n==4 ); |
| 5706 if( n<4 ) n = 4; |
| 5707 *pnSize = n; |
| 5708 spaceLeft = nPayload; |
| 5709 pPrior = pCell; |
| 5710 }else{ |
| 5711 int mn = pPage->minLocal; |
| 5712 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4); |
| 5713 testcase( n==pPage->maxLocal ); |
| 5714 testcase( n==pPage->maxLocal+1 ); |
| 5715 if( n > pPage->maxLocal ) n = mn; |
| 5716 spaceLeft = n; |
| 5717 *pnSize = n + nHeader + 4; |
| 5718 pPrior = &pCell[nHeader+n]; |
| 5719 } |
| 5720 pPayload = &pCell[nHeader]; |
| 5721 |
| 5722 /* At this point variables should be set as follows: |
| 5723 ** |
| 5724 ** nPayload Total payload size in bytes |
| 5725 ** pPayload Begin writing payload here |
| 5726 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft, |
| 5727 ** that means content must spill into overflow pages. |
| 5728 ** *pnSize Size of the local cell (not counting overflow pages) |
| 5729 ** pPrior Where to write the pgno of the first overflow page |
| 5730 ** |
| 5731 ** Use a call to btreeParseCellPtr() to verify that the values above |
| 5732 ** were computed correctly. |
| 5733 */ |
| 5734 #if SQLITE_DEBUG |
| 5735 { |
| 5736 CellInfo info; |
| 5737 btreeParseCellPtr(pPage, pCell, &info); |
| 5738 assert( nHeader=(int)(info.pPayload - pCell) ); |
| 5739 assert( info.nKey==nKey ); |
| 5740 assert( *pnSize == info.nSize ); |
| 5741 assert( spaceLeft == info.nLocal ); |
| 5742 assert( pPrior == &pCell[info.iOverflow] ); |
| 5743 } |
| 5744 #endif |
| 5745 |
| 5746 /* Write the payload into the local Cell and any extra into overflow pages */ |
| 5747 while( nPayload>0 ){ |
| 5748 if( spaceLeft==0 ){ |
| 5749 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 5750 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */ |
| 5751 if( pBt->autoVacuum ){ |
| 5752 do{ |
| 5753 pgnoOvfl++; |
| 5754 } while( |
| 5755 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) |
| 5756 ); |
| 5757 } |
| 5758 #endif |
| 5759 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0); |
| 5760 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 5761 /* If the database supports auto-vacuum, and the second or subsequent |
| 5762 ** overflow page is being allocated, add an entry to the pointer-map |
| 5763 ** for that page now. |
| 5764 ** |
| 5765 ** If this is the first overflow page, then write a partial entry |
| 5766 ** to the pointer-map. If we write nothing to this pointer-map slot, |
| 5767 ** then the optimistic overflow chain processing in clearCell() |
| 5768 ** may misinterpret the uninitialized values and delete the |
| 5769 ** wrong pages from the database. |
| 5770 */ |
| 5771 if( pBt->autoVacuum && rc==SQLITE_OK ){ |
| 5772 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1); |
| 5773 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc); |
| 5774 if( rc ){ |
| 5775 releasePage(pOvfl); |
| 5776 } |
| 5777 } |
| 5778 #endif |
| 5779 if( rc ){ |
| 5780 releasePage(pToRelease); |
| 5781 return rc; |
| 5782 } |
| 5783 |
| 5784 /* If pToRelease is not zero than pPrior points into the data area |
| 5785 ** of pToRelease. Make sure pToRelease is still writeable. */ |
| 5786 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); |
| 5787 |
| 5788 /* If pPrior is part of the data area of pPage, then make sure pPage |
| 5789 ** is still writeable */ |
| 5790 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize] |
| 5791 || sqlite3PagerIswriteable(pPage->pDbPage) ); |
| 5792 |
| 5793 put4byte(pPrior, pgnoOvfl); |
| 5794 releasePage(pToRelease); |
| 5795 pToRelease = pOvfl; |
| 5796 pPrior = pOvfl->aData; |
| 5797 put4byte(pPrior, 0); |
| 5798 pPayload = &pOvfl->aData[4]; |
| 5799 spaceLeft = pBt->usableSize - 4; |
| 5800 } |
| 5801 n = nPayload; |
| 5802 if( n>spaceLeft ) n = spaceLeft; |
| 5803 |
| 5804 /* If pToRelease is not zero than pPayload points into the data area |
| 5805 ** of pToRelease. Make sure pToRelease is still writeable. */ |
| 5806 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); |
| 5807 |
| 5808 /* If pPayload is part of the data area of pPage, then make sure pPage |
| 5809 ** is still writeable */ |
| 5810 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize] |
| 5811 || sqlite3PagerIswriteable(pPage->pDbPage) ); |
| 5812 |
| 5813 if( nSrc>0 ){ |
| 5814 if( n>nSrc ) n = nSrc; |
| 5815 assert( pSrc ); |
| 5816 memcpy(pPayload, pSrc, n); |
| 5817 }else{ |
| 5818 memset(pPayload, 0, n); |
| 5819 } |
| 5820 nPayload -= n; |
| 5821 pPayload += n; |
| 5822 pSrc += n; |
| 5823 nSrc -= n; |
| 5824 spaceLeft -= n; |
| 5825 if( nSrc==0 ){ |
| 5826 nSrc = nData; |
| 5827 pSrc = pData; |
| 5828 } |
| 5829 } |
| 5830 releasePage(pToRelease); |
| 5831 return SQLITE_OK; |
| 5832 } |
| 5833 |
| 5834 /* |
| 5835 ** Remove the i-th cell from pPage. This routine effects pPage only. |
| 5836 ** The cell content is not freed or deallocated. It is assumed that |
| 5837 ** the cell content has been copied someplace else. This routine just |
| 5838 ** removes the reference to the cell from pPage. |
| 5839 ** |
| 5840 ** "sz" must be the number of bytes in the cell. |
| 5841 */ |
| 5842 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){ |
| 5843 u32 pc; /* Offset to cell content of cell being deleted */ |
| 5844 u8 *data; /* pPage->aData */ |
| 5845 u8 *ptr; /* Used to move bytes around within data[] */ |
| 5846 int rc; /* The return code */ |
| 5847 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */ |
| 5848 |
| 5849 if( *pRC ) return; |
| 5850 |
| 5851 assert( idx>=0 && idx<pPage->nCell ); |
| 5852 assert( sz==cellSize(pPage, idx) ); |
| 5853 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
| 5854 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 5855 data = pPage->aData; |
| 5856 ptr = &pPage->aCellIdx[2*idx]; |
| 5857 pc = get2byte(ptr); |
| 5858 hdr = pPage->hdrOffset; |
| 5859 testcase( pc==get2byte(&data[hdr+5]) ); |
| 5860 testcase( pc+sz==pPage->pBt->usableSize ); |
| 5861 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){ |
| 5862 *pRC = SQLITE_CORRUPT_BKPT; |
| 5863 return; |
| 5864 } |
| 5865 rc = freeSpace(pPage, pc, sz); |
| 5866 if( rc ){ |
| 5867 *pRC = rc; |
| 5868 return; |
| 5869 } |
| 5870 pPage->nCell--; |
| 5871 memmove(ptr, ptr+2, 2*(pPage->nCell - idx)); |
| 5872 put2byte(&data[hdr+3], pPage->nCell); |
| 5873 pPage->nFree += 2; |
| 5874 } |
| 5875 |
| 5876 /* |
| 5877 ** Insert a new cell on pPage at cell index "i". pCell points to the |
| 5878 ** content of the cell. |
| 5879 ** |
| 5880 ** If the cell content will fit on the page, then put it there. If it |
| 5881 ** will not fit, then make a copy of the cell content into pTemp if |
| 5882 ** pTemp is not null. Regardless of pTemp, allocate a new entry |
| 5883 ** in pPage->apOvfl[] and make it point to the cell content (either |
| 5884 ** in pTemp or the original pCell) and also record its index. |
| 5885 ** Allocating a new entry in pPage->aCell[] implies that |
| 5886 ** pPage->nOverflow is incremented. |
| 5887 */ |
| 5888 static void insertCell( |
| 5889 MemPage *pPage, /* Page into which we are copying */ |
| 5890 int i, /* New cell becomes the i-th cell of the page */ |
| 5891 u8 *pCell, /* Content of the new cell */ |
| 5892 int sz, /* Bytes of content in pCell */ |
| 5893 u8 *pTemp, /* Temp storage space for pCell, if needed */ |
| 5894 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */ |
| 5895 int *pRC /* Read and write return code from here */ |
| 5896 ){ |
| 5897 int idx = 0; /* Where to write new cell content in data[] */ |
| 5898 int j; /* Loop counter */ |
| 5899 int end; /* First byte past the last cell pointer in data[] */ |
| 5900 int ins; /* Index in data[] where new cell pointer is inserted */ |
| 5901 int cellOffset; /* Address of first cell pointer in data[] */ |
| 5902 u8 *data; /* The content of the whole page */ |
| 5903 |
| 5904 if( *pRC ) return; |
| 5905 |
| 5906 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); |
| 5907 assert( MX_CELL(pPage->pBt)<=10921 ); |
| 5908 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB ); |
| 5909 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) ); |
| 5910 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) ); |
| 5911 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 5912 /* The cell should normally be sized correctly. However, when moving a |
| 5913 ** malformed cell from a leaf page to an interior page, if the cell size |
| 5914 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size |
| 5915 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence |
| 5916 ** the term after the || in the following assert(). */ |
| 5917 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) ); |
| 5918 if( pPage->nOverflow || sz+2>pPage->nFree ){ |
| 5919 if( pTemp ){ |
| 5920 memcpy(pTemp, pCell, sz); |
| 5921 pCell = pTemp; |
| 5922 } |
| 5923 if( iChild ){ |
| 5924 put4byte(pCell, iChild); |
| 5925 } |
| 5926 j = pPage->nOverflow++; |
| 5927 assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) ); |
| 5928 pPage->apOvfl[j] = pCell; |
| 5929 pPage->aiOvfl[j] = (u16)i; |
| 5930 }else{ |
| 5931 int rc = sqlite3PagerWrite(pPage->pDbPage); |
| 5932 if( rc!=SQLITE_OK ){ |
| 5933 *pRC = rc; |
| 5934 return; |
| 5935 } |
| 5936 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
| 5937 data = pPage->aData; |
| 5938 cellOffset = pPage->cellOffset; |
| 5939 end = cellOffset + 2*pPage->nCell; |
| 5940 ins = cellOffset + 2*i; |
| 5941 rc = allocateSpace(pPage, sz, &idx); |
| 5942 if( rc ){ *pRC = rc; return; } |
| 5943 /* The allocateSpace() routine guarantees the following two properties |
| 5944 ** if it returns success */ |
| 5945 assert( idx >= end+2 ); |
| 5946 assert( idx+sz <= (int)pPage->pBt->usableSize ); |
| 5947 pPage->nCell++; |
| 5948 pPage->nFree -= (u16)(2 + sz); |
| 5949 memcpy(&data[idx], pCell, sz); |
| 5950 if( iChild ){ |
| 5951 put4byte(&data[idx], iChild); |
| 5952 } |
| 5953 memmove(&data[ins+2], &data[ins], end-ins); |
| 5954 put2byte(&data[ins], idx); |
| 5955 put2byte(&data[pPage->hdrOffset+3], pPage->nCell); |
| 5956 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 5957 if( pPage->pBt->autoVacuum ){ |
| 5958 /* The cell may contain a pointer to an overflow page. If so, write |
| 5959 ** the entry for the overflow page into the pointer map. |
| 5960 */ |
| 5961 ptrmapPutOvflPtr(pPage, pCell, pRC); |
| 5962 } |
| 5963 #endif |
| 5964 } |
| 5965 } |
| 5966 |
| 5967 /* |
| 5968 ** Add a list of cells to a page. The page should be initially empty. |
| 5969 ** The cells are guaranteed to fit on the page. |
| 5970 */ |
| 5971 static void assemblePage( |
| 5972 MemPage *pPage, /* The page to be assembled */ |
| 5973 int nCell, /* The number of cells to add to this page */ |
| 5974 u8 **apCell, /* Pointers to cell bodies */ |
| 5975 u16 *aSize /* Sizes of the cells */ |
| 5976 ){ |
| 5977 int i; /* Loop counter */ |
| 5978 u8 *pCellptr; /* Address of next cell pointer */ |
| 5979 int cellbody; /* Address of next cell body */ |
| 5980 u8 * const data = pPage->aData; /* Pointer to data for pPage */ |
| 5981 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */ |
| 5982 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */ |
| 5983 |
| 5984 assert( pPage->nOverflow==0 ); |
| 5985 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 5986 assert( nCell>=0 && nCell<=(int)MX_CELL(pPage->pBt) |
| 5987 && (int)MX_CELL(pPage->pBt)<=10921); |
| 5988 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
| 5989 |
| 5990 /* Check that the page has just been zeroed by zeroPage() */ |
| 5991 assert( pPage->nCell==0 ); |
| 5992 assert( get2byteNotZero(&data[hdr+5])==nUsable ); |
| 5993 |
| 5994 pCellptr = &pPage->aCellIdx[nCell*2]; |
| 5995 cellbody = nUsable; |
| 5996 for(i=nCell-1; i>=0; i--){ |
| 5997 u16 sz = aSize[i]; |
| 5998 pCellptr -= 2; |
| 5999 cellbody -= sz; |
| 6000 put2byte(pCellptr, cellbody); |
| 6001 memcpy(&data[cellbody], apCell[i], sz); |
| 6002 } |
| 6003 put2byte(&data[hdr+3], nCell); |
| 6004 put2byte(&data[hdr+5], cellbody); |
| 6005 pPage->nFree -= (nCell*2 + nUsable - cellbody); |
| 6006 pPage->nCell = (u16)nCell; |
| 6007 } |
| 6008 |
| 6009 /* |
| 6010 ** The following parameters determine how many adjacent pages get involved |
| 6011 ** in a balancing operation. NN is the number of neighbors on either side |
| 6012 ** of the page that participate in the balancing operation. NB is the |
| 6013 ** total number of pages that participate, including the target page and |
| 6014 ** NN neighbors on either side. |
| 6015 ** |
| 6016 ** The minimum value of NN is 1 (of course). Increasing NN above 1 |
| 6017 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance |
| 6018 ** in exchange for a larger degradation in INSERT and UPDATE performance. |
| 6019 ** The value of NN appears to give the best results overall. |
| 6020 */ |
| 6021 #define NN 1 /* Number of neighbors on either side of pPage */ |
| 6022 #define NB (NN*2+1) /* Total pages involved in the balance */ |
| 6023 |
| 6024 |
| 6025 #ifndef SQLITE_OMIT_QUICKBALANCE |
| 6026 /* |
| 6027 ** This version of balance() handles the common special case where |
| 6028 ** a new entry is being inserted on the extreme right-end of the |
| 6029 ** tree, in other words, when the new entry will become the largest |
| 6030 ** entry in the tree. |
| 6031 ** |
| 6032 ** Instead of trying to balance the 3 right-most leaf pages, just add |
| 6033 ** a new page to the right-hand side and put the one new entry in |
| 6034 ** that page. This leaves the right side of the tree somewhat |
| 6035 ** unbalanced. But odds are that we will be inserting new entries |
| 6036 ** at the end soon afterwards so the nearly empty page will quickly |
| 6037 ** fill up. On average. |
| 6038 ** |
| 6039 ** pPage is the leaf page which is the right-most page in the tree. |
| 6040 ** pParent is its parent. pPage must have a single overflow entry |
| 6041 ** which is also the right-most entry on the page. |
| 6042 ** |
| 6043 ** The pSpace buffer is used to store a temporary copy of the divider |
| 6044 ** cell that will be inserted into pParent. Such a cell consists of a 4 |
| 6045 ** byte page number followed by a variable length integer. In other |
| 6046 ** words, at most 13 bytes. Hence the pSpace buffer must be at |
| 6047 ** least 13 bytes in size. |
| 6048 */ |
| 6049 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){ |
| 6050 BtShared *const pBt = pPage->pBt; /* B-Tree Database */ |
| 6051 MemPage *pNew; /* Newly allocated page */ |
| 6052 int rc; /* Return Code */ |
| 6053 Pgno pgnoNew; /* Page number of pNew */ |
| 6054 |
| 6055 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 6056 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); |
| 6057 assert( pPage->nOverflow==1 ); |
| 6058 |
| 6059 /* This error condition is now caught prior to reaching this function */ |
| 6060 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; |
| 6061 |
| 6062 /* Allocate a new page. This page will become the right-sibling of |
| 6063 ** pPage. Make the parent page writable, so that the new divider cell |
| 6064 ** may be inserted. If both these operations are successful, proceed. |
| 6065 */ |
| 6066 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); |
| 6067 |
| 6068 if( rc==SQLITE_OK ){ |
| 6069 |
| 6070 u8 *pOut = &pSpace[4]; |
| 6071 u8 *pCell = pPage->apOvfl[0]; |
| 6072 u16 szCell = cellSizePtr(pPage, pCell); |
| 6073 u8 *pStop; |
| 6074 |
| 6075 assert( sqlite3PagerIswriteable(pNew->pDbPage) ); |
| 6076 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) ); |
| 6077 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF); |
| 6078 assemblePage(pNew, 1, &pCell, &szCell); |
| 6079 |
| 6080 /* If this is an auto-vacuum database, update the pointer map |
| 6081 ** with entries for the new page, and any pointer from the |
| 6082 ** cell on the page to an overflow page. If either of these |
| 6083 ** operations fails, the return code is set, but the contents |
| 6084 ** of the parent page are still manipulated by thh code below. |
| 6085 ** That is Ok, at this point the parent page is guaranteed to |
| 6086 ** be marked as dirty. Returning an error code will cause a |
| 6087 ** rollback, undoing any changes made to the parent page. |
| 6088 */ |
| 6089 if( ISAUTOVACUUM ){ |
| 6090 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc); |
| 6091 if( szCell>pNew->minLocal ){ |
| 6092 ptrmapPutOvflPtr(pNew, pCell, &rc); |
| 6093 } |
| 6094 } |
| 6095 |
| 6096 /* Create a divider cell to insert into pParent. The divider cell |
| 6097 ** consists of a 4-byte page number (the page number of pPage) and |
| 6098 ** a variable length key value (which must be the same value as the |
| 6099 ** largest key on pPage). |
| 6100 ** |
| 6101 ** To find the largest key value on pPage, first find the right-most |
| 6102 ** cell on pPage. The first two fields of this cell are the |
| 6103 ** record-length (a variable length integer at most 32-bits in size) |
| 6104 ** and the key value (a variable length integer, may have any value). |
| 6105 ** The first of the while(...) loops below skips over the record-length |
| 6106 ** field. The second while(...) loop copies the key value from the |
| 6107 ** cell on pPage into the pSpace buffer. |
| 6108 */ |
| 6109 pCell = findCell(pPage, pPage->nCell-1); |
| 6110 pStop = &pCell[9]; |
| 6111 while( (*(pCell++)&0x80) && pCell<pStop ); |
| 6112 pStop = &pCell[9]; |
| 6113 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop ); |
| 6114 |
| 6115 /* Insert the new divider cell into pParent. */ |
| 6116 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace), |
| 6117 0, pPage->pgno, &rc); |
| 6118 |
| 6119 /* Set the right-child pointer of pParent to point to the new page. */ |
| 6120 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew); |
| 6121 |
| 6122 /* Release the reference to the new page. */ |
| 6123 releasePage(pNew); |
| 6124 } |
| 6125 |
| 6126 return rc; |
| 6127 } |
| 6128 #endif /* SQLITE_OMIT_QUICKBALANCE */ |
| 6129 |
| 6130 #if 0 |
| 6131 /* |
| 6132 ** This function does not contribute anything to the operation of SQLite. |
| 6133 ** it is sometimes activated temporarily while debugging code responsible |
| 6134 ** for setting pointer-map entries. |
| 6135 */ |
| 6136 static int ptrmapCheckPages(MemPage **apPage, int nPage){ |
| 6137 int i, j; |
| 6138 for(i=0; i<nPage; i++){ |
| 6139 Pgno n; |
| 6140 u8 e; |
| 6141 MemPage *pPage = apPage[i]; |
| 6142 BtShared *pBt = pPage->pBt; |
| 6143 assert( pPage->isInit ); |
| 6144 |
| 6145 for(j=0; j<pPage->nCell; j++){ |
| 6146 CellInfo info; |
| 6147 u8 *z; |
| 6148 |
| 6149 z = findCell(pPage, j); |
| 6150 btreeParseCellPtr(pPage, z, &info); |
| 6151 if( info.iOverflow ){ |
| 6152 Pgno ovfl = get4byte(&z[info.iOverflow]); |
| 6153 ptrmapGet(pBt, ovfl, &e, &n); |
| 6154 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 ); |
| 6155 } |
| 6156 if( !pPage->leaf ){ |
| 6157 Pgno child = get4byte(z); |
| 6158 ptrmapGet(pBt, child, &e, &n); |
| 6159 assert( n==pPage->pgno && e==PTRMAP_BTREE ); |
| 6160 } |
| 6161 } |
| 6162 if( !pPage->leaf ){ |
| 6163 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
| 6164 ptrmapGet(pBt, child, &e, &n); |
| 6165 assert( n==pPage->pgno && e==PTRMAP_BTREE ); |
| 6166 } |
| 6167 } |
| 6168 return 1; |
| 6169 } |
| 6170 #endif |
| 6171 |
| 6172 /* |
| 6173 ** This function is used to copy the contents of the b-tree node stored |
| 6174 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then |
| 6175 ** the pointer-map entries for each child page are updated so that the |
| 6176 ** parent page stored in the pointer map is page pTo. If pFrom contained |
| 6177 ** any cells with overflow page pointers, then the corresponding pointer |
| 6178 ** map entries are also updated so that the parent page is page pTo. |
| 6179 ** |
| 6180 ** If pFrom is currently carrying any overflow cells (entries in the |
| 6181 ** MemPage.apOvfl[] array), they are not copied to pTo. |
| 6182 ** |
| 6183 ** Before returning, page pTo is reinitialized using btreeInitPage(). |
| 6184 ** |
| 6185 ** The performance of this function is not critical. It is only used by |
| 6186 ** the balance_shallower() and balance_deeper() procedures, neither of |
| 6187 ** which are called often under normal circumstances. |
| 6188 */ |
| 6189 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){ |
| 6190 if( (*pRC)==SQLITE_OK ){ |
| 6191 BtShared * const pBt = pFrom->pBt; |
| 6192 u8 * const aFrom = pFrom->aData; |
| 6193 u8 * const aTo = pTo->aData; |
| 6194 int const iFromHdr = pFrom->hdrOffset; |
| 6195 int const iToHdr = ((pTo->pgno==1) ? 100 : 0); |
| 6196 int rc; |
| 6197 int iData; |
| 6198 |
| 6199 |
| 6200 assert( pFrom->isInit ); |
| 6201 assert( pFrom->nFree>=iToHdr ); |
| 6202 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize ); |
| 6203 |
| 6204 /* Copy the b-tree node content from page pFrom to page pTo. */ |
| 6205 iData = get2byte(&aFrom[iFromHdr+5]); |
| 6206 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData); |
| 6207 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell); |
| 6208 |
| 6209 /* Reinitialize page pTo so that the contents of the MemPage structure |
| 6210 ** match the new data. The initialization of pTo can actually fail under |
| 6211 ** fairly obscure circumstances, even though it is a copy of initialized |
| 6212 ** page pFrom. |
| 6213 */ |
| 6214 pTo->isInit = 0; |
| 6215 rc = btreeInitPage(pTo); |
| 6216 if( rc!=SQLITE_OK ){ |
| 6217 *pRC = rc; |
| 6218 return; |
| 6219 } |
| 6220 |
| 6221 /* If this is an auto-vacuum database, update the pointer-map entries |
| 6222 ** for any b-tree or overflow pages that pTo now contains the pointers to. |
| 6223 */ |
| 6224 if( ISAUTOVACUUM ){ |
| 6225 *pRC = setChildPtrmaps(pTo); |
| 6226 } |
| 6227 } |
| 6228 } |
| 6229 |
| 6230 /* |
| 6231 ** This routine redistributes cells on the iParentIdx'th child of pParent |
| 6232 ** (hereafter "the page") and up to 2 siblings so that all pages have about the |
| 6233 ** same amount of free space. Usually a single sibling on either side of the |
| 6234 ** page are used in the balancing, though both siblings might come from one |
| 6235 ** side if the page is the first or last child of its parent. If the page |
| 6236 ** has fewer than 2 siblings (something which can only happen if the page |
| 6237 ** is a root page or a child of a root page) then all available siblings |
| 6238 ** participate in the balancing. |
| 6239 ** |
| 6240 ** The number of siblings of the page might be increased or decreased by |
| 6241 ** one or two in an effort to keep pages nearly full but not over full. |
| 6242 ** |
| 6243 ** Note that when this routine is called, some of the cells on the page |
| 6244 ** might not actually be stored in MemPage.aData[]. This can happen |
| 6245 ** if the page is overfull. This routine ensures that all cells allocated |
| 6246 ** to the page and its siblings fit into MemPage.aData[] before returning. |
| 6247 ** |
| 6248 ** In the course of balancing the page and its siblings, cells may be |
| 6249 ** inserted into or removed from the parent page (pParent). Doing so |
| 6250 ** may cause the parent page to become overfull or underfull. If this |
| 6251 ** happens, it is the responsibility of the caller to invoke the correct |
| 6252 ** balancing routine to fix this problem (see the balance() routine). |
| 6253 ** |
| 6254 ** If this routine fails for any reason, it might leave the database |
| 6255 ** in a corrupted state. So if this routine fails, the database should |
| 6256 ** be rolled back. |
| 6257 ** |
| 6258 ** The third argument to this function, aOvflSpace, is a pointer to a |
| 6259 ** buffer big enough to hold one page. If while inserting cells into the parent |
| 6260 ** page (pParent) the parent page becomes overfull, this buffer is |
| 6261 ** used to store the parent's overflow cells. Because this function inserts |
| 6262 ** a maximum of four divider cells into the parent page, and the maximum |
| 6263 ** size of a cell stored within an internal node is always less than 1/4 |
| 6264 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large |
| 6265 ** enough for all overflow cells. |
| 6266 ** |
| 6267 ** If aOvflSpace is set to a null pointer, this function returns |
| 6268 ** SQLITE_NOMEM. |
| 6269 */ |
| 6270 #if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM) |
| 6271 #pragma optimize("", off) |
| 6272 #endif |
| 6273 static int balance_nonroot( |
| 6274 MemPage *pParent, /* Parent page of siblings being balanced */ |
| 6275 int iParentIdx, /* Index of "the page" in pParent */ |
| 6276 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */ |
| 6277 int isRoot, /* True if pParent is a root-page */ |
| 6278 int bBulk /* True if this call is part of a bulk load */ |
| 6279 ){ |
| 6280 BtShared *pBt; /* The whole database */ |
| 6281 int nCell = 0; /* Number of cells in apCell[] */ |
| 6282 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */ |
| 6283 int nNew = 0; /* Number of pages in apNew[] */ |
| 6284 int nOld; /* Number of pages in apOld[] */ |
| 6285 int i, j, k; /* Loop counters */ |
| 6286 int nxDiv; /* Next divider slot in pParent->aCell[] */ |
| 6287 int rc = SQLITE_OK; /* The return code */ |
| 6288 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */ |
| 6289 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */ |
| 6290 int usableSpace; /* Bytes in pPage beyond the header */ |
| 6291 int pageFlags; /* Value of pPage->aData[0] */ |
| 6292 int subtotal; /* Subtotal of bytes in cells on one page */ |
| 6293 int iSpace1 = 0; /* First unused byte of aSpace1[] */ |
| 6294 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */ |
| 6295 int szScratch; /* Size of scratch memory requested */ |
| 6296 MemPage *apOld[NB]; /* pPage and up to two siblings */ |
| 6297 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */ |
| 6298 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */ |
| 6299 u8 *pRight; /* Location in parent of right-sibling pointer */ |
| 6300 u8 *apDiv[NB-1]; /* Divider cells in pParent */ |
| 6301 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */ |
| 6302 int szNew[NB+2]; /* Combined size of cells place on i-th page */ |
| 6303 u8 **apCell = 0; /* All cells begin balanced */ |
| 6304 u16 *szCell; /* Local size of all cells in apCell[] */ |
| 6305 u8 *aSpace1; /* Space for copies of dividers cells */ |
| 6306 Pgno pgno; /* Temp var to store a page number in */ |
| 6307 |
| 6308 pBt = pParent->pBt; |
| 6309 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 6310 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); |
| 6311 |
| 6312 #if 0 |
| 6313 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno)); |
| 6314 #endif |
| 6315 |
| 6316 /* At this point pParent may have at most one overflow cell. And if |
| 6317 ** this overflow cell is present, it must be the cell with |
| 6318 ** index iParentIdx. This scenario comes about when this function |
| 6319 ** is called (indirectly) from sqlite3BtreeDelete(). |
| 6320 */ |
| 6321 assert( pParent->nOverflow==0 || pParent->nOverflow==1 ); |
| 6322 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx ); |
| 6323 |
| 6324 if( !aOvflSpace ){ |
| 6325 return SQLITE_NOMEM; |
| 6326 } |
| 6327 |
| 6328 /* Find the sibling pages to balance. Also locate the cells in pParent |
| 6329 ** that divide the siblings. An attempt is made to find NN siblings on |
| 6330 ** either side of pPage. More siblings are taken from one side, however, |
| 6331 ** if there are fewer than NN siblings on the other side. If pParent |
| 6332 ** has NB or fewer children then all children of pParent are taken. |
| 6333 ** |
| 6334 ** This loop also drops the divider cells from the parent page. This |
| 6335 ** way, the remainder of the function does not have to deal with any |
| 6336 ** overflow cells in the parent page, since if any existed they will |
| 6337 ** have already been removed. |
| 6338 */ |
| 6339 i = pParent->nOverflow + pParent->nCell; |
| 6340 if( i<2 ){ |
| 6341 nxDiv = 0; |
| 6342 }else{ |
| 6343 assert( bBulk==0 || bBulk==1 ); |
| 6344 if( iParentIdx==0 ){ |
| 6345 nxDiv = 0; |
| 6346 }else if( iParentIdx==i ){ |
| 6347 nxDiv = i-2+bBulk; |
| 6348 }else{ |
| 6349 assert( bBulk==0 ); |
| 6350 nxDiv = iParentIdx-1; |
| 6351 } |
| 6352 i = 2-bBulk; |
| 6353 } |
| 6354 nOld = i+1; |
| 6355 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){ |
| 6356 pRight = &pParent->aData[pParent->hdrOffset+8]; |
| 6357 }else{ |
| 6358 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow); |
| 6359 } |
| 6360 pgno = get4byte(pRight); |
| 6361 while( 1 ){ |
| 6362 rc = getAndInitPage(pBt, pgno, &apOld[i], 0); |
| 6363 if( rc ){ |
| 6364 memset(apOld, 0, (i+1)*sizeof(MemPage*)); |
| 6365 goto balance_cleanup; |
| 6366 } |
| 6367 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow; |
| 6368 if( (i--)==0 ) break; |
| 6369 |
| 6370 if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){ |
| 6371 apDiv[i] = pParent->apOvfl[0]; |
| 6372 pgno = get4byte(apDiv[i]); |
| 6373 szNew[i] = cellSizePtr(pParent, apDiv[i]); |
| 6374 pParent->nOverflow = 0; |
| 6375 }else{ |
| 6376 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow); |
| 6377 pgno = get4byte(apDiv[i]); |
| 6378 szNew[i] = cellSizePtr(pParent, apDiv[i]); |
| 6379 |
| 6380 /* Drop the cell from the parent page. apDiv[i] still points to |
| 6381 ** the cell within the parent, even though it has been dropped. |
| 6382 ** This is safe because dropping a cell only overwrites the first |
| 6383 ** four bytes of it, and this function does not need the first |
| 6384 ** four bytes of the divider cell. So the pointer is safe to use |
| 6385 ** later on. |
| 6386 ** |
| 6387 ** But not if we are in secure-delete mode. In secure-delete mode, |
| 6388 ** the dropCell() routine will overwrite the entire cell with zeroes. |
| 6389 ** In this case, temporarily copy the cell into the aOvflSpace[] |
| 6390 ** buffer. It will be copied out again as soon as the aSpace[] buffer |
| 6391 ** is allocated. */ |
| 6392 if( pBt->btsFlags & BTS_SECURE_DELETE ){ |
| 6393 int iOff; |
| 6394 |
| 6395 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData); |
| 6396 if( (iOff+szNew[i])>(int)pBt->usableSize ){ |
| 6397 rc = SQLITE_CORRUPT_BKPT; |
| 6398 memset(apOld, 0, (i+1)*sizeof(MemPage*)); |
| 6399 goto balance_cleanup; |
| 6400 }else{ |
| 6401 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]); |
| 6402 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData]; |
| 6403 } |
| 6404 } |
| 6405 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc); |
| 6406 } |
| 6407 } |
| 6408 |
| 6409 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte |
| 6410 ** alignment */ |
| 6411 nMaxCells = (nMaxCells + 3)&~3; |
| 6412 |
| 6413 /* |
| 6414 ** Allocate space for memory structures |
| 6415 */ |
| 6416 k = pBt->pageSize + ROUND8(sizeof(MemPage)); |
| 6417 szScratch = |
| 6418 nMaxCells*sizeof(u8*) /* apCell */ |
| 6419 + nMaxCells*sizeof(u16) /* szCell */ |
| 6420 + pBt->pageSize /* aSpace1 */ |
| 6421 + k*nOld; /* Page copies (apCopy) */ |
| 6422 apCell = sqlite3ScratchMalloc( szScratch ); |
| 6423 if( apCell==0 ){ |
| 6424 rc = SQLITE_NOMEM; |
| 6425 goto balance_cleanup; |
| 6426 } |
| 6427 szCell = (u16*)&apCell[nMaxCells]; |
| 6428 aSpace1 = (u8*)&szCell[nMaxCells]; |
| 6429 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) ); |
| 6430 |
| 6431 /* |
| 6432 ** Load pointers to all cells on sibling pages and the divider cells |
| 6433 ** into the local apCell[] array. Make copies of the divider cells |
| 6434 ** into space obtained from aSpace1[] and remove the divider cells |
| 6435 ** from pParent. |
| 6436 ** |
| 6437 ** If the siblings are on leaf pages, then the child pointers of the |
| 6438 ** divider cells are stripped from the cells before they are copied |
| 6439 ** into aSpace1[]. In this way, all cells in apCell[] are without |
| 6440 ** child pointers. If siblings are not leaves, then all cell in |
| 6441 ** apCell[] include child pointers. Either way, all cells in apCell[] |
| 6442 ** are alike. |
| 6443 ** |
| 6444 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. |
| 6445 ** leafData: 1 if pPage holds key+data and pParent holds only keys. |
| 6446 */ |
| 6447 leafCorrection = apOld[0]->leaf*4; |
| 6448 leafData = apOld[0]->intKeyLeaf; |
| 6449 for(i=0; i<nOld; i++){ |
| 6450 int limit; |
| 6451 |
| 6452 /* Before doing anything else, take a copy of the i'th original sibling |
| 6453 ** The rest of this function will use data from the copies rather |
| 6454 ** that the original pages since the original pages will be in the |
| 6455 ** process of being overwritten. */ |
| 6456 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i]; |
| 6457 memcpy(pOld, apOld[i], sizeof(MemPage)); |
| 6458 pOld->aData = (void*)&pOld[1]; |
| 6459 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize); |
| 6460 |
| 6461 limit = pOld->nCell+pOld->nOverflow; |
| 6462 if( pOld->nOverflow>0 ){ |
| 6463 for(j=0; j<limit; j++){ |
| 6464 assert( nCell<nMaxCells ); |
| 6465 apCell[nCell] = findOverflowCell(pOld, j); |
| 6466 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]); |
| 6467 nCell++; |
| 6468 } |
| 6469 }else{ |
| 6470 u8 *aData = pOld->aData; |
| 6471 u16 maskPage = pOld->maskPage; |
| 6472 u16 cellOffset = pOld->cellOffset; |
| 6473 for(j=0; j<limit; j++){ |
| 6474 assert( nCell<nMaxCells ); |
| 6475 apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j); |
| 6476 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]); |
| 6477 nCell++; |
| 6478 } |
| 6479 } |
| 6480 if( i<nOld-1 && !leafData){ |
| 6481 u16 sz = (u16)szNew[i]; |
| 6482 u8 *pTemp; |
| 6483 assert( nCell<nMaxCells ); |
| 6484 szCell[nCell] = sz; |
| 6485 pTemp = &aSpace1[iSpace1]; |
| 6486 iSpace1 += sz; |
| 6487 assert( sz<=pBt->maxLocal+23 ); |
| 6488 assert( iSpace1 <= (int)pBt->pageSize ); |
| 6489 memcpy(pTemp, apDiv[i], sz); |
| 6490 apCell[nCell] = pTemp+leafCorrection; |
| 6491 assert( leafCorrection==0 || leafCorrection==4 ); |
| 6492 szCell[nCell] = szCell[nCell] - leafCorrection; |
| 6493 if( !pOld->leaf ){ |
| 6494 assert( leafCorrection==0 ); |
| 6495 assert( pOld->hdrOffset==0 ); |
| 6496 /* The right pointer of the child page pOld becomes the left |
| 6497 ** pointer of the divider cell */ |
| 6498 memcpy(apCell[nCell], &pOld->aData[8], 4); |
| 6499 }else{ |
| 6500 assert( leafCorrection==4 ); |
| 6501 if( szCell[nCell]<4 ){ |
| 6502 /* Do not allow any cells smaller than 4 bytes. */ |
| 6503 szCell[nCell] = 4; |
| 6504 } |
| 6505 } |
| 6506 nCell++; |
| 6507 } |
| 6508 } |
| 6509 |
| 6510 /* |
| 6511 ** Figure out the number of pages needed to hold all nCell cells. |
| 6512 ** Store this number in "k". Also compute szNew[] which is the total |
| 6513 ** size of all cells on the i-th page and cntNew[] which is the index |
| 6514 ** in apCell[] of the cell that divides page i from page i+1. |
| 6515 ** cntNew[k] should equal nCell. |
| 6516 ** |
| 6517 ** Values computed by this block: |
| 6518 ** |
| 6519 ** k: The total number of sibling pages |
| 6520 ** szNew[i]: Spaced used on the i-th sibling page. |
| 6521 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to |
| 6522 ** the right of the i-th sibling page. |
| 6523 ** usableSpace: Number of bytes of space available on each sibling. |
| 6524 ** |
| 6525 */ |
| 6526 usableSpace = pBt->usableSize - 12 + leafCorrection; |
| 6527 for(subtotal=k=i=0; i<nCell; i++){ |
| 6528 assert( i<nMaxCells ); |
| 6529 subtotal += szCell[i] + 2; |
| 6530 if( subtotal > usableSpace ){ |
| 6531 szNew[k] = subtotal - szCell[i]; |
| 6532 cntNew[k] = i; |
| 6533 if( leafData ){ i--; } |
| 6534 subtotal = 0; |
| 6535 k++; |
| 6536 if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } |
| 6537 } |
| 6538 } |
| 6539 szNew[k] = subtotal; |
| 6540 cntNew[k] = nCell; |
| 6541 k++; |
| 6542 |
| 6543 /* |
| 6544 ** The packing computed by the previous block is biased toward the siblings |
| 6545 ** on the left side. The left siblings are always nearly full, while the |
| 6546 ** right-most sibling might be nearly empty. This block of code attempts |
| 6547 ** to adjust the packing of siblings to get a better balance. |
| 6548 ** |
| 6549 ** This adjustment is more than an optimization. The packing above might |
| 6550 ** be so out of balance as to be illegal. For example, the right-most |
| 6551 ** sibling might be completely empty. This adjustment is not optional. |
| 6552 */ |
| 6553 for(i=k-1; i>0; i--){ |
| 6554 int szRight = szNew[i]; /* Size of sibling on the right */ |
| 6555 int szLeft = szNew[i-1]; /* Size of sibling on the left */ |
| 6556 int r; /* Index of right-most cell in left sibling */ |
| 6557 int d; /* Index of first cell to the left of right sibling */ |
| 6558 |
| 6559 r = cntNew[i-1] - 1; |
| 6560 d = r + 1 - leafData; |
| 6561 assert( d<nMaxCells ); |
| 6562 assert( r<nMaxCells ); |
| 6563 while( szRight==0 |
| 6564 || (!bBulk && szRight+szCell[d]+2<=szLeft-(szCell[r]+2)) |
| 6565 ){ |
| 6566 szRight += szCell[d] + 2; |
| 6567 szLeft -= szCell[r] + 2; |
| 6568 cntNew[i-1]--; |
| 6569 r = cntNew[i-1] - 1; |
| 6570 d = r + 1 - leafData; |
| 6571 } |
| 6572 szNew[i] = szRight; |
| 6573 szNew[i-1] = szLeft; |
| 6574 } |
| 6575 |
| 6576 /* Either we found one or more cells (cntnew[0])>0) or pPage is |
| 6577 ** a virtual root page. A virtual root page is when the real root |
| 6578 ** page is page 1 and we are the only child of that page. |
| 6579 ** |
| 6580 ** UPDATE: The assert() below is not necessarily true if the database |
| 6581 ** file is corrupt. The corruption will be detected and reported later |
| 6582 ** in this procedure so there is no need to act upon it now. |
| 6583 */ |
| 6584 #if 0 |
| 6585 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) ); |
| 6586 #endif |
| 6587 |
| 6588 TRACE(("BALANCE: old: %d %d %d ", |
| 6589 apOld[0]->pgno, |
| 6590 nOld>=2 ? apOld[1]->pgno : 0, |
| 6591 nOld>=3 ? apOld[2]->pgno : 0 |
| 6592 )); |
| 6593 |
| 6594 /* |
| 6595 ** Allocate k new pages. Reuse old pages where possible. |
| 6596 */ |
| 6597 if( apOld[0]->pgno<=1 ){ |
| 6598 rc = SQLITE_CORRUPT_BKPT; |
| 6599 goto balance_cleanup; |
| 6600 } |
| 6601 pageFlags = apOld[0]->aData[0]; |
| 6602 for(i=0; i<k; i++){ |
| 6603 MemPage *pNew; |
| 6604 if( i<nOld ){ |
| 6605 pNew = apNew[i] = apOld[i]; |
| 6606 apOld[i] = 0; |
| 6607 rc = sqlite3PagerWrite(pNew->pDbPage); |
| 6608 nNew++; |
| 6609 if( rc ) goto balance_cleanup; |
| 6610 }else{ |
| 6611 assert( i>0 ); |
| 6612 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0); |
| 6613 if( rc ) goto balance_cleanup; |
| 6614 apNew[i] = pNew; |
| 6615 nNew++; |
| 6616 |
| 6617 /* Set the pointer-map entry for the new sibling page. */ |
| 6618 if( ISAUTOVACUUM ){ |
| 6619 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc); |
| 6620 if( rc!=SQLITE_OK ){ |
| 6621 goto balance_cleanup; |
| 6622 } |
| 6623 } |
| 6624 } |
| 6625 } |
| 6626 |
| 6627 /* Free any old pages that were not reused as new pages. |
| 6628 */ |
| 6629 while( i<nOld ){ |
| 6630 freePage(apOld[i], &rc); |
| 6631 if( rc ) goto balance_cleanup; |
| 6632 releasePage(apOld[i]); |
| 6633 apOld[i] = 0; |
| 6634 i++; |
| 6635 } |
| 6636 |
| 6637 /* |
| 6638 ** Put the new pages in ascending order. This helps to |
| 6639 ** keep entries in the disk file in order so that a scan |
| 6640 ** of the table is a linear scan through the file. That |
| 6641 ** in turn helps the operating system to deliver pages |
| 6642 ** from the disk more rapidly. |
| 6643 ** |
| 6644 ** An O(n^2) insertion sort algorithm is used, but since |
| 6645 ** n is never more than NB (a small constant), that should |
| 6646 ** not be a problem. |
| 6647 ** |
| 6648 ** When NB==3, this one optimization makes the database |
| 6649 ** about 25% faster for large insertions and deletions. |
| 6650 */ |
| 6651 for(i=0; i<k-1; i++){ |
| 6652 int minV = apNew[i]->pgno; |
| 6653 int minI = i; |
| 6654 for(j=i+1; j<k; j++){ |
| 6655 if( apNew[j]->pgno<(unsigned)minV ){ |
| 6656 minI = j; |
| 6657 minV = apNew[j]->pgno; |
| 6658 } |
| 6659 } |
| 6660 if( minI>i ){ |
| 6661 MemPage *pT; |
| 6662 pT = apNew[i]; |
| 6663 apNew[i] = apNew[minI]; |
| 6664 apNew[minI] = pT; |
| 6665 } |
| 6666 } |
| 6667 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n", |
| 6668 apNew[0]->pgno, szNew[0], |
| 6669 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0, |
| 6670 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0, |
| 6671 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0, |
| 6672 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0)); |
| 6673 |
| 6674 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); |
| 6675 put4byte(pRight, apNew[nNew-1]->pgno); |
| 6676 |
| 6677 /* |
| 6678 ** Evenly distribute the data in apCell[] across the new pages. |
| 6679 ** Insert divider cells into pParent as necessary. |
| 6680 */ |
| 6681 j = 0; |
| 6682 for(i=0; i<nNew; i++){ |
| 6683 /* Assemble the new sibling page. */ |
| 6684 MemPage *pNew = apNew[i]; |
| 6685 assert( j<nMaxCells ); |
| 6686 zeroPage(pNew, pageFlags); |
| 6687 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]); |
| 6688 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) ); |
| 6689 assert( pNew->nOverflow==0 ); |
| 6690 |
| 6691 j = cntNew[i]; |
| 6692 |
| 6693 /* If the sibling page assembled above was not the right-most sibling, |
| 6694 ** insert a divider cell into the parent page. |
| 6695 */ |
| 6696 assert( i<nNew-1 || j==nCell ); |
| 6697 if( j<nCell ){ |
| 6698 u8 *pCell; |
| 6699 u8 *pTemp; |
| 6700 int sz; |
| 6701 |
| 6702 assert( j<nMaxCells ); |
| 6703 pCell = apCell[j]; |
| 6704 sz = szCell[j] + leafCorrection; |
| 6705 pTemp = &aOvflSpace[iOvflSpace]; |
| 6706 if( !pNew->leaf ){ |
| 6707 memcpy(&pNew->aData[8], pCell, 4); |
| 6708 }else if( leafData ){ |
| 6709 /* If the tree is a leaf-data tree, and the siblings are leaves, |
| 6710 ** then there is no divider cell in apCell[]. Instead, the divider |
| 6711 ** cell consists of the integer key for the right-most cell of |
| 6712 ** the sibling-page assembled above only. |
| 6713 */ |
| 6714 CellInfo info; |
| 6715 j--; |
| 6716 btreeParseCellPtr(pNew, apCell[j], &info); |
| 6717 pCell = pTemp; |
| 6718 sz = 4 + putVarint(&pCell[4], info.nKey); |
| 6719 pTemp = 0; |
| 6720 }else{ |
| 6721 pCell -= 4; |
| 6722 /* Obscure case for non-leaf-data trees: If the cell at pCell was |
| 6723 ** previously stored on a leaf node, and its reported size was 4 |
| 6724 ** bytes, then it may actually be smaller than this |
| 6725 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of |
| 6726 ** any cell). But it is important to pass the correct size to |
| 6727 ** insertCell(), so reparse the cell now. |
| 6728 ** |
| 6729 ** Note that this can never happen in an SQLite data file, as all |
| 6730 ** cells are at least 4 bytes. It only happens in b-trees used |
| 6731 ** to evaluate "IN (SELECT ...)" and similar clauses. |
| 6732 */ |
| 6733 if( szCell[j]==4 ){ |
| 6734 assert(leafCorrection==4); |
| 6735 sz = cellSizePtr(pParent, pCell); |
| 6736 } |
| 6737 } |
| 6738 iOvflSpace += sz; |
| 6739 assert( sz<=pBt->maxLocal+23 ); |
| 6740 assert( iOvflSpace <= (int)pBt->pageSize ); |
| 6741 insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc); |
| 6742 if( rc!=SQLITE_OK ) goto balance_cleanup; |
| 6743 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); |
| 6744 |
| 6745 j++; |
| 6746 nxDiv++; |
| 6747 } |
| 6748 } |
| 6749 assert( j==nCell ); |
| 6750 assert( nOld>0 ); |
| 6751 assert( nNew>0 ); |
| 6752 if( (pageFlags & PTF_LEAF)==0 ){ |
| 6753 u8 *zChild = &apCopy[nOld-1]->aData[8]; |
| 6754 memcpy(&apNew[nNew-1]->aData[8], zChild, 4); |
| 6755 } |
| 6756 |
| 6757 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){ |
| 6758 /* The root page of the b-tree now contains no cells. The only sibling |
| 6759 ** page is the right-child of the parent. Copy the contents of the |
| 6760 ** child page into the parent, decreasing the overall height of the |
| 6761 ** b-tree structure by one. This is described as the "balance-shallower" |
| 6762 ** sub-algorithm in some documentation. |
| 6763 ** |
| 6764 ** If this is an auto-vacuum database, the call to copyNodeContent() |
| 6765 ** sets all pointer-map entries corresponding to database image pages |
| 6766 ** for which the pointer is stored within the content being copied. |
| 6767 ** |
| 6768 ** The second assert below verifies that the child page is defragmented |
| 6769 ** (it must be, as it was just reconstructed using assemblePage()). This |
| 6770 ** is important if the parent page happens to be page 1 of the database |
| 6771 ** image. */ |
| 6772 assert( nNew==1 ); |
| 6773 assert( apNew[0]->nFree == |
| 6774 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2) |
| 6775 ); |
| 6776 copyNodeContent(apNew[0], pParent, &rc); |
| 6777 freePage(apNew[0], &rc); |
| 6778 }else if( ISAUTOVACUUM ){ |
| 6779 /* Fix the pointer-map entries for all the cells that were shifted around. |
| 6780 ** There are several different types of pointer-map entries that need to |
| 6781 ** be dealt with by this routine. Some of these have been set already, but |
| 6782 ** many have not. The following is a summary: |
| 6783 ** |
| 6784 ** 1) The entries associated with new sibling pages that were not |
| 6785 ** siblings when this function was called. These have already |
| 6786 ** been set. We don't need to worry about old siblings that were |
| 6787 ** moved to the free-list - the freePage() code has taken care |
| 6788 ** of those. |
| 6789 ** |
| 6790 ** 2) The pointer-map entries associated with the first overflow |
| 6791 ** page in any overflow chains used by new divider cells. These |
| 6792 ** have also already been taken care of by the insertCell() code. |
| 6793 ** |
| 6794 ** 3) If the sibling pages are not leaves, then the child pages of |
| 6795 ** cells stored on the sibling pages may need to be updated. |
| 6796 ** |
| 6797 ** 4) If the sibling pages are not internal intkey nodes, then any |
| 6798 ** overflow pages used by these cells may need to be updated |
| 6799 ** (internal intkey nodes never contain pointers to overflow pages). |
| 6800 ** |
| 6801 ** 5) If the sibling pages are not leaves, then the pointer-map |
| 6802 ** entries for the right-child pages of each sibling may need |
| 6803 ** to be updated. |
| 6804 ** |
| 6805 ** Cases 1 and 2 are dealt with above by other code. The next |
| 6806 ** block deals with cases 3 and 4 and the one after that, case 5. Since |
| 6807 ** setting a pointer map entry is a relatively expensive operation, this |
| 6808 ** code only sets pointer map entries for child or overflow pages that have |
| 6809 ** actually moved between pages. */ |
| 6810 MemPage *pNew = apNew[0]; |
| 6811 MemPage *pOld = apCopy[0]; |
| 6812 int nOverflow = pOld->nOverflow; |
| 6813 int iNextOld = pOld->nCell + nOverflow; |
| 6814 int iOverflow = (nOverflow ? pOld->aiOvfl[0] : -1); |
| 6815 j = 0; /* Current 'old' sibling page */ |
| 6816 k = 0; /* Current 'new' sibling page */ |
| 6817 for(i=0; i<nCell; i++){ |
| 6818 int isDivider = 0; |
| 6819 while( i==iNextOld ){ |
| 6820 /* Cell i is the cell immediately following the last cell on old |
| 6821 ** sibling page j. If the siblings are not leaf pages of an |
| 6822 ** intkey b-tree, then cell i was a divider cell. */ |
| 6823 assert( j+1 < ArraySize(apCopy) ); |
| 6824 assert( j+1 < nOld ); |
| 6825 pOld = apCopy[++j]; |
| 6826 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow; |
| 6827 if( pOld->nOverflow ){ |
| 6828 nOverflow = pOld->nOverflow; |
| 6829 iOverflow = i + !leafData + pOld->aiOvfl[0]; |
| 6830 } |
| 6831 isDivider = !leafData; |
| 6832 } |
| 6833 |
| 6834 assert(nOverflow>0 || iOverflow<i ); |
| 6835 assert(nOverflow<2 || pOld->aiOvfl[0]==pOld->aiOvfl[1]-1); |
| 6836 assert(nOverflow<3 || pOld->aiOvfl[1]==pOld->aiOvfl[2]-1); |
| 6837 if( i==iOverflow ){ |
| 6838 isDivider = 1; |
| 6839 if( (--nOverflow)>0 ){ |
| 6840 iOverflow++; |
| 6841 } |
| 6842 } |
| 6843 |
| 6844 if( i==cntNew[k] ){ |
| 6845 /* Cell i is the cell immediately following the last cell on new |
| 6846 ** sibling page k. If the siblings are not leaf pages of an |
| 6847 ** intkey b-tree, then cell i is a divider cell. */ |
| 6848 pNew = apNew[++k]; |
| 6849 if( !leafData ) continue; |
| 6850 } |
| 6851 assert( j<nOld ); |
| 6852 assert( k<nNew ); |
| 6853 |
| 6854 /* If the cell was originally divider cell (and is not now) or |
| 6855 ** an overflow cell, or if the cell was located on a different sibling |
| 6856 ** page before the balancing, then the pointer map entries associated |
| 6857 ** with any child or overflow pages need to be updated. */ |
| 6858 if( isDivider || pOld->pgno!=pNew->pgno ){ |
| 6859 if( !leafCorrection ){ |
| 6860 ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc); |
| 6861 } |
| 6862 if( szCell[i]>pNew->minLocal ){ |
| 6863 ptrmapPutOvflPtr(pNew, apCell[i], &rc); |
| 6864 } |
| 6865 } |
| 6866 } |
| 6867 |
| 6868 if( !leafCorrection ){ |
| 6869 for(i=0; i<nNew; i++){ |
| 6870 u32 key = get4byte(&apNew[i]->aData[8]); |
| 6871 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc); |
| 6872 } |
| 6873 } |
| 6874 |
| 6875 #if 0 |
| 6876 /* The ptrmapCheckPages() contains assert() statements that verify that |
| 6877 ** all pointer map pages are set correctly. This is helpful while |
| 6878 ** debugging. This is usually disabled because a corrupt database may |
| 6879 ** cause an assert() statement to fail. */ |
| 6880 ptrmapCheckPages(apNew, nNew); |
| 6881 ptrmapCheckPages(&pParent, 1); |
| 6882 #endif |
| 6883 } |
| 6884 |
| 6885 assert( pParent->isInit ); |
| 6886 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n", |
| 6887 nOld, nNew, nCell)); |
| 6888 |
| 6889 /* |
| 6890 ** Cleanup before returning. |
| 6891 */ |
| 6892 balance_cleanup: |
| 6893 sqlite3ScratchFree(apCell); |
| 6894 for(i=0; i<nOld; i++){ |
| 6895 releasePage(apOld[i]); |
| 6896 } |
| 6897 for(i=0; i<nNew; i++){ |
| 6898 releasePage(apNew[i]); |
| 6899 } |
| 6900 |
| 6901 return rc; |
| 6902 } |
| 6903 #if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM) |
| 6904 #pragma optimize("", on) |
| 6905 #endif |
| 6906 |
| 6907 |
| 6908 /* |
| 6909 ** This function is called when the root page of a b-tree structure is |
| 6910 ** overfull (has one or more overflow pages). |
| 6911 ** |
| 6912 ** A new child page is allocated and the contents of the current root |
| 6913 ** page, including overflow cells, are copied into the child. The root |
| 6914 ** page is then overwritten to make it an empty page with the right-child |
| 6915 ** pointer pointing to the new page. |
| 6916 ** |
| 6917 ** Before returning, all pointer-map entries corresponding to pages |
| 6918 ** that the new child-page now contains pointers to are updated. The |
| 6919 ** entry corresponding to the new right-child pointer of the root |
| 6920 ** page is also updated. |
| 6921 ** |
| 6922 ** If successful, *ppChild is set to contain a reference to the child |
| 6923 ** page and SQLITE_OK is returned. In this case the caller is required |
| 6924 ** to call releasePage() on *ppChild exactly once. If an error occurs, |
| 6925 ** an error code is returned and *ppChild is set to 0. |
| 6926 */ |
| 6927 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){ |
| 6928 int rc; /* Return value from subprocedures */ |
| 6929 MemPage *pChild = 0; /* Pointer to a new child page */ |
| 6930 Pgno pgnoChild = 0; /* Page number of the new child page */ |
| 6931 BtShared *pBt = pRoot->pBt; /* The BTree */ |
| 6932 |
| 6933 assert( pRoot->nOverflow>0 ); |
| 6934 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 6935 |
| 6936 /* Make pRoot, the root page of the b-tree, writable. Allocate a new |
| 6937 ** page that will become the new right-child of pPage. Copy the contents |
| 6938 ** of the node stored on pRoot into the new child page. |
| 6939 */ |
| 6940 rc = sqlite3PagerWrite(pRoot->pDbPage); |
| 6941 if( rc==SQLITE_OK ){ |
| 6942 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0); |
| 6943 copyNodeContent(pRoot, pChild, &rc); |
| 6944 if( ISAUTOVACUUM ){ |
| 6945 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc); |
| 6946 } |
| 6947 } |
| 6948 if( rc ){ |
| 6949 *ppChild = 0; |
| 6950 releasePage(pChild); |
| 6951 return rc; |
| 6952 } |
| 6953 assert( sqlite3PagerIswriteable(pChild->pDbPage) ); |
| 6954 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); |
| 6955 assert( pChild->nCell==pRoot->nCell ); |
| 6956 |
| 6957 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno)); |
| 6958 |
| 6959 /* Copy the overflow cells from pRoot to pChild */ |
| 6960 memcpy(pChild->aiOvfl, pRoot->aiOvfl, |
| 6961 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0])); |
| 6962 memcpy(pChild->apOvfl, pRoot->apOvfl, |
| 6963 pRoot->nOverflow*sizeof(pRoot->apOvfl[0])); |
| 6964 pChild->nOverflow = pRoot->nOverflow; |
| 6965 |
| 6966 /* Zero the contents of pRoot. Then install pChild as the right-child. */ |
| 6967 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF); |
| 6968 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild); |
| 6969 |
| 6970 *ppChild = pChild; |
| 6971 return SQLITE_OK; |
| 6972 } |
| 6973 |
| 6974 /* |
| 6975 ** The page that pCur currently points to has just been modified in |
| 6976 ** some way. This function figures out if this modification means the |
| 6977 ** tree needs to be balanced, and if so calls the appropriate balancing |
| 6978 ** routine. Balancing routines are: |
| 6979 ** |
| 6980 ** balance_quick() |
| 6981 ** balance_deeper() |
| 6982 ** balance_nonroot() |
| 6983 */ |
| 6984 static int balance(BtCursor *pCur){ |
| 6985 int rc = SQLITE_OK; |
| 6986 const int nMin = pCur->pBt->usableSize * 2 / 3; |
| 6987 u8 aBalanceQuickSpace[13]; |
| 6988 u8 *pFree = 0; |
| 6989 |
| 6990 TESTONLY( int balance_quick_called = 0 ); |
| 6991 TESTONLY( int balance_deeper_called = 0 ); |
| 6992 |
| 6993 do { |
| 6994 int iPage = pCur->iPage; |
| 6995 MemPage *pPage = pCur->apPage[iPage]; |
| 6996 |
| 6997 if( iPage==0 ){ |
| 6998 if( pPage->nOverflow ){ |
| 6999 /* The root page of the b-tree is overfull. In this case call the |
| 7000 ** balance_deeper() function to create a new child for the root-page |
| 7001 ** and copy the current contents of the root-page to it. The |
| 7002 ** next iteration of the do-loop will balance the child page. |
| 7003 */ |
| 7004 assert( (balance_deeper_called++)==0 ); |
| 7005 rc = balance_deeper(pPage, &pCur->apPage[1]); |
| 7006 if( rc==SQLITE_OK ){ |
| 7007 pCur->iPage = 1; |
| 7008 pCur->aiIdx[0] = 0; |
| 7009 pCur->aiIdx[1] = 0; |
| 7010 assert( pCur->apPage[1]->nOverflow ); |
| 7011 } |
| 7012 }else{ |
| 7013 break; |
| 7014 } |
| 7015 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){ |
| 7016 break; |
| 7017 }else{ |
| 7018 MemPage * const pParent = pCur->apPage[iPage-1]; |
| 7019 int const iIdx = pCur->aiIdx[iPage-1]; |
| 7020 |
| 7021 rc = sqlite3PagerWrite(pParent->pDbPage); |
| 7022 if( rc==SQLITE_OK ){ |
| 7023 #ifndef SQLITE_OMIT_QUICKBALANCE |
| 7024 if( pPage->intKeyLeaf |
| 7025 && pPage->nOverflow==1 |
| 7026 && pPage->aiOvfl[0]==pPage->nCell |
| 7027 && pParent->pgno!=1 |
| 7028 && pParent->nCell==iIdx |
| 7029 ){ |
| 7030 /* Call balance_quick() to create a new sibling of pPage on which |
| 7031 ** to store the overflow cell. balance_quick() inserts a new cell |
| 7032 ** into pParent, which may cause pParent overflow. If this |
| 7033 ** happens, the next iteration of the do-loop will balance pParent |
| 7034 ** use either balance_nonroot() or balance_deeper(). Until this |
| 7035 ** happens, the overflow cell is stored in the aBalanceQuickSpace[] |
| 7036 ** buffer. |
| 7037 ** |
| 7038 ** The purpose of the following assert() is to check that only a |
| 7039 ** single call to balance_quick() is made for each call to this |
| 7040 ** function. If this were not verified, a subtle bug involving reuse |
| 7041 ** of the aBalanceQuickSpace[] might sneak in. |
| 7042 */ |
| 7043 assert( (balance_quick_called++)==0 ); |
| 7044 rc = balance_quick(pParent, pPage, aBalanceQuickSpace); |
| 7045 }else |
| 7046 #endif |
| 7047 { |
| 7048 /* In this case, call balance_nonroot() to redistribute cells |
| 7049 ** between pPage and up to 2 of its sibling pages. This involves |
| 7050 ** modifying the contents of pParent, which may cause pParent to |
| 7051 ** become overfull or underfull. The next iteration of the do-loop |
| 7052 ** will balance the parent page to correct this. |
| 7053 ** |
| 7054 ** If the parent page becomes overfull, the overflow cell or cells |
| 7055 ** are stored in the pSpace buffer allocated immediately below. |
| 7056 ** A subsequent iteration of the do-loop will deal with this by |
| 7057 ** calling balance_nonroot() (balance_deeper() may be called first, |
| 7058 ** but it doesn't deal with overflow cells - just moves them to a |
| 7059 ** different page). Once this subsequent call to balance_nonroot() |
| 7060 ** has completed, it is safe to release the pSpace buffer used by |
| 7061 ** the previous call, as the overflow cell data will have been |
| 7062 ** copied either into the body of a database page or into the new |
| 7063 ** pSpace buffer passed to the latter call to balance_nonroot(). |
| 7064 */ |
| 7065 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize); |
| 7066 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, pCur->hints); |
| 7067 if( pFree ){ |
| 7068 /* If pFree is not NULL, it points to the pSpace buffer used |
| 7069 ** by a previous call to balance_nonroot(). Its contents are |
| 7070 ** now stored either on real database pages or within the |
| 7071 ** new pSpace buffer, so it may be safely freed here. */ |
| 7072 sqlite3PageFree(pFree); |
| 7073 } |
| 7074 |
| 7075 /* The pSpace buffer will be freed after the next call to |
| 7076 ** balance_nonroot(), or just before this function returns, whichever |
| 7077 ** comes first. */ |
| 7078 pFree = pSpace; |
| 7079 } |
| 7080 } |
| 7081 |
| 7082 pPage->nOverflow = 0; |
| 7083 |
| 7084 /* The next iteration of the do-loop balances the parent page. */ |
| 7085 releasePage(pPage); |
| 7086 pCur->iPage--; |
| 7087 } |
| 7088 }while( rc==SQLITE_OK ); |
| 7089 |
| 7090 if( pFree ){ |
| 7091 sqlite3PageFree(pFree); |
| 7092 } |
| 7093 return rc; |
| 7094 } |
| 7095 |
| 7096 |
| 7097 /* |
| 7098 ** Insert a new record into the BTree. The key is given by (pKey,nKey) |
| 7099 ** and the data is given by (pData,nData). The cursor is used only to |
| 7100 ** define what table the record should be inserted into. The cursor |
| 7101 ** is left pointing at a random location. |
| 7102 ** |
| 7103 ** For an INTKEY table, only the nKey value of the key is used. pKey is |
| 7104 ** ignored. For a ZERODATA table, the pData and nData are both ignored. |
| 7105 ** |
| 7106 ** If the seekResult parameter is non-zero, then a successful call to |
| 7107 ** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already |
| 7108 ** been performed. seekResult is the search result returned (a negative |
| 7109 ** number if pCur points at an entry that is smaller than (pKey, nKey), or |
| 7110 ** a positive value if pCur points at an entry that is larger than |
| 7111 ** (pKey, nKey)). |
| 7112 ** |
| 7113 ** If the seekResult parameter is non-zero, then the caller guarantees that |
| 7114 ** cursor pCur is pointing at the existing copy of a row that is to be |
| 7115 ** overwritten. If the seekResult parameter is 0, then cursor pCur may |
| 7116 ** point to any entry or to no entry at all and so this function has to seek |
| 7117 ** the cursor before the new key can be inserted. |
| 7118 */ |
| 7119 int sqlite3BtreeInsert( |
| 7120 BtCursor *pCur, /* Insert data into the table of this cursor */ |
| 7121 const void *pKey, i64 nKey, /* The key of the new record */ |
| 7122 const void *pData, int nData, /* The data of the new record */ |
| 7123 int nZero, /* Number of extra 0 bytes to append to data */ |
| 7124 int appendBias, /* True if this is likely an append */ |
| 7125 int seekResult /* Result of prior MovetoUnpacked() call */ |
| 7126 ){ |
| 7127 int rc; |
| 7128 int loc = seekResult; /* -1: before desired location +1: after */ |
| 7129 int szNew = 0; |
| 7130 int idx; |
| 7131 MemPage *pPage; |
| 7132 Btree *p = pCur->pBtree; |
| 7133 BtShared *pBt = p->pBt; |
| 7134 unsigned char *oldCell; |
| 7135 unsigned char *newCell = 0; |
| 7136 |
| 7137 if( pCur->eState==CURSOR_FAULT ){ |
| 7138 assert( pCur->skipNext!=SQLITE_OK ); |
| 7139 return pCur->skipNext; |
| 7140 } |
| 7141 |
| 7142 assert( cursorHoldsMutex(pCur) ); |
| 7143 assert( (pCur->curFlags & BTCF_WriteFlag)!=0 |
| 7144 && pBt->inTransaction==TRANS_WRITE |
| 7145 && (pBt->btsFlags & BTS_READ_ONLY)==0 ); |
| 7146 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); |
| 7147 |
| 7148 /* Assert that the caller has been consistent. If this cursor was opened |
| 7149 ** expecting an index b-tree, then the caller should be inserting blob |
| 7150 ** keys with no associated data. If the cursor was opened expecting an |
| 7151 ** intkey table, the caller should be inserting integer keys with a |
| 7152 ** blob of associated data. */ |
| 7153 assert( (pKey==0)==(pCur->pKeyInfo==0) ); |
| 7154 |
| 7155 /* Save the positions of any other cursors open on this table. |
| 7156 ** |
| 7157 ** In some cases, the call to btreeMoveto() below is a no-op. For |
| 7158 ** example, when inserting data into a table with auto-generated integer |
| 7159 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the |
| 7160 ** integer key to use. It then calls this function to actually insert the |
| 7161 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes |
| 7162 ** that the cursor is already where it needs to be and returns without |
| 7163 ** doing any work. To avoid thwarting these optimizations, it is important |
| 7164 ** not to clear the cursor here. |
| 7165 */ |
| 7166 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); |
| 7167 if( rc ) return rc; |
| 7168 |
| 7169 if( pCur->pKeyInfo==0 ){ |
| 7170 /* If this is an insert into a table b-tree, invalidate any incrblob |
| 7171 ** cursors open on the row being replaced */ |
| 7172 invalidateIncrblobCursors(p, nKey, 0); |
| 7173 |
| 7174 /* If the cursor is currently on the last row and we are appending a |
| 7175 ** new row onto the end, set the "loc" to avoid an unnecessary btreeMoveto() |
| 7176 ** call */ |
| 7177 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0 |
| 7178 && pCur->info.nKey==nKey-1 ){ |
| 7179 loc = -1; |
| 7180 } |
| 7181 } |
| 7182 |
| 7183 if( !loc ){ |
| 7184 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc); |
| 7185 if( rc ) return rc; |
| 7186 } |
| 7187 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) ); |
| 7188 |
| 7189 pPage = pCur->apPage[pCur->iPage]; |
| 7190 assert( pPage->intKey || nKey>=0 ); |
| 7191 assert( pPage->leaf || !pPage->intKey ); |
| 7192 |
| 7193 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", |
| 7194 pCur->pgnoRoot, nKey, nData, pPage->pgno, |
| 7195 loc==0 ? "overwrite" : "new entry")); |
| 7196 assert( pPage->isInit ); |
| 7197 newCell = pBt->pTmpSpace; |
| 7198 assert( newCell!=0 ); |
| 7199 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew); |
| 7200 if( rc ) goto end_insert; |
| 7201 assert( szNew==cellSizePtr(pPage, newCell) ); |
| 7202 assert( szNew <= MX_CELL_SIZE(pBt) ); |
| 7203 idx = pCur->aiIdx[pCur->iPage]; |
| 7204 if( loc==0 ){ |
| 7205 u16 szOld; |
| 7206 assert( idx<pPage->nCell ); |
| 7207 rc = sqlite3PagerWrite(pPage->pDbPage); |
| 7208 if( rc ){ |
| 7209 goto end_insert; |
| 7210 } |
| 7211 oldCell = findCell(pPage, idx); |
| 7212 if( !pPage->leaf ){ |
| 7213 memcpy(newCell, oldCell, 4); |
| 7214 } |
| 7215 rc = clearCell(pPage, oldCell, &szOld); |
| 7216 dropCell(pPage, idx, szOld, &rc); |
| 7217 if( rc ) goto end_insert; |
| 7218 }else if( loc<0 && pPage->nCell>0 ){ |
| 7219 assert( pPage->leaf ); |
| 7220 idx = ++pCur->aiIdx[pCur->iPage]; |
| 7221 }else{ |
| 7222 assert( pPage->leaf ); |
| 7223 } |
| 7224 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc); |
| 7225 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 ); |
| 7226 |
| 7227 /* If no error has occurred and pPage has an overflow cell, call balance() |
| 7228 ** to redistribute the cells within the tree. Since balance() may move |
| 7229 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey |
| 7230 ** variables. |
| 7231 ** |
| 7232 ** Previous versions of SQLite called moveToRoot() to move the cursor |
| 7233 ** back to the root page as balance() used to invalidate the contents |
| 7234 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that, |
| 7235 ** set the cursor state to "invalid". This makes common insert operations |
| 7236 ** slightly faster. |
| 7237 ** |
| 7238 ** There is a subtle but important optimization here too. When inserting |
| 7239 ** multiple records into an intkey b-tree using a single cursor (as can |
| 7240 ** happen while processing an "INSERT INTO ... SELECT" statement), it |
| 7241 ** is advantageous to leave the cursor pointing to the last entry in |
| 7242 ** the b-tree if possible. If the cursor is left pointing to the last |
| 7243 ** entry in the table, and the next row inserted has an integer key |
| 7244 ** larger than the largest existing key, it is possible to insert the |
| 7245 ** row without seeking the cursor. This can be a big performance boost. |
| 7246 */ |
| 7247 pCur->info.nSize = 0; |
| 7248 if( rc==SQLITE_OK && pPage->nOverflow ){ |
| 7249 pCur->curFlags &= ~(BTCF_ValidNKey); |
| 7250 rc = balance(pCur); |
| 7251 |
| 7252 /* Must make sure nOverflow is reset to zero even if the balance() |
| 7253 ** fails. Internal data structure corruption will result otherwise. |
| 7254 ** Also, set the cursor state to invalid. This stops saveCursorPosition() |
| 7255 ** from trying to save the current position of the cursor. */ |
| 7256 pCur->apPage[pCur->iPage]->nOverflow = 0; |
| 7257 pCur->eState = CURSOR_INVALID; |
| 7258 } |
| 7259 assert( pCur->apPage[pCur->iPage]->nOverflow==0 ); |
| 7260 |
| 7261 end_insert: |
| 7262 return rc; |
| 7263 } |
| 7264 |
| 7265 /* |
| 7266 ** Delete the entry that the cursor is pointing to. The cursor |
| 7267 ** is left pointing at an arbitrary location. |
| 7268 */ |
| 7269 int sqlite3BtreeDelete(BtCursor *pCur){ |
| 7270 Btree *p = pCur->pBtree; |
| 7271 BtShared *pBt = p->pBt; |
| 7272 int rc; /* Return code */ |
| 7273 MemPage *pPage; /* Page to delete cell from */ |
| 7274 unsigned char *pCell; /* Pointer to cell to delete */ |
| 7275 int iCellIdx; /* Index of cell to delete */ |
| 7276 int iCellDepth; /* Depth of node containing pCell */ |
| 7277 u16 szCell; /* Size of the cell being deleted */ |
| 7278 |
| 7279 assert( cursorHoldsMutex(pCur) ); |
| 7280 assert( pBt->inTransaction==TRANS_WRITE ); |
| 7281 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); |
| 7282 assert( pCur->curFlags & BTCF_WriteFlag ); |
| 7283 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); |
| 7284 assert( !hasReadConflicts(p, pCur->pgnoRoot) ); |
| 7285 |
| 7286 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell) |
| 7287 || NEVER(pCur->eState!=CURSOR_VALID) |
| 7288 ){ |
| 7289 return SQLITE_ERROR; /* Something has gone awry. */ |
| 7290 } |
| 7291 |
| 7292 iCellDepth = pCur->iPage; |
| 7293 iCellIdx = pCur->aiIdx[iCellDepth]; |
| 7294 pPage = pCur->apPage[iCellDepth]; |
| 7295 pCell = findCell(pPage, iCellIdx); |
| 7296 |
| 7297 /* If the page containing the entry to delete is not a leaf page, move |
| 7298 ** the cursor to the largest entry in the tree that is smaller than |
| 7299 ** the entry being deleted. This cell will replace the cell being deleted |
| 7300 ** from the internal node. The 'previous' entry is used for this instead |
| 7301 ** of the 'next' entry, as the previous entry is always a part of the |
| 7302 ** sub-tree headed by the child page of the cell being deleted. This makes |
| 7303 ** balancing the tree following the delete operation easier. */ |
| 7304 if( !pPage->leaf ){ |
| 7305 int notUsed = 0; |
| 7306 rc = sqlite3BtreePrevious(pCur, ¬Used); |
| 7307 if( rc ) return rc; |
| 7308 } |
| 7309 |
| 7310 /* Save the positions of any other cursors open on this table before |
| 7311 ** making any modifications. Make the page containing the entry to be |
| 7312 ** deleted writable. Then free any overflow pages associated with the |
| 7313 ** entry and finally remove the cell itself from within the page. |
| 7314 */ |
| 7315 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); |
| 7316 if( rc ) return rc; |
| 7317 |
| 7318 /* If this is a delete operation to remove a row from a table b-tree, |
| 7319 ** invalidate any incrblob cursors open on the row being deleted. */ |
| 7320 if( pCur->pKeyInfo==0 ){ |
| 7321 invalidateIncrblobCursors(p, pCur->info.nKey, 0); |
| 7322 } |
| 7323 |
| 7324 rc = sqlite3PagerWrite(pPage->pDbPage); |
| 7325 if( rc ) return rc; |
| 7326 rc = clearCell(pPage, pCell, &szCell); |
| 7327 dropCell(pPage, iCellIdx, szCell, &rc); |
| 7328 if( rc ) return rc; |
| 7329 |
| 7330 /* If the cell deleted was not located on a leaf page, then the cursor |
| 7331 ** is currently pointing to the largest entry in the sub-tree headed |
| 7332 ** by the child-page of the cell that was just deleted from an internal |
| 7333 ** node. The cell from the leaf node needs to be moved to the internal |
| 7334 ** node to replace the deleted cell. */ |
| 7335 if( !pPage->leaf ){ |
| 7336 MemPage *pLeaf = pCur->apPage[pCur->iPage]; |
| 7337 int nCell; |
| 7338 Pgno n = pCur->apPage[iCellDepth+1]->pgno; |
| 7339 unsigned char *pTmp; |
| 7340 |
| 7341 pCell = findCell(pLeaf, pLeaf->nCell-1); |
| 7342 nCell = cellSizePtr(pLeaf, pCell); |
| 7343 assert( MX_CELL_SIZE(pBt) >= nCell ); |
| 7344 pTmp = pBt->pTmpSpace; |
| 7345 assert( pTmp!=0 ); |
| 7346 rc = sqlite3PagerWrite(pLeaf->pDbPage); |
| 7347 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc); |
| 7348 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc); |
| 7349 if( rc ) return rc; |
| 7350 } |
| 7351 |
| 7352 /* Balance the tree. If the entry deleted was located on a leaf page, |
| 7353 ** then the cursor still points to that page. In this case the first |
| 7354 ** call to balance() repairs the tree, and the if(...) condition is |
| 7355 ** never true. |
| 7356 ** |
| 7357 ** Otherwise, if the entry deleted was on an internal node page, then |
| 7358 ** pCur is pointing to the leaf page from which a cell was removed to |
| 7359 ** replace the cell deleted from the internal node. This is slightly |
| 7360 ** tricky as the leaf node may be underfull, and the internal node may |
| 7361 ** be either under or overfull. In this case run the balancing algorithm |
| 7362 ** on the leaf node first. If the balance proceeds far enough up the |
| 7363 ** tree that we can be sure that any problem in the internal node has |
| 7364 ** been corrected, so be it. Otherwise, after balancing the leaf node, |
| 7365 ** walk the cursor up the tree to the internal node and balance it as |
| 7366 ** well. */ |
| 7367 rc = balance(pCur); |
| 7368 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){ |
| 7369 while( pCur->iPage>iCellDepth ){ |
| 7370 releasePage(pCur->apPage[pCur->iPage--]); |
| 7371 } |
| 7372 rc = balance(pCur); |
| 7373 } |
| 7374 |
| 7375 if( rc==SQLITE_OK ){ |
| 7376 moveToRoot(pCur); |
| 7377 } |
| 7378 return rc; |
| 7379 } |
| 7380 |
| 7381 /* |
| 7382 ** Create a new BTree table. Write into *piTable the page |
| 7383 ** number for the root page of the new table. |
| 7384 ** |
| 7385 ** The type of type is determined by the flags parameter. Only the |
| 7386 ** following values of flags are currently in use. Other values for |
| 7387 ** flags might not work: |
| 7388 ** |
| 7389 ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys |
| 7390 ** BTREE_ZERODATA Used for SQL indices |
| 7391 */ |
| 7392 static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){ |
| 7393 BtShared *pBt = p->pBt; |
| 7394 MemPage *pRoot; |
| 7395 Pgno pgnoRoot; |
| 7396 int rc; |
| 7397 int ptfFlags; /* Page-type flage for the root page of new table */ |
| 7398 |
| 7399 assert( sqlite3BtreeHoldsMutex(p) ); |
| 7400 assert( pBt->inTransaction==TRANS_WRITE ); |
| 7401 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); |
| 7402 |
| 7403 #ifdef SQLITE_OMIT_AUTOVACUUM |
| 7404 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); |
| 7405 if( rc ){ |
| 7406 return rc; |
| 7407 } |
| 7408 #else |
| 7409 if( pBt->autoVacuum ){ |
| 7410 Pgno pgnoMove; /* Move a page here to make room for the root-page */ |
| 7411 MemPage *pPageMove; /* The page to move to. */ |
| 7412 |
| 7413 /* Creating a new table may probably require moving an existing database |
| 7414 ** to make room for the new tables root page. In case this page turns |
| 7415 ** out to be an overflow page, delete all overflow page-map caches |
| 7416 ** held by open cursors. |
| 7417 */ |
| 7418 invalidateAllOverflowCache(pBt); |
| 7419 |
| 7420 /* Read the value of meta[3] from the database to determine where the |
| 7421 ** root page of the new table should go. meta[3] is the largest root-page |
| 7422 ** created so far, so the new root-page is (meta[3]+1). |
| 7423 */ |
| 7424 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot); |
| 7425 pgnoRoot++; |
| 7426 |
| 7427 /* The new root-page may not be allocated on a pointer-map page, or the |
| 7428 ** PENDING_BYTE page. |
| 7429 */ |
| 7430 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) || |
| 7431 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){ |
| 7432 pgnoRoot++; |
| 7433 } |
| 7434 assert( pgnoRoot>=3 ); |
| 7435 |
| 7436 /* Allocate a page. The page that currently resides at pgnoRoot will |
| 7437 ** be moved to the allocated page (unless the allocated page happens |
| 7438 ** to reside at pgnoRoot). |
| 7439 */ |
| 7440 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT); |
| 7441 if( rc!=SQLITE_OK ){ |
| 7442 return rc; |
| 7443 } |
| 7444 |
| 7445 if( pgnoMove!=pgnoRoot ){ |
| 7446 /* pgnoRoot is the page that will be used for the root-page of |
| 7447 ** the new table (assuming an error did not occur). But we were |
| 7448 ** allocated pgnoMove. If required (i.e. if it was not allocated |
| 7449 ** by extending the file), the current page at position pgnoMove |
| 7450 ** is already journaled. |
| 7451 */ |
| 7452 u8 eType = 0; |
| 7453 Pgno iPtrPage = 0; |
| 7454 |
| 7455 /* Save the positions of any open cursors. This is required in |
| 7456 ** case they are holding a reference to an xFetch reference |
| 7457 ** corresponding to page pgnoRoot. */ |
| 7458 rc = saveAllCursors(pBt, 0, 0); |
| 7459 releasePage(pPageMove); |
| 7460 if( rc!=SQLITE_OK ){ |
| 7461 return rc; |
| 7462 } |
| 7463 |
| 7464 /* Move the page currently at pgnoRoot to pgnoMove. */ |
| 7465 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); |
| 7466 if( rc!=SQLITE_OK ){ |
| 7467 return rc; |
| 7468 } |
| 7469 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage); |
| 7470 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){ |
| 7471 rc = SQLITE_CORRUPT_BKPT; |
| 7472 } |
| 7473 if( rc!=SQLITE_OK ){ |
| 7474 releasePage(pRoot); |
| 7475 return rc; |
| 7476 } |
| 7477 assert( eType!=PTRMAP_ROOTPAGE ); |
| 7478 assert( eType!=PTRMAP_FREEPAGE ); |
| 7479 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0); |
| 7480 releasePage(pRoot); |
| 7481 |
| 7482 /* Obtain the page at pgnoRoot */ |
| 7483 if( rc!=SQLITE_OK ){ |
| 7484 return rc; |
| 7485 } |
| 7486 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); |
| 7487 if( rc!=SQLITE_OK ){ |
| 7488 return rc; |
| 7489 } |
| 7490 rc = sqlite3PagerWrite(pRoot->pDbPage); |
| 7491 if( rc!=SQLITE_OK ){ |
| 7492 releasePage(pRoot); |
| 7493 return rc; |
| 7494 } |
| 7495 }else{ |
| 7496 pRoot = pPageMove; |
| 7497 } |
| 7498 |
| 7499 /* Update the pointer-map and meta-data with the new root-page number. */ |
| 7500 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc); |
| 7501 if( rc ){ |
| 7502 releasePage(pRoot); |
| 7503 return rc; |
| 7504 } |
| 7505 |
| 7506 /* When the new root page was allocated, page 1 was made writable in |
| 7507 ** order either to increase the database filesize, or to decrement the |
| 7508 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail. |
| 7509 */ |
| 7510 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) ); |
| 7511 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot); |
| 7512 if( NEVER(rc) ){ |
| 7513 releasePage(pRoot); |
| 7514 return rc; |
| 7515 } |
| 7516 |
| 7517 }else{ |
| 7518 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); |
| 7519 if( rc ) return rc; |
| 7520 } |
| 7521 #endif |
| 7522 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); |
| 7523 if( createTabFlags & BTREE_INTKEY ){ |
| 7524 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF; |
| 7525 }else{ |
| 7526 ptfFlags = PTF_ZERODATA | PTF_LEAF; |
| 7527 } |
| 7528 zeroPage(pRoot, ptfFlags); |
| 7529 sqlite3PagerUnref(pRoot->pDbPage); |
| 7530 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 ); |
| 7531 *piTable = (int)pgnoRoot; |
| 7532 return SQLITE_OK; |
| 7533 } |
| 7534 int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){ |
| 7535 int rc; |
| 7536 sqlite3BtreeEnter(p); |
| 7537 rc = btreeCreateTable(p, piTable, flags); |
| 7538 sqlite3BtreeLeave(p); |
| 7539 return rc; |
| 7540 } |
| 7541 |
| 7542 /* |
| 7543 ** Erase the given database page and all its children. Return |
| 7544 ** the page to the freelist. |
| 7545 */ |
| 7546 static int clearDatabasePage( |
| 7547 BtShared *pBt, /* The BTree that contains the table */ |
| 7548 Pgno pgno, /* Page number to clear */ |
| 7549 int freePageFlag, /* Deallocate page if true */ |
| 7550 int *pnChange /* Add number of Cells freed to this counter */ |
| 7551 ){ |
| 7552 MemPage *pPage; |
| 7553 int rc; |
| 7554 unsigned char *pCell; |
| 7555 int i; |
| 7556 int hdr; |
| 7557 u16 szCell; |
| 7558 |
| 7559 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 7560 if( pgno>btreePagecount(pBt) ){ |
| 7561 return SQLITE_CORRUPT_BKPT; |
| 7562 } |
| 7563 |
| 7564 rc = getAndInitPage(pBt, pgno, &pPage, 0); |
| 7565 if( rc ) return rc; |
| 7566 hdr = pPage->hdrOffset; |
| 7567 for(i=0; i<pPage->nCell; i++){ |
| 7568 pCell = findCell(pPage, i); |
| 7569 if( !pPage->leaf ){ |
| 7570 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange); |
| 7571 if( rc ) goto cleardatabasepage_out; |
| 7572 } |
| 7573 rc = clearCell(pPage, pCell, &szCell); |
| 7574 if( rc ) goto cleardatabasepage_out; |
| 7575 } |
| 7576 if( !pPage->leaf ){ |
| 7577 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange); |
| 7578 if( rc ) goto cleardatabasepage_out; |
| 7579 }else if( pnChange ){ |
| 7580 assert( pPage->intKey ); |
| 7581 *pnChange += pPage->nCell; |
| 7582 } |
| 7583 if( freePageFlag ){ |
| 7584 freePage(pPage, &rc); |
| 7585 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){ |
| 7586 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF); |
| 7587 } |
| 7588 |
| 7589 cleardatabasepage_out: |
| 7590 releasePage(pPage); |
| 7591 return rc; |
| 7592 } |
| 7593 |
| 7594 /* |
| 7595 ** Delete all information from a single table in the database. iTable is |
| 7596 ** the page number of the root of the table. After this routine returns, |
| 7597 ** the root page is empty, but still exists. |
| 7598 ** |
| 7599 ** This routine will fail with SQLITE_LOCKED if there are any open |
| 7600 ** read cursors on the table. Open write cursors are moved to the |
| 7601 ** root of the table. |
| 7602 ** |
| 7603 ** If pnChange is not NULL, then table iTable must be an intkey table. The |
| 7604 ** integer value pointed to by pnChange is incremented by the number of |
| 7605 ** entries in the table. |
| 7606 */ |
| 7607 int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){ |
| 7608 int rc; |
| 7609 BtShared *pBt = p->pBt; |
| 7610 sqlite3BtreeEnter(p); |
| 7611 assert( p->inTrans==TRANS_WRITE ); |
| 7612 |
| 7613 rc = saveAllCursors(pBt, (Pgno)iTable, 0); |
| 7614 |
| 7615 if( SQLITE_OK==rc ){ |
| 7616 /* Invalidate all incrblob cursors open on table iTable (assuming iTable |
| 7617 ** is the root of a table b-tree - if it is not, the following call is |
| 7618 ** a no-op). */ |
| 7619 invalidateIncrblobCursors(p, 0, 1); |
| 7620 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange); |
| 7621 } |
| 7622 sqlite3BtreeLeave(p); |
| 7623 return rc; |
| 7624 } |
| 7625 |
| 7626 /* |
| 7627 ** Delete all information from the single table that pCur is open on. |
| 7628 ** |
| 7629 ** This routine only work for pCur on an ephemeral table. |
| 7630 */ |
| 7631 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){ |
| 7632 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0); |
| 7633 } |
| 7634 |
| 7635 /* |
| 7636 ** Erase all information in a table and add the root of the table to |
| 7637 ** the freelist. Except, the root of the principle table (the one on |
| 7638 ** page 1) is never added to the freelist. |
| 7639 ** |
| 7640 ** This routine will fail with SQLITE_LOCKED if there are any open |
| 7641 ** cursors on the table. |
| 7642 ** |
| 7643 ** If AUTOVACUUM is enabled and the page at iTable is not the last |
| 7644 ** root page in the database file, then the last root page |
| 7645 ** in the database file is moved into the slot formerly occupied by |
| 7646 ** iTable and that last slot formerly occupied by the last root page |
| 7647 ** is added to the freelist instead of iTable. In this say, all |
| 7648 ** root pages are kept at the beginning of the database file, which |
| 7649 ** is necessary for AUTOVACUUM to work right. *piMoved is set to the |
| 7650 ** page number that used to be the last root page in the file before |
| 7651 ** the move. If no page gets moved, *piMoved is set to 0. |
| 7652 ** The last root page is recorded in meta[3] and the value of |
| 7653 ** meta[3] is updated by this procedure. |
| 7654 */ |
| 7655 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){ |
| 7656 int rc; |
| 7657 MemPage *pPage = 0; |
| 7658 BtShared *pBt = p->pBt; |
| 7659 |
| 7660 assert( sqlite3BtreeHoldsMutex(p) ); |
| 7661 assert( p->inTrans==TRANS_WRITE ); |
| 7662 |
| 7663 /* It is illegal to drop a table if any cursors are open on the |
| 7664 ** database. This is because in auto-vacuum mode the backend may |
| 7665 ** need to move another root-page to fill a gap left by the deleted |
| 7666 ** root page. If an open cursor was using this page a problem would |
| 7667 ** occur. |
| 7668 ** |
| 7669 ** This error is caught long before control reaches this point. |
| 7670 */ |
| 7671 if( NEVER(pBt->pCursor) ){ |
| 7672 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db); |
| 7673 return SQLITE_LOCKED_SHAREDCACHE; |
| 7674 } |
| 7675 |
| 7676 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0); |
| 7677 if( rc ) return rc; |
| 7678 rc = sqlite3BtreeClearTable(p, iTable, 0); |
| 7679 if( rc ){ |
| 7680 releasePage(pPage); |
| 7681 return rc; |
| 7682 } |
| 7683 |
| 7684 *piMoved = 0; |
| 7685 |
| 7686 if( iTable>1 ){ |
| 7687 #ifdef SQLITE_OMIT_AUTOVACUUM |
| 7688 freePage(pPage, &rc); |
| 7689 releasePage(pPage); |
| 7690 #else |
| 7691 if( pBt->autoVacuum ){ |
| 7692 Pgno maxRootPgno; |
| 7693 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno); |
| 7694 |
| 7695 if( iTable==maxRootPgno ){ |
| 7696 /* If the table being dropped is the table with the largest root-page |
| 7697 ** number in the database, put the root page on the free list. |
| 7698 */ |
| 7699 freePage(pPage, &rc); |
| 7700 releasePage(pPage); |
| 7701 if( rc!=SQLITE_OK ){ |
| 7702 return rc; |
| 7703 } |
| 7704 }else{ |
| 7705 /* The table being dropped does not have the largest root-page |
| 7706 ** number in the database. So move the page that does into the |
| 7707 ** gap left by the deleted root-page. |
| 7708 */ |
| 7709 MemPage *pMove; |
| 7710 releasePage(pPage); |
| 7711 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); |
| 7712 if( rc!=SQLITE_OK ){ |
| 7713 return rc; |
| 7714 } |
| 7715 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0); |
| 7716 releasePage(pMove); |
| 7717 if( rc!=SQLITE_OK ){ |
| 7718 return rc; |
| 7719 } |
| 7720 pMove = 0; |
| 7721 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); |
| 7722 freePage(pMove, &rc); |
| 7723 releasePage(pMove); |
| 7724 if( rc!=SQLITE_OK ){ |
| 7725 return rc; |
| 7726 } |
| 7727 *piMoved = maxRootPgno; |
| 7728 } |
| 7729 |
| 7730 /* Set the new 'max-root-page' value in the database header. This |
| 7731 ** is the old value less one, less one more if that happens to |
| 7732 ** be a root-page number, less one again if that is the |
| 7733 ** PENDING_BYTE_PAGE. |
| 7734 */ |
| 7735 maxRootPgno--; |
| 7736 while( maxRootPgno==PENDING_BYTE_PAGE(pBt) |
| 7737 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){ |
| 7738 maxRootPgno--; |
| 7739 } |
| 7740 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); |
| 7741 |
| 7742 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno); |
| 7743 }else{ |
| 7744 freePage(pPage, &rc); |
| 7745 releasePage(pPage); |
| 7746 } |
| 7747 #endif |
| 7748 }else{ |
| 7749 /* If sqlite3BtreeDropTable was called on page 1. |
| 7750 ** This really never should happen except in a corrupt |
| 7751 ** database. |
| 7752 */ |
| 7753 zeroPage(pPage, PTF_INTKEY|PTF_LEAF ); |
| 7754 releasePage(pPage); |
| 7755 } |
| 7756 return rc; |
| 7757 } |
| 7758 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){ |
| 7759 int rc; |
| 7760 sqlite3BtreeEnter(p); |
| 7761 rc = btreeDropTable(p, iTable, piMoved); |
| 7762 sqlite3BtreeLeave(p); |
| 7763 return rc; |
| 7764 } |
| 7765 |
| 7766 |
| 7767 /* |
| 7768 ** This function may only be called if the b-tree connection already |
| 7769 ** has a read or write transaction open on the database. |
| 7770 ** |
| 7771 ** Read the meta-information out of a database file. Meta[0] |
| 7772 ** is the number of free pages currently in the database. Meta[1] |
| 7773 ** through meta[15] are available for use by higher layers. Meta[0] |
| 7774 ** is read-only, the others are read/write. |
| 7775 ** |
| 7776 ** The schema layer numbers meta values differently. At the schema |
| 7777 ** layer (and the SetCookie and ReadCookie opcodes) the number of |
| 7778 ** free pages is not visible. So Cookie[0] is the same as Meta[1]. |
| 7779 */ |
| 7780 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){ |
| 7781 BtShared *pBt = p->pBt; |
| 7782 |
| 7783 sqlite3BtreeEnter(p); |
| 7784 assert( p->inTrans>TRANS_NONE ); |
| 7785 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) ); |
| 7786 assert( pBt->pPage1 ); |
| 7787 assert( idx>=0 && idx<=15 ); |
| 7788 |
| 7789 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]); |
| 7790 |
| 7791 /* If auto-vacuum is disabled in this build and this is an auto-vacuum |
| 7792 ** database, mark the database as read-only. */ |
| 7793 #ifdef SQLITE_OMIT_AUTOVACUUM |
| 7794 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){ |
| 7795 pBt->btsFlags |= BTS_READ_ONLY; |
| 7796 } |
| 7797 #endif |
| 7798 |
| 7799 sqlite3BtreeLeave(p); |
| 7800 } |
| 7801 |
| 7802 /* |
| 7803 ** Write meta-information back into the database. Meta[0] is |
| 7804 ** read-only and may not be written. |
| 7805 */ |
| 7806 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){ |
| 7807 BtShared *pBt = p->pBt; |
| 7808 unsigned char *pP1; |
| 7809 int rc; |
| 7810 assert( idx>=1 && idx<=15 ); |
| 7811 sqlite3BtreeEnter(p); |
| 7812 assert( p->inTrans==TRANS_WRITE ); |
| 7813 assert( pBt->pPage1!=0 ); |
| 7814 pP1 = pBt->pPage1->aData; |
| 7815 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); |
| 7816 if( rc==SQLITE_OK ){ |
| 7817 put4byte(&pP1[36 + idx*4], iMeta); |
| 7818 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 7819 if( idx==BTREE_INCR_VACUUM ){ |
| 7820 assert( pBt->autoVacuum || iMeta==0 ); |
| 7821 assert( iMeta==0 || iMeta==1 ); |
| 7822 pBt->incrVacuum = (u8)iMeta; |
| 7823 } |
| 7824 #endif |
| 7825 } |
| 7826 sqlite3BtreeLeave(p); |
| 7827 return rc; |
| 7828 } |
| 7829 |
| 7830 #ifndef SQLITE_OMIT_BTREECOUNT |
| 7831 /* |
| 7832 ** The first argument, pCur, is a cursor opened on some b-tree. Count the |
| 7833 ** number of entries in the b-tree and write the result to *pnEntry. |
| 7834 ** |
| 7835 ** SQLITE_OK is returned if the operation is successfully executed. |
| 7836 ** Otherwise, if an error is encountered (i.e. an IO error or database |
| 7837 ** corruption) an SQLite error code is returned. |
| 7838 */ |
| 7839 int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){ |
| 7840 i64 nEntry = 0; /* Value to return in *pnEntry */ |
| 7841 int rc; /* Return code */ |
| 7842 |
| 7843 if( pCur->pgnoRoot==0 ){ |
| 7844 *pnEntry = 0; |
| 7845 return SQLITE_OK; |
| 7846 } |
| 7847 rc = moveToRoot(pCur); |
| 7848 |
| 7849 /* Unless an error occurs, the following loop runs one iteration for each |
| 7850 ** page in the B-Tree structure (not including overflow pages). |
| 7851 */ |
| 7852 while( rc==SQLITE_OK ){ |
| 7853 int iIdx; /* Index of child node in parent */ |
| 7854 MemPage *pPage; /* Current page of the b-tree */ |
| 7855 |
| 7856 /* If this is a leaf page or the tree is not an int-key tree, then |
| 7857 ** this page contains countable entries. Increment the entry counter |
| 7858 ** accordingly. |
| 7859 */ |
| 7860 pPage = pCur->apPage[pCur->iPage]; |
| 7861 if( pPage->leaf || !pPage->intKey ){ |
| 7862 nEntry += pPage->nCell; |
| 7863 } |
| 7864 |
| 7865 /* pPage is a leaf node. This loop navigates the cursor so that it |
| 7866 ** points to the first interior cell that it points to the parent of |
| 7867 ** the next page in the tree that has not yet been visited. The |
| 7868 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell |
| 7869 ** of the page, or to the number of cells in the page if the next page |
| 7870 ** to visit is the right-child of its parent. |
| 7871 ** |
| 7872 ** If all pages in the tree have been visited, return SQLITE_OK to the |
| 7873 ** caller. |
| 7874 */ |
| 7875 if( pPage->leaf ){ |
| 7876 do { |
| 7877 if( pCur->iPage==0 ){ |
| 7878 /* All pages of the b-tree have been visited. Return successfully. */ |
| 7879 *pnEntry = nEntry; |
| 7880 return SQLITE_OK; |
| 7881 } |
| 7882 moveToParent(pCur); |
| 7883 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell ); |
| 7884 |
| 7885 pCur->aiIdx[pCur->iPage]++; |
| 7886 pPage = pCur->apPage[pCur->iPage]; |
| 7887 } |
| 7888 |
| 7889 /* Descend to the child node of the cell that the cursor currently |
| 7890 ** points at. This is the right-child if (iIdx==pPage->nCell). |
| 7891 */ |
| 7892 iIdx = pCur->aiIdx[pCur->iPage]; |
| 7893 if( iIdx==pPage->nCell ){ |
| 7894 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); |
| 7895 }else{ |
| 7896 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx))); |
| 7897 } |
| 7898 } |
| 7899 |
| 7900 /* An error has occurred. Return an error code. */ |
| 7901 return rc; |
| 7902 } |
| 7903 #endif |
| 7904 |
| 7905 /* |
| 7906 ** Return the pager associated with a BTree. This routine is used for |
| 7907 ** testing and debugging only. |
| 7908 */ |
| 7909 Pager *sqlite3BtreePager(Btree *p){ |
| 7910 return p->pBt->pPager; |
| 7911 } |
| 7912 |
| 7913 #ifndef SQLITE_OMIT_INTEGRITY_CHECK |
| 7914 /* |
| 7915 ** Append a message to the error message string. |
| 7916 */ |
| 7917 static void checkAppendMsg( |
| 7918 IntegrityCk *pCheck, |
| 7919 const char *zFormat, |
| 7920 ... |
| 7921 ){ |
| 7922 va_list ap; |
| 7923 char zBuf[200]; |
| 7924 if( !pCheck->mxErr ) return; |
| 7925 pCheck->mxErr--; |
| 7926 pCheck->nErr++; |
| 7927 va_start(ap, zFormat); |
| 7928 if( pCheck->errMsg.nChar ){ |
| 7929 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1); |
| 7930 } |
| 7931 if( pCheck->zPfx ){ |
| 7932 sqlite3_snprintf(sizeof(zBuf), zBuf, pCheck->zPfx, pCheck->v1, pCheck->v2); |
| 7933 sqlite3StrAccumAppendAll(&pCheck->errMsg, zBuf); |
| 7934 } |
| 7935 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap); |
| 7936 va_end(ap); |
| 7937 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){ |
| 7938 pCheck->mallocFailed = 1; |
| 7939 } |
| 7940 } |
| 7941 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
| 7942 |
| 7943 #ifndef SQLITE_OMIT_INTEGRITY_CHECK |
| 7944 |
| 7945 /* |
| 7946 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that |
| 7947 ** corresponds to page iPg is already set. |
| 7948 */ |
| 7949 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){ |
| 7950 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); |
| 7951 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07))); |
| 7952 } |
| 7953 |
| 7954 /* |
| 7955 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg. |
| 7956 */ |
| 7957 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){ |
| 7958 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); |
| 7959 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07)); |
| 7960 } |
| 7961 |
| 7962 |
| 7963 /* |
| 7964 ** Add 1 to the reference count for page iPage. If this is the second |
| 7965 ** reference to the page, add an error message to pCheck->zErrMsg. |
| 7966 ** Return 1 if there are 2 or more references to the page and 0 if |
| 7967 ** if this is the first reference to the page. |
| 7968 ** |
| 7969 ** Also check that the page number is in bounds. |
| 7970 */ |
| 7971 static int checkRef(IntegrityCk *pCheck, Pgno iPage){ |
| 7972 if( iPage==0 ) return 1; |
| 7973 if( iPage>pCheck->nPage ){ |
| 7974 checkAppendMsg(pCheck, "invalid page number %d", iPage); |
| 7975 return 1; |
| 7976 } |
| 7977 if( getPageReferenced(pCheck, iPage) ){ |
| 7978 checkAppendMsg(pCheck, "2nd reference to page %d", iPage); |
| 7979 return 1; |
| 7980 } |
| 7981 setPageReferenced(pCheck, iPage); |
| 7982 return 0; |
| 7983 } |
| 7984 |
| 7985 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 7986 /* |
| 7987 ** Check that the entry in the pointer-map for page iChild maps to |
| 7988 ** page iParent, pointer type ptrType. If not, append an error message |
| 7989 ** to pCheck. |
| 7990 */ |
| 7991 static void checkPtrmap( |
| 7992 IntegrityCk *pCheck, /* Integrity check context */ |
| 7993 Pgno iChild, /* Child page number */ |
| 7994 u8 eType, /* Expected pointer map type */ |
| 7995 Pgno iParent /* Expected pointer map parent page number */ |
| 7996 ){ |
| 7997 int rc; |
| 7998 u8 ePtrmapType; |
| 7999 Pgno iPtrmapParent; |
| 8000 |
| 8001 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent); |
| 8002 if( rc!=SQLITE_OK ){ |
| 8003 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1; |
| 8004 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild); |
| 8005 return; |
| 8006 } |
| 8007 |
| 8008 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){ |
| 8009 checkAppendMsg(pCheck, |
| 8010 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", |
| 8011 iChild, eType, iParent, ePtrmapType, iPtrmapParent); |
| 8012 } |
| 8013 } |
| 8014 #endif |
| 8015 |
| 8016 /* |
| 8017 ** Check the integrity of the freelist or of an overflow page list. |
| 8018 ** Verify that the number of pages on the list is N. |
| 8019 */ |
| 8020 static void checkList( |
| 8021 IntegrityCk *pCheck, /* Integrity checking context */ |
| 8022 int isFreeList, /* True for a freelist. False for overflow page list */ |
| 8023 int iPage, /* Page number for first page in the list */ |
| 8024 int N /* Expected number of pages in the list */ |
| 8025 ){ |
| 8026 int i; |
| 8027 int expected = N; |
| 8028 int iFirst = iPage; |
| 8029 while( N-- > 0 && pCheck->mxErr ){ |
| 8030 DbPage *pOvflPage; |
| 8031 unsigned char *pOvflData; |
| 8032 if( iPage<1 ){ |
| 8033 checkAppendMsg(pCheck, |
| 8034 "%d of %d pages missing from overflow list starting at %d", |
| 8035 N+1, expected, iFirst); |
| 8036 break; |
| 8037 } |
| 8038 if( checkRef(pCheck, iPage) ) break; |
| 8039 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){ |
| 8040 checkAppendMsg(pCheck, "failed to get page %d", iPage); |
| 8041 break; |
| 8042 } |
| 8043 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage); |
| 8044 if( isFreeList ){ |
| 8045 int n = get4byte(&pOvflData[4]); |
| 8046 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 8047 if( pCheck->pBt->autoVacuum ){ |
| 8048 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0); |
| 8049 } |
| 8050 #endif |
| 8051 if( n>(int)pCheck->pBt->usableSize/4-2 ){ |
| 8052 checkAppendMsg(pCheck, |
| 8053 "freelist leaf count too big on page %d", iPage); |
| 8054 N--; |
| 8055 }else{ |
| 8056 for(i=0; i<n; i++){ |
| 8057 Pgno iFreePage = get4byte(&pOvflData[8+i*4]); |
| 8058 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 8059 if( pCheck->pBt->autoVacuum ){ |
| 8060 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0); |
| 8061 } |
| 8062 #endif |
| 8063 checkRef(pCheck, iFreePage); |
| 8064 } |
| 8065 N -= n; |
| 8066 } |
| 8067 } |
| 8068 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 8069 else{ |
| 8070 /* If this database supports auto-vacuum and iPage is not the last |
| 8071 ** page in this overflow list, check that the pointer-map entry for |
| 8072 ** the following page matches iPage. |
| 8073 */ |
| 8074 if( pCheck->pBt->autoVacuum && N>0 ){ |
| 8075 i = get4byte(pOvflData); |
| 8076 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage); |
| 8077 } |
| 8078 } |
| 8079 #endif |
| 8080 iPage = get4byte(pOvflData); |
| 8081 sqlite3PagerUnref(pOvflPage); |
| 8082 } |
| 8083 } |
| 8084 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
| 8085 |
| 8086 #ifndef SQLITE_OMIT_INTEGRITY_CHECK |
| 8087 /* |
| 8088 ** Do various sanity checks on a single page of a tree. Return |
| 8089 ** the tree depth. Root pages return 0. Parents of root pages |
| 8090 ** return 1, and so forth. |
| 8091 ** |
| 8092 ** These checks are done: |
| 8093 ** |
| 8094 ** 1. Make sure that cells and freeblocks do not overlap |
| 8095 ** but combine to completely cover the page. |
| 8096 ** NO 2. Make sure cell keys are in order. |
| 8097 ** NO 3. Make sure no key is less than or equal to zLowerBound. |
| 8098 ** NO 4. Make sure no key is greater than or equal to zUpperBound. |
| 8099 ** 5. Check the integrity of overflow pages. |
| 8100 ** 6. Recursively call checkTreePage on all children. |
| 8101 ** 7. Verify that the depth of all children is the same. |
| 8102 ** 8. Make sure this page is at least 33% full or else it is |
| 8103 ** the root of the tree. |
| 8104 */ |
| 8105 static int checkTreePage( |
| 8106 IntegrityCk *pCheck, /* Context for the sanity check */ |
| 8107 int iPage, /* Page number of the page to check */ |
| 8108 i64 *pnParentMinKey, |
| 8109 i64 *pnParentMaxKey |
| 8110 ){ |
| 8111 MemPage *pPage; |
| 8112 int i, rc, depth, d2, pgno, cnt; |
| 8113 int hdr, cellStart; |
| 8114 int nCell; |
| 8115 u8 *data; |
| 8116 BtShared *pBt; |
| 8117 int usableSize; |
| 8118 char *hit = 0; |
| 8119 i64 nMinKey = 0; |
| 8120 i64 nMaxKey = 0; |
| 8121 const char *saved_zPfx = pCheck->zPfx; |
| 8122 int saved_v1 = pCheck->v1; |
| 8123 int saved_v2 = pCheck->v2; |
| 8124 |
| 8125 /* Check that the page exists |
| 8126 */ |
| 8127 pBt = pCheck->pBt; |
| 8128 usableSize = pBt->usableSize; |
| 8129 if( iPage==0 ) return 0; |
| 8130 if( checkRef(pCheck, iPage) ) return 0; |
| 8131 pCheck->zPfx = "Page %d: "; |
| 8132 pCheck->v1 = iPage; |
| 8133 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){ |
| 8134 checkAppendMsg(pCheck, |
| 8135 "unable to get the page. error code=%d", rc); |
| 8136 depth = -1; |
| 8137 goto end_of_check; |
| 8138 } |
| 8139 |
| 8140 /* Clear MemPage.isInit to make sure the corruption detection code in |
| 8141 ** btreeInitPage() is executed. */ |
| 8142 pPage->isInit = 0; |
| 8143 if( (rc = btreeInitPage(pPage))!=0 ){ |
| 8144 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */ |
| 8145 checkAppendMsg(pCheck, |
| 8146 "btreeInitPage() returns error code %d", rc); |
| 8147 releasePage(pPage); |
| 8148 depth = -1; |
| 8149 goto end_of_check; |
| 8150 } |
| 8151 |
| 8152 /* Check out all the cells. |
| 8153 */ |
| 8154 depth = 0; |
| 8155 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){ |
| 8156 u8 *pCell; |
| 8157 u32 sz; |
| 8158 CellInfo info; |
| 8159 |
| 8160 /* Check payload overflow pages |
| 8161 */ |
| 8162 pCheck->zPfx = "On tree page %d cell %d: "; |
| 8163 pCheck->v1 = iPage; |
| 8164 pCheck->v2 = i; |
| 8165 pCell = findCell(pPage,i); |
| 8166 btreeParseCellPtr(pPage, pCell, &info); |
| 8167 sz = info.nPayload; |
| 8168 /* For intKey pages, check that the keys are in order. |
| 8169 */ |
| 8170 if( pPage->intKey ){ |
| 8171 if( i==0 ){ |
| 8172 nMinKey = nMaxKey = info.nKey; |
| 8173 }else if( info.nKey <= nMaxKey ){ |
| 8174 checkAppendMsg(pCheck, |
| 8175 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey); |
| 8176 } |
| 8177 nMaxKey = info.nKey; |
| 8178 } |
| 8179 if( (sz>info.nLocal) |
| 8180 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize]) |
| 8181 ){ |
| 8182 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4); |
| 8183 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]); |
| 8184 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 8185 if( pBt->autoVacuum ){ |
| 8186 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage); |
| 8187 } |
| 8188 #endif |
| 8189 checkList(pCheck, 0, pgnoOvfl, nPage); |
| 8190 } |
| 8191 |
| 8192 /* Check sanity of left child page. |
| 8193 */ |
| 8194 if( !pPage->leaf ){ |
| 8195 pgno = get4byte(pCell); |
| 8196 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 8197 if( pBt->autoVacuum ){ |
| 8198 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); |
| 8199 } |
| 8200 #endif |
| 8201 d2 = checkTreePage(pCheck, pgno, &nMinKey, i==0?NULL:&nMaxKey); |
| 8202 if( i>0 && d2!=depth ){ |
| 8203 checkAppendMsg(pCheck, "Child page depth differs"); |
| 8204 } |
| 8205 depth = d2; |
| 8206 } |
| 8207 } |
| 8208 |
| 8209 if( !pPage->leaf ){ |
| 8210 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
| 8211 pCheck->zPfx = "On page %d at right child: "; |
| 8212 pCheck->v1 = iPage; |
| 8213 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 8214 if( pBt->autoVacuum ){ |
| 8215 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); |
| 8216 } |
| 8217 #endif |
| 8218 checkTreePage(pCheck, pgno, NULL, !pPage->nCell?NULL:&nMaxKey); |
| 8219 } |
| 8220 |
| 8221 /* For intKey leaf pages, check that the min/max keys are in order |
| 8222 ** with any left/parent/right pages. |
| 8223 */ |
| 8224 pCheck->zPfx = "Page %d: "; |
| 8225 pCheck->v1 = iPage; |
| 8226 if( pPage->leaf && pPage->intKey ){ |
| 8227 /* if we are a left child page */ |
| 8228 if( pnParentMinKey ){ |
| 8229 /* if we are the left most child page */ |
| 8230 if( !pnParentMaxKey ){ |
| 8231 if( nMaxKey > *pnParentMinKey ){ |
| 8232 checkAppendMsg(pCheck, |
| 8233 "Rowid %lld out of order (max larger than parent min of %lld)", |
| 8234 nMaxKey, *pnParentMinKey); |
| 8235 } |
| 8236 }else{ |
| 8237 if( nMinKey <= *pnParentMinKey ){ |
| 8238 checkAppendMsg(pCheck, |
| 8239 "Rowid %lld out of order (min less than parent min of %lld)", |
| 8240 nMinKey, *pnParentMinKey); |
| 8241 } |
| 8242 if( nMaxKey > *pnParentMaxKey ){ |
| 8243 checkAppendMsg(pCheck, |
| 8244 "Rowid %lld out of order (max larger than parent max of %lld)", |
| 8245 nMaxKey, *pnParentMaxKey); |
| 8246 } |
| 8247 *pnParentMinKey = nMaxKey; |
| 8248 } |
| 8249 /* else if we're a right child page */ |
| 8250 } else if( pnParentMaxKey ){ |
| 8251 if( nMinKey <= *pnParentMaxKey ){ |
| 8252 checkAppendMsg(pCheck, |
| 8253 "Rowid %lld out of order (min less than parent max of %lld)", |
| 8254 nMinKey, *pnParentMaxKey); |
| 8255 } |
| 8256 } |
| 8257 } |
| 8258 |
| 8259 /* Check for complete coverage of the page |
| 8260 */ |
| 8261 data = pPage->aData; |
| 8262 hdr = pPage->hdrOffset; |
| 8263 hit = sqlite3PageMalloc( pBt->pageSize ); |
| 8264 pCheck->zPfx = 0; |
| 8265 if( hit==0 ){ |
| 8266 pCheck->mallocFailed = 1; |
| 8267 }else{ |
| 8268 int contentOffset = get2byteNotZero(&data[hdr+5]); |
| 8269 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */ |
| 8270 memset(hit+contentOffset, 0, usableSize-contentOffset); |
| 8271 memset(hit, 1, contentOffset); |
| 8272 nCell = get2byte(&data[hdr+3]); |
| 8273 cellStart = hdr + 12 - 4*pPage->leaf; |
| 8274 for(i=0; i<nCell; i++){ |
| 8275 int pc = get2byte(&data[cellStart+i*2]); |
| 8276 u32 size = 65536; |
| 8277 int j; |
| 8278 if( pc<=usableSize-4 ){ |
| 8279 size = cellSizePtr(pPage, &data[pc]); |
| 8280 } |
| 8281 if( (int)(pc+size-1)>=usableSize ){ |
| 8282 pCheck->zPfx = 0; |
| 8283 checkAppendMsg(pCheck, |
| 8284 "Corruption detected in cell %d on page %d",i,iPage); |
| 8285 }else{ |
| 8286 for(j=pc+size-1; j>=pc; j--) hit[j]++; |
| 8287 } |
| 8288 } |
| 8289 i = get2byte(&data[hdr+1]); |
| 8290 while( i>0 ){ |
| 8291 int size, j; |
| 8292 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */ |
| 8293 size = get2byte(&data[i+2]); |
| 8294 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */ |
| 8295 for(j=i+size-1; j>=i; j--) hit[j]++; |
| 8296 j = get2byte(&data[i]); |
| 8297 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */ |
| 8298 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */ |
| 8299 i = j; |
| 8300 } |
| 8301 for(i=cnt=0; i<usableSize; i++){ |
| 8302 if( hit[i]==0 ){ |
| 8303 cnt++; |
| 8304 }else if( hit[i]>1 ){ |
| 8305 checkAppendMsg(pCheck, |
| 8306 "Multiple uses for byte %d of page %d", i, iPage); |
| 8307 break; |
| 8308 } |
| 8309 } |
| 8310 if( cnt!=data[hdr+7] ){ |
| 8311 checkAppendMsg(pCheck, |
| 8312 "Fragmentation of %d bytes reported as %d on page %d", |
| 8313 cnt, data[hdr+7], iPage); |
| 8314 } |
| 8315 } |
| 8316 sqlite3PageFree(hit); |
| 8317 releasePage(pPage); |
| 8318 |
| 8319 end_of_check: |
| 8320 pCheck->zPfx = saved_zPfx; |
| 8321 pCheck->v1 = saved_v1; |
| 8322 pCheck->v2 = saved_v2; |
| 8323 return depth+1; |
| 8324 } |
| 8325 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
| 8326 |
| 8327 #ifndef SQLITE_OMIT_INTEGRITY_CHECK |
| 8328 /* |
| 8329 ** This routine does a complete check of the given BTree file. aRoot[] is |
| 8330 ** an array of pages numbers were each page number is the root page of |
| 8331 ** a table. nRoot is the number of entries in aRoot. |
| 8332 ** |
| 8333 ** A read-only or read-write transaction must be opened before calling |
| 8334 ** this function. |
| 8335 ** |
| 8336 ** Write the number of error seen in *pnErr. Except for some memory |
| 8337 ** allocation errors, an error message held in memory obtained from |
| 8338 ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is |
| 8339 ** returned. If a memory allocation error occurs, NULL is returned. |
| 8340 */ |
| 8341 char *sqlite3BtreeIntegrityCheck( |
| 8342 Btree *p, /* The btree to be checked */ |
| 8343 int *aRoot, /* An array of root pages numbers for individual trees */ |
| 8344 int nRoot, /* Number of entries in aRoot[] */ |
| 8345 int mxErr, /* Stop reporting errors after this many */ |
| 8346 int *pnErr /* Write number of errors seen to this variable */ |
| 8347 ){ |
| 8348 Pgno i; |
| 8349 int nRef; |
| 8350 IntegrityCk sCheck; |
| 8351 BtShared *pBt = p->pBt; |
| 8352 char zErr[100]; |
| 8353 |
| 8354 sqlite3BtreeEnter(p); |
| 8355 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE ); |
| 8356 nRef = sqlite3PagerRefcount(pBt->pPager); |
| 8357 sCheck.pBt = pBt; |
| 8358 sCheck.pPager = pBt->pPager; |
| 8359 sCheck.nPage = btreePagecount(sCheck.pBt); |
| 8360 sCheck.mxErr = mxErr; |
| 8361 sCheck.nErr = 0; |
| 8362 sCheck.mallocFailed = 0; |
| 8363 sCheck.zPfx = 0; |
| 8364 sCheck.v1 = 0; |
| 8365 sCheck.v2 = 0; |
| 8366 *pnErr = 0; |
| 8367 if( sCheck.nPage==0 ){ |
| 8368 sqlite3BtreeLeave(p); |
| 8369 return 0; |
| 8370 } |
| 8371 |
| 8372 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1); |
| 8373 if( !sCheck.aPgRef ){ |
| 8374 *pnErr = 1; |
| 8375 sqlite3BtreeLeave(p); |
| 8376 return 0; |
| 8377 } |
| 8378 i = PENDING_BYTE_PAGE(pBt); |
| 8379 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i); |
| 8380 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), SQLITE_MAX_LENGTH); |
| 8381 sCheck.errMsg.useMalloc = 2; |
| 8382 |
| 8383 /* Check the integrity of the freelist |
| 8384 */ |
| 8385 sCheck.zPfx = "Main freelist: "; |
| 8386 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), |
| 8387 get4byte(&pBt->pPage1->aData[36])); |
| 8388 sCheck.zPfx = 0; |
| 8389 |
| 8390 /* Check all the tables. |
| 8391 */ |
| 8392 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){ |
| 8393 if( aRoot[i]==0 ) continue; |
| 8394 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 8395 if( pBt->autoVacuum && aRoot[i]>1 ){ |
| 8396 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0); |
| 8397 } |
| 8398 #endif |
| 8399 sCheck.zPfx = "List of tree roots: "; |
| 8400 checkTreePage(&sCheck, aRoot[i], NULL, NULL); |
| 8401 sCheck.zPfx = 0; |
| 8402 } |
| 8403 |
| 8404 /* Make sure every page in the file is referenced |
| 8405 */ |
| 8406 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){ |
| 8407 #ifdef SQLITE_OMIT_AUTOVACUUM |
| 8408 if( getPageReferenced(&sCheck, i)==0 ){ |
| 8409 checkAppendMsg(&sCheck, "Page %d is never used", i); |
| 8410 } |
| 8411 #else |
| 8412 /* If the database supports auto-vacuum, make sure no tables contain |
| 8413 ** references to pointer-map pages. |
| 8414 */ |
| 8415 if( getPageReferenced(&sCheck, i)==0 && |
| 8416 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){ |
| 8417 checkAppendMsg(&sCheck, "Page %d is never used", i); |
| 8418 } |
| 8419 if( getPageReferenced(&sCheck, i)!=0 && |
| 8420 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){ |
| 8421 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i); |
| 8422 } |
| 8423 #endif |
| 8424 } |
| 8425 |
| 8426 /* Make sure this analysis did not leave any unref() pages. |
| 8427 ** This is an internal consistency check; an integrity check |
| 8428 ** of the integrity check. |
| 8429 */ |
| 8430 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){ |
| 8431 checkAppendMsg(&sCheck, |
| 8432 "Outstanding page count goes from %d to %d during this analysis", |
| 8433 nRef, sqlite3PagerRefcount(pBt->pPager) |
| 8434 ); |
| 8435 } |
| 8436 |
| 8437 /* Clean up and report errors. |
| 8438 */ |
| 8439 sqlite3BtreeLeave(p); |
| 8440 sqlite3_free(sCheck.aPgRef); |
| 8441 if( sCheck.mallocFailed ){ |
| 8442 sqlite3StrAccumReset(&sCheck.errMsg); |
| 8443 *pnErr = sCheck.nErr+1; |
| 8444 return 0; |
| 8445 } |
| 8446 *pnErr = sCheck.nErr; |
| 8447 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg); |
| 8448 return sqlite3StrAccumFinish(&sCheck.errMsg); |
| 8449 } |
| 8450 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
| 8451 |
| 8452 /* |
| 8453 ** Return the full pathname of the underlying database file. Return |
| 8454 ** an empty string if the database is in-memory or a TEMP database. |
| 8455 ** |
| 8456 ** The pager filename is invariant as long as the pager is |
| 8457 ** open so it is safe to access without the BtShared mutex. |
| 8458 */ |
| 8459 const char *sqlite3BtreeGetFilename(Btree *p){ |
| 8460 assert( p->pBt->pPager!=0 ); |
| 8461 return sqlite3PagerFilename(p->pBt->pPager, 1); |
| 8462 } |
| 8463 |
| 8464 /* |
| 8465 ** Return the pathname of the journal file for this database. The return |
| 8466 ** value of this routine is the same regardless of whether the journal file |
| 8467 ** has been created or not. |
| 8468 ** |
| 8469 ** The pager journal filename is invariant as long as the pager is |
| 8470 ** open so it is safe to access without the BtShared mutex. |
| 8471 */ |
| 8472 const char *sqlite3BtreeGetJournalname(Btree *p){ |
| 8473 assert( p->pBt->pPager!=0 ); |
| 8474 return sqlite3PagerJournalname(p->pBt->pPager); |
| 8475 } |
| 8476 |
| 8477 /* |
| 8478 ** Return non-zero if a transaction is active. |
| 8479 */ |
| 8480 int sqlite3BtreeIsInTrans(Btree *p){ |
| 8481 assert( p==0 || sqlite3_mutex_held(p->db->mutex) ); |
| 8482 return (p && (p->inTrans==TRANS_WRITE)); |
| 8483 } |
| 8484 |
| 8485 #ifndef SQLITE_OMIT_WAL |
| 8486 /* |
| 8487 ** Run a checkpoint on the Btree passed as the first argument. |
| 8488 ** |
| 8489 ** Return SQLITE_LOCKED if this or any other connection has an open |
| 8490 ** transaction on the shared-cache the argument Btree is connected to. |
| 8491 ** |
| 8492 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. |
| 8493 */ |
| 8494 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){ |
| 8495 int rc = SQLITE_OK; |
| 8496 if( p ){ |
| 8497 BtShared *pBt = p->pBt; |
| 8498 sqlite3BtreeEnter(p); |
| 8499 if( pBt->inTransaction!=TRANS_NONE ){ |
| 8500 rc = SQLITE_LOCKED; |
| 8501 }else{ |
| 8502 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt); |
| 8503 } |
| 8504 sqlite3BtreeLeave(p); |
| 8505 } |
| 8506 return rc; |
| 8507 } |
| 8508 #endif |
| 8509 |
| 8510 /* |
| 8511 ** Return non-zero if a read (or write) transaction is active. |
| 8512 */ |
| 8513 int sqlite3BtreeIsInReadTrans(Btree *p){ |
| 8514 assert( p ); |
| 8515 assert( sqlite3_mutex_held(p->db->mutex) ); |
| 8516 return p->inTrans!=TRANS_NONE; |
| 8517 } |
| 8518 |
| 8519 int sqlite3BtreeIsInBackup(Btree *p){ |
| 8520 assert( p ); |
| 8521 assert( sqlite3_mutex_held(p->db->mutex) ); |
| 8522 return p->nBackup!=0; |
| 8523 } |
| 8524 |
| 8525 /* |
| 8526 ** This function returns a pointer to a blob of memory associated with |
| 8527 ** a single shared-btree. The memory is used by client code for its own |
| 8528 ** purposes (for example, to store a high-level schema associated with |
| 8529 ** the shared-btree). The btree layer manages reference counting issues. |
| 8530 ** |
| 8531 ** The first time this is called on a shared-btree, nBytes bytes of memory |
| 8532 ** are allocated, zeroed, and returned to the caller. For each subsequent |
| 8533 ** call the nBytes parameter is ignored and a pointer to the same blob |
| 8534 ** of memory returned. |
| 8535 ** |
| 8536 ** If the nBytes parameter is 0 and the blob of memory has not yet been |
| 8537 ** allocated, a null pointer is returned. If the blob has already been |
| 8538 ** allocated, it is returned as normal. |
| 8539 ** |
| 8540 ** Just before the shared-btree is closed, the function passed as the |
| 8541 ** xFree argument when the memory allocation was made is invoked on the |
| 8542 ** blob of allocated memory. The xFree function should not call sqlite3_free() |
| 8543 ** on the memory, the btree layer does that. |
| 8544 */ |
| 8545 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ |
| 8546 BtShared *pBt = p->pBt; |
| 8547 sqlite3BtreeEnter(p); |
| 8548 if( !pBt->pSchema && nBytes ){ |
| 8549 pBt->pSchema = sqlite3DbMallocZero(0, nBytes); |
| 8550 pBt->xFreeSchema = xFree; |
| 8551 } |
| 8552 sqlite3BtreeLeave(p); |
| 8553 return pBt->pSchema; |
| 8554 } |
| 8555 |
| 8556 /* |
| 8557 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared |
| 8558 ** btree as the argument handle holds an exclusive lock on the |
| 8559 ** sqlite_master table. Otherwise SQLITE_OK. |
| 8560 */ |
| 8561 int sqlite3BtreeSchemaLocked(Btree *p){ |
| 8562 int rc; |
| 8563 assert( sqlite3_mutex_held(p->db->mutex) ); |
| 8564 sqlite3BtreeEnter(p); |
| 8565 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK); |
| 8566 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE ); |
| 8567 sqlite3BtreeLeave(p); |
| 8568 return rc; |
| 8569 } |
| 8570 |
| 8571 |
| 8572 #ifndef SQLITE_OMIT_SHARED_CACHE |
| 8573 /* |
| 8574 ** Obtain a lock on the table whose root page is iTab. The |
| 8575 ** lock is a write lock if isWritelock is true or a read lock |
| 8576 ** if it is false. |
| 8577 */ |
| 8578 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){ |
| 8579 int rc = SQLITE_OK; |
| 8580 assert( p->inTrans!=TRANS_NONE ); |
| 8581 if( p->sharable ){ |
| 8582 u8 lockType = READ_LOCK + isWriteLock; |
| 8583 assert( READ_LOCK+1==WRITE_LOCK ); |
| 8584 assert( isWriteLock==0 || isWriteLock==1 ); |
| 8585 |
| 8586 sqlite3BtreeEnter(p); |
| 8587 rc = querySharedCacheTableLock(p, iTab, lockType); |
| 8588 if( rc==SQLITE_OK ){ |
| 8589 rc = setSharedCacheTableLock(p, iTab, lockType); |
| 8590 } |
| 8591 sqlite3BtreeLeave(p); |
| 8592 } |
| 8593 return rc; |
| 8594 } |
| 8595 #endif |
| 8596 |
| 8597 #ifndef SQLITE_OMIT_INCRBLOB |
| 8598 /* |
| 8599 ** Argument pCsr must be a cursor opened for writing on an |
| 8600 ** INTKEY table currently pointing at a valid table entry. |
| 8601 ** This function modifies the data stored as part of that entry. |
| 8602 ** |
| 8603 ** Only the data content may only be modified, it is not possible to |
| 8604 ** change the length of the data stored. If this function is called with |
| 8605 ** parameters that attempt to write past the end of the existing data, |
| 8606 ** no modifications are made and SQLITE_CORRUPT is returned. |
| 8607 */ |
| 8608 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){ |
| 8609 int rc; |
| 8610 assert( cursorHoldsMutex(pCsr) ); |
| 8611 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) ); |
| 8612 assert( pCsr->curFlags & BTCF_Incrblob ); |
| 8613 |
| 8614 rc = restoreCursorPosition(pCsr); |
| 8615 if( rc!=SQLITE_OK ){ |
| 8616 return rc; |
| 8617 } |
| 8618 assert( pCsr->eState!=CURSOR_REQUIRESEEK ); |
| 8619 if( pCsr->eState!=CURSOR_VALID ){ |
| 8620 return SQLITE_ABORT; |
| 8621 } |
| 8622 |
| 8623 /* Save the positions of all other cursors open on this table. This is |
| 8624 ** required in case any of them are holding references to an xFetch |
| 8625 ** version of the b-tree page modified by the accessPayload call below. |
| 8626 ** |
| 8627 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition() |
| 8628 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence |
| 8629 ** saveAllCursors can only return SQLITE_OK. |
| 8630 */ |
| 8631 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr); |
| 8632 assert( rc==SQLITE_OK ); |
| 8633 |
| 8634 /* Check some assumptions: |
| 8635 ** (a) the cursor is open for writing, |
| 8636 ** (b) there is a read/write transaction open, |
| 8637 ** (c) the connection holds a write-lock on the table (if required), |
| 8638 ** (d) there are no conflicting read-locks, and |
| 8639 ** (e) the cursor points at a valid row of an intKey table. |
| 8640 */ |
| 8641 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){ |
| 8642 return SQLITE_READONLY; |
| 8643 } |
| 8644 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0 |
| 8645 && pCsr->pBt->inTransaction==TRANS_WRITE ); |
| 8646 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) ); |
| 8647 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) ); |
| 8648 assert( pCsr->apPage[pCsr->iPage]->intKey ); |
| 8649 |
| 8650 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1); |
| 8651 } |
| 8652 |
| 8653 /* |
| 8654 ** Mark this cursor as an incremental blob cursor. |
| 8655 */ |
| 8656 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){ |
| 8657 pCur->curFlags |= BTCF_Incrblob; |
| 8658 } |
| 8659 #endif |
| 8660 |
| 8661 /* |
| 8662 ** Set both the "read version" (single byte at byte offset 18) and |
| 8663 ** "write version" (single byte at byte offset 19) fields in the database |
| 8664 ** header to iVersion. |
| 8665 */ |
| 8666 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){ |
| 8667 BtShared *pBt = pBtree->pBt; |
| 8668 int rc; /* Return code */ |
| 8669 |
| 8670 assert( iVersion==1 || iVersion==2 ); |
| 8671 |
| 8672 /* If setting the version fields to 1, do not automatically open the |
| 8673 ** WAL connection, even if the version fields are currently set to 2. |
| 8674 */ |
| 8675 pBt->btsFlags &= ~BTS_NO_WAL; |
| 8676 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL; |
| 8677 |
| 8678 rc = sqlite3BtreeBeginTrans(pBtree, 0); |
| 8679 if( rc==SQLITE_OK ){ |
| 8680 u8 *aData = pBt->pPage1->aData; |
| 8681 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){ |
| 8682 rc = sqlite3BtreeBeginTrans(pBtree, 2); |
| 8683 if( rc==SQLITE_OK ){ |
| 8684 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); |
| 8685 if( rc==SQLITE_OK ){ |
| 8686 aData[18] = (u8)iVersion; |
| 8687 aData[19] = (u8)iVersion; |
| 8688 } |
| 8689 } |
| 8690 } |
| 8691 } |
| 8692 |
| 8693 pBt->btsFlags &= ~BTS_NO_WAL; |
| 8694 return rc; |
| 8695 } |
| 8696 |
| 8697 /* |
| 8698 ** set the mask of hint flags for cursor pCsr. Currently the only valid |
| 8699 ** values are 0 and BTREE_BULKLOAD. |
| 8700 */ |
| 8701 void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){ |
| 8702 assert( mask==BTREE_BULKLOAD || mask==0 ); |
| 8703 pCsr->hints = mask; |
| 8704 } |
| 8705 |
| 8706 /* |
| 8707 ** Return true if the given Btree is read-only. |
| 8708 */ |
| 8709 int sqlite3BtreeIsReadonly(Btree *p){ |
| 8710 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0; |
| 8711 } |
OLD | NEW |