OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2001 September 22 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** This is the implementation of generic hash-tables used in SQLite. |
| 13 ** We've modified it slightly to serve as a standalone hash table |
| 14 ** implementation for the full-text indexing module. |
| 15 */ |
| 16 #include <assert.h> |
| 17 #include <stdlib.h> |
| 18 #include <string.h> |
| 19 |
| 20 #include "ft_hash.h" |
| 21 |
| 22 void *malloc_and_zero(int n){ |
| 23 void *p = malloc(n); |
| 24 if( p ){ |
| 25 memset(p, 0, n); |
| 26 } |
| 27 return p; |
| 28 } |
| 29 |
| 30 /* Turn bulk memory into a hash table object by initializing the |
| 31 ** fields of the Hash structure. |
| 32 ** |
| 33 ** "pNew" is a pointer to the hash table that is to be initialized. |
| 34 ** keyClass is one of the constants HASH_INT, HASH_POINTER, |
| 35 ** HASH_BINARY, or HASH_STRING. The value of keyClass |
| 36 ** determines what kind of key the hash table will use. "copyKey" is |
| 37 ** true if the hash table should make its own private copy of keys and |
| 38 ** false if it should just use the supplied pointer. CopyKey only makes |
| 39 ** sense for HASH_STRING and HASH_BINARY and is ignored |
| 40 ** for other key classes. |
| 41 */ |
| 42 void HashInit(Hash *pNew, int keyClass, int copyKey){ |
| 43 assert( pNew!=0 ); |
| 44 assert( keyClass>=HASH_STRING && keyClass<=HASH_BINARY ); |
| 45 pNew->keyClass = keyClass; |
| 46 #if 0 |
| 47 if( keyClass==HASH_POINTER || keyClass==HASH_INT ) copyKey = 0; |
| 48 #endif |
| 49 pNew->copyKey = copyKey; |
| 50 pNew->first = 0; |
| 51 pNew->count = 0; |
| 52 pNew->htsize = 0; |
| 53 pNew->ht = 0; |
| 54 pNew->xMalloc = malloc_and_zero; |
| 55 pNew->xFree = free; |
| 56 } |
| 57 |
| 58 /* Remove all entries from a hash table. Reclaim all memory. |
| 59 ** Call this routine to delete a hash table or to reset a hash table |
| 60 ** to the empty state. |
| 61 */ |
| 62 void HashClear(Hash *pH){ |
| 63 HashElem *elem; /* For looping over all elements of the table */ |
| 64 |
| 65 assert( pH!=0 ); |
| 66 elem = pH->first; |
| 67 pH->first = 0; |
| 68 if( pH->ht ) pH->xFree(pH->ht); |
| 69 pH->ht = 0; |
| 70 pH->htsize = 0; |
| 71 while( elem ){ |
| 72 HashElem *next_elem = elem->next; |
| 73 if( pH->copyKey && elem->pKey ){ |
| 74 pH->xFree(elem->pKey); |
| 75 } |
| 76 pH->xFree(elem); |
| 77 elem = next_elem; |
| 78 } |
| 79 pH->count = 0; |
| 80 } |
| 81 |
| 82 #if 0 /* NOT USED */ |
| 83 /* |
| 84 ** Hash and comparison functions when the mode is HASH_INT |
| 85 */ |
| 86 static int intHash(const void *pKey, int nKey){ |
| 87 return nKey ^ (nKey<<8) ^ (nKey>>8); |
| 88 } |
| 89 static int intCompare(const void *pKey1, int n1, const void *pKey2, int n2){ |
| 90 return n2 - n1; |
| 91 } |
| 92 #endif |
| 93 |
| 94 #if 0 /* NOT USED */ |
| 95 /* |
| 96 ** Hash and comparison functions when the mode is HASH_POINTER |
| 97 */ |
| 98 static int ptrHash(const void *pKey, int nKey){ |
| 99 uptr x = Addr(pKey); |
| 100 return x ^ (x<<8) ^ (x>>8); |
| 101 } |
| 102 static int ptrCompare(const void *pKey1, int n1, const void *pKey2, int n2){ |
| 103 if( pKey1==pKey2 ) return 0; |
| 104 if( pKey1<pKey2 ) return -1; |
| 105 return 1; |
| 106 } |
| 107 #endif |
| 108 |
| 109 /* |
| 110 ** Hash and comparison functions when the mode is HASH_STRING |
| 111 */ |
| 112 static int strHash(const void *pKey, int nKey){ |
| 113 const char *z = (const char *)pKey; |
| 114 int h = 0; |
| 115 if( nKey<=0 ) nKey = (int) strlen(z); |
| 116 while( nKey > 0 ){ |
| 117 h = (h<<3) ^ h ^ *z++; |
| 118 nKey--; |
| 119 } |
| 120 return h & 0x7fffffff; |
| 121 } |
| 122 static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){ |
| 123 if( n1!=n2 ) return 1; |
| 124 return strncmp((const char*)pKey1,(const char*)pKey2,n1); |
| 125 } |
| 126 |
| 127 /* |
| 128 ** Hash and comparison functions when the mode is HASH_BINARY |
| 129 */ |
| 130 static int binHash(const void *pKey, int nKey){ |
| 131 int h = 0; |
| 132 const char *z = (const char *)pKey; |
| 133 while( nKey-- > 0 ){ |
| 134 h = (h<<3) ^ h ^ *(z++); |
| 135 } |
| 136 return h & 0x7fffffff; |
| 137 } |
| 138 static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){ |
| 139 if( n1!=n2 ) return 1; |
| 140 return memcmp(pKey1,pKey2,n1); |
| 141 } |
| 142 |
| 143 /* |
| 144 ** Return a pointer to the appropriate hash function given the key class. |
| 145 ** |
| 146 ** The C syntax in this function definition may be unfamilar to some |
| 147 ** programmers, so we provide the following additional explanation: |
| 148 ** |
| 149 ** The name of the function is "hashFunction". The function takes a |
| 150 ** single parameter "keyClass". The return value of hashFunction() |
| 151 ** is a pointer to another function. Specifically, the return value |
| 152 ** of hashFunction() is a pointer to a function that takes two parameters |
| 153 ** with types "const void*" and "int" and returns an "int". |
| 154 */ |
| 155 static int (*hashFunction(int keyClass))(const void*,int){ |
| 156 #if 0 /* HASH_INT and HASH_POINTER are never used */ |
| 157 switch( keyClass ){ |
| 158 case HASH_INT: return &intHash; |
| 159 case HASH_POINTER: return &ptrHash; |
| 160 case HASH_STRING: return &strHash; |
| 161 case HASH_BINARY: return &binHash;; |
| 162 default: break; |
| 163 } |
| 164 return 0; |
| 165 #else |
| 166 if( keyClass==HASH_STRING ){ |
| 167 return &strHash; |
| 168 }else{ |
| 169 assert( keyClass==HASH_BINARY ); |
| 170 return &binHash; |
| 171 } |
| 172 #endif |
| 173 } |
| 174 |
| 175 /* |
| 176 ** Return a pointer to the appropriate hash function given the key class. |
| 177 ** |
| 178 ** For help in interpreted the obscure C code in the function definition, |
| 179 ** see the header comment on the previous function. |
| 180 */ |
| 181 static int (*compareFunction(int keyClass))(const void*,int,const void*,int){ |
| 182 #if 0 /* HASH_INT and HASH_POINTER are never used */ |
| 183 switch( keyClass ){ |
| 184 case HASH_INT: return &intCompare; |
| 185 case HASH_POINTER: return &ptrCompare; |
| 186 case HASH_STRING: return &strCompare; |
| 187 case HASH_BINARY: return &binCompare; |
| 188 default: break; |
| 189 } |
| 190 return 0; |
| 191 #else |
| 192 if( keyClass==HASH_STRING ){ |
| 193 return &strCompare; |
| 194 }else{ |
| 195 assert( keyClass==HASH_BINARY ); |
| 196 return &binCompare; |
| 197 } |
| 198 #endif |
| 199 } |
| 200 |
| 201 /* Link an element into the hash table |
| 202 */ |
| 203 static void insertElement( |
| 204 Hash *pH, /* The complete hash table */ |
| 205 struct _ht *pEntry, /* The entry into which pNew is inserted */ |
| 206 HashElem *pNew /* The element to be inserted */ |
| 207 ){ |
| 208 HashElem *pHead; /* First element already in pEntry */ |
| 209 pHead = pEntry->chain; |
| 210 if( pHead ){ |
| 211 pNew->next = pHead; |
| 212 pNew->prev = pHead->prev; |
| 213 if( pHead->prev ){ pHead->prev->next = pNew; } |
| 214 else { pH->first = pNew; } |
| 215 pHead->prev = pNew; |
| 216 }else{ |
| 217 pNew->next = pH->first; |
| 218 if( pH->first ){ pH->first->prev = pNew; } |
| 219 pNew->prev = 0; |
| 220 pH->first = pNew; |
| 221 } |
| 222 pEntry->count++; |
| 223 pEntry->chain = pNew; |
| 224 } |
| 225 |
| 226 |
| 227 /* Resize the hash table so that it cantains "new_size" buckets. |
| 228 ** "new_size" must be a power of 2. The hash table might fail |
| 229 ** to resize if sqliteMalloc() fails. |
| 230 */ |
| 231 static void rehash(Hash *pH, int new_size){ |
| 232 struct _ht *new_ht; /* The new hash table */ |
| 233 HashElem *elem, *next_elem; /* For looping over existing elements */ |
| 234 int (*xHash)(const void*,int); /* The hash function */ |
| 235 |
| 236 assert( (new_size & (new_size-1))==0 ); |
| 237 new_ht = (struct _ht *)pH->xMalloc( new_size*sizeof(struct _ht) ); |
| 238 if( new_ht==0 ) return; |
| 239 if( pH->ht ) pH->xFree(pH->ht); |
| 240 pH->ht = new_ht; |
| 241 pH->htsize = new_size; |
| 242 xHash = hashFunction(pH->keyClass); |
| 243 for(elem=pH->first, pH->first=0; elem; elem = next_elem){ |
| 244 int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1); |
| 245 next_elem = elem->next; |
| 246 insertElement(pH, &new_ht[h], elem); |
| 247 } |
| 248 } |
| 249 |
| 250 /* This function (for internal use only) locates an element in an |
| 251 ** hash table that matches the given key. The hash for this key has |
| 252 ** already been computed and is passed as the 4th parameter. |
| 253 */ |
| 254 static HashElem *findElementGivenHash( |
| 255 const Hash *pH, /* The pH to be searched */ |
| 256 const void *pKey, /* The key we are searching for */ |
| 257 int nKey, |
| 258 int h /* The hash for this key. */ |
| 259 ){ |
| 260 HashElem *elem; /* Used to loop thru the element list */ |
| 261 int count; /* Number of elements left to test */ |
| 262 int (*xCompare)(const void*,int,const void*,int); /* comparison function */ |
| 263 |
| 264 if( pH->ht ){ |
| 265 struct _ht *pEntry = &pH->ht[h]; |
| 266 elem = pEntry->chain; |
| 267 count = pEntry->count; |
| 268 xCompare = compareFunction(pH->keyClass); |
| 269 while( count-- && elem ){ |
| 270 if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){ |
| 271 return elem; |
| 272 } |
| 273 elem = elem->next; |
| 274 } |
| 275 } |
| 276 return 0; |
| 277 } |
| 278 |
| 279 /* Remove a single entry from the hash table given a pointer to that |
| 280 ** element and a hash on the element's key. |
| 281 */ |
| 282 static void removeElementGivenHash( |
| 283 Hash *pH, /* The pH containing "elem" */ |
| 284 HashElem* elem, /* The element to be removed from the pH */ |
| 285 int h /* Hash value for the element */ |
| 286 ){ |
| 287 struct _ht *pEntry; |
| 288 if( elem->prev ){ |
| 289 elem->prev->next = elem->next; |
| 290 }else{ |
| 291 pH->first = elem->next; |
| 292 } |
| 293 if( elem->next ){ |
| 294 elem->next->prev = elem->prev; |
| 295 } |
| 296 pEntry = &pH->ht[h]; |
| 297 if( pEntry->chain==elem ){ |
| 298 pEntry->chain = elem->next; |
| 299 } |
| 300 pEntry->count--; |
| 301 if( pEntry->count<=0 ){ |
| 302 pEntry->chain = 0; |
| 303 } |
| 304 if( pH->copyKey && elem->pKey ){ |
| 305 pH->xFree(elem->pKey); |
| 306 } |
| 307 pH->xFree( elem ); |
| 308 pH->count--; |
| 309 if( pH->count<=0 ){ |
| 310 assert( pH->first==0 ); |
| 311 assert( pH->count==0 ); |
| 312 HashClear(pH); |
| 313 } |
| 314 } |
| 315 |
| 316 /* Attempt to locate an element of the hash table pH with a key |
| 317 ** that matches pKey,nKey. Return the data for this element if it is |
| 318 ** found, or NULL if there is no match. |
| 319 */ |
| 320 void *HashFind(const Hash *pH, const void *pKey, int nKey){ |
| 321 int h; /* A hash on key */ |
| 322 HashElem *elem; /* The element that matches key */ |
| 323 int (*xHash)(const void*,int); /* The hash function */ |
| 324 |
| 325 if( pH==0 || pH->ht==0 ) return 0; |
| 326 xHash = hashFunction(pH->keyClass); |
| 327 assert( xHash!=0 ); |
| 328 h = (*xHash)(pKey,nKey); |
| 329 assert( (pH->htsize & (pH->htsize-1))==0 ); |
| 330 elem = findElementGivenHash(pH,pKey,nKey, h & (pH->htsize-1)); |
| 331 return elem ? elem->data : 0; |
| 332 } |
| 333 |
| 334 /* Insert an element into the hash table pH. The key is pKey,nKey |
| 335 ** and the data is "data". |
| 336 ** |
| 337 ** If no element exists with a matching key, then a new |
| 338 ** element is created. A copy of the key is made if the copyKey |
| 339 ** flag is set. NULL is returned. |
| 340 ** |
| 341 ** If another element already exists with the same key, then the |
| 342 ** new data replaces the old data and the old data is returned. |
| 343 ** The key is not copied in this instance. If a malloc fails, then |
| 344 ** the new data is returned and the hash table is unchanged. |
| 345 ** |
| 346 ** If the "data" parameter to this function is NULL, then the |
| 347 ** element corresponding to "key" is removed from the hash table. |
| 348 */ |
| 349 void *HashInsert(Hash *pH, const void *pKey, int nKey, void *data){ |
| 350 int hraw; /* Raw hash value of the key */ |
| 351 int h; /* the hash of the key modulo hash table size */ |
| 352 HashElem *elem; /* Used to loop thru the element list */ |
| 353 HashElem *new_elem; /* New element added to the pH */ |
| 354 int (*xHash)(const void*,int); /* The hash function */ |
| 355 |
| 356 assert( pH!=0 ); |
| 357 xHash = hashFunction(pH->keyClass); |
| 358 assert( xHash!=0 ); |
| 359 hraw = (*xHash)(pKey, nKey); |
| 360 assert( (pH->htsize & (pH->htsize-1))==0 ); |
| 361 h = hraw & (pH->htsize-1); |
| 362 elem = findElementGivenHash(pH,pKey,nKey,h); |
| 363 if( elem ){ |
| 364 void *old_data = elem->data; |
| 365 if( data==0 ){ |
| 366 removeElementGivenHash(pH,elem,h); |
| 367 }else{ |
| 368 elem->data = data; |
| 369 } |
| 370 return old_data; |
| 371 } |
| 372 if( data==0 ) return 0; |
| 373 new_elem = (HashElem*)pH->xMalloc( sizeof(HashElem) ); |
| 374 if( new_elem==0 ) return data; |
| 375 if( pH->copyKey && pKey!=0 ){ |
| 376 new_elem->pKey = pH->xMalloc( nKey ); |
| 377 if( new_elem->pKey==0 ){ |
| 378 pH->xFree(new_elem); |
| 379 return data; |
| 380 } |
| 381 memcpy((void*)new_elem->pKey, pKey, nKey); |
| 382 }else{ |
| 383 new_elem->pKey = (void*)pKey; |
| 384 } |
| 385 new_elem->nKey = nKey; |
| 386 pH->count++; |
| 387 if( pH->htsize==0 ){ |
| 388 rehash(pH,8); |
| 389 if( pH->htsize==0 ){ |
| 390 pH->count = 0; |
| 391 pH->xFree(new_elem); |
| 392 return data; |
| 393 } |
| 394 } |
| 395 if( pH->count > pH->htsize ){ |
| 396 rehash(pH,pH->htsize*2); |
| 397 } |
| 398 assert( pH->htsize>0 ); |
| 399 assert( (pH->htsize & (pH->htsize-1))==0 ); |
| 400 h = hraw & (pH->htsize-1); |
| 401 insertElement(pH, &pH->ht[h], new_elem); |
| 402 new_elem->data = data; |
| 403 return 0; |
| 404 } |
OLD | NEW |