OLD | NEW |
(Empty) | |
| 1 # 2005 November 30 |
| 2 # |
| 3 # The author disclaims copyright to this source code. In place of |
| 4 # a legal notice, here is a blessing: |
| 5 # |
| 6 # May you do good and not evil. |
| 7 # May you find forgiveness for yourself and forgive others. |
| 8 # May you share freely, never taking more than you give. |
| 9 # |
| 10 #*********************************************************************** |
| 11 # |
| 12 # This file contains test cases focused on the two memory-management APIs, |
| 13 # sqlite3_soft_heap_limit() and sqlite3_release_memory(). |
| 14 # |
| 15 # Prior to version 3.6.2, calling sqlite3_release_memory() or exceeding |
| 16 # the configured soft heap limit could cause sqlite to upgrade database |
| 17 # locks and flush dirty pages to the file system. As of 3.6.2, this is |
| 18 # no longer the case. In version 3.6.2, sqlite3_release_memory() only |
| 19 # reclaims clean pages. This test file has been updated accordingly. |
| 20 # |
| 21 # $Id: malloc5.test,v 1.22 2009/04/11 19:09:54 drh Exp $ |
| 22 |
| 23 set testdir [file dirname $argv0] |
| 24 source $testdir/tester.tcl |
| 25 source $testdir/malloc_common.tcl |
| 26 db close |
| 27 |
| 28 # Only run these tests if memory debugging is turned on. |
| 29 # |
| 30 if {!$MEMDEBUG} { |
| 31 puts "Skipping malloc5 tests: not compiled with -DSQLITE_MEMDEBUG..." |
| 32 finish_test |
| 33 return |
| 34 } |
| 35 |
| 36 # Skip these tests if OMIT_MEMORY_MANAGEMENT was defined at compile time. |
| 37 ifcapable !memorymanage { |
| 38 finish_test |
| 39 return |
| 40 } |
| 41 |
| 42 sqlite3_soft_heap_limit 0 |
| 43 sqlite3 db test.db |
| 44 |
| 45 do_test malloc5-1.1 { |
| 46 # Simplest possible test. Call sqlite3_release_memory when there is exactly |
| 47 # one unused page in a single pager cache. The page cannot be freed, as |
| 48 # it is dirty. So sqlite3_release_memory() returns 0. |
| 49 # |
| 50 execsql { |
| 51 PRAGMA auto_vacuum=OFF; |
| 52 BEGIN; |
| 53 CREATE TABLE abc(a, b, c); |
| 54 } |
| 55 sqlite3_release_memory |
| 56 } {0} |
| 57 |
| 58 do_test malloc5-1.2 { |
| 59 # Test that the transaction started in the above test is still active. |
| 60 # The lock on the database file should not have been upgraded (this was |
| 61 # not the case before version 3.6.2). |
| 62 # |
| 63 sqlite3 db2 test.db |
| 64 execsql { SELECT * FROM sqlite_master } db2 |
| 65 } {} |
| 66 do_test malloc5-1.3 { |
| 67 # Call [sqlite3_release_memory] when there is exactly one unused page |
| 68 # in the cache belonging to db2. |
| 69 # |
| 70 set ::pgalloc [sqlite3_release_memory] |
| 71 expr $::pgalloc > 0 |
| 72 } {1} |
| 73 |
| 74 do_test malloc5-1.4 { |
| 75 # Commit the transaction and open a new one. Read 1 page into the cache. |
| 76 # Because the page is not dirty, it is eligible for collection even |
| 77 # before the transaction is concluded. |
| 78 # |
| 79 execsql { |
| 80 COMMIT; |
| 81 BEGIN; |
| 82 SELECT * FROM abc; |
| 83 } |
| 84 sqlite3_release_memory |
| 85 } $::pgalloc |
| 86 |
| 87 do_test malloc5-1.5 { |
| 88 # Conclude the transaction opened in the previous [do_test] block. This |
| 89 # causes another page (page 1) to become eligible for recycling. |
| 90 # |
| 91 execsql { COMMIT } |
| 92 sqlite3_release_memory |
| 93 } $::pgalloc |
| 94 |
| 95 do_test malloc5-1.6 { |
| 96 # Manipulate the cache so that it contains two unused pages. One requires |
| 97 # a journal-sync to free, the other does not. |
| 98 db2 close |
| 99 execsql { |
| 100 BEGIN; |
| 101 SELECT * FROM abc; |
| 102 CREATE TABLE def(d, e, f); |
| 103 } |
| 104 sqlite3_release_memory 500 |
| 105 } $::pgalloc |
| 106 |
| 107 do_test malloc5-1.7 { |
| 108 # Database should not be locked this time. |
| 109 sqlite3 db2 test.db |
| 110 catchsql { SELECT * FROM abc } db2 |
| 111 } {0 {}} |
| 112 do_test malloc5-1.8 { |
| 113 # Try to release another block of memory. This will fail as the only |
| 114 # pages currently in the cache are dirty (page 3) or pinned (page 1). |
| 115 db2 close |
| 116 sqlite3_release_memory 500 |
| 117 } 0 |
| 118 do_test malloc5-1.8 { |
| 119 # Database is still not locked. |
| 120 # |
| 121 sqlite3 db2 test.db |
| 122 catchsql { SELECT * FROM abc } db2 |
| 123 } {0 {}} |
| 124 do_test malloc5-1.9 { |
| 125 execsql { |
| 126 COMMIT; |
| 127 } |
| 128 } {} |
| 129 |
| 130 do_test malloc5-2.1 { |
| 131 # Put some data in tables abc and def. Both tables are still wholly |
| 132 # contained within their root pages. |
| 133 execsql { |
| 134 INSERT INTO abc VALUES(1, 2, 3); |
| 135 INSERT INTO abc VALUES(4, 5, 6); |
| 136 INSERT INTO def VALUES(7, 8, 9); |
| 137 INSERT INTO def VALUES(10,11,12); |
| 138 } |
| 139 } {} |
| 140 do_test malloc5-2.2 { |
| 141 # Load the root-page for table def into the cache. Then query table abc. |
| 142 # Halfway through the query call sqlite3_release_memory(). The goal of this |
| 143 # test is to make sure we don't free pages that are in use (specifically, |
| 144 # the root of table abc). |
| 145 sqlite3_release_memory |
| 146 set nRelease 0 |
| 147 execsql { |
| 148 BEGIN; |
| 149 SELECT * FROM def; |
| 150 } |
| 151 set data [list] |
| 152 db eval {SELECT * FROM abc} { |
| 153 incr nRelease [sqlite3_release_memory] |
| 154 lappend data $a $b $c |
| 155 } |
| 156 execsql { |
| 157 COMMIT; |
| 158 } |
| 159 list $nRelease $data |
| 160 } [list $pgalloc [list 1 2 3 4 5 6]] |
| 161 |
| 162 do_test malloc5-3.1 { |
| 163 # Simple test to show that if two pagers are opened from within this |
| 164 # thread, memory is freed from both when sqlite3_release_memory() is |
| 165 # called. |
| 166 execsql { |
| 167 BEGIN; |
| 168 SELECT * FROM abc; |
| 169 } |
| 170 execsql { |
| 171 SELECT * FROM sqlite_master; |
| 172 BEGIN; |
| 173 SELECT * FROM def; |
| 174 } db2 |
| 175 sqlite3_release_memory |
| 176 } [expr $::pgalloc * 2] |
| 177 do_test malloc5-3.2 { |
| 178 concat \ |
| 179 [execsql {SELECT * FROM abc; COMMIT}] \ |
| 180 [execsql {SELECT * FROM def; COMMIT} db2] |
| 181 } {1 2 3 4 5 6 7 8 9 10 11 12} |
| 182 |
| 183 db2 close |
| 184 puts "Highwater mark: [sqlite3_memory_highwater]" |
| 185 |
| 186 # The following two test cases each execute a transaction in which |
| 187 # 10000 rows are inserted into table abc. The first test case is used |
| 188 # to ensure that more than 1MB of dynamic memory is used to perform |
| 189 # the transaction. |
| 190 # |
| 191 # The second test case sets the "soft-heap-limit" to 100,000 bytes (0.1 MB) |
| 192 # and tests to see that this limit is not exceeded at any point during |
| 193 # transaction execution. |
| 194 # |
| 195 # Before executing malloc5-4.* we save the value of the current soft heap |
| 196 # limit in variable ::soft_limit. The original value is restored after |
| 197 # running the tests. |
| 198 # |
| 199 set ::soft_limit [sqlite3_soft_heap_limit -1] |
| 200 execsql {PRAGMA cache_size=2000} |
| 201 do_test malloc5-4.1 { |
| 202 execsql {BEGIN;} |
| 203 execsql {DELETE FROM abc;} |
| 204 for {set i 0} {$i < 10000} {incr i} { |
| 205 execsql "INSERT INTO abc VALUES($i, $i, '[string repeat X 100]');" |
| 206 } |
| 207 execsql {COMMIT;} |
| 208 sqlite3_release_memory |
| 209 sqlite3_memory_highwater 1 |
| 210 execsql {SELECT * FROM abc} |
| 211 set nMaxBytes [sqlite3_memory_highwater 1] |
| 212 puts -nonewline " (Highwater mark: $nMaxBytes) " |
| 213 expr $nMaxBytes > 1000000 |
| 214 } {1} |
| 215 do_test malloc5-4.2 { |
| 216 sqlite3_release_memory |
| 217 sqlite3_soft_heap_limit 100000 |
| 218 sqlite3_memory_highwater 1 |
| 219 execsql {SELECT * FROM abc} |
| 220 set nMaxBytes [sqlite3_memory_highwater 1] |
| 221 puts -nonewline " (Highwater mark: $nMaxBytes) " |
| 222 expr $nMaxBytes <= 100000 |
| 223 } {1} |
| 224 do_test malloc5-4.3 { |
| 225 # Check that the content of table abc is at least roughly as expected. |
| 226 execsql { |
| 227 SELECT count(*), sum(a), sum(b) FROM abc; |
| 228 } |
| 229 } [list 10000 [expr int(10000.0 * 4999.5)] [expr int(10000.0 * 4999.5)]] |
| 230 |
| 231 # Restore the soft heap limit. |
| 232 sqlite3_soft_heap_limit $::soft_limit |
| 233 |
| 234 # Test that there are no problems calling sqlite3_release_memory when |
| 235 # there are open in-memory databases. |
| 236 # |
| 237 # At one point these tests would cause a seg-fault. |
| 238 # |
| 239 do_test malloc5-5.1 { |
| 240 db close |
| 241 sqlite3 db :memory: |
| 242 execsql { |
| 243 BEGIN; |
| 244 CREATE TABLE abc(a, b, c); |
| 245 INSERT INTO abc VALUES('abcdefghi', 1234567890, NULL); |
| 246 INSERT INTO abc SELECT * FROM abc; |
| 247 INSERT INTO abc SELECT * FROM abc; |
| 248 INSERT INTO abc SELECT * FROM abc; |
| 249 INSERT INTO abc SELECT * FROM abc; |
| 250 INSERT INTO abc SELECT * FROM abc; |
| 251 INSERT INTO abc SELECT * FROM abc; |
| 252 INSERT INTO abc SELECT * FROM abc; |
| 253 } |
| 254 sqlite3_release_memory |
| 255 } 0 |
| 256 do_test malloc5-5.2 { |
| 257 sqlite3_soft_heap_limit 5000 |
| 258 execsql { |
| 259 COMMIT; |
| 260 PRAGMA temp_store = memory; |
| 261 SELECT * FROM abc ORDER BY a; |
| 262 } |
| 263 expr 1 |
| 264 } {1} |
| 265 sqlite3_soft_heap_limit $::soft_limit |
| 266 |
| 267 #------------------------------------------------------------------------- |
| 268 # The following test cases (malloc5-6.*) test the new global LRU list |
| 269 # used to determine the pages to recycle when sqlite3_release_memory is |
| 270 # called and there is more than one pager open. |
| 271 # |
| 272 proc nPage {db} { |
| 273 set bt [btree_from_db $db] |
| 274 array set stats [btree_pager_stats $bt] |
| 275 set stats(page) |
| 276 } |
| 277 db close |
| 278 file delete -force test.db test.db-journal test2.db test2.db-journal |
| 279 |
| 280 # This block of test-cases (malloc5-6.1.*) prepares two database files |
| 281 # for the subsequent tests. |
| 282 do_test malloc5-6.1.1 { |
| 283 sqlite3 db test.db |
| 284 execsql { |
| 285 PRAGMA page_size=1024; |
| 286 PRAGMA default_cache_size=10; |
| 287 } |
| 288 execsql { |
| 289 PRAGMA temp_store = memory; |
| 290 BEGIN; |
| 291 CREATE TABLE abc(a PRIMARY KEY, b, c); |
| 292 INSERT INTO abc VALUES(randstr(50,50), randstr(75,75), randstr(100,100)); |
| 293 INSERT INTO abc |
| 294 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; |
| 295 INSERT INTO abc |
| 296 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; |
| 297 INSERT INTO abc |
| 298 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; |
| 299 INSERT INTO abc |
| 300 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; |
| 301 INSERT INTO abc |
| 302 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; |
| 303 INSERT INTO abc |
| 304 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; |
| 305 COMMIT; |
| 306 } |
| 307 copy_file test.db test2.db |
| 308 sqlite3 db2 test2.db |
| 309 list \ |
| 310 [expr ([file size test.db]/1024)>20] [expr ([file size test2.db]/1024)>20] |
| 311 } {1 1} |
| 312 do_test malloc5-6.1.2 { |
| 313 list [execsql {PRAGMA cache_size}] [execsql {PRAGMA cache_size} db2] |
| 314 } {10 10} |
| 315 |
| 316 do_test malloc5-6.2.1 { |
| 317 execsql {SELECT * FROM abc} db2 |
| 318 execsql {SELECT * FROM abc} db |
| 319 expr [nPage db] + [nPage db2] |
| 320 } {20} |
| 321 |
| 322 do_test malloc5-6.2.2 { |
| 323 # If we now try to reclaim some memory, it should come from the db2 cache. |
| 324 sqlite3_release_memory 3000 |
| 325 expr [nPage db] + [nPage db2] |
| 326 } {17} |
| 327 do_test malloc5-6.2.3 { |
| 328 # Access the db2 cache again, so that all the db2 pages have been used |
| 329 # more recently than all the db pages. Then try to reclaim 3000 bytes. |
| 330 # This time, 3 pages should be pulled from the db cache. |
| 331 execsql { SELECT * FROM abc } db2 |
| 332 sqlite3_release_memory 3000 |
| 333 expr [nPage db] + [nPage db2] |
| 334 } {17} |
| 335 |
| 336 do_test malloc5-6.3.1 { |
| 337 # Now open a transaction and update 2 pages in the db2 cache. Then |
| 338 # do a SELECT on the db cache so that all the db pages are more recently |
| 339 # used than the db2 pages. When we try to free memory, SQLite should |
| 340 # free the non-dirty db2 pages, then the db pages, then finally use |
| 341 # sync() to free up the dirty db2 pages. The only page that cannot be |
| 342 # freed is page1 of db2. Because there is an open transaction, the |
| 343 # btree layer holds a reference to page 1 in the db2 cache. |
| 344 execsql { |
| 345 BEGIN; |
| 346 UPDATE abc SET c = randstr(100,100) |
| 347 WHERE rowid = 1 OR rowid = (SELECT max(rowid) FROM abc); |
| 348 } db2 |
| 349 execsql { SELECT * FROM abc } db |
| 350 expr [nPage db] + [nPage db2] |
| 351 } {20} |
| 352 do_test malloc5-6.3.2 { |
| 353 # Try to release 7700 bytes. This should release all the |
| 354 # non-dirty pages held by db2. |
| 355 sqlite3_release_memory [expr 7*1100] |
| 356 list [nPage db] [nPage db2] |
| 357 } {10 3} |
| 358 do_test malloc5-6.3.3 { |
| 359 # Try to release another 1000 bytes. This should come fromt the db |
| 360 # cache, since all three pages held by db2 are either in-use or diry. |
| 361 sqlite3_release_memory 1000 |
| 362 list [nPage db] [nPage db2] |
| 363 } {9 3} |
| 364 do_test malloc5-6.3.4 { |
| 365 # Now release 9900 more (about 9 pages worth). This should expunge |
| 366 # the rest of the db cache. But the db2 cache remains intact, because |
| 367 # SQLite tries to avoid calling sync(). |
| 368 if {$::tcl_platform(wordSize)==8} { |
| 369 sqlite3_release_memory 10177 |
| 370 } else { |
| 371 sqlite3_release_memory 9900 |
| 372 } |
| 373 list [nPage db] [nPage db2] |
| 374 } {0 3} |
| 375 do_test malloc5-6.3.5 { |
| 376 # But if we are really insistent, SQLite will consent to call sync() |
| 377 # if there is no other option. UPDATE: As of 3.6.2, SQLite will not |
| 378 # call sync() in this scenario. So no further memory can be reclaimed. |
| 379 sqlite3_release_memory 1000 |
| 380 list [nPage db] [nPage db2] |
| 381 } {0 3} |
| 382 do_test malloc5-6.3.6 { |
| 383 # The referenced page (page 1 of the db2 cache) will not be freed no |
| 384 # matter how much memory we ask for: |
| 385 sqlite3_release_memory 31459 |
| 386 list [nPage db] [nPage db2] |
| 387 } {0 3} |
| 388 |
| 389 db2 close |
| 390 |
| 391 sqlite3_soft_heap_limit $::soft_limit |
| 392 finish_test |
| 393 catch {db close} |
OLD | NEW |