OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2004 May 26 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** |
| 13 ** This file contains code use to implement APIs that are part of the |
| 14 ** VDBE. |
| 15 */ |
| 16 #include "sqliteInt.h" |
| 17 #include "vdbeInt.h" |
| 18 |
| 19 #ifndef SQLITE_OMIT_DEPRECATED |
| 20 /* |
| 21 ** Return TRUE (non-zero) of the statement supplied as an argument needs |
| 22 ** to be recompiled. A statement needs to be recompiled whenever the |
| 23 ** execution environment changes in a way that would alter the program |
| 24 ** that sqlite3_prepare() generates. For example, if new functions or |
| 25 ** collating sequences are registered or if an authorizer function is |
| 26 ** added or changed. |
| 27 */ |
| 28 int sqlite3_expired(sqlite3_stmt *pStmt){ |
| 29 Vdbe *p = (Vdbe*)pStmt; |
| 30 return p==0 || p->expired; |
| 31 } |
| 32 #endif |
| 33 |
| 34 /* |
| 35 ** Check on a Vdbe to make sure it has not been finalized. Log |
| 36 ** an error and return true if it has been finalized (or is otherwise |
| 37 ** invalid). Return false if it is ok. |
| 38 */ |
| 39 static int vdbeSafety(Vdbe *p){ |
| 40 if( p->db==0 ){ |
| 41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); |
| 42 return 1; |
| 43 }else{ |
| 44 return 0; |
| 45 } |
| 46 } |
| 47 static int vdbeSafetyNotNull(Vdbe *p){ |
| 48 if( p==0 ){ |
| 49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); |
| 50 return 1; |
| 51 }else{ |
| 52 return vdbeSafety(p); |
| 53 } |
| 54 } |
| 55 |
| 56 /* |
| 57 ** The following routine destroys a virtual machine that is created by |
| 58 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ |
| 59 ** success/failure code that describes the result of executing the virtual |
| 60 ** machine. |
| 61 ** |
| 62 ** This routine sets the error code and string returned by |
| 63 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). |
| 64 */ |
| 65 int sqlite3_finalize(sqlite3_stmt *pStmt){ |
| 66 int rc; |
| 67 if( pStmt==0 ){ |
| 68 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL |
| 69 ** pointer is a harmless no-op. */ |
| 70 rc = SQLITE_OK; |
| 71 }else{ |
| 72 Vdbe *v = (Vdbe*)pStmt; |
| 73 sqlite3 *db = v->db; |
| 74 #if SQLITE_THREADSAFE |
| 75 sqlite3_mutex *mutex; |
| 76 #endif |
| 77 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; |
| 78 #if SQLITE_THREADSAFE |
| 79 mutex = v->db->mutex; |
| 80 #endif |
| 81 sqlite3_mutex_enter(mutex); |
| 82 rc = sqlite3VdbeFinalize(v); |
| 83 rc = sqlite3ApiExit(db, rc); |
| 84 sqlite3_mutex_leave(mutex); |
| 85 } |
| 86 return rc; |
| 87 } |
| 88 |
| 89 /* |
| 90 ** Terminate the current execution of an SQL statement and reset it |
| 91 ** back to its starting state so that it can be reused. A success code from |
| 92 ** the prior execution is returned. |
| 93 ** |
| 94 ** This routine sets the error code and string returned by |
| 95 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). |
| 96 */ |
| 97 int sqlite3_reset(sqlite3_stmt *pStmt){ |
| 98 int rc; |
| 99 if( pStmt==0 ){ |
| 100 rc = SQLITE_OK; |
| 101 }else{ |
| 102 Vdbe *v = (Vdbe*)pStmt; |
| 103 sqlite3_mutex_enter(v->db->mutex); |
| 104 rc = sqlite3VdbeReset(v); |
| 105 sqlite3VdbeMakeReady(v, -1, 0, 0, 0, 0, 0); |
| 106 assert( (rc & (v->db->errMask))==rc ); |
| 107 rc = sqlite3ApiExit(v->db, rc); |
| 108 sqlite3_mutex_leave(v->db->mutex); |
| 109 } |
| 110 return rc; |
| 111 } |
| 112 |
| 113 /* |
| 114 ** Set all the parameters in the compiled SQL statement to NULL. |
| 115 */ |
| 116 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ |
| 117 int i; |
| 118 int rc = SQLITE_OK; |
| 119 Vdbe *p = (Vdbe*)pStmt; |
| 120 #if SQLITE_THREADSAFE |
| 121 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; |
| 122 #endif |
| 123 sqlite3_mutex_enter(mutex); |
| 124 for(i=0; i<p->nVar; i++){ |
| 125 sqlite3VdbeMemRelease(&p->aVar[i]); |
| 126 p->aVar[i].flags = MEM_Null; |
| 127 } |
| 128 if( p->isPrepareV2 && p->expmask ){ |
| 129 p->expired = 1; |
| 130 } |
| 131 sqlite3_mutex_leave(mutex); |
| 132 return rc; |
| 133 } |
| 134 |
| 135 |
| 136 /**************************** sqlite3_value_ ******************************* |
| 137 ** The following routines extract information from a Mem or sqlite3_value |
| 138 ** structure. |
| 139 */ |
| 140 const void *sqlite3_value_blob(sqlite3_value *pVal){ |
| 141 Mem *p = (Mem*)pVal; |
| 142 if( p->flags & (MEM_Blob|MEM_Str) ){ |
| 143 sqlite3VdbeMemExpandBlob(p); |
| 144 p->flags &= ~MEM_Str; |
| 145 p->flags |= MEM_Blob; |
| 146 return p->n ? p->z : 0; |
| 147 }else{ |
| 148 return sqlite3_value_text(pVal); |
| 149 } |
| 150 } |
| 151 int sqlite3_value_bytes(sqlite3_value *pVal){ |
| 152 return sqlite3ValueBytes(pVal, SQLITE_UTF8); |
| 153 } |
| 154 int sqlite3_value_bytes16(sqlite3_value *pVal){ |
| 155 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); |
| 156 } |
| 157 double sqlite3_value_double(sqlite3_value *pVal){ |
| 158 return sqlite3VdbeRealValue((Mem*)pVal); |
| 159 } |
| 160 int sqlite3_value_int(sqlite3_value *pVal){ |
| 161 return (int)sqlite3VdbeIntValue((Mem*)pVal); |
| 162 } |
| 163 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ |
| 164 return sqlite3VdbeIntValue((Mem*)pVal); |
| 165 } |
| 166 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ |
| 167 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); |
| 168 } |
| 169 #ifndef SQLITE_OMIT_UTF16 |
| 170 const void *sqlite3_value_text16(sqlite3_value* pVal){ |
| 171 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); |
| 172 } |
| 173 const void *sqlite3_value_text16be(sqlite3_value *pVal){ |
| 174 return sqlite3ValueText(pVal, SQLITE_UTF16BE); |
| 175 } |
| 176 const void *sqlite3_value_text16le(sqlite3_value *pVal){ |
| 177 return sqlite3ValueText(pVal, SQLITE_UTF16LE); |
| 178 } |
| 179 #endif /* SQLITE_OMIT_UTF16 */ |
| 180 int sqlite3_value_type(sqlite3_value* pVal){ |
| 181 return pVal->type; |
| 182 } |
| 183 |
| 184 /**************************** sqlite3_result_ ******************************* |
| 185 ** The following routines are used by user-defined functions to specify |
| 186 ** the function result. |
| 187 ** |
| 188 ** The setStrOrError() funtion calls sqlite3VdbeMemSetStr() to store the |
| 189 ** result as a string or blob but if the string or blob is too large, it |
| 190 ** then sets the error code to SQLITE_TOOBIG |
| 191 */ |
| 192 static void setResultStrOrError( |
| 193 sqlite3_context *pCtx, /* Function context */ |
| 194 const char *z, /* String pointer */ |
| 195 int n, /* Bytes in string, or negative */ |
| 196 u8 enc, /* Encoding of z. 0 for BLOBs */ |
| 197 void (*xDel)(void*) /* Destructor function */ |
| 198 ){ |
| 199 if( sqlite3VdbeMemSetStr(&pCtx->s, z, n, enc, xDel)==SQLITE_TOOBIG ){ |
| 200 sqlite3_result_error_toobig(pCtx); |
| 201 } |
| 202 } |
| 203 void sqlite3_result_blob( |
| 204 sqlite3_context *pCtx, |
| 205 const void *z, |
| 206 int n, |
| 207 void (*xDel)(void *) |
| 208 ){ |
| 209 assert( n>=0 ); |
| 210 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); |
| 211 setResultStrOrError(pCtx, z, n, 0, xDel); |
| 212 } |
| 213 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ |
| 214 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); |
| 215 sqlite3VdbeMemSetDouble(&pCtx->s, rVal); |
| 216 } |
| 217 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ |
| 218 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); |
| 219 pCtx->isError = SQLITE_ERROR; |
| 220 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); |
| 221 } |
| 222 #ifndef SQLITE_OMIT_UTF16 |
| 223 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ |
| 224 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); |
| 225 pCtx->isError = SQLITE_ERROR; |
| 226 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); |
| 227 } |
| 228 #endif |
| 229 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ |
| 230 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); |
| 231 sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal); |
| 232 } |
| 233 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ |
| 234 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); |
| 235 sqlite3VdbeMemSetInt64(&pCtx->s, iVal); |
| 236 } |
| 237 void sqlite3_result_null(sqlite3_context *pCtx){ |
| 238 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); |
| 239 sqlite3VdbeMemSetNull(&pCtx->s); |
| 240 } |
| 241 void sqlite3_result_text( |
| 242 sqlite3_context *pCtx, |
| 243 const char *z, |
| 244 int n, |
| 245 void (*xDel)(void *) |
| 246 ){ |
| 247 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); |
| 248 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); |
| 249 } |
| 250 #ifndef SQLITE_OMIT_UTF16 |
| 251 void sqlite3_result_text16( |
| 252 sqlite3_context *pCtx, |
| 253 const void *z, |
| 254 int n, |
| 255 void (*xDel)(void *) |
| 256 ){ |
| 257 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); |
| 258 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); |
| 259 } |
| 260 void sqlite3_result_text16be( |
| 261 sqlite3_context *pCtx, |
| 262 const void *z, |
| 263 int n, |
| 264 void (*xDel)(void *) |
| 265 ){ |
| 266 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); |
| 267 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); |
| 268 } |
| 269 void sqlite3_result_text16le( |
| 270 sqlite3_context *pCtx, |
| 271 const void *z, |
| 272 int n, |
| 273 void (*xDel)(void *) |
| 274 ){ |
| 275 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); |
| 276 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); |
| 277 } |
| 278 #endif /* SQLITE_OMIT_UTF16 */ |
| 279 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ |
| 280 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); |
| 281 sqlite3VdbeMemCopy(&pCtx->s, pValue); |
| 282 } |
| 283 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ |
| 284 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); |
| 285 sqlite3VdbeMemSetZeroBlob(&pCtx->s, n); |
| 286 } |
| 287 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ |
| 288 pCtx->isError = errCode; |
| 289 if( pCtx->s.flags & MEM_Null ){ |
| 290 sqlite3VdbeMemSetStr(&pCtx->s, sqlite3ErrStr(errCode), -1, |
| 291 SQLITE_UTF8, SQLITE_STATIC); |
| 292 } |
| 293 } |
| 294 |
| 295 /* Force an SQLITE_TOOBIG error. */ |
| 296 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ |
| 297 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); |
| 298 pCtx->isError = SQLITE_TOOBIG; |
| 299 sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1, |
| 300 SQLITE_UTF8, SQLITE_STATIC); |
| 301 } |
| 302 |
| 303 /* An SQLITE_NOMEM error. */ |
| 304 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ |
| 305 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); |
| 306 sqlite3VdbeMemSetNull(&pCtx->s); |
| 307 pCtx->isError = SQLITE_NOMEM; |
| 308 pCtx->s.db->mallocFailed = 1; |
| 309 } |
| 310 |
| 311 /* |
| 312 ** This function is called after a transaction has been committed. It |
| 313 ** invokes callbacks registered with sqlite3_wal_hook() as required. |
| 314 */ |
| 315 static int doWalCallbacks(sqlite3 *db){ |
| 316 int rc = SQLITE_OK; |
| 317 #ifndef SQLITE_OMIT_WAL |
| 318 int i; |
| 319 for(i=0; i<db->nDb; i++){ |
| 320 Btree *pBt = db->aDb[i].pBt; |
| 321 if( pBt ){ |
| 322 int nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); |
| 323 if( db->xWalCallback && nEntry>0 && rc==SQLITE_OK ){ |
| 324 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zName, nEntry); |
| 325 } |
| 326 } |
| 327 } |
| 328 #endif |
| 329 return rc; |
| 330 } |
| 331 |
| 332 /* |
| 333 ** Execute the statement pStmt, either until a row of data is ready, the |
| 334 ** statement is completely executed or an error occurs. |
| 335 ** |
| 336 ** This routine implements the bulk of the logic behind the sqlite_step() |
| 337 ** API. The only thing omitted is the automatic recompile if a |
| 338 ** schema change has occurred. That detail is handled by the |
| 339 ** outer sqlite3_step() wrapper procedure. |
| 340 */ |
| 341 static int sqlite3Step(Vdbe *p){ |
| 342 sqlite3 *db; |
| 343 int rc; |
| 344 |
| 345 assert(p); |
| 346 if( p->magic!=VDBE_MAGIC_RUN ){ |
| 347 /* We used to require that sqlite3_reset() be called before retrying |
| 348 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning |
| 349 ** with version 3.7.0, we changed this so that sqlite3_reset() would |
| 350 ** be called automatically instead of throwing the SQLITE_MISUSE error. |
| 351 ** This "automatic-reset" change is not technically an incompatibility, |
| 352 ** since any application that receives an SQLITE_MISUSE is broken by |
| 353 ** definition. |
| 354 ** |
| 355 ** Nevertheless, some published applications that were originally written |
| 356 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE |
| 357 ** returns, and the so were broken by the automatic-reset change. As a |
| 358 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the |
| 359 ** legacy behavior of returning SQLITE_MISUSE for cases where the |
| 360 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED |
| 361 ** or SQLITE_BUSY error. |
| 362 */ |
| 363 #ifdef SQLITE_OMIT_AUTORESET |
| 364 if( p->rc==SQLITE_BUSY || p->rc==SQLITE_LOCKED ){ |
| 365 sqlite3_reset((sqlite3_stmt*)p); |
| 366 }else{ |
| 367 return SQLITE_MISUSE_BKPT; |
| 368 } |
| 369 #else |
| 370 sqlite3_reset((sqlite3_stmt*)p); |
| 371 #endif |
| 372 } |
| 373 |
| 374 /* Check that malloc() has not failed. If it has, return early. */ |
| 375 db = p->db; |
| 376 if( db->mallocFailed ){ |
| 377 p->rc = SQLITE_NOMEM; |
| 378 return SQLITE_NOMEM; |
| 379 } |
| 380 |
| 381 if( p->pc<=0 && p->expired ){ |
| 382 p->rc = SQLITE_SCHEMA; |
| 383 rc = SQLITE_ERROR; |
| 384 goto end_of_step; |
| 385 } |
| 386 if( p->pc<0 ){ |
| 387 /* If there are no other statements currently running, then |
| 388 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt |
| 389 ** from interrupting a statement that has not yet started. |
| 390 */ |
| 391 if( db->activeVdbeCnt==0 ){ |
| 392 db->u1.isInterrupted = 0; |
| 393 } |
| 394 |
| 395 assert( db->writeVdbeCnt>0 || db->autoCommit==0 || db->nDeferredCons==0 ); |
| 396 |
| 397 #ifndef SQLITE_OMIT_TRACE |
| 398 if( db->xProfile && !db->init.busy ){ |
| 399 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); |
| 400 } |
| 401 #endif |
| 402 |
| 403 db->activeVdbeCnt++; |
| 404 if( p->readOnly==0 ) db->writeVdbeCnt++; |
| 405 p->pc = 0; |
| 406 } |
| 407 #ifndef SQLITE_OMIT_EXPLAIN |
| 408 if( p->explain ){ |
| 409 rc = sqlite3VdbeList(p); |
| 410 }else |
| 411 #endif /* SQLITE_OMIT_EXPLAIN */ |
| 412 { |
| 413 db->vdbeExecCnt++; |
| 414 rc = sqlite3VdbeExec(p); |
| 415 db->vdbeExecCnt--; |
| 416 } |
| 417 |
| 418 #ifndef SQLITE_OMIT_TRACE |
| 419 /* Invoke the profile callback if there is one |
| 420 */ |
| 421 if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->zSql ){ |
| 422 sqlite3_int64 iNow; |
| 423 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); |
| 424 db->xProfile(db->pProfileArg, p->zSql, (iNow - p->startTime)*1000000); |
| 425 } |
| 426 #endif |
| 427 |
| 428 if( rc==SQLITE_DONE ){ |
| 429 assert( p->rc==SQLITE_OK ); |
| 430 p->rc = doWalCallbacks(db); |
| 431 if( p->rc!=SQLITE_OK ){ |
| 432 rc = SQLITE_ERROR; |
| 433 } |
| 434 } |
| 435 |
| 436 db->errCode = rc; |
| 437 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ |
| 438 p->rc = SQLITE_NOMEM; |
| 439 } |
| 440 end_of_step: |
| 441 /* At this point local variable rc holds the value that should be |
| 442 ** returned if this statement was compiled using the legacy |
| 443 ** sqlite3_prepare() interface. According to the docs, this can only |
| 444 ** be one of the values in the first assert() below. Variable p->rc |
| 445 ** contains the value that would be returned if sqlite3_finalize() |
| 446 ** were called on statement p. |
| 447 */ |
| 448 assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR |
| 449 || rc==SQLITE_BUSY || rc==SQLITE_MISUSE |
| 450 ); |
| 451 assert( p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE ); |
| 452 if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){ |
| 453 /* If this statement was prepared using sqlite3_prepare_v2(), and an |
| 454 ** error has occured, then return the error code in p->rc to the |
| 455 ** caller. Set the error code in the database handle to the same value. |
| 456 */ |
| 457 rc = db->errCode = p->rc; |
| 458 } |
| 459 return (rc&db->errMask); |
| 460 } |
| 461 |
| 462 /* |
| 463 ** This is the top-level implementation of sqlite3_step(). Call |
| 464 ** sqlite3Step() to do most of the work. If a schema error occurs, |
| 465 ** call sqlite3Reprepare() and try again. |
| 466 */ |
| 467 int sqlite3_step(sqlite3_stmt *pStmt){ |
| 468 int rc = SQLITE_OK; /* Result from sqlite3Step() */ |
| 469 int rc2 = SQLITE_OK; /* Result from sqlite3Reprepare() */ |
| 470 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ |
| 471 int cnt = 0; /* Counter to prevent infinite loop of reprepares */ |
| 472 sqlite3 *db; /* The database connection */ |
| 473 |
| 474 if( vdbeSafetyNotNull(v) ){ |
| 475 return SQLITE_MISUSE_BKPT; |
| 476 } |
| 477 db = v->db; |
| 478 sqlite3_mutex_enter(db->mutex); |
| 479 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA |
| 480 && cnt++ < 5 |
| 481 && (rc2 = rc = sqlite3Reprepare(v))==SQLITE_OK ){ |
| 482 sqlite3_reset(pStmt); |
| 483 v->expired = 0; |
| 484 } |
| 485 if( rc2!=SQLITE_OK && ALWAYS(v->isPrepareV2) && ALWAYS(db->pErr) ){ |
| 486 /* This case occurs after failing to recompile an sql statement. |
| 487 ** The error message from the SQL compiler has already been loaded |
| 488 ** into the database handle. This block copies the error message |
| 489 ** from the database handle into the statement and sets the statement |
| 490 ** program counter to 0 to ensure that when the statement is |
| 491 ** finalized or reset the parser error message is available via |
| 492 ** sqlite3_errmsg() and sqlite3_errcode(). |
| 493 */ |
| 494 const char *zErr = (const char *)sqlite3_value_text(db->pErr); |
| 495 sqlite3DbFree(db, v->zErrMsg); |
| 496 if( !db->mallocFailed ){ |
| 497 v->zErrMsg = sqlite3DbStrDup(db, zErr); |
| 498 v->rc = rc2; |
| 499 } else { |
| 500 v->zErrMsg = 0; |
| 501 v->rc = rc = SQLITE_NOMEM; |
| 502 } |
| 503 } |
| 504 rc = sqlite3ApiExit(db, rc); |
| 505 sqlite3_mutex_leave(db->mutex); |
| 506 return rc; |
| 507 } |
| 508 |
| 509 /* |
| 510 ** Extract the user data from a sqlite3_context structure and return a |
| 511 ** pointer to it. |
| 512 */ |
| 513 void *sqlite3_user_data(sqlite3_context *p){ |
| 514 assert( p && p->pFunc ); |
| 515 return p->pFunc->pUserData; |
| 516 } |
| 517 |
| 518 /* |
| 519 ** Extract the user data from a sqlite3_context structure and return a |
| 520 ** pointer to it. |
| 521 ** |
| 522 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface |
| 523 ** returns a copy of the pointer to the database connection (the 1st |
| 524 ** parameter) of the sqlite3_create_function() and |
| 525 ** sqlite3_create_function16() routines that originally registered the |
| 526 ** application defined function. |
| 527 */ |
| 528 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ |
| 529 assert( p && p->pFunc ); |
| 530 return p->s.db; |
| 531 } |
| 532 |
| 533 /* |
| 534 ** The following is the implementation of an SQL function that always |
| 535 ** fails with an error message stating that the function is used in the |
| 536 ** wrong context. The sqlite3_overload_function() API might construct |
| 537 ** SQL function that use this routine so that the functions will exist |
| 538 ** for name resolution but are actually overloaded by the xFindFunction |
| 539 ** method of virtual tables. |
| 540 */ |
| 541 void sqlite3InvalidFunction( |
| 542 sqlite3_context *context, /* The function calling context */ |
| 543 int NotUsed, /* Number of arguments to the function */ |
| 544 sqlite3_value **NotUsed2 /* Value of each argument */ |
| 545 ){ |
| 546 const char *zName = context->pFunc->zName; |
| 547 char *zErr; |
| 548 UNUSED_PARAMETER2(NotUsed, NotUsed2); |
| 549 zErr = sqlite3_mprintf( |
| 550 "unable to use function %s in the requested context", zName); |
| 551 sqlite3_result_error(context, zErr, -1); |
| 552 sqlite3_free(zErr); |
| 553 } |
| 554 |
| 555 /* |
| 556 ** Allocate or return the aggregate context for a user function. A new |
| 557 ** context is allocated on the first call. Subsequent calls return the |
| 558 ** same context that was returned on prior calls. |
| 559 */ |
| 560 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ |
| 561 Mem *pMem; |
| 562 assert( p && p->pFunc && p->pFunc->xStep ); |
| 563 assert( sqlite3_mutex_held(p->s.db->mutex) ); |
| 564 pMem = p->pMem; |
| 565 testcase( nByte<0 ); |
| 566 if( (pMem->flags & MEM_Agg)==0 ){ |
| 567 if( nByte<=0 ){ |
| 568 sqlite3VdbeMemReleaseExternal(pMem); |
| 569 pMem->flags = MEM_Null; |
| 570 pMem->z = 0; |
| 571 }else{ |
| 572 sqlite3VdbeMemGrow(pMem, nByte, 0); |
| 573 pMem->flags = MEM_Agg; |
| 574 pMem->u.pDef = p->pFunc; |
| 575 if( pMem->z ){ |
| 576 memset(pMem->z, 0, nByte); |
| 577 } |
| 578 } |
| 579 } |
| 580 return (void*)pMem->z; |
| 581 } |
| 582 |
| 583 /* |
| 584 ** Return the auxilary data pointer, if any, for the iArg'th argument to |
| 585 ** the user-function defined by pCtx. |
| 586 */ |
| 587 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ |
| 588 VdbeFunc *pVdbeFunc; |
| 589 |
| 590 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); |
| 591 pVdbeFunc = pCtx->pVdbeFunc; |
| 592 if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){ |
| 593 return 0; |
| 594 } |
| 595 return pVdbeFunc->apAux[iArg].pAux; |
| 596 } |
| 597 |
| 598 /* |
| 599 ** Set the auxilary data pointer and delete function, for the iArg'th |
| 600 ** argument to the user-function defined by pCtx. Any previous value is |
| 601 ** deleted by calling the delete function specified when it was set. |
| 602 */ |
| 603 void sqlite3_set_auxdata( |
| 604 sqlite3_context *pCtx, |
| 605 int iArg, |
| 606 void *pAux, |
| 607 void (*xDelete)(void*) |
| 608 ){ |
| 609 struct AuxData *pAuxData; |
| 610 VdbeFunc *pVdbeFunc; |
| 611 if( iArg<0 ) goto failed; |
| 612 |
| 613 assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); |
| 614 pVdbeFunc = pCtx->pVdbeFunc; |
| 615 if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){ |
| 616 int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0); |
| 617 int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg; |
| 618 pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc); |
| 619 if( !pVdbeFunc ){ |
| 620 goto failed; |
| 621 } |
| 622 pCtx->pVdbeFunc = pVdbeFunc; |
| 623 memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux)); |
| 624 pVdbeFunc->nAux = iArg+1; |
| 625 pVdbeFunc->pFunc = pCtx->pFunc; |
| 626 } |
| 627 |
| 628 pAuxData = &pVdbeFunc->apAux[iArg]; |
| 629 if( pAuxData->pAux && pAuxData->xDelete ){ |
| 630 pAuxData->xDelete(pAuxData->pAux); |
| 631 } |
| 632 pAuxData->pAux = pAux; |
| 633 pAuxData->xDelete = xDelete; |
| 634 return; |
| 635 |
| 636 failed: |
| 637 if( xDelete ){ |
| 638 xDelete(pAux); |
| 639 } |
| 640 } |
| 641 |
| 642 #ifndef SQLITE_OMIT_DEPRECATED |
| 643 /* |
| 644 ** Return the number of times the Step function of a aggregate has been |
| 645 ** called. |
| 646 ** |
| 647 ** This function is deprecated. Do not use it for new code. It is |
| 648 ** provide only to avoid breaking legacy code. New aggregate function |
| 649 ** implementations should keep their own counts within their aggregate |
| 650 ** context. |
| 651 */ |
| 652 int sqlite3_aggregate_count(sqlite3_context *p){ |
| 653 assert( p && p->pMem && p->pFunc && p->pFunc->xStep ); |
| 654 return p->pMem->n; |
| 655 } |
| 656 #endif |
| 657 |
| 658 /* |
| 659 ** Return the number of columns in the result set for the statement pStmt. |
| 660 */ |
| 661 int sqlite3_column_count(sqlite3_stmt *pStmt){ |
| 662 Vdbe *pVm = (Vdbe *)pStmt; |
| 663 return pVm ? pVm->nResColumn : 0; |
| 664 } |
| 665 |
| 666 /* |
| 667 ** Return the number of values available from the current row of the |
| 668 ** currently executing statement pStmt. |
| 669 */ |
| 670 int sqlite3_data_count(sqlite3_stmt *pStmt){ |
| 671 Vdbe *pVm = (Vdbe *)pStmt; |
| 672 if( pVm==0 || pVm->pResultSet==0 ) return 0; |
| 673 return pVm->nResColumn; |
| 674 } |
| 675 |
| 676 |
| 677 /* |
| 678 ** Check to see if column iCol of the given statement is valid. If |
| 679 ** it is, return a pointer to the Mem for the value of that column. |
| 680 ** If iCol is not valid, return a pointer to a Mem which has a value |
| 681 ** of NULL. |
| 682 */ |
| 683 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ |
| 684 Vdbe *pVm; |
| 685 Mem *pOut; |
| 686 |
| 687 pVm = (Vdbe *)pStmt; |
| 688 if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ |
| 689 sqlite3_mutex_enter(pVm->db->mutex); |
| 690 pOut = &pVm->pResultSet[i]; |
| 691 }else{ |
| 692 /* If the value passed as the second argument is out of range, return |
| 693 ** a pointer to the following static Mem object which contains the |
| 694 ** value SQL NULL. Even though the Mem structure contains an element |
| 695 ** of type i64, on certain architecture (x86) with certain compiler |
| 696 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary |
| 697 ** instead of an 8-byte one. This all works fine, except that when |
| 698 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s |
| 699 ** that a Mem structure is located on an 8-byte boundary. To prevent |
| 700 ** this assert() from failing, when building with SQLITE_DEBUG defined |
| 701 ** using gcc, force nullMem to be 8-byte aligned using the magical |
| 702 ** __attribute__((aligned(8))) macro. */ |
| 703 static const Mem nullMem |
| 704 #if defined(SQLITE_DEBUG) && defined(__GNUC__) |
| 705 __attribute__((aligned(8))) |
| 706 #endif |
| 707 = {0, "", (double)0, {0}, 0, MEM_Null, SQLITE_NULL, 0, |
| 708 #ifdef SQLITE_DEBUG |
| 709 0, 0, /* pScopyFrom, pFiller */ |
| 710 #endif |
| 711 0, 0 }; |
| 712 |
| 713 if( pVm && ALWAYS(pVm->db) ){ |
| 714 sqlite3_mutex_enter(pVm->db->mutex); |
| 715 sqlite3Error(pVm->db, SQLITE_RANGE, 0); |
| 716 } |
| 717 pOut = (Mem*)&nullMem; |
| 718 } |
| 719 return pOut; |
| 720 } |
| 721 |
| 722 /* |
| 723 ** This function is called after invoking an sqlite3_value_XXX function on a |
| 724 ** column value (i.e. a value returned by evaluating an SQL expression in the |
| 725 ** select list of a SELECT statement) that may cause a malloc() failure. If |
| 726 ** malloc() has failed, the threads mallocFailed flag is cleared and the result |
| 727 ** code of statement pStmt set to SQLITE_NOMEM. |
| 728 ** |
| 729 ** Specifically, this is called from within: |
| 730 ** |
| 731 ** sqlite3_column_int() |
| 732 ** sqlite3_column_int64() |
| 733 ** sqlite3_column_text() |
| 734 ** sqlite3_column_text16() |
| 735 ** sqlite3_column_real() |
| 736 ** sqlite3_column_bytes() |
| 737 ** sqlite3_column_bytes16() |
| 738 ** sqiite3_column_blob() |
| 739 */ |
| 740 static void columnMallocFailure(sqlite3_stmt *pStmt) |
| 741 { |
| 742 /* If malloc() failed during an encoding conversion within an |
| 743 ** sqlite3_column_XXX API, then set the return code of the statement to |
| 744 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR |
| 745 ** and _finalize() will return NOMEM. |
| 746 */ |
| 747 Vdbe *p = (Vdbe *)pStmt; |
| 748 if( p ){ |
| 749 p->rc = sqlite3ApiExit(p->db, p->rc); |
| 750 sqlite3_mutex_leave(p->db->mutex); |
| 751 } |
| 752 } |
| 753 |
| 754 /**************************** sqlite3_column_ ******************************* |
| 755 ** The following routines are used to access elements of the current row |
| 756 ** in the result set. |
| 757 */ |
| 758 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ |
| 759 const void *val; |
| 760 val = sqlite3_value_blob( columnMem(pStmt,i) ); |
| 761 /* Even though there is no encoding conversion, value_blob() might |
| 762 ** need to call malloc() to expand the result of a zeroblob() |
| 763 ** expression. |
| 764 */ |
| 765 columnMallocFailure(pStmt); |
| 766 return val; |
| 767 } |
| 768 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ |
| 769 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); |
| 770 columnMallocFailure(pStmt); |
| 771 return val; |
| 772 } |
| 773 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ |
| 774 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); |
| 775 columnMallocFailure(pStmt); |
| 776 return val; |
| 777 } |
| 778 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ |
| 779 double val = sqlite3_value_double( columnMem(pStmt,i) ); |
| 780 columnMallocFailure(pStmt); |
| 781 return val; |
| 782 } |
| 783 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ |
| 784 int val = sqlite3_value_int( columnMem(pStmt,i) ); |
| 785 columnMallocFailure(pStmt); |
| 786 return val; |
| 787 } |
| 788 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ |
| 789 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); |
| 790 columnMallocFailure(pStmt); |
| 791 return val; |
| 792 } |
| 793 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ |
| 794 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); |
| 795 columnMallocFailure(pStmt); |
| 796 return val; |
| 797 } |
| 798 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ |
| 799 Mem *pOut = columnMem(pStmt, i); |
| 800 if( pOut->flags&MEM_Static ){ |
| 801 pOut->flags &= ~MEM_Static; |
| 802 pOut->flags |= MEM_Ephem; |
| 803 } |
| 804 columnMallocFailure(pStmt); |
| 805 return (sqlite3_value *)pOut; |
| 806 } |
| 807 #ifndef SQLITE_OMIT_UTF16 |
| 808 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ |
| 809 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); |
| 810 columnMallocFailure(pStmt); |
| 811 return val; |
| 812 } |
| 813 #endif /* SQLITE_OMIT_UTF16 */ |
| 814 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ |
| 815 int iType = sqlite3_value_type( columnMem(pStmt,i) ); |
| 816 columnMallocFailure(pStmt); |
| 817 return iType; |
| 818 } |
| 819 |
| 820 /* The following function is experimental and subject to change or |
| 821 ** removal */ |
| 822 /*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){ |
| 823 ** return sqlite3_value_numeric_type( columnMem(pStmt,i) ); |
| 824 **} |
| 825 */ |
| 826 |
| 827 /* |
| 828 ** Convert the N-th element of pStmt->pColName[] into a string using |
| 829 ** xFunc() then return that string. If N is out of range, return 0. |
| 830 ** |
| 831 ** There are up to 5 names for each column. useType determines which |
| 832 ** name is returned. Here are the names: |
| 833 ** |
| 834 ** 0 The column name as it should be displayed for output |
| 835 ** 1 The datatype name for the column |
| 836 ** 2 The name of the database that the column derives from |
| 837 ** 3 The name of the table that the column derives from |
| 838 ** 4 The name of the table column that the result column derives from |
| 839 ** |
| 840 ** If the result is not a simple column reference (if it is an expression |
| 841 ** or a constant) then useTypes 2, 3, and 4 return NULL. |
| 842 */ |
| 843 static const void *columnName( |
| 844 sqlite3_stmt *pStmt, |
| 845 int N, |
| 846 const void *(*xFunc)(Mem*), |
| 847 int useType |
| 848 ){ |
| 849 const void *ret = 0; |
| 850 Vdbe *p = (Vdbe *)pStmt; |
| 851 int n; |
| 852 sqlite3 *db = p->db; |
| 853 |
| 854 assert( db!=0 ); |
| 855 n = sqlite3_column_count(pStmt); |
| 856 if( N<n && N>=0 ){ |
| 857 N += useType*n; |
| 858 sqlite3_mutex_enter(db->mutex); |
| 859 assert( db->mallocFailed==0 ); |
| 860 ret = xFunc(&p->aColName[N]); |
| 861 /* A malloc may have failed inside of the xFunc() call. If this |
| 862 ** is the case, clear the mallocFailed flag and return NULL. |
| 863 */ |
| 864 if( db->mallocFailed ){ |
| 865 db->mallocFailed = 0; |
| 866 ret = 0; |
| 867 } |
| 868 sqlite3_mutex_leave(db->mutex); |
| 869 } |
| 870 return ret; |
| 871 } |
| 872 |
| 873 /* |
| 874 ** Return the name of the Nth column of the result set returned by SQL |
| 875 ** statement pStmt. |
| 876 */ |
| 877 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ |
| 878 return columnName( |
| 879 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME); |
| 880 } |
| 881 #ifndef SQLITE_OMIT_UTF16 |
| 882 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ |
| 883 return columnName( |
| 884 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME); |
| 885 } |
| 886 #endif |
| 887 |
| 888 /* |
| 889 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must |
| 890 ** not define OMIT_DECLTYPE. |
| 891 */ |
| 892 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) |
| 893 # error "Must not define both SQLITE_OMIT_DECLTYPE \ |
| 894 and SQLITE_ENABLE_COLUMN_METADATA" |
| 895 #endif |
| 896 |
| 897 #ifndef SQLITE_OMIT_DECLTYPE |
| 898 /* |
| 899 ** Return the column declaration type (if applicable) of the 'i'th column |
| 900 ** of the result set of SQL statement pStmt. |
| 901 */ |
| 902 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ |
| 903 return columnName( |
| 904 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE); |
| 905 } |
| 906 #ifndef SQLITE_OMIT_UTF16 |
| 907 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ |
| 908 return columnName( |
| 909 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE); |
| 910 } |
| 911 #endif /* SQLITE_OMIT_UTF16 */ |
| 912 #endif /* SQLITE_OMIT_DECLTYPE */ |
| 913 |
| 914 #ifdef SQLITE_ENABLE_COLUMN_METADATA |
| 915 /* |
| 916 ** Return the name of the database from which a result column derives. |
| 917 ** NULL is returned if the result column is an expression or constant or |
| 918 ** anything else which is not an unabiguous reference to a database column. |
| 919 */ |
| 920 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ |
| 921 return columnName( |
| 922 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE); |
| 923 } |
| 924 #ifndef SQLITE_OMIT_UTF16 |
| 925 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ |
| 926 return columnName( |
| 927 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE); |
| 928 } |
| 929 #endif /* SQLITE_OMIT_UTF16 */ |
| 930 |
| 931 /* |
| 932 ** Return the name of the table from which a result column derives. |
| 933 ** NULL is returned if the result column is an expression or constant or |
| 934 ** anything else which is not an unabiguous reference to a database column. |
| 935 */ |
| 936 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ |
| 937 return columnName( |
| 938 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE); |
| 939 } |
| 940 #ifndef SQLITE_OMIT_UTF16 |
| 941 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ |
| 942 return columnName( |
| 943 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE); |
| 944 } |
| 945 #endif /* SQLITE_OMIT_UTF16 */ |
| 946 |
| 947 /* |
| 948 ** Return the name of the table column from which a result column derives. |
| 949 ** NULL is returned if the result column is an expression or constant or |
| 950 ** anything else which is not an unabiguous reference to a database column. |
| 951 */ |
| 952 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ |
| 953 return columnName( |
| 954 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN); |
| 955 } |
| 956 #ifndef SQLITE_OMIT_UTF16 |
| 957 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ |
| 958 return columnName( |
| 959 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN); |
| 960 } |
| 961 #endif /* SQLITE_OMIT_UTF16 */ |
| 962 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ |
| 963 |
| 964 |
| 965 /******************************* sqlite3_bind_ *************************** |
| 966 ** |
| 967 ** Routines used to attach values to wildcards in a compiled SQL statement. |
| 968 */ |
| 969 /* |
| 970 ** Unbind the value bound to variable i in virtual machine p. This is the |
| 971 ** the same as binding a NULL value to the column. If the "i" parameter is |
| 972 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. |
| 973 ** |
| 974 ** A successful evaluation of this routine acquires the mutex on p. |
| 975 ** the mutex is released if any kind of error occurs. |
| 976 ** |
| 977 ** The error code stored in database p->db is overwritten with the return |
| 978 ** value in any case. |
| 979 */ |
| 980 static int vdbeUnbind(Vdbe *p, int i){ |
| 981 Mem *pVar; |
| 982 if( vdbeSafetyNotNull(p) ){ |
| 983 return SQLITE_MISUSE_BKPT; |
| 984 } |
| 985 sqlite3_mutex_enter(p->db->mutex); |
| 986 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ |
| 987 sqlite3Error(p->db, SQLITE_MISUSE, 0); |
| 988 sqlite3_mutex_leave(p->db->mutex); |
| 989 sqlite3_log(SQLITE_MISUSE, |
| 990 "bind on a busy prepared statement: [%s]", p->zSql); |
| 991 return SQLITE_MISUSE_BKPT; |
| 992 } |
| 993 if( i<1 || i>p->nVar ){ |
| 994 sqlite3Error(p->db, SQLITE_RANGE, 0); |
| 995 sqlite3_mutex_leave(p->db->mutex); |
| 996 return SQLITE_RANGE; |
| 997 } |
| 998 i--; |
| 999 pVar = &p->aVar[i]; |
| 1000 sqlite3VdbeMemRelease(pVar); |
| 1001 pVar->flags = MEM_Null; |
| 1002 sqlite3Error(p->db, SQLITE_OK, 0); |
| 1003 |
| 1004 /* If the bit corresponding to this variable in Vdbe.expmask is set, then |
| 1005 ** binding a new value to this variable invalidates the current query plan. |
| 1006 ** |
| 1007 ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host |
| 1008 ** parameter in the WHERE clause might influence the choice of query plan |
| 1009 ** for a statement, then the statement will be automatically recompiled, |
| 1010 ** as if there had been a schema change, on the first sqlite3_step() call |
| 1011 ** following any change to the bindings of that parameter. |
| 1012 */ |
| 1013 if( p->isPrepareV2 && |
| 1014 ((i<32 && p->expmask & ((u32)1 << i)) || p->expmask==0xffffffff) |
| 1015 ){ |
| 1016 p->expired = 1; |
| 1017 } |
| 1018 return SQLITE_OK; |
| 1019 } |
| 1020 |
| 1021 /* |
| 1022 ** Bind a text or BLOB value. |
| 1023 */ |
| 1024 static int bindText( |
| 1025 sqlite3_stmt *pStmt, /* The statement to bind against */ |
| 1026 int i, /* Index of the parameter to bind */ |
| 1027 const void *zData, /* Pointer to the data to be bound */ |
| 1028 int nData, /* Number of bytes of data to be bound */ |
| 1029 void (*xDel)(void*), /* Destructor for the data */ |
| 1030 u8 encoding /* Encoding for the data */ |
| 1031 ){ |
| 1032 Vdbe *p = (Vdbe *)pStmt; |
| 1033 Mem *pVar; |
| 1034 int rc; |
| 1035 |
| 1036 rc = vdbeUnbind(p, i); |
| 1037 if( rc==SQLITE_OK ){ |
| 1038 if( zData!=0 ){ |
| 1039 pVar = &p->aVar[i-1]; |
| 1040 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); |
| 1041 if( rc==SQLITE_OK && encoding!=0 ){ |
| 1042 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); |
| 1043 } |
| 1044 sqlite3Error(p->db, rc, 0); |
| 1045 rc = sqlite3ApiExit(p->db, rc); |
| 1046 } |
| 1047 sqlite3_mutex_leave(p->db->mutex); |
| 1048 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ |
| 1049 xDel((void*)zData); |
| 1050 } |
| 1051 return rc; |
| 1052 } |
| 1053 |
| 1054 |
| 1055 /* |
| 1056 ** Bind a blob value to an SQL statement variable. |
| 1057 */ |
| 1058 int sqlite3_bind_blob( |
| 1059 sqlite3_stmt *pStmt, |
| 1060 int i, |
| 1061 const void *zData, |
| 1062 int nData, |
| 1063 void (*xDel)(void*) |
| 1064 ){ |
| 1065 return bindText(pStmt, i, zData, nData, xDel, 0); |
| 1066 } |
| 1067 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ |
| 1068 int rc; |
| 1069 Vdbe *p = (Vdbe *)pStmt; |
| 1070 rc = vdbeUnbind(p, i); |
| 1071 if( rc==SQLITE_OK ){ |
| 1072 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); |
| 1073 sqlite3_mutex_leave(p->db->mutex); |
| 1074 } |
| 1075 return rc; |
| 1076 } |
| 1077 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ |
| 1078 return sqlite3_bind_int64(p, i, (i64)iValue); |
| 1079 } |
| 1080 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ |
| 1081 int rc; |
| 1082 Vdbe *p = (Vdbe *)pStmt; |
| 1083 rc = vdbeUnbind(p, i); |
| 1084 if( rc==SQLITE_OK ){ |
| 1085 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); |
| 1086 sqlite3_mutex_leave(p->db->mutex); |
| 1087 } |
| 1088 return rc; |
| 1089 } |
| 1090 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ |
| 1091 int rc; |
| 1092 Vdbe *p = (Vdbe*)pStmt; |
| 1093 rc = vdbeUnbind(p, i); |
| 1094 if( rc==SQLITE_OK ){ |
| 1095 sqlite3_mutex_leave(p->db->mutex); |
| 1096 } |
| 1097 return rc; |
| 1098 } |
| 1099 int sqlite3_bind_text( |
| 1100 sqlite3_stmt *pStmt, |
| 1101 int i, |
| 1102 const char *zData, |
| 1103 int nData, |
| 1104 void (*xDel)(void*) |
| 1105 ){ |
| 1106 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); |
| 1107 } |
| 1108 #ifndef SQLITE_OMIT_UTF16 |
| 1109 int sqlite3_bind_text16( |
| 1110 sqlite3_stmt *pStmt, |
| 1111 int i, |
| 1112 const void *zData, |
| 1113 int nData, |
| 1114 void (*xDel)(void*) |
| 1115 ){ |
| 1116 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); |
| 1117 } |
| 1118 #endif /* SQLITE_OMIT_UTF16 */ |
| 1119 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ |
| 1120 int rc; |
| 1121 switch( pValue->type ){ |
| 1122 case SQLITE_INTEGER: { |
| 1123 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); |
| 1124 break; |
| 1125 } |
| 1126 case SQLITE_FLOAT: { |
| 1127 rc = sqlite3_bind_double(pStmt, i, pValue->r); |
| 1128 break; |
| 1129 } |
| 1130 case SQLITE_BLOB: { |
| 1131 if( pValue->flags & MEM_Zero ){ |
| 1132 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); |
| 1133 }else{ |
| 1134 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); |
| 1135 } |
| 1136 break; |
| 1137 } |
| 1138 case SQLITE_TEXT: { |
| 1139 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, |
| 1140 pValue->enc); |
| 1141 break; |
| 1142 } |
| 1143 default: { |
| 1144 rc = sqlite3_bind_null(pStmt, i); |
| 1145 break; |
| 1146 } |
| 1147 } |
| 1148 return rc; |
| 1149 } |
| 1150 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ |
| 1151 int rc; |
| 1152 Vdbe *p = (Vdbe *)pStmt; |
| 1153 rc = vdbeUnbind(p, i); |
| 1154 if( rc==SQLITE_OK ){ |
| 1155 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); |
| 1156 sqlite3_mutex_leave(p->db->mutex); |
| 1157 } |
| 1158 return rc; |
| 1159 } |
| 1160 |
| 1161 /* |
| 1162 ** Return the number of wildcards that can be potentially bound to. |
| 1163 ** This routine is added to support DBD::SQLite. |
| 1164 */ |
| 1165 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ |
| 1166 Vdbe *p = (Vdbe*)pStmt; |
| 1167 return p ? p->nVar : 0; |
| 1168 } |
| 1169 |
| 1170 /* |
| 1171 ** Create a mapping from variable numbers to variable names |
| 1172 ** in the Vdbe.azVar[] array, if such a mapping does not already |
| 1173 ** exist. |
| 1174 */ |
| 1175 static void createVarMap(Vdbe *p){ |
| 1176 if( !p->okVar ){ |
| 1177 int j; |
| 1178 Op *pOp; |
| 1179 sqlite3_mutex_enter(p->db->mutex); |
| 1180 /* The race condition here is harmless. If two threads call this |
| 1181 ** routine on the same Vdbe at the same time, they both might end |
| 1182 ** up initializing the Vdbe.azVar[] array. That is a little extra |
| 1183 ** work but it results in the same answer. |
| 1184 */ |
| 1185 for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){ |
| 1186 if( pOp->opcode==OP_Variable ){ |
| 1187 assert( pOp->p1>0 && pOp->p1<=p->nVar ); |
| 1188 p->azVar[pOp->p1-1] = pOp->p4.z; |
| 1189 } |
| 1190 } |
| 1191 p->okVar = 1; |
| 1192 sqlite3_mutex_leave(p->db->mutex); |
| 1193 } |
| 1194 } |
| 1195 |
| 1196 /* |
| 1197 ** Return the name of a wildcard parameter. Return NULL if the index |
| 1198 ** is out of range or if the wildcard is unnamed. |
| 1199 ** |
| 1200 ** The result is always UTF-8. |
| 1201 */ |
| 1202 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ |
| 1203 Vdbe *p = (Vdbe*)pStmt; |
| 1204 if( p==0 || i<1 || i>p->nVar ){ |
| 1205 return 0; |
| 1206 } |
| 1207 createVarMap(p); |
| 1208 return p->azVar[i-1]; |
| 1209 } |
| 1210 |
| 1211 /* |
| 1212 ** Given a wildcard parameter name, return the index of the variable |
| 1213 ** with that name. If there is no variable with the given name, |
| 1214 ** return 0. |
| 1215 */ |
| 1216 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ |
| 1217 int i; |
| 1218 if( p==0 ){ |
| 1219 return 0; |
| 1220 } |
| 1221 createVarMap(p); |
| 1222 if( zName ){ |
| 1223 for(i=0; i<p->nVar; i++){ |
| 1224 const char *z = p->azVar[i]; |
| 1225 if( z && memcmp(z,zName,nName)==0 && z[nName]==0 ){ |
| 1226 return i+1; |
| 1227 } |
| 1228 } |
| 1229 } |
| 1230 return 0; |
| 1231 } |
| 1232 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ |
| 1233 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); |
| 1234 } |
| 1235 |
| 1236 /* |
| 1237 ** Transfer all bindings from the first statement over to the second. |
| 1238 */ |
| 1239 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ |
| 1240 Vdbe *pFrom = (Vdbe*)pFromStmt; |
| 1241 Vdbe *pTo = (Vdbe*)pToStmt; |
| 1242 int i; |
| 1243 assert( pTo->db==pFrom->db ); |
| 1244 assert( pTo->nVar==pFrom->nVar ); |
| 1245 sqlite3_mutex_enter(pTo->db->mutex); |
| 1246 for(i=0; i<pFrom->nVar; i++){ |
| 1247 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); |
| 1248 } |
| 1249 sqlite3_mutex_leave(pTo->db->mutex); |
| 1250 return SQLITE_OK; |
| 1251 } |
| 1252 |
| 1253 #ifndef SQLITE_OMIT_DEPRECATED |
| 1254 /* |
| 1255 ** Deprecated external interface. Internal/core SQLite code |
| 1256 ** should call sqlite3TransferBindings. |
| 1257 ** |
| 1258 ** Is is misuse to call this routine with statements from different |
| 1259 ** database connections. But as this is a deprecated interface, we |
| 1260 ** will not bother to check for that condition. |
| 1261 ** |
| 1262 ** If the two statements contain a different number of bindings, then |
| 1263 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise |
| 1264 ** SQLITE_OK is returned. |
| 1265 */ |
| 1266 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ |
| 1267 Vdbe *pFrom = (Vdbe*)pFromStmt; |
| 1268 Vdbe *pTo = (Vdbe*)pToStmt; |
| 1269 if( pFrom->nVar!=pTo->nVar ){ |
| 1270 return SQLITE_ERROR; |
| 1271 } |
| 1272 if( pTo->isPrepareV2 && pTo->expmask ){ |
| 1273 pTo->expired = 1; |
| 1274 } |
| 1275 if( pFrom->isPrepareV2 && pFrom->expmask ){ |
| 1276 pFrom->expired = 1; |
| 1277 } |
| 1278 return sqlite3TransferBindings(pFromStmt, pToStmt); |
| 1279 } |
| 1280 #endif |
| 1281 |
| 1282 /* |
| 1283 ** Return the sqlite3* database handle to which the prepared statement given |
| 1284 ** in the argument belongs. This is the same database handle that was |
| 1285 ** the first argument to the sqlite3_prepare() that was used to create |
| 1286 ** the statement in the first place. |
| 1287 */ |
| 1288 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ |
| 1289 return pStmt ? ((Vdbe*)pStmt)->db : 0; |
| 1290 } |
| 1291 |
| 1292 /* |
| 1293 ** Return true if the prepared statement is guaranteed to not modify the |
| 1294 ** database. |
| 1295 */ |
| 1296 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ |
| 1297 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; |
| 1298 } |
| 1299 |
| 1300 /* |
| 1301 ** Return a pointer to the next prepared statement after pStmt associated |
| 1302 ** with database connection pDb. If pStmt is NULL, return the first |
| 1303 ** prepared statement for the database connection. Return NULL if there |
| 1304 ** are no more. |
| 1305 */ |
| 1306 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ |
| 1307 sqlite3_stmt *pNext; |
| 1308 sqlite3_mutex_enter(pDb->mutex); |
| 1309 if( pStmt==0 ){ |
| 1310 pNext = (sqlite3_stmt*)pDb->pVdbe; |
| 1311 }else{ |
| 1312 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; |
| 1313 } |
| 1314 sqlite3_mutex_leave(pDb->mutex); |
| 1315 return pNext; |
| 1316 } |
| 1317 |
| 1318 /* |
| 1319 ** Return the value of a status counter for a prepared statement |
| 1320 */ |
| 1321 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ |
| 1322 Vdbe *pVdbe = (Vdbe*)pStmt; |
| 1323 int v = pVdbe->aCounter[op-1]; |
| 1324 if( resetFlag ) pVdbe->aCounter[op-1] = 0; |
| 1325 return v; |
| 1326 } |
OLD | NEW |