OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2003 April 6 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** This file contains code used to implement the VACUUM command. |
| 13 ** |
| 14 ** Most of the code in this file may be omitted by defining the |
| 15 ** SQLITE_OMIT_VACUUM macro. |
| 16 */ |
| 17 #include "sqliteInt.h" |
| 18 #include "vdbeInt.h" |
| 19 |
| 20 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) |
| 21 /* |
| 22 ** Finalize a prepared statement. If there was an error, store the |
| 23 ** text of the error message in *pzErrMsg. Return the result code. |
| 24 */ |
| 25 static int vacuumFinalize(sqlite3 *db, sqlite3_stmt *pStmt, char **pzErrMsg){ |
| 26 int rc; |
| 27 rc = sqlite3VdbeFinalize((Vdbe*)pStmt); |
| 28 if( rc ){ |
| 29 sqlite3SetString(pzErrMsg, db, sqlite3_errmsg(db)); |
| 30 } |
| 31 return rc; |
| 32 } |
| 33 |
| 34 /* |
| 35 ** Execute zSql on database db. Return an error code. |
| 36 */ |
| 37 static int execSql(sqlite3 *db, char **pzErrMsg, const char *zSql){ |
| 38 sqlite3_stmt *pStmt; |
| 39 VVA_ONLY( int rc; ) |
| 40 if( !zSql ){ |
| 41 return SQLITE_NOMEM; |
| 42 } |
| 43 if( SQLITE_OK!=sqlite3_prepare(db, zSql, -1, &pStmt, 0) ){ |
| 44 sqlite3SetString(pzErrMsg, db, sqlite3_errmsg(db)); |
| 45 return sqlite3_errcode(db); |
| 46 } |
| 47 VVA_ONLY( rc = ) sqlite3_step(pStmt); |
| 48 assert( rc!=SQLITE_ROW ); |
| 49 return vacuumFinalize(db, pStmt, pzErrMsg); |
| 50 } |
| 51 |
| 52 /* |
| 53 ** Execute zSql on database db. The statement returns exactly |
| 54 ** one column. Execute this as SQL on the same database. |
| 55 */ |
| 56 static int execExecSql(sqlite3 *db, char **pzErrMsg, const char *zSql){ |
| 57 sqlite3_stmt *pStmt; |
| 58 int rc; |
| 59 |
| 60 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); |
| 61 if( rc!=SQLITE_OK ) return rc; |
| 62 |
| 63 while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 64 rc = execSql(db, pzErrMsg, (char*)sqlite3_column_text(pStmt, 0)); |
| 65 if( rc!=SQLITE_OK ){ |
| 66 vacuumFinalize(db, pStmt, pzErrMsg); |
| 67 return rc; |
| 68 } |
| 69 } |
| 70 |
| 71 return vacuumFinalize(db, pStmt, pzErrMsg); |
| 72 } |
| 73 |
| 74 /* |
| 75 ** The non-standard VACUUM command is used to clean up the database, |
| 76 ** collapse free space, etc. It is modelled after the VACUUM command |
| 77 ** in PostgreSQL. |
| 78 ** |
| 79 ** In version 1.0.x of SQLite, the VACUUM command would call |
| 80 ** gdbm_reorganize() on all the database tables. But beginning |
| 81 ** with 2.0.0, SQLite no longer uses GDBM so this command has |
| 82 ** become a no-op. |
| 83 */ |
| 84 void sqlite3Vacuum(Parse *pParse){ |
| 85 Vdbe *v = sqlite3GetVdbe(pParse); |
| 86 if( v ){ |
| 87 sqlite3VdbeAddOp2(v, OP_Vacuum, 0, 0); |
| 88 } |
| 89 return; |
| 90 } |
| 91 |
| 92 /* |
| 93 ** This routine implements the OP_Vacuum opcode of the VDBE. |
| 94 */ |
| 95 int sqlite3RunVacuum(char **pzErrMsg, sqlite3 *db){ |
| 96 int rc = SQLITE_OK; /* Return code from service routines */ |
| 97 Btree *pMain; /* The database being vacuumed */ |
| 98 Btree *pTemp; /* The temporary database we vacuum into */ |
| 99 char *zSql = 0; /* SQL statements */ |
| 100 int saved_flags; /* Saved value of the db->flags */ |
| 101 int saved_nChange; /* Saved value of db->nChange */ |
| 102 int saved_nTotalChange; /* Saved value of db->nTotalChange */ |
| 103 void (*saved_xTrace)(void*,const char*); /* Saved db->xTrace */ |
| 104 Db *pDb = 0; /* Database to detach at end of vacuum */ |
| 105 int isMemDb; /* True if vacuuming a :memory: database */ |
| 106 int nRes; /* Bytes of reserved space at the end of each page */ |
| 107 int nDb; /* Number of attached databases */ |
| 108 |
| 109 if( !db->autoCommit ){ |
| 110 sqlite3SetString(pzErrMsg, db, "cannot VACUUM from within a transaction"); |
| 111 return SQLITE_ERROR; |
| 112 } |
| 113 if( db->activeVdbeCnt>1 ){ |
| 114 sqlite3SetString(pzErrMsg, db,"cannot VACUUM - SQL statements in progress"); |
| 115 return SQLITE_ERROR; |
| 116 } |
| 117 |
| 118 /* Save the current value of the database flags so that it can be |
| 119 ** restored before returning. Then set the writable-schema flag, and |
| 120 ** disable CHECK and foreign key constraints. */ |
| 121 saved_flags = db->flags; |
| 122 saved_nChange = db->nChange; |
| 123 saved_nTotalChange = db->nTotalChange; |
| 124 saved_xTrace = db->xTrace; |
| 125 db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks | SQLITE_PreferBuiltin; |
| 126 db->flags &= ~(SQLITE_ForeignKeys | SQLITE_ReverseOrder); |
| 127 db->xTrace = 0; |
| 128 |
| 129 pMain = db->aDb[0].pBt; |
| 130 isMemDb = sqlite3PagerIsMemdb(sqlite3BtreePager(pMain)); |
| 131 |
| 132 /* Attach the temporary database as 'vacuum_db'. The synchronous pragma |
| 133 ** can be set to 'off' for this file, as it is not recovered if a crash |
| 134 ** occurs anyway. The integrity of the database is maintained by a |
| 135 ** (possibly synchronous) transaction opened on the main database before |
| 136 ** sqlite3BtreeCopyFile() is called. |
| 137 ** |
| 138 ** An optimisation would be to use a non-journaled pager. |
| 139 ** (Later:) I tried setting "PRAGMA vacuum_db.journal_mode=OFF" but |
| 140 ** that actually made the VACUUM run slower. Very little journalling |
| 141 ** actually occurs when doing a vacuum since the vacuum_db is initially |
| 142 ** empty. Only the journal header is written. Apparently it takes more |
| 143 ** time to parse and run the PRAGMA to turn journalling off than it does |
| 144 ** to write the journal header file. |
| 145 */ |
| 146 nDb = db->nDb; |
| 147 if( sqlite3TempInMemory(db) ){ |
| 148 zSql = "ATTACH ':memory:' AS vacuum_db;"; |
| 149 }else{ |
| 150 zSql = "ATTACH '' AS vacuum_db;"; |
| 151 } |
| 152 rc = execSql(db, pzErrMsg, zSql); |
| 153 if( db->nDb>nDb ){ |
| 154 pDb = &db->aDb[db->nDb-1]; |
| 155 assert( strcmp(pDb->zName,"vacuum_db")==0 ); |
| 156 } |
| 157 if( rc!=SQLITE_OK ) goto end_of_vacuum; |
| 158 pTemp = db->aDb[db->nDb-1].pBt; |
| 159 |
| 160 /* The call to execSql() to attach the temp database has left the file |
| 161 ** locked (as there was more than one active statement when the transaction |
| 162 ** to read the schema was concluded. Unlock it here so that this doesn't |
| 163 ** cause problems for the call to BtreeSetPageSize() below. */ |
| 164 sqlite3BtreeCommit(pTemp); |
| 165 |
| 166 nRes = sqlite3BtreeGetReserve(pMain); |
| 167 |
| 168 /* A VACUUM cannot change the pagesize of an encrypted database. */ |
| 169 #ifdef SQLITE_HAS_CODEC |
| 170 if( db->nextPagesize ){ |
| 171 extern void sqlite3CodecGetKey(sqlite3*, int, void**, int*); |
| 172 int nKey; |
| 173 char *zKey; |
| 174 sqlite3CodecGetKey(db, 0, (void**)&zKey, &nKey); |
| 175 if( nKey ) db->nextPagesize = 0; |
| 176 } |
| 177 #endif |
| 178 |
| 179 /* Do not attempt to change the page size for a WAL database */ |
| 180 if( sqlite3PagerGetJournalMode(sqlite3BtreePager(pMain)) |
| 181 ==PAGER_JOURNALMODE_WAL ){ |
| 182 db->nextPagesize = 0; |
| 183 } |
| 184 |
| 185 if( sqlite3BtreeSetPageSize(pTemp, sqlite3BtreeGetPageSize(pMain), nRes, 0) |
| 186 || (!isMemDb && sqlite3BtreeSetPageSize(pTemp, db->nextPagesize, nRes, 0)) |
| 187 || NEVER(db->mallocFailed) |
| 188 ){ |
| 189 rc = SQLITE_NOMEM; |
| 190 goto end_of_vacuum; |
| 191 } |
| 192 rc = execSql(db, pzErrMsg, "PRAGMA vacuum_db.synchronous=OFF"); |
| 193 if( rc!=SQLITE_OK ){ |
| 194 goto end_of_vacuum; |
| 195 } |
| 196 |
| 197 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 198 sqlite3BtreeSetAutoVacuum(pTemp, db->nextAutovac>=0 ? db->nextAutovac : |
| 199 sqlite3BtreeGetAutoVacuum(pMain)); |
| 200 #endif |
| 201 |
| 202 /* Begin a transaction */ |
| 203 rc = execSql(db, pzErrMsg, "BEGIN EXCLUSIVE;"); |
| 204 if( rc!=SQLITE_OK ) goto end_of_vacuum; |
| 205 |
| 206 /* Query the schema of the main database. Create a mirror schema |
| 207 ** in the temporary database. |
| 208 */ |
| 209 rc = execExecSql(db, pzErrMsg, |
| 210 "SELECT 'CREATE TABLE vacuum_db.' || substr(sql,14) " |
| 211 " FROM sqlite_master WHERE type='table' AND name!='sqlite_sequence'" |
| 212 " AND rootpage>0" |
| 213 ); |
| 214 if( rc!=SQLITE_OK ) goto end_of_vacuum; |
| 215 rc = execExecSql(db, pzErrMsg, |
| 216 "SELECT 'CREATE INDEX vacuum_db.' || substr(sql,14)" |
| 217 " FROM sqlite_master WHERE sql LIKE 'CREATE INDEX %' "); |
| 218 if( rc!=SQLITE_OK ) goto end_of_vacuum; |
| 219 rc = execExecSql(db, pzErrMsg, |
| 220 "SELECT 'CREATE UNIQUE INDEX vacuum_db.' || substr(sql,21) " |
| 221 " FROM sqlite_master WHERE sql LIKE 'CREATE UNIQUE INDEX %'"); |
| 222 if( rc!=SQLITE_OK ) goto end_of_vacuum; |
| 223 |
| 224 /* Loop through the tables in the main database. For each, do |
| 225 ** an "INSERT INTO vacuum_db.xxx SELECT * FROM main.xxx;" to copy |
| 226 ** the contents to the temporary database. |
| 227 */ |
| 228 rc = execExecSql(db, pzErrMsg, |
| 229 "SELECT 'INSERT INTO vacuum_db.' || quote(name) " |
| 230 "|| ' SELECT * FROM main.' || quote(name) || ';'" |
| 231 "FROM main.sqlite_master " |
| 232 "WHERE type = 'table' AND name!='sqlite_sequence' " |
| 233 " AND rootpage>0" |
| 234 ); |
| 235 if( rc!=SQLITE_OK ) goto end_of_vacuum; |
| 236 |
| 237 /* Copy over the sequence table |
| 238 */ |
| 239 rc = execExecSql(db, pzErrMsg, |
| 240 "SELECT 'DELETE FROM vacuum_db.' || quote(name) || ';' " |
| 241 "FROM vacuum_db.sqlite_master WHERE name='sqlite_sequence' " |
| 242 ); |
| 243 if( rc!=SQLITE_OK ) goto end_of_vacuum; |
| 244 rc = execExecSql(db, pzErrMsg, |
| 245 "SELECT 'INSERT INTO vacuum_db.' || quote(name) " |
| 246 "|| ' SELECT * FROM main.' || quote(name) || ';' " |
| 247 "FROM vacuum_db.sqlite_master WHERE name=='sqlite_sequence';" |
| 248 ); |
| 249 if( rc!=SQLITE_OK ) goto end_of_vacuum; |
| 250 |
| 251 |
| 252 /* Copy the triggers, views, and virtual tables from the main database |
| 253 ** over to the temporary database. None of these objects has any |
| 254 ** associated storage, so all we have to do is copy their entries |
| 255 ** from the SQLITE_MASTER table. |
| 256 */ |
| 257 rc = execSql(db, pzErrMsg, |
| 258 "INSERT INTO vacuum_db.sqlite_master " |
| 259 " SELECT type, name, tbl_name, rootpage, sql" |
| 260 " FROM main.sqlite_master" |
| 261 " WHERE type='view' OR type='trigger'" |
| 262 " OR (type='table' AND rootpage=0)" |
| 263 ); |
| 264 if( rc ) goto end_of_vacuum; |
| 265 |
| 266 /* At this point, unless the main db was completely empty, there is now a |
| 267 ** transaction open on the vacuum database, but not on the main database. |
| 268 ** Open a btree level transaction on the main database. This allows a |
| 269 ** call to sqlite3BtreeCopyFile(). The main database btree level |
| 270 ** transaction is then committed, so the SQL level never knows it was |
| 271 ** opened for writing. This way, the SQL transaction used to create the |
| 272 ** temporary database never needs to be committed. |
| 273 */ |
| 274 { |
| 275 u32 meta; |
| 276 int i; |
| 277 |
| 278 /* This array determines which meta meta values are preserved in the |
| 279 ** vacuum. Even entries are the meta value number and odd entries |
| 280 ** are an increment to apply to the meta value after the vacuum. |
| 281 ** The increment is used to increase the schema cookie so that other |
| 282 ** connections to the same database will know to reread the schema. |
| 283 */ |
| 284 static const unsigned char aCopy[] = { |
| 285 BTREE_SCHEMA_VERSION, 1, /* Add one to the old schema cookie */ |
| 286 BTREE_DEFAULT_CACHE_SIZE, 0, /* Preserve the default page cache size */ |
| 287 BTREE_TEXT_ENCODING, 0, /* Preserve the text encoding */ |
| 288 BTREE_USER_VERSION, 0, /* Preserve the user version */ |
| 289 }; |
| 290 |
| 291 assert( 1==sqlite3BtreeIsInTrans(pTemp) ); |
| 292 assert( 1==sqlite3BtreeIsInTrans(pMain) ); |
| 293 |
| 294 /* Copy Btree meta values */ |
| 295 for(i=0; i<ArraySize(aCopy); i+=2){ |
| 296 /* GetMeta() and UpdateMeta() cannot fail in this context because |
| 297 ** we already have page 1 loaded into cache and marked dirty. */ |
| 298 sqlite3BtreeGetMeta(pMain, aCopy[i], &meta); |
| 299 rc = sqlite3BtreeUpdateMeta(pTemp, aCopy[i], meta+aCopy[i+1]); |
| 300 if( NEVER(rc!=SQLITE_OK) ) goto end_of_vacuum; |
| 301 } |
| 302 |
| 303 rc = sqlite3BtreeCopyFile(pMain, pTemp); |
| 304 if( rc!=SQLITE_OK ) goto end_of_vacuum; |
| 305 rc = sqlite3BtreeCommit(pTemp); |
| 306 if( rc!=SQLITE_OK ) goto end_of_vacuum; |
| 307 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 308 sqlite3BtreeSetAutoVacuum(pMain, sqlite3BtreeGetAutoVacuum(pTemp)); |
| 309 #endif |
| 310 } |
| 311 |
| 312 assert( rc==SQLITE_OK ); |
| 313 rc = sqlite3BtreeSetPageSize(pMain, sqlite3BtreeGetPageSize(pTemp), nRes,1); |
| 314 |
| 315 end_of_vacuum: |
| 316 /* Restore the original value of db->flags */ |
| 317 db->flags = saved_flags; |
| 318 db->nChange = saved_nChange; |
| 319 db->nTotalChange = saved_nTotalChange; |
| 320 db->xTrace = saved_xTrace; |
| 321 sqlite3BtreeSetPageSize(pMain, -1, -1, 1); |
| 322 |
| 323 /* Currently there is an SQL level transaction open on the vacuum |
| 324 ** database. No locks are held on any other files (since the main file |
| 325 ** was committed at the btree level). So it safe to end the transaction |
| 326 ** by manually setting the autoCommit flag to true and detaching the |
| 327 ** vacuum database. The vacuum_db journal file is deleted when the pager |
| 328 ** is closed by the DETACH. |
| 329 */ |
| 330 db->autoCommit = 1; |
| 331 |
| 332 if( pDb ){ |
| 333 sqlite3BtreeClose(pDb->pBt); |
| 334 pDb->pBt = 0; |
| 335 pDb->pSchema = 0; |
| 336 } |
| 337 |
| 338 /* This both clears the schemas and reduces the size of the db->aDb[] |
| 339 ** array. */ |
| 340 sqlite3ResetInternalSchema(db, -1); |
| 341 |
| 342 return rc; |
| 343 } |
| 344 |
| 345 #endif /* SQLITE_OMIT_VACUUM && SQLITE_OMIT_ATTACH */ |
OLD | NEW |