OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2006 January 07 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ****************************************************************************** |
| 12 ** |
| 13 ** This file contains demonstration code. Nothing in this file gets compiled |
| 14 ** or linked into the SQLite library unless you use a non-standard option: |
| 15 ** |
| 16 ** -DSQLITE_SERVER=1 |
| 17 ** |
| 18 ** The configure script will never generate a Makefile with the option |
| 19 ** above. You will need to manually modify the Makefile if you want to |
| 20 ** include any of the code from this file in your project. Or, at your |
| 21 ** option, you may copy and paste the code from this file and |
| 22 ** thereby avoiding a recompile of SQLite. |
| 23 ** |
| 24 ** |
| 25 ** This source file demonstrates how to use SQLite to create an SQL database |
| 26 ** server thread in a multiple-threaded program. One or more client threads |
| 27 ** send messages to the server thread and the server thread processes those |
| 28 ** messages in the order received and returns the results to the client. |
| 29 ** |
| 30 ** One might ask: "Why bother? Why not just let each thread connect |
| 31 ** to the database directly?" There are a several of reasons to |
| 32 ** prefer the client/server approach. |
| 33 ** |
| 34 ** (1) Some systems (ex: Redhat9) have broken threading implementations |
| 35 ** that prevent SQLite database connections from being used in |
| 36 ** a thread different from the one where they were created. With |
| 37 ** the client/server approach, all database connections are created |
| 38 ** and used within the server thread. Client calls to the database |
| 39 ** can be made from multiple threads (though not at the same time!) |
| 40 ** |
| 41 ** (2) Beginning with SQLite version 3.3.0, when two or more |
| 42 ** connections to the same database occur within the same thread, |
| 43 ** they can optionally share their database cache. This reduces |
| 44 ** I/O and memory requirements. Cache shared is controlled using |
| 45 ** the sqlite3_enable_shared_cache() API. |
| 46 ** |
| 47 ** (3) Database connections on a shared cache use table-level locking |
| 48 ** instead of file-level locking for improved concurrency. |
| 49 ** |
| 50 ** (4) Database connections on a shared cache can by optionally |
| 51 ** set to READ UNCOMMITTED isolation. (The default isolation for |
| 52 ** SQLite is SERIALIZABLE.) When this occurs, readers will |
| 53 ** never be blocked by a writer and writers will not be |
| 54 ** blocked by readers. There can still only be a single writer |
| 55 ** at a time, but multiple readers can simultaneously exist with |
| 56 ** that writer. This is a huge increase in concurrency. |
| 57 ** |
| 58 ** To summarize the rational for using a client/server approach: prior |
| 59 ** to SQLite version 3.3.0 it probably was not worth the trouble. But |
| 60 ** with SQLite version 3.3.0 and beyond you can get significant performance |
| 61 ** and concurrency improvements and memory usage reductions by going |
| 62 ** client/server. |
| 63 ** |
| 64 ** Note: The extra features of version 3.3.0 described by points (2) |
| 65 ** through (4) above are only available if you compile without the |
| 66 ** option -DSQLITE_OMIT_SHARED_CACHE. |
| 67 ** |
| 68 ** Here is how the client/server approach works: The database server |
| 69 ** thread is started on this procedure: |
| 70 ** |
| 71 ** void *sqlite3_server(void *NotUsed); |
| 72 ** |
| 73 ** The sqlite_server procedure runs as long as the g.serverHalt variable |
| 74 ** is false. A mutex is used to make sure no more than one server runs |
| 75 ** at a time. The server waits for messages to arrive on a message |
| 76 ** queue and processes the messages in order. |
| 77 ** |
| 78 ** Two convenience routines are provided for starting and stopping the |
| 79 ** server thread: |
| 80 ** |
| 81 ** void sqlite3_server_start(void); |
| 82 ** void sqlite3_server_stop(void); |
| 83 ** |
| 84 ** Both of the convenience routines return immediately. Neither will |
| 85 ** ever give an error. If a server is already started or already halted, |
| 86 ** then the routines are effectively no-ops. |
| 87 ** |
| 88 ** Clients use the following interfaces: |
| 89 ** |
| 90 ** sqlite3_client_open |
| 91 ** sqlite3_client_prepare |
| 92 ** sqlite3_client_step |
| 93 ** sqlite3_client_reset |
| 94 ** sqlite3_client_finalize |
| 95 ** sqlite3_client_close |
| 96 ** |
| 97 ** These interfaces work exactly like the standard core SQLite interfaces |
| 98 ** having the same names without the "_client_" infix. Many other SQLite |
| 99 ** interfaces can be used directly without having to send messages to the |
| 100 ** server as long as SQLITE_ENABLE_MEMORY_MANAGEMENT is not defined. |
| 101 ** The following interfaces fall into this second category: |
| 102 ** |
| 103 ** sqlite3_bind_* |
| 104 ** sqlite3_changes |
| 105 ** sqlite3_clear_bindings |
| 106 ** sqlite3_column_* |
| 107 ** sqlite3_complete |
| 108 ** sqlite3_create_collation |
| 109 ** sqlite3_create_function |
| 110 ** sqlite3_data_count |
| 111 ** sqlite3_db_handle |
| 112 ** sqlite3_errcode |
| 113 ** sqlite3_errmsg |
| 114 ** sqlite3_last_insert_rowid |
| 115 ** sqlite3_total_changes |
| 116 ** sqlite3_transfer_bindings |
| 117 ** |
| 118 ** A single SQLite connection (an sqlite3* object) or an SQLite statement |
| 119 ** (an sqlite3_stmt* object) should only be passed to a single interface |
| 120 ** function at a time. The connections and statements can be passed from |
| 121 ** any thread to any of the functions listed in the second group above as |
| 122 ** long as the same connection is not in use by two threads at once and |
| 123 ** as long as SQLITE_ENABLE_MEMORY_MANAGEMENT is not defined. Additional |
| 124 ** information about the SQLITE_ENABLE_MEMORY_MANAGEMENT constraint is |
| 125 ** below. |
| 126 ** |
| 127 ** The busy handler for all database connections should remain turned |
| 128 ** off. That means that any lock contention will cause the associated |
| 129 ** sqlite3_client_step() call to return immediately with an SQLITE_BUSY |
| 130 ** error code. If a busy handler is enabled and lock contention occurs, |
| 131 ** then the entire server thread will block. This will cause not only |
| 132 ** the requesting client to block but every other database client as |
| 133 ** well. It is possible to enhance the code below so that lock |
| 134 ** contention will cause the message to be placed back on the top of |
| 135 ** the queue to be tried again later. But such enhanced processing is |
| 136 ** not included here, in order to keep the example simple. |
| 137 ** |
| 138 ** This example code assumes the use of pthreads. Pthreads |
| 139 ** implementations are available for windows. (See, for example |
| 140 ** http://sourceware.org/pthreads-win32/announcement.html.) Or, you |
| 141 ** can translate the locking and thread synchronization code to use |
| 142 ** windows primitives easily enough. The details are left as an |
| 143 ** exercise to the reader. |
| 144 ** |
| 145 **** Restrictions Associated With SQLITE_ENABLE_MEMORY_MANAGEMENT **** |
| 146 ** |
| 147 ** If you compile with SQLITE_ENABLE_MEMORY_MANAGEMENT defined, then |
| 148 ** SQLite includes code that tracks how much memory is being used by |
| 149 ** each thread. These memory counts can become confused if memory |
| 150 ** is allocated by one thread and then freed by another. For that |
| 151 ** reason, when SQLITE_ENABLE_MEMORY_MANAGEMENT is used, all operations |
| 152 ** that might allocate or free memory should be performanced in the same |
| 153 ** thread that originally created the database connection. In that case, |
| 154 ** many of the operations that are listed above as safe to be performed |
| 155 ** in separate threads would need to be sent over to the server to be |
| 156 ** done there. If SQLITE_ENABLE_MEMORY_MANAGEMENT is defined, then |
| 157 ** the following functions can be used safely from different threads |
| 158 ** without messing up the allocation counts: |
| 159 ** |
| 160 ** sqlite3_bind_parameter_name |
| 161 ** sqlite3_bind_parameter_index |
| 162 ** sqlite3_changes |
| 163 ** sqlite3_column_blob |
| 164 ** sqlite3_column_count |
| 165 ** sqlite3_complete |
| 166 ** sqlite3_data_count |
| 167 ** sqlite3_db_handle |
| 168 ** sqlite3_errcode |
| 169 ** sqlite3_errmsg |
| 170 ** sqlite3_last_insert_rowid |
| 171 ** sqlite3_total_changes |
| 172 ** |
| 173 ** The remaining functions are not thread-safe when memory management |
| 174 ** is enabled. So one would have to define some new interface routines |
| 175 ** along the following lines: |
| 176 ** |
| 177 ** sqlite3_client_bind_* |
| 178 ** sqlite3_client_clear_bindings |
| 179 ** sqlite3_client_column_* |
| 180 ** sqlite3_client_create_collation |
| 181 ** sqlite3_client_create_function |
| 182 ** sqlite3_client_transfer_bindings |
| 183 ** |
| 184 ** The example code in this file is intended for use with memory |
| 185 ** management turned off. So the implementation of these additional |
| 186 ** client interfaces is left as an exercise to the reader. |
| 187 ** |
| 188 ** It may seem surprising to the reader that the list of safe functions |
| 189 ** above does not include things like sqlite3_bind_int() or |
| 190 ** sqlite3_column_int(). But those routines might, in fact, allocate |
| 191 ** or deallocate memory. In the case of sqlite3_bind_int(), if the |
| 192 ** parameter was previously bound to a string that string might need |
| 193 ** to be deallocated before the new integer value is inserted. In |
| 194 ** the case of sqlite3_column_int(), the value of the column might be |
| 195 ** a UTF-16 string which will need to be converted to UTF-8 then into |
| 196 ** an integer. |
| 197 */ |
| 198 |
| 199 /* Include this to get the definition of SQLITE_THREADSAFE, in the |
| 200 ** case that default values are used. |
| 201 */ |
| 202 #include "sqliteInt.h" |
| 203 |
| 204 /* |
| 205 ** Only compile the code in this file on UNIX with a SQLITE_THREADSAFE build |
| 206 ** and only if the SQLITE_SERVER macro is defined. |
| 207 */ |
| 208 #if defined(SQLITE_SERVER) && !defined(SQLITE_OMIT_SHARED_CACHE) |
| 209 #if SQLITE_OS_UNIX && SQLITE_THREADSAFE |
| 210 |
| 211 /* |
| 212 ** We require only pthreads and the public interface of SQLite. |
| 213 */ |
| 214 #include <pthread.h> |
| 215 #include "sqlite3.h" |
| 216 |
| 217 /* |
| 218 ** Messages are passed from client to server and back again as |
| 219 ** instances of the following structure. |
| 220 */ |
| 221 typedef struct SqlMessage SqlMessage; |
| 222 struct SqlMessage { |
| 223 int op; /* Opcode for the message */ |
| 224 sqlite3 *pDb; /* The SQLite connection */ |
| 225 sqlite3_stmt *pStmt; /* A specific statement */ |
| 226 int errCode; /* Error code returned */ |
| 227 const char *zIn; /* Input filename or SQL statement */ |
| 228 int nByte; /* Size of the zIn parameter for prepare() */ |
| 229 const char *zOut; /* Tail of the SQL statement */ |
| 230 SqlMessage *pNext; /* Next message in the queue */ |
| 231 SqlMessage *pPrev; /* Previous message in the queue */ |
| 232 pthread_mutex_t clientMutex; /* Hold this mutex to access the message */ |
| 233 pthread_cond_t clientWakeup; /* Signal to wake up the client */ |
| 234 }; |
| 235 |
| 236 /* |
| 237 ** Legal values for SqlMessage.op |
| 238 */ |
| 239 #define MSG_Open 1 /* sqlite3_open(zIn, &pDb) */ |
| 240 #define MSG_Prepare 2 /* sqlite3_prepare(pDb, zIn, nByte, &pStmt, &zOut) */ |
| 241 #define MSG_Step 3 /* sqlite3_step(pStmt) */ |
| 242 #define MSG_Reset 4 /* sqlite3_reset(pStmt) */ |
| 243 #define MSG_Finalize 5 /* sqlite3_finalize(pStmt) */ |
| 244 #define MSG_Close 6 /* sqlite3_close(pDb) */ |
| 245 #define MSG_Done 7 /* Server has finished with this message */ |
| 246 |
| 247 |
| 248 /* |
| 249 ** State information about the server is stored in a static variable |
| 250 ** named "g" as follows: |
| 251 */ |
| 252 static struct ServerState { |
| 253 pthread_mutex_t queueMutex; /* Hold this mutex to access the msg queue */ |
| 254 pthread_mutex_t serverMutex; /* Held by the server while it is running */ |
| 255 pthread_cond_t serverWakeup; /* Signal this condvar to wake up the server */ |
| 256 volatile int serverHalt; /* Server halts itself when true */ |
| 257 SqlMessage *pQueueHead; /* Head of the message queue */ |
| 258 SqlMessage *pQueueTail; /* Tail of the message queue */ |
| 259 } g = { |
| 260 PTHREAD_MUTEX_INITIALIZER, |
| 261 PTHREAD_MUTEX_INITIALIZER, |
| 262 PTHREAD_COND_INITIALIZER, |
| 263 }; |
| 264 |
| 265 /* |
| 266 ** Send a message to the server. Block until we get a reply. |
| 267 ** |
| 268 ** The mutex and condition variable in the message are uninitialized |
| 269 ** when this routine is called. This routine takes care of |
| 270 ** initializing them and destroying them when it has finished. |
| 271 */ |
| 272 static void sendToServer(SqlMessage *pMsg){ |
| 273 /* Initialize the mutex and condition variable on the message |
| 274 */ |
| 275 pthread_mutex_init(&pMsg->clientMutex, 0); |
| 276 pthread_cond_init(&pMsg->clientWakeup, 0); |
| 277 |
| 278 /* Add the message to the head of the server's message queue. |
| 279 */ |
| 280 pthread_mutex_lock(&g.queueMutex); |
| 281 pMsg->pNext = g.pQueueHead; |
| 282 if( g.pQueueHead==0 ){ |
| 283 g.pQueueTail = pMsg; |
| 284 }else{ |
| 285 g.pQueueHead->pPrev = pMsg; |
| 286 } |
| 287 pMsg->pPrev = 0; |
| 288 g.pQueueHead = pMsg; |
| 289 pthread_mutex_unlock(&g.queueMutex); |
| 290 |
| 291 /* Signal the server that the new message has be queued, then |
| 292 ** block waiting for the server to process the message. |
| 293 */ |
| 294 pthread_mutex_lock(&pMsg->clientMutex); |
| 295 pthread_cond_signal(&g.serverWakeup); |
| 296 while( pMsg->op!=MSG_Done ){ |
| 297 pthread_cond_wait(&pMsg->clientWakeup, &pMsg->clientMutex); |
| 298 } |
| 299 pthread_mutex_unlock(&pMsg->clientMutex); |
| 300 |
| 301 /* Destroy the mutex and condition variable of the message. |
| 302 */ |
| 303 pthread_mutex_destroy(&pMsg->clientMutex); |
| 304 pthread_cond_destroy(&pMsg->clientWakeup); |
| 305 } |
| 306 |
| 307 /* |
| 308 ** The following 6 routines are client-side implementations of the |
| 309 ** core SQLite interfaces: |
| 310 ** |
| 311 ** sqlite3_open |
| 312 ** sqlite3_prepare |
| 313 ** sqlite3_step |
| 314 ** sqlite3_reset |
| 315 ** sqlite3_finalize |
| 316 ** sqlite3_close |
| 317 ** |
| 318 ** Clients should use the following client-side routines instead of |
| 319 ** the core routines above. |
| 320 ** |
| 321 ** sqlite3_client_open |
| 322 ** sqlite3_client_prepare |
| 323 ** sqlite3_client_step |
| 324 ** sqlite3_client_reset |
| 325 ** sqlite3_client_finalize |
| 326 ** sqlite3_client_close |
| 327 ** |
| 328 ** Each of these routines creates a message for the desired operation, |
| 329 ** sends that message to the server, waits for the server to process |
| 330 ** then message and return a response. |
| 331 */ |
| 332 int sqlite3_client_open(const char *zDatabaseName, sqlite3 **ppDb){ |
| 333 SqlMessage msg; |
| 334 msg.op = MSG_Open; |
| 335 msg.zIn = zDatabaseName; |
| 336 sendToServer(&msg); |
| 337 *ppDb = msg.pDb; |
| 338 return msg.errCode; |
| 339 } |
| 340 int sqlite3_client_prepare( |
| 341 sqlite3 *pDb, |
| 342 const char *zSql, |
| 343 int nByte, |
| 344 sqlite3_stmt **ppStmt, |
| 345 const char **pzTail |
| 346 ){ |
| 347 SqlMessage msg; |
| 348 msg.op = MSG_Prepare; |
| 349 msg.pDb = pDb; |
| 350 msg.zIn = zSql; |
| 351 msg.nByte = nByte; |
| 352 sendToServer(&msg); |
| 353 *ppStmt = msg.pStmt; |
| 354 if( pzTail ) *pzTail = msg.zOut; |
| 355 return msg.errCode; |
| 356 } |
| 357 int sqlite3_client_step(sqlite3_stmt *pStmt){ |
| 358 SqlMessage msg; |
| 359 msg.op = MSG_Step; |
| 360 msg.pStmt = pStmt; |
| 361 sendToServer(&msg); |
| 362 return msg.errCode; |
| 363 } |
| 364 int sqlite3_client_reset(sqlite3_stmt *pStmt){ |
| 365 SqlMessage msg; |
| 366 msg.op = MSG_Reset; |
| 367 msg.pStmt = pStmt; |
| 368 sendToServer(&msg); |
| 369 return msg.errCode; |
| 370 } |
| 371 int sqlite3_client_finalize(sqlite3_stmt *pStmt){ |
| 372 SqlMessage msg; |
| 373 msg.op = MSG_Finalize; |
| 374 msg.pStmt = pStmt; |
| 375 sendToServer(&msg); |
| 376 return msg.errCode; |
| 377 } |
| 378 int sqlite3_client_close(sqlite3 *pDb){ |
| 379 SqlMessage msg; |
| 380 msg.op = MSG_Close; |
| 381 msg.pDb = pDb; |
| 382 sendToServer(&msg); |
| 383 return msg.errCode; |
| 384 } |
| 385 |
| 386 /* |
| 387 ** This routine implements the server. To start the server, first |
| 388 ** make sure g.serverHalt is false, then create a new detached thread |
| 389 ** on this procedure. See the sqlite3_server_start() routine below |
| 390 ** for an example. This procedure loops until g.serverHalt becomes |
| 391 ** true. |
| 392 */ |
| 393 void *sqlite3_server(void *NotUsed){ |
| 394 if( pthread_mutex_trylock(&g.serverMutex) ){ |
| 395 return 0; /* Another server is already running */ |
| 396 } |
| 397 sqlite3_enable_shared_cache(1); |
| 398 while( !g.serverHalt ){ |
| 399 SqlMessage *pMsg; |
| 400 |
| 401 /* Remove the last message from the message queue. |
| 402 */ |
| 403 pthread_mutex_lock(&g.queueMutex); |
| 404 while( g.pQueueTail==0 && g.serverHalt==0 ){ |
| 405 pthread_cond_wait(&g.serverWakeup, &g.queueMutex); |
| 406 } |
| 407 pMsg = g.pQueueTail; |
| 408 if( pMsg ){ |
| 409 if( pMsg->pPrev ){ |
| 410 pMsg->pPrev->pNext = 0; |
| 411 }else{ |
| 412 g.pQueueHead = 0; |
| 413 } |
| 414 g.pQueueTail = pMsg->pPrev; |
| 415 } |
| 416 pthread_mutex_unlock(&g.queueMutex); |
| 417 if( pMsg==0 ) break; |
| 418 |
| 419 /* Process the message just removed |
| 420 */ |
| 421 pthread_mutex_lock(&pMsg->clientMutex); |
| 422 switch( pMsg->op ){ |
| 423 case MSG_Open: { |
| 424 pMsg->errCode = sqlite3_open(pMsg->zIn, &pMsg->pDb); |
| 425 break; |
| 426 } |
| 427 case MSG_Prepare: { |
| 428 pMsg->errCode = sqlite3_prepare(pMsg->pDb, pMsg->zIn, pMsg->nByte, |
| 429 &pMsg->pStmt, &pMsg->zOut); |
| 430 break; |
| 431 } |
| 432 case MSG_Step: { |
| 433 pMsg->errCode = sqlite3_step(pMsg->pStmt); |
| 434 break; |
| 435 } |
| 436 case MSG_Reset: { |
| 437 pMsg->errCode = sqlite3_reset(pMsg->pStmt); |
| 438 break; |
| 439 } |
| 440 case MSG_Finalize: { |
| 441 pMsg->errCode = sqlite3_finalize(pMsg->pStmt); |
| 442 break; |
| 443 } |
| 444 case MSG_Close: { |
| 445 pMsg->errCode = sqlite3_close(pMsg->pDb); |
| 446 break; |
| 447 } |
| 448 } |
| 449 |
| 450 /* Signal the client that the message has been processed. |
| 451 */ |
| 452 pMsg->op = MSG_Done; |
| 453 pthread_mutex_unlock(&pMsg->clientMutex); |
| 454 pthread_cond_signal(&pMsg->clientWakeup); |
| 455 } |
| 456 pthread_mutex_unlock(&g.serverMutex); |
| 457 return 0; |
| 458 } |
| 459 |
| 460 /* |
| 461 ** Start a server thread if one is not already running. If there |
| 462 ** is aleady a server thread running, the new thread will quickly |
| 463 ** die and this routine is effectively a no-op. |
| 464 */ |
| 465 void sqlite3_server_start(void){ |
| 466 pthread_t x; |
| 467 int rc; |
| 468 g.serverHalt = 0; |
| 469 rc = pthread_create(&x, 0, sqlite3_server, 0); |
| 470 if( rc==0 ){ |
| 471 pthread_detach(x); |
| 472 } |
| 473 } |
| 474 |
| 475 /* |
| 476 ** If a server thread is running, then stop it. If no server is |
| 477 ** running, this routine is effectively a no-op. |
| 478 ** |
| 479 ** This routine waits until the server has actually stopped before |
| 480 ** returning. |
| 481 */ |
| 482 void sqlite3_server_stop(void){ |
| 483 g.serverHalt = 1; |
| 484 pthread_cond_broadcast(&g.serverWakeup); |
| 485 pthread_mutex_lock(&g.serverMutex); |
| 486 pthread_mutex_unlock(&g.serverMutex); |
| 487 } |
| 488 |
| 489 #endif /* SQLITE_OS_UNIX && SQLITE_THREADSAFE */ |
| 490 #endif /* defined(SQLITE_SERVER) */ |
OLD | NEW |