OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2005 May 23 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** |
| 13 ** This file contains functions used to access the internal hash tables |
| 14 ** of user defined functions and collation sequences. |
| 15 */ |
| 16 |
| 17 #include "sqliteInt.h" |
| 18 |
| 19 /* |
| 20 ** Invoke the 'collation needed' callback to request a collation sequence |
| 21 ** in the encoding enc of name zName, length nName. |
| 22 */ |
| 23 static void callCollNeeded(sqlite3 *db, int enc, const char *zName){ |
| 24 assert( !db->xCollNeeded || !db->xCollNeeded16 ); |
| 25 if( db->xCollNeeded ){ |
| 26 char *zExternal = sqlite3DbStrDup(db, zName); |
| 27 if( !zExternal ) return; |
| 28 db->xCollNeeded(db->pCollNeededArg, db, enc, zExternal); |
| 29 sqlite3DbFree(db, zExternal); |
| 30 } |
| 31 #ifndef SQLITE_OMIT_UTF16 |
| 32 if( db->xCollNeeded16 ){ |
| 33 char const *zExternal; |
| 34 sqlite3_value *pTmp = sqlite3ValueNew(db); |
| 35 sqlite3ValueSetStr(pTmp, -1, zName, SQLITE_UTF8, SQLITE_STATIC); |
| 36 zExternal = sqlite3ValueText(pTmp, SQLITE_UTF16NATIVE); |
| 37 if( zExternal ){ |
| 38 db->xCollNeeded16(db->pCollNeededArg, db, (int)ENC(db), zExternal); |
| 39 } |
| 40 sqlite3ValueFree(pTmp); |
| 41 } |
| 42 #endif |
| 43 } |
| 44 |
| 45 /* |
| 46 ** This routine is called if the collation factory fails to deliver a |
| 47 ** collation function in the best encoding but there may be other versions |
| 48 ** of this collation function (for other text encodings) available. Use one |
| 49 ** of these instead if they exist. Avoid a UTF-8 <-> UTF-16 conversion if |
| 50 ** possible. |
| 51 */ |
| 52 static int synthCollSeq(sqlite3 *db, CollSeq *pColl){ |
| 53 CollSeq *pColl2; |
| 54 char *z = pColl->zName; |
| 55 int i; |
| 56 static const u8 aEnc[] = { SQLITE_UTF16BE, SQLITE_UTF16LE, SQLITE_UTF8 }; |
| 57 for(i=0; i<3; i++){ |
| 58 pColl2 = sqlite3FindCollSeq(db, aEnc[i], z, 0); |
| 59 if( pColl2->xCmp!=0 ){ |
| 60 memcpy(pColl, pColl2, sizeof(CollSeq)); |
| 61 pColl->xDel = 0; /* Do not copy the destructor */ |
| 62 return SQLITE_OK; |
| 63 } |
| 64 } |
| 65 return SQLITE_ERROR; |
| 66 } |
| 67 |
| 68 /* |
| 69 ** This function is responsible for invoking the collation factory callback |
| 70 ** or substituting a collation sequence of a different encoding when the |
| 71 ** requested collation sequence is not available in the desired encoding. |
| 72 ** |
| 73 ** If it is not NULL, then pColl must point to the database native encoding |
| 74 ** collation sequence with name zName, length nName. |
| 75 ** |
| 76 ** The return value is either the collation sequence to be used in database |
| 77 ** db for collation type name zName, length nName, or NULL, if no collation |
| 78 ** sequence can be found. |
| 79 ** |
| 80 ** See also: sqlite3LocateCollSeq(), sqlite3FindCollSeq() |
| 81 */ |
| 82 CollSeq *sqlite3GetCollSeq( |
| 83 sqlite3* db, /* The database connection */ |
| 84 u8 enc, /* The desired encoding for the collating sequence */ |
| 85 CollSeq *pColl, /* Collating sequence with native encoding, or NULL */ |
| 86 const char *zName /* Collating sequence name */ |
| 87 ){ |
| 88 CollSeq *p; |
| 89 |
| 90 p = pColl; |
| 91 if( !p ){ |
| 92 p = sqlite3FindCollSeq(db, enc, zName, 0); |
| 93 } |
| 94 if( !p || !p->xCmp ){ |
| 95 /* No collation sequence of this type for this encoding is registered. |
| 96 ** Call the collation factory to see if it can supply us with one. |
| 97 */ |
| 98 callCollNeeded(db, enc, zName); |
| 99 p = sqlite3FindCollSeq(db, enc, zName, 0); |
| 100 } |
| 101 if( p && !p->xCmp && synthCollSeq(db, p) ){ |
| 102 p = 0; |
| 103 } |
| 104 assert( !p || p->xCmp ); |
| 105 return p; |
| 106 } |
| 107 |
| 108 /* |
| 109 ** This routine is called on a collation sequence before it is used to |
| 110 ** check that it is defined. An undefined collation sequence exists when |
| 111 ** a database is loaded that contains references to collation sequences |
| 112 ** that have not been defined by sqlite3_create_collation() etc. |
| 113 ** |
| 114 ** If required, this routine calls the 'collation needed' callback to |
| 115 ** request a definition of the collating sequence. If this doesn't work, |
| 116 ** an equivalent collating sequence that uses a text encoding different |
| 117 ** from the main database is substituted, if one is available. |
| 118 */ |
| 119 int sqlite3CheckCollSeq(Parse *pParse, CollSeq *pColl){ |
| 120 if( pColl ){ |
| 121 const char *zName = pColl->zName; |
| 122 sqlite3 *db = pParse->db; |
| 123 CollSeq *p = sqlite3GetCollSeq(db, ENC(db), pColl, zName); |
| 124 if( !p ){ |
| 125 sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName); |
| 126 pParse->nErr++; |
| 127 return SQLITE_ERROR; |
| 128 } |
| 129 assert( p==pColl ); |
| 130 } |
| 131 return SQLITE_OK; |
| 132 } |
| 133 |
| 134 |
| 135 |
| 136 /* |
| 137 ** Locate and return an entry from the db.aCollSeq hash table. If the entry |
| 138 ** specified by zName and nName is not found and parameter 'create' is |
| 139 ** true, then create a new entry. Otherwise return NULL. |
| 140 ** |
| 141 ** Each pointer stored in the sqlite3.aCollSeq hash table contains an |
| 142 ** array of three CollSeq structures. The first is the collation sequence |
| 143 ** prefferred for UTF-8, the second UTF-16le, and the third UTF-16be. |
| 144 ** |
| 145 ** Stored immediately after the three collation sequences is a copy of |
| 146 ** the collation sequence name. A pointer to this string is stored in |
| 147 ** each collation sequence structure. |
| 148 */ |
| 149 static CollSeq *findCollSeqEntry( |
| 150 sqlite3 *db, /* Database connection */ |
| 151 const char *zName, /* Name of the collating sequence */ |
| 152 int create /* Create a new entry if true */ |
| 153 ){ |
| 154 CollSeq *pColl; |
| 155 int nName = sqlite3Strlen30(zName); |
| 156 pColl = sqlite3HashFind(&db->aCollSeq, zName, nName); |
| 157 |
| 158 if( 0==pColl && create ){ |
| 159 pColl = sqlite3DbMallocZero(db, 3*sizeof(*pColl) + nName + 1 ); |
| 160 if( pColl ){ |
| 161 CollSeq *pDel = 0; |
| 162 pColl[0].zName = (char*)&pColl[3]; |
| 163 pColl[0].enc = SQLITE_UTF8; |
| 164 pColl[1].zName = (char*)&pColl[3]; |
| 165 pColl[1].enc = SQLITE_UTF16LE; |
| 166 pColl[2].zName = (char*)&pColl[3]; |
| 167 pColl[2].enc = SQLITE_UTF16BE; |
| 168 memcpy(pColl[0].zName, zName, nName); |
| 169 pColl[0].zName[nName] = 0; |
| 170 pDel = sqlite3HashInsert(&db->aCollSeq, pColl[0].zName, nName, pColl); |
| 171 |
| 172 /* If a malloc() failure occurred in sqlite3HashInsert(), it will |
| 173 ** return the pColl pointer to be deleted (because it wasn't added |
| 174 ** to the hash table). |
| 175 */ |
| 176 assert( pDel==0 || pDel==pColl ); |
| 177 if( pDel!=0 ){ |
| 178 db->mallocFailed = 1; |
| 179 sqlite3DbFree(db, pDel); |
| 180 pColl = 0; |
| 181 } |
| 182 } |
| 183 } |
| 184 return pColl; |
| 185 } |
| 186 |
| 187 /* |
| 188 ** Parameter zName points to a UTF-8 encoded string nName bytes long. |
| 189 ** Return the CollSeq* pointer for the collation sequence named zName |
| 190 ** for the encoding 'enc' from the database 'db'. |
| 191 ** |
| 192 ** If the entry specified is not found and 'create' is true, then create a |
| 193 ** new entry. Otherwise return NULL. |
| 194 ** |
| 195 ** A separate function sqlite3LocateCollSeq() is a wrapper around |
| 196 ** this routine. sqlite3LocateCollSeq() invokes the collation factory |
| 197 ** if necessary and generates an error message if the collating sequence |
| 198 ** cannot be found. |
| 199 ** |
| 200 ** See also: sqlite3LocateCollSeq(), sqlite3GetCollSeq() |
| 201 */ |
| 202 CollSeq *sqlite3FindCollSeq( |
| 203 sqlite3 *db, |
| 204 u8 enc, |
| 205 const char *zName, |
| 206 int create |
| 207 ){ |
| 208 CollSeq *pColl; |
| 209 if( zName ){ |
| 210 pColl = findCollSeqEntry(db, zName, create); |
| 211 }else{ |
| 212 pColl = db->pDfltColl; |
| 213 } |
| 214 assert( SQLITE_UTF8==1 && SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); |
| 215 assert( enc>=SQLITE_UTF8 && enc<=SQLITE_UTF16BE ); |
| 216 if( pColl ) pColl += enc-1; |
| 217 return pColl; |
| 218 } |
| 219 |
| 220 /* During the search for the best function definition, this procedure |
| 221 ** is called to test how well the function passed as the first argument |
| 222 ** matches the request for a function with nArg arguments in a system |
| 223 ** that uses encoding enc. The value returned indicates how well the |
| 224 ** request is matched. A higher value indicates a better match. |
| 225 ** |
| 226 ** The returned value is always between 0 and 6, as follows: |
| 227 ** |
| 228 ** 0: Not a match, or if nArg<0 and the function is has no implementation. |
| 229 ** 1: A variable arguments function that prefers UTF-8 when a UTF-16 |
| 230 ** encoding is requested, or vice versa. |
| 231 ** 2: A variable arguments function that uses UTF-16BE when UTF-16LE is |
| 232 ** requested, or vice versa. |
| 233 ** 3: A variable arguments function using the same text encoding. |
| 234 ** 4: A function with the exact number of arguments requested that |
| 235 ** prefers UTF-8 when a UTF-16 encoding is requested, or vice versa. |
| 236 ** 5: A function with the exact number of arguments requested that |
| 237 ** prefers UTF-16LE when UTF-16BE is requested, or vice versa. |
| 238 ** 6: An exact match. |
| 239 ** |
| 240 */ |
| 241 static int matchQuality(FuncDef *p, int nArg, u8 enc){ |
| 242 int match = 0; |
| 243 if( p->nArg==-1 || p->nArg==nArg |
| 244 || (nArg==-1 && (p->xFunc!=0 || p->xStep!=0)) |
| 245 ){ |
| 246 match = 1; |
| 247 if( p->nArg==nArg || nArg==-1 ){ |
| 248 match = 4; |
| 249 } |
| 250 if( enc==p->iPrefEnc ){ |
| 251 match += 2; |
| 252 } |
| 253 else if( (enc==SQLITE_UTF16LE && p->iPrefEnc==SQLITE_UTF16BE) || |
| 254 (enc==SQLITE_UTF16BE && p->iPrefEnc==SQLITE_UTF16LE) ){ |
| 255 match += 1; |
| 256 } |
| 257 } |
| 258 return match; |
| 259 } |
| 260 |
| 261 /* |
| 262 ** Search a FuncDefHash for a function with the given name. Return |
| 263 ** a pointer to the matching FuncDef if found, or 0 if there is no match. |
| 264 */ |
| 265 static FuncDef *functionSearch( |
| 266 FuncDefHash *pHash, /* Hash table to search */ |
| 267 int h, /* Hash of the name */ |
| 268 const char *zFunc, /* Name of function */ |
| 269 int nFunc /* Number of bytes in zFunc */ |
| 270 ){ |
| 271 FuncDef *p; |
| 272 for(p=pHash->a[h]; p; p=p->pHash){ |
| 273 if( sqlite3StrNICmp(p->zName, zFunc, nFunc)==0 && p->zName[nFunc]==0 ){ |
| 274 return p; |
| 275 } |
| 276 } |
| 277 return 0; |
| 278 } |
| 279 |
| 280 /* |
| 281 ** Insert a new FuncDef into a FuncDefHash hash table. |
| 282 */ |
| 283 void sqlite3FuncDefInsert( |
| 284 FuncDefHash *pHash, /* The hash table into which to insert */ |
| 285 FuncDef *pDef /* The function definition to insert */ |
| 286 ){ |
| 287 FuncDef *pOther; |
| 288 int nName = sqlite3Strlen30(pDef->zName); |
| 289 u8 c1 = (u8)pDef->zName[0]; |
| 290 int h = (sqlite3UpperToLower[c1] + nName) % ArraySize(pHash->a); |
| 291 pOther = functionSearch(pHash, h, pDef->zName, nName); |
| 292 if( pOther ){ |
| 293 assert( pOther!=pDef && pOther->pNext!=pDef ); |
| 294 pDef->pNext = pOther->pNext; |
| 295 pOther->pNext = pDef; |
| 296 }else{ |
| 297 pDef->pNext = 0; |
| 298 pDef->pHash = pHash->a[h]; |
| 299 pHash->a[h] = pDef; |
| 300 } |
| 301 } |
| 302 |
| 303 |
| 304 |
| 305 /* |
| 306 ** Locate a user function given a name, a number of arguments and a flag |
| 307 ** indicating whether the function prefers UTF-16 over UTF-8. Return a |
| 308 ** pointer to the FuncDef structure that defines that function, or return |
| 309 ** NULL if the function does not exist. |
| 310 ** |
| 311 ** If the createFlag argument is true, then a new (blank) FuncDef |
| 312 ** structure is created and liked into the "db" structure if a |
| 313 ** no matching function previously existed. When createFlag is true |
| 314 ** and the nArg parameter is -1, then only a function that accepts |
| 315 ** any number of arguments will be returned. |
| 316 ** |
| 317 ** If createFlag is false and nArg is -1, then the first valid |
| 318 ** function found is returned. A function is valid if either xFunc |
| 319 ** or xStep is non-zero. |
| 320 ** |
| 321 ** If createFlag is false, then a function with the required name and |
| 322 ** number of arguments may be returned even if the eTextRep flag does not |
| 323 ** match that requested. |
| 324 */ |
| 325 FuncDef *sqlite3FindFunction( |
| 326 sqlite3 *db, /* An open database */ |
| 327 const char *zName, /* Name of the function. Not null-terminated */ |
| 328 int nName, /* Number of characters in the name */ |
| 329 int nArg, /* Number of arguments. -1 means any number */ |
| 330 u8 enc, /* Preferred text encoding */ |
| 331 int createFlag /* Create new entry if true and does not otherwise exist */ |
| 332 ){ |
| 333 FuncDef *p; /* Iterator variable */ |
| 334 FuncDef *pBest = 0; /* Best match found so far */ |
| 335 int bestScore = 0; /* Score of best match */ |
| 336 int h; /* Hash value */ |
| 337 |
| 338 |
| 339 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); |
| 340 h = (sqlite3UpperToLower[(u8)zName[0]] + nName) % ArraySize(db->aFunc.a); |
| 341 |
| 342 /* First search for a match amongst the application-defined functions. |
| 343 */ |
| 344 p = functionSearch(&db->aFunc, h, zName, nName); |
| 345 while( p ){ |
| 346 int score = matchQuality(p, nArg, enc); |
| 347 if( score>bestScore ){ |
| 348 pBest = p; |
| 349 bestScore = score; |
| 350 } |
| 351 p = p->pNext; |
| 352 } |
| 353 |
| 354 /* If no match is found, search the built-in functions. |
| 355 ** |
| 356 ** If the SQLITE_PreferBuiltin flag is set, then search the built-in |
| 357 ** functions even if a prior app-defined function was found. And give |
| 358 ** priority to built-in functions. |
| 359 ** |
| 360 ** Except, if createFlag is true, that means that we are trying to |
| 361 ** install a new function. Whatever FuncDef structure is returned it will |
| 362 ** have fields overwritten with new information appropriate for the |
| 363 ** new function. But the FuncDefs for built-in functions are read-only. |
| 364 ** So we must not search for built-ins when creating a new function. |
| 365 */ |
| 366 if( !createFlag && (pBest==0 || (db->flags & SQLITE_PreferBuiltin)!=0) ){ |
| 367 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); |
| 368 bestScore = 0; |
| 369 p = functionSearch(pHash, h, zName, nName); |
| 370 while( p ){ |
| 371 int score = matchQuality(p, nArg, enc); |
| 372 if( score>bestScore ){ |
| 373 pBest = p; |
| 374 bestScore = score; |
| 375 } |
| 376 p = p->pNext; |
| 377 } |
| 378 } |
| 379 |
| 380 /* If the createFlag parameter is true and the search did not reveal an |
| 381 ** exact match for the name, number of arguments and encoding, then add a |
| 382 ** new entry to the hash table and return it. |
| 383 */ |
| 384 if( createFlag && (bestScore<6 || pBest->nArg!=nArg) && |
| 385 (pBest = sqlite3DbMallocZero(db, sizeof(*pBest)+nName+1))!=0 ){ |
| 386 pBest->zName = (char *)&pBest[1]; |
| 387 pBest->nArg = (u16)nArg; |
| 388 pBest->iPrefEnc = enc; |
| 389 memcpy(pBest->zName, zName, nName); |
| 390 pBest->zName[nName] = 0; |
| 391 sqlite3FuncDefInsert(&db->aFunc, pBest); |
| 392 } |
| 393 |
| 394 if( pBest && (pBest->xStep || pBest->xFunc || createFlag) ){ |
| 395 return pBest; |
| 396 } |
| 397 return 0; |
| 398 } |
| 399 |
| 400 /* |
| 401 ** Free all resources held by the schema structure. The void* argument points |
| 402 ** at a Schema struct. This function does not call sqlite3DbFree(db, ) on the |
| 403 ** pointer itself, it just cleans up subsidiary resources (i.e. the contents |
| 404 ** of the schema hash tables). |
| 405 ** |
| 406 ** The Schema.cache_size variable is not cleared. |
| 407 */ |
| 408 void sqlite3SchemaClear(void *p){ |
| 409 Hash temp1; |
| 410 Hash temp2; |
| 411 HashElem *pElem; |
| 412 Schema *pSchema = (Schema *)p; |
| 413 |
| 414 temp1 = pSchema->tblHash; |
| 415 temp2 = pSchema->trigHash; |
| 416 sqlite3HashInit(&pSchema->trigHash); |
| 417 sqlite3HashClear(&pSchema->idxHash); |
| 418 for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){ |
| 419 sqlite3DeleteTrigger(0, (Trigger*)sqliteHashData(pElem)); |
| 420 } |
| 421 sqlite3HashClear(&temp2); |
| 422 sqlite3HashInit(&pSchema->tblHash); |
| 423 for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){ |
| 424 Table *pTab = sqliteHashData(pElem); |
| 425 sqlite3DeleteTable(0, pTab); |
| 426 } |
| 427 sqlite3HashClear(&temp1); |
| 428 sqlite3HashClear(&pSchema->fkeyHash); |
| 429 pSchema->pSeqTab = 0; |
| 430 if( pSchema->flags & DB_SchemaLoaded ){ |
| 431 pSchema->iGeneration++; |
| 432 pSchema->flags &= ~DB_SchemaLoaded; |
| 433 } |
| 434 } |
| 435 |
| 436 /* |
| 437 ** Find and return the schema associated with a BTree. Create |
| 438 ** a new one if necessary. |
| 439 */ |
| 440 Schema *sqlite3SchemaGet(sqlite3 *db, Btree *pBt){ |
| 441 Schema * p; |
| 442 if( pBt ){ |
| 443 p = (Schema *)sqlite3BtreeSchema(pBt, sizeof(Schema), sqlite3SchemaClear); |
| 444 }else{ |
| 445 p = (Schema *)sqlite3DbMallocZero(0, sizeof(Schema)); |
| 446 } |
| 447 if( !p ){ |
| 448 db->mallocFailed = 1; |
| 449 }else if ( 0==p->file_format ){ |
| 450 sqlite3HashInit(&p->tblHash); |
| 451 sqlite3HashInit(&p->idxHash); |
| 452 sqlite3HashInit(&p->trigHash); |
| 453 sqlite3HashInit(&p->fkeyHash); |
| 454 p->enc = SQLITE_UTF8; |
| 455 } |
| 456 return p; |
| 457 } |
OLD | NEW |