OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2001 September 15 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** This file contains C code routines that are called by the SQLite parser |
| 13 ** when syntax rules are reduced. The routines in this file handle the |
| 14 ** following kinds of SQL syntax: |
| 15 ** |
| 16 ** CREATE TABLE |
| 17 ** DROP TABLE |
| 18 ** CREATE INDEX |
| 19 ** DROP INDEX |
| 20 ** creating ID lists |
| 21 ** BEGIN TRANSACTION |
| 22 ** COMMIT |
| 23 ** ROLLBACK |
| 24 */ |
| 25 #include "sqliteInt.h" |
| 26 |
| 27 /* |
| 28 ** This routine is called when a new SQL statement is beginning to |
| 29 ** be parsed. Initialize the pParse structure as needed. |
| 30 */ |
| 31 void sqlite3BeginParse(Parse *pParse, int explainFlag){ |
| 32 pParse->explain = (u8)explainFlag; |
| 33 pParse->nVar = 0; |
| 34 } |
| 35 |
| 36 #ifndef SQLITE_OMIT_SHARED_CACHE |
| 37 /* |
| 38 ** The TableLock structure is only used by the sqlite3TableLock() and |
| 39 ** codeTableLocks() functions. |
| 40 */ |
| 41 struct TableLock { |
| 42 int iDb; /* The database containing the table to be locked */ |
| 43 int iTab; /* The root page of the table to be locked */ |
| 44 u8 isWriteLock; /* True for write lock. False for a read lock */ |
| 45 const char *zName; /* Name of the table */ |
| 46 }; |
| 47 |
| 48 /* |
| 49 ** Record the fact that we want to lock a table at run-time. |
| 50 ** |
| 51 ** The table to be locked has root page iTab and is found in database iDb. |
| 52 ** A read or a write lock can be taken depending on isWritelock. |
| 53 ** |
| 54 ** This routine just records the fact that the lock is desired. The |
| 55 ** code to make the lock occur is generated by a later call to |
| 56 ** codeTableLocks() which occurs during sqlite3FinishCoding(). |
| 57 */ |
| 58 void sqlite3TableLock( |
| 59 Parse *pParse, /* Parsing context */ |
| 60 int iDb, /* Index of the database containing the table to lock */ |
| 61 int iTab, /* Root page number of the table to be locked */ |
| 62 u8 isWriteLock, /* True for a write lock */ |
| 63 const char *zName /* Name of the table to be locked */ |
| 64 ){ |
| 65 Parse *pToplevel = sqlite3ParseToplevel(pParse); |
| 66 int i; |
| 67 int nBytes; |
| 68 TableLock *p; |
| 69 assert( iDb>=0 ); |
| 70 |
| 71 for(i=0; i<pToplevel->nTableLock; i++){ |
| 72 p = &pToplevel->aTableLock[i]; |
| 73 if( p->iDb==iDb && p->iTab==iTab ){ |
| 74 p->isWriteLock = (p->isWriteLock || isWriteLock); |
| 75 return; |
| 76 } |
| 77 } |
| 78 |
| 79 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); |
| 80 pToplevel->aTableLock = |
| 81 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); |
| 82 if( pToplevel->aTableLock ){ |
| 83 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; |
| 84 p->iDb = iDb; |
| 85 p->iTab = iTab; |
| 86 p->isWriteLock = isWriteLock; |
| 87 p->zName = zName; |
| 88 }else{ |
| 89 pToplevel->nTableLock = 0; |
| 90 pToplevel->db->mallocFailed = 1; |
| 91 } |
| 92 } |
| 93 |
| 94 /* |
| 95 ** Code an OP_TableLock instruction for each table locked by the |
| 96 ** statement (configured by calls to sqlite3TableLock()). |
| 97 */ |
| 98 static void codeTableLocks(Parse *pParse){ |
| 99 int i; |
| 100 Vdbe *pVdbe; |
| 101 |
| 102 pVdbe = sqlite3GetVdbe(pParse); |
| 103 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ |
| 104 |
| 105 for(i=0; i<pParse->nTableLock; i++){ |
| 106 TableLock *p = &pParse->aTableLock[i]; |
| 107 int p1 = p->iDb; |
| 108 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, |
| 109 p->zName, P4_STATIC); |
| 110 } |
| 111 } |
| 112 #else |
| 113 #define codeTableLocks(x) |
| 114 #endif |
| 115 |
| 116 /* |
| 117 ** This routine is called after a single SQL statement has been |
| 118 ** parsed and a VDBE program to execute that statement has been |
| 119 ** prepared. This routine puts the finishing touches on the |
| 120 ** VDBE program and resets the pParse structure for the next |
| 121 ** parse. |
| 122 ** |
| 123 ** Note that if an error occurred, it might be the case that |
| 124 ** no VDBE code was generated. |
| 125 */ |
| 126 void sqlite3FinishCoding(Parse *pParse){ |
| 127 sqlite3 *db; |
| 128 Vdbe *v; |
| 129 |
| 130 db = pParse->db; |
| 131 if( db->mallocFailed ) return; |
| 132 if( pParse->nested ) return; |
| 133 if( pParse->nErr ) return; |
| 134 |
| 135 /* Begin by generating some termination code at the end of the |
| 136 ** vdbe program |
| 137 */ |
| 138 v = sqlite3GetVdbe(pParse); |
| 139 assert( !pParse->isMultiWrite |
| 140 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); |
| 141 if( v ){ |
| 142 sqlite3VdbeAddOp0(v, OP_Halt); |
| 143 |
| 144 /* The cookie mask contains one bit for each database file open. |
| 145 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are |
| 146 ** set for each database that is used. Generate code to start a |
| 147 ** transaction on each used database and to verify the schema cookie |
| 148 ** on each used database. |
| 149 */ |
| 150 if( pParse->cookieGoto>0 ){ |
| 151 yDbMask mask; |
| 152 int iDb; |
| 153 sqlite3VdbeJumpHere(v, pParse->cookieGoto-1); |
| 154 for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){ |
| 155 if( (mask & pParse->cookieMask)==0 ) continue; |
| 156 sqlite3VdbeUsesBtree(v, iDb); |
| 157 sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0); |
| 158 if( db->init.busy==0 ){ |
| 159 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
| 160 sqlite3VdbeAddOp3(v, OP_VerifyCookie, |
| 161 iDb, pParse->cookieValue[iDb], |
| 162 db->aDb[iDb].pSchema->iGeneration); |
| 163 } |
| 164 } |
| 165 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 166 { |
| 167 int i; |
| 168 for(i=0; i<pParse->nVtabLock; i++){ |
| 169 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); |
| 170 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); |
| 171 } |
| 172 pParse->nVtabLock = 0; |
| 173 } |
| 174 #endif |
| 175 |
| 176 /* Once all the cookies have been verified and transactions opened, |
| 177 ** obtain the required table-locks. This is a no-op unless the |
| 178 ** shared-cache feature is enabled. |
| 179 */ |
| 180 codeTableLocks(pParse); |
| 181 |
| 182 /* Initialize any AUTOINCREMENT data structures required. |
| 183 */ |
| 184 sqlite3AutoincrementBegin(pParse); |
| 185 |
| 186 /* Finally, jump back to the beginning of the executable code. */ |
| 187 sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto); |
| 188 } |
| 189 } |
| 190 |
| 191 |
| 192 /* Get the VDBE program ready for execution |
| 193 */ |
| 194 if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){ |
| 195 #ifdef SQLITE_DEBUG |
| 196 FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0; |
| 197 sqlite3VdbeTrace(v, trace); |
| 198 #endif |
| 199 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ |
| 200 /* A minimum of one cursor is required if autoincrement is used |
| 201 * See ticket [a696379c1f08866] */ |
| 202 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; |
| 203 sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem, |
| 204 pParse->nTab, pParse->nMaxArg, pParse->explain, |
| 205 pParse->isMultiWrite && pParse->mayAbort); |
| 206 pParse->rc = SQLITE_DONE; |
| 207 pParse->colNamesSet = 0; |
| 208 }else{ |
| 209 pParse->rc = SQLITE_ERROR; |
| 210 } |
| 211 pParse->nTab = 0; |
| 212 pParse->nMem = 0; |
| 213 pParse->nSet = 0; |
| 214 pParse->nVar = 0; |
| 215 pParse->cookieMask = 0; |
| 216 pParse->cookieGoto = 0; |
| 217 } |
| 218 |
| 219 /* |
| 220 ** Run the parser and code generator recursively in order to generate |
| 221 ** code for the SQL statement given onto the end of the pParse context |
| 222 ** currently under construction. When the parser is run recursively |
| 223 ** this way, the final OP_Halt is not appended and other initialization |
| 224 ** and finalization steps are omitted because those are handling by the |
| 225 ** outermost parser. |
| 226 ** |
| 227 ** Not everything is nestable. This facility is designed to permit |
| 228 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use |
| 229 ** care if you decide to try to use this routine for some other purposes. |
| 230 */ |
| 231 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ |
| 232 va_list ap; |
| 233 char *zSql; |
| 234 char *zErrMsg = 0; |
| 235 sqlite3 *db = pParse->db; |
| 236 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) |
| 237 char saveBuf[SAVE_SZ]; |
| 238 |
| 239 if( pParse->nErr ) return; |
| 240 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ |
| 241 va_start(ap, zFormat); |
| 242 zSql = sqlite3VMPrintf(db, zFormat, ap); |
| 243 va_end(ap); |
| 244 if( zSql==0 ){ |
| 245 return; /* A malloc must have failed */ |
| 246 } |
| 247 pParse->nested++; |
| 248 memcpy(saveBuf, &pParse->nVar, SAVE_SZ); |
| 249 memset(&pParse->nVar, 0, SAVE_SZ); |
| 250 sqlite3RunParser(pParse, zSql, &zErrMsg); |
| 251 sqlite3DbFree(db, zErrMsg); |
| 252 sqlite3DbFree(db, zSql); |
| 253 memcpy(&pParse->nVar, saveBuf, SAVE_SZ); |
| 254 pParse->nested--; |
| 255 } |
| 256 |
| 257 /* |
| 258 ** Locate the in-memory structure that describes a particular database |
| 259 ** table given the name of that table and (optionally) the name of the |
| 260 ** database containing the table. Return NULL if not found. |
| 261 ** |
| 262 ** If zDatabase is 0, all databases are searched for the table and the |
| 263 ** first matching table is returned. (No checking for duplicate table |
| 264 ** names is done.) The search order is TEMP first, then MAIN, then any |
| 265 ** auxiliary databases added using the ATTACH command. |
| 266 ** |
| 267 ** See also sqlite3LocateTable(). |
| 268 */ |
| 269 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ |
| 270 Table *p = 0; |
| 271 int i; |
| 272 int nName; |
| 273 assert( zName!=0 ); |
| 274 nName = sqlite3Strlen30(zName); |
| 275 /* All mutexes are required for schema access. Make sure we hold them. */ |
| 276 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); |
| 277 for(i=OMIT_TEMPDB; i<db->nDb; i++){ |
| 278 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ |
| 279 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; |
| 280 assert( sqlite3SchemaMutexHeld(db, j, 0) ); |
| 281 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName); |
| 282 if( p ) break; |
| 283 } |
| 284 return p; |
| 285 } |
| 286 |
| 287 /* |
| 288 ** Locate the in-memory structure that describes a particular database |
| 289 ** table given the name of that table and (optionally) the name of the |
| 290 ** database containing the table. Return NULL if not found. Also leave an |
| 291 ** error message in pParse->zErrMsg. |
| 292 ** |
| 293 ** The difference between this routine and sqlite3FindTable() is that this |
| 294 ** routine leaves an error message in pParse->zErrMsg where |
| 295 ** sqlite3FindTable() does not. |
| 296 */ |
| 297 Table *sqlite3LocateTable( |
| 298 Parse *pParse, /* context in which to report errors */ |
| 299 int isView, /* True if looking for a VIEW rather than a TABLE */ |
| 300 const char *zName, /* Name of the table we are looking for */ |
| 301 const char *zDbase /* Name of the database. Might be NULL */ |
| 302 ){ |
| 303 Table *p; |
| 304 |
| 305 /* Read the database schema. If an error occurs, leave an error message |
| 306 ** and code in pParse and return NULL. */ |
| 307 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ |
| 308 return 0; |
| 309 } |
| 310 |
| 311 p = sqlite3FindTable(pParse->db, zName, zDbase); |
| 312 if( p==0 ){ |
| 313 const char *zMsg = isView ? "no such view" : "no such table"; |
| 314 if( zDbase ){ |
| 315 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); |
| 316 }else{ |
| 317 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); |
| 318 } |
| 319 pParse->checkSchema = 1; |
| 320 } |
| 321 return p; |
| 322 } |
| 323 |
| 324 /* |
| 325 ** Locate the in-memory structure that describes |
| 326 ** a particular index given the name of that index |
| 327 ** and the name of the database that contains the index. |
| 328 ** Return NULL if not found. |
| 329 ** |
| 330 ** If zDatabase is 0, all databases are searched for the |
| 331 ** table and the first matching index is returned. (No checking |
| 332 ** for duplicate index names is done.) The search order is |
| 333 ** TEMP first, then MAIN, then any auxiliary databases added |
| 334 ** using the ATTACH command. |
| 335 */ |
| 336 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ |
| 337 Index *p = 0; |
| 338 int i; |
| 339 int nName = sqlite3Strlen30(zName); |
| 340 /* All mutexes are required for schema access. Make sure we hold them. */ |
| 341 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); |
| 342 for(i=OMIT_TEMPDB; i<db->nDb; i++){ |
| 343 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ |
| 344 Schema *pSchema = db->aDb[j].pSchema; |
| 345 assert( pSchema ); |
| 346 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; |
| 347 assert( sqlite3SchemaMutexHeld(db, j, 0) ); |
| 348 p = sqlite3HashFind(&pSchema->idxHash, zName, nName); |
| 349 if( p ) break; |
| 350 } |
| 351 return p; |
| 352 } |
| 353 |
| 354 /* |
| 355 ** Reclaim the memory used by an index |
| 356 */ |
| 357 static void freeIndex(sqlite3 *db, Index *p){ |
| 358 #ifndef SQLITE_OMIT_ANALYZE |
| 359 sqlite3DeleteIndexSamples(db, p); |
| 360 #endif |
| 361 sqlite3DbFree(db, p->zColAff); |
| 362 sqlite3DbFree(db, p); |
| 363 } |
| 364 |
| 365 /* |
| 366 ** For the index called zIdxName which is found in the database iDb, |
| 367 ** unlike that index from its Table then remove the index from |
| 368 ** the index hash table and free all memory structures associated |
| 369 ** with the index. |
| 370 */ |
| 371 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ |
| 372 Index *pIndex; |
| 373 int len; |
| 374 Hash *pHash; |
| 375 |
| 376 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
| 377 pHash = &db->aDb[iDb].pSchema->idxHash; |
| 378 len = sqlite3Strlen30(zIdxName); |
| 379 pIndex = sqlite3HashInsert(pHash, zIdxName, len, 0); |
| 380 if( ALWAYS(pIndex) ){ |
| 381 if( pIndex->pTable->pIndex==pIndex ){ |
| 382 pIndex->pTable->pIndex = pIndex->pNext; |
| 383 }else{ |
| 384 Index *p; |
| 385 /* Justification of ALWAYS(); The index must be on the list of |
| 386 ** indices. */ |
| 387 p = pIndex->pTable->pIndex; |
| 388 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } |
| 389 if( ALWAYS(p && p->pNext==pIndex) ){ |
| 390 p->pNext = pIndex->pNext; |
| 391 } |
| 392 } |
| 393 freeIndex(db, pIndex); |
| 394 } |
| 395 db->flags |= SQLITE_InternChanges; |
| 396 } |
| 397 |
| 398 /* |
| 399 ** Erase all schema information from the in-memory hash tables of |
| 400 ** a single database. This routine is called to reclaim memory |
| 401 ** before the database closes. It is also called during a rollback |
| 402 ** if there were schema changes during the transaction or if a |
| 403 ** schema-cookie mismatch occurs. |
| 404 ** |
| 405 ** If iDb<0 then reset the internal schema tables for all database |
| 406 ** files. If iDb>=0 then reset the internal schema for only the |
| 407 ** single file indicated. |
| 408 */ |
| 409 void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){ |
| 410 int i, j; |
| 411 assert( iDb<db->nDb ); |
| 412 |
| 413 if( iDb>=0 ){ |
| 414 /* Case 1: Reset the single schema identified by iDb */ |
| 415 Db *pDb = &db->aDb[iDb]; |
| 416 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
| 417 assert( pDb->pSchema!=0 ); |
| 418 sqlite3SchemaClear(pDb->pSchema); |
| 419 |
| 420 /* If any database other than TEMP is reset, then also reset TEMP |
| 421 ** since TEMP might be holding triggers that reference tables in the |
| 422 ** other database. |
| 423 */ |
| 424 if( iDb!=1 ){ |
| 425 pDb = &db->aDb[1]; |
| 426 assert( pDb->pSchema!=0 ); |
| 427 sqlite3SchemaClear(pDb->pSchema); |
| 428 } |
| 429 return; |
| 430 } |
| 431 /* Case 2 (from here to the end): Reset all schemas for all attached |
| 432 ** databases. */ |
| 433 assert( iDb<0 ); |
| 434 sqlite3BtreeEnterAll(db); |
| 435 for(i=0; i<db->nDb; i++){ |
| 436 Db *pDb = &db->aDb[i]; |
| 437 if( pDb->pSchema ){ |
| 438 sqlite3SchemaClear(pDb->pSchema); |
| 439 } |
| 440 } |
| 441 db->flags &= ~SQLITE_InternChanges; |
| 442 sqlite3VtabUnlockList(db); |
| 443 sqlite3BtreeLeaveAll(db); |
| 444 |
| 445 /* If one or more of the auxiliary database files has been closed, |
| 446 ** then remove them from the auxiliary database list. We take the |
| 447 ** opportunity to do this here since we have just deleted all of the |
| 448 ** schema hash tables and therefore do not have to make any changes |
| 449 ** to any of those tables. |
| 450 */ |
| 451 for(i=j=2; i<db->nDb; i++){ |
| 452 struct Db *pDb = &db->aDb[i]; |
| 453 if( pDb->pBt==0 ){ |
| 454 sqlite3DbFree(db, pDb->zName); |
| 455 pDb->zName = 0; |
| 456 continue; |
| 457 } |
| 458 if( j<i ){ |
| 459 db->aDb[j] = db->aDb[i]; |
| 460 } |
| 461 j++; |
| 462 } |
| 463 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); |
| 464 db->nDb = j; |
| 465 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ |
| 466 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); |
| 467 sqlite3DbFree(db, db->aDb); |
| 468 db->aDb = db->aDbStatic; |
| 469 } |
| 470 } |
| 471 |
| 472 /* |
| 473 ** This routine is called when a commit occurs. |
| 474 */ |
| 475 void sqlite3CommitInternalChanges(sqlite3 *db){ |
| 476 db->flags &= ~SQLITE_InternChanges; |
| 477 } |
| 478 |
| 479 /* |
| 480 ** Delete memory allocated for the column names of a table or view (the |
| 481 ** Table.aCol[] array). |
| 482 */ |
| 483 static void sqliteDeleteColumnNames(sqlite3 *db, Table *pTable){ |
| 484 int i; |
| 485 Column *pCol; |
| 486 assert( pTable!=0 ); |
| 487 if( (pCol = pTable->aCol)!=0 ){ |
| 488 for(i=0; i<pTable->nCol; i++, pCol++){ |
| 489 sqlite3DbFree(db, pCol->zName); |
| 490 sqlite3ExprDelete(db, pCol->pDflt); |
| 491 sqlite3DbFree(db, pCol->zDflt); |
| 492 sqlite3DbFree(db, pCol->zType); |
| 493 sqlite3DbFree(db, pCol->zColl); |
| 494 } |
| 495 sqlite3DbFree(db, pTable->aCol); |
| 496 } |
| 497 } |
| 498 |
| 499 /* |
| 500 ** Remove the memory data structures associated with the given |
| 501 ** Table. No changes are made to disk by this routine. |
| 502 ** |
| 503 ** This routine just deletes the data structure. It does not unlink |
| 504 ** the table data structure from the hash table. But it does destroy |
| 505 ** memory structures of the indices and foreign keys associated with |
| 506 ** the table. |
| 507 */ |
| 508 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ |
| 509 Index *pIndex, *pNext; |
| 510 |
| 511 assert( !pTable || pTable->nRef>0 ); |
| 512 |
| 513 /* Do not delete the table until the reference count reaches zero. */ |
| 514 if( !pTable ) return; |
| 515 if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return; |
| 516 |
| 517 /* Delete all indices associated with this table. */ |
| 518 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ |
| 519 pNext = pIndex->pNext; |
| 520 assert( pIndex->pSchema==pTable->pSchema ); |
| 521 if( !db || db->pnBytesFreed==0 ){ |
| 522 char *zName = pIndex->zName; |
| 523 TESTONLY ( Index *pOld = ) sqlite3HashInsert( |
| 524 &pIndex->pSchema->idxHash, zName, sqlite3Strlen30(zName), 0 |
| 525 ); |
| 526 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); |
| 527 assert( pOld==pIndex || pOld==0 ); |
| 528 } |
| 529 freeIndex(db, pIndex); |
| 530 } |
| 531 |
| 532 /* Delete any foreign keys attached to this table. */ |
| 533 sqlite3FkDelete(db, pTable); |
| 534 |
| 535 /* Delete the Table structure itself. |
| 536 */ |
| 537 sqliteDeleteColumnNames(db, pTable); |
| 538 sqlite3DbFree(db, pTable->zName); |
| 539 sqlite3DbFree(db, pTable->zColAff); |
| 540 sqlite3SelectDelete(db, pTable->pSelect); |
| 541 #ifndef SQLITE_OMIT_CHECK |
| 542 sqlite3ExprDelete(db, pTable->pCheck); |
| 543 #endif |
| 544 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 545 sqlite3VtabClear(db, pTable); |
| 546 #endif |
| 547 sqlite3DbFree(db, pTable); |
| 548 } |
| 549 |
| 550 /* |
| 551 ** Unlink the given table from the hash tables and the delete the |
| 552 ** table structure with all its indices and foreign keys. |
| 553 */ |
| 554 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ |
| 555 Table *p; |
| 556 Db *pDb; |
| 557 |
| 558 assert( db!=0 ); |
| 559 assert( iDb>=0 && iDb<db->nDb ); |
| 560 assert( zTabName ); |
| 561 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
| 562 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ |
| 563 pDb = &db->aDb[iDb]; |
| 564 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, |
| 565 sqlite3Strlen30(zTabName),0); |
| 566 sqlite3DeleteTable(db, p); |
| 567 db->flags |= SQLITE_InternChanges; |
| 568 } |
| 569 |
| 570 /* |
| 571 ** Given a token, return a string that consists of the text of that |
| 572 ** token. Space to hold the returned string |
| 573 ** is obtained from sqliteMalloc() and must be freed by the calling |
| 574 ** function. |
| 575 ** |
| 576 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that |
| 577 ** surround the body of the token are removed. |
| 578 ** |
| 579 ** Tokens are often just pointers into the original SQL text and so |
| 580 ** are not \000 terminated and are not persistent. The returned string |
| 581 ** is \000 terminated and is persistent. |
| 582 */ |
| 583 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ |
| 584 char *zName; |
| 585 if( pName ){ |
| 586 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); |
| 587 sqlite3Dequote(zName); |
| 588 }else{ |
| 589 zName = 0; |
| 590 } |
| 591 return zName; |
| 592 } |
| 593 |
| 594 /* |
| 595 ** Open the sqlite_master table stored in database number iDb for |
| 596 ** writing. The table is opened using cursor 0. |
| 597 */ |
| 598 void sqlite3OpenMasterTable(Parse *p, int iDb){ |
| 599 Vdbe *v = sqlite3GetVdbe(p); |
| 600 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); |
| 601 sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb); |
| 602 sqlite3VdbeChangeP4(v, -1, (char *)5, P4_INT32); /* 5 column table */ |
| 603 if( p->nTab==0 ){ |
| 604 p->nTab = 1; |
| 605 } |
| 606 } |
| 607 |
| 608 /* |
| 609 ** Parameter zName points to a nul-terminated buffer containing the name |
| 610 ** of a database ("main", "temp" or the name of an attached db). This |
| 611 ** function returns the index of the named database in db->aDb[], or |
| 612 ** -1 if the named db cannot be found. |
| 613 */ |
| 614 int sqlite3FindDbName(sqlite3 *db, const char *zName){ |
| 615 int i = -1; /* Database number */ |
| 616 if( zName ){ |
| 617 Db *pDb; |
| 618 int n = sqlite3Strlen30(zName); |
| 619 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ |
| 620 if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) && |
| 621 0==sqlite3StrICmp(pDb->zName, zName) ){ |
| 622 break; |
| 623 } |
| 624 } |
| 625 } |
| 626 return i; |
| 627 } |
| 628 |
| 629 /* |
| 630 ** The token *pName contains the name of a database (either "main" or |
| 631 ** "temp" or the name of an attached db). This routine returns the |
| 632 ** index of the named database in db->aDb[], or -1 if the named db |
| 633 ** does not exist. |
| 634 */ |
| 635 int sqlite3FindDb(sqlite3 *db, Token *pName){ |
| 636 int i; /* Database number */ |
| 637 char *zName; /* Name we are searching for */ |
| 638 zName = sqlite3NameFromToken(db, pName); |
| 639 i = sqlite3FindDbName(db, zName); |
| 640 sqlite3DbFree(db, zName); |
| 641 return i; |
| 642 } |
| 643 |
| 644 /* The table or view or trigger name is passed to this routine via tokens |
| 645 ** pName1 and pName2. If the table name was fully qualified, for example: |
| 646 ** |
| 647 ** CREATE TABLE xxx.yyy (...); |
| 648 ** |
| 649 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if |
| 650 ** the table name is not fully qualified, i.e.: |
| 651 ** |
| 652 ** CREATE TABLE yyy(...); |
| 653 ** |
| 654 ** Then pName1 is set to "yyy" and pName2 is "". |
| 655 ** |
| 656 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or |
| 657 ** pName2) that stores the unqualified table name. The index of the |
| 658 ** database "xxx" is returned. |
| 659 */ |
| 660 int sqlite3TwoPartName( |
| 661 Parse *pParse, /* Parsing and code generating context */ |
| 662 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ |
| 663 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ |
| 664 Token **pUnqual /* Write the unqualified object name here */ |
| 665 ){ |
| 666 int iDb; /* Database holding the object */ |
| 667 sqlite3 *db = pParse->db; |
| 668 |
| 669 if( ALWAYS(pName2!=0) && pName2->n>0 ){ |
| 670 if( db->init.busy ) { |
| 671 sqlite3ErrorMsg(pParse, "corrupt database"); |
| 672 pParse->nErr++; |
| 673 return -1; |
| 674 } |
| 675 *pUnqual = pName2; |
| 676 iDb = sqlite3FindDb(db, pName1); |
| 677 if( iDb<0 ){ |
| 678 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); |
| 679 pParse->nErr++; |
| 680 return -1; |
| 681 } |
| 682 }else{ |
| 683 assert( db->init.iDb==0 || db->init.busy ); |
| 684 iDb = db->init.iDb; |
| 685 *pUnqual = pName1; |
| 686 } |
| 687 return iDb; |
| 688 } |
| 689 |
| 690 /* |
| 691 ** This routine is used to check if the UTF-8 string zName is a legal |
| 692 ** unqualified name for a new schema object (table, index, view or |
| 693 ** trigger). All names are legal except those that begin with the string |
| 694 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace |
| 695 ** is reserved for internal use. |
| 696 */ |
| 697 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ |
| 698 if( !pParse->db->init.busy && pParse->nested==0 |
| 699 && (pParse->db->flags & SQLITE_WriteSchema)==0 |
| 700 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ |
| 701 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); |
| 702 return SQLITE_ERROR; |
| 703 } |
| 704 return SQLITE_OK; |
| 705 } |
| 706 |
| 707 /* |
| 708 ** Begin constructing a new table representation in memory. This is |
| 709 ** the first of several action routines that get called in response |
| 710 ** to a CREATE TABLE statement. In particular, this routine is called |
| 711 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp |
| 712 ** flag is true if the table should be stored in the auxiliary database |
| 713 ** file instead of in the main database file. This is normally the case |
| 714 ** when the "TEMP" or "TEMPORARY" keyword occurs in between |
| 715 ** CREATE and TABLE. |
| 716 ** |
| 717 ** The new table record is initialized and put in pParse->pNewTable. |
| 718 ** As more of the CREATE TABLE statement is parsed, additional action |
| 719 ** routines will be called to add more information to this record. |
| 720 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine |
| 721 ** is called to complete the construction of the new table record. |
| 722 */ |
| 723 void sqlite3StartTable( |
| 724 Parse *pParse, /* Parser context */ |
| 725 Token *pName1, /* First part of the name of the table or view */ |
| 726 Token *pName2, /* Second part of the name of the table or view */ |
| 727 int isTemp, /* True if this is a TEMP table */ |
| 728 int isView, /* True if this is a VIEW */ |
| 729 int isVirtual, /* True if this is a VIRTUAL table */ |
| 730 int noErr /* Do nothing if table already exists */ |
| 731 ){ |
| 732 Table *pTable; |
| 733 char *zName = 0; /* The name of the new table */ |
| 734 sqlite3 *db = pParse->db; |
| 735 Vdbe *v; |
| 736 int iDb; /* Database number to create the table in */ |
| 737 Token *pName; /* Unqualified name of the table to create */ |
| 738 |
| 739 /* The table or view name to create is passed to this routine via tokens |
| 740 ** pName1 and pName2. If the table name was fully qualified, for example: |
| 741 ** |
| 742 ** CREATE TABLE xxx.yyy (...); |
| 743 ** |
| 744 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if |
| 745 ** the table name is not fully qualified, i.e.: |
| 746 ** |
| 747 ** CREATE TABLE yyy(...); |
| 748 ** |
| 749 ** Then pName1 is set to "yyy" and pName2 is "". |
| 750 ** |
| 751 ** The call below sets the pName pointer to point at the token (pName1 or |
| 752 ** pName2) that stores the unqualified table name. The variable iDb is |
| 753 ** set to the index of the database that the table or view is to be |
| 754 ** created in. |
| 755 */ |
| 756 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); |
| 757 if( iDb<0 ) return; |
| 758 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ |
| 759 /* If creating a temp table, the name may not be qualified. Unless |
| 760 ** the database name is "temp" anyway. */ |
| 761 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); |
| 762 return; |
| 763 } |
| 764 if( !OMIT_TEMPDB && isTemp ) iDb = 1; |
| 765 |
| 766 pParse->sNameToken = *pName; |
| 767 zName = sqlite3NameFromToken(db, pName); |
| 768 if( zName==0 ) return; |
| 769 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ |
| 770 goto begin_table_error; |
| 771 } |
| 772 if( db->init.iDb==1 ) isTemp = 1; |
| 773 #ifndef SQLITE_OMIT_AUTHORIZATION |
| 774 assert( (isTemp & 1)==isTemp ); |
| 775 { |
| 776 int code; |
| 777 char *zDb = db->aDb[iDb].zName; |
| 778 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ |
| 779 goto begin_table_error; |
| 780 } |
| 781 if( isView ){ |
| 782 if( !OMIT_TEMPDB && isTemp ){ |
| 783 code = SQLITE_CREATE_TEMP_VIEW; |
| 784 }else{ |
| 785 code = SQLITE_CREATE_VIEW; |
| 786 } |
| 787 }else{ |
| 788 if( !OMIT_TEMPDB && isTemp ){ |
| 789 code = SQLITE_CREATE_TEMP_TABLE; |
| 790 }else{ |
| 791 code = SQLITE_CREATE_TABLE; |
| 792 } |
| 793 } |
| 794 if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){ |
| 795 goto begin_table_error; |
| 796 } |
| 797 } |
| 798 #endif |
| 799 |
| 800 /* Make sure the new table name does not collide with an existing |
| 801 ** index or table name in the same database. Issue an error message if |
| 802 ** it does. The exception is if the statement being parsed was passed |
| 803 ** to an sqlite3_declare_vtab() call. In that case only the column names |
| 804 ** and types will be used, so there is no need to test for namespace |
| 805 ** collisions. |
| 806 */ |
| 807 if( !IN_DECLARE_VTAB ){ |
| 808 char *zDb = db->aDb[iDb].zName; |
| 809 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ |
| 810 goto begin_table_error; |
| 811 } |
| 812 pTable = sqlite3FindTable(db, zName, zDb); |
| 813 if( pTable ){ |
| 814 if( !noErr ){ |
| 815 sqlite3ErrorMsg(pParse, "table %T already exists", pName); |
| 816 }else{ |
| 817 assert( !db->init.busy ); |
| 818 sqlite3CodeVerifySchema(pParse, iDb); |
| 819 } |
| 820 goto begin_table_error; |
| 821 } |
| 822 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ |
| 823 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); |
| 824 goto begin_table_error; |
| 825 } |
| 826 } |
| 827 |
| 828 pTable = sqlite3DbMallocZero(db, sizeof(Table)); |
| 829 if( pTable==0 ){ |
| 830 db->mallocFailed = 1; |
| 831 pParse->rc = SQLITE_NOMEM; |
| 832 pParse->nErr++; |
| 833 goto begin_table_error; |
| 834 } |
| 835 pTable->zName = zName; |
| 836 pTable->iPKey = -1; |
| 837 pTable->pSchema = db->aDb[iDb].pSchema; |
| 838 pTable->nRef = 1; |
| 839 pTable->nRowEst = 1000000; |
| 840 assert( pParse->pNewTable==0 ); |
| 841 pParse->pNewTable = pTable; |
| 842 |
| 843 /* If this is the magic sqlite_sequence table used by autoincrement, |
| 844 ** then record a pointer to this table in the main database structure |
| 845 ** so that INSERT can find the table easily. |
| 846 */ |
| 847 #ifndef SQLITE_OMIT_AUTOINCREMENT |
| 848 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ |
| 849 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
| 850 pTable->pSchema->pSeqTab = pTable; |
| 851 } |
| 852 #endif |
| 853 |
| 854 /* Begin generating the code that will insert the table record into |
| 855 ** the SQLITE_MASTER table. Note in particular that we must go ahead |
| 856 ** and allocate the record number for the table entry now. Before any |
| 857 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause |
| 858 ** indices to be created and the table record must come before the |
| 859 ** indices. Hence, the record number for the table must be allocated |
| 860 ** now. |
| 861 */ |
| 862 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ |
| 863 int j1; |
| 864 int fileFormat; |
| 865 int reg1, reg2, reg3; |
| 866 sqlite3BeginWriteOperation(pParse, 0, iDb); |
| 867 |
| 868 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 869 if( isVirtual ){ |
| 870 sqlite3VdbeAddOp0(v, OP_VBegin); |
| 871 } |
| 872 #endif |
| 873 |
| 874 /* If the file format and encoding in the database have not been set, |
| 875 ** set them now. |
| 876 */ |
| 877 reg1 = pParse->regRowid = ++pParse->nMem; |
| 878 reg2 = pParse->regRoot = ++pParse->nMem; |
| 879 reg3 = ++pParse->nMem; |
| 880 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); |
| 881 sqlite3VdbeUsesBtree(v, iDb); |
| 882 j1 = sqlite3VdbeAddOp1(v, OP_If, reg3); |
| 883 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? |
| 884 1 : SQLITE_MAX_FILE_FORMAT; |
| 885 sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3); |
| 886 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3); |
| 887 sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3); |
| 888 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3); |
| 889 sqlite3VdbeJumpHere(v, j1); |
| 890 |
| 891 /* This just creates a place-holder record in the sqlite_master table. |
| 892 ** The record created does not contain anything yet. It will be replaced |
| 893 ** by the real entry in code generated at sqlite3EndTable(). |
| 894 ** |
| 895 ** The rowid for the new entry is left in register pParse->regRowid. |
| 896 ** The root page number of the new table is left in reg pParse->regRoot. |
| 897 ** The rowid and root page number values are needed by the code that |
| 898 ** sqlite3EndTable will generate. |
| 899 */ |
| 900 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) |
| 901 if( isView || isVirtual ){ |
| 902 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); |
| 903 }else |
| 904 #endif |
| 905 { |
| 906 sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); |
| 907 } |
| 908 sqlite3OpenMasterTable(pParse, iDb); |
| 909 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); |
| 910 sqlite3VdbeAddOp2(v, OP_Null, 0, reg3); |
| 911 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); |
| 912 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); |
| 913 sqlite3VdbeAddOp0(v, OP_Close); |
| 914 } |
| 915 |
| 916 /* Normal (non-error) return. */ |
| 917 return; |
| 918 |
| 919 /* If an error occurs, we jump here */ |
| 920 begin_table_error: |
| 921 sqlite3DbFree(db, zName); |
| 922 return; |
| 923 } |
| 924 |
| 925 /* |
| 926 ** This macro is used to compare two strings in a case-insensitive manner. |
| 927 ** It is slightly faster than calling sqlite3StrICmp() directly, but |
| 928 ** produces larger code. |
| 929 ** |
| 930 ** WARNING: This macro is not compatible with the strcmp() family. It |
| 931 ** returns true if the two strings are equal, otherwise false. |
| 932 */ |
| 933 #define STRICMP(x, y) (\ |
| 934 sqlite3UpperToLower[*(unsigned char *)(x)]== \ |
| 935 sqlite3UpperToLower[*(unsigned char *)(y)] \ |
| 936 && sqlite3StrICmp((x)+1,(y)+1)==0 ) |
| 937 |
| 938 /* |
| 939 ** Add a new column to the table currently being constructed. |
| 940 ** |
| 941 ** The parser calls this routine once for each column declaration |
| 942 ** in a CREATE TABLE statement. sqlite3StartTable() gets called |
| 943 ** first to get things going. Then this routine is called for each |
| 944 ** column. |
| 945 */ |
| 946 void sqlite3AddColumn(Parse *pParse, Token *pName){ |
| 947 Table *p; |
| 948 int i; |
| 949 char *z; |
| 950 Column *pCol; |
| 951 sqlite3 *db = pParse->db; |
| 952 if( (p = pParse->pNewTable)==0 ) return; |
| 953 #if SQLITE_MAX_COLUMN |
| 954 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ |
| 955 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); |
| 956 return; |
| 957 } |
| 958 #endif |
| 959 z = sqlite3NameFromToken(db, pName); |
| 960 if( z==0 ) return; |
| 961 for(i=0; i<p->nCol; i++){ |
| 962 if( STRICMP(z, p->aCol[i].zName) ){ |
| 963 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); |
| 964 sqlite3DbFree(db, z); |
| 965 return; |
| 966 } |
| 967 } |
| 968 if( (p->nCol & 0x7)==0 ){ |
| 969 Column *aNew; |
| 970 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); |
| 971 if( aNew==0 ){ |
| 972 sqlite3DbFree(db, z); |
| 973 return; |
| 974 } |
| 975 p->aCol = aNew; |
| 976 } |
| 977 pCol = &p->aCol[p->nCol]; |
| 978 memset(pCol, 0, sizeof(p->aCol[0])); |
| 979 pCol->zName = z; |
| 980 |
| 981 /* If there is no type specified, columns have the default affinity |
| 982 ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will |
| 983 ** be called next to set pCol->affinity correctly. |
| 984 */ |
| 985 pCol->affinity = SQLITE_AFF_NONE; |
| 986 p->nCol++; |
| 987 } |
| 988 |
| 989 /* |
| 990 ** This routine is called by the parser while in the middle of |
| 991 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has |
| 992 ** been seen on a column. This routine sets the notNull flag on |
| 993 ** the column currently under construction. |
| 994 */ |
| 995 void sqlite3AddNotNull(Parse *pParse, int onError){ |
| 996 Table *p; |
| 997 p = pParse->pNewTable; |
| 998 if( p==0 || NEVER(p->nCol<1) ) return; |
| 999 p->aCol[p->nCol-1].notNull = (u8)onError; |
| 1000 } |
| 1001 |
| 1002 /* |
| 1003 ** Scan the column type name zType (length nType) and return the |
| 1004 ** associated affinity type. |
| 1005 ** |
| 1006 ** This routine does a case-independent search of zType for the |
| 1007 ** substrings in the following table. If one of the substrings is |
| 1008 ** found, the corresponding affinity is returned. If zType contains |
| 1009 ** more than one of the substrings, entries toward the top of |
| 1010 ** the table take priority. For example, if zType is 'BLOBINT', |
| 1011 ** SQLITE_AFF_INTEGER is returned. |
| 1012 ** |
| 1013 ** Substring | Affinity |
| 1014 ** -------------------------------- |
| 1015 ** 'INT' | SQLITE_AFF_INTEGER |
| 1016 ** 'CHAR' | SQLITE_AFF_TEXT |
| 1017 ** 'CLOB' | SQLITE_AFF_TEXT |
| 1018 ** 'TEXT' | SQLITE_AFF_TEXT |
| 1019 ** 'BLOB' | SQLITE_AFF_NONE |
| 1020 ** 'REAL' | SQLITE_AFF_REAL |
| 1021 ** 'FLOA' | SQLITE_AFF_REAL |
| 1022 ** 'DOUB' | SQLITE_AFF_REAL |
| 1023 ** |
| 1024 ** If none of the substrings in the above table are found, |
| 1025 ** SQLITE_AFF_NUMERIC is returned. |
| 1026 */ |
| 1027 char sqlite3AffinityType(const char *zIn){ |
| 1028 u32 h = 0; |
| 1029 char aff = SQLITE_AFF_NUMERIC; |
| 1030 |
| 1031 if( zIn ) while( zIn[0] ){ |
| 1032 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; |
| 1033 zIn++; |
| 1034 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ |
| 1035 aff = SQLITE_AFF_TEXT; |
| 1036 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ |
| 1037 aff = SQLITE_AFF_TEXT; |
| 1038 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ |
| 1039 aff = SQLITE_AFF_TEXT; |
| 1040 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ |
| 1041 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ |
| 1042 aff = SQLITE_AFF_NONE; |
| 1043 #ifndef SQLITE_OMIT_FLOATING_POINT |
| 1044 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ |
| 1045 && aff==SQLITE_AFF_NUMERIC ){ |
| 1046 aff = SQLITE_AFF_REAL; |
| 1047 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ |
| 1048 && aff==SQLITE_AFF_NUMERIC ){ |
| 1049 aff = SQLITE_AFF_REAL; |
| 1050 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ |
| 1051 && aff==SQLITE_AFF_NUMERIC ){ |
| 1052 aff = SQLITE_AFF_REAL; |
| 1053 #endif |
| 1054 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ |
| 1055 aff = SQLITE_AFF_INTEGER; |
| 1056 break; |
| 1057 } |
| 1058 } |
| 1059 |
| 1060 return aff; |
| 1061 } |
| 1062 |
| 1063 /* |
| 1064 ** This routine is called by the parser while in the middle of |
| 1065 ** parsing a CREATE TABLE statement. The pFirst token is the first |
| 1066 ** token in the sequence of tokens that describe the type of the |
| 1067 ** column currently under construction. pLast is the last token |
| 1068 ** in the sequence. Use this information to construct a string |
| 1069 ** that contains the typename of the column and store that string |
| 1070 ** in zType. |
| 1071 */ |
| 1072 void sqlite3AddColumnType(Parse *pParse, Token *pType){ |
| 1073 Table *p; |
| 1074 Column *pCol; |
| 1075 |
| 1076 p = pParse->pNewTable; |
| 1077 if( p==0 || NEVER(p->nCol<1) ) return; |
| 1078 pCol = &p->aCol[p->nCol-1]; |
| 1079 assert( pCol->zType==0 ); |
| 1080 pCol->zType = sqlite3NameFromToken(pParse->db, pType); |
| 1081 pCol->affinity = sqlite3AffinityType(pCol->zType); |
| 1082 } |
| 1083 |
| 1084 /* |
| 1085 ** The expression is the default value for the most recently added column |
| 1086 ** of the table currently under construction. |
| 1087 ** |
| 1088 ** Default value expressions must be constant. Raise an exception if this |
| 1089 ** is not the case. |
| 1090 ** |
| 1091 ** This routine is called by the parser while in the middle of |
| 1092 ** parsing a CREATE TABLE statement. |
| 1093 */ |
| 1094 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){ |
| 1095 Table *p; |
| 1096 Column *pCol; |
| 1097 sqlite3 *db = pParse->db; |
| 1098 p = pParse->pNewTable; |
| 1099 if( p!=0 ){ |
| 1100 pCol = &(p->aCol[p->nCol-1]); |
| 1101 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr) ){ |
| 1102 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", |
| 1103 pCol->zName); |
| 1104 }else{ |
| 1105 /* A copy of pExpr is used instead of the original, as pExpr contains |
| 1106 ** tokens that point to volatile memory. The 'span' of the expression |
| 1107 ** is required by pragma table_info. |
| 1108 */ |
| 1109 sqlite3ExprDelete(db, pCol->pDflt); |
| 1110 pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE); |
| 1111 sqlite3DbFree(db, pCol->zDflt); |
| 1112 pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart, |
| 1113 (int)(pSpan->zEnd - pSpan->zStart)); |
| 1114 } |
| 1115 } |
| 1116 sqlite3ExprDelete(db, pSpan->pExpr); |
| 1117 } |
| 1118 |
| 1119 /* |
| 1120 ** Designate the PRIMARY KEY for the table. pList is a list of names |
| 1121 ** of columns that form the primary key. If pList is NULL, then the |
| 1122 ** most recently added column of the table is the primary key. |
| 1123 ** |
| 1124 ** A table can have at most one primary key. If the table already has |
| 1125 ** a primary key (and this is the second primary key) then create an |
| 1126 ** error. |
| 1127 ** |
| 1128 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, |
| 1129 ** then we will try to use that column as the rowid. Set the Table.iPKey |
| 1130 ** field of the table under construction to be the index of the |
| 1131 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is |
| 1132 ** no INTEGER PRIMARY KEY. |
| 1133 ** |
| 1134 ** If the key is not an INTEGER PRIMARY KEY, then create a unique |
| 1135 ** index for the key. No index is created for INTEGER PRIMARY KEYs. |
| 1136 */ |
| 1137 void sqlite3AddPrimaryKey( |
| 1138 Parse *pParse, /* Parsing context */ |
| 1139 ExprList *pList, /* List of field names to be indexed */ |
| 1140 int onError, /* What to do with a uniqueness conflict */ |
| 1141 int autoInc, /* True if the AUTOINCREMENT keyword is present */ |
| 1142 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ |
| 1143 ){ |
| 1144 Table *pTab = pParse->pNewTable; |
| 1145 char *zType = 0; |
| 1146 int iCol = -1, i; |
| 1147 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; |
| 1148 if( pTab->tabFlags & TF_HasPrimaryKey ){ |
| 1149 sqlite3ErrorMsg(pParse, |
| 1150 "table \"%s\" has more than one primary key", pTab->zName); |
| 1151 goto primary_key_exit; |
| 1152 } |
| 1153 pTab->tabFlags |= TF_HasPrimaryKey; |
| 1154 if( pList==0 ){ |
| 1155 iCol = pTab->nCol - 1; |
| 1156 pTab->aCol[iCol].isPrimKey = 1; |
| 1157 }else{ |
| 1158 for(i=0; i<pList->nExpr; i++){ |
| 1159 for(iCol=0; iCol<pTab->nCol; iCol++){ |
| 1160 if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){ |
| 1161 break; |
| 1162 } |
| 1163 } |
| 1164 if( iCol<pTab->nCol ){ |
| 1165 pTab->aCol[iCol].isPrimKey = 1; |
| 1166 } |
| 1167 } |
| 1168 if( pList->nExpr>1 ) iCol = -1; |
| 1169 } |
| 1170 if( iCol>=0 && iCol<pTab->nCol ){ |
| 1171 zType = pTab->aCol[iCol].zType; |
| 1172 } |
| 1173 if( zType && sqlite3StrICmp(zType, "INTEGER")==0 |
| 1174 && sortOrder==SQLITE_SO_ASC ){ |
| 1175 pTab->iPKey = iCol; |
| 1176 pTab->keyConf = (u8)onError; |
| 1177 assert( autoInc==0 || autoInc==1 ); |
| 1178 pTab->tabFlags |= autoInc*TF_Autoincrement; |
| 1179 }else if( autoInc ){ |
| 1180 #ifndef SQLITE_OMIT_AUTOINCREMENT |
| 1181 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " |
| 1182 "INTEGER PRIMARY KEY"); |
| 1183 #endif |
| 1184 }else{ |
| 1185 Index *p; |
| 1186 p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0); |
| 1187 if( p ){ |
| 1188 p->autoIndex = 2; |
| 1189 } |
| 1190 pList = 0; |
| 1191 } |
| 1192 |
| 1193 primary_key_exit: |
| 1194 sqlite3ExprListDelete(pParse->db, pList); |
| 1195 return; |
| 1196 } |
| 1197 |
| 1198 /* |
| 1199 ** Add a new CHECK constraint to the table currently under construction. |
| 1200 */ |
| 1201 void sqlite3AddCheckConstraint( |
| 1202 Parse *pParse, /* Parsing context */ |
| 1203 Expr *pCheckExpr /* The check expression */ |
| 1204 ){ |
| 1205 sqlite3 *db = pParse->db; |
| 1206 #ifndef SQLITE_OMIT_CHECK |
| 1207 Table *pTab = pParse->pNewTable; |
| 1208 if( pTab && !IN_DECLARE_VTAB ){ |
| 1209 pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck, pCheckExpr); |
| 1210 }else |
| 1211 #endif |
| 1212 { |
| 1213 sqlite3ExprDelete(db, pCheckExpr); |
| 1214 } |
| 1215 } |
| 1216 |
| 1217 /* |
| 1218 ** Set the collation function of the most recently parsed table column |
| 1219 ** to the CollSeq given. |
| 1220 */ |
| 1221 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ |
| 1222 Table *p; |
| 1223 int i; |
| 1224 char *zColl; /* Dequoted name of collation sequence */ |
| 1225 sqlite3 *db; |
| 1226 |
| 1227 if( (p = pParse->pNewTable)==0 ) return; |
| 1228 i = p->nCol-1; |
| 1229 db = pParse->db; |
| 1230 zColl = sqlite3NameFromToken(db, pToken); |
| 1231 if( !zColl ) return; |
| 1232 |
| 1233 if( sqlite3LocateCollSeq(pParse, zColl) ){ |
| 1234 Index *pIdx; |
| 1235 p->aCol[i].zColl = zColl; |
| 1236 |
| 1237 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", |
| 1238 ** then an index may have been created on this column before the |
| 1239 ** collation type was added. Correct this if it is the case. |
| 1240 */ |
| 1241 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ |
| 1242 assert( pIdx->nColumn==1 ); |
| 1243 if( pIdx->aiColumn[0]==i ){ |
| 1244 pIdx->azColl[0] = p->aCol[i].zColl; |
| 1245 } |
| 1246 } |
| 1247 }else{ |
| 1248 sqlite3DbFree(db, zColl); |
| 1249 } |
| 1250 } |
| 1251 |
| 1252 /* |
| 1253 ** This function returns the collation sequence for database native text |
| 1254 ** encoding identified by the string zName, length nName. |
| 1255 ** |
| 1256 ** If the requested collation sequence is not available, or not available |
| 1257 ** in the database native encoding, the collation factory is invoked to |
| 1258 ** request it. If the collation factory does not supply such a sequence, |
| 1259 ** and the sequence is available in another text encoding, then that is |
| 1260 ** returned instead. |
| 1261 ** |
| 1262 ** If no versions of the requested collations sequence are available, or |
| 1263 ** another error occurs, NULL is returned and an error message written into |
| 1264 ** pParse. |
| 1265 ** |
| 1266 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine |
| 1267 ** invokes the collation factory if the named collation cannot be found |
| 1268 ** and generates an error message. |
| 1269 ** |
| 1270 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() |
| 1271 */ |
| 1272 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ |
| 1273 sqlite3 *db = pParse->db; |
| 1274 u8 enc = ENC(db); |
| 1275 u8 initbusy = db->init.busy; |
| 1276 CollSeq *pColl; |
| 1277 |
| 1278 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); |
| 1279 if( !initbusy && (!pColl || !pColl->xCmp) ){ |
| 1280 pColl = sqlite3GetCollSeq(db, enc, pColl, zName); |
| 1281 if( !pColl ){ |
| 1282 sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName); |
| 1283 } |
| 1284 } |
| 1285 |
| 1286 return pColl; |
| 1287 } |
| 1288 |
| 1289 |
| 1290 /* |
| 1291 ** Generate code that will increment the schema cookie. |
| 1292 ** |
| 1293 ** The schema cookie is used to determine when the schema for the |
| 1294 ** database changes. After each schema change, the cookie value |
| 1295 ** changes. When a process first reads the schema it records the |
| 1296 ** cookie. Thereafter, whenever it goes to access the database, |
| 1297 ** it checks the cookie to make sure the schema has not changed |
| 1298 ** since it was last read. |
| 1299 ** |
| 1300 ** This plan is not completely bullet-proof. It is possible for |
| 1301 ** the schema to change multiple times and for the cookie to be |
| 1302 ** set back to prior value. But schema changes are infrequent |
| 1303 ** and the probability of hitting the same cookie value is only |
| 1304 ** 1 chance in 2^32. So we're safe enough. |
| 1305 */ |
| 1306 void sqlite3ChangeCookie(Parse *pParse, int iDb){ |
| 1307 int r1 = sqlite3GetTempReg(pParse); |
| 1308 sqlite3 *db = pParse->db; |
| 1309 Vdbe *v = pParse->pVdbe; |
| 1310 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
| 1311 sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1); |
| 1312 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1); |
| 1313 sqlite3ReleaseTempReg(pParse, r1); |
| 1314 } |
| 1315 |
| 1316 /* |
| 1317 ** Measure the number of characters needed to output the given |
| 1318 ** identifier. The number returned includes any quotes used |
| 1319 ** but does not include the null terminator. |
| 1320 ** |
| 1321 ** The estimate is conservative. It might be larger that what is |
| 1322 ** really needed. |
| 1323 */ |
| 1324 static int identLength(const char *z){ |
| 1325 int n; |
| 1326 for(n=0; *z; n++, z++){ |
| 1327 if( *z=='"' ){ n++; } |
| 1328 } |
| 1329 return n + 2; |
| 1330 } |
| 1331 |
| 1332 /* |
| 1333 ** The first parameter is a pointer to an output buffer. The second |
| 1334 ** parameter is a pointer to an integer that contains the offset at |
| 1335 ** which to write into the output buffer. This function copies the |
| 1336 ** nul-terminated string pointed to by the third parameter, zSignedIdent, |
| 1337 ** to the specified offset in the buffer and updates *pIdx to refer |
| 1338 ** to the first byte after the last byte written before returning. |
| 1339 ** |
| 1340 ** If the string zSignedIdent consists entirely of alpha-numeric |
| 1341 ** characters, does not begin with a digit and is not an SQL keyword, |
| 1342 ** then it is copied to the output buffer exactly as it is. Otherwise, |
| 1343 ** it is quoted using double-quotes. |
| 1344 */ |
| 1345 static void identPut(char *z, int *pIdx, char *zSignedIdent){ |
| 1346 unsigned char *zIdent = (unsigned char*)zSignedIdent; |
| 1347 int i, j, needQuote; |
| 1348 i = *pIdx; |
| 1349 |
| 1350 for(j=0; zIdent[j]; j++){ |
| 1351 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; |
| 1352 } |
| 1353 needQuote = sqlite3Isdigit(zIdent[0]) || sqlite3KeywordCode(zIdent, j)!=TK_ID; |
| 1354 if( !needQuote ){ |
| 1355 needQuote = zIdent[j]; |
| 1356 } |
| 1357 |
| 1358 if( needQuote ) z[i++] = '"'; |
| 1359 for(j=0; zIdent[j]; j++){ |
| 1360 z[i++] = zIdent[j]; |
| 1361 if( zIdent[j]=='"' ) z[i++] = '"'; |
| 1362 } |
| 1363 if( needQuote ) z[i++] = '"'; |
| 1364 z[i] = 0; |
| 1365 *pIdx = i; |
| 1366 } |
| 1367 |
| 1368 /* |
| 1369 ** Generate a CREATE TABLE statement appropriate for the given |
| 1370 ** table. Memory to hold the text of the statement is obtained |
| 1371 ** from sqliteMalloc() and must be freed by the calling function. |
| 1372 */ |
| 1373 static char *createTableStmt(sqlite3 *db, Table *p){ |
| 1374 int i, k, n; |
| 1375 char *zStmt; |
| 1376 char *zSep, *zSep2, *zEnd; |
| 1377 Column *pCol; |
| 1378 n = 0; |
| 1379 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ |
| 1380 n += identLength(pCol->zName) + 5; |
| 1381 } |
| 1382 n += identLength(p->zName); |
| 1383 if( n<50 ){ |
| 1384 zSep = ""; |
| 1385 zSep2 = ","; |
| 1386 zEnd = ")"; |
| 1387 }else{ |
| 1388 zSep = "\n "; |
| 1389 zSep2 = ",\n "; |
| 1390 zEnd = "\n)"; |
| 1391 } |
| 1392 n += 35 + 6*p->nCol; |
| 1393 zStmt = sqlite3DbMallocRaw(0, n); |
| 1394 if( zStmt==0 ){ |
| 1395 db->mallocFailed = 1; |
| 1396 return 0; |
| 1397 } |
| 1398 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); |
| 1399 k = sqlite3Strlen30(zStmt); |
| 1400 identPut(zStmt, &k, p->zName); |
| 1401 zStmt[k++] = '('; |
| 1402 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ |
| 1403 static const char * const azType[] = { |
| 1404 /* SQLITE_AFF_TEXT */ " TEXT", |
| 1405 /* SQLITE_AFF_NONE */ "", |
| 1406 /* SQLITE_AFF_NUMERIC */ " NUM", |
| 1407 /* SQLITE_AFF_INTEGER */ " INT", |
| 1408 /* SQLITE_AFF_REAL */ " REAL" |
| 1409 }; |
| 1410 int len; |
| 1411 const char *zType; |
| 1412 |
| 1413 sqlite3_snprintf(n-k, &zStmt[k], zSep); |
| 1414 k += sqlite3Strlen30(&zStmt[k]); |
| 1415 zSep = zSep2; |
| 1416 identPut(zStmt, &k, pCol->zName); |
| 1417 assert( pCol->affinity-SQLITE_AFF_TEXT >= 0 ); |
| 1418 assert( pCol->affinity-SQLITE_AFF_TEXT < ArraySize(azType) ); |
| 1419 testcase( pCol->affinity==SQLITE_AFF_TEXT ); |
| 1420 testcase( pCol->affinity==SQLITE_AFF_NONE ); |
| 1421 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); |
| 1422 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); |
| 1423 testcase( pCol->affinity==SQLITE_AFF_REAL ); |
| 1424 |
| 1425 zType = azType[pCol->affinity - SQLITE_AFF_TEXT]; |
| 1426 len = sqlite3Strlen30(zType); |
| 1427 assert( pCol->affinity==SQLITE_AFF_NONE |
| 1428 || pCol->affinity==sqlite3AffinityType(zType) ); |
| 1429 memcpy(&zStmt[k], zType, len); |
| 1430 k += len; |
| 1431 assert( k<=n ); |
| 1432 } |
| 1433 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); |
| 1434 return zStmt; |
| 1435 } |
| 1436 |
| 1437 /* |
| 1438 ** This routine is called to report the final ")" that terminates |
| 1439 ** a CREATE TABLE statement. |
| 1440 ** |
| 1441 ** The table structure that other action routines have been building |
| 1442 ** is added to the internal hash tables, assuming no errors have |
| 1443 ** occurred. |
| 1444 ** |
| 1445 ** An entry for the table is made in the master table on disk, unless |
| 1446 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 |
| 1447 ** it means we are reading the sqlite_master table because we just |
| 1448 ** connected to the database or because the sqlite_master table has |
| 1449 ** recently changed, so the entry for this table already exists in |
| 1450 ** the sqlite_master table. We do not want to create it again. |
| 1451 ** |
| 1452 ** If the pSelect argument is not NULL, it means that this routine |
| 1453 ** was called to create a table generated from a |
| 1454 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of |
| 1455 ** the new table will match the result set of the SELECT. |
| 1456 */ |
| 1457 void sqlite3EndTable( |
| 1458 Parse *pParse, /* Parse context */ |
| 1459 Token *pCons, /* The ',' token after the last column defn. */ |
| 1460 Token *pEnd, /* The final ')' token in the CREATE TABLE */ |
| 1461 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ |
| 1462 ){ |
| 1463 Table *p; |
| 1464 sqlite3 *db = pParse->db; |
| 1465 int iDb; |
| 1466 |
| 1467 if( (pEnd==0 && pSelect==0) || db->mallocFailed ){ |
| 1468 return; |
| 1469 } |
| 1470 p = pParse->pNewTable; |
| 1471 if( p==0 ) return; |
| 1472 |
| 1473 assert( !db->init.busy || !pSelect ); |
| 1474 |
| 1475 iDb = sqlite3SchemaToIndex(db, p->pSchema); |
| 1476 |
| 1477 #ifndef SQLITE_OMIT_CHECK |
| 1478 /* Resolve names in all CHECK constraint expressions. |
| 1479 */ |
| 1480 if( p->pCheck ){ |
| 1481 SrcList sSrc; /* Fake SrcList for pParse->pNewTable */ |
| 1482 NameContext sNC; /* Name context for pParse->pNewTable */ |
| 1483 |
| 1484 memset(&sNC, 0, sizeof(sNC)); |
| 1485 memset(&sSrc, 0, sizeof(sSrc)); |
| 1486 sSrc.nSrc = 1; |
| 1487 sSrc.a[0].zName = p->zName; |
| 1488 sSrc.a[0].pTab = p; |
| 1489 sSrc.a[0].iCursor = -1; |
| 1490 sNC.pParse = pParse; |
| 1491 sNC.pSrcList = &sSrc; |
| 1492 sNC.isCheck = 1; |
| 1493 if( sqlite3ResolveExprNames(&sNC, p->pCheck) ){ |
| 1494 return; |
| 1495 } |
| 1496 } |
| 1497 #endif /* !defined(SQLITE_OMIT_CHECK) */ |
| 1498 |
| 1499 /* If the db->init.busy is 1 it means we are reading the SQL off the |
| 1500 ** "sqlite_master" or "sqlite_temp_master" table on the disk. |
| 1501 ** So do not write to the disk again. Extract the root page number |
| 1502 ** for the table from the db->init.newTnum field. (The page number |
| 1503 ** should have been put there by the sqliteOpenCb routine.) |
| 1504 */ |
| 1505 if( db->init.busy ){ |
| 1506 p->tnum = db->init.newTnum; |
| 1507 } |
| 1508 |
| 1509 /* If not initializing, then create a record for the new table |
| 1510 ** in the SQLITE_MASTER table of the database. |
| 1511 ** |
| 1512 ** If this is a TEMPORARY table, write the entry into the auxiliary |
| 1513 ** file instead of into the main database file. |
| 1514 */ |
| 1515 if( !db->init.busy ){ |
| 1516 int n; |
| 1517 Vdbe *v; |
| 1518 char *zType; /* "view" or "table" */ |
| 1519 char *zType2; /* "VIEW" or "TABLE" */ |
| 1520 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ |
| 1521 |
| 1522 v = sqlite3GetVdbe(pParse); |
| 1523 if( NEVER(v==0) ) return; |
| 1524 |
| 1525 sqlite3VdbeAddOp1(v, OP_Close, 0); |
| 1526 |
| 1527 /* |
| 1528 ** Initialize zType for the new view or table. |
| 1529 */ |
| 1530 if( p->pSelect==0 ){ |
| 1531 /* A regular table */ |
| 1532 zType = "table"; |
| 1533 zType2 = "TABLE"; |
| 1534 #ifndef SQLITE_OMIT_VIEW |
| 1535 }else{ |
| 1536 /* A view */ |
| 1537 zType = "view"; |
| 1538 zType2 = "VIEW"; |
| 1539 #endif |
| 1540 } |
| 1541 |
| 1542 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT |
| 1543 ** statement to populate the new table. The root-page number for the |
| 1544 ** new table is in register pParse->regRoot. |
| 1545 ** |
| 1546 ** Once the SELECT has been coded by sqlite3Select(), it is in a |
| 1547 ** suitable state to query for the column names and types to be used |
| 1548 ** by the new table. |
| 1549 ** |
| 1550 ** A shared-cache write-lock is not required to write to the new table, |
| 1551 ** as a schema-lock must have already been obtained to create it. Since |
| 1552 ** a schema-lock excludes all other database users, the write-lock would |
| 1553 ** be redundant. |
| 1554 */ |
| 1555 if( pSelect ){ |
| 1556 SelectDest dest; |
| 1557 Table *pSelTab; |
| 1558 |
| 1559 assert(pParse->nTab==1); |
| 1560 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); |
| 1561 sqlite3VdbeChangeP5(v, 1); |
| 1562 pParse->nTab = 2; |
| 1563 sqlite3SelectDestInit(&dest, SRT_Table, 1); |
| 1564 sqlite3Select(pParse, pSelect, &dest); |
| 1565 sqlite3VdbeAddOp1(v, OP_Close, 1); |
| 1566 if( pParse->nErr==0 ){ |
| 1567 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); |
| 1568 if( pSelTab==0 ) return; |
| 1569 assert( p->aCol==0 ); |
| 1570 p->nCol = pSelTab->nCol; |
| 1571 p->aCol = pSelTab->aCol; |
| 1572 pSelTab->nCol = 0; |
| 1573 pSelTab->aCol = 0; |
| 1574 sqlite3DeleteTable(db, pSelTab); |
| 1575 } |
| 1576 } |
| 1577 |
| 1578 /* Compute the complete text of the CREATE statement */ |
| 1579 if( pSelect ){ |
| 1580 zStmt = createTableStmt(db, p); |
| 1581 }else{ |
| 1582 n = (int)(pEnd->z - pParse->sNameToken.z) + 1; |
| 1583 zStmt = sqlite3MPrintf(db, |
| 1584 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z |
| 1585 ); |
| 1586 } |
| 1587 |
| 1588 /* A slot for the record has already been allocated in the |
| 1589 ** SQLITE_MASTER table. We just need to update that slot with all |
| 1590 ** the information we've collected. |
| 1591 */ |
| 1592 sqlite3NestedParse(pParse, |
| 1593 "UPDATE %Q.%s " |
| 1594 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " |
| 1595 "WHERE rowid=#%d", |
| 1596 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), |
| 1597 zType, |
| 1598 p->zName, |
| 1599 p->zName, |
| 1600 pParse->regRoot, |
| 1601 zStmt, |
| 1602 pParse->regRowid |
| 1603 ); |
| 1604 sqlite3DbFree(db, zStmt); |
| 1605 sqlite3ChangeCookie(pParse, iDb); |
| 1606 |
| 1607 #ifndef SQLITE_OMIT_AUTOINCREMENT |
| 1608 /* Check to see if we need to create an sqlite_sequence table for |
| 1609 ** keeping track of autoincrement keys. |
| 1610 */ |
| 1611 if( p->tabFlags & TF_Autoincrement ){ |
| 1612 Db *pDb = &db->aDb[iDb]; |
| 1613 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
| 1614 if( pDb->pSchema->pSeqTab==0 ){ |
| 1615 sqlite3NestedParse(pParse, |
| 1616 "CREATE TABLE %Q.sqlite_sequence(name,seq)", |
| 1617 pDb->zName |
| 1618 ); |
| 1619 } |
| 1620 } |
| 1621 #endif |
| 1622 |
| 1623 /* Reparse everything to update our internal data structures */ |
| 1624 sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, |
| 1625 sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC); |
| 1626 } |
| 1627 |
| 1628 |
| 1629 /* Add the table to the in-memory representation of the database. |
| 1630 */ |
| 1631 if( db->init.busy ){ |
| 1632 Table *pOld; |
| 1633 Schema *pSchema = p->pSchema; |
| 1634 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
| 1635 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, |
| 1636 sqlite3Strlen30(p->zName),p); |
| 1637 if( pOld ){ |
| 1638 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ |
| 1639 db->mallocFailed = 1; |
| 1640 return; |
| 1641 } |
| 1642 pParse->pNewTable = 0; |
| 1643 db->nTable++; |
| 1644 db->flags |= SQLITE_InternChanges; |
| 1645 |
| 1646 #ifndef SQLITE_OMIT_ALTERTABLE |
| 1647 if( !p->pSelect ){ |
| 1648 const char *zName = (const char *)pParse->sNameToken.z; |
| 1649 int nName; |
| 1650 assert( !pSelect && pCons && pEnd ); |
| 1651 if( pCons->z==0 ){ |
| 1652 pCons = pEnd; |
| 1653 } |
| 1654 nName = (int)((const char *)pCons->z - zName); |
| 1655 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); |
| 1656 } |
| 1657 #endif |
| 1658 } |
| 1659 } |
| 1660 |
| 1661 #ifndef SQLITE_OMIT_VIEW |
| 1662 /* |
| 1663 ** The parser calls this routine in order to create a new VIEW |
| 1664 */ |
| 1665 void sqlite3CreateView( |
| 1666 Parse *pParse, /* The parsing context */ |
| 1667 Token *pBegin, /* The CREATE token that begins the statement */ |
| 1668 Token *pName1, /* The token that holds the name of the view */ |
| 1669 Token *pName2, /* The token that holds the name of the view */ |
| 1670 Select *pSelect, /* A SELECT statement that will become the new view */ |
| 1671 int isTemp, /* TRUE for a TEMPORARY view */ |
| 1672 int noErr /* Suppress error messages if VIEW already exists */ |
| 1673 ){ |
| 1674 Table *p; |
| 1675 int n; |
| 1676 const char *z; |
| 1677 Token sEnd; |
| 1678 DbFixer sFix; |
| 1679 Token *pName; |
| 1680 int iDb; |
| 1681 sqlite3 *db = pParse->db; |
| 1682 |
| 1683 if( pParse->nVar>0 ){ |
| 1684 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); |
| 1685 sqlite3SelectDelete(db, pSelect); |
| 1686 return; |
| 1687 } |
| 1688 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); |
| 1689 p = pParse->pNewTable; |
| 1690 if( p==0 || pParse->nErr ){ |
| 1691 sqlite3SelectDelete(db, pSelect); |
| 1692 return; |
| 1693 } |
| 1694 sqlite3TwoPartName(pParse, pName1, pName2, &pName); |
| 1695 iDb = sqlite3SchemaToIndex(db, p->pSchema); |
| 1696 if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName) |
| 1697 && sqlite3FixSelect(&sFix, pSelect) |
| 1698 ){ |
| 1699 sqlite3SelectDelete(db, pSelect); |
| 1700 return; |
| 1701 } |
| 1702 |
| 1703 /* Make a copy of the entire SELECT statement that defines the view. |
| 1704 ** This will force all the Expr.token.z values to be dynamically |
| 1705 ** allocated rather than point to the input string - which means that |
| 1706 ** they will persist after the current sqlite3_exec() call returns. |
| 1707 */ |
| 1708 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); |
| 1709 sqlite3SelectDelete(db, pSelect); |
| 1710 if( db->mallocFailed ){ |
| 1711 return; |
| 1712 } |
| 1713 if( !db->init.busy ){ |
| 1714 sqlite3ViewGetColumnNames(pParse, p); |
| 1715 } |
| 1716 |
| 1717 /* Locate the end of the CREATE VIEW statement. Make sEnd point to |
| 1718 ** the end. |
| 1719 */ |
| 1720 sEnd = pParse->sLastToken; |
| 1721 if( ALWAYS(sEnd.z[0]!=0) && sEnd.z[0]!=';' ){ |
| 1722 sEnd.z += sEnd.n; |
| 1723 } |
| 1724 sEnd.n = 0; |
| 1725 n = (int)(sEnd.z - pBegin->z); |
| 1726 z = pBegin->z; |
| 1727 while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; } |
| 1728 sEnd.z = &z[n-1]; |
| 1729 sEnd.n = 1; |
| 1730 |
| 1731 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ |
| 1732 sqlite3EndTable(pParse, 0, &sEnd, 0); |
| 1733 return; |
| 1734 } |
| 1735 #endif /* SQLITE_OMIT_VIEW */ |
| 1736 |
| 1737 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) |
| 1738 /* |
| 1739 ** The Table structure pTable is really a VIEW. Fill in the names of |
| 1740 ** the columns of the view in the pTable structure. Return the number |
| 1741 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. |
| 1742 */ |
| 1743 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ |
| 1744 Table *pSelTab; /* A fake table from which we get the result set */ |
| 1745 Select *pSel; /* Copy of the SELECT that implements the view */ |
| 1746 int nErr = 0; /* Number of errors encountered */ |
| 1747 int n; /* Temporarily holds the number of cursors assigned */ |
| 1748 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ |
| 1749 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); |
| 1750 |
| 1751 assert( pTable ); |
| 1752 |
| 1753 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 1754 if( sqlite3VtabCallConnect(pParse, pTable) ){ |
| 1755 return SQLITE_ERROR; |
| 1756 } |
| 1757 if( IsVirtual(pTable) ) return 0; |
| 1758 #endif |
| 1759 |
| 1760 #ifndef SQLITE_OMIT_VIEW |
| 1761 /* A positive nCol means the columns names for this view are |
| 1762 ** already known. |
| 1763 */ |
| 1764 if( pTable->nCol>0 ) return 0; |
| 1765 |
| 1766 /* A negative nCol is a special marker meaning that we are currently |
| 1767 ** trying to compute the column names. If we enter this routine with |
| 1768 ** a negative nCol, it means two or more views form a loop, like this: |
| 1769 ** |
| 1770 ** CREATE VIEW one AS SELECT * FROM two; |
| 1771 ** CREATE VIEW two AS SELECT * FROM one; |
| 1772 ** |
| 1773 ** Actually, the error above is now caught prior to reaching this point. |
| 1774 ** But the following test is still important as it does come up |
| 1775 ** in the following: |
| 1776 ** |
| 1777 ** CREATE TABLE main.ex1(a); |
| 1778 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; |
| 1779 ** SELECT * FROM temp.ex1; |
| 1780 */ |
| 1781 if( pTable->nCol<0 ){ |
| 1782 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); |
| 1783 return 1; |
| 1784 } |
| 1785 assert( pTable->nCol>=0 ); |
| 1786 |
| 1787 /* If we get this far, it means we need to compute the table names. |
| 1788 ** Note that the call to sqlite3ResultSetOfSelect() will expand any |
| 1789 ** "*" elements in the results set of the view and will assign cursors |
| 1790 ** to the elements of the FROM clause. But we do not want these changes |
| 1791 ** to be permanent. So the computation is done on a copy of the SELECT |
| 1792 ** statement that defines the view. |
| 1793 */ |
| 1794 assert( pTable->pSelect ); |
| 1795 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); |
| 1796 if( pSel ){ |
| 1797 u8 enableLookaside = db->lookaside.bEnabled; |
| 1798 n = pParse->nTab; |
| 1799 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); |
| 1800 pTable->nCol = -1; |
| 1801 db->lookaside.bEnabled = 0; |
| 1802 #ifndef SQLITE_OMIT_AUTHORIZATION |
| 1803 xAuth = db->xAuth; |
| 1804 db->xAuth = 0; |
| 1805 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); |
| 1806 db->xAuth = xAuth; |
| 1807 #else |
| 1808 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); |
| 1809 #endif |
| 1810 db->lookaside.bEnabled = enableLookaside; |
| 1811 pParse->nTab = n; |
| 1812 if( pSelTab ){ |
| 1813 assert( pTable->aCol==0 ); |
| 1814 pTable->nCol = pSelTab->nCol; |
| 1815 pTable->aCol = pSelTab->aCol; |
| 1816 pSelTab->nCol = 0; |
| 1817 pSelTab->aCol = 0; |
| 1818 sqlite3DeleteTable(db, pSelTab); |
| 1819 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); |
| 1820 pTable->pSchema->flags |= DB_UnresetViews; |
| 1821 }else{ |
| 1822 pTable->nCol = 0; |
| 1823 nErr++; |
| 1824 } |
| 1825 sqlite3SelectDelete(db, pSel); |
| 1826 } else { |
| 1827 nErr++; |
| 1828 } |
| 1829 #endif /* SQLITE_OMIT_VIEW */ |
| 1830 return nErr; |
| 1831 } |
| 1832 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ |
| 1833 |
| 1834 #ifndef SQLITE_OMIT_VIEW |
| 1835 /* |
| 1836 ** Clear the column names from every VIEW in database idx. |
| 1837 */ |
| 1838 static void sqliteViewResetAll(sqlite3 *db, int idx){ |
| 1839 HashElem *i; |
| 1840 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); |
| 1841 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; |
| 1842 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ |
| 1843 Table *pTab = sqliteHashData(i); |
| 1844 if( pTab->pSelect ){ |
| 1845 sqliteDeleteColumnNames(db, pTab); |
| 1846 pTab->aCol = 0; |
| 1847 pTab->nCol = 0; |
| 1848 } |
| 1849 } |
| 1850 DbClearProperty(db, idx, DB_UnresetViews); |
| 1851 } |
| 1852 #else |
| 1853 # define sqliteViewResetAll(A,B) |
| 1854 #endif /* SQLITE_OMIT_VIEW */ |
| 1855 |
| 1856 /* |
| 1857 ** This function is called by the VDBE to adjust the internal schema |
| 1858 ** used by SQLite when the btree layer moves a table root page. The |
| 1859 ** root-page of a table or index in database iDb has changed from iFrom |
| 1860 ** to iTo. |
| 1861 ** |
| 1862 ** Ticket #1728: The symbol table might still contain information |
| 1863 ** on tables and/or indices that are the process of being deleted. |
| 1864 ** If you are unlucky, one of those deleted indices or tables might |
| 1865 ** have the same rootpage number as the real table or index that is |
| 1866 ** being moved. So we cannot stop searching after the first match |
| 1867 ** because the first match might be for one of the deleted indices |
| 1868 ** or tables and not the table/index that is actually being moved. |
| 1869 ** We must continue looping until all tables and indices with |
| 1870 ** rootpage==iFrom have been converted to have a rootpage of iTo |
| 1871 ** in order to be certain that we got the right one. |
| 1872 */ |
| 1873 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 1874 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ |
| 1875 HashElem *pElem; |
| 1876 Hash *pHash; |
| 1877 Db *pDb; |
| 1878 |
| 1879 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
| 1880 pDb = &db->aDb[iDb]; |
| 1881 pHash = &pDb->pSchema->tblHash; |
| 1882 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ |
| 1883 Table *pTab = sqliteHashData(pElem); |
| 1884 if( pTab->tnum==iFrom ){ |
| 1885 pTab->tnum = iTo; |
| 1886 } |
| 1887 } |
| 1888 pHash = &pDb->pSchema->idxHash; |
| 1889 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ |
| 1890 Index *pIdx = sqliteHashData(pElem); |
| 1891 if( pIdx->tnum==iFrom ){ |
| 1892 pIdx->tnum = iTo; |
| 1893 } |
| 1894 } |
| 1895 } |
| 1896 #endif |
| 1897 |
| 1898 /* |
| 1899 ** Write code to erase the table with root-page iTable from database iDb. |
| 1900 ** Also write code to modify the sqlite_master table and internal schema |
| 1901 ** if a root-page of another table is moved by the btree-layer whilst |
| 1902 ** erasing iTable (this can happen with an auto-vacuum database). |
| 1903 */ |
| 1904 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ |
| 1905 Vdbe *v = sqlite3GetVdbe(pParse); |
| 1906 int r1 = sqlite3GetTempReg(pParse); |
| 1907 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); |
| 1908 sqlite3MayAbort(pParse); |
| 1909 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 1910 /* OP_Destroy stores an in integer r1. If this integer |
| 1911 ** is non-zero, then it is the root page number of a table moved to |
| 1912 ** location iTable. The following code modifies the sqlite_master table to |
| 1913 ** reflect this. |
| 1914 ** |
| 1915 ** The "#NNN" in the SQL is a special constant that means whatever value |
| 1916 ** is in register NNN. See grammar rules associated with the TK_REGISTER |
| 1917 ** token for additional information. |
| 1918 */ |
| 1919 sqlite3NestedParse(pParse, |
| 1920 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", |
| 1921 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1); |
| 1922 #endif |
| 1923 sqlite3ReleaseTempReg(pParse, r1); |
| 1924 } |
| 1925 |
| 1926 /* |
| 1927 ** Write VDBE code to erase table pTab and all associated indices on disk. |
| 1928 ** Code to update the sqlite_master tables and internal schema definitions |
| 1929 ** in case a root-page belonging to another table is moved by the btree layer |
| 1930 ** is also added (this can happen with an auto-vacuum database). |
| 1931 */ |
| 1932 static void destroyTable(Parse *pParse, Table *pTab){ |
| 1933 #ifdef SQLITE_OMIT_AUTOVACUUM |
| 1934 Index *pIdx; |
| 1935 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
| 1936 destroyRootPage(pParse, pTab->tnum, iDb); |
| 1937 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
| 1938 destroyRootPage(pParse, pIdx->tnum, iDb); |
| 1939 } |
| 1940 #else |
| 1941 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM |
| 1942 ** is not defined), then it is important to call OP_Destroy on the |
| 1943 ** table and index root-pages in order, starting with the numerically |
| 1944 ** largest root-page number. This guarantees that none of the root-pages |
| 1945 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the |
| 1946 ** following were coded: |
| 1947 ** |
| 1948 ** OP_Destroy 4 0 |
| 1949 ** ... |
| 1950 ** OP_Destroy 5 0 |
| 1951 ** |
| 1952 ** and root page 5 happened to be the largest root-page number in the |
| 1953 ** database, then root page 5 would be moved to page 4 by the |
| 1954 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit |
| 1955 ** a free-list page. |
| 1956 */ |
| 1957 int iTab = pTab->tnum; |
| 1958 int iDestroyed = 0; |
| 1959 |
| 1960 while( 1 ){ |
| 1961 Index *pIdx; |
| 1962 int iLargest = 0; |
| 1963 |
| 1964 if( iDestroyed==0 || iTab<iDestroyed ){ |
| 1965 iLargest = iTab; |
| 1966 } |
| 1967 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
| 1968 int iIdx = pIdx->tnum; |
| 1969 assert( pIdx->pSchema==pTab->pSchema ); |
| 1970 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ |
| 1971 iLargest = iIdx; |
| 1972 } |
| 1973 } |
| 1974 if( iLargest==0 ){ |
| 1975 return; |
| 1976 }else{ |
| 1977 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
| 1978 destroyRootPage(pParse, iLargest, iDb); |
| 1979 iDestroyed = iLargest; |
| 1980 } |
| 1981 } |
| 1982 #endif |
| 1983 } |
| 1984 |
| 1985 /* |
| 1986 ** This routine is called to do the work of a DROP TABLE statement. |
| 1987 ** pName is the name of the table to be dropped. |
| 1988 */ |
| 1989 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ |
| 1990 Table *pTab; |
| 1991 Vdbe *v; |
| 1992 sqlite3 *db = pParse->db; |
| 1993 int iDb; |
| 1994 |
| 1995 if( db->mallocFailed ){ |
| 1996 goto exit_drop_table; |
| 1997 } |
| 1998 assert( pParse->nErr==0 ); |
| 1999 assert( pName->nSrc==1 ); |
| 2000 if( noErr ) db->suppressErr++; |
| 2001 pTab = sqlite3LocateTable(pParse, isView, |
| 2002 pName->a[0].zName, pName->a[0].zDatabase); |
| 2003 if( noErr ) db->suppressErr--; |
| 2004 |
| 2005 if( pTab==0 ){ |
| 2006 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); |
| 2007 goto exit_drop_table; |
| 2008 } |
| 2009 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
| 2010 assert( iDb>=0 && iDb<db->nDb ); |
| 2011 |
| 2012 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure |
| 2013 ** it is initialized. |
| 2014 */ |
| 2015 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ |
| 2016 goto exit_drop_table; |
| 2017 } |
| 2018 #ifndef SQLITE_OMIT_AUTHORIZATION |
| 2019 { |
| 2020 int code; |
| 2021 const char *zTab = SCHEMA_TABLE(iDb); |
| 2022 const char *zDb = db->aDb[iDb].zName; |
| 2023 const char *zArg2 = 0; |
| 2024 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ |
| 2025 goto exit_drop_table; |
| 2026 } |
| 2027 if( isView ){ |
| 2028 if( !OMIT_TEMPDB && iDb==1 ){ |
| 2029 code = SQLITE_DROP_TEMP_VIEW; |
| 2030 }else{ |
| 2031 code = SQLITE_DROP_VIEW; |
| 2032 } |
| 2033 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 2034 }else if( IsVirtual(pTab) ){ |
| 2035 code = SQLITE_DROP_VTABLE; |
| 2036 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; |
| 2037 #endif |
| 2038 }else{ |
| 2039 if( !OMIT_TEMPDB && iDb==1 ){ |
| 2040 code = SQLITE_DROP_TEMP_TABLE; |
| 2041 }else{ |
| 2042 code = SQLITE_DROP_TABLE; |
| 2043 } |
| 2044 } |
| 2045 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ |
| 2046 goto exit_drop_table; |
| 2047 } |
| 2048 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ |
| 2049 goto exit_drop_table; |
| 2050 } |
| 2051 } |
| 2052 #endif |
| 2053 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ |
| 2054 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); |
| 2055 goto exit_drop_table; |
| 2056 } |
| 2057 |
| 2058 #ifndef SQLITE_OMIT_VIEW |
| 2059 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used |
| 2060 ** on a table. |
| 2061 */ |
| 2062 if( isView && pTab->pSelect==0 ){ |
| 2063 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); |
| 2064 goto exit_drop_table; |
| 2065 } |
| 2066 if( !isView && pTab->pSelect ){ |
| 2067 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); |
| 2068 goto exit_drop_table; |
| 2069 } |
| 2070 #endif |
| 2071 |
| 2072 /* Generate code to remove the table from the master table |
| 2073 ** on disk. |
| 2074 */ |
| 2075 v = sqlite3GetVdbe(pParse); |
| 2076 if( v ){ |
| 2077 Trigger *pTrigger; |
| 2078 Db *pDb = &db->aDb[iDb]; |
| 2079 sqlite3BeginWriteOperation(pParse, 1, iDb); |
| 2080 |
| 2081 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 2082 if( IsVirtual(pTab) ){ |
| 2083 sqlite3VdbeAddOp0(v, OP_VBegin); |
| 2084 } |
| 2085 #endif |
| 2086 sqlite3FkDropTable(pParse, pName, pTab); |
| 2087 |
| 2088 /* Drop all triggers associated with the table being dropped. Code |
| 2089 ** is generated to remove entries from sqlite_master and/or |
| 2090 ** sqlite_temp_master if required. |
| 2091 */ |
| 2092 pTrigger = sqlite3TriggerList(pParse, pTab); |
| 2093 while( pTrigger ){ |
| 2094 assert( pTrigger->pSchema==pTab->pSchema || |
| 2095 pTrigger->pSchema==db->aDb[1].pSchema ); |
| 2096 sqlite3DropTriggerPtr(pParse, pTrigger); |
| 2097 pTrigger = pTrigger->pNext; |
| 2098 } |
| 2099 |
| 2100 #ifndef SQLITE_OMIT_AUTOINCREMENT |
| 2101 /* Remove any entries of the sqlite_sequence table associated with |
| 2102 ** the table being dropped. This is done before the table is dropped |
| 2103 ** at the btree level, in case the sqlite_sequence table needs to |
| 2104 ** move as a result of the drop (can happen in auto-vacuum mode). |
| 2105 */ |
| 2106 if( pTab->tabFlags & TF_Autoincrement ){ |
| 2107 sqlite3NestedParse(pParse, |
| 2108 "DELETE FROM %s.sqlite_sequence WHERE name=%Q", |
| 2109 pDb->zName, pTab->zName |
| 2110 ); |
| 2111 } |
| 2112 #endif |
| 2113 |
| 2114 /* Drop all SQLITE_MASTER table and index entries that refer to the |
| 2115 ** table. The program name loops through the master table and deletes |
| 2116 ** every row that refers to a table of the same name as the one being |
| 2117 ** dropped. Triggers are handled seperately because a trigger can be |
| 2118 ** created in the temp database that refers to a table in another |
| 2119 ** database. |
| 2120 */ |
| 2121 sqlite3NestedParse(pParse, |
| 2122 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", |
| 2123 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); |
| 2124 |
| 2125 /* Drop any statistics from the sqlite_stat1 table, if it exists */ |
| 2126 if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){ |
| 2127 sqlite3NestedParse(pParse, |
| 2128 "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q", pDb->zName, pTab->zName |
| 2129 ); |
| 2130 } |
| 2131 |
| 2132 if( !isView && !IsVirtual(pTab) ){ |
| 2133 destroyTable(pParse, pTab); |
| 2134 } |
| 2135 |
| 2136 /* Remove the table entry from SQLite's internal schema and modify |
| 2137 ** the schema cookie. |
| 2138 */ |
| 2139 if( IsVirtual(pTab) ){ |
| 2140 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); |
| 2141 } |
| 2142 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); |
| 2143 sqlite3ChangeCookie(pParse, iDb); |
| 2144 } |
| 2145 sqliteViewResetAll(db, iDb); |
| 2146 |
| 2147 exit_drop_table: |
| 2148 sqlite3SrcListDelete(db, pName); |
| 2149 } |
| 2150 |
| 2151 /* |
| 2152 ** This routine is called to create a new foreign key on the table |
| 2153 ** currently under construction. pFromCol determines which columns |
| 2154 ** in the current table point to the foreign key. If pFromCol==0 then |
| 2155 ** connect the key to the last column inserted. pTo is the name of |
| 2156 ** the table referred to. pToCol is a list of tables in the other |
| 2157 ** pTo table that the foreign key points to. flags contains all |
| 2158 ** information about the conflict resolution algorithms specified |
| 2159 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. |
| 2160 ** |
| 2161 ** An FKey structure is created and added to the table currently |
| 2162 ** under construction in the pParse->pNewTable field. |
| 2163 ** |
| 2164 ** The foreign key is set for IMMEDIATE processing. A subsequent call |
| 2165 ** to sqlite3DeferForeignKey() might change this to DEFERRED. |
| 2166 */ |
| 2167 void sqlite3CreateForeignKey( |
| 2168 Parse *pParse, /* Parsing context */ |
| 2169 ExprList *pFromCol, /* Columns in this table that point to other table */ |
| 2170 Token *pTo, /* Name of the other table */ |
| 2171 ExprList *pToCol, /* Columns in the other table */ |
| 2172 int flags /* Conflict resolution algorithms. */ |
| 2173 ){ |
| 2174 sqlite3 *db = pParse->db; |
| 2175 #ifndef SQLITE_OMIT_FOREIGN_KEY |
| 2176 FKey *pFKey = 0; |
| 2177 FKey *pNextTo; |
| 2178 Table *p = pParse->pNewTable; |
| 2179 int nByte; |
| 2180 int i; |
| 2181 int nCol; |
| 2182 char *z; |
| 2183 |
| 2184 assert( pTo!=0 ); |
| 2185 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; |
| 2186 if( pFromCol==0 ){ |
| 2187 int iCol = p->nCol-1; |
| 2188 if( NEVER(iCol<0) ) goto fk_end; |
| 2189 if( pToCol && pToCol->nExpr!=1 ){ |
| 2190 sqlite3ErrorMsg(pParse, "foreign key on %s" |
| 2191 " should reference only one column of table %T", |
| 2192 p->aCol[iCol].zName, pTo); |
| 2193 goto fk_end; |
| 2194 } |
| 2195 nCol = 1; |
| 2196 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ |
| 2197 sqlite3ErrorMsg(pParse, |
| 2198 "number of columns in foreign key does not match the number of " |
| 2199 "columns in the referenced table"); |
| 2200 goto fk_end; |
| 2201 }else{ |
| 2202 nCol = pFromCol->nExpr; |
| 2203 } |
| 2204 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; |
| 2205 if( pToCol ){ |
| 2206 for(i=0; i<pToCol->nExpr; i++){ |
| 2207 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; |
| 2208 } |
| 2209 } |
| 2210 pFKey = sqlite3DbMallocZero(db, nByte ); |
| 2211 if( pFKey==0 ){ |
| 2212 goto fk_end; |
| 2213 } |
| 2214 pFKey->pFrom = p; |
| 2215 pFKey->pNextFrom = p->pFKey; |
| 2216 z = (char*)&pFKey->aCol[nCol]; |
| 2217 pFKey->zTo = z; |
| 2218 memcpy(z, pTo->z, pTo->n); |
| 2219 z[pTo->n] = 0; |
| 2220 sqlite3Dequote(z); |
| 2221 z += pTo->n+1; |
| 2222 pFKey->nCol = nCol; |
| 2223 if( pFromCol==0 ){ |
| 2224 pFKey->aCol[0].iFrom = p->nCol-1; |
| 2225 }else{ |
| 2226 for(i=0; i<nCol; i++){ |
| 2227 int j; |
| 2228 for(j=0; j<p->nCol; j++){ |
| 2229 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ |
| 2230 pFKey->aCol[i].iFrom = j; |
| 2231 break; |
| 2232 } |
| 2233 } |
| 2234 if( j>=p->nCol ){ |
| 2235 sqlite3ErrorMsg(pParse, |
| 2236 "unknown column \"%s\" in foreign key definition", |
| 2237 pFromCol->a[i].zName); |
| 2238 goto fk_end; |
| 2239 } |
| 2240 } |
| 2241 } |
| 2242 if( pToCol ){ |
| 2243 for(i=0; i<nCol; i++){ |
| 2244 int n = sqlite3Strlen30(pToCol->a[i].zName); |
| 2245 pFKey->aCol[i].zCol = z; |
| 2246 memcpy(z, pToCol->a[i].zName, n); |
| 2247 z[n] = 0; |
| 2248 z += n+1; |
| 2249 } |
| 2250 } |
| 2251 pFKey->isDeferred = 0; |
| 2252 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ |
| 2253 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ |
| 2254 |
| 2255 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); |
| 2256 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, |
| 2257 pFKey->zTo, sqlite3Strlen30(pFKey->zTo), (void *)pFKey |
| 2258 ); |
| 2259 if( pNextTo==pFKey ){ |
| 2260 db->mallocFailed = 1; |
| 2261 goto fk_end; |
| 2262 } |
| 2263 if( pNextTo ){ |
| 2264 assert( pNextTo->pPrevTo==0 ); |
| 2265 pFKey->pNextTo = pNextTo; |
| 2266 pNextTo->pPrevTo = pFKey; |
| 2267 } |
| 2268 |
| 2269 /* Link the foreign key to the table as the last step. |
| 2270 */ |
| 2271 p->pFKey = pFKey; |
| 2272 pFKey = 0; |
| 2273 |
| 2274 fk_end: |
| 2275 sqlite3DbFree(db, pFKey); |
| 2276 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ |
| 2277 sqlite3ExprListDelete(db, pFromCol); |
| 2278 sqlite3ExprListDelete(db, pToCol); |
| 2279 } |
| 2280 |
| 2281 /* |
| 2282 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED |
| 2283 ** clause is seen as part of a foreign key definition. The isDeferred |
| 2284 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. |
| 2285 ** The behavior of the most recently created foreign key is adjusted |
| 2286 ** accordingly. |
| 2287 */ |
| 2288 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ |
| 2289 #ifndef SQLITE_OMIT_FOREIGN_KEY |
| 2290 Table *pTab; |
| 2291 FKey *pFKey; |
| 2292 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; |
| 2293 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ |
| 2294 pFKey->isDeferred = (u8)isDeferred; |
| 2295 #endif |
| 2296 } |
| 2297 |
| 2298 /* |
| 2299 ** Generate code that will erase and refill index *pIdx. This is |
| 2300 ** used to initialize a newly created index or to recompute the |
| 2301 ** content of an index in response to a REINDEX command. |
| 2302 ** |
| 2303 ** if memRootPage is not negative, it means that the index is newly |
| 2304 ** created. The register specified by memRootPage contains the |
| 2305 ** root page number of the index. If memRootPage is negative, then |
| 2306 ** the index already exists and must be cleared before being refilled and |
| 2307 ** the root page number of the index is taken from pIndex->tnum. |
| 2308 */ |
| 2309 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ |
| 2310 Table *pTab = pIndex->pTable; /* The table that is indexed */ |
| 2311 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ |
| 2312 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ |
| 2313 int addr1; /* Address of top of loop */ |
| 2314 int tnum; /* Root page of index */ |
| 2315 Vdbe *v; /* Generate code into this virtual machine */ |
| 2316 KeyInfo *pKey; /* KeyInfo for index */ |
| 2317 int regIdxKey; /* Registers containing the index key */ |
| 2318 int regRecord; /* Register holding assemblied index record */ |
| 2319 sqlite3 *db = pParse->db; /* The database connection */ |
| 2320 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); |
| 2321 |
| 2322 #ifndef SQLITE_OMIT_AUTHORIZATION |
| 2323 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, |
| 2324 db->aDb[iDb].zName ) ){ |
| 2325 return; |
| 2326 } |
| 2327 #endif |
| 2328 |
| 2329 /* Require a write-lock on the table to perform this operation */ |
| 2330 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); |
| 2331 |
| 2332 v = sqlite3GetVdbe(pParse); |
| 2333 if( v==0 ) return; |
| 2334 if( memRootPage>=0 ){ |
| 2335 tnum = memRootPage; |
| 2336 }else{ |
| 2337 tnum = pIndex->tnum; |
| 2338 sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); |
| 2339 } |
| 2340 pKey = sqlite3IndexKeyinfo(pParse, pIndex); |
| 2341 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, |
| 2342 (char *)pKey, P4_KEYINFO_HANDOFF); |
| 2343 if( memRootPage>=0 ){ |
| 2344 sqlite3VdbeChangeP5(v, 1); |
| 2345 } |
| 2346 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); |
| 2347 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); |
| 2348 regRecord = sqlite3GetTempReg(pParse); |
| 2349 regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1); |
| 2350 if( pIndex->onError!=OE_None ){ |
| 2351 const int regRowid = regIdxKey + pIndex->nColumn; |
| 2352 const int j2 = sqlite3VdbeCurrentAddr(v) + 2; |
| 2353 void * const pRegKey = SQLITE_INT_TO_PTR(regIdxKey); |
| 2354 |
| 2355 /* The registers accessed by the OP_IsUnique opcode were allocated |
| 2356 ** using sqlite3GetTempRange() inside of the sqlite3GenerateIndexKey() |
| 2357 ** call above. Just before that function was freed they were released |
| 2358 ** (made available to the compiler for reuse) using |
| 2359 ** sqlite3ReleaseTempRange(). So in some ways having the OP_IsUnique |
| 2360 ** opcode use the values stored within seems dangerous. However, since |
| 2361 ** we can be sure that no other temp registers have been allocated |
| 2362 ** since sqlite3ReleaseTempRange() was called, it is safe to do so. |
| 2363 */ |
| 2364 sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, j2, regRowid, pRegKey, P4_INT32); |
| 2365 sqlite3HaltConstraint( |
| 2366 pParse, OE_Abort, "indexed columns are not unique", P4_STATIC); |
| 2367 } |
| 2368 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); |
| 2369 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); |
| 2370 sqlite3ReleaseTempReg(pParse, regRecord); |
| 2371 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); |
| 2372 sqlite3VdbeJumpHere(v, addr1); |
| 2373 sqlite3VdbeAddOp1(v, OP_Close, iTab); |
| 2374 sqlite3VdbeAddOp1(v, OP_Close, iIdx); |
| 2375 } |
| 2376 |
| 2377 /* |
| 2378 ** Create a new index for an SQL table. pName1.pName2 is the name of the index |
| 2379 ** and pTblList is the name of the table that is to be indexed. Both will |
| 2380 ** be NULL for a primary key or an index that is created to satisfy a |
| 2381 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable |
| 2382 ** as the table to be indexed. pParse->pNewTable is a table that is |
| 2383 ** currently being constructed by a CREATE TABLE statement. |
| 2384 ** |
| 2385 ** pList is a list of columns to be indexed. pList will be NULL if this |
| 2386 ** is a primary key or unique-constraint on the most recent column added |
| 2387 ** to the table currently under construction. |
| 2388 ** |
| 2389 ** If the index is created successfully, return a pointer to the new Index |
| 2390 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index |
| 2391 ** as the tables primary key (Index.autoIndex==2). |
| 2392 */ |
| 2393 Index *sqlite3CreateIndex( |
| 2394 Parse *pParse, /* All information about this parse */ |
| 2395 Token *pName1, /* First part of index name. May be NULL */ |
| 2396 Token *pName2, /* Second part of index name. May be NULL */ |
| 2397 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ |
| 2398 ExprList *pList, /* A list of columns to be indexed */ |
| 2399 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ |
| 2400 Token *pStart, /* The CREATE token that begins this statement */ |
| 2401 Token *pEnd, /* The ")" that closes the CREATE INDEX statement */ |
| 2402 int sortOrder, /* Sort order of primary key when pList==NULL */ |
| 2403 int ifNotExist /* Omit error if index already exists */ |
| 2404 ){ |
| 2405 Index *pRet = 0; /* Pointer to return */ |
| 2406 Table *pTab = 0; /* Table to be indexed */ |
| 2407 Index *pIndex = 0; /* The index to be created */ |
| 2408 char *zName = 0; /* Name of the index */ |
| 2409 int nName; /* Number of characters in zName */ |
| 2410 int i, j; |
| 2411 Token nullId; /* Fake token for an empty ID list */ |
| 2412 DbFixer sFix; /* For assigning database names to pTable */ |
| 2413 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ |
| 2414 sqlite3 *db = pParse->db; |
| 2415 Db *pDb; /* The specific table containing the indexed database */ |
| 2416 int iDb; /* Index of the database that is being written */ |
| 2417 Token *pName = 0; /* Unqualified name of the index to create */ |
| 2418 struct ExprList_item *pListItem; /* For looping over pList */ |
| 2419 int nCol; |
| 2420 int nExtra = 0; |
| 2421 char *zExtra; |
| 2422 |
| 2423 assert( pStart==0 || pEnd!=0 ); /* pEnd must be non-NULL if pStart is */ |
| 2424 assert( pParse->nErr==0 ); /* Never called with prior errors */ |
| 2425 if( db->mallocFailed || IN_DECLARE_VTAB ){ |
| 2426 goto exit_create_index; |
| 2427 } |
| 2428 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ |
| 2429 goto exit_create_index; |
| 2430 } |
| 2431 |
| 2432 /* |
| 2433 ** Find the table that is to be indexed. Return early if not found. |
| 2434 */ |
| 2435 if( pTblName!=0 ){ |
| 2436 |
| 2437 /* Use the two-part index name to determine the database |
| 2438 ** to search for the table. 'Fix' the table name to this db |
| 2439 ** before looking up the table. |
| 2440 */ |
| 2441 assert( pName1 && pName2 ); |
| 2442 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); |
| 2443 if( iDb<0 ) goto exit_create_index; |
| 2444 |
| 2445 #ifndef SQLITE_OMIT_TEMPDB |
| 2446 /* If the index name was unqualified, check if the the table |
| 2447 ** is a temp table. If so, set the database to 1. Do not do this |
| 2448 ** if initialising a database schema. |
| 2449 */ |
| 2450 if( !db->init.busy ){ |
| 2451 pTab = sqlite3SrcListLookup(pParse, pTblName); |
| 2452 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ |
| 2453 iDb = 1; |
| 2454 } |
| 2455 } |
| 2456 #endif |
| 2457 |
| 2458 if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) && |
| 2459 sqlite3FixSrcList(&sFix, pTblName) |
| 2460 ){ |
| 2461 /* Because the parser constructs pTblName from a single identifier, |
| 2462 ** sqlite3FixSrcList can never fail. */ |
| 2463 assert(0); |
| 2464 } |
| 2465 pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName, |
| 2466 pTblName->a[0].zDatabase); |
| 2467 if( !pTab || db->mallocFailed ) goto exit_create_index; |
| 2468 assert( db->aDb[iDb].pSchema==pTab->pSchema ); |
| 2469 }else{ |
| 2470 assert( pName==0 ); |
| 2471 pTab = pParse->pNewTable; |
| 2472 if( !pTab ) goto exit_create_index; |
| 2473 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
| 2474 } |
| 2475 pDb = &db->aDb[iDb]; |
| 2476 |
| 2477 assert( pTab!=0 ); |
| 2478 assert( pParse->nErr==0 ); |
| 2479 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 |
| 2480 && memcmp(&pTab->zName[7],"altertab_",9)!=0 ){ |
| 2481 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); |
| 2482 goto exit_create_index; |
| 2483 } |
| 2484 #ifndef SQLITE_OMIT_VIEW |
| 2485 if( pTab->pSelect ){ |
| 2486 sqlite3ErrorMsg(pParse, "views may not be indexed"); |
| 2487 goto exit_create_index; |
| 2488 } |
| 2489 #endif |
| 2490 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 2491 if( IsVirtual(pTab) ){ |
| 2492 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); |
| 2493 goto exit_create_index; |
| 2494 } |
| 2495 #endif |
| 2496 |
| 2497 /* |
| 2498 ** Find the name of the index. Make sure there is not already another |
| 2499 ** index or table with the same name. |
| 2500 ** |
| 2501 ** Exception: If we are reading the names of permanent indices from the |
| 2502 ** sqlite_master table (because some other process changed the schema) and |
| 2503 ** one of the index names collides with the name of a temporary table or |
| 2504 ** index, then we will continue to process this index. |
| 2505 ** |
| 2506 ** If pName==0 it means that we are |
| 2507 ** dealing with a primary key or UNIQUE constraint. We have to invent our |
| 2508 ** own name. |
| 2509 */ |
| 2510 if( pName ){ |
| 2511 zName = sqlite3NameFromToken(db, pName); |
| 2512 if( zName==0 ) goto exit_create_index; |
| 2513 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ |
| 2514 goto exit_create_index; |
| 2515 } |
| 2516 if( !db->init.busy ){ |
| 2517 if( sqlite3FindTable(db, zName, 0)!=0 ){ |
| 2518 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); |
| 2519 goto exit_create_index; |
| 2520 } |
| 2521 } |
| 2522 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ |
| 2523 if( !ifNotExist ){ |
| 2524 sqlite3ErrorMsg(pParse, "index %s already exists", zName); |
| 2525 }else{ |
| 2526 assert( !db->init.busy ); |
| 2527 sqlite3CodeVerifySchema(pParse, iDb); |
| 2528 } |
| 2529 goto exit_create_index; |
| 2530 } |
| 2531 }else{ |
| 2532 int n; |
| 2533 Index *pLoop; |
| 2534 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} |
| 2535 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); |
| 2536 if( zName==0 ){ |
| 2537 goto exit_create_index; |
| 2538 } |
| 2539 } |
| 2540 |
| 2541 /* Check for authorization to create an index. |
| 2542 */ |
| 2543 #ifndef SQLITE_OMIT_AUTHORIZATION |
| 2544 { |
| 2545 const char *zDb = pDb->zName; |
| 2546 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ |
| 2547 goto exit_create_index; |
| 2548 } |
| 2549 i = SQLITE_CREATE_INDEX; |
| 2550 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; |
| 2551 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ |
| 2552 goto exit_create_index; |
| 2553 } |
| 2554 } |
| 2555 #endif |
| 2556 |
| 2557 /* If pList==0, it means this routine was called to make a primary |
| 2558 ** key out of the last column added to the table under construction. |
| 2559 ** So create a fake list to simulate this. |
| 2560 */ |
| 2561 if( pList==0 ){ |
| 2562 nullId.z = pTab->aCol[pTab->nCol-1].zName; |
| 2563 nullId.n = sqlite3Strlen30((char*)nullId.z); |
| 2564 pList = sqlite3ExprListAppend(pParse, 0, 0); |
| 2565 if( pList==0 ) goto exit_create_index; |
| 2566 sqlite3ExprListSetName(pParse, pList, &nullId, 0); |
| 2567 pList->a[0].sortOrder = (u8)sortOrder; |
| 2568 } |
| 2569 |
| 2570 /* Figure out how many bytes of space are required to store explicitly |
| 2571 ** specified collation sequence names. |
| 2572 */ |
| 2573 for(i=0; i<pList->nExpr; i++){ |
| 2574 Expr *pExpr = pList->a[i].pExpr; |
| 2575 if( pExpr ){ |
| 2576 CollSeq *pColl = pExpr->pColl; |
| 2577 /* Either pColl!=0 or there was an OOM failure. But if an OOM |
| 2578 ** failure we have quit before reaching this point. */ |
| 2579 if( ALWAYS(pColl) ){ |
| 2580 nExtra += (1 + sqlite3Strlen30(pColl->zName)); |
| 2581 } |
| 2582 } |
| 2583 } |
| 2584 |
| 2585 /* |
| 2586 ** Allocate the index structure. |
| 2587 */ |
| 2588 nName = sqlite3Strlen30(zName); |
| 2589 nCol = pList->nExpr; |
| 2590 pIndex = sqlite3DbMallocZero(db, |
| 2591 sizeof(Index) + /* Index structure */ |
| 2592 sizeof(int)*nCol + /* Index.aiColumn */ |
| 2593 sizeof(int)*(nCol+1) + /* Index.aiRowEst */ |
| 2594 sizeof(char *)*nCol + /* Index.azColl */ |
| 2595 sizeof(u8)*nCol + /* Index.aSortOrder */ |
| 2596 nName + 1 + /* Index.zName */ |
| 2597 nExtra /* Collation sequence names */ |
| 2598 ); |
| 2599 if( db->mallocFailed ){ |
| 2600 goto exit_create_index; |
| 2601 } |
| 2602 pIndex->azColl = (char**)(&pIndex[1]); |
| 2603 pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]); |
| 2604 pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]); |
| 2605 pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]); |
| 2606 pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]); |
| 2607 zExtra = (char *)(&pIndex->zName[nName+1]); |
| 2608 memcpy(pIndex->zName, zName, nName+1); |
| 2609 pIndex->pTable = pTab; |
| 2610 pIndex->nColumn = pList->nExpr; |
| 2611 pIndex->onError = (u8)onError; |
| 2612 pIndex->autoIndex = (u8)(pName==0); |
| 2613 pIndex->pSchema = db->aDb[iDb].pSchema; |
| 2614 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
| 2615 |
| 2616 /* Check to see if we should honor DESC requests on index columns |
| 2617 */ |
| 2618 if( pDb->pSchema->file_format>=4 ){ |
| 2619 sortOrderMask = -1; /* Honor DESC */ |
| 2620 }else{ |
| 2621 sortOrderMask = 0; /* Ignore DESC */ |
| 2622 } |
| 2623 |
| 2624 /* Scan the names of the columns of the table to be indexed and |
| 2625 ** load the column indices into the Index structure. Report an error |
| 2626 ** if any column is not found. |
| 2627 ** |
| 2628 ** TODO: Add a test to make sure that the same column is not named |
| 2629 ** more than once within the same index. Only the first instance of |
| 2630 ** the column will ever be used by the optimizer. Note that using the |
| 2631 ** same column more than once cannot be an error because that would |
| 2632 ** break backwards compatibility - it needs to be a warning. |
| 2633 */ |
| 2634 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ |
| 2635 const char *zColName = pListItem->zName; |
| 2636 Column *pTabCol; |
| 2637 int requestedSortOrder; |
| 2638 char *zColl; /* Collation sequence name */ |
| 2639 |
| 2640 for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){ |
| 2641 if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break; |
| 2642 } |
| 2643 if( j>=pTab->nCol ){ |
| 2644 sqlite3ErrorMsg(pParse, "table %s has no column named %s", |
| 2645 pTab->zName, zColName); |
| 2646 pParse->checkSchema = 1; |
| 2647 goto exit_create_index; |
| 2648 } |
| 2649 pIndex->aiColumn[i] = j; |
| 2650 /* Justification of the ALWAYS(pListItem->pExpr->pColl): Because of |
| 2651 ** the way the "idxlist" non-terminal is constructed by the parser, |
| 2652 ** if pListItem->pExpr is not null then either pListItem->pExpr->pColl |
| 2653 ** must exist or else there must have been an OOM error. But if there |
| 2654 ** was an OOM error, we would never reach this point. */ |
| 2655 if( pListItem->pExpr && ALWAYS(pListItem->pExpr->pColl) ){ |
| 2656 int nColl; |
| 2657 zColl = pListItem->pExpr->pColl->zName; |
| 2658 nColl = sqlite3Strlen30(zColl) + 1; |
| 2659 assert( nExtra>=nColl ); |
| 2660 memcpy(zExtra, zColl, nColl); |
| 2661 zColl = zExtra; |
| 2662 zExtra += nColl; |
| 2663 nExtra -= nColl; |
| 2664 }else{ |
| 2665 zColl = pTab->aCol[j].zColl; |
| 2666 if( !zColl ){ |
| 2667 zColl = db->pDfltColl->zName; |
| 2668 } |
| 2669 } |
| 2670 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ |
| 2671 goto exit_create_index; |
| 2672 } |
| 2673 pIndex->azColl[i] = zColl; |
| 2674 requestedSortOrder = pListItem->sortOrder & sortOrderMask; |
| 2675 pIndex->aSortOrder[i] = (u8)requestedSortOrder; |
| 2676 } |
| 2677 sqlite3DefaultRowEst(pIndex); |
| 2678 |
| 2679 if( pTab==pParse->pNewTable ){ |
| 2680 /* This routine has been called to create an automatic index as a |
| 2681 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or |
| 2682 ** a PRIMARY KEY or UNIQUE clause following the column definitions. |
| 2683 ** i.e. one of: |
| 2684 ** |
| 2685 ** CREATE TABLE t(x PRIMARY KEY, y); |
| 2686 ** CREATE TABLE t(x, y, UNIQUE(x, y)); |
| 2687 ** |
| 2688 ** Either way, check to see if the table already has such an index. If |
| 2689 ** so, don't bother creating this one. This only applies to |
| 2690 ** automatically created indices. Users can do as they wish with |
| 2691 ** explicit indices. |
| 2692 ** |
| 2693 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent |
| 2694 ** (and thus suppressing the second one) even if they have different |
| 2695 ** sort orders. |
| 2696 ** |
| 2697 ** If there are different collating sequences or if the columns of |
| 2698 ** the constraint occur in different orders, then the constraints are |
| 2699 ** considered distinct and both result in separate indices. |
| 2700 */ |
| 2701 Index *pIdx; |
| 2702 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
| 2703 int k; |
| 2704 assert( pIdx->onError!=OE_None ); |
| 2705 assert( pIdx->autoIndex ); |
| 2706 assert( pIndex->onError!=OE_None ); |
| 2707 |
| 2708 if( pIdx->nColumn!=pIndex->nColumn ) continue; |
| 2709 for(k=0; k<pIdx->nColumn; k++){ |
| 2710 const char *z1; |
| 2711 const char *z2; |
| 2712 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; |
| 2713 z1 = pIdx->azColl[k]; |
| 2714 z2 = pIndex->azColl[k]; |
| 2715 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; |
| 2716 } |
| 2717 if( k==pIdx->nColumn ){ |
| 2718 if( pIdx->onError!=pIndex->onError ){ |
| 2719 /* This constraint creates the same index as a previous |
| 2720 ** constraint specified somewhere in the CREATE TABLE statement. |
| 2721 ** However the ON CONFLICT clauses are different. If both this |
| 2722 ** constraint and the previous equivalent constraint have explicit |
| 2723 ** ON CONFLICT clauses this is an error. Otherwise, use the |
| 2724 ** explicitly specified behaviour for the index. |
| 2725 */ |
| 2726 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ |
| 2727 sqlite3ErrorMsg(pParse, |
| 2728 "conflicting ON CONFLICT clauses specified", 0); |
| 2729 } |
| 2730 if( pIdx->onError==OE_Default ){ |
| 2731 pIdx->onError = pIndex->onError; |
| 2732 } |
| 2733 } |
| 2734 goto exit_create_index; |
| 2735 } |
| 2736 } |
| 2737 } |
| 2738 |
| 2739 /* Link the new Index structure to its table and to the other |
| 2740 ** in-memory database structures. |
| 2741 */ |
| 2742 if( db->init.busy ){ |
| 2743 Index *p; |
| 2744 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); |
| 2745 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, |
| 2746 pIndex->zName, sqlite3Strlen30(pIndex->zName), |
| 2747 pIndex); |
| 2748 if( p ){ |
| 2749 assert( p==pIndex ); /* Malloc must have failed */ |
| 2750 db->mallocFailed = 1; |
| 2751 goto exit_create_index; |
| 2752 } |
| 2753 db->flags |= SQLITE_InternChanges; |
| 2754 if( pTblName!=0 ){ |
| 2755 pIndex->tnum = db->init.newTnum; |
| 2756 } |
| 2757 } |
| 2758 |
| 2759 /* If the db->init.busy is 0 then create the index on disk. This |
| 2760 ** involves writing the index into the master table and filling in the |
| 2761 ** index with the current table contents. |
| 2762 ** |
| 2763 ** The db->init.busy is 0 when the user first enters a CREATE INDEX |
| 2764 ** command. db->init.busy is 1 when a database is opened and |
| 2765 ** CREATE INDEX statements are read out of the master table. In |
| 2766 ** the latter case the index already exists on disk, which is why |
| 2767 ** we don't want to recreate it. |
| 2768 ** |
| 2769 ** If pTblName==0 it means this index is generated as a primary key |
| 2770 ** or UNIQUE constraint of a CREATE TABLE statement. Since the table |
| 2771 ** has just been created, it contains no data and the index initialization |
| 2772 ** step can be skipped. |
| 2773 */ |
| 2774 else{ /* if( db->init.busy==0 ) */ |
| 2775 Vdbe *v; |
| 2776 char *zStmt; |
| 2777 int iMem = ++pParse->nMem; |
| 2778 |
| 2779 v = sqlite3GetVdbe(pParse); |
| 2780 if( v==0 ) goto exit_create_index; |
| 2781 |
| 2782 |
| 2783 /* Create the rootpage for the index |
| 2784 */ |
| 2785 sqlite3BeginWriteOperation(pParse, 1, iDb); |
| 2786 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); |
| 2787 |
| 2788 /* Gather the complete text of the CREATE INDEX statement into |
| 2789 ** the zStmt variable |
| 2790 */ |
| 2791 if( pStart ){ |
| 2792 assert( pEnd!=0 ); |
| 2793 /* A named index with an explicit CREATE INDEX statement */ |
| 2794 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", |
| 2795 onError==OE_None ? "" : " UNIQUE", |
| 2796 pEnd->z - pName->z + 1, |
| 2797 pName->z); |
| 2798 }else{ |
| 2799 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ |
| 2800 /* zStmt = sqlite3MPrintf(""); */ |
| 2801 zStmt = 0; |
| 2802 } |
| 2803 |
| 2804 /* Add an entry in sqlite_master for this index |
| 2805 */ |
| 2806 sqlite3NestedParse(pParse, |
| 2807 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", |
| 2808 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), |
| 2809 pIndex->zName, |
| 2810 pTab->zName, |
| 2811 iMem, |
| 2812 zStmt |
| 2813 ); |
| 2814 sqlite3DbFree(db, zStmt); |
| 2815 |
| 2816 /* Fill the index with data and reparse the schema. Code an OP_Expire |
| 2817 ** to invalidate all pre-compiled statements. |
| 2818 */ |
| 2819 if( pTblName ){ |
| 2820 sqlite3RefillIndex(pParse, pIndex, iMem); |
| 2821 sqlite3ChangeCookie(pParse, iDb); |
| 2822 sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, |
| 2823 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName), |
| 2824 P4_DYNAMIC); |
| 2825 sqlite3VdbeAddOp1(v, OP_Expire, 0); |
| 2826 } |
| 2827 } |
| 2828 |
| 2829 /* When adding an index to the list of indices for a table, make |
| 2830 ** sure all indices labeled OE_Replace come after all those labeled |
| 2831 ** OE_Ignore. This is necessary for the correct constraint check |
| 2832 ** processing (in sqlite3GenerateConstraintChecks()) as part of |
| 2833 ** UPDATE and INSERT statements. |
| 2834 */ |
| 2835 if( db->init.busy || pTblName==0 ){ |
| 2836 if( onError!=OE_Replace || pTab->pIndex==0 |
| 2837 || pTab->pIndex->onError==OE_Replace){ |
| 2838 pIndex->pNext = pTab->pIndex; |
| 2839 pTab->pIndex = pIndex; |
| 2840 }else{ |
| 2841 Index *pOther = pTab->pIndex; |
| 2842 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ |
| 2843 pOther = pOther->pNext; |
| 2844 } |
| 2845 pIndex->pNext = pOther->pNext; |
| 2846 pOther->pNext = pIndex; |
| 2847 } |
| 2848 pRet = pIndex; |
| 2849 pIndex = 0; |
| 2850 } |
| 2851 |
| 2852 /* Clean up before exiting */ |
| 2853 exit_create_index: |
| 2854 if( pIndex ){ |
| 2855 sqlite3DbFree(db, pIndex->zColAff); |
| 2856 sqlite3DbFree(db, pIndex); |
| 2857 } |
| 2858 sqlite3ExprListDelete(db, pList); |
| 2859 sqlite3SrcListDelete(db, pTblName); |
| 2860 sqlite3DbFree(db, zName); |
| 2861 return pRet; |
| 2862 } |
| 2863 |
| 2864 /* |
| 2865 ** Fill the Index.aiRowEst[] array with default information - information |
| 2866 ** to be used when we have not run the ANALYZE command. |
| 2867 ** |
| 2868 ** aiRowEst[0] is suppose to contain the number of elements in the index. |
| 2869 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the |
| 2870 ** number of rows in the table that match any particular value of the |
| 2871 ** first column of the index. aiRowEst[2] is an estimate of the number |
| 2872 ** of rows that match any particular combiniation of the first 2 columns |
| 2873 ** of the index. And so forth. It must always be the case that |
| 2874 * |
| 2875 ** aiRowEst[N]<=aiRowEst[N-1] |
| 2876 ** aiRowEst[N]>=1 |
| 2877 ** |
| 2878 ** Apart from that, we have little to go on besides intuition as to |
| 2879 ** how aiRowEst[] should be initialized. The numbers generated here |
| 2880 ** are based on typical values found in actual indices. |
| 2881 */ |
| 2882 void sqlite3DefaultRowEst(Index *pIdx){ |
| 2883 unsigned *a = pIdx->aiRowEst; |
| 2884 int i; |
| 2885 unsigned n; |
| 2886 assert( a!=0 ); |
| 2887 a[0] = pIdx->pTable->nRowEst; |
| 2888 if( a[0]<10 ) a[0] = 10; |
| 2889 n = 10; |
| 2890 for(i=1; i<=pIdx->nColumn; i++){ |
| 2891 a[i] = n; |
| 2892 if( n>5 ) n--; |
| 2893 } |
| 2894 if( pIdx->onError!=OE_None ){ |
| 2895 a[pIdx->nColumn] = 1; |
| 2896 } |
| 2897 } |
| 2898 |
| 2899 /* |
| 2900 ** This routine will drop an existing named index. This routine |
| 2901 ** implements the DROP INDEX statement. |
| 2902 */ |
| 2903 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ |
| 2904 Index *pIndex; |
| 2905 Vdbe *v; |
| 2906 sqlite3 *db = pParse->db; |
| 2907 int iDb; |
| 2908 |
| 2909 assert( pParse->nErr==0 ); /* Never called with prior errors */ |
| 2910 if( db->mallocFailed ){ |
| 2911 goto exit_drop_index; |
| 2912 } |
| 2913 assert( pName->nSrc==1 ); |
| 2914 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ |
| 2915 goto exit_drop_index; |
| 2916 } |
| 2917 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); |
| 2918 if( pIndex==0 ){ |
| 2919 if( !ifExists ){ |
| 2920 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); |
| 2921 }else{ |
| 2922 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); |
| 2923 } |
| 2924 pParse->checkSchema = 1; |
| 2925 goto exit_drop_index; |
| 2926 } |
| 2927 if( pIndex->autoIndex ){ |
| 2928 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " |
| 2929 "or PRIMARY KEY constraint cannot be dropped", 0); |
| 2930 goto exit_drop_index; |
| 2931 } |
| 2932 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); |
| 2933 #ifndef SQLITE_OMIT_AUTHORIZATION |
| 2934 { |
| 2935 int code = SQLITE_DROP_INDEX; |
| 2936 Table *pTab = pIndex->pTable; |
| 2937 const char *zDb = db->aDb[iDb].zName; |
| 2938 const char *zTab = SCHEMA_TABLE(iDb); |
| 2939 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ |
| 2940 goto exit_drop_index; |
| 2941 } |
| 2942 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; |
| 2943 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ |
| 2944 goto exit_drop_index; |
| 2945 } |
| 2946 } |
| 2947 #endif |
| 2948 |
| 2949 /* Generate code to remove the index and from the master table */ |
| 2950 v = sqlite3GetVdbe(pParse); |
| 2951 if( v ){ |
| 2952 sqlite3BeginWriteOperation(pParse, 1, iDb); |
| 2953 sqlite3NestedParse(pParse, |
| 2954 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", |
| 2955 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), |
| 2956 pIndex->zName |
| 2957 ); |
| 2958 if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){ |
| 2959 sqlite3NestedParse(pParse, |
| 2960 "DELETE FROM %Q.sqlite_stat1 WHERE idx=%Q", |
| 2961 db->aDb[iDb].zName, pIndex->zName |
| 2962 ); |
| 2963 } |
| 2964 sqlite3ChangeCookie(pParse, iDb); |
| 2965 destroyRootPage(pParse, pIndex->tnum, iDb); |
| 2966 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); |
| 2967 } |
| 2968 |
| 2969 exit_drop_index: |
| 2970 sqlite3SrcListDelete(db, pName); |
| 2971 } |
| 2972 |
| 2973 /* |
| 2974 ** pArray is a pointer to an array of objects. Each object in the |
| 2975 ** array is szEntry bytes in size. This routine allocates a new |
| 2976 ** object on the end of the array. |
| 2977 ** |
| 2978 ** *pnEntry is the number of entries already in use. *pnAlloc is |
| 2979 ** the previously allocated size of the array. initSize is the |
| 2980 ** suggested initial array size allocation. |
| 2981 ** |
| 2982 ** The index of the new entry is returned in *pIdx. |
| 2983 ** |
| 2984 ** This routine returns a pointer to the array of objects. This |
| 2985 ** might be the same as the pArray parameter or it might be a different |
| 2986 ** pointer if the array was resized. |
| 2987 */ |
| 2988 void *sqlite3ArrayAllocate( |
| 2989 sqlite3 *db, /* Connection to notify of malloc failures */ |
| 2990 void *pArray, /* Array of objects. Might be reallocated */ |
| 2991 int szEntry, /* Size of each object in the array */ |
| 2992 int initSize, /* Suggested initial allocation, in elements */ |
| 2993 int *pnEntry, /* Number of objects currently in use */ |
| 2994 int *pnAlloc, /* Current size of the allocation, in elements */ |
| 2995 int *pIdx /* Write the index of a new slot here */ |
| 2996 ){ |
| 2997 char *z; |
| 2998 if( *pnEntry >= *pnAlloc ){ |
| 2999 void *pNew; |
| 3000 int newSize; |
| 3001 newSize = (*pnAlloc)*2 + initSize; |
| 3002 pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry); |
| 3003 if( pNew==0 ){ |
| 3004 *pIdx = -1; |
| 3005 return pArray; |
| 3006 } |
| 3007 *pnAlloc = sqlite3DbMallocSize(db, pNew)/szEntry; |
| 3008 pArray = pNew; |
| 3009 } |
| 3010 z = (char*)pArray; |
| 3011 memset(&z[*pnEntry * szEntry], 0, szEntry); |
| 3012 *pIdx = *pnEntry; |
| 3013 ++*pnEntry; |
| 3014 return pArray; |
| 3015 } |
| 3016 |
| 3017 /* |
| 3018 ** Append a new element to the given IdList. Create a new IdList if |
| 3019 ** need be. |
| 3020 ** |
| 3021 ** A new IdList is returned, or NULL if malloc() fails. |
| 3022 */ |
| 3023 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ |
| 3024 int i; |
| 3025 if( pList==0 ){ |
| 3026 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); |
| 3027 if( pList==0 ) return 0; |
| 3028 pList->nAlloc = 0; |
| 3029 } |
| 3030 pList->a = sqlite3ArrayAllocate( |
| 3031 db, |
| 3032 pList->a, |
| 3033 sizeof(pList->a[0]), |
| 3034 5, |
| 3035 &pList->nId, |
| 3036 &pList->nAlloc, |
| 3037 &i |
| 3038 ); |
| 3039 if( i<0 ){ |
| 3040 sqlite3IdListDelete(db, pList); |
| 3041 return 0; |
| 3042 } |
| 3043 pList->a[i].zName = sqlite3NameFromToken(db, pToken); |
| 3044 return pList; |
| 3045 } |
| 3046 |
| 3047 /* |
| 3048 ** Delete an IdList. |
| 3049 */ |
| 3050 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ |
| 3051 int i; |
| 3052 if( pList==0 ) return; |
| 3053 for(i=0; i<pList->nId; i++){ |
| 3054 sqlite3DbFree(db, pList->a[i].zName); |
| 3055 } |
| 3056 sqlite3DbFree(db, pList->a); |
| 3057 sqlite3DbFree(db, pList); |
| 3058 } |
| 3059 |
| 3060 /* |
| 3061 ** Return the index in pList of the identifier named zId. Return -1 |
| 3062 ** if not found. |
| 3063 */ |
| 3064 int sqlite3IdListIndex(IdList *pList, const char *zName){ |
| 3065 int i; |
| 3066 if( pList==0 ) return -1; |
| 3067 for(i=0; i<pList->nId; i++){ |
| 3068 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; |
| 3069 } |
| 3070 return -1; |
| 3071 } |
| 3072 |
| 3073 /* |
| 3074 ** Expand the space allocated for the given SrcList object by |
| 3075 ** creating nExtra new slots beginning at iStart. iStart is zero based. |
| 3076 ** New slots are zeroed. |
| 3077 ** |
| 3078 ** For example, suppose a SrcList initially contains two entries: A,B. |
| 3079 ** To append 3 new entries onto the end, do this: |
| 3080 ** |
| 3081 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); |
| 3082 ** |
| 3083 ** After the call above it would contain: A, B, nil, nil, nil. |
| 3084 ** If the iStart argument had been 1 instead of 2, then the result |
| 3085 ** would have been: A, nil, nil, nil, B. To prepend the new slots, |
| 3086 ** the iStart value would be 0. The result then would |
| 3087 ** be: nil, nil, nil, A, B. |
| 3088 ** |
| 3089 ** If a memory allocation fails the SrcList is unchanged. The |
| 3090 ** db->mallocFailed flag will be set to true. |
| 3091 */ |
| 3092 SrcList *sqlite3SrcListEnlarge( |
| 3093 sqlite3 *db, /* Database connection to notify of OOM errors */ |
| 3094 SrcList *pSrc, /* The SrcList to be enlarged */ |
| 3095 int nExtra, /* Number of new slots to add to pSrc->a[] */ |
| 3096 int iStart /* Index in pSrc->a[] of first new slot */ |
| 3097 ){ |
| 3098 int i; |
| 3099 |
| 3100 /* Sanity checking on calling parameters */ |
| 3101 assert( iStart>=0 ); |
| 3102 assert( nExtra>=1 ); |
| 3103 assert( pSrc!=0 ); |
| 3104 assert( iStart<=pSrc->nSrc ); |
| 3105 |
| 3106 /* Allocate additional space if needed */ |
| 3107 if( pSrc->nSrc+nExtra>pSrc->nAlloc ){ |
| 3108 SrcList *pNew; |
| 3109 int nAlloc = pSrc->nSrc+nExtra; |
| 3110 int nGot; |
| 3111 pNew = sqlite3DbRealloc(db, pSrc, |
| 3112 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); |
| 3113 if( pNew==0 ){ |
| 3114 assert( db->mallocFailed ); |
| 3115 return pSrc; |
| 3116 } |
| 3117 pSrc = pNew; |
| 3118 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; |
| 3119 pSrc->nAlloc = (u16)nGot; |
| 3120 } |
| 3121 |
| 3122 /* Move existing slots that come after the newly inserted slots |
| 3123 ** out of the way */ |
| 3124 for(i=pSrc->nSrc-1; i>=iStart; i--){ |
| 3125 pSrc->a[i+nExtra] = pSrc->a[i]; |
| 3126 } |
| 3127 pSrc->nSrc += (i16)nExtra; |
| 3128 |
| 3129 /* Zero the newly allocated slots */ |
| 3130 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); |
| 3131 for(i=iStart; i<iStart+nExtra; i++){ |
| 3132 pSrc->a[i].iCursor = -1; |
| 3133 } |
| 3134 |
| 3135 /* Return a pointer to the enlarged SrcList */ |
| 3136 return pSrc; |
| 3137 } |
| 3138 |
| 3139 |
| 3140 /* |
| 3141 ** Append a new table name to the given SrcList. Create a new SrcList if |
| 3142 ** need be. A new entry is created in the SrcList even if pTable is NULL. |
| 3143 ** |
| 3144 ** A SrcList is returned, or NULL if there is an OOM error. The returned |
| 3145 ** SrcList might be the same as the SrcList that was input or it might be |
| 3146 ** a new one. If an OOM error does occurs, then the prior value of pList |
| 3147 ** that is input to this routine is automatically freed. |
| 3148 ** |
| 3149 ** If pDatabase is not null, it means that the table has an optional |
| 3150 ** database name prefix. Like this: "database.table". The pDatabase |
| 3151 ** points to the table name and the pTable points to the database name. |
| 3152 ** The SrcList.a[].zName field is filled with the table name which might |
| 3153 ** come from pTable (if pDatabase is NULL) or from pDatabase. |
| 3154 ** SrcList.a[].zDatabase is filled with the database name from pTable, |
| 3155 ** or with NULL if no database is specified. |
| 3156 ** |
| 3157 ** In other words, if call like this: |
| 3158 ** |
| 3159 ** sqlite3SrcListAppend(D,A,B,0); |
| 3160 ** |
| 3161 ** Then B is a table name and the database name is unspecified. If called |
| 3162 ** like this: |
| 3163 ** |
| 3164 ** sqlite3SrcListAppend(D,A,B,C); |
| 3165 ** |
| 3166 ** Then C is the table name and B is the database name. If C is defined |
| 3167 ** then so is B. In other words, we never have a case where: |
| 3168 ** |
| 3169 ** sqlite3SrcListAppend(D,A,0,C); |
| 3170 ** |
| 3171 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted |
| 3172 ** before being added to the SrcList. |
| 3173 */ |
| 3174 SrcList *sqlite3SrcListAppend( |
| 3175 sqlite3 *db, /* Connection to notify of malloc failures */ |
| 3176 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ |
| 3177 Token *pTable, /* Table to append */ |
| 3178 Token *pDatabase /* Database of the table */ |
| 3179 ){ |
| 3180 struct SrcList_item *pItem; |
| 3181 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ |
| 3182 if( pList==0 ){ |
| 3183 pList = sqlite3DbMallocZero(db, sizeof(SrcList) ); |
| 3184 if( pList==0 ) return 0; |
| 3185 pList->nAlloc = 1; |
| 3186 } |
| 3187 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); |
| 3188 if( db->mallocFailed ){ |
| 3189 sqlite3SrcListDelete(db, pList); |
| 3190 return 0; |
| 3191 } |
| 3192 pItem = &pList->a[pList->nSrc-1]; |
| 3193 if( pDatabase && pDatabase->z==0 ){ |
| 3194 pDatabase = 0; |
| 3195 } |
| 3196 if( pDatabase ){ |
| 3197 Token *pTemp = pDatabase; |
| 3198 pDatabase = pTable; |
| 3199 pTable = pTemp; |
| 3200 } |
| 3201 pItem->zName = sqlite3NameFromToken(db, pTable); |
| 3202 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); |
| 3203 return pList; |
| 3204 } |
| 3205 |
| 3206 /* |
| 3207 ** Assign VdbeCursor index numbers to all tables in a SrcList |
| 3208 */ |
| 3209 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ |
| 3210 int i; |
| 3211 struct SrcList_item *pItem; |
| 3212 assert(pList || pParse->db->mallocFailed ); |
| 3213 if( pList ){ |
| 3214 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ |
| 3215 if( pItem->iCursor>=0 ) break; |
| 3216 pItem->iCursor = pParse->nTab++; |
| 3217 if( pItem->pSelect ){ |
| 3218 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); |
| 3219 } |
| 3220 } |
| 3221 } |
| 3222 } |
| 3223 |
| 3224 /* |
| 3225 ** Delete an entire SrcList including all its substructure. |
| 3226 */ |
| 3227 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ |
| 3228 int i; |
| 3229 struct SrcList_item *pItem; |
| 3230 if( pList==0 ) return; |
| 3231 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ |
| 3232 sqlite3DbFree(db, pItem->zDatabase); |
| 3233 sqlite3DbFree(db, pItem->zName); |
| 3234 sqlite3DbFree(db, pItem->zAlias); |
| 3235 sqlite3DbFree(db, pItem->zIndex); |
| 3236 sqlite3DeleteTable(db, pItem->pTab); |
| 3237 sqlite3SelectDelete(db, pItem->pSelect); |
| 3238 sqlite3ExprDelete(db, pItem->pOn); |
| 3239 sqlite3IdListDelete(db, pItem->pUsing); |
| 3240 } |
| 3241 sqlite3DbFree(db, pList); |
| 3242 } |
| 3243 |
| 3244 /* |
| 3245 ** This routine is called by the parser to add a new term to the |
| 3246 ** end of a growing FROM clause. The "p" parameter is the part of |
| 3247 ** the FROM clause that has already been constructed. "p" is NULL |
| 3248 ** if this is the first term of the FROM clause. pTable and pDatabase |
| 3249 ** are the name of the table and database named in the FROM clause term. |
| 3250 ** pDatabase is NULL if the database name qualifier is missing - the |
| 3251 ** usual case. If the term has a alias, then pAlias points to the |
| 3252 ** alias token. If the term is a subquery, then pSubquery is the |
| 3253 ** SELECT statement that the subquery encodes. The pTable and |
| 3254 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing |
| 3255 ** parameters are the content of the ON and USING clauses. |
| 3256 ** |
| 3257 ** Return a new SrcList which encodes is the FROM with the new |
| 3258 ** term added. |
| 3259 */ |
| 3260 SrcList *sqlite3SrcListAppendFromTerm( |
| 3261 Parse *pParse, /* Parsing context */ |
| 3262 SrcList *p, /* The left part of the FROM clause already seen */ |
| 3263 Token *pTable, /* Name of the table to add to the FROM clause */ |
| 3264 Token *pDatabase, /* Name of the database containing pTable */ |
| 3265 Token *pAlias, /* The right-hand side of the AS subexpression */ |
| 3266 Select *pSubquery, /* A subquery used in place of a table name */ |
| 3267 Expr *pOn, /* The ON clause of a join */ |
| 3268 IdList *pUsing /* The USING clause of a join */ |
| 3269 ){ |
| 3270 struct SrcList_item *pItem; |
| 3271 sqlite3 *db = pParse->db; |
| 3272 if( !p && (pOn || pUsing) ){ |
| 3273 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", |
| 3274 (pOn ? "ON" : "USING") |
| 3275 ); |
| 3276 goto append_from_error; |
| 3277 } |
| 3278 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); |
| 3279 if( p==0 || NEVER(p->nSrc==0) ){ |
| 3280 goto append_from_error; |
| 3281 } |
| 3282 pItem = &p->a[p->nSrc-1]; |
| 3283 assert( pAlias!=0 ); |
| 3284 if( pAlias->n ){ |
| 3285 pItem->zAlias = sqlite3NameFromToken(db, pAlias); |
| 3286 } |
| 3287 pItem->pSelect = pSubquery; |
| 3288 pItem->pOn = pOn; |
| 3289 pItem->pUsing = pUsing; |
| 3290 return p; |
| 3291 |
| 3292 append_from_error: |
| 3293 assert( p==0 ); |
| 3294 sqlite3ExprDelete(db, pOn); |
| 3295 sqlite3IdListDelete(db, pUsing); |
| 3296 sqlite3SelectDelete(db, pSubquery); |
| 3297 return 0; |
| 3298 } |
| 3299 |
| 3300 /* |
| 3301 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added |
| 3302 ** element of the source-list passed as the second argument. |
| 3303 */ |
| 3304 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ |
| 3305 assert( pIndexedBy!=0 ); |
| 3306 if( p && ALWAYS(p->nSrc>0) ){ |
| 3307 struct SrcList_item *pItem = &p->a[p->nSrc-1]; |
| 3308 assert( pItem->notIndexed==0 && pItem->zIndex==0 ); |
| 3309 if( pIndexedBy->n==1 && !pIndexedBy->z ){ |
| 3310 /* A "NOT INDEXED" clause was supplied. See parse.y |
| 3311 ** construct "indexed_opt" for details. */ |
| 3312 pItem->notIndexed = 1; |
| 3313 }else{ |
| 3314 pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy); |
| 3315 } |
| 3316 } |
| 3317 } |
| 3318 |
| 3319 /* |
| 3320 ** When building up a FROM clause in the parser, the join operator |
| 3321 ** is initially attached to the left operand. But the code generator |
| 3322 ** expects the join operator to be on the right operand. This routine |
| 3323 ** Shifts all join operators from left to right for an entire FROM |
| 3324 ** clause. |
| 3325 ** |
| 3326 ** Example: Suppose the join is like this: |
| 3327 ** |
| 3328 ** A natural cross join B |
| 3329 ** |
| 3330 ** The operator is "natural cross join". The A and B operands are stored |
| 3331 ** in p->a[0] and p->a[1], respectively. The parser initially stores the |
| 3332 ** operator with A. This routine shifts that operator over to B. |
| 3333 */ |
| 3334 void sqlite3SrcListShiftJoinType(SrcList *p){ |
| 3335 if( p && p->a ){ |
| 3336 int i; |
| 3337 for(i=p->nSrc-1; i>0; i--){ |
| 3338 p->a[i].jointype = p->a[i-1].jointype; |
| 3339 } |
| 3340 p->a[0].jointype = 0; |
| 3341 } |
| 3342 } |
| 3343 |
| 3344 /* |
| 3345 ** Begin a transaction |
| 3346 */ |
| 3347 void sqlite3BeginTransaction(Parse *pParse, int type){ |
| 3348 sqlite3 *db; |
| 3349 Vdbe *v; |
| 3350 int i; |
| 3351 |
| 3352 assert( pParse!=0 ); |
| 3353 db = pParse->db; |
| 3354 assert( db!=0 ); |
| 3355 /* if( db->aDb[0].pBt==0 ) return; */ |
| 3356 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ |
| 3357 return; |
| 3358 } |
| 3359 v = sqlite3GetVdbe(pParse); |
| 3360 if( !v ) return; |
| 3361 if( type!=TK_DEFERRED ){ |
| 3362 for(i=0; i<db->nDb; i++){ |
| 3363 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); |
| 3364 sqlite3VdbeUsesBtree(v, i); |
| 3365 } |
| 3366 } |
| 3367 sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0); |
| 3368 } |
| 3369 |
| 3370 /* |
| 3371 ** Commit a transaction |
| 3372 */ |
| 3373 void sqlite3CommitTransaction(Parse *pParse){ |
| 3374 sqlite3 *db; |
| 3375 Vdbe *v; |
| 3376 |
| 3377 assert( pParse!=0 ); |
| 3378 db = pParse->db; |
| 3379 assert( db!=0 ); |
| 3380 /* if( db->aDb[0].pBt==0 ) return; */ |
| 3381 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){ |
| 3382 return; |
| 3383 } |
| 3384 v = sqlite3GetVdbe(pParse); |
| 3385 if( v ){ |
| 3386 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0); |
| 3387 } |
| 3388 } |
| 3389 |
| 3390 /* |
| 3391 ** Rollback a transaction |
| 3392 */ |
| 3393 void sqlite3RollbackTransaction(Parse *pParse){ |
| 3394 sqlite3 *db; |
| 3395 Vdbe *v; |
| 3396 |
| 3397 assert( pParse!=0 ); |
| 3398 db = pParse->db; |
| 3399 assert( db!=0 ); |
| 3400 /* if( db->aDb[0].pBt==0 ) return; */ |
| 3401 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){ |
| 3402 return; |
| 3403 } |
| 3404 v = sqlite3GetVdbe(pParse); |
| 3405 if( v ){ |
| 3406 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); |
| 3407 } |
| 3408 } |
| 3409 |
| 3410 /* |
| 3411 ** This function is called by the parser when it parses a command to create, |
| 3412 ** release or rollback an SQL savepoint. |
| 3413 */ |
| 3414 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ |
| 3415 char *zName = sqlite3NameFromToken(pParse->db, pName); |
| 3416 if( zName ){ |
| 3417 Vdbe *v = sqlite3GetVdbe(pParse); |
| 3418 #ifndef SQLITE_OMIT_AUTHORIZATION |
| 3419 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; |
| 3420 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); |
| 3421 #endif |
| 3422 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ |
| 3423 sqlite3DbFree(pParse->db, zName); |
| 3424 return; |
| 3425 } |
| 3426 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); |
| 3427 } |
| 3428 } |
| 3429 |
| 3430 /* |
| 3431 ** Make sure the TEMP database is open and available for use. Return |
| 3432 ** the number of errors. Leave any error messages in the pParse structure. |
| 3433 */ |
| 3434 int sqlite3OpenTempDatabase(Parse *pParse){ |
| 3435 sqlite3 *db = pParse->db; |
| 3436 if( db->aDb[1].pBt==0 && !pParse->explain ){ |
| 3437 int rc; |
| 3438 Btree *pBt; |
| 3439 static const int flags = |
| 3440 SQLITE_OPEN_READWRITE | |
| 3441 SQLITE_OPEN_CREATE | |
| 3442 SQLITE_OPEN_EXCLUSIVE | |
| 3443 SQLITE_OPEN_DELETEONCLOSE | |
| 3444 SQLITE_OPEN_TEMP_DB; |
| 3445 |
| 3446 rc = sqlite3BtreeOpen(0, db, &pBt, 0, flags); |
| 3447 if( rc!=SQLITE_OK ){ |
| 3448 sqlite3ErrorMsg(pParse, "unable to open a temporary database " |
| 3449 "file for storing temporary tables"); |
| 3450 pParse->rc = rc; |
| 3451 return 1; |
| 3452 } |
| 3453 db->aDb[1].pBt = pBt; |
| 3454 assert( db->aDb[1].pSchema ); |
| 3455 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ |
| 3456 db->mallocFailed = 1; |
| 3457 return 1; |
| 3458 } |
| 3459 } |
| 3460 return 0; |
| 3461 } |
| 3462 |
| 3463 /* |
| 3464 ** Generate VDBE code that will verify the schema cookie and start |
| 3465 ** a read-transaction for all named database files. |
| 3466 ** |
| 3467 ** It is important that all schema cookies be verified and all |
| 3468 ** read transactions be started before anything else happens in |
| 3469 ** the VDBE program. But this routine can be called after much other |
| 3470 ** code has been generated. So here is what we do: |
| 3471 ** |
| 3472 ** The first time this routine is called, we code an OP_Goto that |
| 3473 ** will jump to a subroutine at the end of the program. Then we |
| 3474 ** record every database that needs its schema verified in the |
| 3475 ** pParse->cookieMask field. Later, after all other code has been |
| 3476 ** generated, the subroutine that does the cookie verifications and |
| 3477 ** starts the transactions will be coded and the OP_Goto P2 value |
| 3478 ** will be made to point to that subroutine. The generation of the |
| 3479 ** cookie verification subroutine code happens in sqlite3FinishCoding(). |
| 3480 ** |
| 3481 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the |
| 3482 ** schema on any databases. This can be used to position the OP_Goto |
| 3483 ** early in the code, before we know if any database tables will be used. |
| 3484 */ |
| 3485 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ |
| 3486 Parse *pToplevel = sqlite3ParseToplevel(pParse); |
| 3487 |
| 3488 if( pToplevel->cookieGoto==0 ){ |
| 3489 Vdbe *v = sqlite3GetVdbe(pToplevel); |
| 3490 if( v==0 ) return; /* This only happens if there was a prior error */ |
| 3491 pToplevel->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1; |
| 3492 } |
| 3493 if( iDb>=0 ){ |
| 3494 sqlite3 *db = pToplevel->db; |
| 3495 yDbMask mask; |
| 3496 |
| 3497 assert( iDb<db->nDb ); |
| 3498 assert( db->aDb[iDb].pBt!=0 || iDb==1 ); |
| 3499 assert( iDb<SQLITE_MAX_ATTACHED+2 ); |
| 3500 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
| 3501 mask = ((yDbMask)1)<<iDb; |
| 3502 if( (pToplevel->cookieMask & mask)==0 ){ |
| 3503 pToplevel->cookieMask |= mask; |
| 3504 pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; |
| 3505 if( !OMIT_TEMPDB && iDb==1 ){ |
| 3506 sqlite3OpenTempDatabase(pToplevel); |
| 3507 } |
| 3508 } |
| 3509 } |
| 3510 } |
| 3511 |
| 3512 /* |
| 3513 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each |
| 3514 ** attached database. Otherwise, invoke it for the database named zDb only. |
| 3515 */ |
| 3516 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ |
| 3517 sqlite3 *db = pParse->db; |
| 3518 int i; |
| 3519 for(i=0; i<db->nDb; i++){ |
| 3520 Db *pDb = &db->aDb[i]; |
| 3521 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){ |
| 3522 sqlite3CodeVerifySchema(pParse, i); |
| 3523 } |
| 3524 } |
| 3525 } |
| 3526 |
| 3527 /* |
| 3528 ** Generate VDBE code that prepares for doing an operation that |
| 3529 ** might change the database. |
| 3530 ** |
| 3531 ** This routine starts a new transaction if we are not already within |
| 3532 ** a transaction. If we are already within a transaction, then a checkpoint |
| 3533 ** is set if the setStatement parameter is true. A checkpoint should |
| 3534 ** be set for operations that might fail (due to a constraint) part of |
| 3535 ** the way through and which will need to undo some writes without having to |
| 3536 ** rollback the whole transaction. For operations where all constraints |
| 3537 ** can be checked before any changes are made to the database, it is never |
| 3538 ** necessary to undo a write and the checkpoint should not be set. |
| 3539 */ |
| 3540 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ |
| 3541 Parse *pToplevel = sqlite3ParseToplevel(pParse); |
| 3542 sqlite3CodeVerifySchema(pParse, iDb); |
| 3543 pToplevel->writeMask |= ((yDbMask)1)<<iDb; |
| 3544 pToplevel->isMultiWrite |= setStatement; |
| 3545 } |
| 3546 |
| 3547 /* |
| 3548 ** Indicate that the statement currently under construction might write |
| 3549 ** more than one entry (example: deleting one row then inserting another, |
| 3550 ** inserting multiple rows in a table, or inserting a row and index entries.) |
| 3551 ** If an abort occurs after some of these writes have completed, then it will |
| 3552 ** be necessary to undo the completed writes. |
| 3553 */ |
| 3554 void sqlite3MultiWrite(Parse *pParse){ |
| 3555 Parse *pToplevel = sqlite3ParseToplevel(pParse); |
| 3556 pToplevel->isMultiWrite = 1; |
| 3557 } |
| 3558 |
| 3559 /* |
| 3560 ** The code generator calls this routine if is discovers that it is |
| 3561 ** possible to abort a statement prior to completion. In order to |
| 3562 ** perform this abort without corrupting the database, we need to make |
| 3563 ** sure that the statement is protected by a statement transaction. |
| 3564 ** |
| 3565 ** Technically, we only need to set the mayAbort flag if the |
| 3566 ** isMultiWrite flag was previously set. There is a time dependency |
| 3567 ** such that the abort must occur after the multiwrite. This makes |
| 3568 ** some statements involving the REPLACE conflict resolution algorithm |
| 3569 ** go a little faster. But taking advantage of this time dependency |
| 3570 ** makes it more difficult to prove that the code is correct (in |
| 3571 ** particular, it prevents us from writing an effective |
| 3572 ** implementation of sqlite3AssertMayAbort()) and so we have chosen |
| 3573 ** to take the safe route and skip the optimization. |
| 3574 */ |
| 3575 void sqlite3MayAbort(Parse *pParse){ |
| 3576 Parse *pToplevel = sqlite3ParseToplevel(pParse); |
| 3577 pToplevel->mayAbort = 1; |
| 3578 } |
| 3579 |
| 3580 /* |
| 3581 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT |
| 3582 ** error. The onError parameter determines which (if any) of the statement |
| 3583 ** and/or current transaction is rolled back. |
| 3584 */ |
| 3585 void sqlite3HaltConstraint(Parse *pParse, int onError, char *p4, int p4type){ |
| 3586 Vdbe *v = sqlite3GetVdbe(pParse); |
| 3587 if( onError==OE_Abort ){ |
| 3588 sqlite3MayAbort(pParse); |
| 3589 } |
| 3590 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, p4, p4type); |
| 3591 } |
| 3592 |
| 3593 /* |
| 3594 ** Check to see if pIndex uses the collating sequence pColl. Return |
| 3595 ** true if it does and false if it does not. |
| 3596 */ |
| 3597 #ifndef SQLITE_OMIT_REINDEX |
| 3598 static int collationMatch(const char *zColl, Index *pIndex){ |
| 3599 int i; |
| 3600 assert( zColl!=0 ); |
| 3601 for(i=0; i<pIndex->nColumn; i++){ |
| 3602 const char *z = pIndex->azColl[i]; |
| 3603 assert( z!=0 ); |
| 3604 if( 0==sqlite3StrICmp(z, zColl) ){ |
| 3605 return 1; |
| 3606 } |
| 3607 } |
| 3608 return 0; |
| 3609 } |
| 3610 #endif |
| 3611 |
| 3612 /* |
| 3613 ** Recompute all indices of pTab that use the collating sequence pColl. |
| 3614 ** If pColl==0 then recompute all indices of pTab. |
| 3615 */ |
| 3616 #ifndef SQLITE_OMIT_REINDEX |
| 3617 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ |
| 3618 Index *pIndex; /* An index associated with pTab */ |
| 3619 |
| 3620 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ |
| 3621 if( zColl==0 || collationMatch(zColl, pIndex) ){ |
| 3622 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
| 3623 sqlite3BeginWriteOperation(pParse, 0, iDb); |
| 3624 sqlite3RefillIndex(pParse, pIndex, -1); |
| 3625 } |
| 3626 } |
| 3627 } |
| 3628 #endif |
| 3629 |
| 3630 /* |
| 3631 ** Recompute all indices of all tables in all databases where the |
| 3632 ** indices use the collating sequence pColl. If pColl==0 then recompute |
| 3633 ** all indices everywhere. |
| 3634 */ |
| 3635 #ifndef SQLITE_OMIT_REINDEX |
| 3636 static void reindexDatabases(Parse *pParse, char const *zColl){ |
| 3637 Db *pDb; /* A single database */ |
| 3638 int iDb; /* The database index number */ |
| 3639 sqlite3 *db = pParse->db; /* The database connection */ |
| 3640 HashElem *k; /* For looping over tables in pDb */ |
| 3641 Table *pTab; /* A table in the database */ |
| 3642 |
| 3643 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ |
| 3644 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ |
| 3645 assert( pDb!=0 ); |
| 3646 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ |
| 3647 pTab = (Table*)sqliteHashData(k); |
| 3648 reindexTable(pParse, pTab, zColl); |
| 3649 } |
| 3650 } |
| 3651 } |
| 3652 #endif |
| 3653 |
| 3654 /* |
| 3655 ** Generate code for the REINDEX command. |
| 3656 ** |
| 3657 ** REINDEX -- 1 |
| 3658 ** REINDEX <collation> -- 2 |
| 3659 ** REINDEX ?<database>.?<tablename> -- 3 |
| 3660 ** REINDEX ?<database>.?<indexname> -- 4 |
| 3661 ** |
| 3662 ** Form 1 causes all indices in all attached databases to be rebuilt. |
| 3663 ** Form 2 rebuilds all indices in all databases that use the named |
| 3664 ** collating function. Forms 3 and 4 rebuild the named index or all |
| 3665 ** indices associated with the named table. |
| 3666 */ |
| 3667 #ifndef SQLITE_OMIT_REINDEX |
| 3668 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ |
| 3669 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ |
| 3670 char *z; /* Name of a table or index */ |
| 3671 const char *zDb; /* Name of the database */ |
| 3672 Table *pTab; /* A table in the database */ |
| 3673 Index *pIndex; /* An index associated with pTab */ |
| 3674 int iDb; /* The database index number */ |
| 3675 sqlite3 *db = pParse->db; /* The database connection */ |
| 3676 Token *pObjName; /* Name of the table or index to be reindexed */ |
| 3677 |
| 3678 /* Read the database schema. If an error occurs, leave an error message |
| 3679 ** and code in pParse and return NULL. */ |
| 3680 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ |
| 3681 return; |
| 3682 } |
| 3683 |
| 3684 if( pName1==0 ){ |
| 3685 reindexDatabases(pParse, 0); |
| 3686 return; |
| 3687 }else if( NEVER(pName2==0) || pName2->z==0 ){ |
| 3688 char *zColl; |
| 3689 assert( pName1->z ); |
| 3690 zColl = sqlite3NameFromToken(pParse->db, pName1); |
| 3691 if( !zColl ) return; |
| 3692 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); |
| 3693 if( pColl ){ |
| 3694 reindexDatabases(pParse, zColl); |
| 3695 sqlite3DbFree(db, zColl); |
| 3696 return; |
| 3697 } |
| 3698 sqlite3DbFree(db, zColl); |
| 3699 } |
| 3700 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); |
| 3701 if( iDb<0 ) return; |
| 3702 z = sqlite3NameFromToken(db, pObjName); |
| 3703 if( z==0 ) return; |
| 3704 zDb = db->aDb[iDb].zName; |
| 3705 pTab = sqlite3FindTable(db, z, zDb); |
| 3706 if( pTab ){ |
| 3707 reindexTable(pParse, pTab, 0); |
| 3708 sqlite3DbFree(db, z); |
| 3709 return; |
| 3710 } |
| 3711 pIndex = sqlite3FindIndex(db, z, zDb); |
| 3712 sqlite3DbFree(db, z); |
| 3713 if( pIndex ){ |
| 3714 sqlite3BeginWriteOperation(pParse, 0, iDb); |
| 3715 sqlite3RefillIndex(pParse, pIndex, -1); |
| 3716 return; |
| 3717 } |
| 3718 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); |
| 3719 } |
| 3720 #endif |
| 3721 |
| 3722 /* |
| 3723 ** Return a dynamicly allocated KeyInfo structure that can be used |
| 3724 ** with OP_OpenRead or OP_OpenWrite to access database index pIdx. |
| 3725 ** |
| 3726 ** If successful, a pointer to the new structure is returned. In this case |
| 3727 ** the caller is responsible for calling sqlite3DbFree(db, ) on the returned |
| 3728 ** pointer. If an error occurs (out of memory or missing collation |
| 3729 ** sequence), NULL is returned and the state of pParse updated to reflect |
| 3730 ** the error. |
| 3731 */ |
| 3732 KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){ |
| 3733 int i; |
| 3734 int nCol = pIdx->nColumn; |
| 3735 int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol; |
| 3736 sqlite3 *db = pParse->db; |
| 3737 KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes); |
| 3738 |
| 3739 if( pKey ){ |
| 3740 pKey->db = pParse->db; |
| 3741 pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]); |
| 3742 assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) ); |
| 3743 for(i=0; i<nCol; i++){ |
| 3744 char *zColl = pIdx->azColl[i]; |
| 3745 assert( zColl ); |
| 3746 pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl); |
| 3747 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; |
| 3748 } |
| 3749 pKey->nField = (u16)nCol; |
| 3750 } |
| 3751 |
| 3752 if( pParse->nErr ){ |
| 3753 sqlite3DbFree(db, pKey); |
| 3754 pKey = 0; |
| 3755 } |
| 3756 return pKey; |
| 3757 } |
OLD | NEW |