OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2008 Nov 28 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ****************************************************************************** |
| 12 ** |
| 13 ** This module contains code that implements a parser for fts3 query strings |
| 14 ** (the right-hand argument to the MATCH operator). Because the supported |
| 15 ** syntax is relatively simple, the whole tokenizer/parser system is |
| 16 ** hand-coded. |
| 17 */ |
| 18 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) |
| 19 |
| 20 /* |
| 21 ** By default, this module parses the legacy syntax that has been |
| 22 ** traditionally used by fts3. Or, if SQLITE_ENABLE_FTS3_PARENTHESIS |
| 23 ** is defined, then it uses the new syntax. The differences between |
| 24 ** the new and the old syntaxes are: |
| 25 ** |
| 26 ** a) The new syntax supports parenthesis. The old does not. |
| 27 ** |
| 28 ** b) The new syntax supports the AND and NOT operators. The old does not. |
| 29 ** |
| 30 ** c) The old syntax supports the "-" token qualifier. This is not |
| 31 ** supported by the new syntax (it is replaced by the NOT operator). |
| 32 ** |
| 33 ** d) When using the old syntax, the OR operator has a greater precedence |
| 34 ** than an implicit AND. When using the new, both implicity and explicit |
| 35 ** AND operators have a higher precedence than OR. |
| 36 ** |
| 37 ** If compiled with SQLITE_TEST defined, then this module exports the |
| 38 ** symbol "int sqlite3_fts3_enable_parentheses". Setting this variable |
| 39 ** to zero causes the module to use the old syntax. If it is set to |
| 40 ** non-zero the new syntax is activated. This is so both syntaxes can |
| 41 ** be tested using a single build of testfixture. |
| 42 ** |
| 43 ** The following describes the syntax supported by the fts3 MATCH |
| 44 ** operator in a similar format to that used by the lemon parser |
| 45 ** generator. This module does not use actually lemon, it uses a |
| 46 ** custom parser. |
| 47 ** |
| 48 ** query ::= andexpr (OR andexpr)*. |
| 49 ** |
| 50 ** andexpr ::= notexpr (AND? notexpr)*. |
| 51 ** |
| 52 ** notexpr ::= nearexpr (NOT nearexpr|-TOKEN)*. |
| 53 ** notexpr ::= LP query RP. |
| 54 ** |
| 55 ** nearexpr ::= phrase (NEAR distance_opt nearexpr)*. |
| 56 ** |
| 57 ** distance_opt ::= . |
| 58 ** distance_opt ::= / INTEGER. |
| 59 ** |
| 60 ** phrase ::= TOKEN. |
| 61 ** phrase ::= COLUMN:TOKEN. |
| 62 ** phrase ::= "TOKEN TOKEN TOKEN...". |
| 63 */ |
| 64 |
| 65 #ifdef SQLITE_TEST |
| 66 int sqlite3_fts3_enable_parentheses = 0; |
| 67 #else |
| 68 # ifdef SQLITE_ENABLE_FTS3_PARENTHESIS |
| 69 # define sqlite3_fts3_enable_parentheses 1 |
| 70 # else |
| 71 # define sqlite3_fts3_enable_parentheses 0 |
| 72 # endif |
| 73 #endif |
| 74 |
| 75 /* |
| 76 ** Default span for NEAR operators. |
| 77 */ |
| 78 #define SQLITE_FTS3_DEFAULT_NEAR_PARAM 10 |
| 79 |
| 80 #include "fts3Int.h" |
| 81 #include <string.h> |
| 82 #include <assert.h> |
| 83 |
| 84 typedef struct ParseContext ParseContext; |
| 85 struct ParseContext { |
| 86 sqlite3_tokenizer *pTokenizer; /* Tokenizer module */ |
| 87 const char **azCol; /* Array of column names for fts3 table */ |
| 88 int nCol; /* Number of entries in azCol[] */ |
| 89 int iDefaultCol; /* Default column to query */ |
| 90 sqlite3_context *pCtx; /* Write error message here */ |
| 91 int nNest; /* Number of nested brackets */ |
| 92 }; |
| 93 |
| 94 /* |
| 95 ** This function is equivalent to the standard isspace() function. |
| 96 ** |
| 97 ** The standard isspace() can be awkward to use safely, because although it |
| 98 ** is defined to accept an argument of type int, its behaviour when passed |
| 99 ** an integer that falls outside of the range of the unsigned char type |
| 100 ** is undefined (and sometimes, "undefined" means segfault). This wrapper |
| 101 ** is defined to accept an argument of type char, and always returns 0 for |
| 102 ** any values that fall outside of the range of the unsigned char type (i.e. |
| 103 ** negative values). |
| 104 */ |
| 105 static int fts3isspace(char c){ |
| 106 return c==' ' || c=='\t' || c=='\n' || c=='\r' || c=='\v' || c=='\f'; |
| 107 } |
| 108 |
| 109 /* |
| 110 ** Allocate nByte bytes of memory using sqlite3_malloc(). If successful, |
| 111 ** zero the memory before returning a pointer to it. If unsuccessful, |
| 112 ** return NULL. |
| 113 */ |
| 114 static void *fts3MallocZero(int nByte){ |
| 115 void *pRet = sqlite3_malloc(nByte); |
| 116 if( pRet ) memset(pRet, 0, nByte); |
| 117 return pRet; |
| 118 } |
| 119 |
| 120 |
| 121 /* |
| 122 ** Extract the next token from buffer z (length n) using the tokenizer |
| 123 ** and other information (column names etc.) in pParse. Create an Fts3Expr |
| 124 ** structure of type FTSQUERY_PHRASE containing a phrase consisting of this |
| 125 ** single token and set *ppExpr to point to it. If the end of the buffer is |
| 126 ** reached before a token is found, set *ppExpr to zero. It is the |
| 127 ** responsibility of the caller to eventually deallocate the allocated |
| 128 ** Fts3Expr structure (if any) by passing it to sqlite3_free(). |
| 129 ** |
| 130 ** Return SQLITE_OK if successful, or SQLITE_NOMEM if a memory allocation |
| 131 ** fails. |
| 132 */ |
| 133 static int getNextToken( |
| 134 ParseContext *pParse, /* fts3 query parse context */ |
| 135 int iCol, /* Value for Fts3Phrase.iColumn */ |
| 136 const char *z, int n, /* Input string */ |
| 137 Fts3Expr **ppExpr, /* OUT: expression */ |
| 138 int *pnConsumed /* OUT: Number of bytes consumed */ |
| 139 ){ |
| 140 sqlite3_tokenizer *pTokenizer = pParse->pTokenizer; |
| 141 sqlite3_tokenizer_module const *pModule = pTokenizer->pModule; |
| 142 int rc; |
| 143 sqlite3_tokenizer_cursor *pCursor; |
| 144 Fts3Expr *pRet = 0; |
| 145 int nConsumed = 0; |
| 146 |
| 147 rc = pModule->xOpen(pTokenizer, z, n, &pCursor); |
| 148 if( rc==SQLITE_OK ){ |
| 149 const char *zToken; |
| 150 int nToken, iStart, iEnd, iPosition; |
| 151 int nByte; /* total space to allocate */ |
| 152 |
| 153 pCursor->pTokenizer = pTokenizer; |
| 154 rc = pModule->xNext(pCursor, &zToken, &nToken, &iStart, &iEnd, &iPosition); |
| 155 |
| 156 if( rc==SQLITE_OK ){ |
| 157 nByte = sizeof(Fts3Expr) + sizeof(Fts3Phrase) + nToken; |
| 158 pRet = (Fts3Expr *)fts3MallocZero(nByte); |
| 159 if( !pRet ){ |
| 160 rc = SQLITE_NOMEM; |
| 161 }else{ |
| 162 pRet->eType = FTSQUERY_PHRASE; |
| 163 pRet->pPhrase = (Fts3Phrase *)&pRet[1]; |
| 164 pRet->pPhrase->nToken = 1; |
| 165 pRet->pPhrase->iColumn = iCol; |
| 166 pRet->pPhrase->aToken[0].n = nToken; |
| 167 pRet->pPhrase->aToken[0].z = (char *)&pRet->pPhrase[1]; |
| 168 memcpy(pRet->pPhrase->aToken[0].z, zToken, nToken); |
| 169 |
| 170 if( iEnd<n && z[iEnd]=='*' ){ |
| 171 pRet->pPhrase->aToken[0].isPrefix = 1; |
| 172 iEnd++; |
| 173 } |
| 174 if( !sqlite3_fts3_enable_parentheses && iStart>0 && z[iStart-1]=='-' ){ |
| 175 pRet->pPhrase->isNot = 1; |
| 176 } |
| 177 } |
| 178 nConsumed = iEnd; |
| 179 } |
| 180 |
| 181 pModule->xClose(pCursor); |
| 182 } |
| 183 |
| 184 *pnConsumed = nConsumed; |
| 185 *ppExpr = pRet; |
| 186 return rc; |
| 187 } |
| 188 |
| 189 |
| 190 /* |
| 191 ** Enlarge a memory allocation. If an out-of-memory allocation occurs, |
| 192 ** then free the old allocation. |
| 193 */ |
| 194 static void *fts3ReallocOrFree(void *pOrig, int nNew){ |
| 195 void *pRet = sqlite3_realloc(pOrig, nNew); |
| 196 if( !pRet ){ |
| 197 sqlite3_free(pOrig); |
| 198 } |
| 199 return pRet; |
| 200 } |
| 201 |
| 202 /* |
| 203 ** Buffer zInput, length nInput, contains the contents of a quoted string |
| 204 ** that appeared as part of an fts3 query expression. Neither quote character |
| 205 ** is included in the buffer. This function attempts to tokenize the entire |
| 206 ** input buffer and create an Fts3Expr structure of type FTSQUERY_PHRASE |
| 207 ** containing the results. |
| 208 ** |
| 209 ** If successful, SQLITE_OK is returned and *ppExpr set to point at the |
| 210 ** allocated Fts3Expr structure. Otherwise, either SQLITE_NOMEM (out of memory |
| 211 ** error) or SQLITE_ERROR (tokenization error) is returned and *ppExpr set |
| 212 ** to 0. |
| 213 */ |
| 214 static int getNextString( |
| 215 ParseContext *pParse, /* fts3 query parse context */ |
| 216 const char *zInput, int nInput, /* Input string */ |
| 217 Fts3Expr **ppExpr /* OUT: expression */ |
| 218 ){ |
| 219 sqlite3_tokenizer *pTokenizer = pParse->pTokenizer; |
| 220 sqlite3_tokenizer_module const *pModule = pTokenizer->pModule; |
| 221 int rc; |
| 222 Fts3Expr *p = 0; |
| 223 sqlite3_tokenizer_cursor *pCursor = 0; |
| 224 char *zTemp = 0; |
| 225 int nTemp = 0; |
| 226 |
| 227 rc = pModule->xOpen(pTokenizer, zInput, nInput, &pCursor); |
| 228 if( rc==SQLITE_OK ){ |
| 229 int ii; |
| 230 pCursor->pTokenizer = pTokenizer; |
| 231 for(ii=0; rc==SQLITE_OK; ii++){ |
| 232 const char *zToken; |
| 233 int nToken, iBegin, iEnd, iPos; |
| 234 rc = pModule->xNext(pCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos); |
| 235 if( rc==SQLITE_OK ){ |
| 236 int nByte = sizeof(Fts3Expr) + sizeof(Fts3Phrase); |
| 237 p = fts3ReallocOrFree(p, nByte+ii*sizeof(Fts3PhraseToken)); |
| 238 zTemp = fts3ReallocOrFree(zTemp, nTemp + nToken); |
| 239 if( !p || !zTemp ){ |
| 240 goto no_mem; |
| 241 } |
| 242 if( ii==0 ){ |
| 243 memset(p, 0, nByte); |
| 244 p->pPhrase = (Fts3Phrase *)&p[1]; |
| 245 } |
| 246 p->pPhrase = (Fts3Phrase *)&p[1]; |
| 247 memset(&p->pPhrase->aToken[ii], 0, sizeof(Fts3PhraseToken)); |
| 248 p->pPhrase->nToken = ii+1; |
| 249 p->pPhrase->aToken[ii].n = nToken; |
| 250 memcpy(&zTemp[nTemp], zToken, nToken); |
| 251 nTemp += nToken; |
| 252 if( iEnd<nInput && zInput[iEnd]=='*' ){ |
| 253 p->pPhrase->aToken[ii].isPrefix = 1; |
| 254 }else{ |
| 255 p->pPhrase->aToken[ii].isPrefix = 0; |
| 256 } |
| 257 } |
| 258 } |
| 259 |
| 260 pModule->xClose(pCursor); |
| 261 pCursor = 0; |
| 262 } |
| 263 |
| 264 if( rc==SQLITE_DONE ){ |
| 265 int jj; |
| 266 char *zNew = NULL; |
| 267 int nNew = 0; |
| 268 int nByte = sizeof(Fts3Expr) + sizeof(Fts3Phrase); |
| 269 nByte += (p?(p->pPhrase->nToken-1):0) * sizeof(Fts3PhraseToken); |
| 270 p = fts3ReallocOrFree(p, nByte + nTemp); |
| 271 if( !p ){ |
| 272 goto no_mem; |
| 273 } |
| 274 if( zTemp ){ |
| 275 zNew = &(((char *)p)[nByte]); |
| 276 memcpy(zNew, zTemp, nTemp); |
| 277 }else{ |
| 278 memset(p, 0, nByte+nTemp); |
| 279 } |
| 280 p->pPhrase = (Fts3Phrase *)&p[1]; |
| 281 for(jj=0; jj<p->pPhrase->nToken; jj++){ |
| 282 p->pPhrase->aToken[jj].z = &zNew[nNew]; |
| 283 nNew += p->pPhrase->aToken[jj].n; |
| 284 } |
| 285 sqlite3_free(zTemp); |
| 286 p->eType = FTSQUERY_PHRASE; |
| 287 p->pPhrase->iColumn = pParse->iDefaultCol; |
| 288 rc = SQLITE_OK; |
| 289 } |
| 290 |
| 291 *ppExpr = p; |
| 292 return rc; |
| 293 no_mem: |
| 294 |
| 295 if( pCursor ){ |
| 296 pModule->xClose(pCursor); |
| 297 } |
| 298 sqlite3_free(zTemp); |
| 299 sqlite3_free(p); |
| 300 *ppExpr = 0; |
| 301 return SQLITE_NOMEM; |
| 302 } |
| 303 |
| 304 /* |
| 305 ** Function getNextNode(), which is called by fts3ExprParse(), may itself |
| 306 ** call fts3ExprParse(). So this forward declaration is required. |
| 307 */ |
| 308 static int fts3ExprParse(ParseContext *, const char *, int, Fts3Expr **, int *); |
| 309 |
| 310 /* |
| 311 ** The output variable *ppExpr is populated with an allocated Fts3Expr |
| 312 ** structure, or set to 0 if the end of the input buffer is reached. |
| 313 ** |
| 314 ** Returns an SQLite error code. SQLITE_OK if everything works, SQLITE_NOMEM |
| 315 ** if a malloc failure occurs, or SQLITE_ERROR if a parse error is encountered. |
| 316 ** If SQLITE_ERROR is returned, pContext is populated with an error message. |
| 317 */ |
| 318 static int getNextNode( |
| 319 ParseContext *pParse, /* fts3 query parse context */ |
| 320 const char *z, int n, /* Input string */ |
| 321 Fts3Expr **ppExpr, /* OUT: expression */ |
| 322 int *pnConsumed /* OUT: Number of bytes consumed */ |
| 323 ){ |
| 324 static const struct Fts3Keyword { |
| 325 char *z; /* Keyword text */ |
| 326 unsigned char n; /* Length of the keyword */ |
| 327 unsigned char parenOnly; /* Only valid in paren mode */ |
| 328 unsigned char eType; /* Keyword code */ |
| 329 } aKeyword[] = { |
| 330 { "OR" , 2, 0, FTSQUERY_OR }, |
| 331 { "AND", 3, 1, FTSQUERY_AND }, |
| 332 { "NOT", 3, 1, FTSQUERY_NOT }, |
| 333 { "NEAR", 4, 0, FTSQUERY_NEAR } |
| 334 }; |
| 335 int ii; |
| 336 int iCol; |
| 337 int iColLen; |
| 338 int rc; |
| 339 Fts3Expr *pRet = 0; |
| 340 |
| 341 const char *zInput = z; |
| 342 int nInput = n; |
| 343 |
| 344 /* Skip over any whitespace before checking for a keyword, an open or |
| 345 ** close bracket, or a quoted string. |
| 346 */ |
| 347 while( nInput>0 && fts3isspace(*zInput) ){ |
| 348 nInput--; |
| 349 zInput++; |
| 350 } |
| 351 if( nInput==0 ){ |
| 352 return SQLITE_DONE; |
| 353 } |
| 354 |
| 355 /* See if we are dealing with a keyword. */ |
| 356 for(ii=0; ii<(int)(sizeof(aKeyword)/sizeof(struct Fts3Keyword)); ii++){ |
| 357 const struct Fts3Keyword *pKey = &aKeyword[ii]; |
| 358 |
| 359 if( (pKey->parenOnly & ~sqlite3_fts3_enable_parentheses)!=0 ){ |
| 360 continue; |
| 361 } |
| 362 |
| 363 if( nInput>=pKey->n && 0==memcmp(zInput, pKey->z, pKey->n) ){ |
| 364 int nNear = SQLITE_FTS3_DEFAULT_NEAR_PARAM; |
| 365 int nKey = pKey->n; |
| 366 char cNext; |
| 367 |
| 368 /* If this is a "NEAR" keyword, check for an explicit nearness. */ |
| 369 if( pKey->eType==FTSQUERY_NEAR ){ |
| 370 assert( nKey==4 ); |
| 371 if( zInput[4]=='/' && zInput[5]>='0' && zInput[5]<='9' ){ |
| 372 nNear = 0; |
| 373 for(nKey=5; zInput[nKey]>='0' && zInput[nKey]<='9'; nKey++){ |
| 374 nNear = nNear * 10 + (zInput[nKey] - '0'); |
| 375 } |
| 376 } |
| 377 } |
| 378 |
| 379 /* At this point this is probably a keyword. But for that to be true, |
| 380 ** the next byte must contain either whitespace, an open or close |
| 381 ** parenthesis, a quote character, or EOF. |
| 382 */ |
| 383 cNext = zInput[nKey]; |
| 384 if( fts3isspace(cNext) |
| 385 || cNext=='"' || cNext=='(' || cNext==')' || cNext==0 |
| 386 ){ |
| 387 pRet = (Fts3Expr *)fts3MallocZero(sizeof(Fts3Expr)); |
| 388 if( !pRet ){ |
| 389 return SQLITE_NOMEM; |
| 390 } |
| 391 pRet->eType = pKey->eType; |
| 392 pRet->nNear = nNear; |
| 393 *ppExpr = pRet; |
| 394 *pnConsumed = (int)((zInput - z) + nKey); |
| 395 return SQLITE_OK; |
| 396 } |
| 397 |
| 398 /* Turns out that wasn't a keyword after all. This happens if the |
| 399 ** user has supplied a token such as "ORacle". Continue. |
| 400 */ |
| 401 } |
| 402 } |
| 403 |
| 404 /* Check for an open bracket. */ |
| 405 if( sqlite3_fts3_enable_parentheses ){ |
| 406 if( *zInput=='(' ){ |
| 407 int nConsumed; |
| 408 pParse->nNest++; |
| 409 rc = fts3ExprParse(pParse, &zInput[1], nInput-1, ppExpr, &nConsumed); |
| 410 if( rc==SQLITE_OK && !*ppExpr ){ |
| 411 rc = SQLITE_DONE; |
| 412 } |
| 413 *pnConsumed = (int)((zInput - z) + 1 + nConsumed); |
| 414 return rc; |
| 415 } |
| 416 |
| 417 /* Check for a close bracket. */ |
| 418 if( *zInput==')' ){ |
| 419 pParse->nNest--; |
| 420 *pnConsumed = (int)((zInput - z) + 1); |
| 421 return SQLITE_DONE; |
| 422 } |
| 423 } |
| 424 |
| 425 /* See if we are dealing with a quoted phrase. If this is the case, then |
| 426 ** search for the closing quote and pass the whole string to getNextString() |
| 427 ** for processing. This is easy to do, as fts3 has no syntax for escaping |
| 428 ** a quote character embedded in a string. |
| 429 */ |
| 430 if( *zInput=='"' ){ |
| 431 for(ii=1; ii<nInput && zInput[ii]!='"'; ii++); |
| 432 *pnConsumed = (int)((zInput - z) + ii + 1); |
| 433 if( ii==nInput ){ |
| 434 return SQLITE_ERROR; |
| 435 } |
| 436 return getNextString(pParse, &zInput[1], ii-1, ppExpr); |
| 437 } |
| 438 |
| 439 |
| 440 /* If control flows to this point, this must be a regular token, or |
| 441 ** the end of the input. Read a regular token using the sqlite3_tokenizer |
| 442 ** interface. Before doing so, figure out if there is an explicit |
| 443 ** column specifier for the token. |
| 444 ** |
| 445 ** TODO: Strangely, it is not possible to associate a column specifier |
| 446 ** with a quoted phrase, only with a single token. Not sure if this was |
| 447 ** an implementation artifact or an intentional decision when fts3 was |
| 448 ** first implemented. Whichever it was, this module duplicates the |
| 449 ** limitation. |
| 450 */ |
| 451 iCol = pParse->iDefaultCol; |
| 452 iColLen = 0; |
| 453 for(ii=0; ii<pParse->nCol; ii++){ |
| 454 const char *zStr = pParse->azCol[ii]; |
| 455 int nStr = (int)strlen(zStr); |
| 456 if( nInput>nStr && zInput[nStr]==':' |
| 457 && sqlite3_strnicmp(zStr, zInput, nStr)==0 |
| 458 ){ |
| 459 iCol = ii; |
| 460 iColLen = (int)((zInput - z) + nStr + 1); |
| 461 break; |
| 462 } |
| 463 } |
| 464 rc = getNextToken(pParse, iCol, &z[iColLen], n-iColLen, ppExpr, pnConsumed); |
| 465 *pnConsumed += iColLen; |
| 466 return rc; |
| 467 } |
| 468 |
| 469 /* |
| 470 ** The argument is an Fts3Expr structure for a binary operator (any type |
| 471 ** except an FTSQUERY_PHRASE). Return an integer value representing the |
| 472 ** precedence of the operator. Lower values have a higher precedence (i.e. |
| 473 ** group more tightly). For example, in the C language, the == operator |
| 474 ** groups more tightly than ||, and would therefore have a higher precedence. |
| 475 ** |
| 476 ** When using the new fts3 query syntax (when SQLITE_ENABLE_FTS3_PARENTHESIS |
| 477 ** is defined), the order of the operators in precedence from highest to |
| 478 ** lowest is: |
| 479 ** |
| 480 ** NEAR |
| 481 ** NOT |
| 482 ** AND (including implicit ANDs) |
| 483 ** OR |
| 484 ** |
| 485 ** Note that when using the old query syntax, the OR operator has a higher |
| 486 ** precedence than the AND operator. |
| 487 */ |
| 488 static int opPrecedence(Fts3Expr *p){ |
| 489 assert( p->eType!=FTSQUERY_PHRASE ); |
| 490 if( sqlite3_fts3_enable_parentheses ){ |
| 491 return p->eType; |
| 492 }else if( p->eType==FTSQUERY_NEAR ){ |
| 493 return 1; |
| 494 }else if( p->eType==FTSQUERY_OR ){ |
| 495 return 2; |
| 496 } |
| 497 assert( p->eType==FTSQUERY_AND ); |
| 498 return 3; |
| 499 } |
| 500 |
| 501 /* |
| 502 ** Argument ppHead contains a pointer to the current head of a query |
| 503 ** expression tree being parsed. pPrev is the expression node most recently |
| 504 ** inserted into the tree. This function adds pNew, which is always a binary |
| 505 ** operator node, into the expression tree based on the relative precedence |
| 506 ** of pNew and the existing nodes of the tree. This may result in the head |
| 507 ** of the tree changing, in which case *ppHead is set to the new root node. |
| 508 */ |
| 509 static void insertBinaryOperator( |
| 510 Fts3Expr **ppHead, /* Pointer to the root node of a tree */ |
| 511 Fts3Expr *pPrev, /* Node most recently inserted into the tree */ |
| 512 Fts3Expr *pNew /* New binary node to insert into expression tree */ |
| 513 ){ |
| 514 Fts3Expr *pSplit = pPrev; |
| 515 while( pSplit->pParent && opPrecedence(pSplit->pParent)<=opPrecedence(pNew) ){ |
| 516 pSplit = pSplit->pParent; |
| 517 } |
| 518 |
| 519 if( pSplit->pParent ){ |
| 520 assert( pSplit->pParent->pRight==pSplit ); |
| 521 pSplit->pParent->pRight = pNew; |
| 522 pNew->pParent = pSplit->pParent; |
| 523 }else{ |
| 524 *ppHead = pNew; |
| 525 } |
| 526 pNew->pLeft = pSplit; |
| 527 pSplit->pParent = pNew; |
| 528 } |
| 529 |
| 530 /* |
| 531 ** Parse the fts3 query expression found in buffer z, length n. This function |
| 532 ** returns either when the end of the buffer is reached or an unmatched |
| 533 ** closing bracket - ')' - is encountered. |
| 534 ** |
| 535 ** If successful, SQLITE_OK is returned, *ppExpr is set to point to the |
| 536 ** parsed form of the expression and *pnConsumed is set to the number of |
| 537 ** bytes read from buffer z. Otherwise, *ppExpr is set to 0 and SQLITE_NOMEM |
| 538 ** (out of memory error) or SQLITE_ERROR (parse error) is returned. |
| 539 */ |
| 540 static int fts3ExprParse( |
| 541 ParseContext *pParse, /* fts3 query parse context */ |
| 542 const char *z, int n, /* Text of MATCH query */ |
| 543 Fts3Expr **ppExpr, /* OUT: Parsed query structure */ |
| 544 int *pnConsumed /* OUT: Number of bytes consumed */ |
| 545 ){ |
| 546 Fts3Expr *pRet = 0; |
| 547 Fts3Expr *pPrev = 0; |
| 548 Fts3Expr *pNotBranch = 0; /* Only used in legacy parse mode */ |
| 549 int nIn = n; |
| 550 const char *zIn = z; |
| 551 int rc = SQLITE_OK; |
| 552 int isRequirePhrase = 1; |
| 553 |
| 554 while( rc==SQLITE_OK ){ |
| 555 Fts3Expr *p = 0; |
| 556 int nByte = 0; |
| 557 rc = getNextNode(pParse, zIn, nIn, &p, &nByte); |
| 558 if( rc==SQLITE_OK ){ |
| 559 int isPhrase; |
| 560 |
| 561 if( !sqlite3_fts3_enable_parentheses |
| 562 && p->eType==FTSQUERY_PHRASE && p->pPhrase->isNot |
| 563 ){ |
| 564 /* Create an implicit NOT operator. */ |
| 565 Fts3Expr *pNot = fts3MallocZero(sizeof(Fts3Expr)); |
| 566 if( !pNot ){ |
| 567 sqlite3Fts3ExprFree(p); |
| 568 rc = SQLITE_NOMEM; |
| 569 goto exprparse_out; |
| 570 } |
| 571 pNot->eType = FTSQUERY_NOT; |
| 572 pNot->pRight = p; |
| 573 if( pNotBranch ){ |
| 574 pNot->pLeft = pNotBranch; |
| 575 } |
| 576 pNotBranch = pNot; |
| 577 p = pPrev; |
| 578 }else{ |
| 579 int eType = p->eType; |
| 580 assert( eType!=FTSQUERY_PHRASE || !p->pPhrase->isNot ); |
| 581 isPhrase = (eType==FTSQUERY_PHRASE || p->pLeft); |
| 582 |
| 583 /* The isRequirePhrase variable is set to true if a phrase or |
| 584 ** an expression contained in parenthesis is required. If a |
| 585 ** binary operator (AND, OR, NOT or NEAR) is encounted when |
| 586 ** isRequirePhrase is set, this is a syntax error. |
| 587 */ |
| 588 if( !isPhrase && isRequirePhrase ){ |
| 589 sqlite3Fts3ExprFree(p); |
| 590 rc = SQLITE_ERROR; |
| 591 goto exprparse_out; |
| 592 } |
| 593 |
| 594 if( isPhrase && !isRequirePhrase ){ |
| 595 /* Insert an implicit AND operator. */ |
| 596 Fts3Expr *pAnd; |
| 597 assert( pRet && pPrev ); |
| 598 pAnd = fts3MallocZero(sizeof(Fts3Expr)); |
| 599 if( !pAnd ){ |
| 600 sqlite3Fts3ExprFree(p); |
| 601 rc = SQLITE_NOMEM; |
| 602 goto exprparse_out; |
| 603 } |
| 604 pAnd->eType = FTSQUERY_AND; |
| 605 insertBinaryOperator(&pRet, pPrev, pAnd); |
| 606 pPrev = pAnd; |
| 607 } |
| 608 |
| 609 /* This test catches attempts to make either operand of a NEAR |
| 610 ** operator something other than a phrase. For example, either of |
| 611 ** the following: |
| 612 ** |
| 613 ** (bracketed expression) NEAR phrase |
| 614 ** phrase NEAR (bracketed expression) |
| 615 ** |
| 616 ** Return an error in either case. |
| 617 */ |
| 618 if( pPrev && ( |
| 619 (eType==FTSQUERY_NEAR && !isPhrase && pPrev->eType!=FTSQUERY_PHRASE) |
| 620 || (eType!=FTSQUERY_PHRASE && isPhrase && pPrev->eType==FTSQUERY_NEAR) |
| 621 )){ |
| 622 sqlite3Fts3ExprFree(p); |
| 623 rc = SQLITE_ERROR; |
| 624 goto exprparse_out; |
| 625 } |
| 626 |
| 627 if( isPhrase ){ |
| 628 if( pRet ){ |
| 629 assert( pPrev && pPrev->pLeft && pPrev->pRight==0 ); |
| 630 pPrev->pRight = p; |
| 631 p->pParent = pPrev; |
| 632 }else{ |
| 633 pRet = p; |
| 634 } |
| 635 }else{ |
| 636 insertBinaryOperator(&pRet, pPrev, p); |
| 637 } |
| 638 isRequirePhrase = !isPhrase; |
| 639 } |
| 640 assert( nByte>0 ); |
| 641 } |
| 642 assert( rc!=SQLITE_OK || (nByte>0 && nByte<=nIn) ); |
| 643 nIn -= nByte; |
| 644 zIn += nByte; |
| 645 pPrev = p; |
| 646 } |
| 647 |
| 648 if( rc==SQLITE_DONE && pRet && isRequirePhrase ){ |
| 649 rc = SQLITE_ERROR; |
| 650 } |
| 651 |
| 652 if( rc==SQLITE_DONE ){ |
| 653 rc = SQLITE_OK; |
| 654 if( !sqlite3_fts3_enable_parentheses && pNotBranch ){ |
| 655 if( !pRet ){ |
| 656 rc = SQLITE_ERROR; |
| 657 }else{ |
| 658 Fts3Expr *pIter = pNotBranch; |
| 659 while( pIter->pLeft ){ |
| 660 pIter = pIter->pLeft; |
| 661 } |
| 662 pIter->pLeft = pRet; |
| 663 pRet = pNotBranch; |
| 664 } |
| 665 } |
| 666 } |
| 667 *pnConsumed = n - nIn; |
| 668 |
| 669 exprparse_out: |
| 670 if( rc!=SQLITE_OK ){ |
| 671 sqlite3Fts3ExprFree(pRet); |
| 672 sqlite3Fts3ExprFree(pNotBranch); |
| 673 pRet = 0; |
| 674 } |
| 675 *ppExpr = pRet; |
| 676 return rc; |
| 677 } |
| 678 |
| 679 /* |
| 680 ** Parameters z and n contain a pointer to and length of a buffer containing |
| 681 ** an fts3 query expression, respectively. This function attempts to parse the |
| 682 ** query expression and create a tree of Fts3Expr structures representing the |
| 683 ** parsed expression. If successful, *ppExpr is set to point to the head |
| 684 ** of the parsed expression tree and SQLITE_OK is returned. If an error |
| 685 ** occurs, either SQLITE_NOMEM (out-of-memory error) or SQLITE_ERROR (parse |
| 686 ** error) is returned and *ppExpr is set to 0. |
| 687 ** |
| 688 ** If parameter n is a negative number, then z is assumed to point to a |
| 689 ** nul-terminated string and the length is determined using strlen(). |
| 690 ** |
| 691 ** The first parameter, pTokenizer, is passed the fts3 tokenizer module to |
| 692 ** use to normalize query tokens while parsing the expression. The azCol[] |
| 693 ** array, which is assumed to contain nCol entries, should contain the names |
| 694 ** of each column in the target fts3 table, in order from left to right. |
| 695 ** Column names must be nul-terminated strings. |
| 696 ** |
| 697 ** The iDefaultCol parameter should be passed the index of the table column |
| 698 ** that appears on the left-hand-side of the MATCH operator (the default |
| 699 ** column to match against for tokens for which a column name is not explicitly |
| 700 ** specified as part of the query string), or -1 if tokens may by default |
| 701 ** match any table column. |
| 702 */ |
| 703 int sqlite3Fts3ExprParse( |
| 704 sqlite3_tokenizer *pTokenizer, /* Tokenizer module */ |
| 705 char **azCol, /* Array of column names for fts3 table */ |
| 706 int nCol, /* Number of entries in azCol[] */ |
| 707 int iDefaultCol, /* Default column to query */ |
| 708 const char *z, int n, /* Text of MATCH query */ |
| 709 Fts3Expr **ppExpr /* OUT: Parsed query structure */ |
| 710 ){ |
| 711 int nParsed; |
| 712 int rc; |
| 713 ParseContext sParse; |
| 714 sParse.pTokenizer = pTokenizer; |
| 715 sParse.azCol = (const char **)azCol; |
| 716 sParse.nCol = nCol; |
| 717 sParse.iDefaultCol = iDefaultCol; |
| 718 sParse.nNest = 0; |
| 719 if( z==0 ){ |
| 720 *ppExpr = 0; |
| 721 return SQLITE_OK; |
| 722 } |
| 723 if( n<0 ){ |
| 724 n = (int)strlen(z); |
| 725 } |
| 726 rc = fts3ExprParse(&sParse, z, n, ppExpr, &nParsed); |
| 727 |
| 728 /* Check for mismatched parenthesis */ |
| 729 if( rc==SQLITE_OK && sParse.nNest ){ |
| 730 rc = SQLITE_ERROR; |
| 731 sqlite3Fts3ExprFree(*ppExpr); |
| 732 *ppExpr = 0; |
| 733 } |
| 734 |
| 735 return rc; |
| 736 } |
| 737 |
| 738 /* |
| 739 ** Free a parsed fts3 query expression allocated by sqlite3Fts3ExprParse(). |
| 740 */ |
| 741 void sqlite3Fts3ExprFree(Fts3Expr *p){ |
| 742 if( p ){ |
| 743 sqlite3Fts3ExprFree(p->pLeft); |
| 744 sqlite3Fts3ExprFree(p->pRight); |
| 745 sqlite3_free(p->aDoclist); |
| 746 sqlite3_free(p); |
| 747 } |
| 748 } |
| 749 |
| 750 /**************************************************************************** |
| 751 ***************************************************************************** |
| 752 ** Everything after this point is just test code. |
| 753 */ |
| 754 |
| 755 #ifdef SQLITE_TEST |
| 756 |
| 757 #include <stdio.h> |
| 758 |
| 759 /* |
| 760 ** Function to query the hash-table of tokenizers (see README.tokenizers). |
| 761 */ |
| 762 static int queryTestTokenizer( |
| 763 sqlite3 *db, |
| 764 const char *zName, |
| 765 const sqlite3_tokenizer_module **pp |
| 766 ){ |
| 767 int rc; |
| 768 sqlite3_stmt *pStmt; |
| 769 const char zSql[] = "SELECT fts3_tokenizer(?)"; |
| 770 |
| 771 *pp = 0; |
| 772 rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); |
| 773 if( rc!=SQLITE_OK ){ |
| 774 return rc; |
| 775 } |
| 776 |
| 777 sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC); |
| 778 if( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 779 if( sqlite3_column_type(pStmt, 0)==SQLITE_BLOB ){ |
| 780 memcpy((void *)pp, sqlite3_column_blob(pStmt, 0), sizeof(*pp)); |
| 781 } |
| 782 } |
| 783 |
| 784 return sqlite3_finalize(pStmt); |
| 785 } |
| 786 |
| 787 /* |
| 788 ** Return a pointer to a buffer containing a text representation of the |
| 789 ** expression passed as the first argument. The buffer is obtained from |
| 790 ** sqlite3_malloc(). It is the responsibility of the caller to use |
| 791 ** sqlite3_free() to release the memory. If an OOM condition is encountered, |
| 792 ** NULL is returned. |
| 793 ** |
| 794 ** If the second argument is not NULL, then its contents are prepended to |
| 795 ** the returned expression text and then freed using sqlite3_free(). |
| 796 */ |
| 797 static char *exprToString(Fts3Expr *pExpr, char *zBuf){ |
| 798 switch( pExpr->eType ){ |
| 799 case FTSQUERY_PHRASE: { |
| 800 Fts3Phrase *pPhrase = pExpr->pPhrase; |
| 801 int i; |
| 802 zBuf = sqlite3_mprintf( |
| 803 "%zPHRASE %d %d", zBuf, pPhrase->iColumn, pPhrase->isNot); |
| 804 for(i=0; zBuf && i<pPhrase->nToken; i++){ |
| 805 zBuf = sqlite3_mprintf("%z %.*s%s", zBuf, |
| 806 pPhrase->aToken[i].n, pPhrase->aToken[i].z, |
| 807 (pPhrase->aToken[i].isPrefix?"+":"") |
| 808 ); |
| 809 } |
| 810 return zBuf; |
| 811 } |
| 812 |
| 813 case FTSQUERY_NEAR: |
| 814 zBuf = sqlite3_mprintf("%zNEAR/%d ", zBuf, pExpr->nNear); |
| 815 break; |
| 816 case FTSQUERY_NOT: |
| 817 zBuf = sqlite3_mprintf("%zNOT ", zBuf); |
| 818 break; |
| 819 case FTSQUERY_AND: |
| 820 zBuf = sqlite3_mprintf("%zAND ", zBuf); |
| 821 break; |
| 822 case FTSQUERY_OR: |
| 823 zBuf = sqlite3_mprintf("%zOR ", zBuf); |
| 824 break; |
| 825 } |
| 826 |
| 827 if( zBuf ) zBuf = sqlite3_mprintf("%z{", zBuf); |
| 828 if( zBuf ) zBuf = exprToString(pExpr->pLeft, zBuf); |
| 829 if( zBuf ) zBuf = sqlite3_mprintf("%z} {", zBuf); |
| 830 |
| 831 if( zBuf ) zBuf = exprToString(pExpr->pRight, zBuf); |
| 832 if( zBuf ) zBuf = sqlite3_mprintf("%z}", zBuf); |
| 833 |
| 834 return zBuf; |
| 835 } |
| 836 |
| 837 /* |
| 838 ** This is the implementation of a scalar SQL function used to test the |
| 839 ** expression parser. It should be called as follows: |
| 840 ** |
| 841 ** fts3_exprtest(<tokenizer>, <expr>, <column 1>, ...); |
| 842 ** |
| 843 ** The first argument, <tokenizer>, is the name of the fts3 tokenizer used |
| 844 ** to parse the query expression (see README.tokenizers). The second argument |
| 845 ** is the query expression to parse. Each subsequent argument is the name |
| 846 ** of a column of the fts3 table that the query expression may refer to. |
| 847 ** For example: |
| 848 ** |
| 849 ** SELECT fts3_exprtest('simple', 'Bill col2:Bloggs', 'col1', 'col2'); |
| 850 */ |
| 851 static void fts3ExprTest( |
| 852 sqlite3_context *context, |
| 853 int argc, |
| 854 sqlite3_value **argv |
| 855 ){ |
| 856 sqlite3_tokenizer_module const *pModule = 0; |
| 857 sqlite3_tokenizer *pTokenizer = 0; |
| 858 int rc; |
| 859 char **azCol = 0; |
| 860 const char *zExpr; |
| 861 int nExpr; |
| 862 int nCol; |
| 863 int ii; |
| 864 Fts3Expr *pExpr; |
| 865 char *zBuf = 0; |
| 866 sqlite3 *db = sqlite3_context_db_handle(context); |
| 867 |
| 868 if( argc<3 ){ |
| 869 sqlite3_result_error(context, |
| 870 "Usage: fts3_exprtest(tokenizer, expr, col1, ...", -1 |
| 871 ); |
| 872 return; |
| 873 } |
| 874 |
| 875 rc = queryTestTokenizer(db, |
| 876 (const char *)sqlite3_value_text(argv[0]), &pModule); |
| 877 if( rc==SQLITE_NOMEM ){ |
| 878 sqlite3_result_error_nomem(context); |
| 879 goto exprtest_out; |
| 880 }else if( !pModule ){ |
| 881 sqlite3_result_error(context, "No such tokenizer module", -1); |
| 882 goto exprtest_out; |
| 883 } |
| 884 |
| 885 rc = pModule->xCreate(0, 0, &pTokenizer); |
| 886 assert( rc==SQLITE_NOMEM || rc==SQLITE_OK ); |
| 887 if( rc==SQLITE_NOMEM ){ |
| 888 sqlite3_result_error_nomem(context); |
| 889 goto exprtest_out; |
| 890 } |
| 891 pTokenizer->pModule = pModule; |
| 892 |
| 893 zExpr = (const char *)sqlite3_value_text(argv[1]); |
| 894 nExpr = sqlite3_value_bytes(argv[1]); |
| 895 nCol = argc-2; |
| 896 azCol = (char **)sqlite3_malloc(nCol*sizeof(char *)); |
| 897 if( !azCol ){ |
| 898 sqlite3_result_error_nomem(context); |
| 899 goto exprtest_out; |
| 900 } |
| 901 for(ii=0; ii<nCol; ii++){ |
| 902 azCol[ii] = (char *)sqlite3_value_text(argv[ii+2]); |
| 903 } |
| 904 |
| 905 rc = sqlite3Fts3ExprParse( |
| 906 pTokenizer, azCol, nCol, nCol, zExpr, nExpr, &pExpr |
| 907 ); |
| 908 if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM ){ |
| 909 sqlite3_result_error(context, "Error parsing expression", -1); |
| 910 }else if( rc==SQLITE_NOMEM || !(zBuf = exprToString(pExpr, 0)) ){ |
| 911 sqlite3_result_error_nomem(context); |
| 912 }else{ |
| 913 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); |
| 914 sqlite3_free(zBuf); |
| 915 } |
| 916 |
| 917 sqlite3Fts3ExprFree(pExpr); |
| 918 |
| 919 exprtest_out: |
| 920 if( pModule && pTokenizer ){ |
| 921 rc = pModule->xDestroy(pTokenizer); |
| 922 } |
| 923 sqlite3_free(azCol); |
| 924 } |
| 925 |
| 926 /* |
| 927 ** Register the query expression parser test function fts3_exprtest() |
| 928 ** with database connection db. |
| 929 */ |
| 930 int sqlite3Fts3ExprInitTestInterface(sqlite3* db){ |
| 931 return sqlite3_create_function( |
| 932 db, "fts3_exprtest", -1, SQLITE_UTF8, 0, fts3ExprTest, 0, 0 |
| 933 ); |
| 934 } |
| 935 |
| 936 #endif |
| 937 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ |
OLD | NEW |