OLD | NEW |
(Empty) | |
| 1 /* fts2 has a design flaw which can lead to database corruption (see |
| 2 ** below). It is recommended not to use it any longer, instead use |
| 3 ** fts3 (or higher). If you believe that your use of fts2 is safe, |
| 4 ** add -DSQLITE_ENABLE_BROKEN_FTS2=1 to your CFLAGS. |
| 5 */ |
| 6 #if (!defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2)) \ |
| 7 && !defined(SQLITE_ENABLE_BROKEN_FTS2) |
| 8 #error fts2 has a design flaw and has been deprecated. |
| 9 #endif |
| 10 /* The flaw is that fts2 uses the content table's unaliased rowid as |
| 11 ** the unique docid. fts2 embeds the rowid in the index it builds, |
| 12 ** and expects the rowid to not change. The SQLite VACUUM operation |
| 13 ** will renumber such rowids, thereby breaking fts2. If you are using |
| 14 ** fts2 in a system which has disabled VACUUM, then you can continue |
| 15 ** to use it safely. Note that PRAGMA auto_vacuum does NOT disable |
| 16 ** VACUUM, though systems using auto_vacuum are unlikely to invoke |
| 17 ** VACUUM. |
| 18 ** |
| 19 ** Unlike fts1, which is safe across VACUUM if you never delete |
| 20 ** documents, fts2 has a second exposure to this flaw, in the segments |
| 21 ** table. So fts2 should be considered unsafe across VACUUM in all |
| 22 ** cases. |
| 23 */ |
| 24 |
| 25 /* |
| 26 ** 2006 Oct 10 |
| 27 ** |
| 28 ** The author disclaims copyright to this source code. In place of |
| 29 ** a legal notice, here is a blessing: |
| 30 ** |
| 31 ** May you do good and not evil. |
| 32 ** May you find forgiveness for yourself and forgive others. |
| 33 ** May you share freely, never taking more than you give. |
| 34 ** |
| 35 ****************************************************************************** |
| 36 ** |
| 37 ** This is an SQLite module implementing full-text search. |
| 38 */ |
| 39 |
| 40 /* |
| 41 ** The code in this file is only compiled if: |
| 42 ** |
| 43 ** * The FTS2 module is being built as an extension |
| 44 ** (in which case SQLITE_CORE is not defined), or |
| 45 ** |
| 46 ** * The FTS2 module is being built into the core of |
| 47 ** SQLite (in which case SQLITE_ENABLE_FTS2 is defined). |
| 48 */ |
| 49 |
| 50 /* TODO(shess) Consider exporting this comment to an HTML file or the |
| 51 ** wiki. |
| 52 */ |
| 53 /* The full-text index is stored in a series of b+tree (-like) |
| 54 ** structures called segments which map terms to doclists. The |
| 55 ** structures are like b+trees in layout, but are constructed from the |
| 56 ** bottom up in optimal fashion and are not updatable. Since trees |
| 57 ** are built from the bottom up, things will be described from the |
| 58 ** bottom up. |
| 59 ** |
| 60 ** |
| 61 **** Varints **** |
| 62 ** The basic unit of encoding is a variable-length integer called a |
| 63 ** varint. We encode variable-length integers in little-endian order |
| 64 ** using seven bits * per byte as follows: |
| 65 ** |
| 66 ** KEY: |
| 67 ** A = 0xxxxxxx 7 bits of data and one flag bit |
| 68 ** B = 1xxxxxxx 7 bits of data and one flag bit |
| 69 ** |
| 70 ** 7 bits - A |
| 71 ** 14 bits - BA |
| 72 ** 21 bits - BBA |
| 73 ** and so on. |
| 74 ** |
| 75 ** This is identical to how sqlite encodes varints (see util.c). |
| 76 ** |
| 77 ** |
| 78 **** Document lists **** |
| 79 ** A doclist (document list) holds a docid-sorted list of hits for a |
| 80 ** given term. Doclists hold docids, and can optionally associate |
| 81 ** token positions and offsets with docids. |
| 82 ** |
| 83 ** A DL_POSITIONS_OFFSETS doclist is stored like this: |
| 84 ** |
| 85 ** array { |
| 86 ** varint docid; |
| 87 ** array { (position list for column 0) |
| 88 ** varint position; (delta from previous position plus POS_BASE) |
| 89 ** varint startOffset; (delta from previous startOffset) |
| 90 ** varint endOffset; (delta from startOffset) |
| 91 ** } |
| 92 ** array { |
| 93 ** varint POS_COLUMN; (marks start of position list for new column) |
| 94 ** varint column; (index of new column) |
| 95 ** array { |
| 96 ** varint position; (delta from previous position plus POS_BASE) |
| 97 ** varint startOffset;(delta from previous startOffset) |
| 98 ** varint endOffset; (delta from startOffset) |
| 99 ** } |
| 100 ** } |
| 101 ** varint POS_END; (marks end of positions for this document. |
| 102 ** } |
| 103 ** |
| 104 ** Here, array { X } means zero or more occurrences of X, adjacent in |
| 105 ** memory. A "position" is an index of a token in the token stream |
| 106 ** generated by the tokenizer, while an "offset" is a byte offset, |
| 107 ** both based at 0. Note that POS_END and POS_COLUMN occur in the |
| 108 ** same logical place as the position element, and act as sentinals |
| 109 ** ending a position list array. |
| 110 ** |
| 111 ** A DL_POSITIONS doclist omits the startOffset and endOffset |
| 112 ** information. A DL_DOCIDS doclist omits both the position and |
| 113 ** offset information, becoming an array of varint-encoded docids. |
| 114 ** |
| 115 ** On-disk data is stored as type DL_DEFAULT, so we don't serialize |
| 116 ** the type. Due to how deletion is implemented in the segmentation |
| 117 ** system, on-disk doclists MUST store at least positions. |
| 118 ** |
| 119 ** |
| 120 **** Segment leaf nodes **** |
| 121 ** Segment leaf nodes store terms and doclists, ordered by term. Leaf |
| 122 ** nodes are written using LeafWriter, and read using LeafReader (to |
| 123 ** iterate through a single leaf node's data) and LeavesReader (to |
| 124 ** iterate through a segment's entire leaf layer). Leaf nodes have |
| 125 ** the format: |
| 126 ** |
| 127 ** varint iHeight; (height from leaf level, always 0) |
| 128 ** varint nTerm; (length of first term) |
| 129 ** char pTerm[nTerm]; (content of first term) |
| 130 ** varint nDoclist; (length of term's associated doclist) |
| 131 ** char pDoclist[nDoclist]; (content of doclist) |
| 132 ** array { |
| 133 ** (further terms are delta-encoded) |
| 134 ** varint nPrefix; (length of prefix shared with previous term) |
| 135 ** varint nSuffix; (length of unshared suffix) |
| 136 ** char pTermSuffix[nSuffix];(unshared suffix of next term) |
| 137 ** varint nDoclist; (length of term's associated doclist) |
| 138 ** char pDoclist[nDoclist]; (content of doclist) |
| 139 ** } |
| 140 ** |
| 141 ** Here, array { X } means zero or more occurrences of X, adjacent in |
| 142 ** memory. |
| 143 ** |
| 144 ** Leaf nodes are broken into blocks which are stored contiguously in |
| 145 ** the %_segments table in sorted order. This means that when the end |
| 146 ** of a node is reached, the next term is in the node with the next |
| 147 ** greater node id. |
| 148 ** |
| 149 ** New data is spilled to a new leaf node when the current node |
| 150 ** exceeds LEAF_MAX bytes (default 2048). New data which itself is |
| 151 ** larger than STANDALONE_MIN (default 1024) is placed in a standalone |
| 152 ** node (a leaf node with a single term and doclist). The goal of |
| 153 ** these settings is to pack together groups of small doclists while |
| 154 ** making it efficient to directly access large doclists. The |
| 155 ** assumption is that large doclists represent terms which are more |
| 156 ** likely to be query targets. |
| 157 ** |
| 158 ** TODO(shess) It may be useful for blocking decisions to be more |
| 159 ** dynamic. For instance, it may make more sense to have a 2.5k leaf |
| 160 ** node rather than splitting into 2k and .5k nodes. My intuition is |
| 161 ** that this might extend through 2x or 4x the pagesize. |
| 162 ** |
| 163 ** |
| 164 **** Segment interior nodes **** |
| 165 ** Segment interior nodes store blockids for subtree nodes and terms |
| 166 ** to describe what data is stored by the each subtree. Interior |
| 167 ** nodes are written using InteriorWriter, and read using |
| 168 ** InteriorReader. InteriorWriters are created as needed when |
| 169 ** SegmentWriter creates new leaf nodes, or when an interior node |
| 170 ** itself grows too big and must be split. The format of interior |
| 171 ** nodes: |
| 172 ** |
| 173 ** varint iHeight; (height from leaf level, always >0) |
| 174 ** varint iBlockid; (block id of node's leftmost subtree) |
| 175 ** optional { |
| 176 ** varint nTerm; (length of first term) |
| 177 ** char pTerm[nTerm]; (content of first term) |
| 178 ** array { |
| 179 ** (further terms are delta-encoded) |
| 180 ** varint nPrefix; (length of shared prefix with previous term) |
| 181 ** varint nSuffix; (length of unshared suffix) |
| 182 ** char pTermSuffix[nSuffix]; (unshared suffix of next term) |
| 183 ** } |
| 184 ** } |
| 185 ** |
| 186 ** Here, optional { X } means an optional element, while array { X } |
| 187 ** means zero or more occurrences of X, adjacent in memory. |
| 188 ** |
| 189 ** An interior node encodes n terms separating n+1 subtrees. The |
| 190 ** subtree blocks are contiguous, so only the first subtree's blockid |
| 191 ** is encoded. The subtree at iBlockid will contain all terms less |
| 192 ** than the first term encoded (or all terms if no term is encoded). |
| 193 ** Otherwise, for terms greater than or equal to pTerm[i] but less |
| 194 ** than pTerm[i+1], the subtree for that term will be rooted at |
| 195 ** iBlockid+i. Interior nodes only store enough term data to |
| 196 ** distinguish adjacent children (if the rightmost term of the left |
| 197 ** child is "something", and the leftmost term of the right child is |
| 198 ** "wicked", only "w" is stored). |
| 199 ** |
| 200 ** New data is spilled to a new interior node at the same height when |
| 201 ** the current node exceeds INTERIOR_MAX bytes (default 2048). |
| 202 ** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing |
| 203 ** interior nodes and making the tree too skinny. The interior nodes |
| 204 ** at a given height are naturally tracked by interior nodes at |
| 205 ** height+1, and so on. |
| 206 ** |
| 207 ** |
| 208 **** Segment directory **** |
| 209 ** The segment directory in table %_segdir stores meta-information for |
| 210 ** merging and deleting segments, and also the root node of the |
| 211 ** segment's tree. |
| 212 ** |
| 213 ** The root node is the top node of the segment's tree after encoding |
| 214 ** the entire segment, restricted to ROOT_MAX bytes (default 1024). |
| 215 ** This could be either a leaf node or an interior node. If the top |
| 216 ** node requires more than ROOT_MAX bytes, it is flushed to %_segments |
| 217 ** and a new root interior node is generated (which should always fit |
| 218 ** within ROOT_MAX because it only needs space for 2 varints, the |
| 219 ** height and the blockid of the previous root). |
| 220 ** |
| 221 ** The meta-information in the segment directory is: |
| 222 ** level - segment level (see below) |
| 223 ** idx - index within level |
| 224 ** - (level,idx uniquely identify a segment) |
| 225 ** start_block - first leaf node |
| 226 ** leaves_end_block - last leaf node |
| 227 ** end_block - last block (including interior nodes) |
| 228 ** root - contents of root node |
| 229 ** |
| 230 ** If the root node is a leaf node, then start_block, |
| 231 ** leaves_end_block, and end_block are all 0. |
| 232 ** |
| 233 ** |
| 234 **** Segment merging **** |
| 235 ** To amortize update costs, segments are groups into levels and |
| 236 ** merged in matches. Each increase in level represents exponentially |
| 237 ** more documents. |
| 238 ** |
| 239 ** New documents (actually, document updates) are tokenized and |
| 240 ** written individually (using LeafWriter) to a level 0 segment, with |
| 241 ** incrementing idx. When idx reaches MERGE_COUNT (default 16), all |
| 242 ** level 0 segments are merged into a single level 1 segment. Level 1 |
| 243 ** is populated like level 0, and eventually MERGE_COUNT level 1 |
| 244 ** segments are merged to a single level 2 segment (representing |
| 245 ** MERGE_COUNT^2 updates), and so on. |
| 246 ** |
| 247 ** A segment merge traverses all segments at a given level in |
| 248 ** parallel, performing a straightforward sorted merge. Since segment |
| 249 ** leaf nodes are written in to the %_segments table in order, this |
| 250 ** merge traverses the underlying sqlite disk structures efficiently. |
| 251 ** After the merge, all segment blocks from the merged level are |
| 252 ** deleted. |
| 253 ** |
| 254 ** MERGE_COUNT controls how often we merge segments. 16 seems to be |
| 255 ** somewhat of a sweet spot for insertion performance. 32 and 64 show |
| 256 ** very similar performance numbers to 16 on insertion, though they're |
| 257 ** a tiny bit slower (perhaps due to more overhead in merge-time |
| 258 ** sorting). 8 is about 20% slower than 16, 4 about 50% slower than |
| 259 ** 16, 2 about 66% slower than 16. |
| 260 ** |
| 261 ** At query time, high MERGE_COUNT increases the number of segments |
| 262 ** which need to be scanned and merged. For instance, with 100k docs |
| 263 ** inserted: |
| 264 ** |
| 265 ** MERGE_COUNT segments |
| 266 ** 16 25 |
| 267 ** 8 12 |
| 268 ** 4 10 |
| 269 ** 2 6 |
| 270 ** |
| 271 ** This appears to have only a moderate impact on queries for very |
| 272 ** frequent terms (which are somewhat dominated by segment merge |
| 273 ** costs), and infrequent and non-existent terms still seem to be fast |
| 274 ** even with many segments. |
| 275 ** |
| 276 ** TODO(shess) That said, it would be nice to have a better query-side |
| 277 ** argument for MERGE_COUNT of 16. Also, it is possible/likely that |
| 278 ** optimizations to things like doclist merging will swing the sweet |
| 279 ** spot around. |
| 280 ** |
| 281 ** |
| 282 ** |
| 283 **** Handling of deletions and updates **** |
| 284 ** Since we're using a segmented structure, with no docid-oriented |
| 285 ** index into the term index, we clearly cannot simply update the term |
| 286 ** index when a document is deleted or updated. For deletions, we |
| 287 ** write an empty doclist (varint(docid) varint(POS_END)), for updates |
| 288 ** we simply write the new doclist. Segment merges overwrite older |
| 289 ** data for a particular docid with newer data, so deletes or updates |
| 290 ** will eventually overtake the earlier data and knock it out. The |
| 291 ** query logic likewise merges doclists so that newer data knocks out |
| 292 ** older data. |
| 293 ** |
| 294 ** TODO(shess) Provide a VACUUM type operation to clear out all |
| 295 ** deletions and duplications. This would basically be a forced merge |
| 296 ** into a single segment. |
| 297 */ |
| 298 |
| 299 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2) |
| 300 |
| 301 #if defined(SQLITE_ENABLE_FTS2) && !defined(SQLITE_CORE) |
| 302 # define SQLITE_CORE 1 |
| 303 #endif |
| 304 |
| 305 #include <assert.h> |
| 306 #include <stdlib.h> |
| 307 #include <stdio.h> |
| 308 #include <string.h> |
| 309 #include "fts2.h" |
| 310 #include "fts2_hash.h" |
| 311 #include "fts2_tokenizer.h" |
| 312 #include "sqlite3.h" |
| 313 #include "sqlite3ext.h" |
| 314 SQLITE_EXTENSION_INIT1 |
| 315 |
| 316 |
| 317 /* TODO(shess) MAN, this thing needs some refactoring. At minimum, it |
| 318 ** would be nice to order the file better, perhaps something along the |
| 319 ** lines of: |
| 320 ** |
| 321 ** - utility functions |
| 322 ** - table setup functions |
| 323 ** - table update functions |
| 324 ** - table query functions |
| 325 ** |
| 326 ** Put the query functions last because they're likely to reference |
| 327 ** typedefs or functions from the table update section. |
| 328 */ |
| 329 |
| 330 #if 0 |
| 331 # define TRACE(A) printf A; fflush(stdout) |
| 332 #else |
| 333 # define TRACE(A) |
| 334 #endif |
| 335 |
| 336 /* It is not safe to call isspace(), tolower(), or isalnum() on |
| 337 ** hi-bit-set characters. This is the same solution used in the |
| 338 ** tokenizer. |
| 339 */ |
| 340 /* TODO(shess) The snippet-generation code should be using the |
| 341 ** tokenizer-generated tokens rather than doing its own local |
| 342 ** tokenization. |
| 343 */ |
| 344 /* TODO(shess) Is __isascii() a portable version of (c&0x80)==0? */ |
| 345 static int safe_isspace(char c){ |
| 346 return c==' ' || c=='\t' || c=='\n' || c=='\r' || c=='\v' || c=='\f'; |
| 347 } |
| 348 static int safe_tolower(char c){ |
| 349 return (c>='A' && c<='Z') ? (c - 'A' + 'a') : c; |
| 350 } |
| 351 static int safe_isalnum(char c){ |
| 352 return (c>='0' && c<='9') || (c>='A' && c<='Z') || (c>='a' && c<='z'); |
| 353 } |
| 354 |
| 355 typedef enum DocListType { |
| 356 DL_DOCIDS, /* docids only */ |
| 357 DL_POSITIONS, /* docids + positions */ |
| 358 DL_POSITIONS_OFFSETS /* docids + positions + offsets */ |
| 359 } DocListType; |
| 360 |
| 361 /* |
| 362 ** By default, only positions and not offsets are stored in the doclists. |
| 363 ** To change this so that offsets are stored too, compile with |
| 364 ** |
| 365 ** -DDL_DEFAULT=DL_POSITIONS_OFFSETS |
| 366 ** |
| 367 ** If DL_DEFAULT is set to DL_DOCIDS, your table can only be inserted |
| 368 ** into (no deletes or updates). |
| 369 */ |
| 370 #ifndef DL_DEFAULT |
| 371 # define DL_DEFAULT DL_POSITIONS |
| 372 #endif |
| 373 |
| 374 enum { |
| 375 POS_END = 0, /* end of this position list */ |
| 376 POS_COLUMN, /* followed by new column number */ |
| 377 POS_BASE |
| 378 }; |
| 379 |
| 380 /* MERGE_COUNT controls how often we merge segments (see comment at |
| 381 ** top of file). |
| 382 */ |
| 383 #define MERGE_COUNT 16 |
| 384 |
| 385 /* utility functions */ |
| 386 |
| 387 /* CLEAR() and SCRAMBLE() abstract memset() on a pointer to a single |
| 388 ** record to prevent errors of the form: |
| 389 ** |
| 390 ** my_function(SomeType *b){ |
| 391 ** memset(b, '\0', sizeof(b)); // sizeof(b)!=sizeof(*b) |
| 392 ** } |
| 393 */ |
| 394 /* TODO(shess) Obvious candidates for a header file. */ |
| 395 #define CLEAR(b) memset(b, '\0', sizeof(*(b))) |
| 396 |
| 397 #ifndef NDEBUG |
| 398 # define SCRAMBLE(b) memset(b, 0x55, sizeof(*(b))) |
| 399 #else |
| 400 # define SCRAMBLE(b) |
| 401 #endif |
| 402 |
| 403 /* We may need up to VARINT_MAX bytes to store an encoded 64-bit integer. */ |
| 404 #define VARINT_MAX 10 |
| 405 |
| 406 /* Write a 64-bit variable-length integer to memory starting at p[0]. |
| 407 * The length of data written will be between 1 and VARINT_MAX bytes. |
| 408 * The number of bytes written is returned. */ |
| 409 static int putVarint(char *p, sqlite_int64 v){ |
| 410 unsigned char *q = (unsigned char *) p; |
| 411 sqlite_uint64 vu = v; |
| 412 do{ |
| 413 *q++ = (unsigned char) ((vu & 0x7f) | 0x80); |
| 414 vu >>= 7; |
| 415 }while( vu!=0 ); |
| 416 q[-1] &= 0x7f; /* turn off high bit in final byte */ |
| 417 assert( q - (unsigned char *)p <= VARINT_MAX ); |
| 418 return (int) (q - (unsigned char *)p); |
| 419 } |
| 420 |
| 421 /* Read a 64-bit variable-length integer from memory starting at p[0]. |
| 422 * Return the number of bytes read, or 0 on error. |
| 423 * The value is stored in *v. */ |
| 424 static int getVarint(const char *p, sqlite_int64 *v){ |
| 425 const unsigned char *q = (const unsigned char *) p; |
| 426 sqlite_uint64 x = 0, y = 1; |
| 427 while( (*q & 0x80) == 0x80 ){ |
| 428 x += y * (*q++ & 0x7f); |
| 429 y <<= 7; |
| 430 if( q - (unsigned char *)p >= VARINT_MAX ){ /* bad data */ |
| 431 assert( 0 ); |
| 432 return 0; |
| 433 } |
| 434 } |
| 435 x += y * (*q++); |
| 436 *v = (sqlite_int64) x; |
| 437 return (int) (q - (unsigned char *)p); |
| 438 } |
| 439 |
| 440 static int getVarint32(const char *p, int *pi){ |
| 441 sqlite_int64 i; |
| 442 int ret = getVarint(p, &i); |
| 443 *pi = (int) i; |
| 444 assert( *pi==i ); |
| 445 return ret; |
| 446 } |
| 447 |
| 448 /*******************************************************************/ |
| 449 /* DataBuffer is used to collect data into a buffer in piecemeal |
| 450 ** fashion. It implements the usual distinction between amount of |
| 451 ** data currently stored (nData) and buffer capacity (nCapacity). |
| 452 ** |
| 453 ** dataBufferInit - create a buffer with given initial capacity. |
| 454 ** dataBufferReset - forget buffer's data, retaining capacity. |
| 455 ** dataBufferDestroy - free buffer's data. |
| 456 ** dataBufferSwap - swap contents of two buffers. |
| 457 ** dataBufferExpand - expand capacity without adding data. |
| 458 ** dataBufferAppend - append data. |
| 459 ** dataBufferAppend2 - append two pieces of data at once. |
| 460 ** dataBufferReplace - replace buffer's data. |
| 461 */ |
| 462 typedef struct DataBuffer { |
| 463 char *pData; /* Pointer to malloc'ed buffer. */ |
| 464 int nCapacity; /* Size of pData buffer. */ |
| 465 int nData; /* End of data loaded into pData. */ |
| 466 } DataBuffer; |
| 467 |
| 468 static void dataBufferInit(DataBuffer *pBuffer, int nCapacity){ |
| 469 assert( nCapacity>=0 ); |
| 470 pBuffer->nData = 0; |
| 471 pBuffer->nCapacity = nCapacity; |
| 472 pBuffer->pData = nCapacity==0 ? NULL : sqlite3_malloc(nCapacity); |
| 473 } |
| 474 static void dataBufferReset(DataBuffer *pBuffer){ |
| 475 pBuffer->nData = 0; |
| 476 } |
| 477 static void dataBufferDestroy(DataBuffer *pBuffer){ |
| 478 if( pBuffer->pData!=NULL ) sqlite3_free(pBuffer->pData); |
| 479 SCRAMBLE(pBuffer); |
| 480 } |
| 481 static void dataBufferSwap(DataBuffer *pBuffer1, DataBuffer *pBuffer2){ |
| 482 DataBuffer tmp = *pBuffer1; |
| 483 *pBuffer1 = *pBuffer2; |
| 484 *pBuffer2 = tmp; |
| 485 } |
| 486 static void dataBufferExpand(DataBuffer *pBuffer, int nAddCapacity){ |
| 487 assert( nAddCapacity>0 ); |
| 488 /* TODO(shess) Consider expanding more aggressively. Note that the |
| 489 ** underlying malloc implementation may take care of such things for |
| 490 ** us already. |
| 491 */ |
| 492 if( pBuffer->nData+nAddCapacity>pBuffer->nCapacity ){ |
| 493 pBuffer->nCapacity = pBuffer->nData+nAddCapacity; |
| 494 pBuffer->pData = sqlite3_realloc(pBuffer->pData, pBuffer->nCapacity); |
| 495 } |
| 496 } |
| 497 static void dataBufferAppend(DataBuffer *pBuffer, |
| 498 const char *pSource, int nSource){ |
| 499 assert( nSource>0 && pSource!=NULL ); |
| 500 dataBufferExpand(pBuffer, nSource); |
| 501 memcpy(pBuffer->pData+pBuffer->nData, pSource, nSource); |
| 502 pBuffer->nData += nSource; |
| 503 } |
| 504 static void dataBufferAppend2(DataBuffer *pBuffer, |
| 505 const char *pSource1, int nSource1, |
| 506 const char *pSource2, int nSource2){ |
| 507 assert( nSource1>0 && pSource1!=NULL ); |
| 508 assert( nSource2>0 && pSource2!=NULL ); |
| 509 dataBufferExpand(pBuffer, nSource1+nSource2); |
| 510 memcpy(pBuffer->pData+pBuffer->nData, pSource1, nSource1); |
| 511 memcpy(pBuffer->pData+pBuffer->nData+nSource1, pSource2, nSource2); |
| 512 pBuffer->nData += nSource1+nSource2; |
| 513 } |
| 514 static void dataBufferReplace(DataBuffer *pBuffer, |
| 515 const char *pSource, int nSource){ |
| 516 dataBufferReset(pBuffer); |
| 517 dataBufferAppend(pBuffer, pSource, nSource); |
| 518 } |
| 519 |
| 520 /* StringBuffer is a null-terminated version of DataBuffer. */ |
| 521 typedef struct StringBuffer { |
| 522 DataBuffer b; /* Includes null terminator. */ |
| 523 } StringBuffer; |
| 524 |
| 525 static void initStringBuffer(StringBuffer *sb){ |
| 526 dataBufferInit(&sb->b, 100); |
| 527 dataBufferReplace(&sb->b, "", 1); |
| 528 } |
| 529 static int stringBufferLength(StringBuffer *sb){ |
| 530 return sb->b.nData-1; |
| 531 } |
| 532 static char *stringBufferData(StringBuffer *sb){ |
| 533 return sb->b.pData; |
| 534 } |
| 535 static void stringBufferDestroy(StringBuffer *sb){ |
| 536 dataBufferDestroy(&sb->b); |
| 537 } |
| 538 |
| 539 static void nappend(StringBuffer *sb, const char *zFrom, int nFrom){ |
| 540 assert( sb->b.nData>0 ); |
| 541 if( nFrom>0 ){ |
| 542 sb->b.nData--; |
| 543 dataBufferAppend2(&sb->b, zFrom, nFrom, "", 1); |
| 544 } |
| 545 } |
| 546 static void append(StringBuffer *sb, const char *zFrom){ |
| 547 nappend(sb, zFrom, strlen(zFrom)); |
| 548 } |
| 549 |
| 550 /* Append a list of strings separated by commas. */ |
| 551 static void appendList(StringBuffer *sb, int nString, char **azString){ |
| 552 int i; |
| 553 for(i=0; i<nString; ++i){ |
| 554 if( i>0 ) append(sb, ", "); |
| 555 append(sb, azString[i]); |
| 556 } |
| 557 } |
| 558 |
| 559 static int endsInWhiteSpace(StringBuffer *p){ |
| 560 return stringBufferLength(p)>0 && |
| 561 safe_isspace(stringBufferData(p)[stringBufferLength(p)-1]); |
| 562 } |
| 563 |
| 564 /* If the StringBuffer ends in something other than white space, add a |
| 565 ** single space character to the end. |
| 566 */ |
| 567 static void appendWhiteSpace(StringBuffer *p){ |
| 568 if( stringBufferLength(p)==0 ) return; |
| 569 if( !endsInWhiteSpace(p) ) append(p, " "); |
| 570 } |
| 571 |
| 572 /* Remove white space from the end of the StringBuffer */ |
| 573 static void trimWhiteSpace(StringBuffer *p){ |
| 574 while( endsInWhiteSpace(p) ){ |
| 575 p->b.pData[--p->b.nData-1] = '\0'; |
| 576 } |
| 577 } |
| 578 |
| 579 /*******************************************************************/ |
| 580 /* DLReader is used to read document elements from a doclist. The |
| 581 ** current docid is cached, so dlrDocid() is fast. DLReader does not |
| 582 ** own the doclist buffer. |
| 583 ** |
| 584 ** dlrAtEnd - true if there's no more data to read. |
| 585 ** dlrDocid - docid of current document. |
| 586 ** dlrDocData - doclist data for current document (including docid). |
| 587 ** dlrDocDataBytes - length of same. |
| 588 ** dlrAllDataBytes - length of all remaining data. |
| 589 ** dlrPosData - position data for current document. |
| 590 ** dlrPosDataLen - length of pos data for current document (incl POS_END). |
| 591 ** dlrStep - step to current document. |
| 592 ** dlrInit - initial for doclist of given type against given data. |
| 593 ** dlrDestroy - clean up. |
| 594 ** |
| 595 ** Expected usage is something like: |
| 596 ** |
| 597 ** DLReader reader; |
| 598 ** dlrInit(&reader, pData, nData); |
| 599 ** while( !dlrAtEnd(&reader) ){ |
| 600 ** // calls to dlrDocid() and kin. |
| 601 ** dlrStep(&reader); |
| 602 ** } |
| 603 ** dlrDestroy(&reader); |
| 604 */ |
| 605 typedef struct DLReader { |
| 606 DocListType iType; |
| 607 const char *pData; |
| 608 int nData; |
| 609 |
| 610 sqlite_int64 iDocid; |
| 611 int nElement; |
| 612 } DLReader; |
| 613 |
| 614 static int dlrAtEnd(DLReader *pReader){ |
| 615 assert( pReader->nData>=0 ); |
| 616 return pReader->nData==0; |
| 617 } |
| 618 static sqlite_int64 dlrDocid(DLReader *pReader){ |
| 619 assert( !dlrAtEnd(pReader) ); |
| 620 return pReader->iDocid; |
| 621 } |
| 622 static const char *dlrDocData(DLReader *pReader){ |
| 623 assert( !dlrAtEnd(pReader) ); |
| 624 return pReader->pData; |
| 625 } |
| 626 static int dlrDocDataBytes(DLReader *pReader){ |
| 627 assert( !dlrAtEnd(pReader) ); |
| 628 return pReader->nElement; |
| 629 } |
| 630 static int dlrAllDataBytes(DLReader *pReader){ |
| 631 assert( !dlrAtEnd(pReader) ); |
| 632 return pReader->nData; |
| 633 } |
| 634 /* TODO(shess) Consider adding a field to track iDocid varint length |
| 635 ** to make these two functions faster. This might matter (a tiny bit) |
| 636 ** for queries. |
| 637 */ |
| 638 static const char *dlrPosData(DLReader *pReader){ |
| 639 sqlite_int64 iDummy; |
| 640 int n = getVarint(pReader->pData, &iDummy); |
| 641 assert( !dlrAtEnd(pReader) ); |
| 642 return pReader->pData+n; |
| 643 } |
| 644 static int dlrPosDataLen(DLReader *pReader){ |
| 645 sqlite_int64 iDummy; |
| 646 int n = getVarint(pReader->pData, &iDummy); |
| 647 assert( !dlrAtEnd(pReader) ); |
| 648 return pReader->nElement-n; |
| 649 } |
| 650 static void dlrStep(DLReader *pReader){ |
| 651 assert( !dlrAtEnd(pReader) ); |
| 652 |
| 653 /* Skip past current doclist element. */ |
| 654 assert( pReader->nElement<=pReader->nData ); |
| 655 pReader->pData += pReader->nElement; |
| 656 pReader->nData -= pReader->nElement; |
| 657 |
| 658 /* If there is more data, read the next doclist element. */ |
| 659 if( pReader->nData!=0 ){ |
| 660 sqlite_int64 iDocidDelta; |
| 661 int iDummy, n = getVarint(pReader->pData, &iDocidDelta); |
| 662 pReader->iDocid += iDocidDelta; |
| 663 if( pReader->iType>=DL_POSITIONS ){ |
| 664 assert( n<pReader->nData ); |
| 665 while( 1 ){ |
| 666 n += getVarint32(pReader->pData+n, &iDummy); |
| 667 assert( n<=pReader->nData ); |
| 668 if( iDummy==POS_END ) break; |
| 669 if( iDummy==POS_COLUMN ){ |
| 670 n += getVarint32(pReader->pData+n, &iDummy); |
| 671 assert( n<pReader->nData ); |
| 672 }else if( pReader->iType==DL_POSITIONS_OFFSETS ){ |
| 673 n += getVarint32(pReader->pData+n, &iDummy); |
| 674 n += getVarint32(pReader->pData+n, &iDummy); |
| 675 assert( n<pReader->nData ); |
| 676 } |
| 677 } |
| 678 } |
| 679 pReader->nElement = n; |
| 680 assert( pReader->nElement<=pReader->nData ); |
| 681 } |
| 682 } |
| 683 static void dlrInit(DLReader *pReader, DocListType iType, |
| 684 const char *pData, int nData){ |
| 685 assert( pData!=NULL && nData!=0 ); |
| 686 pReader->iType = iType; |
| 687 pReader->pData = pData; |
| 688 pReader->nData = nData; |
| 689 pReader->nElement = 0; |
| 690 pReader->iDocid = 0; |
| 691 |
| 692 /* Load the first element's data. There must be a first element. */ |
| 693 dlrStep(pReader); |
| 694 } |
| 695 static void dlrDestroy(DLReader *pReader){ |
| 696 SCRAMBLE(pReader); |
| 697 } |
| 698 |
| 699 #ifndef NDEBUG |
| 700 /* Verify that the doclist can be validly decoded. Also returns the |
| 701 ** last docid found because it is convenient in other assertions for |
| 702 ** DLWriter. |
| 703 */ |
| 704 static void docListValidate(DocListType iType, const char *pData, int nData, |
| 705 sqlite_int64 *pLastDocid){ |
| 706 sqlite_int64 iPrevDocid = 0; |
| 707 assert( nData>0 ); |
| 708 assert( pData!=0 ); |
| 709 assert( pData+nData>pData ); |
| 710 while( nData!=0 ){ |
| 711 sqlite_int64 iDocidDelta; |
| 712 int n = getVarint(pData, &iDocidDelta); |
| 713 iPrevDocid += iDocidDelta; |
| 714 if( iType>DL_DOCIDS ){ |
| 715 int iDummy; |
| 716 while( 1 ){ |
| 717 n += getVarint32(pData+n, &iDummy); |
| 718 if( iDummy==POS_END ) break; |
| 719 if( iDummy==POS_COLUMN ){ |
| 720 n += getVarint32(pData+n, &iDummy); |
| 721 }else if( iType>DL_POSITIONS ){ |
| 722 n += getVarint32(pData+n, &iDummy); |
| 723 n += getVarint32(pData+n, &iDummy); |
| 724 } |
| 725 assert( n<=nData ); |
| 726 } |
| 727 } |
| 728 assert( n<=nData ); |
| 729 pData += n; |
| 730 nData -= n; |
| 731 } |
| 732 if( pLastDocid ) *pLastDocid = iPrevDocid; |
| 733 } |
| 734 #define ASSERT_VALID_DOCLIST(i, p, n, o) docListValidate(i, p, n, o) |
| 735 #else |
| 736 #define ASSERT_VALID_DOCLIST(i, p, n, o) assert( 1 ) |
| 737 #endif |
| 738 |
| 739 /*******************************************************************/ |
| 740 /* DLWriter is used to write doclist data to a DataBuffer. DLWriter |
| 741 ** always appends to the buffer and does not own it. |
| 742 ** |
| 743 ** dlwInit - initialize to write a given type doclistto a buffer. |
| 744 ** dlwDestroy - clear the writer's memory. Does not free buffer. |
| 745 ** dlwAppend - append raw doclist data to buffer. |
| 746 ** dlwCopy - copy next doclist from reader to writer. |
| 747 ** dlwAdd - construct doclist element and append to buffer. |
| 748 ** Only apply dlwAdd() to DL_DOCIDS doclists (else use PLWriter). |
| 749 */ |
| 750 typedef struct DLWriter { |
| 751 DocListType iType; |
| 752 DataBuffer *b; |
| 753 sqlite_int64 iPrevDocid; |
| 754 #ifndef NDEBUG |
| 755 int has_iPrevDocid; |
| 756 #endif |
| 757 } DLWriter; |
| 758 |
| 759 static void dlwInit(DLWriter *pWriter, DocListType iType, DataBuffer *b){ |
| 760 pWriter->b = b; |
| 761 pWriter->iType = iType; |
| 762 pWriter->iPrevDocid = 0; |
| 763 #ifndef NDEBUG |
| 764 pWriter->has_iPrevDocid = 0; |
| 765 #endif |
| 766 } |
| 767 static void dlwDestroy(DLWriter *pWriter){ |
| 768 SCRAMBLE(pWriter); |
| 769 } |
| 770 /* iFirstDocid is the first docid in the doclist in pData. It is |
| 771 ** needed because pData may point within a larger doclist, in which |
| 772 ** case the first item would be delta-encoded. |
| 773 ** |
| 774 ** iLastDocid is the final docid in the doclist in pData. It is |
| 775 ** needed to create the new iPrevDocid for future delta-encoding. The |
| 776 ** code could decode the passed doclist to recreate iLastDocid, but |
| 777 ** the only current user (docListMerge) already has decoded this |
| 778 ** information. |
| 779 */ |
| 780 /* TODO(shess) This has become just a helper for docListMerge. |
| 781 ** Consider a refactor to make this cleaner. |
| 782 */ |
| 783 static void dlwAppend(DLWriter *pWriter, |
| 784 const char *pData, int nData, |
| 785 sqlite_int64 iFirstDocid, sqlite_int64 iLastDocid){ |
| 786 sqlite_int64 iDocid = 0; |
| 787 char c[VARINT_MAX]; |
| 788 int nFirstOld, nFirstNew; /* Old and new varint len of first docid. */ |
| 789 #ifndef NDEBUG |
| 790 sqlite_int64 iLastDocidDelta; |
| 791 #endif |
| 792 |
| 793 /* Recode the initial docid as delta from iPrevDocid. */ |
| 794 nFirstOld = getVarint(pData, &iDocid); |
| 795 assert( nFirstOld<nData || (nFirstOld==nData && pWriter->iType==DL_DOCIDS) ); |
| 796 nFirstNew = putVarint(c, iFirstDocid-pWriter->iPrevDocid); |
| 797 |
| 798 /* Verify that the incoming doclist is valid AND that it ends with |
| 799 ** the expected docid. This is essential because we'll trust this |
| 800 ** docid in future delta-encoding. |
| 801 */ |
| 802 ASSERT_VALID_DOCLIST(pWriter->iType, pData, nData, &iLastDocidDelta); |
| 803 assert( iLastDocid==iFirstDocid-iDocid+iLastDocidDelta ); |
| 804 |
| 805 /* Append recoded initial docid and everything else. Rest of docids |
| 806 ** should have been delta-encoded from previous initial docid. |
| 807 */ |
| 808 if( nFirstOld<nData ){ |
| 809 dataBufferAppend2(pWriter->b, c, nFirstNew, |
| 810 pData+nFirstOld, nData-nFirstOld); |
| 811 }else{ |
| 812 dataBufferAppend(pWriter->b, c, nFirstNew); |
| 813 } |
| 814 pWriter->iPrevDocid = iLastDocid; |
| 815 } |
| 816 static void dlwCopy(DLWriter *pWriter, DLReader *pReader){ |
| 817 dlwAppend(pWriter, dlrDocData(pReader), dlrDocDataBytes(pReader), |
| 818 dlrDocid(pReader), dlrDocid(pReader)); |
| 819 } |
| 820 static void dlwAdd(DLWriter *pWriter, sqlite_int64 iDocid){ |
| 821 char c[VARINT_MAX]; |
| 822 int n = putVarint(c, iDocid-pWriter->iPrevDocid); |
| 823 |
| 824 /* Docids must ascend. */ |
| 825 assert( !pWriter->has_iPrevDocid || iDocid>pWriter->iPrevDocid ); |
| 826 assert( pWriter->iType==DL_DOCIDS ); |
| 827 |
| 828 dataBufferAppend(pWriter->b, c, n); |
| 829 pWriter->iPrevDocid = iDocid; |
| 830 #ifndef NDEBUG |
| 831 pWriter->has_iPrevDocid = 1; |
| 832 #endif |
| 833 } |
| 834 |
| 835 /*******************************************************************/ |
| 836 /* PLReader is used to read data from a document's position list. As |
| 837 ** the caller steps through the list, data is cached so that varints |
| 838 ** only need to be decoded once. |
| 839 ** |
| 840 ** plrInit, plrDestroy - create/destroy a reader. |
| 841 ** plrColumn, plrPosition, plrStartOffset, plrEndOffset - accessors |
| 842 ** plrAtEnd - at end of stream, only call plrDestroy once true. |
| 843 ** plrStep - step to the next element. |
| 844 */ |
| 845 typedef struct PLReader { |
| 846 /* These refer to the next position's data. nData will reach 0 when |
| 847 ** reading the last position, so plrStep() signals EOF by setting |
| 848 ** pData to NULL. |
| 849 */ |
| 850 const char *pData; |
| 851 int nData; |
| 852 |
| 853 DocListType iType; |
| 854 int iColumn; /* the last column read */ |
| 855 int iPosition; /* the last position read */ |
| 856 int iStartOffset; /* the last start offset read */ |
| 857 int iEndOffset; /* the last end offset read */ |
| 858 } PLReader; |
| 859 |
| 860 static int plrAtEnd(PLReader *pReader){ |
| 861 return pReader->pData==NULL; |
| 862 } |
| 863 static int plrColumn(PLReader *pReader){ |
| 864 assert( !plrAtEnd(pReader) ); |
| 865 return pReader->iColumn; |
| 866 } |
| 867 static int plrPosition(PLReader *pReader){ |
| 868 assert( !plrAtEnd(pReader) ); |
| 869 return pReader->iPosition; |
| 870 } |
| 871 static int plrStartOffset(PLReader *pReader){ |
| 872 assert( !plrAtEnd(pReader) ); |
| 873 return pReader->iStartOffset; |
| 874 } |
| 875 static int plrEndOffset(PLReader *pReader){ |
| 876 assert( !plrAtEnd(pReader) ); |
| 877 return pReader->iEndOffset; |
| 878 } |
| 879 static void plrStep(PLReader *pReader){ |
| 880 int i, n; |
| 881 |
| 882 assert( !plrAtEnd(pReader) ); |
| 883 |
| 884 if( pReader->nData==0 ){ |
| 885 pReader->pData = NULL; |
| 886 return; |
| 887 } |
| 888 |
| 889 n = getVarint32(pReader->pData, &i); |
| 890 if( i==POS_COLUMN ){ |
| 891 n += getVarint32(pReader->pData+n, &pReader->iColumn); |
| 892 pReader->iPosition = 0; |
| 893 pReader->iStartOffset = 0; |
| 894 n += getVarint32(pReader->pData+n, &i); |
| 895 } |
| 896 /* Should never see adjacent column changes. */ |
| 897 assert( i!=POS_COLUMN ); |
| 898 |
| 899 if( i==POS_END ){ |
| 900 pReader->nData = 0; |
| 901 pReader->pData = NULL; |
| 902 return; |
| 903 } |
| 904 |
| 905 pReader->iPosition += i-POS_BASE; |
| 906 if( pReader->iType==DL_POSITIONS_OFFSETS ){ |
| 907 n += getVarint32(pReader->pData+n, &i); |
| 908 pReader->iStartOffset += i; |
| 909 n += getVarint32(pReader->pData+n, &i); |
| 910 pReader->iEndOffset = pReader->iStartOffset+i; |
| 911 } |
| 912 assert( n<=pReader->nData ); |
| 913 pReader->pData += n; |
| 914 pReader->nData -= n; |
| 915 } |
| 916 |
| 917 static void plrInit(PLReader *pReader, DLReader *pDLReader){ |
| 918 pReader->pData = dlrPosData(pDLReader); |
| 919 pReader->nData = dlrPosDataLen(pDLReader); |
| 920 pReader->iType = pDLReader->iType; |
| 921 pReader->iColumn = 0; |
| 922 pReader->iPosition = 0; |
| 923 pReader->iStartOffset = 0; |
| 924 pReader->iEndOffset = 0; |
| 925 plrStep(pReader); |
| 926 } |
| 927 static void plrDestroy(PLReader *pReader){ |
| 928 SCRAMBLE(pReader); |
| 929 } |
| 930 |
| 931 /*******************************************************************/ |
| 932 /* PLWriter is used in constructing a document's position list. As a |
| 933 ** convenience, if iType is DL_DOCIDS, PLWriter becomes a no-op. |
| 934 ** PLWriter writes to the associated DLWriter's buffer. |
| 935 ** |
| 936 ** plwInit - init for writing a document's poslist. |
| 937 ** plwDestroy - clear a writer. |
| 938 ** plwAdd - append position and offset information. |
| 939 ** plwCopy - copy next position's data from reader to writer. |
| 940 ** plwTerminate - add any necessary doclist terminator. |
| 941 ** |
| 942 ** Calling plwAdd() after plwTerminate() may result in a corrupt |
| 943 ** doclist. |
| 944 */ |
| 945 /* TODO(shess) Until we've written the second item, we can cache the |
| 946 ** first item's information. Then we'd have three states: |
| 947 ** |
| 948 ** - initialized with docid, no positions. |
| 949 ** - docid and one position. |
| 950 ** - docid and multiple positions. |
| 951 ** |
| 952 ** Only the last state needs to actually write to dlw->b, which would |
| 953 ** be an improvement in the DLCollector case. |
| 954 */ |
| 955 typedef struct PLWriter { |
| 956 DLWriter *dlw; |
| 957 |
| 958 int iColumn; /* the last column written */ |
| 959 int iPos; /* the last position written */ |
| 960 int iOffset; /* the last start offset written */ |
| 961 } PLWriter; |
| 962 |
| 963 /* TODO(shess) In the case where the parent is reading these values |
| 964 ** from a PLReader, we could optimize to a copy if that PLReader has |
| 965 ** the same type as pWriter. |
| 966 */ |
| 967 static void plwAdd(PLWriter *pWriter, int iColumn, int iPos, |
| 968 int iStartOffset, int iEndOffset){ |
| 969 /* Worst-case space for POS_COLUMN, iColumn, iPosDelta, |
| 970 ** iStartOffsetDelta, and iEndOffsetDelta. |
| 971 */ |
| 972 char c[5*VARINT_MAX]; |
| 973 int n = 0; |
| 974 |
| 975 /* Ban plwAdd() after plwTerminate(). */ |
| 976 assert( pWriter->iPos!=-1 ); |
| 977 |
| 978 if( pWriter->dlw->iType==DL_DOCIDS ) return; |
| 979 |
| 980 if( iColumn!=pWriter->iColumn ){ |
| 981 n += putVarint(c+n, POS_COLUMN); |
| 982 n += putVarint(c+n, iColumn); |
| 983 pWriter->iColumn = iColumn; |
| 984 pWriter->iPos = 0; |
| 985 pWriter->iOffset = 0; |
| 986 } |
| 987 assert( iPos>=pWriter->iPos ); |
| 988 n += putVarint(c+n, POS_BASE+(iPos-pWriter->iPos)); |
| 989 pWriter->iPos = iPos; |
| 990 if( pWriter->dlw->iType==DL_POSITIONS_OFFSETS ){ |
| 991 assert( iStartOffset>=pWriter->iOffset ); |
| 992 n += putVarint(c+n, iStartOffset-pWriter->iOffset); |
| 993 pWriter->iOffset = iStartOffset; |
| 994 assert( iEndOffset>=iStartOffset ); |
| 995 n += putVarint(c+n, iEndOffset-iStartOffset); |
| 996 } |
| 997 dataBufferAppend(pWriter->dlw->b, c, n); |
| 998 } |
| 999 static void plwCopy(PLWriter *pWriter, PLReader *pReader){ |
| 1000 plwAdd(pWriter, plrColumn(pReader), plrPosition(pReader), |
| 1001 plrStartOffset(pReader), plrEndOffset(pReader)); |
| 1002 } |
| 1003 static void plwInit(PLWriter *pWriter, DLWriter *dlw, sqlite_int64 iDocid){ |
| 1004 char c[VARINT_MAX]; |
| 1005 int n; |
| 1006 |
| 1007 pWriter->dlw = dlw; |
| 1008 |
| 1009 /* Docids must ascend. */ |
| 1010 assert( !pWriter->dlw->has_iPrevDocid || iDocid>pWriter->dlw->iPrevDocid ); |
| 1011 n = putVarint(c, iDocid-pWriter->dlw->iPrevDocid); |
| 1012 dataBufferAppend(pWriter->dlw->b, c, n); |
| 1013 pWriter->dlw->iPrevDocid = iDocid; |
| 1014 #ifndef NDEBUG |
| 1015 pWriter->dlw->has_iPrevDocid = 1; |
| 1016 #endif |
| 1017 |
| 1018 pWriter->iColumn = 0; |
| 1019 pWriter->iPos = 0; |
| 1020 pWriter->iOffset = 0; |
| 1021 } |
| 1022 /* TODO(shess) Should plwDestroy() also terminate the doclist? But |
| 1023 ** then plwDestroy() would no longer be just a destructor, it would |
| 1024 ** also be doing work, which isn't consistent with the overall idiom. |
| 1025 ** Another option would be for plwAdd() to always append any necessary |
| 1026 ** terminator, so that the output is always correct. But that would |
| 1027 ** add incremental work to the common case with the only benefit being |
| 1028 ** API elegance. Punt for now. |
| 1029 */ |
| 1030 static void plwTerminate(PLWriter *pWriter){ |
| 1031 if( pWriter->dlw->iType>DL_DOCIDS ){ |
| 1032 char c[VARINT_MAX]; |
| 1033 int n = putVarint(c, POS_END); |
| 1034 dataBufferAppend(pWriter->dlw->b, c, n); |
| 1035 } |
| 1036 #ifndef NDEBUG |
| 1037 /* Mark as terminated for assert in plwAdd(). */ |
| 1038 pWriter->iPos = -1; |
| 1039 #endif |
| 1040 } |
| 1041 static void plwDestroy(PLWriter *pWriter){ |
| 1042 SCRAMBLE(pWriter); |
| 1043 } |
| 1044 |
| 1045 /*******************************************************************/ |
| 1046 /* DLCollector wraps PLWriter and DLWriter to provide a |
| 1047 ** dynamically-allocated doclist area to use during tokenization. |
| 1048 ** |
| 1049 ** dlcNew - malloc up and initialize a collector. |
| 1050 ** dlcDelete - destroy a collector and all contained items. |
| 1051 ** dlcAddPos - append position and offset information. |
| 1052 ** dlcAddDoclist - add the collected doclist to the given buffer. |
| 1053 ** dlcNext - terminate the current document and open another. |
| 1054 */ |
| 1055 typedef struct DLCollector { |
| 1056 DataBuffer b; |
| 1057 DLWriter dlw; |
| 1058 PLWriter plw; |
| 1059 } DLCollector; |
| 1060 |
| 1061 /* TODO(shess) This could also be done by calling plwTerminate() and |
| 1062 ** dataBufferAppend(). I tried that, expecting nominal performance |
| 1063 ** differences, but it seemed to pretty reliably be worth 1% to code |
| 1064 ** it this way. I suspect it is the incremental malloc overhead (some |
| 1065 ** percentage of the plwTerminate() calls will cause a realloc), so |
| 1066 ** this might be worth revisiting if the DataBuffer implementation |
| 1067 ** changes. |
| 1068 */ |
| 1069 static void dlcAddDoclist(DLCollector *pCollector, DataBuffer *b){ |
| 1070 if( pCollector->dlw.iType>DL_DOCIDS ){ |
| 1071 char c[VARINT_MAX]; |
| 1072 int n = putVarint(c, POS_END); |
| 1073 dataBufferAppend2(b, pCollector->b.pData, pCollector->b.nData, c, n); |
| 1074 }else{ |
| 1075 dataBufferAppend(b, pCollector->b.pData, pCollector->b.nData); |
| 1076 } |
| 1077 } |
| 1078 static void dlcNext(DLCollector *pCollector, sqlite_int64 iDocid){ |
| 1079 plwTerminate(&pCollector->plw); |
| 1080 plwDestroy(&pCollector->plw); |
| 1081 plwInit(&pCollector->plw, &pCollector->dlw, iDocid); |
| 1082 } |
| 1083 static void dlcAddPos(DLCollector *pCollector, int iColumn, int iPos, |
| 1084 int iStartOffset, int iEndOffset){ |
| 1085 plwAdd(&pCollector->plw, iColumn, iPos, iStartOffset, iEndOffset); |
| 1086 } |
| 1087 |
| 1088 static DLCollector *dlcNew(sqlite_int64 iDocid, DocListType iType){ |
| 1089 DLCollector *pCollector = sqlite3_malloc(sizeof(DLCollector)); |
| 1090 dataBufferInit(&pCollector->b, 0); |
| 1091 dlwInit(&pCollector->dlw, iType, &pCollector->b); |
| 1092 plwInit(&pCollector->plw, &pCollector->dlw, iDocid); |
| 1093 return pCollector; |
| 1094 } |
| 1095 static void dlcDelete(DLCollector *pCollector){ |
| 1096 plwDestroy(&pCollector->plw); |
| 1097 dlwDestroy(&pCollector->dlw); |
| 1098 dataBufferDestroy(&pCollector->b); |
| 1099 SCRAMBLE(pCollector); |
| 1100 sqlite3_free(pCollector); |
| 1101 } |
| 1102 |
| 1103 |
| 1104 /* Copy the doclist data of iType in pData/nData into *out, trimming |
| 1105 ** unnecessary data as we go. Only columns matching iColumn are |
| 1106 ** copied, all columns copied if iColumn is -1. Elements with no |
| 1107 ** matching columns are dropped. The output is an iOutType doclist. |
| 1108 */ |
| 1109 /* NOTE(shess) This code is only valid after all doclists are merged. |
| 1110 ** If this is run before merges, then doclist items which represent |
| 1111 ** deletion will be trimmed, and will thus not effect a deletion |
| 1112 ** during the merge. |
| 1113 */ |
| 1114 static void docListTrim(DocListType iType, const char *pData, int nData, |
| 1115 int iColumn, DocListType iOutType, DataBuffer *out){ |
| 1116 DLReader dlReader; |
| 1117 DLWriter dlWriter; |
| 1118 |
| 1119 assert( iOutType<=iType ); |
| 1120 |
| 1121 dlrInit(&dlReader, iType, pData, nData); |
| 1122 dlwInit(&dlWriter, iOutType, out); |
| 1123 |
| 1124 while( !dlrAtEnd(&dlReader) ){ |
| 1125 PLReader plReader; |
| 1126 PLWriter plWriter; |
| 1127 int match = 0; |
| 1128 |
| 1129 plrInit(&plReader, &dlReader); |
| 1130 |
| 1131 while( !plrAtEnd(&plReader) ){ |
| 1132 if( iColumn==-1 || plrColumn(&plReader)==iColumn ){ |
| 1133 if( !match ){ |
| 1134 plwInit(&plWriter, &dlWriter, dlrDocid(&dlReader)); |
| 1135 match = 1; |
| 1136 } |
| 1137 plwAdd(&plWriter, plrColumn(&plReader), plrPosition(&plReader), |
| 1138 plrStartOffset(&plReader), plrEndOffset(&plReader)); |
| 1139 } |
| 1140 plrStep(&plReader); |
| 1141 } |
| 1142 if( match ){ |
| 1143 plwTerminate(&plWriter); |
| 1144 plwDestroy(&plWriter); |
| 1145 } |
| 1146 |
| 1147 plrDestroy(&plReader); |
| 1148 dlrStep(&dlReader); |
| 1149 } |
| 1150 dlwDestroy(&dlWriter); |
| 1151 dlrDestroy(&dlReader); |
| 1152 } |
| 1153 |
| 1154 /* Used by docListMerge() to keep doclists in the ascending order by |
| 1155 ** docid, then ascending order by age (so the newest comes first). |
| 1156 */ |
| 1157 typedef struct OrderedDLReader { |
| 1158 DLReader *pReader; |
| 1159 |
| 1160 /* TODO(shess) If we assume that docListMerge pReaders is ordered by |
| 1161 ** age (which we do), then we could use pReader comparisons to break |
| 1162 ** ties. |
| 1163 */ |
| 1164 int idx; |
| 1165 } OrderedDLReader; |
| 1166 |
| 1167 /* Order eof to end, then by docid asc, idx desc. */ |
| 1168 static int orderedDLReaderCmp(OrderedDLReader *r1, OrderedDLReader *r2){ |
| 1169 if( dlrAtEnd(r1->pReader) ){ |
| 1170 if( dlrAtEnd(r2->pReader) ) return 0; /* Both atEnd(). */ |
| 1171 return 1; /* Only r1 atEnd(). */ |
| 1172 } |
| 1173 if( dlrAtEnd(r2->pReader) ) return -1; /* Only r2 atEnd(). */ |
| 1174 |
| 1175 if( dlrDocid(r1->pReader)<dlrDocid(r2->pReader) ) return -1; |
| 1176 if( dlrDocid(r1->pReader)>dlrDocid(r2->pReader) ) return 1; |
| 1177 |
| 1178 /* Descending on idx. */ |
| 1179 return r2->idx-r1->idx; |
| 1180 } |
| 1181 |
| 1182 /* Bubble p[0] to appropriate place in p[1..n-1]. Assumes that |
| 1183 ** p[1..n-1] is already sorted. |
| 1184 */ |
| 1185 /* TODO(shess) Is this frequent enough to warrant a binary search? |
| 1186 ** Before implementing that, instrument the code to check. In most |
| 1187 ** current usage, I expect that p[0] will be less than p[1] a very |
| 1188 ** high proportion of the time. |
| 1189 */ |
| 1190 static void orderedDLReaderReorder(OrderedDLReader *p, int n){ |
| 1191 while( n>1 && orderedDLReaderCmp(p, p+1)>0 ){ |
| 1192 OrderedDLReader tmp = p[0]; |
| 1193 p[0] = p[1]; |
| 1194 p[1] = tmp; |
| 1195 n--; |
| 1196 p++; |
| 1197 } |
| 1198 } |
| 1199 |
| 1200 /* Given an array of doclist readers, merge their doclist elements |
| 1201 ** into out in sorted order (by docid), dropping elements from older |
| 1202 ** readers when there is a duplicate docid. pReaders is assumed to be |
| 1203 ** ordered by age, oldest first. |
| 1204 */ |
| 1205 /* TODO(shess) nReaders must be <= MERGE_COUNT. This should probably |
| 1206 ** be fixed. |
| 1207 */ |
| 1208 static void docListMerge(DataBuffer *out, |
| 1209 DLReader *pReaders, int nReaders){ |
| 1210 OrderedDLReader readers[MERGE_COUNT]; |
| 1211 DLWriter writer; |
| 1212 int i, n; |
| 1213 const char *pStart = 0; |
| 1214 int nStart = 0; |
| 1215 sqlite_int64 iFirstDocid = 0, iLastDocid = 0; |
| 1216 |
| 1217 assert( nReaders>0 ); |
| 1218 if( nReaders==1 ){ |
| 1219 dataBufferAppend(out, dlrDocData(pReaders), dlrAllDataBytes(pReaders)); |
| 1220 return; |
| 1221 } |
| 1222 |
| 1223 assert( nReaders<=MERGE_COUNT ); |
| 1224 n = 0; |
| 1225 for(i=0; i<nReaders; i++){ |
| 1226 assert( pReaders[i].iType==pReaders[0].iType ); |
| 1227 readers[i].pReader = pReaders+i; |
| 1228 readers[i].idx = i; |
| 1229 n += dlrAllDataBytes(&pReaders[i]); |
| 1230 } |
| 1231 /* Conservatively size output to sum of inputs. Output should end |
| 1232 ** up strictly smaller than input. |
| 1233 */ |
| 1234 dataBufferExpand(out, n); |
| 1235 |
| 1236 /* Get the readers into sorted order. */ |
| 1237 while( i-->0 ){ |
| 1238 orderedDLReaderReorder(readers+i, nReaders-i); |
| 1239 } |
| 1240 |
| 1241 dlwInit(&writer, pReaders[0].iType, out); |
| 1242 while( !dlrAtEnd(readers[0].pReader) ){ |
| 1243 sqlite_int64 iDocid = dlrDocid(readers[0].pReader); |
| 1244 |
| 1245 /* If this is a continuation of the current buffer to copy, extend |
| 1246 ** that buffer. memcpy() seems to be more efficient if it has a |
| 1247 ** lots of data to copy. |
| 1248 */ |
| 1249 if( dlrDocData(readers[0].pReader)==pStart+nStart ){ |
| 1250 nStart += dlrDocDataBytes(readers[0].pReader); |
| 1251 }else{ |
| 1252 if( pStart!=0 ){ |
| 1253 dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid); |
| 1254 } |
| 1255 pStart = dlrDocData(readers[0].pReader); |
| 1256 nStart = dlrDocDataBytes(readers[0].pReader); |
| 1257 iFirstDocid = iDocid; |
| 1258 } |
| 1259 iLastDocid = iDocid; |
| 1260 dlrStep(readers[0].pReader); |
| 1261 |
| 1262 /* Drop all of the older elements with the same docid. */ |
| 1263 for(i=1; i<nReaders && |
| 1264 !dlrAtEnd(readers[i].pReader) && |
| 1265 dlrDocid(readers[i].pReader)==iDocid; i++){ |
| 1266 dlrStep(readers[i].pReader); |
| 1267 } |
| 1268 |
| 1269 /* Get the readers back into order. */ |
| 1270 while( i-->0 ){ |
| 1271 orderedDLReaderReorder(readers+i, nReaders-i); |
| 1272 } |
| 1273 } |
| 1274 |
| 1275 /* Copy over any remaining elements. */ |
| 1276 if( nStart>0 ) dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid); |
| 1277 dlwDestroy(&writer); |
| 1278 } |
| 1279 |
| 1280 /* Helper function for posListUnion(). Compares the current position |
| 1281 ** between left and right, returning as standard C idiom of <0 if |
| 1282 ** left<right, >0 if left>right, and 0 if left==right. "End" always |
| 1283 ** compares greater. |
| 1284 */ |
| 1285 static int posListCmp(PLReader *pLeft, PLReader *pRight){ |
| 1286 assert( pLeft->iType==pRight->iType ); |
| 1287 if( pLeft->iType==DL_DOCIDS ) return 0; |
| 1288 |
| 1289 if( plrAtEnd(pLeft) ) return plrAtEnd(pRight) ? 0 : 1; |
| 1290 if( plrAtEnd(pRight) ) return -1; |
| 1291 |
| 1292 if( plrColumn(pLeft)<plrColumn(pRight) ) return -1; |
| 1293 if( plrColumn(pLeft)>plrColumn(pRight) ) return 1; |
| 1294 |
| 1295 if( plrPosition(pLeft)<plrPosition(pRight) ) return -1; |
| 1296 if( plrPosition(pLeft)>plrPosition(pRight) ) return 1; |
| 1297 if( pLeft->iType==DL_POSITIONS ) return 0; |
| 1298 |
| 1299 if( plrStartOffset(pLeft)<plrStartOffset(pRight) ) return -1; |
| 1300 if( plrStartOffset(pLeft)>plrStartOffset(pRight) ) return 1; |
| 1301 |
| 1302 if( plrEndOffset(pLeft)<plrEndOffset(pRight) ) return -1; |
| 1303 if( plrEndOffset(pLeft)>plrEndOffset(pRight) ) return 1; |
| 1304 |
| 1305 return 0; |
| 1306 } |
| 1307 |
| 1308 /* Write the union of position lists in pLeft and pRight to pOut. |
| 1309 ** "Union" in this case meaning "All unique position tuples". Should |
| 1310 ** work with any doclist type, though both inputs and the output |
| 1311 ** should be the same type. |
| 1312 */ |
| 1313 static void posListUnion(DLReader *pLeft, DLReader *pRight, DLWriter *pOut){ |
| 1314 PLReader left, right; |
| 1315 PLWriter writer; |
| 1316 |
| 1317 assert( dlrDocid(pLeft)==dlrDocid(pRight) ); |
| 1318 assert( pLeft->iType==pRight->iType ); |
| 1319 assert( pLeft->iType==pOut->iType ); |
| 1320 |
| 1321 plrInit(&left, pLeft); |
| 1322 plrInit(&right, pRight); |
| 1323 plwInit(&writer, pOut, dlrDocid(pLeft)); |
| 1324 |
| 1325 while( !plrAtEnd(&left) || !plrAtEnd(&right) ){ |
| 1326 int c = posListCmp(&left, &right); |
| 1327 if( c<0 ){ |
| 1328 plwCopy(&writer, &left); |
| 1329 plrStep(&left); |
| 1330 }else if( c>0 ){ |
| 1331 plwCopy(&writer, &right); |
| 1332 plrStep(&right); |
| 1333 }else{ |
| 1334 plwCopy(&writer, &left); |
| 1335 plrStep(&left); |
| 1336 plrStep(&right); |
| 1337 } |
| 1338 } |
| 1339 |
| 1340 plwTerminate(&writer); |
| 1341 plwDestroy(&writer); |
| 1342 plrDestroy(&left); |
| 1343 plrDestroy(&right); |
| 1344 } |
| 1345 |
| 1346 /* Write the union of doclists in pLeft and pRight to pOut. For |
| 1347 ** docids in common between the inputs, the union of the position |
| 1348 ** lists is written. Inputs and outputs are always type DL_DEFAULT. |
| 1349 */ |
| 1350 static void docListUnion( |
| 1351 const char *pLeft, int nLeft, |
| 1352 const char *pRight, int nRight, |
| 1353 DataBuffer *pOut /* Write the combined doclist here */ |
| 1354 ){ |
| 1355 DLReader left, right; |
| 1356 DLWriter writer; |
| 1357 |
| 1358 if( nLeft==0 ){ |
| 1359 if( nRight!=0) dataBufferAppend(pOut, pRight, nRight); |
| 1360 return; |
| 1361 } |
| 1362 if( nRight==0 ){ |
| 1363 dataBufferAppend(pOut, pLeft, nLeft); |
| 1364 return; |
| 1365 } |
| 1366 |
| 1367 dlrInit(&left, DL_DEFAULT, pLeft, nLeft); |
| 1368 dlrInit(&right, DL_DEFAULT, pRight, nRight); |
| 1369 dlwInit(&writer, DL_DEFAULT, pOut); |
| 1370 |
| 1371 while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){ |
| 1372 if( dlrAtEnd(&right) ){ |
| 1373 dlwCopy(&writer, &left); |
| 1374 dlrStep(&left); |
| 1375 }else if( dlrAtEnd(&left) ){ |
| 1376 dlwCopy(&writer, &right); |
| 1377 dlrStep(&right); |
| 1378 }else if( dlrDocid(&left)<dlrDocid(&right) ){ |
| 1379 dlwCopy(&writer, &left); |
| 1380 dlrStep(&left); |
| 1381 }else if( dlrDocid(&left)>dlrDocid(&right) ){ |
| 1382 dlwCopy(&writer, &right); |
| 1383 dlrStep(&right); |
| 1384 }else{ |
| 1385 posListUnion(&left, &right, &writer); |
| 1386 dlrStep(&left); |
| 1387 dlrStep(&right); |
| 1388 } |
| 1389 } |
| 1390 |
| 1391 dlrDestroy(&left); |
| 1392 dlrDestroy(&right); |
| 1393 dlwDestroy(&writer); |
| 1394 } |
| 1395 |
| 1396 /* pLeft and pRight are DLReaders positioned to the same docid. |
| 1397 ** |
| 1398 ** If there are no instances in pLeft or pRight where the position |
| 1399 ** of pLeft is one less than the position of pRight, then this |
| 1400 ** routine adds nothing to pOut. |
| 1401 ** |
| 1402 ** If there are one or more instances where positions from pLeft |
| 1403 ** are exactly one less than positions from pRight, then add a new |
| 1404 ** document record to pOut. If pOut wants to hold positions, then |
| 1405 ** include the positions from pRight that are one more than a |
| 1406 ** position in pLeft. In other words: pRight.iPos==pLeft.iPos+1. |
| 1407 */ |
| 1408 static void posListPhraseMerge(DLReader *pLeft, DLReader *pRight, |
| 1409 DLWriter *pOut){ |
| 1410 PLReader left, right; |
| 1411 PLWriter writer; |
| 1412 int match = 0; |
| 1413 |
| 1414 assert( dlrDocid(pLeft)==dlrDocid(pRight) ); |
| 1415 assert( pOut->iType!=DL_POSITIONS_OFFSETS ); |
| 1416 |
| 1417 plrInit(&left, pLeft); |
| 1418 plrInit(&right, pRight); |
| 1419 |
| 1420 while( !plrAtEnd(&left) && !plrAtEnd(&right) ){ |
| 1421 if( plrColumn(&left)<plrColumn(&right) ){ |
| 1422 plrStep(&left); |
| 1423 }else if( plrColumn(&left)>plrColumn(&right) ){ |
| 1424 plrStep(&right); |
| 1425 }else if( plrPosition(&left)+1<plrPosition(&right) ){ |
| 1426 plrStep(&left); |
| 1427 }else if( plrPosition(&left)+1>plrPosition(&right) ){ |
| 1428 plrStep(&right); |
| 1429 }else{ |
| 1430 if( !match ){ |
| 1431 plwInit(&writer, pOut, dlrDocid(pLeft)); |
| 1432 match = 1; |
| 1433 } |
| 1434 plwAdd(&writer, plrColumn(&right), plrPosition(&right), 0, 0); |
| 1435 plrStep(&left); |
| 1436 plrStep(&right); |
| 1437 } |
| 1438 } |
| 1439 |
| 1440 if( match ){ |
| 1441 plwTerminate(&writer); |
| 1442 plwDestroy(&writer); |
| 1443 } |
| 1444 |
| 1445 plrDestroy(&left); |
| 1446 plrDestroy(&right); |
| 1447 } |
| 1448 |
| 1449 /* We have two doclists with positions: pLeft and pRight. |
| 1450 ** Write the phrase intersection of these two doclists into pOut. |
| 1451 ** |
| 1452 ** A phrase intersection means that two documents only match |
| 1453 ** if pLeft.iPos+1==pRight.iPos. |
| 1454 ** |
| 1455 ** iType controls the type of data written to pOut. If iType is |
| 1456 ** DL_POSITIONS, the positions are those from pRight. |
| 1457 */ |
| 1458 static void docListPhraseMerge( |
| 1459 const char *pLeft, int nLeft, |
| 1460 const char *pRight, int nRight, |
| 1461 DocListType iType, |
| 1462 DataBuffer *pOut /* Write the combined doclist here */ |
| 1463 ){ |
| 1464 DLReader left, right; |
| 1465 DLWriter writer; |
| 1466 |
| 1467 if( nLeft==0 || nRight==0 ) return; |
| 1468 |
| 1469 assert( iType!=DL_POSITIONS_OFFSETS ); |
| 1470 |
| 1471 dlrInit(&left, DL_POSITIONS, pLeft, nLeft); |
| 1472 dlrInit(&right, DL_POSITIONS, pRight, nRight); |
| 1473 dlwInit(&writer, iType, pOut); |
| 1474 |
| 1475 while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){ |
| 1476 if( dlrDocid(&left)<dlrDocid(&right) ){ |
| 1477 dlrStep(&left); |
| 1478 }else if( dlrDocid(&right)<dlrDocid(&left) ){ |
| 1479 dlrStep(&right); |
| 1480 }else{ |
| 1481 posListPhraseMerge(&left, &right, &writer); |
| 1482 dlrStep(&left); |
| 1483 dlrStep(&right); |
| 1484 } |
| 1485 } |
| 1486 |
| 1487 dlrDestroy(&left); |
| 1488 dlrDestroy(&right); |
| 1489 dlwDestroy(&writer); |
| 1490 } |
| 1491 |
| 1492 /* We have two DL_DOCIDS doclists: pLeft and pRight. |
| 1493 ** Write the intersection of these two doclists into pOut as a |
| 1494 ** DL_DOCIDS doclist. |
| 1495 */ |
| 1496 static void docListAndMerge( |
| 1497 const char *pLeft, int nLeft, |
| 1498 const char *pRight, int nRight, |
| 1499 DataBuffer *pOut /* Write the combined doclist here */ |
| 1500 ){ |
| 1501 DLReader left, right; |
| 1502 DLWriter writer; |
| 1503 |
| 1504 if( nLeft==0 || nRight==0 ) return; |
| 1505 |
| 1506 dlrInit(&left, DL_DOCIDS, pLeft, nLeft); |
| 1507 dlrInit(&right, DL_DOCIDS, pRight, nRight); |
| 1508 dlwInit(&writer, DL_DOCIDS, pOut); |
| 1509 |
| 1510 while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){ |
| 1511 if( dlrDocid(&left)<dlrDocid(&right) ){ |
| 1512 dlrStep(&left); |
| 1513 }else if( dlrDocid(&right)<dlrDocid(&left) ){ |
| 1514 dlrStep(&right); |
| 1515 }else{ |
| 1516 dlwAdd(&writer, dlrDocid(&left)); |
| 1517 dlrStep(&left); |
| 1518 dlrStep(&right); |
| 1519 } |
| 1520 } |
| 1521 |
| 1522 dlrDestroy(&left); |
| 1523 dlrDestroy(&right); |
| 1524 dlwDestroy(&writer); |
| 1525 } |
| 1526 |
| 1527 /* We have two DL_DOCIDS doclists: pLeft and pRight. |
| 1528 ** Write the union of these two doclists into pOut as a |
| 1529 ** DL_DOCIDS doclist. |
| 1530 */ |
| 1531 static void docListOrMerge( |
| 1532 const char *pLeft, int nLeft, |
| 1533 const char *pRight, int nRight, |
| 1534 DataBuffer *pOut /* Write the combined doclist here */ |
| 1535 ){ |
| 1536 DLReader left, right; |
| 1537 DLWriter writer; |
| 1538 |
| 1539 if( nLeft==0 ){ |
| 1540 if( nRight!=0 ) dataBufferAppend(pOut, pRight, nRight); |
| 1541 return; |
| 1542 } |
| 1543 if( nRight==0 ){ |
| 1544 dataBufferAppend(pOut, pLeft, nLeft); |
| 1545 return; |
| 1546 } |
| 1547 |
| 1548 dlrInit(&left, DL_DOCIDS, pLeft, nLeft); |
| 1549 dlrInit(&right, DL_DOCIDS, pRight, nRight); |
| 1550 dlwInit(&writer, DL_DOCIDS, pOut); |
| 1551 |
| 1552 while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){ |
| 1553 if( dlrAtEnd(&right) ){ |
| 1554 dlwAdd(&writer, dlrDocid(&left)); |
| 1555 dlrStep(&left); |
| 1556 }else if( dlrAtEnd(&left) ){ |
| 1557 dlwAdd(&writer, dlrDocid(&right)); |
| 1558 dlrStep(&right); |
| 1559 }else if( dlrDocid(&left)<dlrDocid(&right) ){ |
| 1560 dlwAdd(&writer, dlrDocid(&left)); |
| 1561 dlrStep(&left); |
| 1562 }else if( dlrDocid(&right)<dlrDocid(&left) ){ |
| 1563 dlwAdd(&writer, dlrDocid(&right)); |
| 1564 dlrStep(&right); |
| 1565 }else{ |
| 1566 dlwAdd(&writer, dlrDocid(&left)); |
| 1567 dlrStep(&left); |
| 1568 dlrStep(&right); |
| 1569 } |
| 1570 } |
| 1571 |
| 1572 dlrDestroy(&left); |
| 1573 dlrDestroy(&right); |
| 1574 dlwDestroy(&writer); |
| 1575 } |
| 1576 |
| 1577 /* We have two DL_DOCIDS doclists: pLeft and pRight. |
| 1578 ** Write into pOut as DL_DOCIDS doclist containing all documents that |
| 1579 ** occur in pLeft but not in pRight. |
| 1580 */ |
| 1581 static void docListExceptMerge( |
| 1582 const char *pLeft, int nLeft, |
| 1583 const char *pRight, int nRight, |
| 1584 DataBuffer *pOut /* Write the combined doclist here */ |
| 1585 ){ |
| 1586 DLReader left, right; |
| 1587 DLWriter writer; |
| 1588 |
| 1589 if( nLeft==0 ) return; |
| 1590 if( nRight==0 ){ |
| 1591 dataBufferAppend(pOut, pLeft, nLeft); |
| 1592 return; |
| 1593 } |
| 1594 |
| 1595 dlrInit(&left, DL_DOCIDS, pLeft, nLeft); |
| 1596 dlrInit(&right, DL_DOCIDS, pRight, nRight); |
| 1597 dlwInit(&writer, DL_DOCIDS, pOut); |
| 1598 |
| 1599 while( !dlrAtEnd(&left) ){ |
| 1600 while( !dlrAtEnd(&right) && dlrDocid(&right)<dlrDocid(&left) ){ |
| 1601 dlrStep(&right); |
| 1602 } |
| 1603 if( dlrAtEnd(&right) || dlrDocid(&left)<dlrDocid(&right) ){ |
| 1604 dlwAdd(&writer, dlrDocid(&left)); |
| 1605 } |
| 1606 dlrStep(&left); |
| 1607 } |
| 1608 |
| 1609 dlrDestroy(&left); |
| 1610 dlrDestroy(&right); |
| 1611 dlwDestroy(&writer); |
| 1612 } |
| 1613 |
| 1614 static char *string_dup_n(const char *s, int n){ |
| 1615 char *str = sqlite3_malloc(n + 1); |
| 1616 memcpy(str, s, n); |
| 1617 str[n] = '\0'; |
| 1618 return str; |
| 1619 } |
| 1620 |
| 1621 /* Duplicate a string; the caller must free() the returned string. |
| 1622 * (We don't use strdup() since it is not part of the standard C library and |
| 1623 * may not be available everywhere.) */ |
| 1624 static char *string_dup(const char *s){ |
| 1625 return string_dup_n(s, strlen(s)); |
| 1626 } |
| 1627 |
| 1628 /* Format a string, replacing each occurrence of the % character with |
| 1629 * zDb.zName. This may be more convenient than sqlite_mprintf() |
| 1630 * when one string is used repeatedly in a format string. |
| 1631 * The caller must free() the returned string. */ |
| 1632 static char *string_format(const char *zFormat, |
| 1633 const char *zDb, const char *zName){ |
| 1634 const char *p; |
| 1635 size_t len = 0; |
| 1636 size_t nDb = strlen(zDb); |
| 1637 size_t nName = strlen(zName); |
| 1638 size_t nFullTableName = nDb+1+nName; |
| 1639 char *result; |
| 1640 char *r; |
| 1641 |
| 1642 /* first compute length needed */ |
| 1643 for(p = zFormat ; *p ; ++p){ |
| 1644 len += (*p=='%' ? nFullTableName : 1); |
| 1645 } |
| 1646 len += 1; /* for null terminator */ |
| 1647 |
| 1648 r = result = sqlite3_malloc(len); |
| 1649 for(p = zFormat; *p; ++p){ |
| 1650 if( *p=='%' ){ |
| 1651 memcpy(r, zDb, nDb); |
| 1652 r += nDb; |
| 1653 *r++ = '.'; |
| 1654 memcpy(r, zName, nName); |
| 1655 r += nName; |
| 1656 } else { |
| 1657 *r++ = *p; |
| 1658 } |
| 1659 } |
| 1660 *r++ = '\0'; |
| 1661 assert( r == result + len ); |
| 1662 return result; |
| 1663 } |
| 1664 |
| 1665 static int sql_exec(sqlite3 *db, const char *zDb, const char *zName, |
| 1666 const char *zFormat){ |
| 1667 char *zCommand = string_format(zFormat, zDb, zName); |
| 1668 int rc; |
| 1669 TRACE(("FTS2 sql: %s\n", zCommand)); |
| 1670 rc = sqlite3_exec(db, zCommand, NULL, 0, NULL); |
| 1671 sqlite3_free(zCommand); |
| 1672 return rc; |
| 1673 } |
| 1674 |
| 1675 static int sql_prepare(sqlite3 *db, const char *zDb, const char *zName, |
| 1676 sqlite3_stmt **ppStmt, const char *zFormat){ |
| 1677 char *zCommand = string_format(zFormat, zDb, zName); |
| 1678 int rc; |
| 1679 TRACE(("FTS2 prepare: %s\n", zCommand)); |
| 1680 rc = sqlite3_prepare_v2(db, zCommand, -1, ppStmt, NULL); |
| 1681 sqlite3_free(zCommand); |
| 1682 return rc; |
| 1683 } |
| 1684 |
| 1685 /* end utility functions */ |
| 1686 |
| 1687 /* Forward reference */ |
| 1688 typedef struct fulltext_vtab fulltext_vtab; |
| 1689 |
| 1690 /* A single term in a query is represented by an instances of |
| 1691 ** the following structure. |
| 1692 */ |
| 1693 typedef struct QueryTerm { |
| 1694 short int nPhrase; /* How many following terms are part of the same phrase */ |
| 1695 short int iPhrase; /* This is the i-th term of a phrase. */ |
| 1696 short int iColumn; /* Column of the index that must match this term */ |
| 1697 signed char isOr; /* this term is preceded by "OR" */ |
| 1698 signed char isNot; /* this term is preceded by "-" */ |
| 1699 signed char isPrefix; /* this term is followed by "*" */ |
| 1700 char *pTerm; /* text of the term. '\000' terminated. malloced */ |
| 1701 int nTerm; /* Number of bytes in pTerm[] */ |
| 1702 } QueryTerm; |
| 1703 |
| 1704 |
| 1705 /* A query string is parsed into a Query structure. |
| 1706 * |
| 1707 * We could, in theory, allow query strings to be complicated |
| 1708 * nested expressions with precedence determined by parentheses. |
| 1709 * But none of the major search engines do this. (Perhaps the |
| 1710 * feeling is that an parenthesized expression is two complex of |
| 1711 * an idea for the average user to grasp.) Taking our lead from |
| 1712 * the major search engines, we will allow queries to be a list |
| 1713 * of terms (with an implied AND operator) or phrases in double-quotes, |
| 1714 * with a single optional "-" before each non-phrase term to designate |
| 1715 * negation and an optional OR connector. |
| 1716 * |
| 1717 * OR binds more tightly than the implied AND, which is what the |
| 1718 * major search engines seem to do. So, for example: |
| 1719 * |
| 1720 * [one two OR three] ==> one AND (two OR three) |
| 1721 * [one OR two three] ==> (one OR two) AND three |
| 1722 * |
| 1723 * A "-" before a term matches all entries that lack that term. |
| 1724 * The "-" must occur immediately before the term with in intervening |
| 1725 * space. This is how the search engines do it. |
| 1726 * |
| 1727 * A NOT term cannot be the right-hand operand of an OR. If this |
| 1728 * occurs in the query string, the NOT is ignored: |
| 1729 * |
| 1730 * [one OR -two] ==> one OR two |
| 1731 * |
| 1732 */ |
| 1733 typedef struct Query { |
| 1734 fulltext_vtab *pFts; /* The full text index */ |
| 1735 int nTerms; /* Number of terms in the query */ |
| 1736 QueryTerm *pTerms; /* Array of terms. Space obtained from malloc() */ |
| 1737 int nextIsOr; /* Set the isOr flag on the next inserted term */ |
| 1738 int nextColumn; /* Next word parsed must be in this column */ |
| 1739 int dfltColumn; /* The default column */ |
| 1740 } Query; |
| 1741 |
| 1742 |
| 1743 /* |
| 1744 ** An instance of the following structure keeps track of generated |
| 1745 ** matching-word offset information and snippets. |
| 1746 */ |
| 1747 typedef struct Snippet { |
| 1748 int nMatch; /* Total number of matches */ |
| 1749 int nAlloc; /* Space allocated for aMatch[] */ |
| 1750 struct snippetMatch { /* One entry for each matching term */ |
| 1751 char snStatus; /* Status flag for use while constructing snippets */ |
| 1752 short int iCol; /* The column that contains the match */ |
| 1753 short int iTerm; /* The index in Query.pTerms[] of the matching term */ |
| 1754 short int nByte; /* Number of bytes in the term */ |
| 1755 int iStart; /* The offset to the first character of the term */ |
| 1756 } *aMatch; /* Points to space obtained from malloc */ |
| 1757 char *zOffset; /* Text rendering of aMatch[] */ |
| 1758 int nOffset; /* strlen(zOffset) */ |
| 1759 char *zSnippet; /* Snippet text */ |
| 1760 int nSnippet; /* strlen(zSnippet) */ |
| 1761 } Snippet; |
| 1762 |
| 1763 |
| 1764 typedef enum QueryType { |
| 1765 QUERY_GENERIC, /* table scan */ |
| 1766 QUERY_ROWID, /* lookup by rowid */ |
| 1767 QUERY_FULLTEXT /* QUERY_FULLTEXT + [i] is a full-text search for column i*/ |
| 1768 } QueryType; |
| 1769 |
| 1770 typedef enum fulltext_statement { |
| 1771 CONTENT_INSERT_STMT, |
| 1772 CONTENT_SELECT_STMT, |
| 1773 CONTENT_UPDATE_STMT, |
| 1774 CONTENT_DELETE_STMT, |
| 1775 CONTENT_EXISTS_STMT, |
| 1776 |
| 1777 BLOCK_INSERT_STMT, |
| 1778 BLOCK_SELECT_STMT, |
| 1779 BLOCK_DELETE_STMT, |
| 1780 BLOCK_DELETE_ALL_STMT, |
| 1781 |
| 1782 SEGDIR_MAX_INDEX_STMT, |
| 1783 SEGDIR_SET_STMT, |
| 1784 SEGDIR_SELECT_LEVEL_STMT, |
| 1785 SEGDIR_SPAN_STMT, |
| 1786 SEGDIR_DELETE_STMT, |
| 1787 SEGDIR_SELECT_SEGMENT_STMT, |
| 1788 SEGDIR_SELECT_ALL_STMT, |
| 1789 SEGDIR_DELETE_ALL_STMT, |
| 1790 SEGDIR_COUNT_STMT, |
| 1791 |
| 1792 MAX_STMT /* Always at end! */ |
| 1793 } fulltext_statement; |
| 1794 |
| 1795 /* These must exactly match the enum above. */ |
| 1796 /* TODO(shess): Is there some risk that a statement will be used in two |
| 1797 ** cursors at once, e.g. if a query joins a virtual table to itself? |
| 1798 ** If so perhaps we should move some of these to the cursor object. |
| 1799 */ |
| 1800 static const char *const fulltext_zStatement[MAX_STMT] = { |
| 1801 /* CONTENT_INSERT */ NULL, /* generated in contentInsertStatement() */ |
| 1802 /* CONTENT_SELECT */ "select * from %_content where rowid = ?", |
| 1803 /* CONTENT_UPDATE */ NULL, /* generated in contentUpdateStatement() */ |
| 1804 /* CONTENT_DELETE */ "delete from %_content where rowid = ?", |
| 1805 /* CONTENT_EXISTS */ "select rowid from %_content limit 1", |
| 1806 |
| 1807 /* BLOCK_INSERT */ "insert into %_segments values (?)", |
| 1808 /* BLOCK_SELECT */ "select block from %_segments where rowid = ?", |
| 1809 /* BLOCK_DELETE */ "delete from %_segments where rowid between ? and ?", |
| 1810 /* BLOCK_DELETE_ALL */ "delete from %_segments", |
| 1811 |
| 1812 /* SEGDIR_MAX_INDEX */ "select max(idx) from %_segdir where level = ?", |
| 1813 /* SEGDIR_SET */ "insert into %_segdir values (?, ?, ?, ?, ?, ?)", |
| 1814 /* SEGDIR_SELECT_LEVEL */ |
| 1815 "select start_block, leaves_end_block, root from %_segdir " |
| 1816 " where level = ? order by idx", |
| 1817 /* SEGDIR_SPAN */ |
| 1818 "select min(start_block), max(end_block) from %_segdir " |
| 1819 " where level = ? and start_block <> 0", |
| 1820 /* SEGDIR_DELETE */ "delete from %_segdir where level = ?", |
| 1821 |
| 1822 /* NOTE(shess): The first three results of the following two |
| 1823 ** statements must match. |
| 1824 */ |
| 1825 /* SEGDIR_SELECT_SEGMENT */ |
| 1826 "select start_block, leaves_end_block, root from %_segdir " |
| 1827 " where level = ? and idx = ?", |
| 1828 /* SEGDIR_SELECT_ALL */ |
| 1829 "select start_block, leaves_end_block, root from %_segdir " |
| 1830 " order by level desc, idx asc", |
| 1831 /* SEGDIR_DELETE_ALL */ "delete from %_segdir", |
| 1832 /* SEGDIR_COUNT */ "select count(*), ifnull(max(level),0) from %_segdir", |
| 1833 }; |
| 1834 |
| 1835 /* |
| 1836 ** A connection to a fulltext index is an instance of the following |
| 1837 ** structure. The xCreate and xConnect methods create an instance |
| 1838 ** of this structure and xDestroy and xDisconnect free that instance. |
| 1839 ** All other methods receive a pointer to the structure as one of their |
| 1840 ** arguments. |
| 1841 */ |
| 1842 struct fulltext_vtab { |
| 1843 sqlite3_vtab base; /* Base class used by SQLite core */ |
| 1844 sqlite3 *db; /* The database connection */ |
| 1845 const char *zDb; /* logical database name */ |
| 1846 const char *zName; /* virtual table name */ |
| 1847 int nColumn; /* number of columns in virtual table */ |
| 1848 char **azColumn; /* column names. malloced */ |
| 1849 char **azContentColumn; /* column names in content table; malloced */ |
| 1850 sqlite3_tokenizer *pTokenizer; /* tokenizer for inserts and queries */ |
| 1851 |
| 1852 /* Precompiled statements which we keep as long as the table is |
| 1853 ** open. |
| 1854 */ |
| 1855 sqlite3_stmt *pFulltextStatements[MAX_STMT]; |
| 1856 |
| 1857 /* Precompiled statements used for segment merges. We run a |
| 1858 ** separate select across the leaf level of each tree being merged. |
| 1859 */ |
| 1860 sqlite3_stmt *pLeafSelectStmts[MERGE_COUNT]; |
| 1861 /* The statement used to prepare pLeafSelectStmts. */ |
| 1862 #define LEAF_SELECT \ |
| 1863 "select block from %_segments where rowid between ? and ? order by rowid" |
| 1864 |
| 1865 /* These buffer pending index updates during transactions. |
| 1866 ** nPendingData estimates the memory size of the pending data. It |
| 1867 ** doesn't include the hash-bucket overhead, nor any malloc |
| 1868 ** overhead. When nPendingData exceeds kPendingThreshold, the |
| 1869 ** buffer is flushed even before the transaction closes. |
| 1870 ** pendingTerms stores the data, and is only valid when nPendingData |
| 1871 ** is >=0 (nPendingData<0 means pendingTerms has not been |
| 1872 ** initialized). iPrevDocid is the last docid written, used to make |
| 1873 ** certain we're inserting in sorted order. |
| 1874 */ |
| 1875 int nPendingData; |
| 1876 #define kPendingThreshold (1*1024*1024) |
| 1877 sqlite_int64 iPrevDocid; |
| 1878 fts2Hash pendingTerms; |
| 1879 }; |
| 1880 |
| 1881 /* |
| 1882 ** When the core wants to do a query, it create a cursor using a |
| 1883 ** call to xOpen. This structure is an instance of a cursor. It |
| 1884 ** is destroyed by xClose. |
| 1885 */ |
| 1886 typedef struct fulltext_cursor { |
| 1887 sqlite3_vtab_cursor base; /* Base class used by SQLite core */ |
| 1888 QueryType iCursorType; /* Copy of sqlite3_index_info.idxNum */ |
| 1889 sqlite3_stmt *pStmt; /* Prepared statement in use by the cursor */ |
| 1890 int eof; /* True if at End Of Results */ |
| 1891 Query q; /* Parsed query string */ |
| 1892 Snippet snippet; /* Cached snippet for the current row */ |
| 1893 int iColumn; /* Column being searched */ |
| 1894 DataBuffer result; /* Doclist results from fulltextQuery */ |
| 1895 DLReader reader; /* Result reader if result not empty */ |
| 1896 } fulltext_cursor; |
| 1897 |
| 1898 static struct fulltext_vtab *cursor_vtab(fulltext_cursor *c){ |
| 1899 return (fulltext_vtab *) c->base.pVtab; |
| 1900 } |
| 1901 |
| 1902 static const sqlite3_module fts2Module; /* forward declaration */ |
| 1903 |
| 1904 /* Return a dynamically generated statement of the form |
| 1905 * insert into %_content (rowid, ...) values (?, ...) |
| 1906 */ |
| 1907 static const char *contentInsertStatement(fulltext_vtab *v){ |
| 1908 StringBuffer sb; |
| 1909 int i; |
| 1910 |
| 1911 initStringBuffer(&sb); |
| 1912 append(&sb, "insert into %_content (rowid, "); |
| 1913 appendList(&sb, v->nColumn, v->azContentColumn); |
| 1914 append(&sb, ") values (?"); |
| 1915 for(i=0; i<v->nColumn; ++i) |
| 1916 append(&sb, ", ?"); |
| 1917 append(&sb, ")"); |
| 1918 return stringBufferData(&sb); |
| 1919 } |
| 1920 |
| 1921 /* Return a dynamically generated statement of the form |
| 1922 * update %_content set [col_0] = ?, [col_1] = ?, ... |
| 1923 * where rowid = ? |
| 1924 */ |
| 1925 static const char *contentUpdateStatement(fulltext_vtab *v){ |
| 1926 StringBuffer sb; |
| 1927 int i; |
| 1928 |
| 1929 initStringBuffer(&sb); |
| 1930 append(&sb, "update %_content set "); |
| 1931 for(i=0; i<v->nColumn; ++i) { |
| 1932 if( i>0 ){ |
| 1933 append(&sb, ", "); |
| 1934 } |
| 1935 append(&sb, v->azContentColumn[i]); |
| 1936 append(&sb, " = ?"); |
| 1937 } |
| 1938 append(&sb, " where rowid = ?"); |
| 1939 return stringBufferData(&sb); |
| 1940 } |
| 1941 |
| 1942 /* Puts a freshly-prepared statement determined by iStmt in *ppStmt. |
| 1943 ** If the indicated statement has never been prepared, it is prepared |
| 1944 ** and cached, otherwise the cached version is reset. |
| 1945 */ |
| 1946 static int sql_get_statement(fulltext_vtab *v, fulltext_statement iStmt, |
| 1947 sqlite3_stmt **ppStmt){ |
| 1948 assert( iStmt<MAX_STMT ); |
| 1949 if( v->pFulltextStatements[iStmt]==NULL ){ |
| 1950 const char *zStmt; |
| 1951 int rc; |
| 1952 switch( iStmt ){ |
| 1953 case CONTENT_INSERT_STMT: |
| 1954 zStmt = contentInsertStatement(v); break; |
| 1955 case CONTENT_UPDATE_STMT: |
| 1956 zStmt = contentUpdateStatement(v); break; |
| 1957 default: |
| 1958 zStmt = fulltext_zStatement[iStmt]; |
| 1959 } |
| 1960 rc = sql_prepare(v->db, v->zDb, v->zName, &v->pFulltextStatements[iStmt], |
| 1961 zStmt); |
| 1962 if( zStmt != fulltext_zStatement[iStmt]) sqlite3_free((void *) zStmt); |
| 1963 if( rc!=SQLITE_OK ) return rc; |
| 1964 } else { |
| 1965 int rc = sqlite3_reset(v->pFulltextStatements[iStmt]); |
| 1966 if( rc!=SQLITE_OK ) return rc; |
| 1967 } |
| 1968 |
| 1969 *ppStmt = v->pFulltextStatements[iStmt]; |
| 1970 return SQLITE_OK; |
| 1971 } |
| 1972 |
| 1973 /* Like sqlite3_step(), but convert SQLITE_DONE to SQLITE_OK and |
| 1974 ** SQLITE_ROW to SQLITE_ERROR. Useful for statements like UPDATE, |
| 1975 ** where we expect no results. |
| 1976 */ |
| 1977 static int sql_single_step(sqlite3_stmt *s){ |
| 1978 int rc = sqlite3_step(s); |
| 1979 return (rc==SQLITE_DONE) ? SQLITE_OK : rc; |
| 1980 } |
| 1981 |
| 1982 /* Like sql_get_statement(), but for special replicated LEAF_SELECT |
| 1983 ** statements. idx -1 is a special case for an uncached version of |
| 1984 ** the statement (used in the optimize implementation). |
| 1985 */ |
| 1986 /* TODO(shess) Write version for generic statements and then share |
| 1987 ** that between the cached-statement functions. |
| 1988 */ |
| 1989 static int sql_get_leaf_statement(fulltext_vtab *v, int idx, |
| 1990 sqlite3_stmt **ppStmt){ |
| 1991 assert( idx>=-1 && idx<MERGE_COUNT ); |
| 1992 if( idx==-1 ){ |
| 1993 return sql_prepare(v->db, v->zDb, v->zName, ppStmt, LEAF_SELECT); |
| 1994 }else if( v->pLeafSelectStmts[idx]==NULL ){ |
| 1995 int rc = sql_prepare(v->db, v->zDb, v->zName, &v->pLeafSelectStmts[idx], |
| 1996 LEAF_SELECT); |
| 1997 if( rc!=SQLITE_OK ) return rc; |
| 1998 }else{ |
| 1999 int rc = sqlite3_reset(v->pLeafSelectStmts[idx]); |
| 2000 if( rc!=SQLITE_OK ) return rc; |
| 2001 } |
| 2002 |
| 2003 *ppStmt = v->pLeafSelectStmts[idx]; |
| 2004 return SQLITE_OK; |
| 2005 } |
| 2006 |
| 2007 /* insert into %_content (rowid, ...) values ([rowid], [pValues]) */ |
| 2008 static int content_insert(fulltext_vtab *v, sqlite3_value *rowid, |
| 2009 sqlite3_value **pValues){ |
| 2010 sqlite3_stmt *s; |
| 2011 int i; |
| 2012 int rc = sql_get_statement(v, CONTENT_INSERT_STMT, &s); |
| 2013 if( rc!=SQLITE_OK ) return rc; |
| 2014 |
| 2015 rc = sqlite3_bind_value(s, 1, rowid); |
| 2016 if( rc!=SQLITE_OK ) return rc; |
| 2017 |
| 2018 for(i=0; i<v->nColumn; ++i){ |
| 2019 rc = sqlite3_bind_value(s, 2+i, pValues[i]); |
| 2020 if( rc!=SQLITE_OK ) return rc; |
| 2021 } |
| 2022 |
| 2023 return sql_single_step(s); |
| 2024 } |
| 2025 |
| 2026 /* update %_content set col0 = pValues[0], col1 = pValues[1], ... |
| 2027 * where rowid = [iRowid] */ |
| 2028 static int content_update(fulltext_vtab *v, sqlite3_value **pValues, |
| 2029 sqlite_int64 iRowid){ |
| 2030 sqlite3_stmt *s; |
| 2031 int i; |
| 2032 int rc = sql_get_statement(v, CONTENT_UPDATE_STMT, &s); |
| 2033 if( rc!=SQLITE_OK ) return rc; |
| 2034 |
| 2035 for(i=0; i<v->nColumn; ++i){ |
| 2036 rc = sqlite3_bind_value(s, 1+i, pValues[i]); |
| 2037 if( rc!=SQLITE_OK ) return rc; |
| 2038 } |
| 2039 |
| 2040 rc = sqlite3_bind_int64(s, 1+v->nColumn, iRowid); |
| 2041 if( rc!=SQLITE_OK ) return rc; |
| 2042 |
| 2043 return sql_single_step(s); |
| 2044 } |
| 2045 |
| 2046 static void freeStringArray(int nString, const char **pString){ |
| 2047 int i; |
| 2048 |
| 2049 for (i=0 ; i < nString ; ++i) { |
| 2050 if( pString[i]!=NULL ) sqlite3_free((void *) pString[i]); |
| 2051 } |
| 2052 sqlite3_free((void *) pString); |
| 2053 } |
| 2054 |
| 2055 /* select * from %_content where rowid = [iRow] |
| 2056 * The caller must delete the returned array and all strings in it. |
| 2057 * null fields will be NULL in the returned array. |
| 2058 * |
| 2059 * TODO: Perhaps we should return pointer/length strings here for consistency |
| 2060 * with other code which uses pointer/length. */ |
| 2061 static int content_select(fulltext_vtab *v, sqlite_int64 iRow, |
| 2062 const char ***pValues){ |
| 2063 sqlite3_stmt *s; |
| 2064 const char **values; |
| 2065 int i; |
| 2066 int rc; |
| 2067 |
| 2068 *pValues = NULL; |
| 2069 |
| 2070 rc = sql_get_statement(v, CONTENT_SELECT_STMT, &s); |
| 2071 if( rc!=SQLITE_OK ) return rc; |
| 2072 |
| 2073 rc = sqlite3_bind_int64(s, 1, iRow); |
| 2074 if( rc!=SQLITE_OK ) return rc; |
| 2075 |
| 2076 rc = sqlite3_step(s); |
| 2077 if( rc!=SQLITE_ROW ) return rc; |
| 2078 |
| 2079 values = (const char **) sqlite3_malloc(v->nColumn * sizeof(const char *)); |
| 2080 for(i=0; i<v->nColumn; ++i){ |
| 2081 if( sqlite3_column_type(s, i)==SQLITE_NULL ){ |
| 2082 values[i] = NULL; |
| 2083 }else{ |
| 2084 values[i] = string_dup((char*)sqlite3_column_text(s, i)); |
| 2085 } |
| 2086 } |
| 2087 |
| 2088 /* We expect only one row. We must execute another sqlite3_step() |
| 2089 * to complete the iteration; otherwise the table will remain locked. */ |
| 2090 rc = sqlite3_step(s); |
| 2091 if( rc==SQLITE_DONE ){ |
| 2092 *pValues = values; |
| 2093 return SQLITE_OK; |
| 2094 } |
| 2095 |
| 2096 freeStringArray(v->nColumn, values); |
| 2097 return rc; |
| 2098 } |
| 2099 |
| 2100 /* delete from %_content where rowid = [iRow ] */ |
| 2101 static int content_delete(fulltext_vtab *v, sqlite_int64 iRow){ |
| 2102 sqlite3_stmt *s; |
| 2103 int rc = sql_get_statement(v, CONTENT_DELETE_STMT, &s); |
| 2104 if( rc!=SQLITE_OK ) return rc; |
| 2105 |
| 2106 rc = sqlite3_bind_int64(s, 1, iRow); |
| 2107 if( rc!=SQLITE_OK ) return rc; |
| 2108 |
| 2109 return sql_single_step(s); |
| 2110 } |
| 2111 |
| 2112 /* Returns SQLITE_ROW if any rows exist in %_content, SQLITE_DONE if |
| 2113 ** no rows exist, and any error in case of failure. |
| 2114 */ |
| 2115 static int content_exists(fulltext_vtab *v){ |
| 2116 sqlite3_stmt *s; |
| 2117 int rc = sql_get_statement(v, CONTENT_EXISTS_STMT, &s); |
| 2118 if( rc!=SQLITE_OK ) return rc; |
| 2119 |
| 2120 rc = sqlite3_step(s); |
| 2121 if( rc!=SQLITE_ROW ) return rc; |
| 2122 |
| 2123 /* We expect only one row. We must execute another sqlite3_step() |
| 2124 * to complete the iteration; otherwise the table will remain locked. */ |
| 2125 rc = sqlite3_step(s); |
| 2126 if( rc==SQLITE_DONE ) return SQLITE_ROW; |
| 2127 if( rc==SQLITE_ROW ) return SQLITE_ERROR; |
| 2128 return rc; |
| 2129 } |
| 2130 |
| 2131 /* insert into %_segments values ([pData]) |
| 2132 ** returns assigned rowid in *piBlockid |
| 2133 */ |
| 2134 static int block_insert(fulltext_vtab *v, const char *pData, int nData, |
| 2135 sqlite_int64 *piBlockid){ |
| 2136 sqlite3_stmt *s; |
| 2137 int rc = sql_get_statement(v, BLOCK_INSERT_STMT, &s); |
| 2138 if( rc!=SQLITE_OK ) return rc; |
| 2139 |
| 2140 rc = sqlite3_bind_blob(s, 1, pData, nData, SQLITE_STATIC); |
| 2141 if( rc!=SQLITE_OK ) return rc; |
| 2142 |
| 2143 rc = sqlite3_step(s); |
| 2144 if( rc==SQLITE_ROW ) return SQLITE_ERROR; |
| 2145 if( rc!=SQLITE_DONE ) return rc; |
| 2146 |
| 2147 *piBlockid = sqlite3_last_insert_rowid(v->db); |
| 2148 return SQLITE_OK; |
| 2149 } |
| 2150 |
| 2151 /* delete from %_segments |
| 2152 ** where rowid between [iStartBlockid] and [iEndBlockid] |
| 2153 ** |
| 2154 ** Deletes the range of blocks, inclusive, used to delete the blocks |
| 2155 ** which form a segment. |
| 2156 */ |
| 2157 static int block_delete(fulltext_vtab *v, |
| 2158 sqlite_int64 iStartBlockid, sqlite_int64 iEndBlockid){ |
| 2159 sqlite3_stmt *s; |
| 2160 int rc = sql_get_statement(v, BLOCK_DELETE_STMT, &s); |
| 2161 if( rc!=SQLITE_OK ) return rc; |
| 2162 |
| 2163 rc = sqlite3_bind_int64(s, 1, iStartBlockid); |
| 2164 if( rc!=SQLITE_OK ) return rc; |
| 2165 |
| 2166 rc = sqlite3_bind_int64(s, 2, iEndBlockid); |
| 2167 if( rc!=SQLITE_OK ) return rc; |
| 2168 |
| 2169 return sql_single_step(s); |
| 2170 } |
| 2171 |
| 2172 /* Returns SQLITE_ROW with *pidx set to the maximum segment idx found |
| 2173 ** at iLevel. Returns SQLITE_DONE if there are no segments at |
| 2174 ** iLevel. Otherwise returns an error. |
| 2175 */ |
| 2176 static int segdir_max_index(fulltext_vtab *v, int iLevel, int *pidx){ |
| 2177 sqlite3_stmt *s; |
| 2178 int rc = sql_get_statement(v, SEGDIR_MAX_INDEX_STMT, &s); |
| 2179 if( rc!=SQLITE_OK ) return rc; |
| 2180 |
| 2181 rc = sqlite3_bind_int(s, 1, iLevel); |
| 2182 if( rc!=SQLITE_OK ) return rc; |
| 2183 |
| 2184 rc = sqlite3_step(s); |
| 2185 /* Should always get at least one row due to how max() works. */ |
| 2186 if( rc==SQLITE_DONE ) return SQLITE_DONE; |
| 2187 if( rc!=SQLITE_ROW ) return rc; |
| 2188 |
| 2189 /* NULL means that there were no inputs to max(). */ |
| 2190 if( SQLITE_NULL==sqlite3_column_type(s, 0) ){ |
| 2191 rc = sqlite3_step(s); |
| 2192 if( rc==SQLITE_ROW ) return SQLITE_ERROR; |
| 2193 return rc; |
| 2194 } |
| 2195 |
| 2196 *pidx = sqlite3_column_int(s, 0); |
| 2197 |
| 2198 /* We expect only one row. We must execute another sqlite3_step() |
| 2199 * to complete the iteration; otherwise the table will remain locked. */ |
| 2200 rc = sqlite3_step(s); |
| 2201 if( rc==SQLITE_ROW ) return SQLITE_ERROR; |
| 2202 if( rc!=SQLITE_DONE ) return rc; |
| 2203 return SQLITE_ROW; |
| 2204 } |
| 2205 |
| 2206 /* insert into %_segdir values ( |
| 2207 ** [iLevel], [idx], |
| 2208 ** [iStartBlockid], [iLeavesEndBlockid], [iEndBlockid], |
| 2209 ** [pRootData] |
| 2210 ** ) |
| 2211 */ |
| 2212 static int segdir_set(fulltext_vtab *v, int iLevel, int idx, |
| 2213 sqlite_int64 iStartBlockid, |
| 2214 sqlite_int64 iLeavesEndBlockid, |
| 2215 sqlite_int64 iEndBlockid, |
| 2216 const char *pRootData, int nRootData){ |
| 2217 sqlite3_stmt *s; |
| 2218 int rc = sql_get_statement(v, SEGDIR_SET_STMT, &s); |
| 2219 if( rc!=SQLITE_OK ) return rc; |
| 2220 |
| 2221 rc = sqlite3_bind_int(s, 1, iLevel); |
| 2222 if( rc!=SQLITE_OK ) return rc; |
| 2223 |
| 2224 rc = sqlite3_bind_int(s, 2, idx); |
| 2225 if( rc!=SQLITE_OK ) return rc; |
| 2226 |
| 2227 rc = sqlite3_bind_int64(s, 3, iStartBlockid); |
| 2228 if( rc!=SQLITE_OK ) return rc; |
| 2229 |
| 2230 rc = sqlite3_bind_int64(s, 4, iLeavesEndBlockid); |
| 2231 if( rc!=SQLITE_OK ) return rc; |
| 2232 |
| 2233 rc = sqlite3_bind_int64(s, 5, iEndBlockid); |
| 2234 if( rc!=SQLITE_OK ) return rc; |
| 2235 |
| 2236 rc = sqlite3_bind_blob(s, 6, pRootData, nRootData, SQLITE_STATIC); |
| 2237 if( rc!=SQLITE_OK ) return rc; |
| 2238 |
| 2239 return sql_single_step(s); |
| 2240 } |
| 2241 |
| 2242 /* Queries %_segdir for the block span of the segments in level |
| 2243 ** iLevel. Returns SQLITE_DONE if there are no blocks for iLevel, |
| 2244 ** SQLITE_ROW if there are blocks, else an error. |
| 2245 */ |
| 2246 static int segdir_span(fulltext_vtab *v, int iLevel, |
| 2247 sqlite_int64 *piStartBlockid, |
| 2248 sqlite_int64 *piEndBlockid){ |
| 2249 sqlite3_stmt *s; |
| 2250 int rc = sql_get_statement(v, SEGDIR_SPAN_STMT, &s); |
| 2251 if( rc!=SQLITE_OK ) return rc; |
| 2252 |
| 2253 rc = sqlite3_bind_int(s, 1, iLevel); |
| 2254 if( rc!=SQLITE_OK ) return rc; |
| 2255 |
| 2256 rc = sqlite3_step(s); |
| 2257 if( rc==SQLITE_DONE ) return SQLITE_DONE; /* Should never happen */ |
| 2258 if( rc!=SQLITE_ROW ) return rc; |
| 2259 |
| 2260 /* This happens if all segments at this level are entirely inline. */ |
| 2261 if( SQLITE_NULL==sqlite3_column_type(s, 0) ){ |
| 2262 /* We expect only one row. We must execute another sqlite3_step() |
| 2263 * to complete the iteration; otherwise the table will remain locked. */ |
| 2264 int rc2 = sqlite3_step(s); |
| 2265 if( rc2==SQLITE_ROW ) return SQLITE_ERROR; |
| 2266 return rc2; |
| 2267 } |
| 2268 |
| 2269 *piStartBlockid = sqlite3_column_int64(s, 0); |
| 2270 *piEndBlockid = sqlite3_column_int64(s, 1); |
| 2271 |
| 2272 /* We expect only one row. We must execute another sqlite3_step() |
| 2273 * to complete the iteration; otherwise the table will remain locked. */ |
| 2274 rc = sqlite3_step(s); |
| 2275 if( rc==SQLITE_ROW ) return SQLITE_ERROR; |
| 2276 if( rc!=SQLITE_DONE ) return rc; |
| 2277 return SQLITE_ROW; |
| 2278 } |
| 2279 |
| 2280 /* Delete the segment blocks and segment directory records for all |
| 2281 ** segments at iLevel. |
| 2282 */ |
| 2283 static int segdir_delete(fulltext_vtab *v, int iLevel){ |
| 2284 sqlite3_stmt *s; |
| 2285 sqlite_int64 iStartBlockid, iEndBlockid; |
| 2286 int rc = segdir_span(v, iLevel, &iStartBlockid, &iEndBlockid); |
| 2287 if( rc!=SQLITE_ROW && rc!=SQLITE_DONE ) return rc; |
| 2288 |
| 2289 if( rc==SQLITE_ROW ){ |
| 2290 rc = block_delete(v, iStartBlockid, iEndBlockid); |
| 2291 if( rc!=SQLITE_OK ) return rc; |
| 2292 } |
| 2293 |
| 2294 /* Delete the segment directory itself. */ |
| 2295 rc = sql_get_statement(v, SEGDIR_DELETE_STMT, &s); |
| 2296 if( rc!=SQLITE_OK ) return rc; |
| 2297 |
| 2298 rc = sqlite3_bind_int64(s, 1, iLevel); |
| 2299 if( rc!=SQLITE_OK ) return rc; |
| 2300 |
| 2301 return sql_single_step(s); |
| 2302 } |
| 2303 |
| 2304 /* Delete entire fts index, SQLITE_OK on success, relevant error on |
| 2305 ** failure. |
| 2306 */ |
| 2307 static int segdir_delete_all(fulltext_vtab *v){ |
| 2308 sqlite3_stmt *s; |
| 2309 int rc = sql_get_statement(v, SEGDIR_DELETE_ALL_STMT, &s); |
| 2310 if( rc!=SQLITE_OK ) return rc; |
| 2311 |
| 2312 rc = sql_single_step(s); |
| 2313 if( rc!=SQLITE_OK ) return rc; |
| 2314 |
| 2315 rc = sql_get_statement(v, BLOCK_DELETE_ALL_STMT, &s); |
| 2316 if( rc!=SQLITE_OK ) return rc; |
| 2317 |
| 2318 return sql_single_step(s); |
| 2319 } |
| 2320 |
| 2321 /* Returns SQLITE_OK with *pnSegments set to the number of entries in |
| 2322 ** %_segdir and *piMaxLevel set to the highest level which has a |
| 2323 ** segment. Otherwise returns the SQLite error which caused failure. |
| 2324 */ |
| 2325 static int segdir_count(fulltext_vtab *v, int *pnSegments, int *piMaxLevel){ |
| 2326 sqlite3_stmt *s; |
| 2327 int rc = sql_get_statement(v, SEGDIR_COUNT_STMT, &s); |
| 2328 if( rc!=SQLITE_OK ) return rc; |
| 2329 |
| 2330 rc = sqlite3_step(s); |
| 2331 /* TODO(shess): This case should not be possible? Should stronger |
| 2332 ** measures be taken if it happens? |
| 2333 */ |
| 2334 if( rc==SQLITE_DONE ){ |
| 2335 *pnSegments = 0; |
| 2336 *piMaxLevel = 0; |
| 2337 return SQLITE_OK; |
| 2338 } |
| 2339 if( rc!=SQLITE_ROW ) return rc; |
| 2340 |
| 2341 *pnSegments = sqlite3_column_int(s, 0); |
| 2342 *piMaxLevel = sqlite3_column_int(s, 1); |
| 2343 |
| 2344 /* We expect only one row. We must execute another sqlite3_step() |
| 2345 * to complete the iteration; otherwise the table will remain locked. */ |
| 2346 rc = sqlite3_step(s); |
| 2347 if( rc==SQLITE_DONE ) return SQLITE_OK; |
| 2348 if( rc==SQLITE_ROW ) return SQLITE_ERROR; |
| 2349 return rc; |
| 2350 } |
| 2351 |
| 2352 /* TODO(shess) clearPendingTerms() is far down the file because |
| 2353 ** writeZeroSegment() is far down the file because LeafWriter is far |
| 2354 ** down the file. Consider refactoring the code to move the non-vtab |
| 2355 ** code above the vtab code so that we don't need this forward |
| 2356 ** reference. |
| 2357 */ |
| 2358 static int clearPendingTerms(fulltext_vtab *v); |
| 2359 |
| 2360 /* |
| 2361 ** Free the memory used to contain a fulltext_vtab structure. |
| 2362 */ |
| 2363 static void fulltext_vtab_destroy(fulltext_vtab *v){ |
| 2364 int iStmt, i; |
| 2365 |
| 2366 TRACE(("FTS2 Destroy %p\n", v)); |
| 2367 for( iStmt=0; iStmt<MAX_STMT; iStmt++ ){ |
| 2368 if( v->pFulltextStatements[iStmt]!=NULL ){ |
| 2369 sqlite3_finalize(v->pFulltextStatements[iStmt]); |
| 2370 v->pFulltextStatements[iStmt] = NULL; |
| 2371 } |
| 2372 } |
| 2373 |
| 2374 for( i=0; i<MERGE_COUNT; i++ ){ |
| 2375 if( v->pLeafSelectStmts[i]!=NULL ){ |
| 2376 sqlite3_finalize(v->pLeafSelectStmts[i]); |
| 2377 v->pLeafSelectStmts[i] = NULL; |
| 2378 } |
| 2379 } |
| 2380 |
| 2381 if( v->pTokenizer!=NULL ){ |
| 2382 v->pTokenizer->pModule->xDestroy(v->pTokenizer); |
| 2383 v->pTokenizer = NULL; |
| 2384 } |
| 2385 |
| 2386 clearPendingTerms(v); |
| 2387 |
| 2388 sqlite3_free(v->azColumn); |
| 2389 for(i = 0; i < v->nColumn; ++i) { |
| 2390 sqlite3_free(v->azContentColumn[i]); |
| 2391 } |
| 2392 sqlite3_free(v->azContentColumn); |
| 2393 sqlite3_free(v); |
| 2394 } |
| 2395 |
| 2396 /* |
| 2397 ** Token types for parsing the arguments to xConnect or xCreate. |
| 2398 */ |
| 2399 #define TOKEN_EOF 0 /* End of file */ |
| 2400 #define TOKEN_SPACE 1 /* Any kind of whitespace */ |
| 2401 #define TOKEN_ID 2 /* An identifier */ |
| 2402 #define TOKEN_STRING 3 /* A string literal */ |
| 2403 #define TOKEN_PUNCT 4 /* A single punctuation character */ |
| 2404 |
| 2405 /* |
| 2406 ** If X is a character that can be used in an identifier then |
| 2407 ** IdChar(X) will be true. Otherwise it is false. |
| 2408 ** |
| 2409 ** For ASCII, any character with the high-order bit set is |
| 2410 ** allowed in an identifier. For 7-bit characters, |
| 2411 ** sqlite3IsIdChar[X] must be 1. |
| 2412 ** |
| 2413 ** Ticket #1066. the SQL standard does not allow '$' in the |
| 2414 ** middle of identfiers. But many SQL implementations do. |
| 2415 ** SQLite will allow '$' in identifiers for compatibility. |
| 2416 ** But the feature is undocumented. |
| 2417 */ |
| 2418 static const char isIdChar[] = { |
| 2419 /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */ |
| 2420 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */ |
| 2421 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */ |
| 2422 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */ |
| 2423 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */ |
| 2424 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */ |
| 2425 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */ |
| 2426 }; |
| 2427 #define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && isIdChar[c-0x20])) |
| 2428 |
| 2429 |
| 2430 /* |
| 2431 ** Return the length of the token that begins at z[0]. |
| 2432 ** Store the token type in *tokenType before returning. |
| 2433 */ |
| 2434 static int getToken(const char *z, int *tokenType){ |
| 2435 int i, c; |
| 2436 switch( *z ){ |
| 2437 case 0: { |
| 2438 *tokenType = TOKEN_EOF; |
| 2439 return 0; |
| 2440 } |
| 2441 case ' ': case '\t': case '\n': case '\f': case '\r': { |
| 2442 for(i=1; safe_isspace(z[i]); i++){} |
| 2443 *tokenType = TOKEN_SPACE; |
| 2444 return i; |
| 2445 } |
| 2446 case '`': |
| 2447 case '\'': |
| 2448 case '"': { |
| 2449 int delim = z[0]; |
| 2450 for(i=1; (c=z[i])!=0; i++){ |
| 2451 if( c==delim ){ |
| 2452 if( z[i+1]==delim ){ |
| 2453 i++; |
| 2454 }else{ |
| 2455 break; |
| 2456 } |
| 2457 } |
| 2458 } |
| 2459 *tokenType = TOKEN_STRING; |
| 2460 return i + (c!=0); |
| 2461 } |
| 2462 case '[': { |
| 2463 for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){} |
| 2464 *tokenType = TOKEN_ID; |
| 2465 return i; |
| 2466 } |
| 2467 default: { |
| 2468 if( !IdChar(*z) ){ |
| 2469 break; |
| 2470 } |
| 2471 for(i=1; IdChar(z[i]); i++){} |
| 2472 *tokenType = TOKEN_ID; |
| 2473 return i; |
| 2474 } |
| 2475 } |
| 2476 *tokenType = TOKEN_PUNCT; |
| 2477 return 1; |
| 2478 } |
| 2479 |
| 2480 /* |
| 2481 ** A token extracted from a string is an instance of the following |
| 2482 ** structure. |
| 2483 */ |
| 2484 typedef struct Token { |
| 2485 const char *z; /* Pointer to token text. Not '\000' terminated */ |
| 2486 short int n; /* Length of the token text in bytes. */ |
| 2487 } Token; |
| 2488 |
| 2489 /* |
| 2490 ** Given a input string (which is really one of the argv[] parameters |
| 2491 ** passed into xConnect or xCreate) split the string up into tokens. |
| 2492 ** Return an array of pointers to '\000' terminated strings, one string |
| 2493 ** for each non-whitespace token. |
| 2494 ** |
| 2495 ** The returned array is terminated by a single NULL pointer. |
| 2496 ** |
| 2497 ** Space to hold the returned array is obtained from a single |
| 2498 ** malloc and should be freed by passing the return value to free(). |
| 2499 ** The individual strings within the token list are all a part of |
| 2500 ** the single memory allocation and will all be freed at once. |
| 2501 */ |
| 2502 static char **tokenizeString(const char *z, int *pnToken){ |
| 2503 int nToken = 0; |
| 2504 Token *aToken = sqlite3_malloc( strlen(z) * sizeof(aToken[0]) ); |
| 2505 int n = 1; |
| 2506 int e, i; |
| 2507 int totalSize = 0; |
| 2508 char **azToken; |
| 2509 char *zCopy; |
| 2510 while( n>0 ){ |
| 2511 n = getToken(z, &e); |
| 2512 if( e!=TOKEN_SPACE ){ |
| 2513 aToken[nToken].z = z; |
| 2514 aToken[nToken].n = n; |
| 2515 nToken++; |
| 2516 totalSize += n+1; |
| 2517 } |
| 2518 z += n; |
| 2519 } |
| 2520 azToken = (char**)sqlite3_malloc( nToken*sizeof(char*) + totalSize ); |
| 2521 zCopy = (char*)&azToken[nToken]; |
| 2522 nToken--; |
| 2523 for(i=0; i<nToken; i++){ |
| 2524 azToken[i] = zCopy; |
| 2525 n = aToken[i].n; |
| 2526 memcpy(zCopy, aToken[i].z, n); |
| 2527 zCopy[n] = 0; |
| 2528 zCopy += n+1; |
| 2529 } |
| 2530 azToken[nToken] = 0; |
| 2531 sqlite3_free(aToken); |
| 2532 *pnToken = nToken; |
| 2533 return azToken; |
| 2534 } |
| 2535 |
| 2536 /* |
| 2537 ** Convert an SQL-style quoted string into a normal string by removing |
| 2538 ** the quote characters. The conversion is done in-place. If the |
| 2539 ** input does not begin with a quote character, then this routine |
| 2540 ** is a no-op. |
| 2541 ** |
| 2542 ** Examples: |
| 2543 ** |
| 2544 ** "abc" becomes abc |
| 2545 ** 'xyz' becomes xyz |
| 2546 ** [pqr] becomes pqr |
| 2547 ** `mno` becomes mno |
| 2548 */ |
| 2549 static void dequoteString(char *z){ |
| 2550 int quote; |
| 2551 int i, j; |
| 2552 if( z==0 ) return; |
| 2553 quote = z[0]; |
| 2554 switch( quote ){ |
| 2555 case '\'': break; |
| 2556 case '"': break; |
| 2557 case '`': break; /* For MySQL compatibility */ |
| 2558 case '[': quote = ']'; break; /* For MS SqlServer compatibility */ |
| 2559 default: return; |
| 2560 } |
| 2561 for(i=1, j=0; z[i]; i++){ |
| 2562 if( z[i]==quote ){ |
| 2563 if( z[i+1]==quote ){ |
| 2564 z[j++] = quote; |
| 2565 i++; |
| 2566 }else{ |
| 2567 z[j++] = 0; |
| 2568 break; |
| 2569 } |
| 2570 }else{ |
| 2571 z[j++] = z[i]; |
| 2572 } |
| 2573 } |
| 2574 } |
| 2575 |
| 2576 /* |
| 2577 ** The input azIn is a NULL-terminated list of tokens. Remove the first |
| 2578 ** token and all punctuation tokens. Remove the quotes from |
| 2579 ** around string literal tokens. |
| 2580 ** |
| 2581 ** Example: |
| 2582 ** |
| 2583 ** input: tokenize chinese ( 'simplifed' , 'mixed' ) |
| 2584 ** output: chinese simplifed mixed |
| 2585 ** |
| 2586 ** Another example: |
| 2587 ** |
| 2588 ** input: delimiters ( '[' , ']' , '...' ) |
| 2589 ** output: [ ] ... |
| 2590 */ |
| 2591 static void tokenListToIdList(char **azIn){ |
| 2592 int i, j; |
| 2593 if( azIn ){ |
| 2594 for(i=0, j=-1; azIn[i]; i++){ |
| 2595 if( safe_isalnum(azIn[i][0]) || azIn[i][1] ){ |
| 2596 dequoteString(azIn[i]); |
| 2597 if( j>=0 ){ |
| 2598 azIn[j] = azIn[i]; |
| 2599 } |
| 2600 j++; |
| 2601 } |
| 2602 } |
| 2603 azIn[j] = 0; |
| 2604 } |
| 2605 } |
| 2606 |
| 2607 |
| 2608 /* |
| 2609 ** Find the first alphanumeric token in the string zIn. Null-terminate |
| 2610 ** this token. Remove any quotation marks. And return a pointer to |
| 2611 ** the result. |
| 2612 */ |
| 2613 static char *firstToken(char *zIn, char **pzTail){ |
| 2614 int n, ttype; |
| 2615 while(1){ |
| 2616 n = getToken(zIn, &ttype); |
| 2617 if( ttype==TOKEN_SPACE ){ |
| 2618 zIn += n; |
| 2619 }else if( ttype==TOKEN_EOF ){ |
| 2620 *pzTail = zIn; |
| 2621 return 0; |
| 2622 }else{ |
| 2623 zIn[n] = 0; |
| 2624 *pzTail = &zIn[1]; |
| 2625 dequoteString(zIn); |
| 2626 return zIn; |
| 2627 } |
| 2628 } |
| 2629 /*NOTREACHED*/ |
| 2630 } |
| 2631 |
| 2632 /* Return true if... |
| 2633 ** |
| 2634 ** * s begins with the string t, ignoring case |
| 2635 ** * s is longer than t |
| 2636 ** * The first character of s beyond t is not a alphanumeric |
| 2637 ** |
| 2638 ** Ignore leading space in *s. |
| 2639 ** |
| 2640 ** To put it another way, return true if the first token of |
| 2641 ** s[] is t[]. |
| 2642 */ |
| 2643 static int startsWith(const char *s, const char *t){ |
| 2644 while( safe_isspace(*s) ){ s++; } |
| 2645 while( *t ){ |
| 2646 if( safe_tolower(*s++)!=safe_tolower(*t++) ) return 0; |
| 2647 } |
| 2648 return *s!='_' && !safe_isalnum(*s); |
| 2649 } |
| 2650 |
| 2651 /* |
| 2652 ** An instance of this structure defines the "spec" of a |
| 2653 ** full text index. This structure is populated by parseSpec |
| 2654 ** and use by fulltextConnect and fulltextCreate. |
| 2655 */ |
| 2656 typedef struct TableSpec { |
| 2657 const char *zDb; /* Logical database name */ |
| 2658 const char *zName; /* Name of the full-text index */ |
| 2659 int nColumn; /* Number of columns to be indexed */ |
| 2660 char **azColumn; /* Original names of columns to be indexed */ |
| 2661 char **azContentColumn; /* Column names for %_content */ |
| 2662 char **azTokenizer; /* Name of tokenizer and its arguments */ |
| 2663 } TableSpec; |
| 2664 |
| 2665 /* |
| 2666 ** Reclaim all of the memory used by a TableSpec |
| 2667 */ |
| 2668 static void clearTableSpec(TableSpec *p) { |
| 2669 sqlite3_free(p->azColumn); |
| 2670 sqlite3_free(p->azContentColumn); |
| 2671 sqlite3_free(p->azTokenizer); |
| 2672 } |
| 2673 |
| 2674 /* Parse a CREATE VIRTUAL TABLE statement, which looks like this: |
| 2675 * |
| 2676 * CREATE VIRTUAL TABLE email |
| 2677 * USING fts2(subject, body, tokenize mytokenizer(myarg)) |
| 2678 * |
| 2679 * We return parsed information in a TableSpec structure. |
| 2680 * |
| 2681 */ |
| 2682 static int parseSpec(TableSpec *pSpec, int argc, const char *const*argv, |
| 2683 char**pzErr){ |
| 2684 int i, n; |
| 2685 char *z, *zDummy; |
| 2686 char **azArg; |
| 2687 const char *zTokenizer = 0; /* argv[] entry describing the tokenizer */ |
| 2688 |
| 2689 assert( argc>=3 ); |
| 2690 /* Current interface: |
| 2691 ** argv[0] - module name |
| 2692 ** argv[1] - database name |
| 2693 ** argv[2] - table name |
| 2694 ** argv[3..] - columns, optionally followed by tokenizer specification |
| 2695 ** and snippet delimiters specification. |
| 2696 */ |
| 2697 |
| 2698 /* Make a copy of the complete argv[][] array in a single allocation. |
| 2699 ** The argv[][] array is read-only and transient. We can write to the |
| 2700 ** copy in order to modify things and the copy is persistent. |
| 2701 */ |
| 2702 CLEAR(pSpec); |
| 2703 for(i=n=0; i<argc; i++){ |
| 2704 n += strlen(argv[i]) + 1; |
| 2705 } |
| 2706 azArg = sqlite3_malloc( sizeof(char*)*argc + n ); |
| 2707 if( azArg==0 ){ |
| 2708 return SQLITE_NOMEM; |
| 2709 } |
| 2710 z = (char*)&azArg[argc]; |
| 2711 for(i=0; i<argc; i++){ |
| 2712 azArg[i] = z; |
| 2713 strcpy(z, argv[i]); |
| 2714 z += strlen(z)+1; |
| 2715 } |
| 2716 |
| 2717 /* Identify the column names and the tokenizer and delimiter arguments |
| 2718 ** in the argv[][] array. |
| 2719 */ |
| 2720 pSpec->zDb = azArg[1]; |
| 2721 pSpec->zName = azArg[2]; |
| 2722 pSpec->nColumn = 0; |
| 2723 pSpec->azColumn = azArg; |
| 2724 zTokenizer = "tokenize simple"; |
| 2725 for(i=3; i<argc; ++i){ |
| 2726 if( startsWith(azArg[i],"tokenize") ){ |
| 2727 zTokenizer = azArg[i]; |
| 2728 }else{ |
| 2729 z = azArg[pSpec->nColumn] = firstToken(azArg[i], &zDummy); |
| 2730 pSpec->nColumn++; |
| 2731 } |
| 2732 } |
| 2733 if( pSpec->nColumn==0 ){ |
| 2734 azArg[0] = "content"; |
| 2735 pSpec->nColumn = 1; |
| 2736 } |
| 2737 |
| 2738 /* |
| 2739 ** Construct the list of content column names. |
| 2740 ** |
| 2741 ** Each content column name will be of the form cNNAAAA |
| 2742 ** where NN is the column number and AAAA is the sanitized |
| 2743 ** column name. "sanitized" means that special characters are |
| 2744 ** converted to "_". The cNN prefix guarantees that all column |
| 2745 ** names are unique. |
| 2746 ** |
| 2747 ** The AAAA suffix is not strictly necessary. It is included |
| 2748 ** for the convenience of people who might examine the generated |
| 2749 ** %_content table and wonder what the columns are used for. |
| 2750 */ |
| 2751 pSpec->azContentColumn = sqlite3_malloc( pSpec->nColumn * sizeof(char *) ); |
| 2752 if( pSpec->azContentColumn==0 ){ |
| 2753 clearTableSpec(pSpec); |
| 2754 return SQLITE_NOMEM; |
| 2755 } |
| 2756 for(i=0; i<pSpec->nColumn; i++){ |
| 2757 char *p; |
| 2758 pSpec->azContentColumn[i] = sqlite3_mprintf("c%d%s", i, azArg[i]); |
| 2759 for (p = pSpec->azContentColumn[i]; *p ; ++p) { |
| 2760 if( !safe_isalnum(*p) ) *p = '_'; |
| 2761 } |
| 2762 } |
| 2763 |
| 2764 /* |
| 2765 ** Parse the tokenizer specification string. |
| 2766 */ |
| 2767 pSpec->azTokenizer = tokenizeString(zTokenizer, &n); |
| 2768 tokenListToIdList(pSpec->azTokenizer); |
| 2769 |
| 2770 return SQLITE_OK; |
| 2771 } |
| 2772 |
| 2773 /* |
| 2774 ** Generate a CREATE TABLE statement that describes the schema of |
| 2775 ** the virtual table. Return a pointer to this schema string. |
| 2776 ** |
| 2777 ** Space is obtained from sqlite3_mprintf() and should be freed |
| 2778 ** using sqlite3_free(). |
| 2779 */ |
| 2780 static char *fulltextSchema( |
| 2781 int nColumn, /* Number of columns */ |
| 2782 const char *const* azColumn, /* List of columns */ |
| 2783 const char *zTableName /* Name of the table */ |
| 2784 ){ |
| 2785 int i; |
| 2786 char *zSchema, *zNext; |
| 2787 const char *zSep = "("; |
| 2788 zSchema = sqlite3_mprintf("CREATE TABLE x"); |
| 2789 for(i=0; i<nColumn; i++){ |
| 2790 zNext = sqlite3_mprintf("%s%s%Q", zSchema, zSep, azColumn[i]); |
| 2791 sqlite3_free(zSchema); |
| 2792 zSchema = zNext; |
| 2793 zSep = ","; |
| 2794 } |
| 2795 zNext = sqlite3_mprintf("%s,%Q)", zSchema, zTableName); |
| 2796 sqlite3_free(zSchema); |
| 2797 return zNext; |
| 2798 } |
| 2799 |
| 2800 /* |
| 2801 ** Build a new sqlite3_vtab structure that will describe the |
| 2802 ** fulltext index defined by spec. |
| 2803 */ |
| 2804 static int constructVtab( |
| 2805 sqlite3 *db, /* The SQLite database connection */ |
| 2806 fts2Hash *pHash, /* Hash table containing tokenizers */ |
| 2807 TableSpec *spec, /* Parsed spec information from parseSpec() */ |
| 2808 sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */ |
| 2809 char **pzErr /* Write any error message here */ |
| 2810 ){ |
| 2811 int rc; |
| 2812 int n; |
| 2813 fulltext_vtab *v = 0; |
| 2814 const sqlite3_tokenizer_module *m = NULL; |
| 2815 char *schema; |
| 2816 |
| 2817 char const *zTok; /* Name of tokenizer to use for this fts table */ |
| 2818 int nTok; /* Length of zTok, including nul terminator */ |
| 2819 |
| 2820 v = (fulltext_vtab *) sqlite3_malloc(sizeof(fulltext_vtab)); |
| 2821 if( v==0 ) return SQLITE_NOMEM; |
| 2822 CLEAR(v); |
| 2823 /* sqlite will initialize v->base */ |
| 2824 v->db = db; |
| 2825 v->zDb = spec->zDb; /* Freed when azColumn is freed */ |
| 2826 v->zName = spec->zName; /* Freed when azColumn is freed */ |
| 2827 v->nColumn = spec->nColumn; |
| 2828 v->azContentColumn = spec->azContentColumn; |
| 2829 spec->azContentColumn = 0; |
| 2830 v->azColumn = spec->azColumn; |
| 2831 spec->azColumn = 0; |
| 2832 |
| 2833 if( spec->azTokenizer==0 ){ |
| 2834 return SQLITE_NOMEM; |
| 2835 } |
| 2836 |
| 2837 zTok = spec->azTokenizer[0]; |
| 2838 if( !zTok ){ |
| 2839 zTok = "simple"; |
| 2840 } |
| 2841 nTok = strlen(zTok)+1; |
| 2842 |
| 2843 m = (sqlite3_tokenizer_module *)sqlite3Fts2HashFind(pHash, zTok, nTok); |
| 2844 if( !m ){ |
| 2845 *pzErr = sqlite3_mprintf("unknown tokenizer: %s", spec->azTokenizer[0]); |
| 2846 rc = SQLITE_ERROR; |
| 2847 goto err; |
| 2848 } |
| 2849 |
| 2850 for(n=0; spec->azTokenizer[n]; n++){} |
| 2851 if( n ){ |
| 2852 rc = m->xCreate(n-1, (const char*const*)&spec->azTokenizer[1], |
| 2853 &v->pTokenizer); |
| 2854 }else{ |
| 2855 rc = m->xCreate(0, 0, &v->pTokenizer); |
| 2856 } |
| 2857 if( rc!=SQLITE_OK ) goto err; |
| 2858 v->pTokenizer->pModule = m; |
| 2859 |
| 2860 /* TODO: verify the existence of backing tables foo_content, foo_term */ |
| 2861 |
| 2862 schema = fulltextSchema(v->nColumn, (const char*const*)v->azColumn, |
| 2863 spec->zName); |
| 2864 rc = sqlite3_declare_vtab(db, schema); |
| 2865 sqlite3_free(schema); |
| 2866 if( rc!=SQLITE_OK ) goto err; |
| 2867 |
| 2868 memset(v->pFulltextStatements, 0, sizeof(v->pFulltextStatements)); |
| 2869 |
| 2870 /* Indicate that the buffer is not live. */ |
| 2871 v->nPendingData = -1; |
| 2872 |
| 2873 *ppVTab = &v->base; |
| 2874 TRACE(("FTS2 Connect %p\n", v)); |
| 2875 |
| 2876 return rc; |
| 2877 |
| 2878 err: |
| 2879 fulltext_vtab_destroy(v); |
| 2880 return rc; |
| 2881 } |
| 2882 |
| 2883 static int fulltextConnect( |
| 2884 sqlite3 *db, |
| 2885 void *pAux, |
| 2886 int argc, const char *const*argv, |
| 2887 sqlite3_vtab **ppVTab, |
| 2888 char **pzErr |
| 2889 ){ |
| 2890 TableSpec spec; |
| 2891 int rc = parseSpec(&spec, argc, argv, pzErr); |
| 2892 if( rc!=SQLITE_OK ) return rc; |
| 2893 |
| 2894 rc = constructVtab(db, (fts2Hash *)pAux, &spec, ppVTab, pzErr); |
| 2895 clearTableSpec(&spec); |
| 2896 return rc; |
| 2897 } |
| 2898 |
| 2899 /* The %_content table holds the text of each document, with |
| 2900 ** the rowid used as the docid. |
| 2901 */ |
| 2902 /* TODO(shess) This comment needs elaboration to match the updated |
| 2903 ** code. Work it into the top-of-file comment at that time. |
| 2904 */ |
| 2905 static int fulltextCreate(sqlite3 *db, void *pAux, |
| 2906 int argc, const char * const *argv, |
| 2907 sqlite3_vtab **ppVTab, char **pzErr){ |
| 2908 int rc; |
| 2909 TableSpec spec; |
| 2910 StringBuffer schema; |
| 2911 TRACE(("FTS2 Create\n")); |
| 2912 |
| 2913 rc = parseSpec(&spec, argc, argv, pzErr); |
| 2914 if( rc!=SQLITE_OK ) return rc; |
| 2915 |
| 2916 initStringBuffer(&schema); |
| 2917 append(&schema, "CREATE TABLE %_content("); |
| 2918 appendList(&schema, spec.nColumn, spec.azContentColumn); |
| 2919 append(&schema, ")"); |
| 2920 rc = sql_exec(db, spec.zDb, spec.zName, stringBufferData(&schema)); |
| 2921 stringBufferDestroy(&schema); |
| 2922 if( rc!=SQLITE_OK ) goto out; |
| 2923 |
| 2924 rc = sql_exec(db, spec.zDb, spec.zName, |
| 2925 "create table %_segments(block blob);"); |
| 2926 if( rc!=SQLITE_OK ) goto out; |
| 2927 |
| 2928 rc = sql_exec(db, spec.zDb, spec.zName, |
| 2929 "create table %_segdir(" |
| 2930 " level integer," |
| 2931 " idx integer," |
| 2932 " start_block integer," |
| 2933 " leaves_end_block integer," |
| 2934 " end_block integer," |
| 2935 " root blob," |
| 2936 " primary key(level, idx)" |
| 2937 ");"); |
| 2938 if( rc!=SQLITE_OK ) goto out; |
| 2939 |
| 2940 rc = constructVtab(db, (fts2Hash *)pAux, &spec, ppVTab, pzErr); |
| 2941 |
| 2942 out: |
| 2943 clearTableSpec(&spec); |
| 2944 return rc; |
| 2945 } |
| 2946 |
| 2947 /* Decide how to handle an SQL query. */ |
| 2948 static int fulltextBestIndex(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){ |
| 2949 int i; |
| 2950 TRACE(("FTS2 BestIndex\n")); |
| 2951 |
| 2952 for(i=0; i<pInfo->nConstraint; ++i){ |
| 2953 const struct sqlite3_index_constraint *pConstraint; |
| 2954 pConstraint = &pInfo->aConstraint[i]; |
| 2955 if( pConstraint->usable ) { |
| 2956 if( pConstraint->iColumn==-1 && |
| 2957 pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){ |
| 2958 pInfo->idxNum = QUERY_ROWID; /* lookup by rowid */ |
| 2959 TRACE(("FTS2 QUERY_ROWID\n")); |
| 2960 } else if( pConstraint->iColumn>=0 && |
| 2961 pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){ |
| 2962 /* full-text search */ |
| 2963 pInfo->idxNum = QUERY_FULLTEXT + pConstraint->iColumn; |
| 2964 TRACE(("FTS2 QUERY_FULLTEXT %d\n", pConstraint->iColumn)); |
| 2965 } else continue; |
| 2966 |
| 2967 pInfo->aConstraintUsage[i].argvIndex = 1; |
| 2968 pInfo->aConstraintUsage[i].omit = 1; |
| 2969 |
| 2970 /* An arbitrary value for now. |
| 2971 * TODO: Perhaps rowid matches should be considered cheaper than |
| 2972 * full-text searches. */ |
| 2973 pInfo->estimatedCost = 1.0; |
| 2974 |
| 2975 return SQLITE_OK; |
| 2976 } |
| 2977 } |
| 2978 pInfo->idxNum = QUERY_GENERIC; |
| 2979 return SQLITE_OK; |
| 2980 } |
| 2981 |
| 2982 static int fulltextDisconnect(sqlite3_vtab *pVTab){ |
| 2983 TRACE(("FTS2 Disconnect %p\n", pVTab)); |
| 2984 fulltext_vtab_destroy((fulltext_vtab *)pVTab); |
| 2985 return SQLITE_OK; |
| 2986 } |
| 2987 |
| 2988 static int fulltextDestroy(sqlite3_vtab *pVTab){ |
| 2989 fulltext_vtab *v = (fulltext_vtab *)pVTab; |
| 2990 int rc; |
| 2991 |
| 2992 TRACE(("FTS2 Destroy %p\n", pVTab)); |
| 2993 rc = sql_exec(v->db, v->zDb, v->zName, |
| 2994 "drop table if exists %_content;" |
| 2995 "drop table if exists %_segments;" |
| 2996 "drop table if exists %_segdir;" |
| 2997 ); |
| 2998 if( rc!=SQLITE_OK ) return rc; |
| 2999 |
| 3000 fulltext_vtab_destroy((fulltext_vtab *)pVTab); |
| 3001 return SQLITE_OK; |
| 3002 } |
| 3003 |
| 3004 static int fulltextOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ |
| 3005 fulltext_cursor *c; |
| 3006 |
| 3007 c = (fulltext_cursor *) sqlite3_malloc(sizeof(fulltext_cursor)); |
| 3008 if( c ){ |
| 3009 memset(c, 0, sizeof(fulltext_cursor)); |
| 3010 /* sqlite will initialize c->base */ |
| 3011 *ppCursor = &c->base; |
| 3012 TRACE(("FTS2 Open %p: %p\n", pVTab, c)); |
| 3013 return SQLITE_OK; |
| 3014 }else{ |
| 3015 return SQLITE_NOMEM; |
| 3016 } |
| 3017 } |
| 3018 |
| 3019 |
| 3020 /* Free all of the dynamically allocated memory held by *q |
| 3021 */ |
| 3022 static void queryClear(Query *q){ |
| 3023 int i; |
| 3024 for(i = 0; i < q->nTerms; ++i){ |
| 3025 sqlite3_free(q->pTerms[i].pTerm); |
| 3026 } |
| 3027 sqlite3_free(q->pTerms); |
| 3028 CLEAR(q); |
| 3029 } |
| 3030 |
| 3031 /* Free all of the dynamically allocated memory held by the |
| 3032 ** Snippet |
| 3033 */ |
| 3034 static void snippetClear(Snippet *p){ |
| 3035 sqlite3_free(p->aMatch); |
| 3036 sqlite3_free(p->zOffset); |
| 3037 sqlite3_free(p->zSnippet); |
| 3038 CLEAR(p); |
| 3039 } |
| 3040 /* |
| 3041 ** Append a single entry to the p->aMatch[] log. |
| 3042 */ |
| 3043 static void snippetAppendMatch( |
| 3044 Snippet *p, /* Append the entry to this snippet */ |
| 3045 int iCol, int iTerm, /* The column and query term */ |
| 3046 int iStart, int nByte /* Offset and size of the match */ |
| 3047 ){ |
| 3048 int i; |
| 3049 struct snippetMatch *pMatch; |
| 3050 if( p->nMatch+1>=p->nAlloc ){ |
| 3051 p->nAlloc = p->nAlloc*2 + 10; |
| 3052 p->aMatch = sqlite3_realloc(p->aMatch, p->nAlloc*sizeof(p->aMatch[0]) ); |
| 3053 if( p->aMatch==0 ){ |
| 3054 p->nMatch = 0; |
| 3055 p->nAlloc = 0; |
| 3056 return; |
| 3057 } |
| 3058 } |
| 3059 i = p->nMatch++; |
| 3060 pMatch = &p->aMatch[i]; |
| 3061 pMatch->iCol = iCol; |
| 3062 pMatch->iTerm = iTerm; |
| 3063 pMatch->iStart = iStart; |
| 3064 pMatch->nByte = nByte; |
| 3065 } |
| 3066 |
| 3067 /* |
| 3068 ** Sizing information for the circular buffer used in snippetOffsetsOfColumn() |
| 3069 */ |
| 3070 #define FTS2_ROTOR_SZ (32) |
| 3071 #define FTS2_ROTOR_MASK (FTS2_ROTOR_SZ-1) |
| 3072 |
| 3073 /* |
| 3074 ** Add entries to pSnippet->aMatch[] for every match that occurs against |
| 3075 ** document zDoc[0..nDoc-1] which is stored in column iColumn. |
| 3076 */ |
| 3077 static void snippetOffsetsOfColumn( |
| 3078 Query *pQuery, |
| 3079 Snippet *pSnippet, |
| 3080 int iColumn, |
| 3081 const char *zDoc, |
| 3082 int nDoc |
| 3083 ){ |
| 3084 const sqlite3_tokenizer_module *pTModule; /* The tokenizer module */ |
| 3085 sqlite3_tokenizer *pTokenizer; /* The specific tokenizer */ |
| 3086 sqlite3_tokenizer_cursor *pTCursor; /* Tokenizer cursor */ |
| 3087 fulltext_vtab *pVtab; /* The full text index */ |
| 3088 int nColumn; /* Number of columns in the index */ |
| 3089 const QueryTerm *aTerm; /* Query string terms */ |
| 3090 int nTerm; /* Number of query string terms */ |
| 3091 int i, j; /* Loop counters */ |
| 3092 int rc; /* Return code */ |
| 3093 unsigned int match, prevMatch; /* Phrase search bitmasks */ |
| 3094 const char *zToken; /* Next token from the tokenizer */ |
| 3095 int nToken; /* Size of zToken */ |
| 3096 int iBegin, iEnd, iPos; /* Offsets of beginning and end */ |
| 3097 |
| 3098 /* The following variables keep a circular buffer of the last |
| 3099 ** few tokens */ |
| 3100 unsigned int iRotor = 0; /* Index of current token */ |
| 3101 int iRotorBegin[FTS2_ROTOR_SZ]; /* Beginning offset of token */ |
| 3102 int iRotorLen[FTS2_ROTOR_SZ]; /* Length of token */ |
| 3103 |
| 3104 pVtab = pQuery->pFts; |
| 3105 nColumn = pVtab->nColumn; |
| 3106 pTokenizer = pVtab->pTokenizer; |
| 3107 pTModule = pTokenizer->pModule; |
| 3108 rc = pTModule->xOpen(pTokenizer, zDoc, nDoc, &pTCursor); |
| 3109 if( rc ) return; |
| 3110 pTCursor->pTokenizer = pTokenizer; |
| 3111 aTerm = pQuery->pTerms; |
| 3112 nTerm = pQuery->nTerms; |
| 3113 if( nTerm>=FTS2_ROTOR_SZ ){ |
| 3114 nTerm = FTS2_ROTOR_SZ - 1; |
| 3115 } |
| 3116 prevMatch = 0; |
| 3117 while(1){ |
| 3118 rc = pTModule->xNext(pTCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos); |
| 3119 if( rc ) break; |
| 3120 iRotorBegin[iRotor&FTS2_ROTOR_MASK] = iBegin; |
| 3121 iRotorLen[iRotor&FTS2_ROTOR_MASK] = iEnd-iBegin; |
| 3122 match = 0; |
| 3123 for(i=0; i<nTerm; i++){ |
| 3124 int iCol; |
| 3125 iCol = aTerm[i].iColumn; |
| 3126 if( iCol>=0 && iCol<nColumn && iCol!=iColumn ) continue; |
| 3127 if( aTerm[i].nTerm>nToken ) continue; |
| 3128 if( !aTerm[i].isPrefix && aTerm[i].nTerm<nToken ) continue; |
| 3129 assert( aTerm[i].nTerm<=nToken ); |
| 3130 if( memcmp(aTerm[i].pTerm, zToken, aTerm[i].nTerm) ) continue; |
| 3131 if( aTerm[i].iPhrase>1 && (prevMatch & (1<<i))==0 ) continue; |
| 3132 match |= 1<<i; |
| 3133 if( i==nTerm-1 || aTerm[i+1].iPhrase==1 ){ |
| 3134 for(j=aTerm[i].iPhrase-1; j>=0; j--){ |
| 3135 int k = (iRotor-j) & FTS2_ROTOR_MASK; |
| 3136 snippetAppendMatch(pSnippet, iColumn, i-j, |
| 3137 iRotorBegin[k], iRotorLen[k]); |
| 3138 } |
| 3139 } |
| 3140 } |
| 3141 prevMatch = match<<1; |
| 3142 iRotor++; |
| 3143 } |
| 3144 pTModule->xClose(pTCursor); |
| 3145 } |
| 3146 |
| 3147 |
| 3148 /* |
| 3149 ** Compute all offsets for the current row of the query. |
| 3150 ** If the offsets have already been computed, this routine is a no-op. |
| 3151 */ |
| 3152 static void snippetAllOffsets(fulltext_cursor *p){ |
| 3153 int nColumn; |
| 3154 int iColumn, i; |
| 3155 int iFirst, iLast; |
| 3156 fulltext_vtab *pFts; |
| 3157 |
| 3158 if( p->snippet.nMatch ) return; |
| 3159 if( p->q.nTerms==0 ) return; |
| 3160 pFts = p->q.pFts; |
| 3161 nColumn = pFts->nColumn; |
| 3162 iColumn = (p->iCursorType - QUERY_FULLTEXT); |
| 3163 if( iColumn<0 || iColumn>=nColumn ){ |
| 3164 iFirst = 0; |
| 3165 iLast = nColumn-1; |
| 3166 }else{ |
| 3167 iFirst = iColumn; |
| 3168 iLast = iColumn; |
| 3169 } |
| 3170 for(i=iFirst; i<=iLast; i++){ |
| 3171 const char *zDoc; |
| 3172 int nDoc; |
| 3173 zDoc = (const char*)sqlite3_column_text(p->pStmt, i+1); |
| 3174 nDoc = sqlite3_column_bytes(p->pStmt, i+1); |
| 3175 snippetOffsetsOfColumn(&p->q, &p->snippet, i, zDoc, nDoc); |
| 3176 } |
| 3177 } |
| 3178 |
| 3179 /* |
| 3180 ** Convert the information in the aMatch[] array of the snippet |
| 3181 ** into the string zOffset[0..nOffset-1]. |
| 3182 */ |
| 3183 static void snippetOffsetText(Snippet *p){ |
| 3184 int i; |
| 3185 int cnt = 0; |
| 3186 StringBuffer sb; |
| 3187 char zBuf[200]; |
| 3188 if( p->zOffset ) return; |
| 3189 initStringBuffer(&sb); |
| 3190 for(i=0; i<p->nMatch; i++){ |
| 3191 struct snippetMatch *pMatch = &p->aMatch[i]; |
| 3192 zBuf[0] = ' '; |
| 3193 sqlite3_snprintf(sizeof(zBuf)-1, &zBuf[cnt>0], "%d %d %d %d", |
| 3194 pMatch->iCol, pMatch->iTerm, pMatch->iStart, pMatch->nByte); |
| 3195 append(&sb, zBuf); |
| 3196 cnt++; |
| 3197 } |
| 3198 p->zOffset = stringBufferData(&sb); |
| 3199 p->nOffset = stringBufferLength(&sb); |
| 3200 } |
| 3201 |
| 3202 /* |
| 3203 ** zDoc[0..nDoc-1] is phrase of text. aMatch[0..nMatch-1] are a set |
| 3204 ** of matching words some of which might be in zDoc. zDoc is column |
| 3205 ** number iCol. |
| 3206 ** |
| 3207 ** iBreak is suggested spot in zDoc where we could begin or end an |
| 3208 ** excerpt. Return a value similar to iBreak but possibly adjusted |
| 3209 ** to be a little left or right so that the break point is better. |
| 3210 */ |
| 3211 static int wordBoundary( |
| 3212 int iBreak, /* The suggested break point */ |
| 3213 const char *zDoc, /* Document text */ |
| 3214 int nDoc, /* Number of bytes in zDoc[] */ |
| 3215 struct snippetMatch *aMatch, /* Matching words */ |
| 3216 int nMatch, /* Number of entries in aMatch[] */ |
| 3217 int iCol /* The column number for zDoc[] */ |
| 3218 ){ |
| 3219 int i; |
| 3220 if( iBreak<=10 ){ |
| 3221 return 0; |
| 3222 } |
| 3223 if( iBreak>=nDoc-10 ){ |
| 3224 return nDoc; |
| 3225 } |
| 3226 for(i=0; i<nMatch && aMatch[i].iCol<iCol; i++){} |
| 3227 while( i<nMatch && aMatch[i].iStart+aMatch[i].nByte<iBreak ){ i++; } |
| 3228 if( i<nMatch ){ |
| 3229 if( aMatch[i].iStart<iBreak+10 ){ |
| 3230 return aMatch[i].iStart; |
| 3231 } |
| 3232 if( i>0 && aMatch[i-1].iStart+aMatch[i-1].nByte>=iBreak ){ |
| 3233 return aMatch[i-1].iStart; |
| 3234 } |
| 3235 } |
| 3236 for(i=1; i<=10; i++){ |
| 3237 if( safe_isspace(zDoc[iBreak-i]) ){ |
| 3238 return iBreak - i + 1; |
| 3239 } |
| 3240 if( safe_isspace(zDoc[iBreak+i]) ){ |
| 3241 return iBreak + i + 1; |
| 3242 } |
| 3243 } |
| 3244 return iBreak; |
| 3245 } |
| 3246 |
| 3247 |
| 3248 |
| 3249 /* |
| 3250 ** Allowed values for Snippet.aMatch[].snStatus |
| 3251 */ |
| 3252 #define SNIPPET_IGNORE 0 /* It is ok to omit this match from the snippet */ |
| 3253 #define SNIPPET_DESIRED 1 /* We want to include this match in the snippet */ |
| 3254 |
| 3255 /* |
| 3256 ** Generate the text of a snippet. |
| 3257 */ |
| 3258 static void snippetText( |
| 3259 fulltext_cursor *pCursor, /* The cursor we need the snippet for */ |
| 3260 const char *zStartMark, /* Markup to appear before each match */ |
| 3261 const char *zEndMark, /* Markup to appear after each match */ |
| 3262 const char *zEllipsis /* Ellipsis mark */ |
| 3263 ){ |
| 3264 int i, j; |
| 3265 struct snippetMatch *aMatch; |
| 3266 int nMatch; |
| 3267 int nDesired; |
| 3268 StringBuffer sb; |
| 3269 int tailCol; |
| 3270 int tailOffset; |
| 3271 int iCol; |
| 3272 int nDoc; |
| 3273 const char *zDoc; |
| 3274 int iStart, iEnd; |
| 3275 int tailEllipsis = 0; |
| 3276 int iMatch; |
| 3277 |
| 3278 |
| 3279 sqlite3_free(pCursor->snippet.zSnippet); |
| 3280 pCursor->snippet.zSnippet = 0; |
| 3281 aMatch = pCursor->snippet.aMatch; |
| 3282 nMatch = pCursor->snippet.nMatch; |
| 3283 initStringBuffer(&sb); |
| 3284 |
| 3285 for(i=0; i<nMatch; i++){ |
| 3286 aMatch[i].snStatus = SNIPPET_IGNORE; |
| 3287 } |
| 3288 nDesired = 0; |
| 3289 for(i=0; i<pCursor->q.nTerms; i++){ |
| 3290 for(j=0; j<nMatch; j++){ |
| 3291 if( aMatch[j].iTerm==i ){ |
| 3292 aMatch[j].snStatus = SNIPPET_DESIRED; |
| 3293 nDesired++; |
| 3294 break; |
| 3295 } |
| 3296 } |
| 3297 } |
| 3298 |
| 3299 iMatch = 0; |
| 3300 tailCol = -1; |
| 3301 tailOffset = 0; |
| 3302 for(i=0; i<nMatch && nDesired>0; i++){ |
| 3303 if( aMatch[i].snStatus!=SNIPPET_DESIRED ) continue; |
| 3304 nDesired--; |
| 3305 iCol = aMatch[i].iCol; |
| 3306 zDoc = (const char*)sqlite3_column_text(pCursor->pStmt, iCol+1); |
| 3307 nDoc = sqlite3_column_bytes(pCursor->pStmt, iCol+1); |
| 3308 iStart = aMatch[i].iStart - 40; |
| 3309 iStart = wordBoundary(iStart, zDoc, nDoc, aMatch, nMatch, iCol); |
| 3310 if( iStart<=10 ){ |
| 3311 iStart = 0; |
| 3312 } |
| 3313 if( iCol==tailCol && iStart<=tailOffset+20 ){ |
| 3314 iStart = tailOffset; |
| 3315 } |
| 3316 if( (iCol!=tailCol && tailCol>=0) || iStart!=tailOffset ){ |
| 3317 trimWhiteSpace(&sb); |
| 3318 appendWhiteSpace(&sb); |
| 3319 append(&sb, zEllipsis); |
| 3320 appendWhiteSpace(&sb); |
| 3321 } |
| 3322 iEnd = aMatch[i].iStart + aMatch[i].nByte + 40; |
| 3323 iEnd = wordBoundary(iEnd, zDoc, nDoc, aMatch, nMatch, iCol); |
| 3324 if( iEnd>=nDoc-10 ){ |
| 3325 iEnd = nDoc; |
| 3326 tailEllipsis = 0; |
| 3327 }else{ |
| 3328 tailEllipsis = 1; |
| 3329 } |
| 3330 while( iMatch<nMatch && aMatch[iMatch].iCol<iCol ){ iMatch++; } |
| 3331 while( iStart<iEnd ){ |
| 3332 while( iMatch<nMatch && aMatch[iMatch].iStart<iStart |
| 3333 && aMatch[iMatch].iCol<=iCol ){ |
| 3334 iMatch++; |
| 3335 } |
| 3336 if( iMatch<nMatch && aMatch[iMatch].iStart<iEnd |
| 3337 && aMatch[iMatch].iCol==iCol ){ |
| 3338 nappend(&sb, &zDoc[iStart], aMatch[iMatch].iStart - iStart); |
| 3339 iStart = aMatch[iMatch].iStart; |
| 3340 append(&sb, zStartMark); |
| 3341 nappend(&sb, &zDoc[iStart], aMatch[iMatch].nByte); |
| 3342 append(&sb, zEndMark); |
| 3343 iStart += aMatch[iMatch].nByte; |
| 3344 for(j=iMatch+1; j<nMatch; j++){ |
| 3345 if( aMatch[j].iTerm==aMatch[iMatch].iTerm |
| 3346 && aMatch[j].snStatus==SNIPPET_DESIRED ){ |
| 3347 nDesired--; |
| 3348 aMatch[j].snStatus = SNIPPET_IGNORE; |
| 3349 } |
| 3350 } |
| 3351 }else{ |
| 3352 nappend(&sb, &zDoc[iStart], iEnd - iStart); |
| 3353 iStart = iEnd; |
| 3354 } |
| 3355 } |
| 3356 tailCol = iCol; |
| 3357 tailOffset = iEnd; |
| 3358 } |
| 3359 trimWhiteSpace(&sb); |
| 3360 if( tailEllipsis ){ |
| 3361 appendWhiteSpace(&sb); |
| 3362 append(&sb, zEllipsis); |
| 3363 } |
| 3364 pCursor->snippet.zSnippet = stringBufferData(&sb); |
| 3365 pCursor->snippet.nSnippet = stringBufferLength(&sb); |
| 3366 } |
| 3367 |
| 3368 |
| 3369 /* |
| 3370 ** Close the cursor. For additional information see the documentation |
| 3371 ** on the xClose method of the virtual table interface. |
| 3372 */ |
| 3373 static int fulltextClose(sqlite3_vtab_cursor *pCursor){ |
| 3374 fulltext_cursor *c = (fulltext_cursor *) pCursor; |
| 3375 TRACE(("FTS2 Close %p\n", c)); |
| 3376 sqlite3_finalize(c->pStmt); |
| 3377 queryClear(&c->q); |
| 3378 snippetClear(&c->snippet); |
| 3379 if( c->result.nData!=0 ) dlrDestroy(&c->reader); |
| 3380 dataBufferDestroy(&c->result); |
| 3381 sqlite3_free(c); |
| 3382 return SQLITE_OK; |
| 3383 } |
| 3384 |
| 3385 static int fulltextNext(sqlite3_vtab_cursor *pCursor){ |
| 3386 fulltext_cursor *c = (fulltext_cursor *) pCursor; |
| 3387 int rc; |
| 3388 |
| 3389 TRACE(("FTS2 Next %p\n", pCursor)); |
| 3390 snippetClear(&c->snippet); |
| 3391 if( c->iCursorType < QUERY_FULLTEXT ){ |
| 3392 /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */ |
| 3393 rc = sqlite3_step(c->pStmt); |
| 3394 switch( rc ){ |
| 3395 case SQLITE_ROW: |
| 3396 c->eof = 0; |
| 3397 return SQLITE_OK; |
| 3398 case SQLITE_DONE: |
| 3399 c->eof = 1; |
| 3400 return SQLITE_OK; |
| 3401 default: |
| 3402 c->eof = 1; |
| 3403 return rc; |
| 3404 } |
| 3405 } else { /* full-text query */ |
| 3406 rc = sqlite3_reset(c->pStmt); |
| 3407 if( rc!=SQLITE_OK ) return rc; |
| 3408 |
| 3409 if( c->result.nData==0 || dlrAtEnd(&c->reader) ){ |
| 3410 c->eof = 1; |
| 3411 return SQLITE_OK; |
| 3412 } |
| 3413 rc = sqlite3_bind_int64(c->pStmt, 1, dlrDocid(&c->reader)); |
| 3414 dlrStep(&c->reader); |
| 3415 if( rc!=SQLITE_OK ) return rc; |
| 3416 /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */ |
| 3417 rc = sqlite3_step(c->pStmt); |
| 3418 if( rc==SQLITE_ROW ){ /* the case we expect */ |
| 3419 c->eof = 0; |
| 3420 return SQLITE_OK; |
| 3421 } |
| 3422 /* an error occurred; abort */ |
| 3423 return rc==SQLITE_DONE ? SQLITE_ERROR : rc; |
| 3424 } |
| 3425 } |
| 3426 |
| 3427 |
| 3428 /* TODO(shess) If we pushed LeafReader to the top of the file, or to |
| 3429 ** another file, term_select() could be pushed above |
| 3430 ** docListOfTerm(). |
| 3431 */ |
| 3432 static int termSelect(fulltext_vtab *v, int iColumn, |
| 3433 const char *pTerm, int nTerm, int isPrefix, |
| 3434 DocListType iType, DataBuffer *out); |
| 3435 |
| 3436 /* Return a DocList corresponding to the query term *pTerm. If *pTerm |
| 3437 ** is the first term of a phrase query, go ahead and evaluate the phrase |
| 3438 ** query and return the doclist for the entire phrase query. |
| 3439 ** |
| 3440 ** The resulting DL_DOCIDS doclist is stored in pResult, which is |
| 3441 ** overwritten. |
| 3442 */ |
| 3443 static int docListOfTerm( |
| 3444 fulltext_vtab *v, /* The full text index */ |
| 3445 int iColumn, /* column to restrict to. No restriction if >=nColumn */ |
| 3446 QueryTerm *pQTerm, /* Term we are looking for, or 1st term of a phrase */ |
| 3447 DataBuffer *pResult /* Write the result here */ |
| 3448 ){ |
| 3449 DataBuffer left, right, new; |
| 3450 int i, rc; |
| 3451 |
| 3452 /* No phrase search if no position info. */ |
| 3453 assert( pQTerm->nPhrase==0 || DL_DEFAULT!=DL_DOCIDS ); |
| 3454 |
| 3455 /* This code should never be called with buffered updates. */ |
| 3456 assert( v->nPendingData<0 ); |
| 3457 |
| 3458 dataBufferInit(&left, 0); |
| 3459 rc = termSelect(v, iColumn, pQTerm->pTerm, pQTerm->nTerm, pQTerm->isPrefix, |
| 3460 0<pQTerm->nPhrase ? DL_POSITIONS : DL_DOCIDS, &left); |
| 3461 if( rc ) return rc; |
| 3462 for(i=1; i<=pQTerm->nPhrase && left.nData>0; i++){ |
| 3463 dataBufferInit(&right, 0); |
| 3464 rc = termSelect(v, iColumn, pQTerm[i].pTerm, pQTerm[i].nTerm, |
| 3465 pQTerm[i].isPrefix, DL_POSITIONS, &right); |
| 3466 if( rc ){ |
| 3467 dataBufferDestroy(&left); |
| 3468 return rc; |
| 3469 } |
| 3470 dataBufferInit(&new, 0); |
| 3471 docListPhraseMerge(left.pData, left.nData, right.pData, right.nData, |
| 3472 i<pQTerm->nPhrase ? DL_POSITIONS : DL_DOCIDS, &new); |
| 3473 dataBufferDestroy(&left); |
| 3474 dataBufferDestroy(&right); |
| 3475 left = new; |
| 3476 } |
| 3477 *pResult = left; |
| 3478 return SQLITE_OK; |
| 3479 } |
| 3480 |
| 3481 /* Add a new term pTerm[0..nTerm-1] to the query *q. |
| 3482 */ |
| 3483 static void queryAdd(Query *q, const char *pTerm, int nTerm){ |
| 3484 QueryTerm *t; |
| 3485 ++q->nTerms; |
| 3486 q->pTerms = sqlite3_realloc(q->pTerms, q->nTerms * sizeof(q->pTerms[0])); |
| 3487 if( q->pTerms==0 ){ |
| 3488 q->nTerms = 0; |
| 3489 return; |
| 3490 } |
| 3491 t = &q->pTerms[q->nTerms - 1]; |
| 3492 CLEAR(t); |
| 3493 t->pTerm = sqlite3_malloc(nTerm+1); |
| 3494 memcpy(t->pTerm, pTerm, nTerm); |
| 3495 t->pTerm[nTerm] = 0; |
| 3496 t->nTerm = nTerm; |
| 3497 t->isOr = q->nextIsOr; |
| 3498 t->isPrefix = 0; |
| 3499 q->nextIsOr = 0; |
| 3500 t->iColumn = q->nextColumn; |
| 3501 q->nextColumn = q->dfltColumn; |
| 3502 } |
| 3503 |
| 3504 /* |
| 3505 ** Check to see if the string zToken[0...nToken-1] matches any |
| 3506 ** column name in the virtual table. If it does, |
| 3507 ** return the zero-indexed column number. If not, return -1. |
| 3508 */ |
| 3509 static int checkColumnSpecifier( |
| 3510 fulltext_vtab *pVtab, /* The virtual table */ |
| 3511 const char *zToken, /* Text of the token */ |
| 3512 int nToken /* Number of characters in the token */ |
| 3513 ){ |
| 3514 int i; |
| 3515 for(i=0; i<pVtab->nColumn; i++){ |
| 3516 if( memcmp(pVtab->azColumn[i], zToken, nToken)==0 |
| 3517 && pVtab->azColumn[i][nToken]==0 ){ |
| 3518 return i; |
| 3519 } |
| 3520 } |
| 3521 return -1; |
| 3522 } |
| 3523 |
| 3524 /* |
| 3525 ** Parse the text at pSegment[0..nSegment-1]. Add additional terms |
| 3526 ** to the query being assemblied in pQuery. |
| 3527 ** |
| 3528 ** inPhrase is true if pSegment[0..nSegement-1] is contained within |
| 3529 ** double-quotes. If inPhrase is true, then the first term |
| 3530 ** is marked with the number of terms in the phrase less one and |
| 3531 ** OR and "-" syntax is ignored. If inPhrase is false, then every |
| 3532 ** term found is marked with nPhrase=0 and OR and "-" syntax is significant. |
| 3533 */ |
| 3534 static int tokenizeSegment( |
| 3535 sqlite3_tokenizer *pTokenizer, /* The tokenizer to use */ |
| 3536 const char *pSegment, int nSegment, /* Query expression being parsed */ |
| 3537 int inPhrase, /* True if within "..." */ |
| 3538 Query *pQuery /* Append results here */ |
| 3539 ){ |
| 3540 const sqlite3_tokenizer_module *pModule = pTokenizer->pModule; |
| 3541 sqlite3_tokenizer_cursor *pCursor; |
| 3542 int firstIndex = pQuery->nTerms; |
| 3543 int iCol; |
| 3544 int nTerm = 1; |
| 3545 |
| 3546 int rc = pModule->xOpen(pTokenizer, pSegment, nSegment, &pCursor); |
| 3547 if( rc!=SQLITE_OK ) return rc; |
| 3548 pCursor->pTokenizer = pTokenizer; |
| 3549 |
| 3550 while( 1 ){ |
| 3551 const char *pToken; |
| 3552 int nToken, iBegin, iEnd, iPos; |
| 3553 |
| 3554 rc = pModule->xNext(pCursor, |
| 3555 &pToken, &nToken, |
| 3556 &iBegin, &iEnd, &iPos); |
| 3557 if( rc!=SQLITE_OK ) break; |
| 3558 if( !inPhrase && |
| 3559 pSegment[iEnd]==':' && |
| 3560 (iCol = checkColumnSpecifier(pQuery->pFts, pToken, nToken))>=0 ){ |
| 3561 pQuery->nextColumn = iCol; |
| 3562 continue; |
| 3563 } |
| 3564 if( !inPhrase && pQuery->nTerms>0 && nToken==2 |
| 3565 && pSegment[iBegin]=='O' && pSegment[iBegin+1]=='R' ){ |
| 3566 pQuery->nextIsOr = 1; |
| 3567 continue; |
| 3568 } |
| 3569 queryAdd(pQuery, pToken, nToken); |
| 3570 if( !inPhrase && iBegin>0 && pSegment[iBegin-1]=='-' ){ |
| 3571 pQuery->pTerms[pQuery->nTerms-1].isNot = 1; |
| 3572 } |
| 3573 if( iEnd<nSegment && pSegment[iEnd]=='*' ){ |
| 3574 pQuery->pTerms[pQuery->nTerms-1].isPrefix = 1; |
| 3575 } |
| 3576 pQuery->pTerms[pQuery->nTerms-1].iPhrase = nTerm; |
| 3577 if( inPhrase ){ |
| 3578 nTerm++; |
| 3579 } |
| 3580 } |
| 3581 |
| 3582 if( inPhrase && pQuery->nTerms>firstIndex ){ |
| 3583 pQuery->pTerms[firstIndex].nPhrase = pQuery->nTerms - firstIndex - 1; |
| 3584 } |
| 3585 |
| 3586 return pModule->xClose(pCursor); |
| 3587 } |
| 3588 |
| 3589 /* Parse a query string, yielding a Query object pQuery. |
| 3590 ** |
| 3591 ** The calling function will need to queryClear() to clean up |
| 3592 ** the dynamically allocated memory held by pQuery. |
| 3593 */ |
| 3594 static int parseQuery( |
| 3595 fulltext_vtab *v, /* The fulltext index */ |
| 3596 const char *zInput, /* Input text of the query string */ |
| 3597 int nInput, /* Size of the input text */ |
| 3598 int dfltColumn, /* Default column of the index to match against */ |
| 3599 Query *pQuery /* Write the parse results here. */ |
| 3600 ){ |
| 3601 int iInput, inPhrase = 0; |
| 3602 |
| 3603 if( zInput==0 ) nInput = 0; |
| 3604 if( nInput<0 ) nInput = strlen(zInput); |
| 3605 pQuery->nTerms = 0; |
| 3606 pQuery->pTerms = NULL; |
| 3607 pQuery->nextIsOr = 0; |
| 3608 pQuery->nextColumn = dfltColumn; |
| 3609 pQuery->dfltColumn = dfltColumn; |
| 3610 pQuery->pFts = v; |
| 3611 |
| 3612 for(iInput=0; iInput<nInput; ++iInput){ |
| 3613 int i; |
| 3614 for(i=iInput; i<nInput && zInput[i]!='"'; ++i){} |
| 3615 if( i>iInput ){ |
| 3616 tokenizeSegment(v->pTokenizer, zInput+iInput, i-iInput, inPhrase, |
| 3617 pQuery); |
| 3618 } |
| 3619 iInput = i; |
| 3620 if( i<nInput ){ |
| 3621 assert( zInput[i]=='"' ); |
| 3622 inPhrase = !inPhrase; |
| 3623 } |
| 3624 } |
| 3625 |
| 3626 if( inPhrase ){ |
| 3627 /* unmatched quote */ |
| 3628 queryClear(pQuery); |
| 3629 return SQLITE_ERROR; |
| 3630 } |
| 3631 return SQLITE_OK; |
| 3632 } |
| 3633 |
| 3634 /* TODO(shess) Refactor the code to remove this forward decl. */ |
| 3635 static int flushPendingTerms(fulltext_vtab *v); |
| 3636 |
| 3637 /* Perform a full-text query using the search expression in |
| 3638 ** zInput[0..nInput-1]. Return a list of matching documents |
| 3639 ** in pResult. |
| 3640 ** |
| 3641 ** Queries must match column iColumn. Or if iColumn>=nColumn |
| 3642 ** they are allowed to match against any column. |
| 3643 */ |
| 3644 static int fulltextQuery( |
| 3645 fulltext_vtab *v, /* The full text index */ |
| 3646 int iColumn, /* Match against this column by default */ |
| 3647 const char *zInput, /* The query string */ |
| 3648 int nInput, /* Number of bytes in zInput[] */ |
| 3649 DataBuffer *pResult, /* Write the result doclist here */ |
| 3650 Query *pQuery /* Put parsed query string here */ |
| 3651 ){ |
| 3652 int i, iNext, rc; |
| 3653 DataBuffer left, right, or, new; |
| 3654 int nNot = 0; |
| 3655 QueryTerm *aTerm; |
| 3656 |
| 3657 /* TODO(shess) Instead of flushing pendingTerms, we could query for |
| 3658 ** the relevant term and merge the doclist into what we receive from |
| 3659 ** the database. Wait and see if this is a common issue, first. |
| 3660 ** |
| 3661 ** A good reason not to flush is to not generate update-related |
| 3662 ** error codes from here. |
| 3663 */ |
| 3664 |
| 3665 /* Flush any buffered updates before executing the query. */ |
| 3666 rc = flushPendingTerms(v); |
| 3667 if( rc!=SQLITE_OK ) return rc; |
| 3668 |
| 3669 /* TODO(shess) I think that the queryClear() calls below are not |
| 3670 ** necessary, because fulltextClose() already clears the query. |
| 3671 */ |
| 3672 rc = parseQuery(v, zInput, nInput, iColumn, pQuery); |
| 3673 if( rc!=SQLITE_OK ) return rc; |
| 3674 |
| 3675 /* Empty or NULL queries return no results. */ |
| 3676 if( pQuery->nTerms==0 ){ |
| 3677 dataBufferInit(pResult, 0); |
| 3678 return SQLITE_OK; |
| 3679 } |
| 3680 |
| 3681 /* Merge AND terms. */ |
| 3682 /* TODO(shess) I think we can early-exit if( i>nNot && left.nData==0 ). */ |
| 3683 aTerm = pQuery->pTerms; |
| 3684 for(i = 0; i<pQuery->nTerms; i=iNext){ |
| 3685 if( aTerm[i].isNot ){ |
| 3686 /* Handle all NOT terms in a separate pass */ |
| 3687 nNot++; |
| 3688 iNext = i + aTerm[i].nPhrase+1; |
| 3689 continue; |
| 3690 } |
| 3691 iNext = i + aTerm[i].nPhrase + 1; |
| 3692 rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right); |
| 3693 if( rc ){ |
| 3694 if( i!=nNot ) dataBufferDestroy(&left); |
| 3695 queryClear(pQuery); |
| 3696 return rc; |
| 3697 } |
| 3698 while( iNext<pQuery->nTerms && aTerm[iNext].isOr ){ |
| 3699 rc = docListOfTerm(v, aTerm[iNext].iColumn, &aTerm[iNext], &or); |
| 3700 iNext += aTerm[iNext].nPhrase + 1; |
| 3701 if( rc ){ |
| 3702 if( i!=nNot ) dataBufferDestroy(&left); |
| 3703 dataBufferDestroy(&right); |
| 3704 queryClear(pQuery); |
| 3705 return rc; |
| 3706 } |
| 3707 dataBufferInit(&new, 0); |
| 3708 docListOrMerge(right.pData, right.nData, or.pData, or.nData, &new); |
| 3709 dataBufferDestroy(&right); |
| 3710 dataBufferDestroy(&or); |
| 3711 right = new; |
| 3712 } |
| 3713 if( i==nNot ){ /* first term processed. */ |
| 3714 left = right; |
| 3715 }else{ |
| 3716 dataBufferInit(&new, 0); |
| 3717 docListAndMerge(left.pData, left.nData, right.pData, right.nData, &new); |
| 3718 dataBufferDestroy(&right); |
| 3719 dataBufferDestroy(&left); |
| 3720 left = new; |
| 3721 } |
| 3722 } |
| 3723 |
| 3724 if( nNot==pQuery->nTerms ){ |
| 3725 /* We do not yet know how to handle a query of only NOT terms */ |
| 3726 return SQLITE_ERROR; |
| 3727 } |
| 3728 |
| 3729 /* Do the EXCEPT terms */ |
| 3730 for(i=0; i<pQuery->nTerms; i += aTerm[i].nPhrase + 1){ |
| 3731 if( !aTerm[i].isNot ) continue; |
| 3732 rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right); |
| 3733 if( rc ){ |
| 3734 queryClear(pQuery); |
| 3735 dataBufferDestroy(&left); |
| 3736 return rc; |
| 3737 } |
| 3738 dataBufferInit(&new, 0); |
| 3739 docListExceptMerge(left.pData, left.nData, right.pData, right.nData, &new); |
| 3740 dataBufferDestroy(&right); |
| 3741 dataBufferDestroy(&left); |
| 3742 left = new; |
| 3743 } |
| 3744 |
| 3745 *pResult = left; |
| 3746 return rc; |
| 3747 } |
| 3748 |
| 3749 /* |
| 3750 ** This is the xFilter interface for the virtual table. See |
| 3751 ** the virtual table xFilter method documentation for additional |
| 3752 ** information. |
| 3753 ** |
| 3754 ** If idxNum==QUERY_GENERIC then do a full table scan against |
| 3755 ** the %_content table. |
| 3756 ** |
| 3757 ** If idxNum==QUERY_ROWID then do a rowid lookup for a single entry |
| 3758 ** in the %_content table. |
| 3759 ** |
| 3760 ** If idxNum>=QUERY_FULLTEXT then use the full text index. The |
| 3761 ** column on the left-hand side of the MATCH operator is column |
| 3762 ** number idxNum-QUERY_FULLTEXT, 0 indexed. argv[0] is the right-hand |
| 3763 ** side of the MATCH operator. |
| 3764 */ |
| 3765 /* TODO(shess) Upgrade the cursor initialization and destruction to |
| 3766 ** account for fulltextFilter() being called multiple times on the |
| 3767 ** same cursor. The current solution is very fragile. Apply fix to |
| 3768 ** fts2 as appropriate. |
| 3769 */ |
| 3770 static int fulltextFilter( |
| 3771 sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */ |
| 3772 int idxNum, const char *idxStr, /* Which indexing scheme to use */ |
| 3773 int argc, sqlite3_value **argv /* Arguments for the indexing scheme */ |
| 3774 ){ |
| 3775 fulltext_cursor *c = (fulltext_cursor *) pCursor; |
| 3776 fulltext_vtab *v = cursor_vtab(c); |
| 3777 int rc; |
| 3778 |
| 3779 TRACE(("FTS2 Filter %p\n",pCursor)); |
| 3780 |
| 3781 /* If the cursor has a statement that was not prepared according to |
| 3782 ** idxNum, clear it. I believe all calls to fulltextFilter with a |
| 3783 ** given cursor will have the same idxNum , but in this case it's |
| 3784 ** easy to be safe. |
| 3785 */ |
| 3786 if( c->pStmt && c->iCursorType!=idxNum ){ |
| 3787 sqlite3_finalize(c->pStmt); |
| 3788 c->pStmt = NULL; |
| 3789 } |
| 3790 |
| 3791 /* Get a fresh statement appropriate to idxNum. */ |
| 3792 /* TODO(shess): Add a prepared-statement cache in the vt structure. |
| 3793 ** The cache must handle multiple open cursors. Easier to cache the |
| 3794 ** statement variants at the vt to reduce malloc/realloc/free here. |
| 3795 ** Or we could have a StringBuffer variant which allowed stack |
| 3796 ** construction for small values. |
| 3797 */ |
| 3798 if( !c->pStmt ){ |
| 3799 char *zSql = sqlite3_mprintf("select rowid, * from %%_content %s", |
| 3800 idxNum==QUERY_GENERIC ? "" : "where rowid=?"); |
| 3801 rc = sql_prepare(v->db, v->zDb, v->zName, &c->pStmt, zSql); |
| 3802 sqlite3_free(zSql); |
| 3803 if( rc!=SQLITE_OK ) return rc; |
| 3804 c->iCursorType = idxNum; |
| 3805 }else{ |
| 3806 sqlite3_reset(c->pStmt); |
| 3807 assert( c->iCursorType==idxNum ); |
| 3808 } |
| 3809 |
| 3810 switch( idxNum ){ |
| 3811 case QUERY_GENERIC: |
| 3812 break; |
| 3813 |
| 3814 case QUERY_ROWID: |
| 3815 rc = sqlite3_bind_int64(c->pStmt, 1, sqlite3_value_int64(argv[0])); |
| 3816 if( rc!=SQLITE_OK ) return rc; |
| 3817 break; |
| 3818 |
| 3819 default: /* full-text search */ |
| 3820 { |
| 3821 const char *zQuery = (const char *)sqlite3_value_text(argv[0]); |
| 3822 assert( idxNum<=QUERY_FULLTEXT+v->nColumn); |
| 3823 assert( argc==1 ); |
| 3824 queryClear(&c->q); |
| 3825 if( c->result.nData!=0 ){ |
| 3826 /* This case happens if the same cursor is used repeatedly. */ |
| 3827 dlrDestroy(&c->reader); |
| 3828 dataBufferReset(&c->result); |
| 3829 }else{ |
| 3830 dataBufferInit(&c->result, 0); |
| 3831 } |
| 3832 rc = fulltextQuery(v, idxNum-QUERY_FULLTEXT, zQuery, -1, &c->result, &c->q
); |
| 3833 if( rc!=SQLITE_OK ) return rc; |
| 3834 if( c->result.nData!=0 ){ |
| 3835 dlrInit(&c->reader, DL_DOCIDS, c->result.pData, c->result.nData); |
| 3836 } |
| 3837 break; |
| 3838 } |
| 3839 } |
| 3840 |
| 3841 return fulltextNext(pCursor); |
| 3842 } |
| 3843 |
| 3844 /* This is the xEof method of the virtual table. The SQLite core |
| 3845 ** calls this routine to find out if it has reached the end of |
| 3846 ** a query's results set. |
| 3847 */ |
| 3848 static int fulltextEof(sqlite3_vtab_cursor *pCursor){ |
| 3849 fulltext_cursor *c = (fulltext_cursor *) pCursor; |
| 3850 return c->eof; |
| 3851 } |
| 3852 |
| 3853 /* This is the xColumn method of the virtual table. The SQLite |
| 3854 ** core calls this method during a query when it needs the value |
| 3855 ** of a column from the virtual table. This method needs to use |
| 3856 ** one of the sqlite3_result_*() routines to store the requested |
| 3857 ** value back in the pContext. |
| 3858 */ |
| 3859 static int fulltextColumn(sqlite3_vtab_cursor *pCursor, |
| 3860 sqlite3_context *pContext, int idxCol){ |
| 3861 fulltext_cursor *c = (fulltext_cursor *) pCursor; |
| 3862 fulltext_vtab *v = cursor_vtab(c); |
| 3863 |
| 3864 if( idxCol<v->nColumn ){ |
| 3865 sqlite3_value *pVal = sqlite3_column_value(c->pStmt, idxCol+1); |
| 3866 sqlite3_result_value(pContext, pVal); |
| 3867 }else if( idxCol==v->nColumn ){ |
| 3868 /* The extra column whose name is the same as the table. |
| 3869 ** Return a blob which is a pointer to the cursor |
| 3870 */ |
| 3871 sqlite3_result_blob(pContext, &c, sizeof(c), SQLITE_TRANSIENT); |
| 3872 } |
| 3873 return SQLITE_OK; |
| 3874 } |
| 3875 |
| 3876 /* This is the xRowid method. The SQLite core calls this routine to |
| 3877 ** retrive the rowid for the current row of the result set. The |
| 3878 ** rowid should be written to *pRowid. |
| 3879 */ |
| 3880 static int fulltextRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){ |
| 3881 fulltext_cursor *c = (fulltext_cursor *) pCursor; |
| 3882 |
| 3883 *pRowid = sqlite3_column_int64(c->pStmt, 0); |
| 3884 return SQLITE_OK; |
| 3885 } |
| 3886 |
| 3887 /* Add all terms in [zText] to pendingTerms table. If [iColumn] > 0, |
| 3888 ** we also store positions and offsets in the hash table using that |
| 3889 ** column number. |
| 3890 */ |
| 3891 static int buildTerms(fulltext_vtab *v, sqlite_int64 iDocid, |
| 3892 const char *zText, int iColumn){ |
| 3893 sqlite3_tokenizer *pTokenizer = v->pTokenizer; |
| 3894 sqlite3_tokenizer_cursor *pCursor; |
| 3895 const char *pToken; |
| 3896 int nTokenBytes; |
| 3897 int iStartOffset, iEndOffset, iPosition; |
| 3898 int rc; |
| 3899 |
| 3900 rc = pTokenizer->pModule->xOpen(pTokenizer, zText, -1, &pCursor); |
| 3901 if( rc!=SQLITE_OK ) return rc; |
| 3902 |
| 3903 pCursor->pTokenizer = pTokenizer; |
| 3904 while( SQLITE_OK==(rc=pTokenizer->pModule->xNext(pCursor, |
| 3905 &pToken, &nTokenBytes, |
| 3906 &iStartOffset, &iEndOffset, |
| 3907 &iPosition)) ){ |
| 3908 DLCollector *p; |
| 3909 int nData; /* Size of doclist before our update. */ |
| 3910 |
| 3911 /* Positions can't be negative; we use -1 as a terminator |
| 3912 * internally. Token can't be NULL or empty. */ |
| 3913 if( iPosition<0 || pToken == NULL || nTokenBytes == 0 ){ |
| 3914 rc = SQLITE_ERROR; |
| 3915 break; |
| 3916 } |
| 3917 |
| 3918 p = fts2HashFind(&v->pendingTerms, pToken, nTokenBytes); |
| 3919 if( p==NULL ){ |
| 3920 nData = 0; |
| 3921 p = dlcNew(iDocid, DL_DEFAULT); |
| 3922 fts2HashInsert(&v->pendingTerms, pToken, nTokenBytes, p); |
| 3923 |
| 3924 /* Overhead for our hash table entry, the key, and the value. */ |
| 3925 v->nPendingData += sizeof(struct fts2HashElem)+sizeof(*p)+nTokenBytes; |
| 3926 }else{ |
| 3927 nData = p->b.nData; |
| 3928 if( p->dlw.iPrevDocid!=iDocid ) dlcNext(p, iDocid); |
| 3929 } |
| 3930 if( iColumn>=0 ){ |
| 3931 dlcAddPos(p, iColumn, iPosition, iStartOffset, iEndOffset); |
| 3932 } |
| 3933 |
| 3934 /* Accumulate data added by dlcNew or dlcNext, and dlcAddPos. */ |
| 3935 v->nPendingData += p->b.nData-nData; |
| 3936 } |
| 3937 |
| 3938 /* TODO(shess) Check return? Should this be able to cause errors at |
| 3939 ** this point? Actually, same question about sqlite3_finalize(), |
| 3940 ** though one could argue that failure there means that the data is |
| 3941 ** not durable. *ponder* |
| 3942 */ |
| 3943 pTokenizer->pModule->xClose(pCursor); |
| 3944 if( SQLITE_DONE == rc ) return SQLITE_OK; |
| 3945 return rc; |
| 3946 } |
| 3947 |
| 3948 /* Add doclists for all terms in [pValues] to pendingTerms table. */ |
| 3949 static int insertTerms(fulltext_vtab *v, sqlite_int64 iRowid, |
| 3950 sqlite3_value **pValues){ |
| 3951 int i; |
| 3952 for(i = 0; i < v->nColumn ; ++i){ |
| 3953 char *zText = (char*)sqlite3_value_text(pValues[i]); |
| 3954 int rc = buildTerms(v, iRowid, zText, i); |
| 3955 if( rc!=SQLITE_OK ) return rc; |
| 3956 } |
| 3957 return SQLITE_OK; |
| 3958 } |
| 3959 |
| 3960 /* Add empty doclists for all terms in the given row's content to |
| 3961 ** pendingTerms. |
| 3962 */ |
| 3963 static int deleteTerms(fulltext_vtab *v, sqlite_int64 iRowid){ |
| 3964 const char **pValues; |
| 3965 int i, rc; |
| 3966 |
| 3967 /* TODO(shess) Should we allow such tables at all? */ |
| 3968 if( DL_DEFAULT==DL_DOCIDS ) return SQLITE_ERROR; |
| 3969 |
| 3970 rc = content_select(v, iRowid, &pValues); |
| 3971 if( rc!=SQLITE_OK ) return rc; |
| 3972 |
| 3973 for(i = 0 ; i < v->nColumn; ++i) { |
| 3974 rc = buildTerms(v, iRowid, pValues[i], -1); |
| 3975 if( rc!=SQLITE_OK ) break; |
| 3976 } |
| 3977 |
| 3978 freeStringArray(v->nColumn, pValues); |
| 3979 return SQLITE_OK; |
| 3980 } |
| 3981 |
| 3982 /* TODO(shess) Refactor the code to remove this forward decl. */ |
| 3983 static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid); |
| 3984 |
| 3985 /* Insert a row into the %_content table; set *piRowid to be the ID of the |
| 3986 ** new row. Add doclists for terms to pendingTerms. |
| 3987 */ |
| 3988 static int index_insert(fulltext_vtab *v, sqlite3_value *pRequestRowid, |
| 3989 sqlite3_value **pValues, sqlite_int64 *piRowid){ |
| 3990 int rc; |
| 3991 |
| 3992 rc = content_insert(v, pRequestRowid, pValues); /* execute an SQL INSERT */ |
| 3993 if( rc!=SQLITE_OK ) return rc; |
| 3994 |
| 3995 *piRowid = sqlite3_last_insert_rowid(v->db); |
| 3996 rc = initPendingTerms(v, *piRowid); |
| 3997 if( rc!=SQLITE_OK ) return rc; |
| 3998 |
| 3999 return insertTerms(v, *piRowid, pValues); |
| 4000 } |
| 4001 |
| 4002 /* Delete a row from the %_content table; add empty doclists for terms |
| 4003 ** to pendingTerms. |
| 4004 */ |
| 4005 static int index_delete(fulltext_vtab *v, sqlite_int64 iRow){ |
| 4006 int rc = initPendingTerms(v, iRow); |
| 4007 if( rc!=SQLITE_OK ) return rc; |
| 4008 |
| 4009 rc = deleteTerms(v, iRow); |
| 4010 if( rc!=SQLITE_OK ) return rc; |
| 4011 |
| 4012 return content_delete(v, iRow); /* execute an SQL DELETE */ |
| 4013 } |
| 4014 |
| 4015 /* Update a row in the %_content table; add delete doclists to |
| 4016 ** pendingTerms for old terms not in the new data, add insert doclists |
| 4017 ** to pendingTerms for terms in the new data. |
| 4018 */ |
| 4019 static int index_update(fulltext_vtab *v, sqlite_int64 iRow, |
| 4020 sqlite3_value **pValues){ |
| 4021 int rc = initPendingTerms(v, iRow); |
| 4022 if( rc!=SQLITE_OK ) return rc; |
| 4023 |
| 4024 /* Generate an empty doclist for each term that previously appeared in this |
| 4025 * row. */ |
| 4026 rc = deleteTerms(v, iRow); |
| 4027 if( rc!=SQLITE_OK ) return rc; |
| 4028 |
| 4029 rc = content_update(v, pValues, iRow); /* execute an SQL UPDATE */ |
| 4030 if( rc!=SQLITE_OK ) return rc; |
| 4031 |
| 4032 /* Now add positions for terms which appear in the updated row. */ |
| 4033 return insertTerms(v, iRow, pValues); |
| 4034 } |
| 4035 |
| 4036 /*******************************************************************/ |
| 4037 /* InteriorWriter is used to collect terms and block references into |
| 4038 ** interior nodes in %_segments. See commentary at top of file for |
| 4039 ** format. |
| 4040 */ |
| 4041 |
| 4042 /* How large interior nodes can grow. */ |
| 4043 #define INTERIOR_MAX 2048 |
| 4044 |
| 4045 /* Minimum number of terms per interior node (except the root). This |
| 4046 ** prevents large terms from making the tree too skinny - must be >0 |
| 4047 ** so that the tree always makes progress. Note that the min tree |
| 4048 ** fanout will be INTERIOR_MIN_TERMS+1. |
| 4049 */ |
| 4050 #define INTERIOR_MIN_TERMS 7 |
| 4051 #if INTERIOR_MIN_TERMS<1 |
| 4052 # error INTERIOR_MIN_TERMS must be greater than 0. |
| 4053 #endif |
| 4054 |
| 4055 /* ROOT_MAX controls how much data is stored inline in the segment |
| 4056 ** directory. |
| 4057 */ |
| 4058 /* TODO(shess) Push ROOT_MAX down to whoever is writing things. It's |
| 4059 ** only here so that interiorWriterRootInfo() and leafWriterRootInfo() |
| 4060 ** can both see it, but if the caller passed it in, we wouldn't even |
| 4061 ** need a define. |
| 4062 */ |
| 4063 #define ROOT_MAX 1024 |
| 4064 #if ROOT_MAX<VARINT_MAX*2 |
| 4065 # error ROOT_MAX must have enough space for a header. |
| 4066 #endif |
| 4067 |
| 4068 /* InteriorBlock stores a linked-list of interior blocks while a lower |
| 4069 ** layer is being constructed. |
| 4070 */ |
| 4071 typedef struct InteriorBlock { |
| 4072 DataBuffer term; /* Leftmost term in block's subtree. */ |
| 4073 DataBuffer data; /* Accumulated data for the block. */ |
| 4074 struct InteriorBlock *next; |
| 4075 } InteriorBlock; |
| 4076 |
| 4077 static InteriorBlock *interiorBlockNew(int iHeight, sqlite_int64 iChildBlock, |
| 4078 const char *pTerm, int nTerm){ |
| 4079 InteriorBlock *block = sqlite3_malloc(sizeof(InteriorBlock)); |
| 4080 char c[VARINT_MAX+VARINT_MAX]; |
| 4081 int n; |
| 4082 |
| 4083 if( block ){ |
| 4084 memset(block, 0, sizeof(*block)); |
| 4085 dataBufferInit(&block->term, 0); |
| 4086 dataBufferReplace(&block->term, pTerm, nTerm); |
| 4087 |
| 4088 n = putVarint(c, iHeight); |
| 4089 n += putVarint(c+n, iChildBlock); |
| 4090 dataBufferInit(&block->data, INTERIOR_MAX); |
| 4091 dataBufferReplace(&block->data, c, n); |
| 4092 } |
| 4093 return block; |
| 4094 } |
| 4095 |
| 4096 #ifndef NDEBUG |
| 4097 /* Verify that the data is readable as an interior node. */ |
| 4098 static void interiorBlockValidate(InteriorBlock *pBlock){ |
| 4099 const char *pData = pBlock->data.pData; |
| 4100 int nData = pBlock->data.nData; |
| 4101 int n, iDummy; |
| 4102 sqlite_int64 iBlockid; |
| 4103 |
| 4104 assert( nData>0 ); |
| 4105 assert( pData!=0 ); |
| 4106 assert( pData+nData>pData ); |
| 4107 |
| 4108 /* Must lead with height of node as a varint(n), n>0 */ |
| 4109 n = getVarint32(pData, &iDummy); |
| 4110 assert( n>0 ); |
| 4111 assert( iDummy>0 ); |
| 4112 assert( n<nData ); |
| 4113 pData += n; |
| 4114 nData -= n; |
| 4115 |
| 4116 /* Must contain iBlockid. */ |
| 4117 n = getVarint(pData, &iBlockid); |
| 4118 assert( n>0 ); |
| 4119 assert( n<=nData ); |
| 4120 pData += n; |
| 4121 nData -= n; |
| 4122 |
| 4123 /* Zero or more terms of positive length */ |
| 4124 if( nData!=0 ){ |
| 4125 /* First term is not delta-encoded. */ |
| 4126 n = getVarint32(pData, &iDummy); |
| 4127 assert( n>0 ); |
| 4128 assert( iDummy>0 ); |
| 4129 assert( n+iDummy>0); |
| 4130 assert( n+iDummy<=nData ); |
| 4131 pData += n+iDummy; |
| 4132 nData -= n+iDummy; |
| 4133 |
| 4134 /* Following terms delta-encoded. */ |
| 4135 while( nData!=0 ){ |
| 4136 /* Length of shared prefix. */ |
| 4137 n = getVarint32(pData, &iDummy); |
| 4138 assert( n>0 ); |
| 4139 assert( iDummy>=0 ); |
| 4140 assert( n<nData ); |
| 4141 pData += n; |
| 4142 nData -= n; |
| 4143 |
| 4144 /* Length and data of distinct suffix. */ |
| 4145 n = getVarint32(pData, &iDummy); |
| 4146 assert( n>0 ); |
| 4147 assert( iDummy>0 ); |
| 4148 assert( n+iDummy>0); |
| 4149 assert( n+iDummy<=nData ); |
| 4150 pData += n+iDummy; |
| 4151 nData -= n+iDummy; |
| 4152 } |
| 4153 } |
| 4154 } |
| 4155 #define ASSERT_VALID_INTERIOR_BLOCK(x) interiorBlockValidate(x) |
| 4156 #else |
| 4157 #define ASSERT_VALID_INTERIOR_BLOCK(x) assert( 1 ) |
| 4158 #endif |
| 4159 |
| 4160 typedef struct InteriorWriter { |
| 4161 int iHeight; /* from 0 at leaves. */ |
| 4162 InteriorBlock *first, *last; |
| 4163 struct InteriorWriter *parentWriter; |
| 4164 |
| 4165 DataBuffer term; /* Last term written to block "last". */ |
| 4166 sqlite_int64 iOpeningChildBlock; /* First child block in block "last". */ |
| 4167 #ifndef NDEBUG |
| 4168 sqlite_int64 iLastChildBlock; /* for consistency checks. */ |
| 4169 #endif |
| 4170 } InteriorWriter; |
| 4171 |
| 4172 /* Initialize an interior node where pTerm[nTerm] marks the leftmost |
| 4173 ** term in the tree. iChildBlock is the leftmost child block at the |
| 4174 ** next level down the tree. |
| 4175 */ |
| 4176 static void interiorWriterInit(int iHeight, const char *pTerm, int nTerm, |
| 4177 sqlite_int64 iChildBlock, |
| 4178 InteriorWriter *pWriter){ |
| 4179 InteriorBlock *block; |
| 4180 assert( iHeight>0 ); |
| 4181 CLEAR(pWriter); |
| 4182 |
| 4183 pWriter->iHeight = iHeight; |
| 4184 pWriter->iOpeningChildBlock = iChildBlock; |
| 4185 #ifndef NDEBUG |
| 4186 pWriter->iLastChildBlock = iChildBlock; |
| 4187 #endif |
| 4188 block = interiorBlockNew(iHeight, iChildBlock, pTerm, nTerm); |
| 4189 pWriter->last = pWriter->first = block; |
| 4190 ASSERT_VALID_INTERIOR_BLOCK(pWriter->last); |
| 4191 dataBufferInit(&pWriter->term, 0); |
| 4192 } |
| 4193 |
| 4194 /* Append the child node rooted at iChildBlock to the interior node, |
| 4195 ** with pTerm[nTerm] as the leftmost term in iChildBlock's subtree. |
| 4196 */ |
| 4197 static void interiorWriterAppend(InteriorWriter *pWriter, |
| 4198 const char *pTerm, int nTerm, |
| 4199 sqlite_int64 iChildBlock){ |
| 4200 char c[VARINT_MAX+VARINT_MAX]; |
| 4201 int n, nPrefix = 0; |
| 4202 |
| 4203 ASSERT_VALID_INTERIOR_BLOCK(pWriter->last); |
| 4204 |
| 4205 /* The first term written into an interior node is actually |
| 4206 ** associated with the second child added (the first child was added |
| 4207 ** in interiorWriterInit, or in the if clause at the bottom of this |
| 4208 ** function). That term gets encoded straight up, with nPrefix left |
| 4209 ** at 0. |
| 4210 */ |
| 4211 if( pWriter->term.nData==0 ){ |
| 4212 n = putVarint(c, nTerm); |
| 4213 }else{ |
| 4214 while( nPrefix<pWriter->term.nData && |
| 4215 pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){ |
| 4216 nPrefix++; |
| 4217 } |
| 4218 |
| 4219 n = putVarint(c, nPrefix); |
| 4220 n += putVarint(c+n, nTerm-nPrefix); |
| 4221 } |
| 4222 |
| 4223 #ifndef NDEBUG |
| 4224 pWriter->iLastChildBlock++; |
| 4225 #endif |
| 4226 assert( pWriter->iLastChildBlock==iChildBlock ); |
| 4227 |
| 4228 /* Overflow to a new block if the new term makes the current block |
| 4229 ** too big, and the current block already has enough terms. |
| 4230 */ |
| 4231 if( pWriter->last->data.nData+n+nTerm-nPrefix>INTERIOR_MAX && |
| 4232 iChildBlock-pWriter->iOpeningChildBlock>INTERIOR_MIN_TERMS ){ |
| 4233 pWriter->last->next = interiorBlockNew(pWriter->iHeight, iChildBlock, |
| 4234 pTerm, nTerm); |
| 4235 pWriter->last = pWriter->last->next; |
| 4236 pWriter->iOpeningChildBlock = iChildBlock; |
| 4237 dataBufferReset(&pWriter->term); |
| 4238 }else{ |
| 4239 dataBufferAppend2(&pWriter->last->data, c, n, |
| 4240 pTerm+nPrefix, nTerm-nPrefix); |
| 4241 dataBufferReplace(&pWriter->term, pTerm, nTerm); |
| 4242 } |
| 4243 ASSERT_VALID_INTERIOR_BLOCK(pWriter->last); |
| 4244 } |
| 4245 |
| 4246 /* Free the space used by pWriter, including the linked-list of |
| 4247 ** InteriorBlocks, and parentWriter, if present. |
| 4248 */ |
| 4249 static int interiorWriterDestroy(InteriorWriter *pWriter){ |
| 4250 InteriorBlock *block = pWriter->first; |
| 4251 |
| 4252 while( block!=NULL ){ |
| 4253 InteriorBlock *b = block; |
| 4254 block = block->next; |
| 4255 dataBufferDestroy(&b->term); |
| 4256 dataBufferDestroy(&b->data); |
| 4257 sqlite3_free(b); |
| 4258 } |
| 4259 if( pWriter->parentWriter!=NULL ){ |
| 4260 interiorWriterDestroy(pWriter->parentWriter); |
| 4261 sqlite3_free(pWriter->parentWriter); |
| 4262 } |
| 4263 dataBufferDestroy(&pWriter->term); |
| 4264 SCRAMBLE(pWriter); |
| 4265 return SQLITE_OK; |
| 4266 } |
| 4267 |
| 4268 /* If pWriter can fit entirely in ROOT_MAX, return it as the root info |
| 4269 ** directly, leaving *piEndBlockid unchanged. Otherwise, flush |
| 4270 ** pWriter to %_segments, building a new layer of interior nodes, and |
| 4271 ** recursively ask for their root into. |
| 4272 */ |
| 4273 static int interiorWriterRootInfo(fulltext_vtab *v, InteriorWriter *pWriter, |
| 4274 char **ppRootInfo, int *pnRootInfo, |
| 4275 sqlite_int64 *piEndBlockid){ |
| 4276 InteriorBlock *block = pWriter->first; |
| 4277 sqlite_int64 iBlockid = 0; |
| 4278 int rc; |
| 4279 |
| 4280 /* If we can fit the segment inline */ |
| 4281 if( block==pWriter->last && block->data.nData<ROOT_MAX ){ |
| 4282 *ppRootInfo = block->data.pData; |
| 4283 *pnRootInfo = block->data.nData; |
| 4284 return SQLITE_OK; |
| 4285 } |
| 4286 |
| 4287 /* Flush the first block to %_segments, and create a new level of |
| 4288 ** interior node. |
| 4289 */ |
| 4290 ASSERT_VALID_INTERIOR_BLOCK(block); |
| 4291 rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid); |
| 4292 if( rc!=SQLITE_OK ) return rc; |
| 4293 *piEndBlockid = iBlockid; |
| 4294 |
| 4295 pWriter->parentWriter = sqlite3_malloc(sizeof(*pWriter->parentWriter)); |
| 4296 interiorWriterInit(pWriter->iHeight+1, |
| 4297 block->term.pData, block->term.nData, |
| 4298 iBlockid, pWriter->parentWriter); |
| 4299 |
| 4300 /* Flush additional blocks and append to the higher interior |
| 4301 ** node. |
| 4302 */ |
| 4303 for(block=block->next; block!=NULL; block=block->next){ |
| 4304 ASSERT_VALID_INTERIOR_BLOCK(block); |
| 4305 rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid); |
| 4306 if( rc!=SQLITE_OK ) return rc; |
| 4307 *piEndBlockid = iBlockid; |
| 4308 |
| 4309 interiorWriterAppend(pWriter->parentWriter, |
| 4310 block->term.pData, block->term.nData, iBlockid); |
| 4311 } |
| 4312 |
| 4313 /* Parent node gets the chance to be the root. */ |
| 4314 return interiorWriterRootInfo(v, pWriter->parentWriter, |
| 4315 ppRootInfo, pnRootInfo, piEndBlockid); |
| 4316 } |
| 4317 |
| 4318 /****************************************************************/ |
| 4319 /* InteriorReader is used to read off the data from an interior node |
| 4320 ** (see comment at top of file for the format). |
| 4321 */ |
| 4322 typedef struct InteriorReader { |
| 4323 const char *pData; |
| 4324 int nData; |
| 4325 |
| 4326 DataBuffer term; /* previous term, for decoding term delta. */ |
| 4327 |
| 4328 sqlite_int64 iBlockid; |
| 4329 } InteriorReader; |
| 4330 |
| 4331 static void interiorReaderDestroy(InteriorReader *pReader){ |
| 4332 dataBufferDestroy(&pReader->term); |
| 4333 SCRAMBLE(pReader); |
| 4334 } |
| 4335 |
| 4336 /* TODO(shess) The assertions are great, but what if we're in NDEBUG |
| 4337 ** and the blob is empty or otherwise contains suspect data? |
| 4338 */ |
| 4339 static void interiorReaderInit(const char *pData, int nData, |
| 4340 InteriorReader *pReader){ |
| 4341 int n, nTerm; |
| 4342 |
| 4343 /* Require at least the leading flag byte */ |
| 4344 assert( nData>0 ); |
| 4345 assert( pData[0]!='\0' ); |
| 4346 |
| 4347 CLEAR(pReader); |
| 4348 |
| 4349 /* Decode the base blockid, and set the cursor to the first term. */ |
| 4350 n = getVarint(pData+1, &pReader->iBlockid); |
| 4351 assert( 1+n<=nData ); |
| 4352 pReader->pData = pData+1+n; |
| 4353 pReader->nData = nData-(1+n); |
| 4354 |
| 4355 /* A single-child interior node (such as when a leaf node was too |
| 4356 ** large for the segment directory) won't have any terms. |
| 4357 ** Otherwise, decode the first term. |
| 4358 */ |
| 4359 if( pReader->nData==0 ){ |
| 4360 dataBufferInit(&pReader->term, 0); |
| 4361 }else{ |
| 4362 n = getVarint32(pReader->pData, &nTerm); |
| 4363 dataBufferInit(&pReader->term, nTerm); |
| 4364 dataBufferReplace(&pReader->term, pReader->pData+n, nTerm); |
| 4365 assert( n+nTerm<=pReader->nData ); |
| 4366 pReader->pData += n+nTerm; |
| 4367 pReader->nData -= n+nTerm; |
| 4368 } |
| 4369 } |
| 4370 |
| 4371 static int interiorReaderAtEnd(InteriorReader *pReader){ |
| 4372 return pReader->term.nData==0; |
| 4373 } |
| 4374 |
| 4375 static sqlite_int64 interiorReaderCurrentBlockid(InteriorReader *pReader){ |
| 4376 return pReader->iBlockid; |
| 4377 } |
| 4378 |
| 4379 static int interiorReaderTermBytes(InteriorReader *pReader){ |
| 4380 assert( !interiorReaderAtEnd(pReader) ); |
| 4381 return pReader->term.nData; |
| 4382 } |
| 4383 static const char *interiorReaderTerm(InteriorReader *pReader){ |
| 4384 assert( !interiorReaderAtEnd(pReader) ); |
| 4385 return pReader->term.pData; |
| 4386 } |
| 4387 |
| 4388 /* Step forward to the next term in the node. */ |
| 4389 static void interiorReaderStep(InteriorReader *pReader){ |
| 4390 assert( !interiorReaderAtEnd(pReader) ); |
| 4391 |
| 4392 /* If the last term has been read, signal eof, else construct the |
| 4393 ** next term. |
| 4394 */ |
| 4395 if( pReader->nData==0 ){ |
| 4396 dataBufferReset(&pReader->term); |
| 4397 }else{ |
| 4398 int n, nPrefix, nSuffix; |
| 4399 |
| 4400 n = getVarint32(pReader->pData, &nPrefix); |
| 4401 n += getVarint32(pReader->pData+n, &nSuffix); |
| 4402 |
| 4403 /* Truncate the current term and append suffix data. */ |
| 4404 pReader->term.nData = nPrefix; |
| 4405 dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix); |
| 4406 |
| 4407 assert( n+nSuffix<=pReader->nData ); |
| 4408 pReader->pData += n+nSuffix; |
| 4409 pReader->nData -= n+nSuffix; |
| 4410 } |
| 4411 pReader->iBlockid++; |
| 4412 } |
| 4413 |
| 4414 /* Compare the current term to pTerm[nTerm], returning strcmp-style |
| 4415 ** results. If isPrefix, equality means equal through nTerm bytes. |
| 4416 */ |
| 4417 static int interiorReaderTermCmp(InteriorReader *pReader, |
| 4418 const char *pTerm, int nTerm, int isPrefix){ |
| 4419 const char *pReaderTerm = interiorReaderTerm(pReader); |
| 4420 int nReaderTerm = interiorReaderTermBytes(pReader); |
| 4421 int c, n = nReaderTerm<nTerm ? nReaderTerm : nTerm; |
| 4422 |
| 4423 if( n==0 ){ |
| 4424 if( nReaderTerm>0 ) return -1; |
| 4425 if( nTerm>0 ) return 1; |
| 4426 return 0; |
| 4427 } |
| 4428 |
| 4429 c = memcmp(pReaderTerm, pTerm, n); |
| 4430 if( c!=0 ) return c; |
| 4431 if( isPrefix && n==nTerm ) return 0; |
| 4432 return nReaderTerm - nTerm; |
| 4433 } |
| 4434 |
| 4435 /****************************************************************/ |
| 4436 /* LeafWriter is used to collect terms and associated doclist data |
| 4437 ** into leaf blocks in %_segments (see top of file for format info). |
| 4438 ** Expected usage is: |
| 4439 ** |
| 4440 ** LeafWriter writer; |
| 4441 ** leafWriterInit(0, 0, &writer); |
| 4442 ** while( sorted_terms_left_to_process ){ |
| 4443 ** // data is doclist data for that term. |
| 4444 ** rc = leafWriterStep(v, &writer, pTerm, nTerm, pData, nData); |
| 4445 ** if( rc!=SQLITE_OK ) goto err; |
| 4446 ** } |
| 4447 ** rc = leafWriterFinalize(v, &writer); |
| 4448 **err: |
| 4449 ** leafWriterDestroy(&writer); |
| 4450 ** return rc; |
| 4451 ** |
| 4452 ** leafWriterStep() may write a collected leaf out to %_segments. |
| 4453 ** leafWriterFinalize() finishes writing any buffered data and stores |
| 4454 ** a root node in %_segdir. leafWriterDestroy() frees all buffers and |
| 4455 ** InteriorWriters allocated as part of writing this segment. |
| 4456 ** |
| 4457 ** TODO(shess) Document leafWriterStepMerge(). |
| 4458 */ |
| 4459 |
| 4460 /* Put terms with data this big in their own block. */ |
| 4461 #define STANDALONE_MIN 1024 |
| 4462 |
| 4463 /* Keep leaf blocks below this size. */ |
| 4464 #define LEAF_MAX 2048 |
| 4465 |
| 4466 typedef struct LeafWriter { |
| 4467 int iLevel; |
| 4468 int idx; |
| 4469 sqlite_int64 iStartBlockid; /* needed to create the root info */ |
| 4470 sqlite_int64 iEndBlockid; /* when we're done writing. */ |
| 4471 |
| 4472 DataBuffer term; /* previous encoded term */ |
| 4473 DataBuffer data; /* encoding buffer */ |
| 4474 |
| 4475 /* bytes of first term in the current node which distinguishes that |
| 4476 ** term from the last term of the previous node. |
| 4477 */ |
| 4478 int nTermDistinct; |
| 4479 |
| 4480 InteriorWriter parentWriter; /* if we overflow */ |
| 4481 int has_parent; |
| 4482 } LeafWriter; |
| 4483 |
| 4484 static void leafWriterInit(int iLevel, int idx, LeafWriter *pWriter){ |
| 4485 CLEAR(pWriter); |
| 4486 pWriter->iLevel = iLevel; |
| 4487 pWriter->idx = idx; |
| 4488 |
| 4489 dataBufferInit(&pWriter->term, 32); |
| 4490 |
| 4491 /* Start out with a reasonably sized block, though it can grow. */ |
| 4492 dataBufferInit(&pWriter->data, LEAF_MAX); |
| 4493 } |
| 4494 |
| 4495 #ifndef NDEBUG |
| 4496 /* Verify that the data is readable as a leaf node. */ |
| 4497 static void leafNodeValidate(const char *pData, int nData){ |
| 4498 int n, iDummy; |
| 4499 |
| 4500 if( nData==0 ) return; |
| 4501 assert( nData>0 ); |
| 4502 assert( pData!=0 ); |
| 4503 assert( pData+nData>pData ); |
| 4504 |
| 4505 /* Must lead with a varint(0) */ |
| 4506 n = getVarint32(pData, &iDummy); |
| 4507 assert( iDummy==0 ); |
| 4508 assert( n>0 ); |
| 4509 assert( n<nData ); |
| 4510 pData += n; |
| 4511 nData -= n; |
| 4512 |
| 4513 /* Leading term length and data must fit in buffer. */ |
| 4514 n = getVarint32(pData, &iDummy); |
| 4515 assert( n>0 ); |
| 4516 assert( iDummy>0 ); |
| 4517 assert( n+iDummy>0 ); |
| 4518 assert( n+iDummy<nData ); |
| 4519 pData += n+iDummy; |
| 4520 nData -= n+iDummy; |
| 4521 |
| 4522 /* Leading term's doclist length and data must fit. */ |
| 4523 n = getVarint32(pData, &iDummy); |
| 4524 assert( n>0 ); |
| 4525 assert( iDummy>0 ); |
| 4526 assert( n+iDummy>0 ); |
| 4527 assert( n+iDummy<=nData ); |
| 4528 ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL); |
| 4529 pData += n+iDummy; |
| 4530 nData -= n+iDummy; |
| 4531 |
| 4532 /* Verify that trailing terms and doclists also are readable. */ |
| 4533 while( nData!=0 ){ |
| 4534 n = getVarint32(pData, &iDummy); |
| 4535 assert( n>0 ); |
| 4536 assert( iDummy>=0 ); |
| 4537 assert( n<nData ); |
| 4538 pData += n; |
| 4539 nData -= n; |
| 4540 n = getVarint32(pData, &iDummy); |
| 4541 assert( n>0 ); |
| 4542 assert( iDummy>0 ); |
| 4543 assert( n+iDummy>0 ); |
| 4544 assert( n+iDummy<nData ); |
| 4545 pData += n+iDummy; |
| 4546 nData -= n+iDummy; |
| 4547 |
| 4548 n = getVarint32(pData, &iDummy); |
| 4549 assert( n>0 ); |
| 4550 assert( iDummy>0 ); |
| 4551 assert( n+iDummy>0 ); |
| 4552 assert( n+iDummy<=nData ); |
| 4553 ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL); |
| 4554 pData += n+iDummy; |
| 4555 nData -= n+iDummy; |
| 4556 } |
| 4557 } |
| 4558 #define ASSERT_VALID_LEAF_NODE(p, n) leafNodeValidate(p, n) |
| 4559 #else |
| 4560 #define ASSERT_VALID_LEAF_NODE(p, n) assert( 1 ) |
| 4561 #endif |
| 4562 |
| 4563 /* Flush the current leaf node to %_segments, and adding the resulting |
| 4564 ** blockid and the starting term to the interior node which will |
| 4565 ** contain it. |
| 4566 */ |
| 4567 static int leafWriterInternalFlush(fulltext_vtab *v, LeafWriter *pWriter, |
| 4568 int iData, int nData){ |
| 4569 sqlite_int64 iBlockid = 0; |
| 4570 const char *pStartingTerm; |
| 4571 int nStartingTerm, rc, n; |
| 4572 |
| 4573 /* Must have the leading varint(0) flag, plus at least some |
| 4574 ** valid-looking data. |
| 4575 */ |
| 4576 assert( nData>2 ); |
| 4577 assert( iData>=0 ); |
| 4578 assert( iData+nData<=pWriter->data.nData ); |
| 4579 ASSERT_VALID_LEAF_NODE(pWriter->data.pData+iData, nData); |
| 4580 |
| 4581 rc = block_insert(v, pWriter->data.pData+iData, nData, &iBlockid); |
| 4582 if( rc!=SQLITE_OK ) return rc; |
| 4583 assert( iBlockid!=0 ); |
| 4584 |
| 4585 /* Reconstruct the first term in the leaf for purposes of building |
| 4586 ** the interior node. |
| 4587 */ |
| 4588 n = getVarint32(pWriter->data.pData+iData+1, &nStartingTerm); |
| 4589 pStartingTerm = pWriter->data.pData+iData+1+n; |
| 4590 assert( pWriter->data.nData>iData+1+n+nStartingTerm ); |
| 4591 assert( pWriter->nTermDistinct>0 ); |
| 4592 assert( pWriter->nTermDistinct<=nStartingTerm ); |
| 4593 nStartingTerm = pWriter->nTermDistinct; |
| 4594 |
| 4595 if( pWriter->has_parent ){ |
| 4596 interiorWriterAppend(&pWriter->parentWriter, |
| 4597 pStartingTerm, nStartingTerm, iBlockid); |
| 4598 }else{ |
| 4599 interiorWriterInit(1, pStartingTerm, nStartingTerm, iBlockid, |
| 4600 &pWriter->parentWriter); |
| 4601 pWriter->has_parent = 1; |
| 4602 } |
| 4603 |
| 4604 /* Track the span of this segment's leaf nodes. */ |
| 4605 if( pWriter->iEndBlockid==0 ){ |
| 4606 pWriter->iEndBlockid = pWriter->iStartBlockid = iBlockid; |
| 4607 }else{ |
| 4608 pWriter->iEndBlockid++; |
| 4609 assert( iBlockid==pWriter->iEndBlockid ); |
| 4610 } |
| 4611 |
| 4612 return SQLITE_OK; |
| 4613 } |
| 4614 static int leafWriterFlush(fulltext_vtab *v, LeafWriter *pWriter){ |
| 4615 int rc = leafWriterInternalFlush(v, pWriter, 0, pWriter->data.nData); |
| 4616 if( rc!=SQLITE_OK ) return rc; |
| 4617 |
| 4618 /* Re-initialize the output buffer. */ |
| 4619 dataBufferReset(&pWriter->data); |
| 4620 |
| 4621 return SQLITE_OK; |
| 4622 } |
| 4623 |
| 4624 /* Fetch the root info for the segment. If the entire leaf fits |
| 4625 ** within ROOT_MAX, then it will be returned directly, otherwise it |
| 4626 ** will be flushed and the root info will be returned from the |
| 4627 ** interior node. *piEndBlockid is set to the blockid of the last |
| 4628 ** interior or leaf node written to disk (0 if none are written at |
| 4629 ** all). |
| 4630 */ |
| 4631 static int leafWriterRootInfo(fulltext_vtab *v, LeafWriter *pWriter, |
| 4632 char **ppRootInfo, int *pnRootInfo, |
| 4633 sqlite_int64 *piEndBlockid){ |
| 4634 /* we can fit the segment entirely inline */ |
| 4635 if( !pWriter->has_parent && pWriter->data.nData<ROOT_MAX ){ |
| 4636 *ppRootInfo = pWriter->data.pData; |
| 4637 *pnRootInfo = pWriter->data.nData; |
| 4638 *piEndBlockid = 0; |
| 4639 return SQLITE_OK; |
| 4640 } |
| 4641 |
| 4642 /* Flush remaining leaf data. */ |
| 4643 if( pWriter->data.nData>0 ){ |
| 4644 int rc = leafWriterFlush(v, pWriter); |
| 4645 if( rc!=SQLITE_OK ) return rc; |
| 4646 } |
| 4647 |
| 4648 /* We must have flushed a leaf at some point. */ |
| 4649 assert( pWriter->has_parent ); |
| 4650 |
| 4651 /* Tenatively set the end leaf blockid as the end blockid. If the |
| 4652 ** interior node can be returned inline, this will be the final |
| 4653 ** blockid, otherwise it will be overwritten by |
| 4654 ** interiorWriterRootInfo(). |
| 4655 */ |
| 4656 *piEndBlockid = pWriter->iEndBlockid; |
| 4657 |
| 4658 return interiorWriterRootInfo(v, &pWriter->parentWriter, |
| 4659 ppRootInfo, pnRootInfo, piEndBlockid); |
| 4660 } |
| 4661 |
| 4662 /* Collect the rootInfo data and store it into the segment directory. |
| 4663 ** This has the effect of flushing the segment's leaf data to |
| 4664 ** %_segments, and also flushing any interior nodes to %_segments. |
| 4665 */ |
| 4666 static int leafWriterFinalize(fulltext_vtab *v, LeafWriter *pWriter){ |
| 4667 sqlite_int64 iEndBlockid; |
| 4668 char *pRootInfo; |
| 4669 int rc, nRootInfo; |
| 4670 |
| 4671 rc = leafWriterRootInfo(v, pWriter, &pRootInfo, &nRootInfo, &iEndBlockid); |
| 4672 if( rc!=SQLITE_OK ) return rc; |
| 4673 |
| 4674 /* Don't bother storing an entirely empty segment. */ |
| 4675 if( iEndBlockid==0 && nRootInfo==0 ) return SQLITE_OK; |
| 4676 |
| 4677 return segdir_set(v, pWriter->iLevel, pWriter->idx, |
| 4678 pWriter->iStartBlockid, pWriter->iEndBlockid, |
| 4679 iEndBlockid, pRootInfo, nRootInfo); |
| 4680 } |
| 4681 |
| 4682 static void leafWriterDestroy(LeafWriter *pWriter){ |
| 4683 if( pWriter->has_parent ) interiorWriterDestroy(&pWriter->parentWriter); |
| 4684 dataBufferDestroy(&pWriter->term); |
| 4685 dataBufferDestroy(&pWriter->data); |
| 4686 } |
| 4687 |
| 4688 /* Encode a term into the leafWriter, delta-encoding as appropriate. |
| 4689 ** Returns the length of the new term which distinguishes it from the |
| 4690 ** previous term, which can be used to set nTermDistinct when a node |
| 4691 ** boundary is crossed. |
| 4692 */ |
| 4693 static int leafWriterEncodeTerm(LeafWriter *pWriter, |
| 4694 const char *pTerm, int nTerm){ |
| 4695 char c[VARINT_MAX+VARINT_MAX]; |
| 4696 int n, nPrefix = 0; |
| 4697 |
| 4698 assert( nTerm>0 ); |
| 4699 while( nPrefix<pWriter->term.nData && |
| 4700 pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){ |
| 4701 nPrefix++; |
| 4702 /* Failing this implies that the terms weren't in order. */ |
| 4703 assert( nPrefix<nTerm ); |
| 4704 } |
| 4705 |
| 4706 if( pWriter->data.nData==0 ){ |
| 4707 /* Encode the node header and leading term as: |
| 4708 ** varint(0) |
| 4709 ** varint(nTerm) |
| 4710 ** char pTerm[nTerm] |
| 4711 */ |
| 4712 n = putVarint(c, '\0'); |
| 4713 n += putVarint(c+n, nTerm); |
| 4714 dataBufferAppend2(&pWriter->data, c, n, pTerm, nTerm); |
| 4715 }else{ |
| 4716 /* Delta-encode the term as: |
| 4717 ** varint(nPrefix) |
| 4718 ** varint(nSuffix) |
| 4719 ** char pTermSuffix[nSuffix] |
| 4720 */ |
| 4721 n = putVarint(c, nPrefix); |
| 4722 n += putVarint(c+n, nTerm-nPrefix); |
| 4723 dataBufferAppend2(&pWriter->data, c, n, pTerm+nPrefix, nTerm-nPrefix); |
| 4724 } |
| 4725 dataBufferReplace(&pWriter->term, pTerm, nTerm); |
| 4726 |
| 4727 return nPrefix+1; |
| 4728 } |
| 4729 |
| 4730 /* Used to avoid a memmove when a large amount of doclist data is in |
| 4731 ** the buffer. This constructs a node and term header before |
| 4732 ** iDoclistData and flushes the resulting complete node using |
| 4733 ** leafWriterInternalFlush(). |
| 4734 */ |
| 4735 static int leafWriterInlineFlush(fulltext_vtab *v, LeafWriter *pWriter, |
| 4736 const char *pTerm, int nTerm, |
| 4737 int iDoclistData){ |
| 4738 char c[VARINT_MAX+VARINT_MAX]; |
| 4739 int iData, n = putVarint(c, 0); |
| 4740 n += putVarint(c+n, nTerm); |
| 4741 |
| 4742 /* There should always be room for the header. Even if pTerm shared |
| 4743 ** a substantial prefix with the previous term, the entire prefix |
| 4744 ** could be constructed from earlier data in the doclist, so there |
| 4745 ** should be room. |
| 4746 */ |
| 4747 assert( iDoclistData>=n+nTerm ); |
| 4748 |
| 4749 iData = iDoclistData-(n+nTerm); |
| 4750 memcpy(pWriter->data.pData+iData, c, n); |
| 4751 memcpy(pWriter->data.pData+iData+n, pTerm, nTerm); |
| 4752 |
| 4753 return leafWriterInternalFlush(v, pWriter, iData, pWriter->data.nData-iData); |
| 4754 } |
| 4755 |
| 4756 /* Push pTerm[nTerm] along with the doclist data to the leaf layer of |
| 4757 ** %_segments. |
| 4758 */ |
| 4759 static int leafWriterStepMerge(fulltext_vtab *v, LeafWriter *pWriter, |
| 4760 const char *pTerm, int nTerm, |
| 4761 DLReader *pReaders, int nReaders){ |
| 4762 char c[VARINT_MAX+VARINT_MAX]; |
| 4763 int iTermData = pWriter->data.nData, iDoclistData; |
| 4764 int i, nData, n, nActualData, nActual, rc, nTermDistinct; |
| 4765 |
| 4766 ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData); |
| 4767 nTermDistinct = leafWriterEncodeTerm(pWriter, pTerm, nTerm); |
| 4768 |
| 4769 /* Remember nTermDistinct if opening a new node. */ |
| 4770 if( iTermData==0 ) pWriter->nTermDistinct = nTermDistinct; |
| 4771 |
| 4772 iDoclistData = pWriter->data.nData; |
| 4773 |
| 4774 /* Estimate the length of the merged doclist so we can leave space |
| 4775 ** to encode it. |
| 4776 */ |
| 4777 for(i=0, nData=0; i<nReaders; i++){ |
| 4778 nData += dlrAllDataBytes(&pReaders[i]); |
| 4779 } |
| 4780 n = putVarint(c, nData); |
| 4781 dataBufferAppend(&pWriter->data, c, n); |
| 4782 |
| 4783 docListMerge(&pWriter->data, pReaders, nReaders); |
| 4784 ASSERT_VALID_DOCLIST(DL_DEFAULT, |
| 4785 pWriter->data.pData+iDoclistData+n, |
| 4786 pWriter->data.nData-iDoclistData-n, NULL); |
| 4787 |
| 4788 /* The actual amount of doclist data at this point could be smaller |
| 4789 ** than the length we encoded. Additionally, the space required to |
| 4790 ** encode this length could be smaller. For small doclists, this is |
| 4791 ** not a big deal, we can just use memmove() to adjust things. |
| 4792 */ |
| 4793 nActualData = pWriter->data.nData-(iDoclistData+n); |
| 4794 nActual = putVarint(c, nActualData); |
| 4795 assert( nActualData<=nData ); |
| 4796 assert( nActual<=n ); |
| 4797 |
| 4798 /* If the new doclist is big enough for force a standalone leaf |
| 4799 ** node, we can immediately flush it inline without doing the |
| 4800 ** memmove(). |
| 4801 */ |
| 4802 /* TODO(shess) This test matches leafWriterStep(), which does this |
| 4803 ** test before it knows the cost to varint-encode the term and |
| 4804 ** doclist lengths. At some point, change to |
| 4805 ** pWriter->data.nData-iTermData>STANDALONE_MIN. |
| 4806 */ |
| 4807 if( nTerm+nActualData>STANDALONE_MIN ){ |
| 4808 /* Push leaf node from before this term. */ |
| 4809 if( iTermData>0 ){ |
| 4810 rc = leafWriterInternalFlush(v, pWriter, 0, iTermData); |
| 4811 if( rc!=SQLITE_OK ) return rc; |
| 4812 |
| 4813 pWriter->nTermDistinct = nTermDistinct; |
| 4814 } |
| 4815 |
| 4816 /* Fix the encoded doclist length. */ |
| 4817 iDoclistData += n - nActual; |
| 4818 memcpy(pWriter->data.pData+iDoclistData, c, nActual); |
| 4819 |
| 4820 /* Push the standalone leaf node. */ |
| 4821 rc = leafWriterInlineFlush(v, pWriter, pTerm, nTerm, iDoclistData); |
| 4822 if( rc!=SQLITE_OK ) return rc; |
| 4823 |
| 4824 /* Leave the node empty. */ |
| 4825 dataBufferReset(&pWriter->data); |
| 4826 |
| 4827 return rc; |
| 4828 } |
| 4829 |
| 4830 /* At this point, we know that the doclist was small, so do the |
| 4831 ** memmove if indicated. |
| 4832 */ |
| 4833 if( nActual<n ){ |
| 4834 memmove(pWriter->data.pData+iDoclistData+nActual, |
| 4835 pWriter->data.pData+iDoclistData+n, |
| 4836 pWriter->data.nData-(iDoclistData+n)); |
| 4837 pWriter->data.nData -= n-nActual; |
| 4838 } |
| 4839 |
| 4840 /* Replace written length with actual length. */ |
| 4841 memcpy(pWriter->data.pData+iDoclistData, c, nActual); |
| 4842 |
| 4843 /* If the node is too large, break things up. */ |
| 4844 /* TODO(shess) This test matches leafWriterStep(), which does this |
| 4845 ** test before it knows the cost to varint-encode the term and |
| 4846 ** doclist lengths. At some point, change to |
| 4847 ** pWriter->data.nData>LEAF_MAX. |
| 4848 */ |
| 4849 if( iTermData+nTerm+nActualData>LEAF_MAX ){ |
| 4850 /* Flush out the leading data as a node */ |
| 4851 rc = leafWriterInternalFlush(v, pWriter, 0, iTermData); |
| 4852 if( rc!=SQLITE_OK ) return rc; |
| 4853 |
| 4854 pWriter->nTermDistinct = nTermDistinct; |
| 4855 |
| 4856 /* Rebuild header using the current term */ |
| 4857 n = putVarint(pWriter->data.pData, 0); |
| 4858 n += putVarint(pWriter->data.pData+n, nTerm); |
| 4859 memcpy(pWriter->data.pData+n, pTerm, nTerm); |
| 4860 n += nTerm; |
| 4861 |
| 4862 /* There should always be room, because the previous encoding |
| 4863 ** included all data necessary to construct the term. |
| 4864 */ |
| 4865 assert( n<iDoclistData ); |
| 4866 /* So long as STANDALONE_MIN is half or less of LEAF_MAX, the |
| 4867 ** following memcpy() is safe (as opposed to needing a memmove). |
| 4868 */ |
| 4869 assert( 2*STANDALONE_MIN<=LEAF_MAX ); |
| 4870 assert( n+pWriter->data.nData-iDoclistData<iDoclistData ); |
| 4871 memcpy(pWriter->data.pData+n, |
| 4872 pWriter->data.pData+iDoclistData, |
| 4873 pWriter->data.nData-iDoclistData); |
| 4874 pWriter->data.nData -= iDoclistData-n; |
| 4875 } |
| 4876 ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData); |
| 4877 |
| 4878 return SQLITE_OK; |
| 4879 } |
| 4880 |
| 4881 /* Push pTerm[nTerm] along with the doclist data to the leaf layer of |
| 4882 ** %_segments. |
| 4883 */ |
| 4884 /* TODO(shess) Revise writeZeroSegment() so that doclists are |
| 4885 ** constructed directly in pWriter->data. |
| 4886 */ |
| 4887 static int leafWriterStep(fulltext_vtab *v, LeafWriter *pWriter, |
| 4888 const char *pTerm, int nTerm, |
| 4889 const char *pData, int nData){ |
| 4890 int rc; |
| 4891 DLReader reader; |
| 4892 |
| 4893 dlrInit(&reader, DL_DEFAULT, pData, nData); |
| 4894 rc = leafWriterStepMerge(v, pWriter, pTerm, nTerm, &reader, 1); |
| 4895 dlrDestroy(&reader); |
| 4896 |
| 4897 return rc; |
| 4898 } |
| 4899 |
| 4900 |
| 4901 /****************************************************************/ |
| 4902 /* LeafReader is used to iterate over an individual leaf node. */ |
| 4903 typedef struct LeafReader { |
| 4904 DataBuffer term; /* copy of current term. */ |
| 4905 |
| 4906 const char *pData; /* data for current term. */ |
| 4907 int nData; |
| 4908 } LeafReader; |
| 4909 |
| 4910 static void leafReaderDestroy(LeafReader *pReader){ |
| 4911 dataBufferDestroy(&pReader->term); |
| 4912 SCRAMBLE(pReader); |
| 4913 } |
| 4914 |
| 4915 static int leafReaderAtEnd(LeafReader *pReader){ |
| 4916 return pReader->nData<=0; |
| 4917 } |
| 4918 |
| 4919 /* Access the current term. */ |
| 4920 static int leafReaderTermBytes(LeafReader *pReader){ |
| 4921 return pReader->term.nData; |
| 4922 } |
| 4923 static const char *leafReaderTerm(LeafReader *pReader){ |
| 4924 assert( pReader->term.nData>0 ); |
| 4925 return pReader->term.pData; |
| 4926 } |
| 4927 |
| 4928 /* Access the doclist data for the current term. */ |
| 4929 static int leafReaderDataBytes(LeafReader *pReader){ |
| 4930 int nData; |
| 4931 assert( pReader->term.nData>0 ); |
| 4932 getVarint32(pReader->pData, &nData); |
| 4933 return nData; |
| 4934 } |
| 4935 static const char *leafReaderData(LeafReader *pReader){ |
| 4936 int n, nData; |
| 4937 assert( pReader->term.nData>0 ); |
| 4938 n = getVarint32(pReader->pData, &nData); |
| 4939 return pReader->pData+n; |
| 4940 } |
| 4941 |
| 4942 static void leafReaderInit(const char *pData, int nData, |
| 4943 LeafReader *pReader){ |
| 4944 int nTerm, n; |
| 4945 |
| 4946 assert( nData>0 ); |
| 4947 assert( pData[0]=='\0' ); |
| 4948 |
| 4949 CLEAR(pReader); |
| 4950 |
| 4951 /* Read the first term, skipping the header byte. */ |
| 4952 n = getVarint32(pData+1, &nTerm); |
| 4953 dataBufferInit(&pReader->term, nTerm); |
| 4954 dataBufferReplace(&pReader->term, pData+1+n, nTerm); |
| 4955 |
| 4956 /* Position after the first term. */ |
| 4957 assert( 1+n+nTerm<nData ); |
| 4958 pReader->pData = pData+1+n+nTerm; |
| 4959 pReader->nData = nData-1-n-nTerm; |
| 4960 } |
| 4961 |
| 4962 /* Step the reader forward to the next term. */ |
| 4963 static void leafReaderStep(LeafReader *pReader){ |
| 4964 int n, nData, nPrefix, nSuffix; |
| 4965 assert( !leafReaderAtEnd(pReader) ); |
| 4966 |
| 4967 /* Skip previous entry's data block. */ |
| 4968 n = getVarint32(pReader->pData, &nData); |
| 4969 assert( n+nData<=pReader->nData ); |
| 4970 pReader->pData += n+nData; |
| 4971 pReader->nData -= n+nData; |
| 4972 |
| 4973 if( !leafReaderAtEnd(pReader) ){ |
| 4974 /* Construct the new term using a prefix from the old term plus a |
| 4975 ** suffix from the leaf data. |
| 4976 */ |
| 4977 n = getVarint32(pReader->pData, &nPrefix); |
| 4978 n += getVarint32(pReader->pData+n, &nSuffix); |
| 4979 assert( n+nSuffix<pReader->nData ); |
| 4980 pReader->term.nData = nPrefix; |
| 4981 dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix); |
| 4982 |
| 4983 pReader->pData += n+nSuffix; |
| 4984 pReader->nData -= n+nSuffix; |
| 4985 } |
| 4986 } |
| 4987 |
| 4988 /* strcmp-style comparison of pReader's current term against pTerm. |
| 4989 ** If isPrefix, equality means equal through nTerm bytes. |
| 4990 */ |
| 4991 static int leafReaderTermCmp(LeafReader *pReader, |
| 4992 const char *pTerm, int nTerm, int isPrefix){ |
| 4993 int c, n = pReader->term.nData<nTerm ? pReader->term.nData : nTerm; |
| 4994 if( n==0 ){ |
| 4995 if( pReader->term.nData>0 ) return -1; |
| 4996 if(nTerm>0 ) return 1; |
| 4997 return 0; |
| 4998 } |
| 4999 |
| 5000 c = memcmp(pReader->term.pData, pTerm, n); |
| 5001 if( c!=0 ) return c; |
| 5002 if( isPrefix && n==nTerm ) return 0; |
| 5003 return pReader->term.nData - nTerm; |
| 5004 } |
| 5005 |
| 5006 |
| 5007 /****************************************************************/ |
| 5008 /* LeavesReader wraps LeafReader to allow iterating over the entire |
| 5009 ** leaf layer of the tree. |
| 5010 */ |
| 5011 typedef struct LeavesReader { |
| 5012 int idx; /* Index within the segment. */ |
| 5013 |
| 5014 sqlite3_stmt *pStmt; /* Statement we're streaming leaves from. */ |
| 5015 int eof; /* we've seen SQLITE_DONE from pStmt. */ |
| 5016 |
| 5017 LeafReader leafReader; /* reader for the current leaf. */ |
| 5018 DataBuffer rootData; /* root data for inline. */ |
| 5019 } LeavesReader; |
| 5020 |
| 5021 /* Access the current term. */ |
| 5022 static int leavesReaderTermBytes(LeavesReader *pReader){ |
| 5023 assert( !pReader->eof ); |
| 5024 return leafReaderTermBytes(&pReader->leafReader); |
| 5025 } |
| 5026 static const char *leavesReaderTerm(LeavesReader *pReader){ |
| 5027 assert( !pReader->eof ); |
| 5028 return leafReaderTerm(&pReader->leafReader); |
| 5029 } |
| 5030 |
| 5031 /* Access the doclist data for the current term. */ |
| 5032 static int leavesReaderDataBytes(LeavesReader *pReader){ |
| 5033 assert( !pReader->eof ); |
| 5034 return leafReaderDataBytes(&pReader->leafReader); |
| 5035 } |
| 5036 static const char *leavesReaderData(LeavesReader *pReader){ |
| 5037 assert( !pReader->eof ); |
| 5038 return leafReaderData(&pReader->leafReader); |
| 5039 } |
| 5040 |
| 5041 static int leavesReaderAtEnd(LeavesReader *pReader){ |
| 5042 return pReader->eof; |
| 5043 } |
| 5044 |
| 5045 /* loadSegmentLeaves() may not read all the way to SQLITE_DONE, thus |
| 5046 ** leaving the statement handle open, which locks the table. |
| 5047 */ |
| 5048 /* TODO(shess) This "solution" is not satisfactory. Really, there |
| 5049 ** should be check-in function for all statement handles which |
| 5050 ** arranges to call sqlite3_reset(). This most likely will require |
| 5051 ** modification to control flow all over the place, though, so for now |
| 5052 ** just punt. |
| 5053 ** |
| 5054 ** Note the the current system assumes that segment merges will run to |
| 5055 ** completion, which is why this particular probably hasn't arisen in |
| 5056 ** this case. Probably a brittle assumption. |
| 5057 */ |
| 5058 static int leavesReaderReset(LeavesReader *pReader){ |
| 5059 return sqlite3_reset(pReader->pStmt); |
| 5060 } |
| 5061 |
| 5062 static void leavesReaderDestroy(LeavesReader *pReader){ |
| 5063 /* If idx is -1, that means we're using a non-cached statement |
| 5064 ** handle in the optimize() case, so we need to release it. |
| 5065 */ |
| 5066 if( pReader->pStmt!=NULL && pReader->idx==-1 ){ |
| 5067 sqlite3_finalize(pReader->pStmt); |
| 5068 } |
| 5069 leafReaderDestroy(&pReader->leafReader); |
| 5070 dataBufferDestroy(&pReader->rootData); |
| 5071 SCRAMBLE(pReader); |
| 5072 } |
| 5073 |
| 5074 /* Initialize pReader with the given root data (if iStartBlockid==0 |
| 5075 ** the leaf data was entirely contained in the root), or from the |
| 5076 ** stream of blocks between iStartBlockid and iEndBlockid, inclusive. |
| 5077 */ |
| 5078 static int leavesReaderInit(fulltext_vtab *v, |
| 5079 int idx, |
| 5080 sqlite_int64 iStartBlockid, |
| 5081 sqlite_int64 iEndBlockid, |
| 5082 const char *pRootData, int nRootData, |
| 5083 LeavesReader *pReader){ |
| 5084 CLEAR(pReader); |
| 5085 pReader->idx = idx; |
| 5086 |
| 5087 dataBufferInit(&pReader->rootData, 0); |
| 5088 if( iStartBlockid==0 ){ |
| 5089 /* Entire leaf level fit in root data. */ |
| 5090 dataBufferReplace(&pReader->rootData, pRootData, nRootData); |
| 5091 leafReaderInit(pReader->rootData.pData, pReader->rootData.nData, |
| 5092 &pReader->leafReader); |
| 5093 }else{ |
| 5094 sqlite3_stmt *s; |
| 5095 int rc = sql_get_leaf_statement(v, idx, &s); |
| 5096 if( rc!=SQLITE_OK ) return rc; |
| 5097 |
| 5098 rc = sqlite3_bind_int64(s, 1, iStartBlockid); |
| 5099 if( rc!=SQLITE_OK ) return rc; |
| 5100 |
| 5101 rc = sqlite3_bind_int64(s, 2, iEndBlockid); |
| 5102 if( rc!=SQLITE_OK ) return rc; |
| 5103 |
| 5104 rc = sqlite3_step(s); |
| 5105 if( rc==SQLITE_DONE ){ |
| 5106 pReader->eof = 1; |
| 5107 return SQLITE_OK; |
| 5108 } |
| 5109 if( rc!=SQLITE_ROW ) return rc; |
| 5110 |
| 5111 pReader->pStmt = s; |
| 5112 leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0), |
| 5113 sqlite3_column_bytes(pReader->pStmt, 0), |
| 5114 &pReader->leafReader); |
| 5115 } |
| 5116 return SQLITE_OK; |
| 5117 } |
| 5118 |
| 5119 /* Step the current leaf forward to the next term. If we reach the |
| 5120 ** end of the current leaf, step forward to the next leaf block. |
| 5121 */ |
| 5122 static int leavesReaderStep(fulltext_vtab *v, LeavesReader *pReader){ |
| 5123 assert( !leavesReaderAtEnd(pReader) ); |
| 5124 leafReaderStep(&pReader->leafReader); |
| 5125 |
| 5126 if( leafReaderAtEnd(&pReader->leafReader) ){ |
| 5127 int rc; |
| 5128 if( pReader->rootData.pData ){ |
| 5129 pReader->eof = 1; |
| 5130 return SQLITE_OK; |
| 5131 } |
| 5132 rc = sqlite3_step(pReader->pStmt); |
| 5133 if( rc!=SQLITE_ROW ){ |
| 5134 pReader->eof = 1; |
| 5135 return rc==SQLITE_DONE ? SQLITE_OK : rc; |
| 5136 } |
| 5137 leafReaderDestroy(&pReader->leafReader); |
| 5138 leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0), |
| 5139 sqlite3_column_bytes(pReader->pStmt, 0), |
| 5140 &pReader->leafReader); |
| 5141 } |
| 5142 return SQLITE_OK; |
| 5143 } |
| 5144 |
| 5145 /* Order LeavesReaders by their term, ignoring idx. Readers at eof |
| 5146 ** always sort to the end. |
| 5147 */ |
| 5148 static int leavesReaderTermCmp(LeavesReader *lr1, LeavesReader *lr2){ |
| 5149 if( leavesReaderAtEnd(lr1) ){ |
| 5150 if( leavesReaderAtEnd(lr2) ) return 0; |
| 5151 return 1; |
| 5152 } |
| 5153 if( leavesReaderAtEnd(lr2) ) return -1; |
| 5154 |
| 5155 return leafReaderTermCmp(&lr1->leafReader, |
| 5156 leavesReaderTerm(lr2), leavesReaderTermBytes(lr2), |
| 5157 0); |
| 5158 } |
| 5159 |
| 5160 /* Similar to leavesReaderTermCmp(), with additional ordering by idx |
| 5161 ** so that older segments sort before newer segments. |
| 5162 */ |
| 5163 static int leavesReaderCmp(LeavesReader *lr1, LeavesReader *lr2){ |
| 5164 int c = leavesReaderTermCmp(lr1, lr2); |
| 5165 if( c!=0 ) return c; |
| 5166 return lr1->idx-lr2->idx; |
| 5167 } |
| 5168 |
| 5169 /* Assume that pLr[1]..pLr[nLr] are sorted. Bubble pLr[0] into its |
| 5170 ** sorted position. |
| 5171 */ |
| 5172 static void leavesReaderReorder(LeavesReader *pLr, int nLr){ |
| 5173 while( nLr>1 && leavesReaderCmp(pLr, pLr+1)>0 ){ |
| 5174 LeavesReader tmp = pLr[0]; |
| 5175 pLr[0] = pLr[1]; |
| 5176 pLr[1] = tmp; |
| 5177 nLr--; |
| 5178 pLr++; |
| 5179 } |
| 5180 } |
| 5181 |
| 5182 /* Initializes pReaders with the segments from level iLevel, returning |
| 5183 ** the number of segments in *piReaders. Leaves pReaders in sorted |
| 5184 ** order. |
| 5185 */ |
| 5186 static int leavesReadersInit(fulltext_vtab *v, int iLevel, |
| 5187 LeavesReader *pReaders, int *piReaders){ |
| 5188 sqlite3_stmt *s; |
| 5189 int i, rc = sql_get_statement(v, SEGDIR_SELECT_LEVEL_STMT, &s); |
| 5190 if( rc!=SQLITE_OK ) return rc; |
| 5191 |
| 5192 rc = sqlite3_bind_int(s, 1, iLevel); |
| 5193 if( rc!=SQLITE_OK ) return rc; |
| 5194 |
| 5195 i = 0; |
| 5196 while( (rc = sqlite3_step(s))==SQLITE_ROW ){ |
| 5197 sqlite_int64 iStart = sqlite3_column_int64(s, 0); |
| 5198 sqlite_int64 iEnd = sqlite3_column_int64(s, 1); |
| 5199 const char *pRootData = sqlite3_column_blob(s, 2); |
| 5200 int nRootData = sqlite3_column_bytes(s, 2); |
| 5201 |
| 5202 assert( i<MERGE_COUNT ); |
| 5203 rc = leavesReaderInit(v, i, iStart, iEnd, pRootData, nRootData, |
| 5204 &pReaders[i]); |
| 5205 if( rc!=SQLITE_OK ) break; |
| 5206 |
| 5207 i++; |
| 5208 } |
| 5209 if( rc!=SQLITE_DONE ){ |
| 5210 while( i-->0 ){ |
| 5211 leavesReaderDestroy(&pReaders[i]); |
| 5212 } |
| 5213 return rc; |
| 5214 } |
| 5215 |
| 5216 *piReaders = i; |
| 5217 |
| 5218 /* Leave our results sorted by term, then age. */ |
| 5219 while( i-- ){ |
| 5220 leavesReaderReorder(pReaders+i, *piReaders-i); |
| 5221 } |
| 5222 return SQLITE_OK; |
| 5223 } |
| 5224 |
| 5225 /* Merge doclists from pReaders[nReaders] into a single doclist, which |
| 5226 ** is written to pWriter. Assumes pReaders is ordered oldest to |
| 5227 ** newest. |
| 5228 */ |
| 5229 /* TODO(shess) Consider putting this inline in segmentMerge(). */ |
| 5230 static int leavesReadersMerge(fulltext_vtab *v, |
| 5231 LeavesReader *pReaders, int nReaders, |
| 5232 LeafWriter *pWriter){ |
| 5233 DLReader dlReaders[MERGE_COUNT]; |
| 5234 const char *pTerm = leavesReaderTerm(pReaders); |
| 5235 int i, nTerm = leavesReaderTermBytes(pReaders); |
| 5236 |
| 5237 assert( nReaders<=MERGE_COUNT ); |
| 5238 |
| 5239 for(i=0; i<nReaders; i++){ |
| 5240 dlrInit(&dlReaders[i], DL_DEFAULT, |
| 5241 leavesReaderData(pReaders+i), |
| 5242 leavesReaderDataBytes(pReaders+i)); |
| 5243 } |
| 5244 |
| 5245 return leafWriterStepMerge(v, pWriter, pTerm, nTerm, dlReaders, nReaders); |
| 5246 } |
| 5247 |
| 5248 /* Forward ref due to mutual recursion with segdirNextIndex(). */ |
| 5249 static int segmentMerge(fulltext_vtab *v, int iLevel); |
| 5250 |
| 5251 /* Put the next available index at iLevel into *pidx. If iLevel |
| 5252 ** already has MERGE_COUNT segments, they are merged to a higher |
| 5253 ** level to make room. |
| 5254 */ |
| 5255 static int segdirNextIndex(fulltext_vtab *v, int iLevel, int *pidx){ |
| 5256 int rc = segdir_max_index(v, iLevel, pidx); |
| 5257 if( rc==SQLITE_DONE ){ /* No segments at iLevel. */ |
| 5258 *pidx = 0; |
| 5259 }else if( rc==SQLITE_ROW ){ |
| 5260 if( *pidx==(MERGE_COUNT-1) ){ |
| 5261 rc = segmentMerge(v, iLevel); |
| 5262 if( rc!=SQLITE_OK ) return rc; |
| 5263 *pidx = 0; |
| 5264 }else{ |
| 5265 (*pidx)++; |
| 5266 } |
| 5267 }else{ |
| 5268 return rc; |
| 5269 } |
| 5270 return SQLITE_OK; |
| 5271 } |
| 5272 |
| 5273 /* Merge MERGE_COUNT segments at iLevel into a new segment at |
| 5274 ** iLevel+1. If iLevel+1 is already full of segments, those will be |
| 5275 ** merged to make room. |
| 5276 */ |
| 5277 static int segmentMerge(fulltext_vtab *v, int iLevel){ |
| 5278 LeafWriter writer; |
| 5279 LeavesReader lrs[MERGE_COUNT]; |
| 5280 int i, rc, idx = 0; |
| 5281 |
| 5282 /* Determine the next available segment index at the next level, |
| 5283 ** merging as necessary. |
| 5284 */ |
| 5285 rc = segdirNextIndex(v, iLevel+1, &idx); |
| 5286 if( rc!=SQLITE_OK ) return rc; |
| 5287 |
| 5288 /* TODO(shess) This assumes that we'll always see exactly |
| 5289 ** MERGE_COUNT segments to merge at a given level. That will be |
| 5290 ** broken if we allow the developer to request preemptive or |
| 5291 ** deferred merging. |
| 5292 */ |
| 5293 memset(&lrs, '\0', sizeof(lrs)); |
| 5294 rc = leavesReadersInit(v, iLevel, lrs, &i); |
| 5295 if( rc!=SQLITE_OK ) return rc; |
| 5296 assert( i==MERGE_COUNT ); |
| 5297 |
| 5298 leafWriterInit(iLevel+1, idx, &writer); |
| 5299 |
| 5300 /* Since leavesReaderReorder() pushes readers at eof to the end, |
| 5301 ** when the first reader is empty, all will be empty. |
| 5302 */ |
| 5303 while( !leavesReaderAtEnd(lrs) ){ |
| 5304 /* Figure out how many readers share their next term. */ |
| 5305 for(i=1; i<MERGE_COUNT && !leavesReaderAtEnd(lrs+i); i++){ |
| 5306 if( 0!=leavesReaderTermCmp(lrs, lrs+i) ) break; |
| 5307 } |
| 5308 |
| 5309 rc = leavesReadersMerge(v, lrs, i, &writer); |
| 5310 if( rc!=SQLITE_OK ) goto err; |
| 5311 |
| 5312 /* Step forward those that were merged. */ |
| 5313 while( i-->0 ){ |
| 5314 rc = leavesReaderStep(v, lrs+i); |
| 5315 if( rc!=SQLITE_OK ) goto err; |
| 5316 |
| 5317 /* Reorder by term, then by age. */ |
| 5318 leavesReaderReorder(lrs+i, MERGE_COUNT-i); |
| 5319 } |
| 5320 } |
| 5321 |
| 5322 for(i=0; i<MERGE_COUNT; i++){ |
| 5323 leavesReaderDestroy(&lrs[i]); |
| 5324 } |
| 5325 |
| 5326 rc = leafWriterFinalize(v, &writer); |
| 5327 leafWriterDestroy(&writer); |
| 5328 if( rc!=SQLITE_OK ) return rc; |
| 5329 |
| 5330 /* Delete the merged segment data. */ |
| 5331 return segdir_delete(v, iLevel); |
| 5332 |
| 5333 err: |
| 5334 for(i=0; i<MERGE_COUNT; i++){ |
| 5335 leavesReaderDestroy(&lrs[i]); |
| 5336 } |
| 5337 leafWriterDestroy(&writer); |
| 5338 return rc; |
| 5339 } |
| 5340 |
| 5341 /* Accumulate the union of *acc and *pData into *acc. */ |
| 5342 static void docListAccumulateUnion(DataBuffer *acc, |
| 5343 const char *pData, int nData) { |
| 5344 DataBuffer tmp = *acc; |
| 5345 dataBufferInit(acc, tmp.nData+nData); |
| 5346 docListUnion(tmp.pData, tmp.nData, pData, nData, acc); |
| 5347 dataBufferDestroy(&tmp); |
| 5348 } |
| 5349 |
| 5350 /* TODO(shess) It might be interesting to explore different merge |
| 5351 ** strategies, here. For instance, since this is a sorted merge, we |
| 5352 ** could easily merge many doclists in parallel. With some |
| 5353 ** comprehension of the storage format, we could merge all of the |
| 5354 ** doclists within a leaf node directly from the leaf node's storage. |
| 5355 ** It may be worthwhile to merge smaller doclists before larger |
| 5356 ** doclists, since they can be traversed more quickly - but the |
| 5357 ** results may have less overlap, making them more expensive in a |
| 5358 ** different way. |
| 5359 */ |
| 5360 |
| 5361 /* Scan pReader for pTerm/nTerm, and merge the term's doclist over |
| 5362 ** *out (any doclists with duplicate docids overwrite those in *out). |
| 5363 ** Internal function for loadSegmentLeaf(). |
| 5364 */ |
| 5365 static int loadSegmentLeavesInt(fulltext_vtab *v, LeavesReader *pReader, |
| 5366 const char *pTerm, int nTerm, int isPrefix, |
| 5367 DataBuffer *out){ |
| 5368 /* doclist data is accumulated into pBuffers similar to how one does |
| 5369 ** increment in binary arithmetic. If index 0 is empty, the data is |
| 5370 ** stored there. If there is data there, it is merged and the |
| 5371 ** results carried into position 1, with further merge-and-carry |
| 5372 ** until an empty position is found. |
| 5373 */ |
| 5374 DataBuffer *pBuffers = NULL; |
| 5375 int nBuffers = 0, nMaxBuffers = 0, rc; |
| 5376 |
| 5377 assert( nTerm>0 ); |
| 5378 |
| 5379 for(rc=SQLITE_OK; rc==SQLITE_OK && !leavesReaderAtEnd(pReader); |
| 5380 rc=leavesReaderStep(v, pReader)){ |
| 5381 /* TODO(shess) Really want leavesReaderTermCmp(), but that name is |
| 5382 ** already taken to compare the terms of two LeavesReaders. Think |
| 5383 ** on a better name. [Meanwhile, break encapsulation rather than |
| 5384 ** use a confusing name.] |
| 5385 */ |
| 5386 int c = leafReaderTermCmp(&pReader->leafReader, pTerm, nTerm, isPrefix); |
| 5387 if( c>0 ) break; /* Past any possible matches. */ |
| 5388 if( c==0 ){ |
| 5389 const char *pData = leavesReaderData(pReader); |
| 5390 int iBuffer, nData = leavesReaderDataBytes(pReader); |
| 5391 |
| 5392 /* Find the first empty buffer. */ |
| 5393 for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){ |
| 5394 if( 0==pBuffers[iBuffer].nData ) break; |
| 5395 } |
| 5396 |
| 5397 /* Out of buffers, add an empty one. */ |
| 5398 if( iBuffer==nBuffers ){ |
| 5399 if( nBuffers==nMaxBuffers ){ |
| 5400 DataBuffer *p; |
| 5401 nMaxBuffers += 20; |
| 5402 |
| 5403 /* Manual realloc so we can handle NULL appropriately. */ |
| 5404 p = sqlite3_malloc(nMaxBuffers*sizeof(*pBuffers)); |
| 5405 if( p==NULL ){ |
| 5406 rc = SQLITE_NOMEM; |
| 5407 break; |
| 5408 } |
| 5409 |
| 5410 if( nBuffers>0 ){ |
| 5411 assert(pBuffers!=NULL); |
| 5412 memcpy(p, pBuffers, nBuffers*sizeof(*pBuffers)); |
| 5413 sqlite3_free(pBuffers); |
| 5414 } |
| 5415 pBuffers = p; |
| 5416 } |
| 5417 dataBufferInit(&(pBuffers[nBuffers]), 0); |
| 5418 nBuffers++; |
| 5419 } |
| 5420 |
| 5421 /* At this point, must have an empty at iBuffer. */ |
| 5422 assert(iBuffer<nBuffers && pBuffers[iBuffer].nData==0); |
| 5423 |
| 5424 /* If empty was first buffer, no need for merge logic. */ |
| 5425 if( iBuffer==0 ){ |
| 5426 dataBufferReplace(&(pBuffers[0]), pData, nData); |
| 5427 }else{ |
| 5428 /* pAcc is the empty buffer the merged data will end up in. */ |
| 5429 DataBuffer *pAcc = &(pBuffers[iBuffer]); |
| 5430 DataBuffer *p = &(pBuffers[0]); |
| 5431 |
| 5432 /* Handle position 0 specially to avoid need to prime pAcc |
| 5433 ** with pData/nData. |
| 5434 */ |
| 5435 dataBufferSwap(p, pAcc); |
| 5436 docListAccumulateUnion(pAcc, pData, nData); |
| 5437 |
| 5438 /* Accumulate remaining doclists into pAcc. */ |
| 5439 for(++p; p<pAcc; ++p){ |
| 5440 docListAccumulateUnion(pAcc, p->pData, p->nData); |
| 5441 |
| 5442 /* dataBufferReset() could allow a large doclist to blow up |
| 5443 ** our memory requirements. |
| 5444 */ |
| 5445 if( p->nCapacity<1024 ){ |
| 5446 dataBufferReset(p); |
| 5447 }else{ |
| 5448 dataBufferDestroy(p); |
| 5449 dataBufferInit(p, 0); |
| 5450 } |
| 5451 } |
| 5452 } |
| 5453 } |
| 5454 } |
| 5455 |
| 5456 /* Union all the doclists together into *out. */ |
| 5457 /* TODO(shess) What if *out is big? Sigh. */ |
| 5458 if( rc==SQLITE_OK && nBuffers>0 ){ |
| 5459 int iBuffer; |
| 5460 for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){ |
| 5461 if( pBuffers[iBuffer].nData>0 ){ |
| 5462 if( out->nData==0 ){ |
| 5463 dataBufferSwap(out, &(pBuffers[iBuffer])); |
| 5464 }else{ |
| 5465 docListAccumulateUnion(out, pBuffers[iBuffer].pData, |
| 5466 pBuffers[iBuffer].nData); |
| 5467 } |
| 5468 } |
| 5469 } |
| 5470 } |
| 5471 |
| 5472 while( nBuffers-- ){ |
| 5473 dataBufferDestroy(&(pBuffers[nBuffers])); |
| 5474 } |
| 5475 if( pBuffers!=NULL ) sqlite3_free(pBuffers); |
| 5476 |
| 5477 return rc; |
| 5478 } |
| 5479 |
| 5480 /* Call loadSegmentLeavesInt() with pData/nData as input. */ |
| 5481 static int loadSegmentLeaf(fulltext_vtab *v, const char *pData, int nData, |
| 5482 const char *pTerm, int nTerm, int isPrefix, |
| 5483 DataBuffer *out){ |
| 5484 LeavesReader reader; |
| 5485 int rc; |
| 5486 |
| 5487 assert( nData>1 ); |
| 5488 assert( *pData=='\0' ); |
| 5489 rc = leavesReaderInit(v, 0, 0, 0, pData, nData, &reader); |
| 5490 if( rc!=SQLITE_OK ) return rc; |
| 5491 |
| 5492 rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out); |
| 5493 leavesReaderReset(&reader); |
| 5494 leavesReaderDestroy(&reader); |
| 5495 return rc; |
| 5496 } |
| 5497 |
| 5498 /* Call loadSegmentLeavesInt() with the leaf nodes from iStartLeaf to |
| 5499 ** iEndLeaf (inclusive) as input, and merge the resulting doclist into |
| 5500 ** out. |
| 5501 */ |
| 5502 static int loadSegmentLeaves(fulltext_vtab *v, |
| 5503 sqlite_int64 iStartLeaf, sqlite_int64 iEndLeaf, |
| 5504 const char *pTerm, int nTerm, int isPrefix, |
| 5505 DataBuffer *out){ |
| 5506 int rc; |
| 5507 LeavesReader reader; |
| 5508 |
| 5509 assert( iStartLeaf<=iEndLeaf ); |
| 5510 rc = leavesReaderInit(v, 0, iStartLeaf, iEndLeaf, NULL, 0, &reader); |
| 5511 if( rc!=SQLITE_OK ) return rc; |
| 5512 |
| 5513 rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out); |
| 5514 leavesReaderReset(&reader); |
| 5515 leavesReaderDestroy(&reader); |
| 5516 return rc; |
| 5517 } |
| 5518 |
| 5519 /* Taking pData/nData as an interior node, find the sequence of child |
| 5520 ** nodes which could include pTerm/nTerm/isPrefix. Note that the |
| 5521 ** interior node terms logically come between the blocks, so there is |
| 5522 ** one more blockid than there are terms (that block contains terms >= |
| 5523 ** the last interior-node term). |
| 5524 */ |
| 5525 /* TODO(shess) The calling code may already know that the end child is |
| 5526 ** not worth calculating, because the end may be in a later sibling |
| 5527 ** node. Consider whether breaking symmetry is worthwhile. I suspect |
| 5528 ** it is not worthwhile. |
| 5529 */ |
| 5530 static void getChildrenContaining(const char *pData, int nData, |
| 5531 const char *pTerm, int nTerm, int isPrefix, |
| 5532 sqlite_int64 *piStartChild, |
| 5533 sqlite_int64 *piEndChild){ |
| 5534 InteriorReader reader; |
| 5535 |
| 5536 assert( nData>1 ); |
| 5537 assert( *pData!='\0' ); |
| 5538 interiorReaderInit(pData, nData, &reader); |
| 5539 |
| 5540 /* Scan for the first child which could contain pTerm/nTerm. */ |
| 5541 while( !interiorReaderAtEnd(&reader) ){ |
| 5542 if( interiorReaderTermCmp(&reader, pTerm, nTerm, 0)>0 ) break; |
| 5543 interiorReaderStep(&reader); |
| 5544 } |
| 5545 *piStartChild = interiorReaderCurrentBlockid(&reader); |
| 5546 |
| 5547 /* Keep scanning to find a term greater than our term, using prefix |
| 5548 ** comparison if indicated. If isPrefix is false, this will be the |
| 5549 ** same blockid as the starting block. |
| 5550 */ |
| 5551 while( !interiorReaderAtEnd(&reader) ){ |
| 5552 if( interiorReaderTermCmp(&reader, pTerm, nTerm, isPrefix)>0 ) break; |
| 5553 interiorReaderStep(&reader); |
| 5554 } |
| 5555 *piEndChild = interiorReaderCurrentBlockid(&reader); |
| 5556 |
| 5557 interiorReaderDestroy(&reader); |
| 5558 |
| 5559 /* Children must ascend, and if !prefix, both must be the same. */ |
| 5560 assert( *piEndChild>=*piStartChild ); |
| 5561 assert( isPrefix || *piStartChild==*piEndChild ); |
| 5562 } |
| 5563 |
| 5564 /* Read block at iBlockid and pass it with other params to |
| 5565 ** getChildrenContaining(). |
| 5566 */ |
| 5567 static int loadAndGetChildrenContaining( |
| 5568 fulltext_vtab *v, |
| 5569 sqlite_int64 iBlockid, |
| 5570 const char *pTerm, int nTerm, int isPrefix, |
| 5571 sqlite_int64 *piStartChild, sqlite_int64 *piEndChild |
| 5572 ){ |
| 5573 sqlite3_stmt *s = NULL; |
| 5574 int rc; |
| 5575 |
| 5576 assert( iBlockid!=0 ); |
| 5577 assert( pTerm!=NULL ); |
| 5578 assert( nTerm!=0 ); /* TODO(shess) Why not allow this? */ |
| 5579 assert( piStartChild!=NULL ); |
| 5580 assert( piEndChild!=NULL ); |
| 5581 |
| 5582 rc = sql_get_statement(v, BLOCK_SELECT_STMT, &s); |
| 5583 if( rc!=SQLITE_OK ) return rc; |
| 5584 |
| 5585 rc = sqlite3_bind_int64(s, 1, iBlockid); |
| 5586 if( rc!=SQLITE_OK ) return rc; |
| 5587 |
| 5588 rc = sqlite3_step(s); |
| 5589 if( rc==SQLITE_DONE ) return SQLITE_ERROR; |
| 5590 if( rc!=SQLITE_ROW ) return rc; |
| 5591 |
| 5592 getChildrenContaining(sqlite3_column_blob(s, 0), sqlite3_column_bytes(s, 0), |
| 5593 pTerm, nTerm, isPrefix, piStartChild, piEndChild); |
| 5594 |
| 5595 /* We expect only one row. We must execute another sqlite3_step() |
| 5596 * to complete the iteration; otherwise the table will remain |
| 5597 * locked. */ |
| 5598 rc = sqlite3_step(s); |
| 5599 if( rc==SQLITE_ROW ) return SQLITE_ERROR; |
| 5600 if( rc!=SQLITE_DONE ) return rc; |
| 5601 |
| 5602 return SQLITE_OK; |
| 5603 } |
| 5604 |
| 5605 /* Traverse the tree represented by pData[nData] looking for |
| 5606 ** pTerm[nTerm], placing its doclist into *out. This is internal to |
| 5607 ** loadSegment() to make error-handling cleaner. |
| 5608 */ |
| 5609 static int loadSegmentInt(fulltext_vtab *v, const char *pData, int nData, |
| 5610 sqlite_int64 iLeavesEnd, |
| 5611 const char *pTerm, int nTerm, int isPrefix, |
| 5612 DataBuffer *out){ |
| 5613 /* Special case where root is a leaf. */ |
| 5614 if( *pData=='\0' ){ |
| 5615 return loadSegmentLeaf(v, pData, nData, pTerm, nTerm, isPrefix, out); |
| 5616 }else{ |
| 5617 int rc; |
| 5618 sqlite_int64 iStartChild, iEndChild; |
| 5619 |
| 5620 /* Process pData as an interior node, then loop down the tree |
| 5621 ** until we find the set of leaf nodes to scan for the term. |
| 5622 */ |
| 5623 getChildrenContaining(pData, nData, pTerm, nTerm, isPrefix, |
| 5624 &iStartChild, &iEndChild); |
| 5625 while( iStartChild>iLeavesEnd ){ |
| 5626 sqlite_int64 iNextStart, iNextEnd; |
| 5627 rc = loadAndGetChildrenContaining(v, iStartChild, pTerm, nTerm, isPrefix, |
| 5628 &iNextStart, &iNextEnd); |
| 5629 if( rc!=SQLITE_OK ) return rc; |
| 5630 |
| 5631 /* If we've branched, follow the end branch, too. */ |
| 5632 if( iStartChild!=iEndChild ){ |
| 5633 sqlite_int64 iDummy; |
| 5634 rc = loadAndGetChildrenContaining(v, iEndChild, pTerm, nTerm, isPrefix, |
| 5635 &iDummy, &iNextEnd); |
| 5636 if( rc!=SQLITE_OK ) return rc; |
| 5637 } |
| 5638 |
| 5639 assert( iNextStart<=iNextEnd ); |
| 5640 iStartChild = iNextStart; |
| 5641 iEndChild = iNextEnd; |
| 5642 } |
| 5643 assert( iStartChild<=iLeavesEnd ); |
| 5644 assert( iEndChild<=iLeavesEnd ); |
| 5645 |
| 5646 /* Scan through the leaf segments for doclists. */ |
| 5647 return loadSegmentLeaves(v, iStartChild, iEndChild, |
| 5648 pTerm, nTerm, isPrefix, out); |
| 5649 } |
| 5650 } |
| 5651 |
| 5652 /* Call loadSegmentInt() to collect the doclist for pTerm/nTerm, then |
| 5653 ** merge its doclist over *out (any duplicate doclists read from the |
| 5654 ** segment rooted at pData will overwrite those in *out). |
| 5655 */ |
| 5656 /* TODO(shess) Consider changing this to determine the depth of the |
| 5657 ** leaves using either the first characters of interior nodes (when |
| 5658 ** ==1, we're one level above the leaves), or the first character of |
| 5659 ** the root (which will describe the height of the tree directly). |
| 5660 ** Either feels somewhat tricky to me. |
| 5661 */ |
| 5662 /* TODO(shess) The current merge is likely to be slow for large |
| 5663 ** doclists (though it should process from newest/smallest to |
| 5664 ** oldest/largest, so it may not be that bad). It might be useful to |
| 5665 ** modify things to allow for N-way merging. This could either be |
| 5666 ** within a segment, with pairwise merges across segments, or across |
| 5667 ** all segments at once. |
| 5668 */ |
| 5669 static int loadSegment(fulltext_vtab *v, const char *pData, int nData, |
| 5670 sqlite_int64 iLeavesEnd, |
| 5671 const char *pTerm, int nTerm, int isPrefix, |
| 5672 DataBuffer *out){ |
| 5673 DataBuffer result; |
| 5674 int rc; |
| 5675 |
| 5676 assert( nData>1 ); |
| 5677 |
| 5678 /* This code should never be called with buffered updates. */ |
| 5679 assert( v->nPendingData<0 ); |
| 5680 |
| 5681 dataBufferInit(&result, 0); |
| 5682 rc = loadSegmentInt(v, pData, nData, iLeavesEnd, |
| 5683 pTerm, nTerm, isPrefix, &result); |
| 5684 if( rc==SQLITE_OK && result.nData>0 ){ |
| 5685 if( out->nData==0 ){ |
| 5686 DataBuffer tmp = *out; |
| 5687 *out = result; |
| 5688 result = tmp; |
| 5689 }else{ |
| 5690 DataBuffer merged; |
| 5691 DLReader readers[2]; |
| 5692 |
| 5693 dlrInit(&readers[0], DL_DEFAULT, out->pData, out->nData); |
| 5694 dlrInit(&readers[1], DL_DEFAULT, result.pData, result.nData); |
| 5695 dataBufferInit(&merged, out->nData+result.nData); |
| 5696 docListMerge(&merged, readers, 2); |
| 5697 dataBufferDestroy(out); |
| 5698 *out = merged; |
| 5699 dlrDestroy(&readers[0]); |
| 5700 dlrDestroy(&readers[1]); |
| 5701 } |
| 5702 } |
| 5703 dataBufferDestroy(&result); |
| 5704 return rc; |
| 5705 } |
| 5706 |
| 5707 /* Scan the database and merge together the posting lists for the term |
| 5708 ** into *out. |
| 5709 */ |
| 5710 static int termSelect(fulltext_vtab *v, int iColumn, |
| 5711 const char *pTerm, int nTerm, int isPrefix, |
| 5712 DocListType iType, DataBuffer *out){ |
| 5713 DataBuffer doclist; |
| 5714 sqlite3_stmt *s; |
| 5715 int rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s); |
| 5716 if( rc!=SQLITE_OK ) return rc; |
| 5717 |
| 5718 /* This code should never be called with buffered updates. */ |
| 5719 assert( v->nPendingData<0 ); |
| 5720 |
| 5721 dataBufferInit(&doclist, 0); |
| 5722 |
| 5723 /* Traverse the segments from oldest to newest so that newer doclist |
| 5724 ** elements for given docids overwrite older elements. |
| 5725 */ |
| 5726 while( (rc = sqlite3_step(s))==SQLITE_ROW ){ |
| 5727 const char *pData = sqlite3_column_blob(s, 2); |
| 5728 const int nData = sqlite3_column_bytes(s, 2); |
| 5729 const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1); |
| 5730 rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, isPrefix, |
| 5731 &doclist); |
| 5732 if( rc!=SQLITE_OK ) goto err; |
| 5733 } |
| 5734 if( rc==SQLITE_DONE ){ |
| 5735 if( doclist.nData!=0 ){ |
| 5736 /* TODO(shess) The old term_select_all() code applied the column |
| 5737 ** restrict as we merged segments, leading to smaller buffers. |
| 5738 ** This is probably worthwhile to bring back, once the new storage |
| 5739 ** system is checked in. |
| 5740 */ |
| 5741 if( iColumn==v->nColumn) iColumn = -1; |
| 5742 docListTrim(DL_DEFAULT, doclist.pData, doclist.nData, |
| 5743 iColumn, iType, out); |
| 5744 } |
| 5745 rc = SQLITE_OK; |
| 5746 } |
| 5747 |
| 5748 err: |
| 5749 dataBufferDestroy(&doclist); |
| 5750 return rc; |
| 5751 } |
| 5752 |
| 5753 /****************************************************************/ |
| 5754 /* Used to hold hashtable data for sorting. */ |
| 5755 typedef struct TermData { |
| 5756 const char *pTerm; |
| 5757 int nTerm; |
| 5758 DLCollector *pCollector; |
| 5759 } TermData; |
| 5760 |
| 5761 /* Orders TermData elements in strcmp fashion ( <0 for less-than, 0 |
| 5762 ** for equal, >0 for greater-than). |
| 5763 */ |
| 5764 static int termDataCmp(const void *av, const void *bv){ |
| 5765 const TermData *a = (const TermData *)av; |
| 5766 const TermData *b = (const TermData *)bv; |
| 5767 int n = a->nTerm<b->nTerm ? a->nTerm : b->nTerm; |
| 5768 int c = memcmp(a->pTerm, b->pTerm, n); |
| 5769 if( c!=0 ) return c; |
| 5770 return a->nTerm-b->nTerm; |
| 5771 } |
| 5772 |
| 5773 /* Order pTerms data by term, then write a new level 0 segment using |
| 5774 ** LeafWriter. |
| 5775 */ |
| 5776 static int writeZeroSegment(fulltext_vtab *v, fts2Hash *pTerms){ |
| 5777 fts2HashElem *e; |
| 5778 int idx, rc, i, n; |
| 5779 TermData *pData; |
| 5780 LeafWriter writer; |
| 5781 DataBuffer dl; |
| 5782 |
| 5783 /* Determine the next index at level 0, merging as necessary. */ |
| 5784 rc = segdirNextIndex(v, 0, &idx); |
| 5785 if( rc!=SQLITE_OK ) return rc; |
| 5786 |
| 5787 n = fts2HashCount(pTerms); |
| 5788 pData = sqlite3_malloc(n*sizeof(TermData)); |
| 5789 |
| 5790 for(i = 0, e = fts2HashFirst(pTerms); e; i++, e = fts2HashNext(e)){ |
| 5791 assert( i<n ); |
| 5792 pData[i].pTerm = fts2HashKey(e); |
| 5793 pData[i].nTerm = fts2HashKeysize(e); |
| 5794 pData[i].pCollector = fts2HashData(e); |
| 5795 } |
| 5796 assert( i==n ); |
| 5797 |
| 5798 /* TODO(shess) Should we allow user-defined collation sequences, |
| 5799 ** here? I think we only need that once we support prefix searches. |
| 5800 */ |
| 5801 if( n>1 ) qsort(pData, n, sizeof(*pData), termDataCmp); |
| 5802 |
| 5803 /* TODO(shess) Refactor so that we can write directly to the segment |
| 5804 ** DataBuffer, as happens for segment merges. |
| 5805 */ |
| 5806 leafWriterInit(0, idx, &writer); |
| 5807 dataBufferInit(&dl, 0); |
| 5808 for(i=0; i<n; i++){ |
| 5809 dataBufferReset(&dl); |
| 5810 dlcAddDoclist(pData[i].pCollector, &dl); |
| 5811 rc = leafWriterStep(v, &writer, |
| 5812 pData[i].pTerm, pData[i].nTerm, dl.pData, dl.nData); |
| 5813 if( rc!=SQLITE_OK ) goto err; |
| 5814 } |
| 5815 rc = leafWriterFinalize(v, &writer); |
| 5816 |
| 5817 err: |
| 5818 dataBufferDestroy(&dl); |
| 5819 sqlite3_free(pData); |
| 5820 leafWriterDestroy(&writer); |
| 5821 return rc; |
| 5822 } |
| 5823 |
| 5824 /* If pendingTerms has data, free it. */ |
| 5825 static int clearPendingTerms(fulltext_vtab *v){ |
| 5826 if( v->nPendingData>=0 ){ |
| 5827 fts2HashElem *e; |
| 5828 for(e=fts2HashFirst(&v->pendingTerms); e; e=fts2HashNext(e)){ |
| 5829 dlcDelete(fts2HashData(e)); |
| 5830 } |
| 5831 fts2HashClear(&v->pendingTerms); |
| 5832 v->nPendingData = -1; |
| 5833 } |
| 5834 return SQLITE_OK; |
| 5835 } |
| 5836 |
| 5837 /* If pendingTerms has data, flush it to a level-zero segment, and |
| 5838 ** free it. |
| 5839 */ |
| 5840 static int flushPendingTerms(fulltext_vtab *v){ |
| 5841 if( v->nPendingData>=0 ){ |
| 5842 int rc = writeZeroSegment(v, &v->pendingTerms); |
| 5843 if( rc==SQLITE_OK ) clearPendingTerms(v); |
| 5844 return rc; |
| 5845 } |
| 5846 return SQLITE_OK; |
| 5847 } |
| 5848 |
| 5849 /* If pendingTerms is "too big", or docid is out of order, flush it. |
| 5850 ** Regardless, be certain that pendingTerms is initialized for use. |
| 5851 */ |
| 5852 static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid){ |
| 5853 /* TODO(shess) Explore whether partially flushing the buffer on |
| 5854 ** forced-flush would provide better performance. I suspect that if |
| 5855 ** we ordered the doclists by size and flushed the largest until the |
| 5856 ** buffer was half empty, that would let the less frequent terms |
| 5857 ** generate longer doclists. |
| 5858 */ |
| 5859 if( iDocid<=v->iPrevDocid || v->nPendingData>kPendingThreshold ){ |
| 5860 int rc = flushPendingTerms(v); |
| 5861 if( rc!=SQLITE_OK ) return rc; |
| 5862 } |
| 5863 if( v->nPendingData<0 ){ |
| 5864 fts2HashInit(&v->pendingTerms, FTS2_HASH_STRING, 1); |
| 5865 v->nPendingData = 0; |
| 5866 } |
| 5867 v->iPrevDocid = iDocid; |
| 5868 return SQLITE_OK; |
| 5869 } |
| 5870 |
| 5871 /* This function implements the xUpdate callback; it is the top-level entry |
| 5872 * point for inserting, deleting or updating a row in a full-text table. */ |
| 5873 static int fulltextUpdate(sqlite3_vtab *pVtab, int nArg, sqlite3_value **ppArg, |
| 5874 sqlite_int64 *pRowid){ |
| 5875 fulltext_vtab *v = (fulltext_vtab *) pVtab; |
| 5876 int rc; |
| 5877 |
| 5878 TRACE(("FTS2 Update %p\n", pVtab)); |
| 5879 |
| 5880 if( nArg<2 ){ |
| 5881 rc = index_delete(v, sqlite3_value_int64(ppArg[0])); |
| 5882 if( rc==SQLITE_OK ){ |
| 5883 /* If we just deleted the last row in the table, clear out the |
| 5884 ** index data. |
| 5885 */ |
| 5886 rc = content_exists(v); |
| 5887 if( rc==SQLITE_ROW ){ |
| 5888 rc = SQLITE_OK; |
| 5889 }else if( rc==SQLITE_DONE ){ |
| 5890 /* Clear the pending terms so we don't flush a useless level-0 |
| 5891 ** segment when the transaction closes. |
| 5892 */ |
| 5893 rc = clearPendingTerms(v); |
| 5894 if( rc==SQLITE_OK ){ |
| 5895 rc = segdir_delete_all(v); |
| 5896 } |
| 5897 } |
| 5898 } |
| 5899 } else if( sqlite3_value_type(ppArg[0]) != SQLITE_NULL ){ |
| 5900 /* An update: |
| 5901 * ppArg[0] = old rowid |
| 5902 * ppArg[1] = new rowid |
| 5903 * ppArg[2..2+v->nColumn-1] = values |
| 5904 * ppArg[2+v->nColumn] = value for magic column (we ignore this) |
| 5905 */ |
| 5906 sqlite_int64 rowid = sqlite3_value_int64(ppArg[0]); |
| 5907 if( sqlite3_value_type(ppArg[1]) != SQLITE_INTEGER || |
| 5908 sqlite3_value_int64(ppArg[1]) != rowid ){ |
| 5909 rc = SQLITE_ERROR; /* we don't allow changing the rowid */ |
| 5910 } else { |
| 5911 assert( nArg==2+v->nColumn+1); |
| 5912 rc = index_update(v, rowid, &ppArg[2]); |
| 5913 } |
| 5914 } else { |
| 5915 /* An insert: |
| 5916 * ppArg[1] = requested rowid |
| 5917 * ppArg[2..2+v->nColumn-1] = values |
| 5918 * ppArg[2+v->nColumn] = value for magic column (we ignore this) |
| 5919 */ |
| 5920 assert( nArg==2+v->nColumn+1); |
| 5921 rc = index_insert(v, ppArg[1], &ppArg[2], pRowid); |
| 5922 } |
| 5923 |
| 5924 return rc; |
| 5925 } |
| 5926 |
| 5927 static int fulltextSync(sqlite3_vtab *pVtab){ |
| 5928 TRACE(("FTS2 xSync()\n")); |
| 5929 return flushPendingTerms((fulltext_vtab *)pVtab); |
| 5930 } |
| 5931 |
| 5932 static int fulltextBegin(sqlite3_vtab *pVtab){ |
| 5933 fulltext_vtab *v = (fulltext_vtab *) pVtab; |
| 5934 TRACE(("FTS2 xBegin()\n")); |
| 5935 |
| 5936 /* Any buffered updates should have been cleared by the previous |
| 5937 ** transaction. |
| 5938 */ |
| 5939 assert( v->nPendingData<0 ); |
| 5940 return clearPendingTerms(v); |
| 5941 } |
| 5942 |
| 5943 static int fulltextCommit(sqlite3_vtab *pVtab){ |
| 5944 fulltext_vtab *v = (fulltext_vtab *) pVtab; |
| 5945 TRACE(("FTS2 xCommit()\n")); |
| 5946 |
| 5947 /* Buffered updates should have been cleared by fulltextSync(). */ |
| 5948 assert( v->nPendingData<0 ); |
| 5949 return clearPendingTerms(v); |
| 5950 } |
| 5951 |
| 5952 static int fulltextRollback(sqlite3_vtab *pVtab){ |
| 5953 TRACE(("FTS2 xRollback()\n")); |
| 5954 return clearPendingTerms((fulltext_vtab *)pVtab); |
| 5955 } |
| 5956 |
| 5957 /* |
| 5958 ** Implementation of the snippet() function for FTS2 |
| 5959 */ |
| 5960 static void snippetFunc( |
| 5961 sqlite3_context *pContext, |
| 5962 int argc, |
| 5963 sqlite3_value **argv |
| 5964 ){ |
| 5965 fulltext_cursor *pCursor; |
| 5966 if( argc<1 ) return; |
| 5967 if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || |
| 5968 sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ |
| 5969 sqlite3_result_error(pContext, "illegal first argument to html_snippet",-1); |
| 5970 }else{ |
| 5971 const char *zStart = "<b>"; |
| 5972 const char *zEnd = "</b>"; |
| 5973 const char *zEllipsis = "<b>...</b>"; |
| 5974 memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); |
| 5975 if( argc>=2 ){ |
| 5976 zStart = (const char*)sqlite3_value_text(argv[1]); |
| 5977 if( argc>=3 ){ |
| 5978 zEnd = (const char*)sqlite3_value_text(argv[2]); |
| 5979 if( argc>=4 ){ |
| 5980 zEllipsis = (const char*)sqlite3_value_text(argv[3]); |
| 5981 } |
| 5982 } |
| 5983 } |
| 5984 snippetAllOffsets(pCursor); |
| 5985 snippetText(pCursor, zStart, zEnd, zEllipsis); |
| 5986 sqlite3_result_text(pContext, pCursor->snippet.zSnippet, |
| 5987 pCursor->snippet.nSnippet, SQLITE_STATIC); |
| 5988 } |
| 5989 } |
| 5990 |
| 5991 /* |
| 5992 ** Implementation of the offsets() function for FTS2 |
| 5993 */ |
| 5994 static void snippetOffsetsFunc( |
| 5995 sqlite3_context *pContext, |
| 5996 int argc, |
| 5997 sqlite3_value **argv |
| 5998 ){ |
| 5999 fulltext_cursor *pCursor; |
| 6000 if( argc<1 ) return; |
| 6001 if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || |
| 6002 sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ |
| 6003 sqlite3_result_error(pContext, "illegal first argument to offsets",-1); |
| 6004 }else{ |
| 6005 memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); |
| 6006 snippetAllOffsets(pCursor); |
| 6007 snippetOffsetText(&pCursor->snippet); |
| 6008 sqlite3_result_text(pContext, |
| 6009 pCursor->snippet.zOffset, pCursor->snippet.nOffset, |
| 6010 SQLITE_STATIC); |
| 6011 } |
| 6012 } |
| 6013 |
| 6014 /* OptLeavesReader is nearly identical to LeavesReader, except that |
| 6015 ** where LeavesReader is geared towards the merging of complete |
| 6016 ** segment levels (with exactly MERGE_COUNT segments), OptLeavesReader |
| 6017 ** is geared towards implementation of the optimize() function, and |
| 6018 ** can merge all segments simultaneously. This version may be |
| 6019 ** somewhat less efficient than LeavesReader because it merges into an |
| 6020 ** accumulator rather than doing an N-way merge, but since segment |
| 6021 ** size grows exponentially (so segment count logrithmically) this is |
| 6022 ** probably not an immediate problem. |
| 6023 */ |
| 6024 /* TODO(shess): Prove that assertion, or extend the merge code to |
| 6025 ** merge tree fashion (like the prefix-searching code does). |
| 6026 */ |
| 6027 /* TODO(shess): OptLeavesReader and LeavesReader could probably be |
| 6028 ** merged with little or no loss of performance for LeavesReader. The |
| 6029 ** merged code would need to handle >MERGE_COUNT segments, and would |
| 6030 ** also need to be able to optionally optimize away deletes. |
| 6031 */ |
| 6032 typedef struct OptLeavesReader { |
| 6033 /* Segment number, to order readers by age. */ |
| 6034 int segment; |
| 6035 LeavesReader reader; |
| 6036 } OptLeavesReader; |
| 6037 |
| 6038 static int optLeavesReaderAtEnd(OptLeavesReader *pReader){ |
| 6039 return leavesReaderAtEnd(&pReader->reader); |
| 6040 } |
| 6041 static int optLeavesReaderTermBytes(OptLeavesReader *pReader){ |
| 6042 return leavesReaderTermBytes(&pReader->reader); |
| 6043 } |
| 6044 static const char *optLeavesReaderData(OptLeavesReader *pReader){ |
| 6045 return leavesReaderData(&pReader->reader); |
| 6046 } |
| 6047 static int optLeavesReaderDataBytes(OptLeavesReader *pReader){ |
| 6048 return leavesReaderDataBytes(&pReader->reader); |
| 6049 } |
| 6050 static const char *optLeavesReaderTerm(OptLeavesReader *pReader){ |
| 6051 return leavesReaderTerm(&pReader->reader); |
| 6052 } |
| 6053 static int optLeavesReaderStep(fulltext_vtab *v, OptLeavesReader *pReader){ |
| 6054 return leavesReaderStep(v, &pReader->reader); |
| 6055 } |
| 6056 static int optLeavesReaderTermCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){ |
| 6057 return leavesReaderTermCmp(&lr1->reader, &lr2->reader); |
| 6058 } |
| 6059 /* Order by term ascending, segment ascending (oldest to newest), with |
| 6060 ** exhausted readers to the end. |
| 6061 */ |
| 6062 static int optLeavesReaderCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){ |
| 6063 int c = optLeavesReaderTermCmp(lr1, lr2); |
| 6064 if( c!=0 ) return c; |
| 6065 return lr1->segment-lr2->segment; |
| 6066 } |
| 6067 /* Bubble pLr[0] to appropriate place in pLr[1..nLr-1]. Assumes that |
| 6068 ** pLr[1..nLr-1] is already sorted. |
| 6069 */ |
| 6070 static void optLeavesReaderReorder(OptLeavesReader *pLr, int nLr){ |
| 6071 while( nLr>1 && optLeavesReaderCmp(pLr, pLr+1)>0 ){ |
| 6072 OptLeavesReader tmp = pLr[0]; |
| 6073 pLr[0] = pLr[1]; |
| 6074 pLr[1] = tmp; |
| 6075 nLr--; |
| 6076 pLr++; |
| 6077 } |
| 6078 } |
| 6079 |
| 6080 /* optimize() helper function. Put the readers in order and iterate |
| 6081 ** through them, merging doclists for matching terms into pWriter. |
| 6082 ** Returns SQLITE_OK on success, or the SQLite error code which |
| 6083 ** prevented success. |
| 6084 */ |
| 6085 static int optimizeInternal(fulltext_vtab *v, |
| 6086 OptLeavesReader *readers, int nReaders, |
| 6087 LeafWriter *pWriter){ |
| 6088 int i, rc = SQLITE_OK; |
| 6089 DataBuffer doclist, merged, tmp; |
| 6090 |
| 6091 /* Order the readers. */ |
| 6092 i = nReaders; |
| 6093 while( i-- > 0 ){ |
| 6094 optLeavesReaderReorder(&readers[i], nReaders-i); |
| 6095 } |
| 6096 |
| 6097 dataBufferInit(&doclist, LEAF_MAX); |
| 6098 dataBufferInit(&merged, LEAF_MAX); |
| 6099 |
| 6100 /* Exhausted readers bubble to the end, so when the first reader is |
| 6101 ** at eof, all are at eof. |
| 6102 */ |
| 6103 while( !optLeavesReaderAtEnd(&readers[0]) ){ |
| 6104 |
| 6105 /* Figure out how many readers share the next term. */ |
| 6106 for(i=1; i<nReaders && !optLeavesReaderAtEnd(&readers[i]); i++){ |
| 6107 if( 0!=optLeavesReaderTermCmp(&readers[0], &readers[i]) ) break; |
| 6108 } |
| 6109 |
| 6110 /* Special-case for no merge. */ |
| 6111 if( i==1 ){ |
| 6112 /* Trim deletions from the doclist. */ |
| 6113 dataBufferReset(&merged); |
| 6114 docListTrim(DL_DEFAULT, |
| 6115 optLeavesReaderData(&readers[0]), |
| 6116 optLeavesReaderDataBytes(&readers[0]), |
| 6117 -1, DL_DEFAULT, &merged); |
| 6118 }else{ |
| 6119 DLReader dlReaders[MERGE_COUNT]; |
| 6120 int iReader, nReaders; |
| 6121 |
| 6122 /* Prime the pipeline with the first reader's doclist. After |
| 6123 ** one pass index 0 will reference the accumulated doclist. |
| 6124 */ |
| 6125 dlrInit(&dlReaders[0], DL_DEFAULT, |
| 6126 optLeavesReaderData(&readers[0]), |
| 6127 optLeavesReaderDataBytes(&readers[0])); |
| 6128 iReader = 1; |
| 6129 |
| 6130 assert( iReader<i ); /* Must execute the loop at least once. */ |
| 6131 while( iReader<i ){ |
| 6132 /* Merge 16 inputs per pass. */ |
| 6133 for( nReaders=1; iReader<i && nReaders<MERGE_COUNT; |
| 6134 iReader++, nReaders++ ){ |
| 6135 dlrInit(&dlReaders[nReaders], DL_DEFAULT, |
| 6136 optLeavesReaderData(&readers[iReader]), |
| 6137 optLeavesReaderDataBytes(&readers[iReader])); |
| 6138 } |
| 6139 |
| 6140 /* Merge doclists and swap result into accumulator. */ |
| 6141 dataBufferReset(&merged); |
| 6142 docListMerge(&merged, dlReaders, nReaders); |
| 6143 tmp = merged; |
| 6144 merged = doclist; |
| 6145 doclist = tmp; |
| 6146 |
| 6147 while( nReaders-- > 0 ){ |
| 6148 dlrDestroy(&dlReaders[nReaders]); |
| 6149 } |
| 6150 |
| 6151 /* Accumulated doclist to reader 0 for next pass. */ |
| 6152 dlrInit(&dlReaders[0], DL_DEFAULT, doclist.pData, doclist.nData); |
| 6153 } |
| 6154 |
| 6155 /* Destroy reader that was left in the pipeline. */ |
| 6156 dlrDestroy(&dlReaders[0]); |
| 6157 |
| 6158 /* Trim deletions from the doclist. */ |
| 6159 dataBufferReset(&merged); |
| 6160 docListTrim(DL_DEFAULT, doclist.pData, doclist.nData, |
| 6161 -1, DL_DEFAULT, &merged); |
| 6162 } |
| 6163 |
| 6164 /* Only pass doclists with hits (skip if all hits deleted). */ |
| 6165 if( merged.nData>0 ){ |
| 6166 rc = leafWriterStep(v, pWriter, |
| 6167 optLeavesReaderTerm(&readers[0]), |
| 6168 optLeavesReaderTermBytes(&readers[0]), |
| 6169 merged.pData, merged.nData); |
| 6170 if( rc!=SQLITE_OK ) goto err; |
| 6171 } |
| 6172 |
| 6173 /* Step merged readers to next term and reorder. */ |
| 6174 while( i-- > 0 ){ |
| 6175 rc = optLeavesReaderStep(v, &readers[i]); |
| 6176 if( rc!=SQLITE_OK ) goto err; |
| 6177 |
| 6178 optLeavesReaderReorder(&readers[i], nReaders-i); |
| 6179 } |
| 6180 } |
| 6181 |
| 6182 err: |
| 6183 dataBufferDestroy(&doclist); |
| 6184 dataBufferDestroy(&merged); |
| 6185 return rc; |
| 6186 } |
| 6187 |
| 6188 /* Implement optimize() function for FTS3. optimize(t) merges all |
| 6189 ** segments in the fts index into a single segment. 't' is the magic |
| 6190 ** table-named column. |
| 6191 */ |
| 6192 static void optimizeFunc(sqlite3_context *pContext, |
| 6193 int argc, sqlite3_value **argv){ |
| 6194 fulltext_cursor *pCursor; |
| 6195 if( argc>1 ){ |
| 6196 sqlite3_result_error(pContext, "excess arguments to optimize()",-1); |
| 6197 }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || |
| 6198 sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ |
| 6199 sqlite3_result_error(pContext, "illegal first argument to optimize",-1); |
| 6200 }else{ |
| 6201 fulltext_vtab *v; |
| 6202 int i, rc, iMaxLevel; |
| 6203 OptLeavesReader *readers; |
| 6204 int nReaders; |
| 6205 LeafWriter writer; |
| 6206 sqlite3_stmt *s; |
| 6207 |
| 6208 memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); |
| 6209 v = cursor_vtab(pCursor); |
| 6210 |
| 6211 /* Flush any buffered updates before optimizing. */ |
| 6212 rc = flushPendingTerms(v); |
| 6213 if( rc!=SQLITE_OK ) goto err; |
| 6214 |
| 6215 rc = segdir_count(v, &nReaders, &iMaxLevel); |
| 6216 if( rc!=SQLITE_OK ) goto err; |
| 6217 if( nReaders==0 || nReaders==1 ){ |
| 6218 sqlite3_result_text(pContext, "Index already optimal", -1, |
| 6219 SQLITE_STATIC); |
| 6220 return; |
| 6221 } |
| 6222 |
| 6223 rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s); |
| 6224 if( rc!=SQLITE_OK ) goto err; |
| 6225 |
| 6226 readers = sqlite3_malloc(nReaders*sizeof(readers[0])); |
| 6227 if( readers==NULL ) goto err; |
| 6228 |
| 6229 /* Note that there will already be a segment at this position |
| 6230 ** until we call segdir_delete() on iMaxLevel. |
| 6231 */ |
| 6232 leafWriterInit(iMaxLevel, 0, &writer); |
| 6233 |
| 6234 i = 0; |
| 6235 while( (rc = sqlite3_step(s))==SQLITE_ROW ){ |
| 6236 sqlite_int64 iStart = sqlite3_column_int64(s, 0); |
| 6237 sqlite_int64 iEnd = sqlite3_column_int64(s, 1); |
| 6238 const char *pRootData = sqlite3_column_blob(s, 2); |
| 6239 int nRootData = sqlite3_column_bytes(s, 2); |
| 6240 |
| 6241 assert( i<nReaders ); |
| 6242 rc = leavesReaderInit(v, -1, iStart, iEnd, pRootData, nRootData, |
| 6243 &readers[i].reader); |
| 6244 if( rc!=SQLITE_OK ) break; |
| 6245 |
| 6246 readers[i].segment = i; |
| 6247 i++; |
| 6248 } |
| 6249 |
| 6250 /* If we managed to successfully read them all, optimize them. */ |
| 6251 if( rc==SQLITE_DONE ){ |
| 6252 assert( i==nReaders ); |
| 6253 rc = optimizeInternal(v, readers, nReaders, &writer); |
| 6254 } |
| 6255 |
| 6256 while( i-- > 0 ){ |
| 6257 leavesReaderDestroy(&readers[i].reader); |
| 6258 } |
| 6259 sqlite3_free(readers); |
| 6260 |
| 6261 /* If we've successfully gotten to here, delete the old segments |
| 6262 ** and flush the interior structure of the new segment. |
| 6263 */ |
| 6264 if( rc==SQLITE_OK ){ |
| 6265 for( i=0; i<=iMaxLevel; i++ ){ |
| 6266 rc = segdir_delete(v, i); |
| 6267 if( rc!=SQLITE_OK ) break; |
| 6268 } |
| 6269 |
| 6270 if( rc==SQLITE_OK ) rc = leafWriterFinalize(v, &writer); |
| 6271 } |
| 6272 |
| 6273 leafWriterDestroy(&writer); |
| 6274 |
| 6275 if( rc!=SQLITE_OK ) goto err; |
| 6276 |
| 6277 sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC); |
| 6278 return; |
| 6279 |
| 6280 /* TODO(shess): Error-handling needs to be improved along the |
| 6281 ** lines of the dump_ functions. |
| 6282 */ |
| 6283 err: |
| 6284 { |
| 6285 char buf[512]; |
| 6286 sqlite3_snprintf(sizeof(buf), buf, "Error in optimize: %s", |
| 6287 sqlite3_errmsg(sqlite3_context_db_handle(pContext))); |
| 6288 sqlite3_result_error(pContext, buf, -1); |
| 6289 } |
| 6290 } |
| 6291 } |
| 6292 |
| 6293 #ifdef SQLITE_TEST |
| 6294 /* Generate an error of the form "<prefix>: <msg>". If msg is NULL, |
| 6295 ** pull the error from the context's db handle. |
| 6296 */ |
| 6297 static void generateError(sqlite3_context *pContext, |
| 6298 const char *prefix, const char *msg){ |
| 6299 char buf[512]; |
| 6300 if( msg==NULL ) msg = sqlite3_errmsg(sqlite3_context_db_handle(pContext)); |
| 6301 sqlite3_snprintf(sizeof(buf), buf, "%s: %s", prefix, msg); |
| 6302 sqlite3_result_error(pContext, buf, -1); |
| 6303 } |
| 6304 |
| 6305 /* Helper function to collect the set of terms in the segment into |
| 6306 ** pTerms. The segment is defined by the leaf nodes between |
| 6307 ** iStartBlockid and iEndBlockid, inclusive, or by the contents of |
| 6308 ** pRootData if iStartBlockid is 0 (in which case the entire segment |
| 6309 ** fit in a leaf). |
| 6310 */ |
| 6311 static int collectSegmentTerms(fulltext_vtab *v, sqlite3_stmt *s, |
| 6312 fts2Hash *pTerms){ |
| 6313 const sqlite_int64 iStartBlockid = sqlite3_column_int64(s, 0); |
| 6314 const sqlite_int64 iEndBlockid = sqlite3_column_int64(s, 1); |
| 6315 const char *pRootData = sqlite3_column_blob(s, 2); |
| 6316 const int nRootData = sqlite3_column_bytes(s, 2); |
| 6317 LeavesReader reader; |
| 6318 int rc = leavesReaderInit(v, 0, iStartBlockid, iEndBlockid, |
| 6319 pRootData, nRootData, &reader); |
| 6320 if( rc!=SQLITE_OK ) return rc; |
| 6321 |
| 6322 while( rc==SQLITE_OK && !leavesReaderAtEnd(&reader) ){ |
| 6323 const char *pTerm = leavesReaderTerm(&reader); |
| 6324 const int nTerm = leavesReaderTermBytes(&reader); |
| 6325 void *oldValue = sqlite3Fts2HashFind(pTerms, pTerm, nTerm); |
| 6326 void *newValue = (void *)((char *)oldValue+1); |
| 6327 |
| 6328 /* From the comment before sqlite3Fts2HashInsert in fts2_hash.c, |
| 6329 ** the data value passed is returned in case of malloc failure. |
| 6330 */ |
| 6331 if( newValue==sqlite3Fts2HashInsert(pTerms, pTerm, nTerm, newValue) ){ |
| 6332 rc = SQLITE_NOMEM; |
| 6333 }else{ |
| 6334 rc = leavesReaderStep(v, &reader); |
| 6335 } |
| 6336 } |
| 6337 |
| 6338 leavesReaderDestroy(&reader); |
| 6339 return rc; |
| 6340 } |
| 6341 |
| 6342 /* Helper function to build the result string for dump_terms(). */ |
| 6343 static int generateTermsResult(sqlite3_context *pContext, fts2Hash *pTerms){ |
| 6344 int iTerm, nTerms, nResultBytes, iByte; |
| 6345 char *result; |
| 6346 TermData *pData; |
| 6347 fts2HashElem *e; |
| 6348 |
| 6349 /* Iterate pTerms to generate an array of terms in pData for |
| 6350 ** sorting. |
| 6351 */ |
| 6352 nTerms = fts2HashCount(pTerms); |
| 6353 assert( nTerms>0 ); |
| 6354 pData = sqlite3_malloc(nTerms*sizeof(TermData)); |
| 6355 if( pData==NULL ) return SQLITE_NOMEM; |
| 6356 |
| 6357 nResultBytes = 0; |
| 6358 for(iTerm = 0, e = fts2HashFirst(pTerms); e; iTerm++, e = fts2HashNext(e)){ |
| 6359 nResultBytes += fts2HashKeysize(e)+1; /* Term plus trailing space */ |
| 6360 assert( iTerm<nTerms ); |
| 6361 pData[iTerm].pTerm = fts2HashKey(e); |
| 6362 pData[iTerm].nTerm = fts2HashKeysize(e); |
| 6363 pData[iTerm].pCollector = fts2HashData(e); /* unused */ |
| 6364 } |
| 6365 assert( iTerm==nTerms ); |
| 6366 |
| 6367 assert( nResultBytes>0 ); /* nTerms>0, nResultsBytes must be, too. */ |
| 6368 result = sqlite3_malloc(nResultBytes); |
| 6369 if( result==NULL ){ |
| 6370 sqlite3_free(pData); |
| 6371 return SQLITE_NOMEM; |
| 6372 } |
| 6373 |
| 6374 if( nTerms>1 ) qsort(pData, nTerms, sizeof(*pData), termDataCmp); |
| 6375 |
| 6376 /* Read the terms in order to build the result. */ |
| 6377 iByte = 0; |
| 6378 for(iTerm=0; iTerm<nTerms; ++iTerm){ |
| 6379 memcpy(result+iByte, pData[iTerm].pTerm, pData[iTerm].nTerm); |
| 6380 iByte += pData[iTerm].nTerm; |
| 6381 result[iByte++] = ' '; |
| 6382 } |
| 6383 assert( iByte==nResultBytes ); |
| 6384 assert( result[nResultBytes-1]==' ' ); |
| 6385 result[nResultBytes-1] = '\0'; |
| 6386 |
| 6387 /* Passes away ownership of result. */ |
| 6388 sqlite3_result_text(pContext, result, nResultBytes-1, sqlite3_free); |
| 6389 sqlite3_free(pData); |
| 6390 return SQLITE_OK; |
| 6391 } |
| 6392 |
| 6393 /* Implements dump_terms() for use in inspecting the fts2 index from |
| 6394 ** tests. TEXT result containing the ordered list of terms joined by |
| 6395 ** spaces. dump_terms(t, level, idx) dumps the terms for the segment |
| 6396 ** specified by level, idx (in %_segdir), while dump_terms(t) dumps |
| 6397 ** all terms in the index. In both cases t is the fts table's magic |
| 6398 ** table-named column. |
| 6399 */ |
| 6400 static void dumpTermsFunc( |
| 6401 sqlite3_context *pContext, |
| 6402 int argc, sqlite3_value **argv |
| 6403 ){ |
| 6404 fulltext_cursor *pCursor; |
| 6405 if( argc!=3 && argc!=1 ){ |
| 6406 generateError(pContext, "dump_terms", "incorrect arguments"); |
| 6407 }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || |
| 6408 sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ |
| 6409 generateError(pContext, "dump_terms", "illegal first argument"); |
| 6410 }else{ |
| 6411 fulltext_vtab *v; |
| 6412 fts2Hash terms; |
| 6413 sqlite3_stmt *s = NULL; |
| 6414 int rc; |
| 6415 |
| 6416 memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); |
| 6417 v = cursor_vtab(pCursor); |
| 6418 |
| 6419 /* If passed only the cursor column, get all segments. Otherwise |
| 6420 ** get the segment described by the following two arguments. |
| 6421 */ |
| 6422 if( argc==1 ){ |
| 6423 rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s); |
| 6424 }else{ |
| 6425 rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s); |
| 6426 if( rc==SQLITE_OK ){ |
| 6427 rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[1])); |
| 6428 if( rc==SQLITE_OK ){ |
| 6429 rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[2])); |
| 6430 } |
| 6431 } |
| 6432 } |
| 6433 |
| 6434 if( rc!=SQLITE_OK ){ |
| 6435 generateError(pContext, "dump_terms", NULL); |
| 6436 return; |
| 6437 } |
| 6438 |
| 6439 /* Collect the terms for each segment. */ |
| 6440 sqlite3Fts2HashInit(&terms, FTS2_HASH_STRING, 1); |
| 6441 while( (rc = sqlite3_step(s))==SQLITE_ROW ){ |
| 6442 rc = collectSegmentTerms(v, s, &terms); |
| 6443 if( rc!=SQLITE_OK ) break; |
| 6444 } |
| 6445 |
| 6446 if( rc!=SQLITE_DONE ){ |
| 6447 sqlite3_reset(s); |
| 6448 generateError(pContext, "dump_terms", NULL); |
| 6449 }else{ |
| 6450 const int nTerms = fts2HashCount(&terms); |
| 6451 if( nTerms>0 ){ |
| 6452 rc = generateTermsResult(pContext, &terms); |
| 6453 if( rc==SQLITE_NOMEM ){ |
| 6454 generateError(pContext, "dump_terms", "out of memory"); |
| 6455 }else{ |
| 6456 assert( rc==SQLITE_OK ); |
| 6457 } |
| 6458 }else if( argc==3 ){ |
| 6459 /* The specific segment asked for could not be found. */ |
| 6460 generateError(pContext, "dump_terms", "segment not found"); |
| 6461 }else{ |
| 6462 /* No segments found. */ |
| 6463 /* TODO(shess): It should be impossible to reach this. This |
| 6464 ** case can only happen for an empty table, in which case |
| 6465 ** SQLite has no rows to call this function on. |
| 6466 */ |
| 6467 sqlite3_result_null(pContext); |
| 6468 } |
| 6469 } |
| 6470 sqlite3Fts2HashClear(&terms); |
| 6471 } |
| 6472 } |
| 6473 |
| 6474 /* Expand the DL_DEFAULT doclist in pData into a text result in |
| 6475 ** pContext. |
| 6476 */ |
| 6477 static void createDoclistResult(sqlite3_context *pContext, |
| 6478 const char *pData, int nData){ |
| 6479 DataBuffer dump; |
| 6480 DLReader dlReader; |
| 6481 |
| 6482 assert( pData!=NULL && nData>0 ); |
| 6483 |
| 6484 dataBufferInit(&dump, 0); |
| 6485 dlrInit(&dlReader, DL_DEFAULT, pData, nData); |
| 6486 for( ; !dlrAtEnd(&dlReader); dlrStep(&dlReader) ){ |
| 6487 char buf[256]; |
| 6488 PLReader plReader; |
| 6489 |
| 6490 plrInit(&plReader, &dlReader); |
| 6491 if( DL_DEFAULT==DL_DOCIDS || plrAtEnd(&plReader) ){ |
| 6492 sqlite3_snprintf(sizeof(buf), buf, "[%lld] ", dlrDocid(&dlReader)); |
| 6493 dataBufferAppend(&dump, buf, strlen(buf)); |
| 6494 }else{ |
| 6495 int iColumn = plrColumn(&plReader); |
| 6496 |
| 6497 sqlite3_snprintf(sizeof(buf), buf, "[%lld %d[", |
| 6498 dlrDocid(&dlReader), iColumn); |
| 6499 dataBufferAppend(&dump, buf, strlen(buf)); |
| 6500 |
| 6501 for( ; !plrAtEnd(&plReader); plrStep(&plReader) ){ |
| 6502 if( plrColumn(&plReader)!=iColumn ){ |
| 6503 iColumn = plrColumn(&plReader); |
| 6504 sqlite3_snprintf(sizeof(buf), buf, "] %d[", iColumn); |
| 6505 assert( dump.nData>0 ); |
| 6506 dump.nData--; /* Overwrite trailing space. */ |
| 6507 assert( dump.pData[dump.nData]==' '); |
| 6508 dataBufferAppend(&dump, buf, strlen(buf)); |
| 6509 } |
| 6510 if( DL_DEFAULT==DL_POSITIONS_OFFSETS ){ |
| 6511 sqlite3_snprintf(sizeof(buf), buf, "%d,%d,%d ", |
| 6512 plrPosition(&plReader), |
| 6513 plrStartOffset(&plReader), plrEndOffset(&plReader)); |
| 6514 }else if( DL_DEFAULT==DL_POSITIONS ){ |
| 6515 sqlite3_snprintf(sizeof(buf), buf, "%d ", plrPosition(&plReader)); |
| 6516 }else{ |
| 6517 assert( NULL=="Unhandled DL_DEFAULT value"); |
| 6518 } |
| 6519 dataBufferAppend(&dump, buf, strlen(buf)); |
| 6520 } |
| 6521 plrDestroy(&plReader); |
| 6522 |
| 6523 assert( dump.nData>0 ); |
| 6524 dump.nData--; /* Overwrite trailing space. */ |
| 6525 assert( dump.pData[dump.nData]==' '); |
| 6526 dataBufferAppend(&dump, "]] ", 3); |
| 6527 } |
| 6528 } |
| 6529 dlrDestroy(&dlReader); |
| 6530 |
| 6531 assert( dump.nData>0 ); |
| 6532 dump.nData--; /* Overwrite trailing space. */ |
| 6533 assert( dump.pData[dump.nData]==' '); |
| 6534 dump.pData[dump.nData] = '\0'; |
| 6535 assert( dump.nData>0 ); |
| 6536 |
| 6537 /* Passes ownership of dump's buffer to pContext. */ |
| 6538 sqlite3_result_text(pContext, dump.pData, dump.nData, sqlite3_free); |
| 6539 dump.pData = NULL; |
| 6540 dump.nData = dump.nCapacity = 0; |
| 6541 } |
| 6542 |
| 6543 /* Implements dump_doclist() for use in inspecting the fts2 index from |
| 6544 ** tests. TEXT result containing a string representation of the |
| 6545 ** doclist for the indicated term. dump_doclist(t, term, level, idx) |
| 6546 ** dumps the doclist for term from the segment specified by level, idx |
| 6547 ** (in %_segdir), while dump_doclist(t, term) dumps the logical |
| 6548 ** doclist for the term across all segments. The per-segment doclist |
| 6549 ** can contain deletions, while the full-index doclist will not |
| 6550 ** (deletions are omitted). |
| 6551 ** |
| 6552 ** Result formats differ with the setting of DL_DEFAULTS. Examples: |
| 6553 ** |
| 6554 ** DL_DOCIDS: [1] [3] [7] |
| 6555 ** DL_POSITIONS: [1 0[0 4] 1[17]] [3 1[5]] |
| 6556 ** DL_POSITIONS_OFFSETS: [1 0[0,0,3 4,23,26] 1[17,102,105]] [3 1[5,20,23]] |
| 6557 ** |
| 6558 ** In each case the number after the outer '[' is the docid. In the |
| 6559 ** latter two cases, the number before the inner '[' is the column |
| 6560 ** associated with the values within. For DL_POSITIONS the numbers |
| 6561 ** within are the positions, for DL_POSITIONS_OFFSETS they are the |
| 6562 ** position, the start offset, and the end offset. |
| 6563 */ |
| 6564 static void dumpDoclistFunc( |
| 6565 sqlite3_context *pContext, |
| 6566 int argc, sqlite3_value **argv |
| 6567 ){ |
| 6568 fulltext_cursor *pCursor; |
| 6569 if( argc!=2 && argc!=4 ){ |
| 6570 generateError(pContext, "dump_doclist", "incorrect arguments"); |
| 6571 }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || |
| 6572 sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ |
| 6573 generateError(pContext, "dump_doclist", "illegal first argument"); |
| 6574 }else if( sqlite3_value_text(argv[1])==NULL || |
| 6575 sqlite3_value_text(argv[1])[0]=='\0' ){ |
| 6576 generateError(pContext, "dump_doclist", "empty second argument"); |
| 6577 }else{ |
| 6578 const char *pTerm = (const char *)sqlite3_value_text(argv[1]); |
| 6579 const int nTerm = strlen(pTerm); |
| 6580 fulltext_vtab *v; |
| 6581 int rc; |
| 6582 DataBuffer doclist; |
| 6583 |
| 6584 memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); |
| 6585 v = cursor_vtab(pCursor); |
| 6586 |
| 6587 dataBufferInit(&doclist, 0); |
| 6588 |
| 6589 /* termSelect() yields the same logical doclist that queries are |
| 6590 ** run against. |
| 6591 */ |
| 6592 if( argc==2 ){ |
| 6593 rc = termSelect(v, v->nColumn, pTerm, nTerm, 0, DL_DEFAULT, &doclist); |
| 6594 }else{ |
| 6595 sqlite3_stmt *s = NULL; |
| 6596 |
| 6597 /* Get our specific segment's information. */ |
| 6598 rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s); |
| 6599 if( rc==SQLITE_OK ){ |
| 6600 rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[2])); |
| 6601 if( rc==SQLITE_OK ){ |
| 6602 rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[3])); |
| 6603 } |
| 6604 } |
| 6605 |
| 6606 if( rc==SQLITE_OK ){ |
| 6607 rc = sqlite3_step(s); |
| 6608 |
| 6609 if( rc==SQLITE_DONE ){ |
| 6610 dataBufferDestroy(&doclist); |
| 6611 generateError(pContext, "dump_doclist", "segment not found"); |
| 6612 return; |
| 6613 } |
| 6614 |
| 6615 /* Found a segment, load it into doclist. */ |
| 6616 if( rc==SQLITE_ROW ){ |
| 6617 const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1); |
| 6618 const char *pData = sqlite3_column_blob(s, 2); |
| 6619 const int nData = sqlite3_column_bytes(s, 2); |
| 6620 |
| 6621 /* loadSegment() is used by termSelect() to load each |
| 6622 ** segment's data. |
| 6623 */ |
| 6624 rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, 0, |
| 6625 &doclist); |
| 6626 if( rc==SQLITE_OK ){ |
| 6627 rc = sqlite3_step(s); |
| 6628 |
| 6629 /* Should not have more than one matching segment. */ |
| 6630 if( rc!=SQLITE_DONE ){ |
| 6631 sqlite3_reset(s); |
| 6632 dataBufferDestroy(&doclist); |
| 6633 generateError(pContext, "dump_doclist", "invalid segdir"); |
| 6634 return; |
| 6635 } |
| 6636 rc = SQLITE_OK; |
| 6637 } |
| 6638 } |
| 6639 } |
| 6640 |
| 6641 sqlite3_reset(s); |
| 6642 } |
| 6643 |
| 6644 if( rc==SQLITE_OK ){ |
| 6645 if( doclist.nData>0 ){ |
| 6646 createDoclistResult(pContext, doclist.pData, doclist.nData); |
| 6647 }else{ |
| 6648 /* TODO(shess): This can happen if the term is not present, or |
| 6649 ** if all instances of the term have been deleted and this is |
| 6650 ** an all-index dump. It may be interesting to distinguish |
| 6651 ** these cases. |
| 6652 */ |
| 6653 sqlite3_result_text(pContext, "", 0, SQLITE_STATIC); |
| 6654 } |
| 6655 }else if( rc==SQLITE_NOMEM ){ |
| 6656 /* Handle out-of-memory cases specially because if they are |
| 6657 ** generated in fts2 code they may not be reflected in the db |
| 6658 ** handle. |
| 6659 */ |
| 6660 /* TODO(shess): Handle this more comprehensively. |
| 6661 ** sqlite3ErrStr() has what I need, but is internal. |
| 6662 */ |
| 6663 generateError(pContext, "dump_doclist", "out of memory"); |
| 6664 }else{ |
| 6665 generateError(pContext, "dump_doclist", NULL); |
| 6666 } |
| 6667 |
| 6668 dataBufferDestroy(&doclist); |
| 6669 } |
| 6670 } |
| 6671 #endif |
| 6672 |
| 6673 /* |
| 6674 ** This routine implements the xFindFunction method for the FTS2 |
| 6675 ** virtual table. |
| 6676 */ |
| 6677 static int fulltextFindFunction( |
| 6678 sqlite3_vtab *pVtab, |
| 6679 int nArg, |
| 6680 const char *zName, |
| 6681 void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), |
| 6682 void **ppArg |
| 6683 ){ |
| 6684 if( strcmp(zName,"snippet")==0 ){ |
| 6685 *pxFunc = snippetFunc; |
| 6686 return 1; |
| 6687 }else if( strcmp(zName,"offsets")==0 ){ |
| 6688 *pxFunc = snippetOffsetsFunc; |
| 6689 return 1; |
| 6690 }else if( strcmp(zName,"optimize")==0 ){ |
| 6691 *pxFunc = optimizeFunc; |
| 6692 return 1; |
| 6693 #ifdef SQLITE_TEST |
| 6694 /* NOTE(shess): These functions are present only for testing |
| 6695 ** purposes. No particular effort is made to optimize their |
| 6696 ** execution or how they build their results. |
| 6697 */ |
| 6698 }else if( strcmp(zName,"dump_terms")==0 ){ |
| 6699 /* fprintf(stderr, "Found dump_terms\n"); */ |
| 6700 *pxFunc = dumpTermsFunc; |
| 6701 return 1; |
| 6702 }else if( strcmp(zName,"dump_doclist")==0 ){ |
| 6703 /* fprintf(stderr, "Found dump_doclist\n"); */ |
| 6704 *pxFunc = dumpDoclistFunc; |
| 6705 return 1; |
| 6706 #endif |
| 6707 } |
| 6708 return 0; |
| 6709 } |
| 6710 |
| 6711 /* |
| 6712 ** Rename an fts2 table. |
| 6713 */ |
| 6714 static int fulltextRename( |
| 6715 sqlite3_vtab *pVtab, |
| 6716 const char *zName |
| 6717 ){ |
| 6718 fulltext_vtab *p = (fulltext_vtab *)pVtab; |
| 6719 int rc = SQLITE_NOMEM; |
| 6720 char *zSql = sqlite3_mprintf( |
| 6721 "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';" |
| 6722 "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';" |
| 6723 "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';" |
| 6724 , p->zDb, p->zName, zName |
| 6725 , p->zDb, p->zName, zName |
| 6726 , p->zDb, p->zName, zName |
| 6727 ); |
| 6728 if( zSql ){ |
| 6729 rc = sqlite3_exec(p->db, zSql, 0, 0, 0); |
| 6730 sqlite3_free(zSql); |
| 6731 } |
| 6732 return rc; |
| 6733 } |
| 6734 |
| 6735 static const sqlite3_module fts2Module = { |
| 6736 /* iVersion */ 0, |
| 6737 /* xCreate */ fulltextCreate, |
| 6738 /* xConnect */ fulltextConnect, |
| 6739 /* xBestIndex */ fulltextBestIndex, |
| 6740 /* xDisconnect */ fulltextDisconnect, |
| 6741 /* xDestroy */ fulltextDestroy, |
| 6742 /* xOpen */ fulltextOpen, |
| 6743 /* xClose */ fulltextClose, |
| 6744 /* xFilter */ fulltextFilter, |
| 6745 /* xNext */ fulltextNext, |
| 6746 /* xEof */ fulltextEof, |
| 6747 /* xColumn */ fulltextColumn, |
| 6748 /* xRowid */ fulltextRowid, |
| 6749 /* xUpdate */ fulltextUpdate, |
| 6750 /* xBegin */ fulltextBegin, |
| 6751 /* xSync */ fulltextSync, |
| 6752 /* xCommit */ fulltextCommit, |
| 6753 /* xRollback */ fulltextRollback, |
| 6754 /* xFindFunction */ fulltextFindFunction, |
| 6755 /* xRename */ fulltextRename, |
| 6756 }; |
| 6757 |
| 6758 static void hashDestroy(void *p){ |
| 6759 fts2Hash *pHash = (fts2Hash *)p; |
| 6760 sqlite3Fts2HashClear(pHash); |
| 6761 sqlite3_free(pHash); |
| 6762 } |
| 6763 |
| 6764 /* |
| 6765 ** The fts2 built-in tokenizers - "simple" and "porter" - are implemented |
| 6766 ** in files fts2_tokenizer1.c and fts2_porter.c respectively. The following |
| 6767 ** two forward declarations are for functions declared in these files |
| 6768 ** used to retrieve the respective implementations. |
| 6769 ** |
| 6770 ** Calling sqlite3Fts2SimpleTokenizerModule() sets the value pointed |
| 6771 ** to by the argument to point a the "simple" tokenizer implementation. |
| 6772 ** Function ...PorterTokenizerModule() sets *pModule to point to the |
| 6773 ** porter tokenizer/stemmer implementation. |
| 6774 */ |
| 6775 void sqlite3Fts2SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule); |
| 6776 void sqlite3Fts2PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule); |
| 6777 void sqlite3Fts2IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule); |
| 6778 |
| 6779 int sqlite3Fts2InitHashTable(sqlite3 *, fts2Hash *, const char *); |
| 6780 |
| 6781 /* |
| 6782 ** Initialise the fts2 extension. If this extension is built as part |
| 6783 ** of the sqlite library, then this function is called directly by |
| 6784 ** SQLite. If fts2 is built as a dynamically loadable extension, this |
| 6785 ** function is called by the sqlite3_extension_init() entry point. |
| 6786 */ |
| 6787 int sqlite3Fts2Init(sqlite3 *db){ |
| 6788 int rc = SQLITE_OK; |
| 6789 fts2Hash *pHash = 0; |
| 6790 const sqlite3_tokenizer_module *pSimple = 0; |
| 6791 const sqlite3_tokenizer_module *pPorter = 0; |
| 6792 const sqlite3_tokenizer_module *pIcu = 0; |
| 6793 |
| 6794 sqlite3Fts2SimpleTokenizerModule(&pSimple); |
| 6795 sqlite3Fts2PorterTokenizerModule(&pPorter); |
| 6796 #ifdef SQLITE_ENABLE_ICU |
| 6797 sqlite3Fts2IcuTokenizerModule(&pIcu); |
| 6798 #endif |
| 6799 |
| 6800 /* Allocate and initialise the hash-table used to store tokenizers. */ |
| 6801 pHash = sqlite3_malloc(sizeof(fts2Hash)); |
| 6802 if( !pHash ){ |
| 6803 rc = SQLITE_NOMEM; |
| 6804 }else{ |
| 6805 sqlite3Fts2HashInit(pHash, FTS2_HASH_STRING, 1); |
| 6806 } |
| 6807 |
| 6808 /* Load the built-in tokenizers into the hash table */ |
| 6809 if( rc==SQLITE_OK ){ |
| 6810 if( sqlite3Fts2HashInsert(pHash, "simple", 7, (void *)pSimple) |
| 6811 || sqlite3Fts2HashInsert(pHash, "porter", 7, (void *)pPorter) |
| 6812 || (pIcu && sqlite3Fts2HashInsert(pHash, "icu", 4, (void *)pIcu)) |
| 6813 ){ |
| 6814 rc = SQLITE_NOMEM; |
| 6815 } |
| 6816 } |
| 6817 |
| 6818 /* Create the virtual table wrapper around the hash-table and overload |
| 6819 ** the two scalar functions. If this is successful, register the |
| 6820 ** module with sqlite. |
| 6821 */ |
| 6822 if( SQLITE_OK==rc |
| 6823 && SQLITE_OK==(rc = sqlite3Fts2InitHashTable(db, pHash, "fts2_tokenizer")) |
| 6824 && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1)) |
| 6825 && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", -1)) |
| 6826 && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", -1)) |
| 6827 #ifdef SQLITE_TEST |
| 6828 && SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_terms", -1)) |
| 6829 && SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_doclist", -1)) |
| 6830 #endif |
| 6831 ){ |
| 6832 return sqlite3_create_module_v2( |
| 6833 db, "fts2", &fts2Module, (void *)pHash, hashDestroy |
| 6834 ); |
| 6835 } |
| 6836 |
| 6837 /* An error has occurred. Delete the hash table and return the error code. */ |
| 6838 assert( rc!=SQLITE_OK ); |
| 6839 if( pHash ){ |
| 6840 sqlite3Fts2HashClear(pHash); |
| 6841 sqlite3_free(pHash); |
| 6842 } |
| 6843 return rc; |
| 6844 } |
| 6845 |
| 6846 #if !SQLITE_CORE |
| 6847 int sqlite3_extension_init( |
| 6848 sqlite3 *db, |
| 6849 char **pzErrMsg, |
| 6850 const sqlite3_api_routines *pApi |
| 6851 ){ |
| 6852 SQLITE_EXTENSION_INIT2(pApi) |
| 6853 return sqlite3Fts2Init(db); |
| 6854 } |
| 6855 #endif |
| 6856 |
| 6857 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2) */ |
OLD | NEW |