OLD | NEW |
(Empty) | |
| 1 /* fts1 has a design flaw which can lead to database corruption (see |
| 2 ** below). It is recommended not to use it any longer, instead use |
| 3 ** fts3 (or higher). If you believe that your use of fts1 is safe, |
| 4 ** add -DSQLITE_ENABLE_BROKEN_FTS1=1 to your CFLAGS. |
| 5 */ |
| 6 #if (!defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1)) \ |
| 7 && !defined(SQLITE_ENABLE_BROKEN_FTS1) |
| 8 #error fts1 has a design flaw and has been deprecated. |
| 9 #endif |
| 10 /* The flaw is that fts1 uses the content table's unaliased rowid as |
| 11 ** the unique docid. fts1 embeds the rowid in the index it builds, |
| 12 ** and expects the rowid to not change. The SQLite VACUUM operation |
| 13 ** will renumber such rowids, thereby breaking fts1. If you are using |
| 14 ** fts1 in a system which has disabled VACUUM, then you can continue |
| 15 ** to use it safely. Note that PRAGMA auto_vacuum does NOT disable |
| 16 ** VACUUM, though systems using auto_vacuum are unlikely to invoke |
| 17 ** VACUUM. |
| 18 ** |
| 19 ** fts1 should be safe even across VACUUM if you only insert documents |
| 20 ** and never delete. |
| 21 */ |
| 22 |
| 23 /* The author disclaims copyright to this source code. |
| 24 * |
| 25 * This is an SQLite module implementing full-text search. |
| 26 */ |
| 27 |
| 28 /* |
| 29 ** The code in this file is only compiled if: |
| 30 ** |
| 31 ** * The FTS1 module is being built as an extension |
| 32 ** (in which case SQLITE_CORE is not defined), or |
| 33 ** |
| 34 ** * The FTS1 module is being built into the core of |
| 35 ** SQLite (in which case SQLITE_ENABLE_FTS1 is defined). |
| 36 */ |
| 37 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1) |
| 38 |
| 39 #if defined(SQLITE_ENABLE_FTS1) && !defined(SQLITE_CORE) |
| 40 # define SQLITE_CORE 1 |
| 41 #endif |
| 42 |
| 43 #include <assert.h> |
| 44 #include <stdlib.h> |
| 45 #include <stdio.h> |
| 46 #include <string.h> |
| 47 #include <ctype.h> |
| 48 |
| 49 #include "fts1.h" |
| 50 #include "fts1_hash.h" |
| 51 #include "fts1_tokenizer.h" |
| 52 #include "sqlite3.h" |
| 53 #include "sqlite3ext.h" |
| 54 SQLITE_EXTENSION_INIT1 |
| 55 |
| 56 |
| 57 #if 0 |
| 58 # define TRACE(A) printf A; fflush(stdout) |
| 59 #else |
| 60 # define TRACE(A) |
| 61 #endif |
| 62 |
| 63 /* utility functions */ |
| 64 |
| 65 typedef struct StringBuffer { |
| 66 int len; /* length, not including null terminator */ |
| 67 int alloced; /* Space allocated for s[] */ |
| 68 char *s; /* Content of the string */ |
| 69 } StringBuffer; |
| 70 |
| 71 static void initStringBuffer(StringBuffer *sb){ |
| 72 sb->len = 0; |
| 73 sb->alloced = 100; |
| 74 sb->s = malloc(100); |
| 75 sb->s[0] = '\0'; |
| 76 } |
| 77 |
| 78 static void nappend(StringBuffer *sb, const char *zFrom, int nFrom){ |
| 79 if( sb->len + nFrom >= sb->alloced ){ |
| 80 sb->alloced = sb->len + nFrom + 100; |
| 81 sb->s = realloc(sb->s, sb->alloced+1); |
| 82 if( sb->s==0 ){ |
| 83 initStringBuffer(sb); |
| 84 return; |
| 85 } |
| 86 } |
| 87 memcpy(sb->s + sb->len, zFrom, nFrom); |
| 88 sb->len += nFrom; |
| 89 sb->s[sb->len] = 0; |
| 90 } |
| 91 static void append(StringBuffer *sb, const char *zFrom){ |
| 92 nappend(sb, zFrom, strlen(zFrom)); |
| 93 } |
| 94 |
| 95 /* We encode variable-length integers in little-endian order using seven bits |
| 96 * per byte as follows: |
| 97 ** |
| 98 ** KEY: |
| 99 ** A = 0xxxxxxx 7 bits of data and one flag bit |
| 100 ** B = 1xxxxxxx 7 bits of data and one flag bit |
| 101 ** |
| 102 ** 7 bits - A |
| 103 ** 14 bits - BA |
| 104 ** 21 bits - BBA |
| 105 ** and so on. |
| 106 */ |
| 107 |
| 108 /* We may need up to VARINT_MAX bytes to store an encoded 64-bit integer. */ |
| 109 #define VARINT_MAX 10 |
| 110 |
| 111 /* Write a 64-bit variable-length integer to memory starting at p[0]. |
| 112 * The length of data written will be between 1 and VARINT_MAX bytes. |
| 113 * The number of bytes written is returned. */ |
| 114 static int putVarint(char *p, sqlite_int64 v){ |
| 115 unsigned char *q = (unsigned char *) p; |
| 116 sqlite_uint64 vu = v; |
| 117 do{ |
| 118 *q++ = (unsigned char) ((vu & 0x7f) | 0x80); |
| 119 vu >>= 7; |
| 120 }while( vu!=0 ); |
| 121 q[-1] &= 0x7f; /* turn off high bit in final byte */ |
| 122 assert( q - (unsigned char *)p <= VARINT_MAX ); |
| 123 return (int) (q - (unsigned char *)p); |
| 124 } |
| 125 |
| 126 /* Read a 64-bit variable-length integer from memory starting at p[0]. |
| 127 * Return the number of bytes read, or 0 on error. |
| 128 * The value is stored in *v. */ |
| 129 static int getVarint(const char *p, sqlite_int64 *v){ |
| 130 const unsigned char *q = (const unsigned char *) p; |
| 131 sqlite_uint64 x = 0, y = 1; |
| 132 while( (*q & 0x80) == 0x80 ){ |
| 133 x += y * (*q++ & 0x7f); |
| 134 y <<= 7; |
| 135 if( q - (unsigned char *)p >= VARINT_MAX ){ /* bad data */ |
| 136 assert( 0 ); |
| 137 return 0; |
| 138 } |
| 139 } |
| 140 x += y * (*q++); |
| 141 *v = (sqlite_int64) x; |
| 142 return (int) (q - (unsigned char *)p); |
| 143 } |
| 144 |
| 145 static int getVarint32(const char *p, int *pi){ |
| 146 sqlite_int64 i; |
| 147 int ret = getVarint(p, &i); |
| 148 *pi = (int) i; |
| 149 assert( *pi==i ); |
| 150 return ret; |
| 151 } |
| 152 |
| 153 /*** Document lists *** |
| 154 * |
| 155 * A document list holds a sorted list of varint-encoded document IDs. |
| 156 * |
| 157 * A doclist with type DL_POSITIONS_OFFSETS is stored like this: |
| 158 * |
| 159 * array { |
| 160 * varint docid; |
| 161 * array { |
| 162 * varint position; (delta from previous position plus POS_BASE) |
| 163 * varint startOffset; (delta from previous startOffset) |
| 164 * varint endOffset; (delta from startOffset) |
| 165 * } |
| 166 * } |
| 167 * |
| 168 * Here, array { X } means zero or more occurrences of X, adjacent in memory. |
| 169 * |
| 170 * A position list may hold positions for text in multiple columns. A position |
| 171 * POS_COLUMN is followed by a varint containing the index of the column for |
| 172 * following positions in the list. Any positions appearing before any |
| 173 * occurrences of POS_COLUMN are for column 0. |
| 174 * |
| 175 * A doclist with type DL_POSITIONS is like the above, but holds only docids |
| 176 * and positions without offset information. |
| 177 * |
| 178 * A doclist with type DL_DOCIDS is like the above, but holds only docids |
| 179 * without positions or offset information. |
| 180 * |
| 181 * On disk, every document list has positions and offsets, so we don't bother |
| 182 * to serialize a doclist's type. |
| 183 * |
| 184 * We don't yet delta-encode document IDs; doing so will probably be a |
| 185 * modest win. |
| 186 * |
| 187 * NOTE(shess) I've thought of a slightly (1%) better offset encoding. |
| 188 * After the first offset, estimate the next offset by using the |
| 189 * current token position and the previous token position and offset, |
| 190 * offset to handle some variance. So the estimate would be |
| 191 * (iPosition*w->iStartOffset/w->iPosition-64), which is delta-encoded |
| 192 * as normal. Offsets more than 64 chars from the estimate are |
| 193 * encoded as the delta to the previous start offset + 128. An |
| 194 * additional tiny increment can be gained by using the end offset of |
| 195 * the previous token to make the estimate a tiny bit more precise. |
| 196 */ |
| 197 |
| 198 /* It is not safe to call isspace(), tolower(), or isalnum() on |
| 199 ** hi-bit-set characters. This is the same solution used in the |
| 200 ** tokenizer. |
| 201 */ |
| 202 /* TODO(shess) The snippet-generation code should be using the |
| 203 ** tokenizer-generated tokens rather than doing its own local |
| 204 ** tokenization. |
| 205 */ |
| 206 /* TODO(shess) Is __isascii() a portable version of (c&0x80)==0? */ |
| 207 static int safe_isspace(char c){ |
| 208 return (c&0x80)==0 ? isspace(c) : 0; |
| 209 } |
| 210 static int safe_tolower(char c){ |
| 211 return (c&0x80)==0 ? tolower(c) : c; |
| 212 } |
| 213 static int safe_isalnum(char c){ |
| 214 return (c&0x80)==0 ? isalnum(c) : 0; |
| 215 } |
| 216 |
| 217 typedef enum DocListType { |
| 218 DL_DOCIDS, /* docids only */ |
| 219 DL_POSITIONS, /* docids + positions */ |
| 220 DL_POSITIONS_OFFSETS /* docids + positions + offsets */ |
| 221 } DocListType; |
| 222 |
| 223 /* |
| 224 ** By default, only positions and not offsets are stored in the doclists. |
| 225 ** To change this so that offsets are stored too, compile with |
| 226 ** |
| 227 ** -DDL_DEFAULT=DL_POSITIONS_OFFSETS |
| 228 ** |
| 229 */ |
| 230 #ifndef DL_DEFAULT |
| 231 # define DL_DEFAULT DL_POSITIONS |
| 232 #endif |
| 233 |
| 234 typedef struct DocList { |
| 235 char *pData; |
| 236 int nData; |
| 237 DocListType iType; |
| 238 int iLastColumn; /* the last column written */ |
| 239 int iLastPos; /* the last position written */ |
| 240 int iLastOffset; /* the last start offset written */ |
| 241 } DocList; |
| 242 |
| 243 enum { |
| 244 POS_END = 0, /* end of this position list */ |
| 245 POS_COLUMN, /* followed by new column number */ |
| 246 POS_BASE |
| 247 }; |
| 248 |
| 249 /* Initialize a new DocList to hold the given data. */ |
| 250 static void docListInit(DocList *d, DocListType iType, |
| 251 const char *pData, int nData){ |
| 252 d->nData = nData; |
| 253 if( nData>0 ){ |
| 254 d->pData = malloc(nData); |
| 255 memcpy(d->pData, pData, nData); |
| 256 } else { |
| 257 d->pData = NULL; |
| 258 } |
| 259 d->iType = iType; |
| 260 d->iLastColumn = 0; |
| 261 d->iLastPos = d->iLastOffset = 0; |
| 262 } |
| 263 |
| 264 /* Create a new dynamically-allocated DocList. */ |
| 265 static DocList *docListNew(DocListType iType){ |
| 266 DocList *d = (DocList *) malloc(sizeof(DocList)); |
| 267 docListInit(d, iType, 0, 0); |
| 268 return d; |
| 269 } |
| 270 |
| 271 static void docListDestroy(DocList *d){ |
| 272 free(d->pData); |
| 273 #ifndef NDEBUG |
| 274 memset(d, 0x55, sizeof(*d)); |
| 275 #endif |
| 276 } |
| 277 |
| 278 static void docListDelete(DocList *d){ |
| 279 docListDestroy(d); |
| 280 free(d); |
| 281 } |
| 282 |
| 283 static char *docListEnd(DocList *d){ |
| 284 return d->pData + d->nData; |
| 285 } |
| 286 |
| 287 /* Append a varint to a DocList's data. */ |
| 288 static void appendVarint(DocList *d, sqlite_int64 i){ |
| 289 char c[VARINT_MAX]; |
| 290 int n = putVarint(c, i); |
| 291 d->pData = realloc(d->pData, d->nData + n); |
| 292 memcpy(d->pData + d->nData, c, n); |
| 293 d->nData += n; |
| 294 } |
| 295 |
| 296 static void docListAddDocid(DocList *d, sqlite_int64 iDocid){ |
| 297 appendVarint(d, iDocid); |
| 298 if( d->iType>=DL_POSITIONS ){ |
| 299 appendVarint(d, POS_END); /* initially empty position list */ |
| 300 d->iLastColumn = 0; |
| 301 d->iLastPos = d->iLastOffset = 0; |
| 302 } |
| 303 } |
| 304 |
| 305 /* helper function for docListAddPos and docListAddPosOffset */ |
| 306 static void addPos(DocList *d, int iColumn, int iPos){ |
| 307 assert( d->nData>0 ); |
| 308 --d->nData; /* remove previous terminator */ |
| 309 if( iColumn!=d->iLastColumn ){ |
| 310 assert( iColumn>d->iLastColumn ); |
| 311 appendVarint(d, POS_COLUMN); |
| 312 appendVarint(d, iColumn); |
| 313 d->iLastColumn = iColumn; |
| 314 d->iLastPos = d->iLastOffset = 0; |
| 315 } |
| 316 assert( iPos>=d->iLastPos ); |
| 317 appendVarint(d, iPos-d->iLastPos+POS_BASE); |
| 318 d->iLastPos = iPos; |
| 319 } |
| 320 |
| 321 /* Add a position to the last position list in a doclist. */ |
| 322 static void docListAddPos(DocList *d, int iColumn, int iPos){ |
| 323 assert( d->iType==DL_POSITIONS ); |
| 324 addPos(d, iColumn, iPos); |
| 325 appendVarint(d, POS_END); /* add new terminator */ |
| 326 } |
| 327 |
| 328 /* |
| 329 ** Add a position and starting and ending offsets to a doclist. |
| 330 ** |
| 331 ** If the doclist is setup to handle only positions, then insert |
| 332 ** the position only and ignore the offsets. |
| 333 */ |
| 334 static void docListAddPosOffset( |
| 335 DocList *d, /* Doclist under construction */ |
| 336 int iColumn, /* Column the inserted term is part of */ |
| 337 int iPos, /* Position of the inserted term */ |
| 338 int iStartOffset, /* Starting offset of inserted term */ |
| 339 int iEndOffset /* Ending offset of inserted term */ |
| 340 ){ |
| 341 assert( d->iType>=DL_POSITIONS ); |
| 342 addPos(d, iColumn, iPos); |
| 343 if( d->iType==DL_POSITIONS_OFFSETS ){ |
| 344 assert( iStartOffset>=d->iLastOffset ); |
| 345 appendVarint(d, iStartOffset-d->iLastOffset); |
| 346 d->iLastOffset = iStartOffset; |
| 347 assert( iEndOffset>=iStartOffset ); |
| 348 appendVarint(d, iEndOffset-iStartOffset); |
| 349 } |
| 350 appendVarint(d, POS_END); /* add new terminator */ |
| 351 } |
| 352 |
| 353 /* |
| 354 ** A DocListReader object is a cursor into a doclist. Initialize |
| 355 ** the cursor to the beginning of the doclist by calling readerInit(). |
| 356 ** Then use routines |
| 357 ** |
| 358 ** peekDocid() |
| 359 ** readDocid() |
| 360 ** readPosition() |
| 361 ** skipPositionList() |
| 362 ** and so forth... |
| 363 ** |
| 364 ** to read information out of the doclist. When we reach the end |
| 365 ** of the doclist, atEnd() returns TRUE. |
| 366 */ |
| 367 typedef struct DocListReader { |
| 368 DocList *pDoclist; /* The document list we are stepping through */ |
| 369 char *p; /* Pointer to next unread byte in the doclist */ |
| 370 int iLastColumn; |
| 371 int iLastPos; /* the last position read, or -1 when not in a position list */ |
| 372 } DocListReader; |
| 373 |
| 374 /* |
| 375 ** Initialize the DocListReader r to point to the beginning of pDoclist. |
| 376 */ |
| 377 static void readerInit(DocListReader *r, DocList *pDoclist){ |
| 378 r->pDoclist = pDoclist; |
| 379 if( pDoclist!=NULL ){ |
| 380 r->p = pDoclist->pData; |
| 381 } |
| 382 r->iLastColumn = -1; |
| 383 r->iLastPos = -1; |
| 384 } |
| 385 |
| 386 /* |
| 387 ** Return TRUE if we have reached then end of pReader and there is |
| 388 ** nothing else left to read. |
| 389 */ |
| 390 static int atEnd(DocListReader *pReader){ |
| 391 return pReader->pDoclist==0 || (pReader->p >= docListEnd(pReader->pDoclist)); |
| 392 } |
| 393 |
| 394 /* Peek at the next docid without advancing the read pointer. |
| 395 */ |
| 396 static sqlite_int64 peekDocid(DocListReader *pReader){ |
| 397 sqlite_int64 ret; |
| 398 assert( !atEnd(pReader) ); |
| 399 assert( pReader->iLastPos==-1 ); |
| 400 getVarint(pReader->p, &ret); |
| 401 return ret; |
| 402 } |
| 403 |
| 404 /* Read the next docid. See also nextDocid(). |
| 405 */ |
| 406 static sqlite_int64 readDocid(DocListReader *pReader){ |
| 407 sqlite_int64 ret; |
| 408 assert( !atEnd(pReader) ); |
| 409 assert( pReader->iLastPos==-1 ); |
| 410 pReader->p += getVarint(pReader->p, &ret); |
| 411 if( pReader->pDoclist->iType>=DL_POSITIONS ){ |
| 412 pReader->iLastColumn = 0; |
| 413 pReader->iLastPos = 0; |
| 414 } |
| 415 return ret; |
| 416 } |
| 417 |
| 418 /* Read the next position and column index from a position list. |
| 419 * Returns the position, or -1 at the end of the list. */ |
| 420 static int readPosition(DocListReader *pReader, int *iColumn){ |
| 421 int i; |
| 422 int iType = pReader->pDoclist->iType; |
| 423 |
| 424 if( pReader->iLastPos==-1 ){ |
| 425 return -1; |
| 426 } |
| 427 assert( !atEnd(pReader) ); |
| 428 |
| 429 if( iType<DL_POSITIONS ){ |
| 430 return -1; |
| 431 } |
| 432 pReader->p += getVarint32(pReader->p, &i); |
| 433 if( i==POS_END ){ |
| 434 pReader->iLastColumn = pReader->iLastPos = -1; |
| 435 *iColumn = -1; |
| 436 return -1; |
| 437 } |
| 438 if( i==POS_COLUMN ){ |
| 439 pReader->p += getVarint32(pReader->p, &pReader->iLastColumn); |
| 440 pReader->iLastPos = 0; |
| 441 pReader->p += getVarint32(pReader->p, &i); |
| 442 assert( i>=POS_BASE ); |
| 443 } |
| 444 pReader->iLastPos += ((int) i)-POS_BASE; |
| 445 if( iType>=DL_POSITIONS_OFFSETS ){ |
| 446 /* Skip over offsets, ignoring them for now. */ |
| 447 int iStart, iEnd; |
| 448 pReader->p += getVarint32(pReader->p, &iStart); |
| 449 pReader->p += getVarint32(pReader->p, &iEnd); |
| 450 } |
| 451 *iColumn = pReader->iLastColumn; |
| 452 return pReader->iLastPos; |
| 453 } |
| 454 |
| 455 /* Skip past the end of a position list. */ |
| 456 static void skipPositionList(DocListReader *pReader){ |
| 457 DocList *p = pReader->pDoclist; |
| 458 if( p && p->iType>=DL_POSITIONS ){ |
| 459 int iColumn; |
| 460 while( readPosition(pReader, &iColumn)!=-1 ){} |
| 461 } |
| 462 } |
| 463 |
| 464 /* Skip over a docid, including its position list if the doclist has |
| 465 * positions. */ |
| 466 static void skipDocument(DocListReader *pReader){ |
| 467 readDocid(pReader); |
| 468 skipPositionList(pReader); |
| 469 } |
| 470 |
| 471 /* Skip past all docids which are less than [iDocid]. Returns 1 if a docid |
| 472 * matching [iDocid] was found. */ |
| 473 static int skipToDocid(DocListReader *pReader, sqlite_int64 iDocid){ |
| 474 sqlite_int64 d = 0; |
| 475 while( !atEnd(pReader) && (d=peekDocid(pReader))<iDocid ){ |
| 476 skipDocument(pReader); |
| 477 } |
| 478 return !atEnd(pReader) && d==iDocid; |
| 479 } |
| 480 |
| 481 /* Return the first document in a document list. |
| 482 */ |
| 483 static sqlite_int64 firstDocid(DocList *d){ |
| 484 DocListReader r; |
| 485 readerInit(&r, d); |
| 486 return readDocid(&r); |
| 487 } |
| 488 |
| 489 #ifdef SQLITE_DEBUG |
| 490 /* |
| 491 ** This routine is used for debugging purpose only. |
| 492 ** |
| 493 ** Write the content of a doclist to standard output. |
| 494 */ |
| 495 static void printDoclist(DocList *p){ |
| 496 DocListReader r; |
| 497 const char *zSep = ""; |
| 498 |
| 499 readerInit(&r, p); |
| 500 while( !atEnd(&r) ){ |
| 501 sqlite_int64 docid = readDocid(&r); |
| 502 if( docid==0 ){ |
| 503 skipPositionList(&r); |
| 504 continue; |
| 505 } |
| 506 printf("%s%lld", zSep, docid); |
| 507 zSep = ","; |
| 508 if( p->iType>=DL_POSITIONS ){ |
| 509 int iPos, iCol; |
| 510 const char *zDiv = ""; |
| 511 printf("("); |
| 512 while( (iPos = readPosition(&r, &iCol))>=0 ){ |
| 513 printf("%s%d:%d", zDiv, iCol, iPos); |
| 514 zDiv = ":"; |
| 515 } |
| 516 printf(")"); |
| 517 } |
| 518 } |
| 519 printf("\n"); |
| 520 fflush(stdout); |
| 521 } |
| 522 #endif /* SQLITE_DEBUG */ |
| 523 |
| 524 /* Trim the given doclist to contain only positions in column |
| 525 * [iRestrictColumn]. */ |
| 526 static void docListRestrictColumn(DocList *in, int iRestrictColumn){ |
| 527 DocListReader r; |
| 528 DocList out; |
| 529 |
| 530 assert( in->iType>=DL_POSITIONS ); |
| 531 readerInit(&r, in); |
| 532 docListInit(&out, DL_POSITIONS, NULL, 0); |
| 533 |
| 534 while( !atEnd(&r) ){ |
| 535 sqlite_int64 iDocid = readDocid(&r); |
| 536 int iPos, iColumn; |
| 537 |
| 538 docListAddDocid(&out, iDocid); |
| 539 while( (iPos = readPosition(&r, &iColumn)) != -1 ){ |
| 540 if( iColumn==iRestrictColumn ){ |
| 541 docListAddPos(&out, iColumn, iPos); |
| 542 } |
| 543 } |
| 544 } |
| 545 |
| 546 docListDestroy(in); |
| 547 *in = out; |
| 548 } |
| 549 |
| 550 /* Trim the given doclist by discarding any docids without any remaining |
| 551 * positions. */ |
| 552 static void docListDiscardEmpty(DocList *in) { |
| 553 DocListReader r; |
| 554 DocList out; |
| 555 |
| 556 /* TODO: It would be nice to implement this operation in place; that |
| 557 * could save a significant amount of memory in queries with long doclists. */ |
| 558 assert( in->iType>=DL_POSITIONS ); |
| 559 readerInit(&r, in); |
| 560 docListInit(&out, DL_POSITIONS, NULL, 0); |
| 561 |
| 562 while( !atEnd(&r) ){ |
| 563 sqlite_int64 iDocid = readDocid(&r); |
| 564 int match = 0; |
| 565 int iPos, iColumn; |
| 566 while( (iPos = readPosition(&r, &iColumn)) != -1 ){ |
| 567 if( !match ){ |
| 568 docListAddDocid(&out, iDocid); |
| 569 match = 1; |
| 570 } |
| 571 docListAddPos(&out, iColumn, iPos); |
| 572 } |
| 573 } |
| 574 |
| 575 docListDestroy(in); |
| 576 *in = out; |
| 577 } |
| 578 |
| 579 /* Helper function for docListUpdate() and docListAccumulate(). |
| 580 ** Splices a doclist element into the doclist represented by r, |
| 581 ** leaving r pointing after the newly spliced element. |
| 582 */ |
| 583 static void docListSpliceElement(DocListReader *r, sqlite_int64 iDocid, |
| 584 const char *pSource, int nSource){ |
| 585 DocList *d = r->pDoclist; |
| 586 char *pTarget; |
| 587 int nTarget, found; |
| 588 |
| 589 found = skipToDocid(r, iDocid); |
| 590 |
| 591 /* Describe slice in d to place pSource/nSource. */ |
| 592 pTarget = r->p; |
| 593 if( found ){ |
| 594 skipDocument(r); |
| 595 nTarget = r->p-pTarget; |
| 596 }else{ |
| 597 nTarget = 0; |
| 598 } |
| 599 |
| 600 /* The sense of the following is that there are three possibilities. |
| 601 ** If nTarget==nSource, we should not move any memory nor realloc. |
| 602 ** If nTarget>nSource, trim target and realloc. |
| 603 ** If nTarget<nSource, realloc then expand target. |
| 604 */ |
| 605 if( nTarget>nSource ){ |
| 606 memmove(pTarget+nSource, pTarget+nTarget, docListEnd(d)-(pTarget+nTarget)); |
| 607 } |
| 608 if( nTarget!=nSource ){ |
| 609 int iDoclist = pTarget-d->pData; |
| 610 d->pData = realloc(d->pData, d->nData+nSource-nTarget); |
| 611 pTarget = d->pData+iDoclist; |
| 612 } |
| 613 if( nTarget<nSource ){ |
| 614 memmove(pTarget+nSource, pTarget+nTarget, docListEnd(d)-(pTarget+nTarget)); |
| 615 } |
| 616 |
| 617 memcpy(pTarget, pSource, nSource); |
| 618 d->nData += nSource-nTarget; |
| 619 r->p = pTarget+nSource; |
| 620 } |
| 621 |
| 622 /* Insert/update pUpdate into the doclist. */ |
| 623 static void docListUpdate(DocList *d, DocList *pUpdate){ |
| 624 DocListReader reader; |
| 625 |
| 626 assert( d!=NULL && pUpdate!=NULL ); |
| 627 assert( d->iType==pUpdate->iType); |
| 628 |
| 629 readerInit(&reader, d); |
| 630 docListSpliceElement(&reader, firstDocid(pUpdate), |
| 631 pUpdate->pData, pUpdate->nData); |
| 632 } |
| 633 |
| 634 /* Propagate elements from pUpdate to pAcc, overwriting elements with |
| 635 ** matching docids. |
| 636 */ |
| 637 static void docListAccumulate(DocList *pAcc, DocList *pUpdate){ |
| 638 DocListReader accReader, updateReader; |
| 639 |
| 640 /* Handle edge cases where one doclist is empty. */ |
| 641 assert( pAcc!=NULL ); |
| 642 if( pUpdate==NULL || pUpdate->nData==0 ) return; |
| 643 if( pAcc->nData==0 ){ |
| 644 pAcc->pData = malloc(pUpdate->nData); |
| 645 memcpy(pAcc->pData, pUpdate->pData, pUpdate->nData); |
| 646 pAcc->nData = pUpdate->nData; |
| 647 return; |
| 648 } |
| 649 |
| 650 readerInit(&accReader, pAcc); |
| 651 readerInit(&updateReader, pUpdate); |
| 652 |
| 653 while( !atEnd(&updateReader) ){ |
| 654 char *pSource = updateReader.p; |
| 655 sqlite_int64 iDocid = readDocid(&updateReader); |
| 656 skipPositionList(&updateReader); |
| 657 docListSpliceElement(&accReader, iDocid, pSource, updateReader.p-pSource); |
| 658 } |
| 659 } |
| 660 |
| 661 /* |
| 662 ** Read the next docid off of pIn. Return 0 if we reach the end. |
| 663 * |
| 664 * TODO: This assumes that docids are never 0, but they may actually be 0 since |
| 665 * users can choose docids when inserting into a full-text table. Fix this. |
| 666 */ |
| 667 static sqlite_int64 nextDocid(DocListReader *pIn){ |
| 668 skipPositionList(pIn); |
| 669 return atEnd(pIn) ? 0 : readDocid(pIn); |
| 670 } |
| 671 |
| 672 /* |
| 673 ** pLeft and pRight are two DocListReaders that are pointing to |
| 674 ** positions lists of the same document: iDocid. |
| 675 ** |
| 676 ** If there are no instances in pLeft or pRight where the position |
| 677 ** of pLeft is one less than the position of pRight, then this |
| 678 ** routine adds nothing to pOut. |
| 679 ** |
| 680 ** If there are one or more instances where positions from pLeft |
| 681 ** are exactly one less than positions from pRight, then add a new |
| 682 ** document record to pOut. If pOut wants to hold positions, then |
| 683 ** include the positions from pRight that are one more than a |
| 684 ** position in pLeft. In other words: pRight.iPos==pLeft.iPos+1. |
| 685 ** |
| 686 ** pLeft and pRight are left pointing at the next document record. |
| 687 */ |
| 688 static void mergePosList( |
| 689 DocListReader *pLeft, /* Left position list */ |
| 690 DocListReader *pRight, /* Right position list */ |
| 691 sqlite_int64 iDocid, /* The docid from pLeft and pRight */ |
| 692 DocList *pOut /* Write the merged document record here */ |
| 693 ){ |
| 694 int iLeftCol, iLeftPos = readPosition(pLeft, &iLeftCol); |
| 695 int iRightCol, iRightPos = readPosition(pRight, &iRightCol); |
| 696 int match = 0; |
| 697 |
| 698 /* Loop until we've reached the end of both position lists. */ |
| 699 while( iLeftPos!=-1 && iRightPos!=-1 ){ |
| 700 if( iLeftCol==iRightCol && iLeftPos+1==iRightPos ){ |
| 701 if( !match ){ |
| 702 docListAddDocid(pOut, iDocid); |
| 703 match = 1; |
| 704 } |
| 705 if( pOut->iType>=DL_POSITIONS ){ |
| 706 docListAddPos(pOut, iRightCol, iRightPos); |
| 707 } |
| 708 iLeftPos = readPosition(pLeft, &iLeftCol); |
| 709 iRightPos = readPosition(pRight, &iRightCol); |
| 710 }else if( iRightCol<iLeftCol || |
| 711 (iRightCol==iLeftCol && iRightPos<iLeftPos+1) ){ |
| 712 iRightPos = readPosition(pRight, &iRightCol); |
| 713 }else{ |
| 714 iLeftPos = readPosition(pLeft, &iLeftCol); |
| 715 } |
| 716 } |
| 717 if( iLeftPos>=0 ) skipPositionList(pLeft); |
| 718 if( iRightPos>=0 ) skipPositionList(pRight); |
| 719 } |
| 720 |
| 721 /* We have two doclists: pLeft and pRight. |
| 722 ** Write the phrase intersection of these two doclists into pOut. |
| 723 ** |
| 724 ** A phrase intersection means that two documents only match |
| 725 ** if pLeft.iPos+1==pRight.iPos. |
| 726 ** |
| 727 ** The output pOut may or may not contain positions. If pOut |
| 728 ** does contain positions, they are the positions of pRight. |
| 729 */ |
| 730 static void docListPhraseMerge( |
| 731 DocList *pLeft, /* Doclist resulting from the words on the left */ |
| 732 DocList *pRight, /* Doclist for the next word to the right */ |
| 733 DocList *pOut /* Write the combined doclist here */ |
| 734 ){ |
| 735 DocListReader left, right; |
| 736 sqlite_int64 docidLeft, docidRight; |
| 737 |
| 738 readerInit(&left, pLeft); |
| 739 readerInit(&right, pRight); |
| 740 docidLeft = nextDocid(&left); |
| 741 docidRight = nextDocid(&right); |
| 742 |
| 743 while( docidLeft>0 && docidRight>0 ){ |
| 744 if( docidLeft<docidRight ){ |
| 745 docidLeft = nextDocid(&left); |
| 746 }else if( docidRight<docidLeft ){ |
| 747 docidRight = nextDocid(&right); |
| 748 }else{ |
| 749 mergePosList(&left, &right, docidLeft, pOut); |
| 750 docidLeft = nextDocid(&left); |
| 751 docidRight = nextDocid(&right); |
| 752 } |
| 753 } |
| 754 } |
| 755 |
| 756 /* We have two doclists: pLeft and pRight. |
| 757 ** Write the intersection of these two doclists into pOut. |
| 758 ** Only docids are matched. Position information is ignored. |
| 759 ** |
| 760 ** The output pOut never holds positions. |
| 761 */ |
| 762 static void docListAndMerge( |
| 763 DocList *pLeft, /* Doclist resulting from the words on the left */ |
| 764 DocList *pRight, /* Doclist for the next word to the right */ |
| 765 DocList *pOut /* Write the combined doclist here */ |
| 766 ){ |
| 767 DocListReader left, right; |
| 768 sqlite_int64 docidLeft, docidRight; |
| 769 |
| 770 assert( pOut->iType<DL_POSITIONS ); |
| 771 |
| 772 readerInit(&left, pLeft); |
| 773 readerInit(&right, pRight); |
| 774 docidLeft = nextDocid(&left); |
| 775 docidRight = nextDocid(&right); |
| 776 |
| 777 while( docidLeft>0 && docidRight>0 ){ |
| 778 if( docidLeft<docidRight ){ |
| 779 docidLeft = nextDocid(&left); |
| 780 }else if( docidRight<docidLeft ){ |
| 781 docidRight = nextDocid(&right); |
| 782 }else{ |
| 783 docListAddDocid(pOut, docidLeft); |
| 784 docidLeft = nextDocid(&left); |
| 785 docidRight = nextDocid(&right); |
| 786 } |
| 787 } |
| 788 } |
| 789 |
| 790 /* We have two doclists: pLeft and pRight. |
| 791 ** Write the union of these two doclists into pOut. |
| 792 ** Only docids are matched. Position information is ignored. |
| 793 ** |
| 794 ** The output pOut never holds positions. |
| 795 */ |
| 796 static void docListOrMerge( |
| 797 DocList *pLeft, /* Doclist resulting from the words on the left */ |
| 798 DocList *pRight, /* Doclist for the next word to the right */ |
| 799 DocList *pOut /* Write the combined doclist here */ |
| 800 ){ |
| 801 DocListReader left, right; |
| 802 sqlite_int64 docidLeft, docidRight, priorLeft; |
| 803 |
| 804 readerInit(&left, pLeft); |
| 805 readerInit(&right, pRight); |
| 806 docidLeft = nextDocid(&left); |
| 807 docidRight = nextDocid(&right); |
| 808 |
| 809 while( docidLeft>0 && docidRight>0 ){ |
| 810 if( docidLeft<=docidRight ){ |
| 811 docListAddDocid(pOut, docidLeft); |
| 812 }else{ |
| 813 docListAddDocid(pOut, docidRight); |
| 814 } |
| 815 priorLeft = docidLeft; |
| 816 if( docidLeft<=docidRight ){ |
| 817 docidLeft = nextDocid(&left); |
| 818 } |
| 819 if( docidRight>0 && docidRight<=priorLeft ){ |
| 820 docidRight = nextDocid(&right); |
| 821 } |
| 822 } |
| 823 while( docidLeft>0 ){ |
| 824 docListAddDocid(pOut, docidLeft); |
| 825 docidLeft = nextDocid(&left); |
| 826 } |
| 827 while( docidRight>0 ){ |
| 828 docListAddDocid(pOut, docidRight); |
| 829 docidRight = nextDocid(&right); |
| 830 } |
| 831 } |
| 832 |
| 833 /* We have two doclists: pLeft and pRight. |
| 834 ** Write into pOut all documents that occur in pLeft but not |
| 835 ** in pRight. |
| 836 ** |
| 837 ** Only docids are matched. Position information is ignored. |
| 838 ** |
| 839 ** The output pOut never holds positions. |
| 840 */ |
| 841 static void docListExceptMerge( |
| 842 DocList *pLeft, /* Doclist resulting from the words on the left */ |
| 843 DocList *pRight, /* Doclist for the next word to the right */ |
| 844 DocList *pOut /* Write the combined doclist here */ |
| 845 ){ |
| 846 DocListReader left, right; |
| 847 sqlite_int64 docidLeft, docidRight, priorLeft; |
| 848 |
| 849 readerInit(&left, pLeft); |
| 850 readerInit(&right, pRight); |
| 851 docidLeft = nextDocid(&left); |
| 852 docidRight = nextDocid(&right); |
| 853 |
| 854 while( docidLeft>0 && docidRight>0 ){ |
| 855 priorLeft = docidLeft; |
| 856 if( docidLeft<docidRight ){ |
| 857 docListAddDocid(pOut, docidLeft); |
| 858 } |
| 859 if( docidLeft<=docidRight ){ |
| 860 docidLeft = nextDocid(&left); |
| 861 } |
| 862 if( docidRight>0 && docidRight<=priorLeft ){ |
| 863 docidRight = nextDocid(&right); |
| 864 } |
| 865 } |
| 866 while( docidLeft>0 ){ |
| 867 docListAddDocid(pOut, docidLeft); |
| 868 docidLeft = nextDocid(&left); |
| 869 } |
| 870 } |
| 871 |
| 872 static char *string_dup_n(const char *s, int n){ |
| 873 char *str = malloc(n + 1); |
| 874 memcpy(str, s, n); |
| 875 str[n] = '\0'; |
| 876 return str; |
| 877 } |
| 878 |
| 879 /* Duplicate a string; the caller must free() the returned string. |
| 880 * (We don't use strdup() since it is not part of the standard C library and |
| 881 * may not be available everywhere.) */ |
| 882 static char *string_dup(const char *s){ |
| 883 return string_dup_n(s, strlen(s)); |
| 884 } |
| 885 |
| 886 /* Format a string, replacing each occurrence of the % character with |
| 887 * zDb.zName. This may be more convenient than sqlite_mprintf() |
| 888 * when one string is used repeatedly in a format string. |
| 889 * The caller must free() the returned string. */ |
| 890 static char *string_format(const char *zFormat, |
| 891 const char *zDb, const char *zName){ |
| 892 const char *p; |
| 893 size_t len = 0; |
| 894 size_t nDb = strlen(zDb); |
| 895 size_t nName = strlen(zName); |
| 896 size_t nFullTableName = nDb+1+nName; |
| 897 char *result; |
| 898 char *r; |
| 899 |
| 900 /* first compute length needed */ |
| 901 for(p = zFormat ; *p ; ++p){ |
| 902 len += (*p=='%' ? nFullTableName : 1); |
| 903 } |
| 904 len += 1; /* for null terminator */ |
| 905 |
| 906 r = result = malloc(len); |
| 907 for(p = zFormat; *p; ++p){ |
| 908 if( *p=='%' ){ |
| 909 memcpy(r, zDb, nDb); |
| 910 r += nDb; |
| 911 *r++ = '.'; |
| 912 memcpy(r, zName, nName); |
| 913 r += nName; |
| 914 } else { |
| 915 *r++ = *p; |
| 916 } |
| 917 } |
| 918 *r++ = '\0'; |
| 919 assert( r == result + len ); |
| 920 return result; |
| 921 } |
| 922 |
| 923 static int sql_exec(sqlite3 *db, const char *zDb, const char *zName, |
| 924 const char *zFormat){ |
| 925 char *zCommand = string_format(zFormat, zDb, zName); |
| 926 int rc; |
| 927 TRACE(("FTS1 sql: %s\n", zCommand)); |
| 928 rc = sqlite3_exec(db, zCommand, NULL, 0, NULL); |
| 929 free(zCommand); |
| 930 return rc; |
| 931 } |
| 932 |
| 933 static int sql_prepare(sqlite3 *db, const char *zDb, const char *zName, |
| 934 sqlite3_stmt **ppStmt, const char *zFormat){ |
| 935 char *zCommand = string_format(zFormat, zDb, zName); |
| 936 int rc; |
| 937 TRACE(("FTS1 prepare: %s\n", zCommand)); |
| 938 rc = sqlite3_prepare(db, zCommand, -1, ppStmt, NULL); |
| 939 free(zCommand); |
| 940 return rc; |
| 941 } |
| 942 |
| 943 /* end utility functions */ |
| 944 |
| 945 /* Forward reference */ |
| 946 typedef struct fulltext_vtab fulltext_vtab; |
| 947 |
| 948 /* A single term in a query is represented by an instances of |
| 949 ** the following structure. |
| 950 */ |
| 951 typedef struct QueryTerm { |
| 952 short int nPhrase; /* How many following terms are part of the same phrase */ |
| 953 short int iPhrase; /* This is the i-th term of a phrase. */ |
| 954 short int iColumn; /* Column of the index that must match this term */ |
| 955 signed char isOr; /* this term is preceded by "OR" */ |
| 956 signed char isNot; /* this term is preceded by "-" */ |
| 957 char *pTerm; /* text of the term. '\000' terminated. malloced */ |
| 958 int nTerm; /* Number of bytes in pTerm[] */ |
| 959 } QueryTerm; |
| 960 |
| 961 |
| 962 /* A query string is parsed into a Query structure. |
| 963 * |
| 964 * We could, in theory, allow query strings to be complicated |
| 965 * nested expressions with precedence determined by parentheses. |
| 966 * But none of the major search engines do this. (Perhaps the |
| 967 * feeling is that an parenthesized expression is two complex of |
| 968 * an idea for the average user to grasp.) Taking our lead from |
| 969 * the major search engines, we will allow queries to be a list |
| 970 * of terms (with an implied AND operator) or phrases in double-quotes, |
| 971 * with a single optional "-" before each non-phrase term to designate |
| 972 * negation and an optional OR connector. |
| 973 * |
| 974 * OR binds more tightly than the implied AND, which is what the |
| 975 * major search engines seem to do. So, for example: |
| 976 * |
| 977 * [one two OR three] ==> one AND (two OR three) |
| 978 * [one OR two three] ==> (one OR two) AND three |
| 979 * |
| 980 * A "-" before a term matches all entries that lack that term. |
| 981 * The "-" must occur immediately before the term with in intervening |
| 982 * space. This is how the search engines do it. |
| 983 * |
| 984 * A NOT term cannot be the right-hand operand of an OR. If this |
| 985 * occurs in the query string, the NOT is ignored: |
| 986 * |
| 987 * [one OR -two] ==> one OR two |
| 988 * |
| 989 */ |
| 990 typedef struct Query { |
| 991 fulltext_vtab *pFts; /* The full text index */ |
| 992 int nTerms; /* Number of terms in the query */ |
| 993 QueryTerm *pTerms; /* Array of terms. Space obtained from malloc() */ |
| 994 int nextIsOr; /* Set the isOr flag on the next inserted term */ |
| 995 int nextColumn; /* Next word parsed must be in this column */ |
| 996 int dfltColumn; /* The default column */ |
| 997 } Query; |
| 998 |
| 999 |
| 1000 /* |
| 1001 ** An instance of the following structure keeps track of generated |
| 1002 ** matching-word offset information and snippets. |
| 1003 */ |
| 1004 typedef struct Snippet { |
| 1005 int nMatch; /* Total number of matches */ |
| 1006 int nAlloc; /* Space allocated for aMatch[] */ |
| 1007 struct snippetMatch { /* One entry for each matching term */ |
| 1008 char snStatus; /* Status flag for use while constructing snippets */ |
| 1009 short int iCol; /* The column that contains the match */ |
| 1010 short int iTerm; /* The index in Query.pTerms[] of the matching term */ |
| 1011 short int nByte; /* Number of bytes in the term */ |
| 1012 int iStart; /* The offset to the first character of the term */ |
| 1013 } *aMatch; /* Points to space obtained from malloc */ |
| 1014 char *zOffset; /* Text rendering of aMatch[] */ |
| 1015 int nOffset; /* strlen(zOffset) */ |
| 1016 char *zSnippet; /* Snippet text */ |
| 1017 int nSnippet; /* strlen(zSnippet) */ |
| 1018 } Snippet; |
| 1019 |
| 1020 |
| 1021 typedef enum QueryType { |
| 1022 QUERY_GENERIC, /* table scan */ |
| 1023 QUERY_ROWID, /* lookup by rowid */ |
| 1024 QUERY_FULLTEXT /* QUERY_FULLTEXT + [i] is a full-text search for column i*/ |
| 1025 } QueryType; |
| 1026 |
| 1027 /* TODO(shess) CHUNK_MAX controls how much data we allow in segment 0 |
| 1028 ** before we start aggregating into larger segments. Lower CHUNK_MAX |
| 1029 ** means that for a given input we have more individual segments per |
| 1030 ** term, which means more rows in the table and a bigger index (due to |
| 1031 ** both more rows and bigger rowids). But it also reduces the average |
| 1032 ** cost of adding new elements to the segment 0 doclist, and it seems |
| 1033 ** to reduce the number of pages read and written during inserts. 256 |
| 1034 ** was chosen by measuring insertion times for a certain input (first |
| 1035 ** 10k documents of Enron corpus), though including query performance |
| 1036 ** in the decision may argue for a larger value. |
| 1037 */ |
| 1038 #define CHUNK_MAX 256 |
| 1039 |
| 1040 typedef enum fulltext_statement { |
| 1041 CONTENT_INSERT_STMT, |
| 1042 CONTENT_SELECT_STMT, |
| 1043 CONTENT_UPDATE_STMT, |
| 1044 CONTENT_DELETE_STMT, |
| 1045 |
| 1046 TERM_SELECT_STMT, |
| 1047 TERM_SELECT_ALL_STMT, |
| 1048 TERM_INSERT_STMT, |
| 1049 TERM_UPDATE_STMT, |
| 1050 TERM_DELETE_STMT, |
| 1051 |
| 1052 MAX_STMT /* Always at end! */ |
| 1053 } fulltext_statement; |
| 1054 |
| 1055 /* These must exactly match the enum above. */ |
| 1056 /* TODO(adam): Is there some risk that a statement (in particular, |
| 1057 ** pTermSelectStmt) will be used in two cursors at once, e.g. if a |
| 1058 ** query joins a virtual table to itself? If so perhaps we should |
| 1059 ** move some of these to the cursor object. |
| 1060 */ |
| 1061 static const char *const fulltext_zStatement[MAX_STMT] = { |
| 1062 /* CONTENT_INSERT */ NULL, /* generated in contentInsertStatement() */ |
| 1063 /* CONTENT_SELECT */ "select * from %_content where rowid = ?", |
| 1064 /* CONTENT_UPDATE */ NULL, /* generated in contentUpdateStatement() */ |
| 1065 /* CONTENT_DELETE */ "delete from %_content where rowid = ?", |
| 1066 |
| 1067 /* TERM_SELECT */ |
| 1068 "select rowid, doclist from %_term where term = ? and segment = ?", |
| 1069 /* TERM_SELECT_ALL */ |
| 1070 "select doclist from %_term where term = ? order by segment", |
| 1071 /* TERM_INSERT */ |
| 1072 "insert into %_term (rowid, term, segment, doclist) values (?, ?, ?, ?)", |
| 1073 /* TERM_UPDATE */ "update %_term set doclist = ? where rowid = ?", |
| 1074 /* TERM_DELETE */ "delete from %_term where rowid = ?", |
| 1075 }; |
| 1076 |
| 1077 /* |
| 1078 ** A connection to a fulltext index is an instance of the following |
| 1079 ** structure. The xCreate and xConnect methods create an instance |
| 1080 ** of this structure and xDestroy and xDisconnect free that instance. |
| 1081 ** All other methods receive a pointer to the structure as one of their |
| 1082 ** arguments. |
| 1083 */ |
| 1084 struct fulltext_vtab { |
| 1085 sqlite3_vtab base; /* Base class used by SQLite core */ |
| 1086 sqlite3 *db; /* The database connection */ |
| 1087 const char *zDb; /* logical database name */ |
| 1088 const char *zName; /* virtual table name */ |
| 1089 int nColumn; /* number of columns in virtual table */ |
| 1090 char **azColumn; /* column names. malloced */ |
| 1091 char **azContentColumn; /* column names in content table; malloced */ |
| 1092 sqlite3_tokenizer *pTokenizer; /* tokenizer for inserts and queries */ |
| 1093 |
| 1094 /* Precompiled statements which we keep as long as the table is |
| 1095 ** open. |
| 1096 */ |
| 1097 sqlite3_stmt *pFulltextStatements[MAX_STMT]; |
| 1098 }; |
| 1099 |
| 1100 /* |
| 1101 ** When the core wants to do a query, it create a cursor using a |
| 1102 ** call to xOpen. This structure is an instance of a cursor. It |
| 1103 ** is destroyed by xClose. |
| 1104 */ |
| 1105 typedef struct fulltext_cursor { |
| 1106 sqlite3_vtab_cursor base; /* Base class used by SQLite core */ |
| 1107 QueryType iCursorType; /* Copy of sqlite3_index_info.idxNum */ |
| 1108 sqlite3_stmt *pStmt; /* Prepared statement in use by the cursor */ |
| 1109 int eof; /* True if at End Of Results */ |
| 1110 Query q; /* Parsed query string */ |
| 1111 Snippet snippet; /* Cached snippet for the current row */ |
| 1112 int iColumn; /* Column being searched */ |
| 1113 DocListReader result; /* used when iCursorType == QUERY_FULLTEXT */ |
| 1114 } fulltext_cursor; |
| 1115 |
| 1116 static struct fulltext_vtab *cursor_vtab(fulltext_cursor *c){ |
| 1117 return (fulltext_vtab *) c->base.pVtab; |
| 1118 } |
| 1119 |
| 1120 static const sqlite3_module fulltextModule; /* forward declaration */ |
| 1121 |
| 1122 /* Append a list of strings separated by commas to a StringBuffer. */ |
| 1123 static void appendList(StringBuffer *sb, int nString, char **azString){ |
| 1124 int i; |
| 1125 for(i=0; i<nString; ++i){ |
| 1126 if( i>0 ) append(sb, ", "); |
| 1127 append(sb, azString[i]); |
| 1128 } |
| 1129 } |
| 1130 |
| 1131 /* Return a dynamically generated statement of the form |
| 1132 * insert into %_content (rowid, ...) values (?, ...) |
| 1133 */ |
| 1134 static const char *contentInsertStatement(fulltext_vtab *v){ |
| 1135 StringBuffer sb; |
| 1136 int i; |
| 1137 |
| 1138 initStringBuffer(&sb); |
| 1139 append(&sb, "insert into %_content (rowid, "); |
| 1140 appendList(&sb, v->nColumn, v->azContentColumn); |
| 1141 append(&sb, ") values (?"); |
| 1142 for(i=0; i<v->nColumn; ++i) |
| 1143 append(&sb, ", ?"); |
| 1144 append(&sb, ")"); |
| 1145 return sb.s; |
| 1146 } |
| 1147 |
| 1148 /* Return a dynamically generated statement of the form |
| 1149 * update %_content set [col_0] = ?, [col_1] = ?, ... |
| 1150 * where rowid = ? |
| 1151 */ |
| 1152 static const char *contentUpdateStatement(fulltext_vtab *v){ |
| 1153 StringBuffer sb; |
| 1154 int i; |
| 1155 |
| 1156 initStringBuffer(&sb); |
| 1157 append(&sb, "update %_content set "); |
| 1158 for(i=0; i<v->nColumn; ++i) { |
| 1159 if( i>0 ){ |
| 1160 append(&sb, ", "); |
| 1161 } |
| 1162 append(&sb, v->azContentColumn[i]); |
| 1163 append(&sb, " = ?"); |
| 1164 } |
| 1165 append(&sb, " where rowid = ?"); |
| 1166 return sb.s; |
| 1167 } |
| 1168 |
| 1169 /* Puts a freshly-prepared statement determined by iStmt in *ppStmt. |
| 1170 ** If the indicated statement has never been prepared, it is prepared |
| 1171 ** and cached, otherwise the cached version is reset. |
| 1172 */ |
| 1173 static int sql_get_statement(fulltext_vtab *v, fulltext_statement iStmt, |
| 1174 sqlite3_stmt **ppStmt){ |
| 1175 assert( iStmt<MAX_STMT ); |
| 1176 if( v->pFulltextStatements[iStmt]==NULL ){ |
| 1177 const char *zStmt; |
| 1178 int rc; |
| 1179 switch( iStmt ){ |
| 1180 case CONTENT_INSERT_STMT: |
| 1181 zStmt = contentInsertStatement(v); break; |
| 1182 case CONTENT_UPDATE_STMT: |
| 1183 zStmt = contentUpdateStatement(v); break; |
| 1184 default: |
| 1185 zStmt = fulltext_zStatement[iStmt]; |
| 1186 } |
| 1187 rc = sql_prepare(v->db, v->zDb, v->zName, &v->pFulltextStatements[iStmt], |
| 1188 zStmt); |
| 1189 if( zStmt != fulltext_zStatement[iStmt]) free((void *) zStmt); |
| 1190 if( rc!=SQLITE_OK ) return rc; |
| 1191 } else { |
| 1192 int rc = sqlite3_reset(v->pFulltextStatements[iStmt]); |
| 1193 if( rc!=SQLITE_OK ) return rc; |
| 1194 } |
| 1195 |
| 1196 *ppStmt = v->pFulltextStatements[iStmt]; |
| 1197 return SQLITE_OK; |
| 1198 } |
| 1199 |
| 1200 /* Step the indicated statement, handling errors SQLITE_BUSY (by |
| 1201 ** retrying) and SQLITE_SCHEMA (by re-preparing and transferring |
| 1202 ** bindings to the new statement). |
| 1203 ** TODO(adam): We should extend this function so that it can work with |
| 1204 ** statements declared locally, not only globally cached statements. |
| 1205 */ |
| 1206 static int sql_step_statement(fulltext_vtab *v, fulltext_statement iStmt, |
| 1207 sqlite3_stmt **ppStmt){ |
| 1208 int rc; |
| 1209 sqlite3_stmt *s = *ppStmt; |
| 1210 assert( iStmt<MAX_STMT ); |
| 1211 assert( s==v->pFulltextStatements[iStmt] ); |
| 1212 |
| 1213 while( (rc=sqlite3_step(s))!=SQLITE_DONE && rc!=SQLITE_ROW ){ |
| 1214 if( rc==SQLITE_BUSY ) continue; |
| 1215 if( rc!=SQLITE_ERROR ) return rc; |
| 1216 |
| 1217 /* If an SQLITE_SCHEMA error has occurred, then finalizing this |
| 1218 * statement is going to delete the fulltext_vtab structure. If |
| 1219 * the statement just executed is in the pFulltextStatements[] |
| 1220 * array, it will be finalized twice. So remove it before |
| 1221 * calling sqlite3_finalize(). |
| 1222 */ |
| 1223 v->pFulltextStatements[iStmt] = NULL; |
| 1224 rc = sqlite3_finalize(s); |
| 1225 break; |
| 1226 } |
| 1227 return rc; |
| 1228 |
| 1229 err: |
| 1230 sqlite3_finalize(s); |
| 1231 return rc; |
| 1232 } |
| 1233 |
| 1234 /* Like sql_step_statement(), but convert SQLITE_DONE to SQLITE_OK. |
| 1235 ** Useful for statements like UPDATE, where we expect no results. |
| 1236 */ |
| 1237 static int sql_single_step_statement(fulltext_vtab *v, |
| 1238 fulltext_statement iStmt, |
| 1239 sqlite3_stmt **ppStmt){ |
| 1240 int rc = sql_step_statement(v, iStmt, ppStmt); |
| 1241 return (rc==SQLITE_DONE) ? SQLITE_OK : rc; |
| 1242 } |
| 1243 |
| 1244 /* insert into %_content (rowid, ...) values ([rowid], [pValues]) */ |
| 1245 static int content_insert(fulltext_vtab *v, sqlite3_value *rowid, |
| 1246 sqlite3_value **pValues){ |
| 1247 sqlite3_stmt *s; |
| 1248 int i; |
| 1249 int rc = sql_get_statement(v, CONTENT_INSERT_STMT, &s); |
| 1250 if( rc!=SQLITE_OK ) return rc; |
| 1251 |
| 1252 rc = sqlite3_bind_value(s, 1, rowid); |
| 1253 if( rc!=SQLITE_OK ) return rc; |
| 1254 |
| 1255 for(i=0; i<v->nColumn; ++i){ |
| 1256 rc = sqlite3_bind_value(s, 2+i, pValues[i]); |
| 1257 if( rc!=SQLITE_OK ) return rc; |
| 1258 } |
| 1259 |
| 1260 return sql_single_step_statement(v, CONTENT_INSERT_STMT, &s); |
| 1261 } |
| 1262 |
| 1263 /* update %_content set col0 = pValues[0], col1 = pValues[1], ... |
| 1264 * where rowid = [iRowid] */ |
| 1265 static int content_update(fulltext_vtab *v, sqlite3_value **pValues, |
| 1266 sqlite_int64 iRowid){ |
| 1267 sqlite3_stmt *s; |
| 1268 int i; |
| 1269 int rc = sql_get_statement(v, CONTENT_UPDATE_STMT, &s); |
| 1270 if( rc!=SQLITE_OK ) return rc; |
| 1271 |
| 1272 for(i=0; i<v->nColumn; ++i){ |
| 1273 rc = sqlite3_bind_value(s, 1+i, pValues[i]); |
| 1274 if( rc!=SQLITE_OK ) return rc; |
| 1275 } |
| 1276 |
| 1277 rc = sqlite3_bind_int64(s, 1+v->nColumn, iRowid); |
| 1278 if( rc!=SQLITE_OK ) return rc; |
| 1279 |
| 1280 return sql_single_step_statement(v, CONTENT_UPDATE_STMT, &s); |
| 1281 } |
| 1282 |
| 1283 static void freeStringArray(int nString, const char **pString){ |
| 1284 int i; |
| 1285 |
| 1286 for (i=0 ; i < nString ; ++i) { |
| 1287 if( pString[i]!=NULL ) free((void *) pString[i]); |
| 1288 } |
| 1289 free((void *) pString); |
| 1290 } |
| 1291 |
| 1292 /* select * from %_content where rowid = [iRow] |
| 1293 * The caller must delete the returned array and all strings in it. |
| 1294 * null fields will be NULL in the returned array. |
| 1295 * |
| 1296 * TODO: Perhaps we should return pointer/length strings here for consistency |
| 1297 * with other code which uses pointer/length. */ |
| 1298 static int content_select(fulltext_vtab *v, sqlite_int64 iRow, |
| 1299 const char ***pValues){ |
| 1300 sqlite3_stmt *s; |
| 1301 const char **values; |
| 1302 int i; |
| 1303 int rc; |
| 1304 |
| 1305 *pValues = NULL; |
| 1306 |
| 1307 rc = sql_get_statement(v, CONTENT_SELECT_STMT, &s); |
| 1308 if( rc!=SQLITE_OK ) return rc; |
| 1309 |
| 1310 rc = sqlite3_bind_int64(s, 1, iRow); |
| 1311 if( rc!=SQLITE_OK ) return rc; |
| 1312 |
| 1313 rc = sql_step_statement(v, CONTENT_SELECT_STMT, &s); |
| 1314 if( rc!=SQLITE_ROW ) return rc; |
| 1315 |
| 1316 values = (const char **) malloc(v->nColumn * sizeof(const char *)); |
| 1317 for(i=0; i<v->nColumn; ++i){ |
| 1318 if( sqlite3_column_type(s, i)==SQLITE_NULL ){ |
| 1319 values[i] = NULL; |
| 1320 }else{ |
| 1321 values[i] = string_dup((char*)sqlite3_column_text(s, i)); |
| 1322 } |
| 1323 } |
| 1324 |
| 1325 /* We expect only one row. We must execute another sqlite3_step() |
| 1326 * to complete the iteration; otherwise the table will remain locked. */ |
| 1327 rc = sqlite3_step(s); |
| 1328 if( rc==SQLITE_DONE ){ |
| 1329 *pValues = values; |
| 1330 return SQLITE_OK; |
| 1331 } |
| 1332 |
| 1333 freeStringArray(v->nColumn, values); |
| 1334 return rc; |
| 1335 } |
| 1336 |
| 1337 /* delete from %_content where rowid = [iRow ] */ |
| 1338 static int content_delete(fulltext_vtab *v, sqlite_int64 iRow){ |
| 1339 sqlite3_stmt *s; |
| 1340 int rc = sql_get_statement(v, CONTENT_DELETE_STMT, &s); |
| 1341 if( rc!=SQLITE_OK ) return rc; |
| 1342 |
| 1343 rc = sqlite3_bind_int64(s, 1, iRow); |
| 1344 if( rc!=SQLITE_OK ) return rc; |
| 1345 |
| 1346 return sql_single_step_statement(v, CONTENT_DELETE_STMT, &s); |
| 1347 } |
| 1348 |
| 1349 /* select rowid, doclist from %_term |
| 1350 * where term = [pTerm] and segment = [iSegment] |
| 1351 * If found, returns SQLITE_ROW; the caller must free the |
| 1352 * returned doclist. If no rows found, returns SQLITE_DONE. */ |
| 1353 static int term_select(fulltext_vtab *v, const char *pTerm, int nTerm, |
| 1354 int iSegment, |
| 1355 sqlite_int64 *rowid, DocList *out){ |
| 1356 sqlite3_stmt *s; |
| 1357 int rc = sql_get_statement(v, TERM_SELECT_STMT, &s); |
| 1358 if( rc!=SQLITE_OK ) return rc; |
| 1359 |
| 1360 rc = sqlite3_bind_text(s, 1, pTerm, nTerm, SQLITE_STATIC); |
| 1361 if( rc!=SQLITE_OK ) return rc; |
| 1362 |
| 1363 rc = sqlite3_bind_int(s, 2, iSegment); |
| 1364 if( rc!=SQLITE_OK ) return rc; |
| 1365 |
| 1366 rc = sql_step_statement(v, TERM_SELECT_STMT, &s); |
| 1367 if( rc!=SQLITE_ROW ) return rc; |
| 1368 |
| 1369 *rowid = sqlite3_column_int64(s, 0); |
| 1370 docListInit(out, DL_DEFAULT, |
| 1371 sqlite3_column_blob(s, 1), sqlite3_column_bytes(s, 1)); |
| 1372 |
| 1373 /* We expect only one row. We must execute another sqlite3_step() |
| 1374 * to complete the iteration; otherwise the table will remain locked. */ |
| 1375 rc = sqlite3_step(s); |
| 1376 return rc==SQLITE_DONE ? SQLITE_ROW : rc; |
| 1377 } |
| 1378 |
| 1379 /* Load the segment doclists for term pTerm and merge them in |
| 1380 ** appropriate order into out. Returns SQLITE_OK if successful. If |
| 1381 ** there are no segments for pTerm, successfully returns an empty |
| 1382 ** doclist in out. |
| 1383 ** |
| 1384 ** Each document consists of 1 or more "columns". The number of |
| 1385 ** columns is v->nColumn. If iColumn==v->nColumn, then return |
| 1386 ** position information about all columns. If iColumn<v->nColumn, |
| 1387 ** then only return position information about the iColumn-th column |
| 1388 ** (where the first column is 0). |
| 1389 */ |
| 1390 static int term_select_all( |
| 1391 fulltext_vtab *v, /* The fulltext index we are querying against */ |
| 1392 int iColumn, /* If <nColumn, only look at the iColumn-th column */ |
| 1393 const char *pTerm, /* The term whose posting lists we want */ |
| 1394 int nTerm, /* Number of bytes in pTerm */ |
| 1395 DocList *out /* Write the resulting doclist here */ |
| 1396 ){ |
| 1397 DocList doclist; |
| 1398 sqlite3_stmt *s; |
| 1399 int rc = sql_get_statement(v, TERM_SELECT_ALL_STMT, &s); |
| 1400 if( rc!=SQLITE_OK ) return rc; |
| 1401 |
| 1402 rc = sqlite3_bind_text(s, 1, pTerm, nTerm, SQLITE_STATIC); |
| 1403 if( rc!=SQLITE_OK ) return rc; |
| 1404 |
| 1405 docListInit(&doclist, DL_DEFAULT, 0, 0); |
| 1406 |
| 1407 /* TODO(shess) Handle schema and busy errors. */ |
| 1408 while( (rc=sql_step_statement(v, TERM_SELECT_ALL_STMT, &s))==SQLITE_ROW ){ |
| 1409 DocList old; |
| 1410 |
| 1411 /* TODO(shess) If we processed doclists from oldest to newest, we |
| 1412 ** could skip the malloc() involved with the following call. For |
| 1413 ** now, I'd rather keep this logic similar to index_insert_term(). |
| 1414 ** We could additionally drop elements when we see deletes, but |
| 1415 ** that would require a distinct version of docListAccumulate(). |
| 1416 */ |
| 1417 docListInit(&old, DL_DEFAULT, |
| 1418 sqlite3_column_blob(s, 0), sqlite3_column_bytes(s, 0)); |
| 1419 |
| 1420 if( iColumn<v->nColumn ){ /* querying a single column */ |
| 1421 docListRestrictColumn(&old, iColumn); |
| 1422 } |
| 1423 |
| 1424 /* doclist contains the newer data, so write it over old. Then |
| 1425 ** steal accumulated result for doclist. |
| 1426 */ |
| 1427 docListAccumulate(&old, &doclist); |
| 1428 docListDestroy(&doclist); |
| 1429 doclist = old; |
| 1430 } |
| 1431 if( rc!=SQLITE_DONE ){ |
| 1432 docListDestroy(&doclist); |
| 1433 return rc; |
| 1434 } |
| 1435 |
| 1436 docListDiscardEmpty(&doclist); |
| 1437 *out = doclist; |
| 1438 return SQLITE_OK; |
| 1439 } |
| 1440 |
| 1441 /* insert into %_term (rowid, term, segment, doclist) |
| 1442 values ([piRowid], [pTerm], [iSegment], [doclist]) |
| 1443 ** Lets sqlite select rowid if piRowid is NULL, else uses *piRowid. |
| 1444 ** |
| 1445 ** NOTE(shess) piRowid is IN, with values of "space of int64" plus |
| 1446 ** null, it is not used to pass data back to the caller. |
| 1447 */ |
| 1448 static int term_insert(fulltext_vtab *v, sqlite_int64 *piRowid, |
| 1449 const char *pTerm, int nTerm, |
| 1450 int iSegment, DocList *doclist){ |
| 1451 sqlite3_stmt *s; |
| 1452 int rc = sql_get_statement(v, TERM_INSERT_STMT, &s); |
| 1453 if( rc!=SQLITE_OK ) return rc; |
| 1454 |
| 1455 if( piRowid==NULL ){ |
| 1456 rc = sqlite3_bind_null(s, 1); |
| 1457 }else{ |
| 1458 rc = sqlite3_bind_int64(s, 1, *piRowid); |
| 1459 } |
| 1460 if( rc!=SQLITE_OK ) return rc; |
| 1461 |
| 1462 rc = sqlite3_bind_text(s, 2, pTerm, nTerm, SQLITE_STATIC); |
| 1463 if( rc!=SQLITE_OK ) return rc; |
| 1464 |
| 1465 rc = sqlite3_bind_int(s, 3, iSegment); |
| 1466 if( rc!=SQLITE_OK ) return rc; |
| 1467 |
| 1468 rc = sqlite3_bind_blob(s, 4, doclist->pData, doclist->nData, SQLITE_STATIC); |
| 1469 if( rc!=SQLITE_OK ) return rc; |
| 1470 |
| 1471 return sql_single_step_statement(v, TERM_INSERT_STMT, &s); |
| 1472 } |
| 1473 |
| 1474 /* update %_term set doclist = [doclist] where rowid = [rowid] */ |
| 1475 static int term_update(fulltext_vtab *v, sqlite_int64 rowid, |
| 1476 DocList *doclist){ |
| 1477 sqlite3_stmt *s; |
| 1478 int rc = sql_get_statement(v, TERM_UPDATE_STMT, &s); |
| 1479 if( rc!=SQLITE_OK ) return rc; |
| 1480 |
| 1481 rc = sqlite3_bind_blob(s, 1, doclist->pData, doclist->nData, SQLITE_STATIC); |
| 1482 if( rc!=SQLITE_OK ) return rc; |
| 1483 |
| 1484 rc = sqlite3_bind_int64(s, 2, rowid); |
| 1485 if( rc!=SQLITE_OK ) return rc; |
| 1486 |
| 1487 return sql_single_step_statement(v, TERM_UPDATE_STMT, &s); |
| 1488 } |
| 1489 |
| 1490 static int term_delete(fulltext_vtab *v, sqlite_int64 rowid){ |
| 1491 sqlite3_stmt *s; |
| 1492 int rc = sql_get_statement(v, TERM_DELETE_STMT, &s); |
| 1493 if( rc!=SQLITE_OK ) return rc; |
| 1494 |
| 1495 rc = sqlite3_bind_int64(s, 1, rowid); |
| 1496 if( rc!=SQLITE_OK ) return rc; |
| 1497 |
| 1498 return sql_single_step_statement(v, TERM_DELETE_STMT, &s); |
| 1499 } |
| 1500 |
| 1501 /* |
| 1502 ** Free the memory used to contain a fulltext_vtab structure. |
| 1503 */ |
| 1504 static void fulltext_vtab_destroy(fulltext_vtab *v){ |
| 1505 int iStmt, i; |
| 1506 |
| 1507 TRACE(("FTS1 Destroy %p\n", v)); |
| 1508 for( iStmt=0; iStmt<MAX_STMT; iStmt++ ){ |
| 1509 if( v->pFulltextStatements[iStmt]!=NULL ){ |
| 1510 sqlite3_finalize(v->pFulltextStatements[iStmt]); |
| 1511 v->pFulltextStatements[iStmt] = NULL; |
| 1512 } |
| 1513 } |
| 1514 |
| 1515 if( v->pTokenizer!=NULL ){ |
| 1516 v->pTokenizer->pModule->xDestroy(v->pTokenizer); |
| 1517 v->pTokenizer = NULL; |
| 1518 } |
| 1519 |
| 1520 free(v->azColumn); |
| 1521 for(i = 0; i < v->nColumn; ++i) { |
| 1522 sqlite3_free(v->azContentColumn[i]); |
| 1523 } |
| 1524 free(v->azContentColumn); |
| 1525 free(v); |
| 1526 } |
| 1527 |
| 1528 /* |
| 1529 ** Token types for parsing the arguments to xConnect or xCreate. |
| 1530 */ |
| 1531 #define TOKEN_EOF 0 /* End of file */ |
| 1532 #define TOKEN_SPACE 1 /* Any kind of whitespace */ |
| 1533 #define TOKEN_ID 2 /* An identifier */ |
| 1534 #define TOKEN_STRING 3 /* A string literal */ |
| 1535 #define TOKEN_PUNCT 4 /* A single punctuation character */ |
| 1536 |
| 1537 /* |
| 1538 ** If X is a character that can be used in an identifier then |
| 1539 ** IdChar(X) will be true. Otherwise it is false. |
| 1540 ** |
| 1541 ** For ASCII, any character with the high-order bit set is |
| 1542 ** allowed in an identifier. For 7-bit characters, |
| 1543 ** sqlite3IsIdChar[X] must be 1. |
| 1544 ** |
| 1545 ** Ticket #1066. the SQL standard does not allow '$' in the |
| 1546 ** middle of identfiers. But many SQL implementations do. |
| 1547 ** SQLite will allow '$' in identifiers for compatibility. |
| 1548 ** But the feature is undocumented. |
| 1549 */ |
| 1550 static const char isIdChar[] = { |
| 1551 /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */ |
| 1552 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */ |
| 1553 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */ |
| 1554 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */ |
| 1555 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */ |
| 1556 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */ |
| 1557 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */ |
| 1558 }; |
| 1559 #define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && isIdChar[c-0x20])) |
| 1560 |
| 1561 |
| 1562 /* |
| 1563 ** Return the length of the token that begins at z[0]. |
| 1564 ** Store the token type in *tokenType before returning. |
| 1565 */ |
| 1566 static int getToken(const char *z, int *tokenType){ |
| 1567 int i, c; |
| 1568 switch( *z ){ |
| 1569 case 0: { |
| 1570 *tokenType = TOKEN_EOF; |
| 1571 return 0; |
| 1572 } |
| 1573 case ' ': case '\t': case '\n': case '\f': case '\r': { |
| 1574 for(i=1; safe_isspace(z[i]); i++){} |
| 1575 *tokenType = TOKEN_SPACE; |
| 1576 return i; |
| 1577 } |
| 1578 case '`': |
| 1579 case '\'': |
| 1580 case '"': { |
| 1581 int delim = z[0]; |
| 1582 for(i=1; (c=z[i])!=0; i++){ |
| 1583 if( c==delim ){ |
| 1584 if( z[i+1]==delim ){ |
| 1585 i++; |
| 1586 }else{ |
| 1587 break; |
| 1588 } |
| 1589 } |
| 1590 } |
| 1591 *tokenType = TOKEN_STRING; |
| 1592 return i + (c!=0); |
| 1593 } |
| 1594 case '[': { |
| 1595 for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){} |
| 1596 *tokenType = TOKEN_ID; |
| 1597 return i; |
| 1598 } |
| 1599 default: { |
| 1600 if( !IdChar(*z) ){ |
| 1601 break; |
| 1602 } |
| 1603 for(i=1; IdChar(z[i]); i++){} |
| 1604 *tokenType = TOKEN_ID; |
| 1605 return i; |
| 1606 } |
| 1607 } |
| 1608 *tokenType = TOKEN_PUNCT; |
| 1609 return 1; |
| 1610 } |
| 1611 |
| 1612 /* |
| 1613 ** A token extracted from a string is an instance of the following |
| 1614 ** structure. |
| 1615 */ |
| 1616 typedef struct Token { |
| 1617 const char *z; /* Pointer to token text. Not '\000' terminated */ |
| 1618 short int n; /* Length of the token text in bytes. */ |
| 1619 } Token; |
| 1620 |
| 1621 /* |
| 1622 ** Given a input string (which is really one of the argv[] parameters |
| 1623 ** passed into xConnect or xCreate) split the string up into tokens. |
| 1624 ** Return an array of pointers to '\000' terminated strings, one string |
| 1625 ** for each non-whitespace token. |
| 1626 ** |
| 1627 ** The returned array is terminated by a single NULL pointer. |
| 1628 ** |
| 1629 ** Space to hold the returned array is obtained from a single |
| 1630 ** malloc and should be freed by passing the return value to free(). |
| 1631 ** The individual strings within the token list are all a part of |
| 1632 ** the single memory allocation and will all be freed at once. |
| 1633 */ |
| 1634 static char **tokenizeString(const char *z, int *pnToken){ |
| 1635 int nToken = 0; |
| 1636 Token *aToken = malloc( strlen(z) * sizeof(aToken[0]) ); |
| 1637 int n = 1; |
| 1638 int e, i; |
| 1639 int totalSize = 0; |
| 1640 char **azToken; |
| 1641 char *zCopy; |
| 1642 while( n>0 ){ |
| 1643 n = getToken(z, &e); |
| 1644 if( e!=TOKEN_SPACE ){ |
| 1645 aToken[nToken].z = z; |
| 1646 aToken[nToken].n = n; |
| 1647 nToken++; |
| 1648 totalSize += n+1; |
| 1649 } |
| 1650 z += n; |
| 1651 } |
| 1652 azToken = (char**)malloc( nToken*sizeof(char*) + totalSize ); |
| 1653 zCopy = (char*)&azToken[nToken]; |
| 1654 nToken--; |
| 1655 for(i=0; i<nToken; i++){ |
| 1656 azToken[i] = zCopy; |
| 1657 n = aToken[i].n; |
| 1658 memcpy(zCopy, aToken[i].z, n); |
| 1659 zCopy[n] = 0; |
| 1660 zCopy += n+1; |
| 1661 } |
| 1662 azToken[nToken] = 0; |
| 1663 free(aToken); |
| 1664 *pnToken = nToken; |
| 1665 return azToken; |
| 1666 } |
| 1667 |
| 1668 /* |
| 1669 ** Convert an SQL-style quoted string into a normal string by removing |
| 1670 ** the quote characters. The conversion is done in-place. If the |
| 1671 ** input does not begin with a quote character, then this routine |
| 1672 ** is a no-op. |
| 1673 ** |
| 1674 ** Examples: |
| 1675 ** |
| 1676 ** "abc" becomes abc |
| 1677 ** 'xyz' becomes xyz |
| 1678 ** [pqr] becomes pqr |
| 1679 ** `mno` becomes mno |
| 1680 */ |
| 1681 static void dequoteString(char *z){ |
| 1682 int quote; |
| 1683 int i, j; |
| 1684 if( z==0 ) return; |
| 1685 quote = z[0]; |
| 1686 switch( quote ){ |
| 1687 case '\'': break; |
| 1688 case '"': break; |
| 1689 case '`': break; /* For MySQL compatibility */ |
| 1690 case '[': quote = ']'; break; /* For MS SqlServer compatibility */ |
| 1691 default: return; |
| 1692 } |
| 1693 for(i=1, j=0; z[i]; i++){ |
| 1694 if( z[i]==quote ){ |
| 1695 if( z[i+1]==quote ){ |
| 1696 z[j++] = quote; |
| 1697 i++; |
| 1698 }else{ |
| 1699 z[j++] = 0; |
| 1700 break; |
| 1701 } |
| 1702 }else{ |
| 1703 z[j++] = z[i]; |
| 1704 } |
| 1705 } |
| 1706 } |
| 1707 |
| 1708 /* |
| 1709 ** The input azIn is a NULL-terminated list of tokens. Remove the first |
| 1710 ** token and all punctuation tokens. Remove the quotes from |
| 1711 ** around string literal tokens. |
| 1712 ** |
| 1713 ** Example: |
| 1714 ** |
| 1715 ** input: tokenize chinese ( 'simplifed' , 'mixed' ) |
| 1716 ** output: chinese simplifed mixed |
| 1717 ** |
| 1718 ** Another example: |
| 1719 ** |
| 1720 ** input: delimiters ( '[' , ']' , '...' ) |
| 1721 ** output: [ ] ... |
| 1722 */ |
| 1723 static void tokenListToIdList(char **azIn){ |
| 1724 int i, j; |
| 1725 if( azIn ){ |
| 1726 for(i=0, j=-1; azIn[i]; i++){ |
| 1727 if( safe_isalnum(azIn[i][0]) || azIn[i][1] ){ |
| 1728 dequoteString(azIn[i]); |
| 1729 if( j>=0 ){ |
| 1730 azIn[j] = azIn[i]; |
| 1731 } |
| 1732 j++; |
| 1733 } |
| 1734 } |
| 1735 azIn[j] = 0; |
| 1736 } |
| 1737 } |
| 1738 |
| 1739 |
| 1740 /* |
| 1741 ** Find the first alphanumeric token in the string zIn. Null-terminate |
| 1742 ** this token. Remove any quotation marks. And return a pointer to |
| 1743 ** the result. |
| 1744 */ |
| 1745 static char *firstToken(char *zIn, char **pzTail){ |
| 1746 int n, ttype; |
| 1747 while(1){ |
| 1748 n = getToken(zIn, &ttype); |
| 1749 if( ttype==TOKEN_SPACE ){ |
| 1750 zIn += n; |
| 1751 }else if( ttype==TOKEN_EOF ){ |
| 1752 *pzTail = zIn; |
| 1753 return 0; |
| 1754 }else{ |
| 1755 zIn[n] = 0; |
| 1756 *pzTail = &zIn[1]; |
| 1757 dequoteString(zIn); |
| 1758 return zIn; |
| 1759 } |
| 1760 } |
| 1761 /*NOTREACHED*/ |
| 1762 } |
| 1763 |
| 1764 /* Return true if... |
| 1765 ** |
| 1766 ** * s begins with the string t, ignoring case |
| 1767 ** * s is longer than t |
| 1768 ** * The first character of s beyond t is not a alphanumeric |
| 1769 ** |
| 1770 ** Ignore leading space in *s. |
| 1771 ** |
| 1772 ** To put it another way, return true if the first token of |
| 1773 ** s[] is t[]. |
| 1774 */ |
| 1775 static int startsWith(const char *s, const char *t){ |
| 1776 while( safe_isspace(*s) ){ s++; } |
| 1777 while( *t ){ |
| 1778 if( safe_tolower(*s++)!=safe_tolower(*t++) ) return 0; |
| 1779 } |
| 1780 return *s!='_' && !safe_isalnum(*s); |
| 1781 } |
| 1782 |
| 1783 /* |
| 1784 ** An instance of this structure defines the "spec" of a |
| 1785 ** full text index. This structure is populated by parseSpec |
| 1786 ** and use by fulltextConnect and fulltextCreate. |
| 1787 */ |
| 1788 typedef struct TableSpec { |
| 1789 const char *zDb; /* Logical database name */ |
| 1790 const char *zName; /* Name of the full-text index */ |
| 1791 int nColumn; /* Number of columns to be indexed */ |
| 1792 char **azColumn; /* Original names of columns to be indexed */ |
| 1793 char **azContentColumn; /* Column names for %_content */ |
| 1794 char **azTokenizer; /* Name of tokenizer and its arguments */ |
| 1795 } TableSpec; |
| 1796 |
| 1797 /* |
| 1798 ** Reclaim all of the memory used by a TableSpec |
| 1799 */ |
| 1800 static void clearTableSpec(TableSpec *p) { |
| 1801 free(p->azColumn); |
| 1802 free(p->azContentColumn); |
| 1803 free(p->azTokenizer); |
| 1804 } |
| 1805 |
| 1806 /* Parse a CREATE VIRTUAL TABLE statement, which looks like this: |
| 1807 * |
| 1808 * CREATE VIRTUAL TABLE email |
| 1809 * USING fts1(subject, body, tokenize mytokenizer(myarg)) |
| 1810 * |
| 1811 * We return parsed information in a TableSpec structure. |
| 1812 * |
| 1813 */ |
| 1814 static int parseSpec(TableSpec *pSpec, int argc, const char *const*argv, |
| 1815 char**pzErr){ |
| 1816 int i, n; |
| 1817 char *z, *zDummy; |
| 1818 char **azArg; |
| 1819 const char *zTokenizer = 0; /* argv[] entry describing the tokenizer */ |
| 1820 |
| 1821 assert( argc>=3 ); |
| 1822 /* Current interface: |
| 1823 ** argv[0] - module name |
| 1824 ** argv[1] - database name |
| 1825 ** argv[2] - table name |
| 1826 ** argv[3..] - columns, optionally followed by tokenizer specification |
| 1827 ** and snippet delimiters specification. |
| 1828 */ |
| 1829 |
| 1830 /* Make a copy of the complete argv[][] array in a single allocation. |
| 1831 ** The argv[][] array is read-only and transient. We can write to the |
| 1832 ** copy in order to modify things and the copy is persistent. |
| 1833 */ |
| 1834 memset(pSpec, 0, sizeof(*pSpec)); |
| 1835 for(i=n=0; i<argc; i++){ |
| 1836 n += strlen(argv[i]) + 1; |
| 1837 } |
| 1838 azArg = malloc( sizeof(char*)*argc + n ); |
| 1839 if( azArg==0 ){ |
| 1840 return SQLITE_NOMEM; |
| 1841 } |
| 1842 z = (char*)&azArg[argc]; |
| 1843 for(i=0; i<argc; i++){ |
| 1844 azArg[i] = z; |
| 1845 strcpy(z, argv[i]); |
| 1846 z += strlen(z)+1; |
| 1847 } |
| 1848 |
| 1849 /* Identify the column names and the tokenizer and delimiter arguments |
| 1850 ** in the argv[][] array. |
| 1851 */ |
| 1852 pSpec->zDb = azArg[1]; |
| 1853 pSpec->zName = azArg[2]; |
| 1854 pSpec->nColumn = 0; |
| 1855 pSpec->azColumn = azArg; |
| 1856 zTokenizer = "tokenize simple"; |
| 1857 for(i=3; i<argc; ++i){ |
| 1858 if( startsWith(azArg[i],"tokenize") ){ |
| 1859 zTokenizer = azArg[i]; |
| 1860 }else{ |
| 1861 z = azArg[pSpec->nColumn] = firstToken(azArg[i], &zDummy); |
| 1862 pSpec->nColumn++; |
| 1863 } |
| 1864 } |
| 1865 if( pSpec->nColumn==0 ){ |
| 1866 azArg[0] = "content"; |
| 1867 pSpec->nColumn = 1; |
| 1868 } |
| 1869 |
| 1870 /* |
| 1871 ** Construct the list of content column names. |
| 1872 ** |
| 1873 ** Each content column name will be of the form cNNAAAA |
| 1874 ** where NN is the column number and AAAA is the sanitized |
| 1875 ** column name. "sanitized" means that special characters are |
| 1876 ** converted to "_". The cNN prefix guarantees that all column |
| 1877 ** names are unique. |
| 1878 ** |
| 1879 ** The AAAA suffix is not strictly necessary. It is included |
| 1880 ** for the convenience of people who might examine the generated |
| 1881 ** %_content table and wonder what the columns are used for. |
| 1882 */ |
| 1883 pSpec->azContentColumn = malloc( pSpec->nColumn * sizeof(char *) ); |
| 1884 if( pSpec->azContentColumn==0 ){ |
| 1885 clearTableSpec(pSpec); |
| 1886 return SQLITE_NOMEM; |
| 1887 } |
| 1888 for(i=0; i<pSpec->nColumn; i++){ |
| 1889 char *p; |
| 1890 pSpec->azContentColumn[i] = sqlite3_mprintf("c%d%s", i, azArg[i]); |
| 1891 for (p = pSpec->azContentColumn[i]; *p ; ++p) { |
| 1892 if( !safe_isalnum(*p) ) *p = '_'; |
| 1893 } |
| 1894 } |
| 1895 |
| 1896 /* |
| 1897 ** Parse the tokenizer specification string. |
| 1898 */ |
| 1899 pSpec->azTokenizer = tokenizeString(zTokenizer, &n); |
| 1900 tokenListToIdList(pSpec->azTokenizer); |
| 1901 |
| 1902 return SQLITE_OK; |
| 1903 } |
| 1904 |
| 1905 /* |
| 1906 ** Generate a CREATE TABLE statement that describes the schema of |
| 1907 ** the virtual table. Return a pointer to this schema string. |
| 1908 ** |
| 1909 ** Space is obtained from sqlite3_mprintf() and should be freed |
| 1910 ** using sqlite3_free(). |
| 1911 */ |
| 1912 static char *fulltextSchema( |
| 1913 int nColumn, /* Number of columns */ |
| 1914 const char *const* azColumn, /* List of columns */ |
| 1915 const char *zTableName /* Name of the table */ |
| 1916 ){ |
| 1917 int i; |
| 1918 char *zSchema, *zNext; |
| 1919 const char *zSep = "("; |
| 1920 zSchema = sqlite3_mprintf("CREATE TABLE x"); |
| 1921 for(i=0; i<nColumn; i++){ |
| 1922 zNext = sqlite3_mprintf("%s%s%Q", zSchema, zSep, azColumn[i]); |
| 1923 sqlite3_free(zSchema); |
| 1924 zSchema = zNext; |
| 1925 zSep = ","; |
| 1926 } |
| 1927 zNext = sqlite3_mprintf("%s,%Q)", zSchema, zTableName); |
| 1928 sqlite3_free(zSchema); |
| 1929 return zNext; |
| 1930 } |
| 1931 |
| 1932 /* |
| 1933 ** Build a new sqlite3_vtab structure that will describe the |
| 1934 ** fulltext index defined by spec. |
| 1935 */ |
| 1936 static int constructVtab( |
| 1937 sqlite3 *db, /* The SQLite database connection */ |
| 1938 TableSpec *spec, /* Parsed spec information from parseSpec() */ |
| 1939 sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */ |
| 1940 char **pzErr /* Write any error message here */ |
| 1941 ){ |
| 1942 int rc; |
| 1943 int n; |
| 1944 fulltext_vtab *v = 0; |
| 1945 const sqlite3_tokenizer_module *m = NULL; |
| 1946 char *schema; |
| 1947 |
| 1948 v = (fulltext_vtab *) malloc(sizeof(fulltext_vtab)); |
| 1949 if( v==0 ) return SQLITE_NOMEM; |
| 1950 memset(v, 0, sizeof(*v)); |
| 1951 /* sqlite will initialize v->base */ |
| 1952 v->db = db; |
| 1953 v->zDb = spec->zDb; /* Freed when azColumn is freed */ |
| 1954 v->zName = spec->zName; /* Freed when azColumn is freed */ |
| 1955 v->nColumn = spec->nColumn; |
| 1956 v->azContentColumn = spec->azContentColumn; |
| 1957 spec->azContentColumn = 0; |
| 1958 v->azColumn = spec->azColumn; |
| 1959 spec->azColumn = 0; |
| 1960 |
| 1961 if( spec->azTokenizer==0 ){ |
| 1962 return SQLITE_NOMEM; |
| 1963 } |
| 1964 /* TODO(shess) For now, add new tokenizers as else if clauses. */ |
| 1965 if( spec->azTokenizer[0]==0 || startsWith(spec->azTokenizer[0], "simple") ){ |
| 1966 sqlite3Fts1SimpleTokenizerModule(&m); |
| 1967 }else if( startsWith(spec->azTokenizer[0], "porter") ){ |
| 1968 sqlite3Fts1PorterTokenizerModule(&m); |
| 1969 }else{ |
| 1970 *pzErr = sqlite3_mprintf("unknown tokenizer: %s", spec->azTokenizer[0]); |
| 1971 rc = SQLITE_ERROR; |
| 1972 goto err; |
| 1973 } |
| 1974 for(n=0; spec->azTokenizer[n]; n++){} |
| 1975 if( n ){ |
| 1976 rc = m->xCreate(n-1, (const char*const*)&spec->azTokenizer[1], |
| 1977 &v->pTokenizer); |
| 1978 }else{ |
| 1979 rc = m->xCreate(0, 0, &v->pTokenizer); |
| 1980 } |
| 1981 if( rc!=SQLITE_OK ) goto err; |
| 1982 v->pTokenizer->pModule = m; |
| 1983 |
| 1984 /* TODO: verify the existence of backing tables foo_content, foo_term */ |
| 1985 |
| 1986 schema = fulltextSchema(v->nColumn, (const char*const*)v->azColumn, |
| 1987 spec->zName); |
| 1988 rc = sqlite3_declare_vtab(db, schema); |
| 1989 sqlite3_free(schema); |
| 1990 if( rc!=SQLITE_OK ) goto err; |
| 1991 |
| 1992 memset(v->pFulltextStatements, 0, sizeof(v->pFulltextStatements)); |
| 1993 |
| 1994 *ppVTab = &v->base; |
| 1995 TRACE(("FTS1 Connect %p\n", v)); |
| 1996 |
| 1997 return rc; |
| 1998 |
| 1999 err: |
| 2000 fulltext_vtab_destroy(v); |
| 2001 return rc; |
| 2002 } |
| 2003 |
| 2004 static int fulltextConnect( |
| 2005 sqlite3 *db, |
| 2006 void *pAux, |
| 2007 int argc, const char *const*argv, |
| 2008 sqlite3_vtab **ppVTab, |
| 2009 char **pzErr |
| 2010 ){ |
| 2011 TableSpec spec; |
| 2012 int rc = parseSpec(&spec, argc, argv, pzErr); |
| 2013 if( rc!=SQLITE_OK ) return rc; |
| 2014 |
| 2015 rc = constructVtab(db, &spec, ppVTab, pzErr); |
| 2016 clearTableSpec(&spec); |
| 2017 return rc; |
| 2018 } |
| 2019 |
| 2020 /* The %_content table holds the text of each document, with |
| 2021 ** the rowid used as the docid. |
| 2022 ** |
| 2023 ** The %_term table maps each term to a document list blob |
| 2024 ** containing elements sorted by ascending docid, each element |
| 2025 ** encoded as: |
| 2026 ** |
| 2027 ** docid varint-encoded |
| 2028 ** token elements: |
| 2029 ** position+1 varint-encoded as delta from previous position |
| 2030 ** start offset varint-encoded as delta from previous start offset |
| 2031 ** end offset varint-encoded as delta from start offset |
| 2032 ** |
| 2033 ** The sentinel position of 0 indicates the end of the token list. |
| 2034 ** |
| 2035 ** Additionally, doclist blobs are chunked into multiple segments, |
| 2036 ** using segment to order the segments. New elements are added to |
| 2037 ** the segment at segment 0, until it exceeds CHUNK_MAX. Then |
| 2038 ** segment 0 is deleted, and the doclist is inserted at segment 1. |
| 2039 ** If there is already a doclist at segment 1, the segment 0 doclist |
| 2040 ** is merged with it, the segment 1 doclist is deleted, and the |
| 2041 ** merged doclist is inserted at segment 2, repeating those |
| 2042 ** operations until an insert succeeds. |
| 2043 ** |
| 2044 ** Since this structure doesn't allow us to update elements in place |
| 2045 ** in case of deletion or update, these are simply written to |
| 2046 ** segment 0 (with an empty token list in case of deletion), with |
| 2047 ** docListAccumulate() taking care to retain lower-segment |
| 2048 ** information in preference to higher-segment information. |
| 2049 */ |
| 2050 /* TODO(shess) Provide a VACUUM type operation which both removes |
| 2051 ** deleted elements which are no longer necessary, and duplicated |
| 2052 ** elements. I suspect this will probably not be necessary in |
| 2053 ** practice, though. |
| 2054 */ |
| 2055 static int fulltextCreate(sqlite3 *db, void *pAux, |
| 2056 int argc, const char * const *argv, |
| 2057 sqlite3_vtab **ppVTab, char **pzErr){ |
| 2058 int rc; |
| 2059 TableSpec spec; |
| 2060 StringBuffer schema; |
| 2061 TRACE(("FTS1 Create\n")); |
| 2062 |
| 2063 rc = parseSpec(&spec, argc, argv, pzErr); |
| 2064 if( rc!=SQLITE_OK ) return rc; |
| 2065 |
| 2066 initStringBuffer(&schema); |
| 2067 append(&schema, "CREATE TABLE %_content("); |
| 2068 appendList(&schema, spec.nColumn, spec.azContentColumn); |
| 2069 append(&schema, ")"); |
| 2070 rc = sql_exec(db, spec.zDb, spec.zName, schema.s); |
| 2071 free(schema.s); |
| 2072 if( rc!=SQLITE_OK ) goto out; |
| 2073 |
| 2074 rc = sql_exec(db, spec.zDb, spec.zName, |
| 2075 "create table %_term(term text, segment integer, doclist blob, " |
| 2076 "primary key(term, segment));"); |
| 2077 if( rc!=SQLITE_OK ) goto out; |
| 2078 |
| 2079 rc = constructVtab(db, &spec, ppVTab, pzErr); |
| 2080 |
| 2081 out: |
| 2082 clearTableSpec(&spec); |
| 2083 return rc; |
| 2084 } |
| 2085 |
| 2086 /* Decide how to handle an SQL query. */ |
| 2087 static int fulltextBestIndex(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){ |
| 2088 int i; |
| 2089 TRACE(("FTS1 BestIndex\n")); |
| 2090 |
| 2091 for(i=0; i<pInfo->nConstraint; ++i){ |
| 2092 const struct sqlite3_index_constraint *pConstraint; |
| 2093 pConstraint = &pInfo->aConstraint[i]; |
| 2094 if( pConstraint->usable ) { |
| 2095 if( pConstraint->iColumn==-1 && |
| 2096 pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){ |
| 2097 pInfo->idxNum = QUERY_ROWID; /* lookup by rowid */ |
| 2098 TRACE(("FTS1 QUERY_ROWID\n")); |
| 2099 } else if( pConstraint->iColumn>=0 && |
| 2100 pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){ |
| 2101 /* full-text search */ |
| 2102 pInfo->idxNum = QUERY_FULLTEXT + pConstraint->iColumn; |
| 2103 TRACE(("FTS1 QUERY_FULLTEXT %d\n", pConstraint->iColumn)); |
| 2104 } else continue; |
| 2105 |
| 2106 pInfo->aConstraintUsage[i].argvIndex = 1; |
| 2107 pInfo->aConstraintUsage[i].omit = 1; |
| 2108 |
| 2109 /* An arbitrary value for now. |
| 2110 * TODO: Perhaps rowid matches should be considered cheaper than |
| 2111 * full-text searches. */ |
| 2112 pInfo->estimatedCost = 1.0; |
| 2113 |
| 2114 return SQLITE_OK; |
| 2115 } |
| 2116 } |
| 2117 pInfo->idxNum = QUERY_GENERIC; |
| 2118 return SQLITE_OK; |
| 2119 } |
| 2120 |
| 2121 static int fulltextDisconnect(sqlite3_vtab *pVTab){ |
| 2122 TRACE(("FTS1 Disconnect %p\n", pVTab)); |
| 2123 fulltext_vtab_destroy((fulltext_vtab *)pVTab); |
| 2124 return SQLITE_OK; |
| 2125 } |
| 2126 |
| 2127 static int fulltextDestroy(sqlite3_vtab *pVTab){ |
| 2128 fulltext_vtab *v = (fulltext_vtab *)pVTab; |
| 2129 int rc; |
| 2130 |
| 2131 TRACE(("FTS1 Destroy %p\n", pVTab)); |
| 2132 rc = sql_exec(v->db, v->zDb, v->zName, |
| 2133 "drop table if exists %_content;" |
| 2134 "drop table if exists %_term;" |
| 2135 ); |
| 2136 if( rc!=SQLITE_OK ) return rc; |
| 2137 |
| 2138 fulltext_vtab_destroy((fulltext_vtab *)pVTab); |
| 2139 return SQLITE_OK; |
| 2140 } |
| 2141 |
| 2142 static int fulltextOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ |
| 2143 fulltext_cursor *c; |
| 2144 |
| 2145 c = (fulltext_cursor *) calloc(sizeof(fulltext_cursor), 1); |
| 2146 /* sqlite will initialize c->base */ |
| 2147 *ppCursor = &c->base; |
| 2148 TRACE(("FTS1 Open %p: %p\n", pVTab, c)); |
| 2149 |
| 2150 return SQLITE_OK; |
| 2151 } |
| 2152 |
| 2153 |
| 2154 /* Free all of the dynamically allocated memory held by *q |
| 2155 */ |
| 2156 static void queryClear(Query *q){ |
| 2157 int i; |
| 2158 for(i = 0; i < q->nTerms; ++i){ |
| 2159 free(q->pTerms[i].pTerm); |
| 2160 } |
| 2161 free(q->pTerms); |
| 2162 memset(q, 0, sizeof(*q)); |
| 2163 } |
| 2164 |
| 2165 /* Free all of the dynamically allocated memory held by the |
| 2166 ** Snippet |
| 2167 */ |
| 2168 static void snippetClear(Snippet *p){ |
| 2169 free(p->aMatch); |
| 2170 free(p->zOffset); |
| 2171 free(p->zSnippet); |
| 2172 memset(p, 0, sizeof(*p)); |
| 2173 } |
| 2174 /* |
| 2175 ** Append a single entry to the p->aMatch[] log. |
| 2176 */ |
| 2177 static void snippetAppendMatch( |
| 2178 Snippet *p, /* Append the entry to this snippet */ |
| 2179 int iCol, int iTerm, /* The column and query term */ |
| 2180 int iStart, int nByte /* Offset and size of the match */ |
| 2181 ){ |
| 2182 int i; |
| 2183 struct snippetMatch *pMatch; |
| 2184 if( p->nMatch+1>=p->nAlloc ){ |
| 2185 p->nAlloc = p->nAlloc*2 + 10; |
| 2186 p->aMatch = realloc(p->aMatch, p->nAlloc*sizeof(p->aMatch[0]) ); |
| 2187 if( p->aMatch==0 ){ |
| 2188 p->nMatch = 0; |
| 2189 p->nAlloc = 0; |
| 2190 return; |
| 2191 } |
| 2192 } |
| 2193 i = p->nMatch++; |
| 2194 pMatch = &p->aMatch[i]; |
| 2195 pMatch->iCol = iCol; |
| 2196 pMatch->iTerm = iTerm; |
| 2197 pMatch->iStart = iStart; |
| 2198 pMatch->nByte = nByte; |
| 2199 } |
| 2200 |
| 2201 /* |
| 2202 ** Sizing information for the circular buffer used in snippetOffsetsOfColumn() |
| 2203 */ |
| 2204 #define FTS1_ROTOR_SZ (32) |
| 2205 #define FTS1_ROTOR_MASK (FTS1_ROTOR_SZ-1) |
| 2206 |
| 2207 /* |
| 2208 ** Add entries to pSnippet->aMatch[] for every match that occurs against |
| 2209 ** document zDoc[0..nDoc-1] which is stored in column iColumn. |
| 2210 */ |
| 2211 static void snippetOffsetsOfColumn( |
| 2212 Query *pQuery, |
| 2213 Snippet *pSnippet, |
| 2214 int iColumn, |
| 2215 const char *zDoc, |
| 2216 int nDoc |
| 2217 ){ |
| 2218 const sqlite3_tokenizer_module *pTModule; /* The tokenizer module */ |
| 2219 sqlite3_tokenizer *pTokenizer; /* The specific tokenizer */ |
| 2220 sqlite3_tokenizer_cursor *pTCursor; /* Tokenizer cursor */ |
| 2221 fulltext_vtab *pVtab; /* The full text index */ |
| 2222 int nColumn; /* Number of columns in the index */ |
| 2223 const QueryTerm *aTerm; /* Query string terms */ |
| 2224 int nTerm; /* Number of query string terms */ |
| 2225 int i, j; /* Loop counters */ |
| 2226 int rc; /* Return code */ |
| 2227 unsigned int match, prevMatch; /* Phrase search bitmasks */ |
| 2228 const char *zToken; /* Next token from the tokenizer */ |
| 2229 int nToken; /* Size of zToken */ |
| 2230 int iBegin, iEnd, iPos; /* Offsets of beginning and end */ |
| 2231 |
| 2232 /* The following variables keep a circular buffer of the last |
| 2233 ** few tokens */ |
| 2234 unsigned int iRotor = 0; /* Index of current token */ |
| 2235 int iRotorBegin[FTS1_ROTOR_SZ]; /* Beginning offset of token */ |
| 2236 int iRotorLen[FTS1_ROTOR_SZ]; /* Length of token */ |
| 2237 |
| 2238 pVtab = pQuery->pFts; |
| 2239 nColumn = pVtab->nColumn; |
| 2240 pTokenizer = pVtab->pTokenizer; |
| 2241 pTModule = pTokenizer->pModule; |
| 2242 rc = pTModule->xOpen(pTokenizer, zDoc, nDoc, &pTCursor); |
| 2243 if( rc ) return; |
| 2244 pTCursor->pTokenizer = pTokenizer; |
| 2245 aTerm = pQuery->pTerms; |
| 2246 nTerm = pQuery->nTerms; |
| 2247 if( nTerm>=FTS1_ROTOR_SZ ){ |
| 2248 nTerm = FTS1_ROTOR_SZ - 1; |
| 2249 } |
| 2250 prevMatch = 0; |
| 2251 while(1){ |
| 2252 rc = pTModule->xNext(pTCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos); |
| 2253 if( rc ) break; |
| 2254 iRotorBegin[iRotor&FTS1_ROTOR_MASK] = iBegin; |
| 2255 iRotorLen[iRotor&FTS1_ROTOR_MASK] = iEnd-iBegin; |
| 2256 match = 0; |
| 2257 for(i=0; i<nTerm; i++){ |
| 2258 int iCol; |
| 2259 iCol = aTerm[i].iColumn; |
| 2260 if( iCol>=0 && iCol<nColumn && iCol!=iColumn ) continue; |
| 2261 if( aTerm[i].nTerm!=nToken ) continue; |
| 2262 if( memcmp(aTerm[i].pTerm, zToken, nToken) ) continue; |
| 2263 if( aTerm[i].iPhrase>1 && (prevMatch & (1<<i))==0 ) continue; |
| 2264 match |= 1<<i; |
| 2265 if( i==nTerm-1 || aTerm[i+1].iPhrase==1 ){ |
| 2266 for(j=aTerm[i].iPhrase-1; j>=0; j--){ |
| 2267 int k = (iRotor-j) & FTS1_ROTOR_MASK; |
| 2268 snippetAppendMatch(pSnippet, iColumn, i-j, |
| 2269 iRotorBegin[k], iRotorLen[k]); |
| 2270 } |
| 2271 } |
| 2272 } |
| 2273 prevMatch = match<<1; |
| 2274 iRotor++; |
| 2275 } |
| 2276 pTModule->xClose(pTCursor); |
| 2277 } |
| 2278 |
| 2279 |
| 2280 /* |
| 2281 ** Compute all offsets for the current row of the query. |
| 2282 ** If the offsets have already been computed, this routine is a no-op. |
| 2283 */ |
| 2284 static void snippetAllOffsets(fulltext_cursor *p){ |
| 2285 int nColumn; |
| 2286 int iColumn, i; |
| 2287 int iFirst, iLast; |
| 2288 fulltext_vtab *pFts; |
| 2289 |
| 2290 if( p->snippet.nMatch ) return; |
| 2291 if( p->q.nTerms==0 ) return; |
| 2292 pFts = p->q.pFts; |
| 2293 nColumn = pFts->nColumn; |
| 2294 iColumn = p->iCursorType - QUERY_FULLTEXT; |
| 2295 if( iColumn<0 || iColumn>=nColumn ){ |
| 2296 iFirst = 0; |
| 2297 iLast = nColumn-1; |
| 2298 }else{ |
| 2299 iFirst = iColumn; |
| 2300 iLast = iColumn; |
| 2301 } |
| 2302 for(i=iFirst; i<=iLast; i++){ |
| 2303 const char *zDoc; |
| 2304 int nDoc; |
| 2305 zDoc = (const char*)sqlite3_column_text(p->pStmt, i+1); |
| 2306 nDoc = sqlite3_column_bytes(p->pStmt, i+1); |
| 2307 snippetOffsetsOfColumn(&p->q, &p->snippet, i, zDoc, nDoc); |
| 2308 } |
| 2309 } |
| 2310 |
| 2311 /* |
| 2312 ** Convert the information in the aMatch[] array of the snippet |
| 2313 ** into the string zOffset[0..nOffset-1]. |
| 2314 */ |
| 2315 static void snippetOffsetText(Snippet *p){ |
| 2316 int i; |
| 2317 int cnt = 0; |
| 2318 StringBuffer sb; |
| 2319 char zBuf[200]; |
| 2320 if( p->zOffset ) return; |
| 2321 initStringBuffer(&sb); |
| 2322 for(i=0; i<p->nMatch; i++){ |
| 2323 struct snippetMatch *pMatch = &p->aMatch[i]; |
| 2324 zBuf[0] = ' '; |
| 2325 sqlite3_snprintf(sizeof(zBuf)-1, &zBuf[cnt>0], "%d %d %d %d", |
| 2326 pMatch->iCol, pMatch->iTerm, pMatch->iStart, pMatch->nByte); |
| 2327 append(&sb, zBuf); |
| 2328 cnt++; |
| 2329 } |
| 2330 p->zOffset = sb.s; |
| 2331 p->nOffset = sb.len; |
| 2332 } |
| 2333 |
| 2334 /* |
| 2335 ** zDoc[0..nDoc-1] is phrase of text. aMatch[0..nMatch-1] are a set |
| 2336 ** of matching words some of which might be in zDoc. zDoc is column |
| 2337 ** number iCol. |
| 2338 ** |
| 2339 ** iBreak is suggested spot in zDoc where we could begin or end an |
| 2340 ** excerpt. Return a value similar to iBreak but possibly adjusted |
| 2341 ** to be a little left or right so that the break point is better. |
| 2342 */ |
| 2343 static int wordBoundary( |
| 2344 int iBreak, /* The suggested break point */ |
| 2345 const char *zDoc, /* Document text */ |
| 2346 int nDoc, /* Number of bytes in zDoc[] */ |
| 2347 struct snippetMatch *aMatch, /* Matching words */ |
| 2348 int nMatch, /* Number of entries in aMatch[] */ |
| 2349 int iCol /* The column number for zDoc[] */ |
| 2350 ){ |
| 2351 int i; |
| 2352 if( iBreak<=10 ){ |
| 2353 return 0; |
| 2354 } |
| 2355 if( iBreak>=nDoc-10 ){ |
| 2356 return nDoc; |
| 2357 } |
| 2358 for(i=0; i<nMatch && aMatch[i].iCol<iCol; i++){} |
| 2359 while( i<nMatch && aMatch[i].iStart+aMatch[i].nByte<iBreak ){ i++; } |
| 2360 if( i<nMatch ){ |
| 2361 if( aMatch[i].iStart<iBreak+10 ){ |
| 2362 return aMatch[i].iStart; |
| 2363 } |
| 2364 if( i>0 && aMatch[i-1].iStart+aMatch[i-1].nByte>=iBreak ){ |
| 2365 return aMatch[i-1].iStart; |
| 2366 } |
| 2367 } |
| 2368 for(i=1; i<=10; i++){ |
| 2369 if( safe_isspace(zDoc[iBreak-i]) ){ |
| 2370 return iBreak - i + 1; |
| 2371 } |
| 2372 if( safe_isspace(zDoc[iBreak+i]) ){ |
| 2373 return iBreak + i + 1; |
| 2374 } |
| 2375 } |
| 2376 return iBreak; |
| 2377 } |
| 2378 |
| 2379 /* |
| 2380 ** If the StringBuffer does not end in white space, add a single |
| 2381 ** space character to the end. |
| 2382 */ |
| 2383 static void appendWhiteSpace(StringBuffer *p){ |
| 2384 if( p->len==0 ) return; |
| 2385 if( safe_isspace(p->s[p->len-1]) ) return; |
| 2386 append(p, " "); |
| 2387 } |
| 2388 |
| 2389 /* |
| 2390 ** Remove white space from teh end of the StringBuffer |
| 2391 */ |
| 2392 static void trimWhiteSpace(StringBuffer *p){ |
| 2393 while( p->len>0 && safe_isspace(p->s[p->len-1]) ){ |
| 2394 p->len--; |
| 2395 } |
| 2396 } |
| 2397 |
| 2398 |
| 2399 |
| 2400 /* |
| 2401 ** Allowed values for Snippet.aMatch[].snStatus |
| 2402 */ |
| 2403 #define SNIPPET_IGNORE 0 /* It is ok to omit this match from the snippet */ |
| 2404 #define SNIPPET_DESIRED 1 /* We want to include this match in the snippet */ |
| 2405 |
| 2406 /* |
| 2407 ** Generate the text of a snippet. |
| 2408 */ |
| 2409 static void snippetText( |
| 2410 fulltext_cursor *pCursor, /* The cursor we need the snippet for */ |
| 2411 const char *zStartMark, /* Markup to appear before each match */ |
| 2412 const char *zEndMark, /* Markup to appear after each match */ |
| 2413 const char *zEllipsis /* Ellipsis mark */ |
| 2414 ){ |
| 2415 int i, j; |
| 2416 struct snippetMatch *aMatch; |
| 2417 int nMatch; |
| 2418 int nDesired; |
| 2419 StringBuffer sb; |
| 2420 int tailCol; |
| 2421 int tailOffset; |
| 2422 int iCol; |
| 2423 int nDoc; |
| 2424 const char *zDoc; |
| 2425 int iStart, iEnd; |
| 2426 int tailEllipsis = 0; |
| 2427 int iMatch; |
| 2428 |
| 2429 |
| 2430 free(pCursor->snippet.zSnippet); |
| 2431 pCursor->snippet.zSnippet = 0; |
| 2432 aMatch = pCursor->snippet.aMatch; |
| 2433 nMatch = pCursor->snippet.nMatch; |
| 2434 initStringBuffer(&sb); |
| 2435 |
| 2436 for(i=0; i<nMatch; i++){ |
| 2437 aMatch[i].snStatus = SNIPPET_IGNORE; |
| 2438 } |
| 2439 nDesired = 0; |
| 2440 for(i=0; i<pCursor->q.nTerms; i++){ |
| 2441 for(j=0; j<nMatch; j++){ |
| 2442 if( aMatch[j].iTerm==i ){ |
| 2443 aMatch[j].snStatus = SNIPPET_DESIRED; |
| 2444 nDesired++; |
| 2445 break; |
| 2446 } |
| 2447 } |
| 2448 } |
| 2449 |
| 2450 iMatch = 0; |
| 2451 tailCol = -1; |
| 2452 tailOffset = 0; |
| 2453 for(i=0; i<nMatch && nDesired>0; i++){ |
| 2454 if( aMatch[i].snStatus!=SNIPPET_DESIRED ) continue; |
| 2455 nDesired--; |
| 2456 iCol = aMatch[i].iCol; |
| 2457 zDoc = (const char*)sqlite3_column_text(pCursor->pStmt, iCol+1); |
| 2458 nDoc = sqlite3_column_bytes(pCursor->pStmt, iCol+1); |
| 2459 iStart = aMatch[i].iStart - 40; |
| 2460 iStart = wordBoundary(iStart, zDoc, nDoc, aMatch, nMatch, iCol); |
| 2461 if( iStart<=10 ){ |
| 2462 iStart = 0; |
| 2463 } |
| 2464 if( iCol==tailCol && iStart<=tailOffset+20 ){ |
| 2465 iStart = tailOffset; |
| 2466 } |
| 2467 if( (iCol!=tailCol && tailCol>=0) || iStart!=tailOffset ){ |
| 2468 trimWhiteSpace(&sb); |
| 2469 appendWhiteSpace(&sb); |
| 2470 append(&sb, zEllipsis); |
| 2471 appendWhiteSpace(&sb); |
| 2472 } |
| 2473 iEnd = aMatch[i].iStart + aMatch[i].nByte + 40; |
| 2474 iEnd = wordBoundary(iEnd, zDoc, nDoc, aMatch, nMatch, iCol); |
| 2475 if( iEnd>=nDoc-10 ){ |
| 2476 iEnd = nDoc; |
| 2477 tailEllipsis = 0; |
| 2478 }else{ |
| 2479 tailEllipsis = 1; |
| 2480 } |
| 2481 while( iMatch<nMatch && aMatch[iMatch].iCol<iCol ){ iMatch++; } |
| 2482 while( iStart<iEnd ){ |
| 2483 while( iMatch<nMatch && aMatch[iMatch].iStart<iStart |
| 2484 && aMatch[iMatch].iCol<=iCol ){ |
| 2485 iMatch++; |
| 2486 } |
| 2487 if( iMatch<nMatch && aMatch[iMatch].iStart<iEnd |
| 2488 && aMatch[iMatch].iCol==iCol ){ |
| 2489 nappend(&sb, &zDoc[iStart], aMatch[iMatch].iStart - iStart); |
| 2490 iStart = aMatch[iMatch].iStart; |
| 2491 append(&sb, zStartMark); |
| 2492 nappend(&sb, &zDoc[iStart], aMatch[iMatch].nByte); |
| 2493 append(&sb, zEndMark); |
| 2494 iStart += aMatch[iMatch].nByte; |
| 2495 for(j=iMatch+1; j<nMatch; j++){ |
| 2496 if( aMatch[j].iTerm==aMatch[iMatch].iTerm |
| 2497 && aMatch[j].snStatus==SNIPPET_DESIRED ){ |
| 2498 nDesired--; |
| 2499 aMatch[j].snStatus = SNIPPET_IGNORE; |
| 2500 } |
| 2501 } |
| 2502 }else{ |
| 2503 nappend(&sb, &zDoc[iStart], iEnd - iStart); |
| 2504 iStart = iEnd; |
| 2505 } |
| 2506 } |
| 2507 tailCol = iCol; |
| 2508 tailOffset = iEnd; |
| 2509 } |
| 2510 trimWhiteSpace(&sb); |
| 2511 if( tailEllipsis ){ |
| 2512 appendWhiteSpace(&sb); |
| 2513 append(&sb, zEllipsis); |
| 2514 } |
| 2515 pCursor->snippet.zSnippet = sb.s; |
| 2516 pCursor->snippet.nSnippet = sb.len; |
| 2517 } |
| 2518 |
| 2519 |
| 2520 /* |
| 2521 ** Close the cursor. For additional information see the documentation |
| 2522 ** on the xClose method of the virtual table interface. |
| 2523 */ |
| 2524 static int fulltextClose(sqlite3_vtab_cursor *pCursor){ |
| 2525 fulltext_cursor *c = (fulltext_cursor *) pCursor; |
| 2526 TRACE(("FTS1 Close %p\n", c)); |
| 2527 sqlite3_finalize(c->pStmt); |
| 2528 queryClear(&c->q); |
| 2529 snippetClear(&c->snippet); |
| 2530 if( c->result.pDoclist!=NULL ){ |
| 2531 docListDelete(c->result.pDoclist); |
| 2532 } |
| 2533 free(c); |
| 2534 return SQLITE_OK; |
| 2535 } |
| 2536 |
| 2537 static int fulltextNext(sqlite3_vtab_cursor *pCursor){ |
| 2538 fulltext_cursor *c = (fulltext_cursor *) pCursor; |
| 2539 sqlite_int64 iDocid; |
| 2540 int rc; |
| 2541 |
| 2542 TRACE(("FTS1 Next %p\n", pCursor)); |
| 2543 snippetClear(&c->snippet); |
| 2544 if( c->iCursorType < QUERY_FULLTEXT ){ |
| 2545 /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */ |
| 2546 rc = sqlite3_step(c->pStmt); |
| 2547 switch( rc ){ |
| 2548 case SQLITE_ROW: |
| 2549 c->eof = 0; |
| 2550 return SQLITE_OK; |
| 2551 case SQLITE_DONE: |
| 2552 c->eof = 1; |
| 2553 return SQLITE_OK; |
| 2554 default: |
| 2555 c->eof = 1; |
| 2556 return rc; |
| 2557 } |
| 2558 } else { /* full-text query */ |
| 2559 rc = sqlite3_reset(c->pStmt); |
| 2560 if( rc!=SQLITE_OK ) return rc; |
| 2561 |
| 2562 iDocid = nextDocid(&c->result); |
| 2563 if( iDocid==0 ){ |
| 2564 c->eof = 1; |
| 2565 return SQLITE_OK; |
| 2566 } |
| 2567 rc = sqlite3_bind_int64(c->pStmt, 1, iDocid); |
| 2568 if( rc!=SQLITE_OK ) return rc; |
| 2569 /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */ |
| 2570 rc = sqlite3_step(c->pStmt); |
| 2571 if( rc==SQLITE_ROW ){ /* the case we expect */ |
| 2572 c->eof = 0; |
| 2573 return SQLITE_OK; |
| 2574 } |
| 2575 /* an error occurred; abort */ |
| 2576 return rc==SQLITE_DONE ? SQLITE_ERROR : rc; |
| 2577 } |
| 2578 } |
| 2579 |
| 2580 |
| 2581 /* Return a DocList corresponding to the query term *pTerm. If *pTerm |
| 2582 ** is the first term of a phrase query, go ahead and evaluate the phrase |
| 2583 ** query and return the doclist for the entire phrase query. |
| 2584 ** |
| 2585 ** The result is stored in pTerm->doclist. |
| 2586 */ |
| 2587 static int docListOfTerm( |
| 2588 fulltext_vtab *v, /* The full text index */ |
| 2589 int iColumn, /* column to restrict to. No restrition if >=nColumn */ |
| 2590 QueryTerm *pQTerm, /* Term we are looking for, or 1st term of a phrase */ |
| 2591 DocList **ppResult /* Write the result here */ |
| 2592 ){ |
| 2593 DocList *pLeft, *pRight, *pNew; |
| 2594 int i, rc; |
| 2595 |
| 2596 pLeft = docListNew(DL_POSITIONS); |
| 2597 rc = term_select_all(v, iColumn, pQTerm->pTerm, pQTerm->nTerm, pLeft); |
| 2598 if( rc ){ |
| 2599 docListDelete(pLeft); |
| 2600 return rc; |
| 2601 } |
| 2602 for(i=1; i<=pQTerm->nPhrase; i++){ |
| 2603 pRight = docListNew(DL_POSITIONS); |
| 2604 rc = term_select_all(v, iColumn, pQTerm[i].pTerm, pQTerm[i].nTerm, pRight); |
| 2605 if( rc ){ |
| 2606 docListDelete(pLeft); |
| 2607 return rc; |
| 2608 } |
| 2609 pNew = docListNew(i<pQTerm->nPhrase ? DL_POSITIONS : DL_DOCIDS); |
| 2610 docListPhraseMerge(pLeft, pRight, pNew); |
| 2611 docListDelete(pLeft); |
| 2612 docListDelete(pRight); |
| 2613 pLeft = pNew; |
| 2614 } |
| 2615 *ppResult = pLeft; |
| 2616 return SQLITE_OK; |
| 2617 } |
| 2618 |
| 2619 /* Add a new term pTerm[0..nTerm-1] to the query *q. |
| 2620 */ |
| 2621 static void queryAdd(Query *q, const char *pTerm, int nTerm){ |
| 2622 QueryTerm *t; |
| 2623 ++q->nTerms; |
| 2624 q->pTerms = realloc(q->pTerms, q->nTerms * sizeof(q->pTerms[0])); |
| 2625 if( q->pTerms==0 ){ |
| 2626 q->nTerms = 0; |
| 2627 return; |
| 2628 } |
| 2629 t = &q->pTerms[q->nTerms - 1]; |
| 2630 memset(t, 0, sizeof(*t)); |
| 2631 t->pTerm = malloc(nTerm+1); |
| 2632 memcpy(t->pTerm, pTerm, nTerm); |
| 2633 t->pTerm[nTerm] = 0; |
| 2634 t->nTerm = nTerm; |
| 2635 t->isOr = q->nextIsOr; |
| 2636 q->nextIsOr = 0; |
| 2637 t->iColumn = q->nextColumn; |
| 2638 q->nextColumn = q->dfltColumn; |
| 2639 } |
| 2640 |
| 2641 /* |
| 2642 ** Check to see if the string zToken[0...nToken-1] matches any |
| 2643 ** column name in the virtual table. If it does, |
| 2644 ** return the zero-indexed column number. If not, return -1. |
| 2645 */ |
| 2646 static int checkColumnSpecifier( |
| 2647 fulltext_vtab *pVtab, /* The virtual table */ |
| 2648 const char *zToken, /* Text of the token */ |
| 2649 int nToken /* Number of characters in the token */ |
| 2650 ){ |
| 2651 int i; |
| 2652 for(i=0; i<pVtab->nColumn; i++){ |
| 2653 if( memcmp(pVtab->azColumn[i], zToken, nToken)==0 |
| 2654 && pVtab->azColumn[i][nToken]==0 ){ |
| 2655 return i; |
| 2656 } |
| 2657 } |
| 2658 return -1; |
| 2659 } |
| 2660 |
| 2661 /* |
| 2662 ** Parse the text at pSegment[0..nSegment-1]. Add additional terms |
| 2663 ** to the query being assemblied in pQuery. |
| 2664 ** |
| 2665 ** inPhrase is true if pSegment[0..nSegement-1] is contained within |
| 2666 ** double-quotes. If inPhrase is true, then the first term |
| 2667 ** is marked with the number of terms in the phrase less one and |
| 2668 ** OR and "-" syntax is ignored. If inPhrase is false, then every |
| 2669 ** term found is marked with nPhrase=0 and OR and "-" syntax is significant. |
| 2670 */ |
| 2671 static int tokenizeSegment( |
| 2672 sqlite3_tokenizer *pTokenizer, /* The tokenizer to use */ |
| 2673 const char *pSegment, int nSegment, /* Query expression being parsed */ |
| 2674 int inPhrase, /* True if within "..." */ |
| 2675 Query *pQuery /* Append results here */ |
| 2676 ){ |
| 2677 const sqlite3_tokenizer_module *pModule = pTokenizer->pModule; |
| 2678 sqlite3_tokenizer_cursor *pCursor; |
| 2679 int firstIndex = pQuery->nTerms; |
| 2680 int iCol; |
| 2681 int nTerm = 1; |
| 2682 |
| 2683 int rc = pModule->xOpen(pTokenizer, pSegment, nSegment, &pCursor); |
| 2684 if( rc!=SQLITE_OK ) return rc; |
| 2685 pCursor->pTokenizer = pTokenizer; |
| 2686 |
| 2687 while( 1 ){ |
| 2688 const char *pToken; |
| 2689 int nToken, iBegin, iEnd, iPos; |
| 2690 |
| 2691 rc = pModule->xNext(pCursor, |
| 2692 &pToken, &nToken, |
| 2693 &iBegin, &iEnd, &iPos); |
| 2694 if( rc!=SQLITE_OK ) break; |
| 2695 if( !inPhrase && |
| 2696 pSegment[iEnd]==':' && |
| 2697 (iCol = checkColumnSpecifier(pQuery->pFts, pToken, nToken))>=0 ){ |
| 2698 pQuery->nextColumn = iCol; |
| 2699 continue; |
| 2700 } |
| 2701 if( !inPhrase && pQuery->nTerms>0 && nToken==2 |
| 2702 && pSegment[iBegin]=='O' && pSegment[iBegin+1]=='R' ){ |
| 2703 pQuery->nextIsOr = 1; |
| 2704 continue; |
| 2705 } |
| 2706 queryAdd(pQuery, pToken, nToken); |
| 2707 if( !inPhrase && iBegin>0 && pSegment[iBegin-1]=='-' ){ |
| 2708 pQuery->pTerms[pQuery->nTerms-1].isNot = 1; |
| 2709 } |
| 2710 pQuery->pTerms[pQuery->nTerms-1].iPhrase = nTerm; |
| 2711 if( inPhrase ){ |
| 2712 nTerm++; |
| 2713 } |
| 2714 } |
| 2715 |
| 2716 if( inPhrase && pQuery->nTerms>firstIndex ){ |
| 2717 pQuery->pTerms[firstIndex].nPhrase = pQuery->nTerms - firstIndex - 1; |
| 2718 } |
| 2719 |
| 2720 return pModule->xClose(pCursor); |
| 2721 } |
| 2722 |
| 2723 /* Parse a query string, yielding a Query object pQuery. |
| 2724 ** |
| 2725 ** The calling function will need to queryClear() to clean up |
| 2726 ** the dynamically allocated memory held by pQuery. |
| 2727 */ |
| 2728 static int parseQuery( |
| 2729 fulltext_vtab *v, /* The fulltext index */ |
| 2730 const char *zInput, /* Input text of the query string */ |
| 2731 int nInput, /* Size of the input text */ |
| 2732 int dfltColumn, /* Default column of the index to match against */ |
| 2733 Query *pQuery /* Write the parse results here. */ |
| 2734 ){ |
| 2735 int iInput, inPhrase = 0; |
| 2736 |
| 2737 if( zInput==0 ) nInput = 0; |
| 2738 if( nInput<0 ) nInput = strlen(zInput); |
| 2739 pQuery->nTerms = 0; |
| 2740 pQuery->pTerms = NULL; |
| 2741 pQuery->nextIsOr = 0; |
| 2742 pQuery->nextColumn = dfltColumn; |
| 2743 pQuery->dfltColumn = dfltColumn; |
| 2744 pQuery->pFts = v; |
| 2745 |
| 2746 for(iInput=0; iInput<nInput; ++iInput){ |
| 2747 int i; |
| 2748 for(i=iInput; i<nInput && zInput[i]!='"'; ++i){} |
| 2749 if( i>iInput ){ |
| 2750 tokenizeSegment(v->pTokenizer, zInput+iInput, i-iInput, inPhrase, |
| 2751 pQuery); |
| 2752 } |
| 2753 iInput = i; |
| 2754 if( i<nInput ){ |
| 2755 assert( zInput[i]=='"' ); |
| 2756 inPhrase = !inPhrase; |
| 2757 } |
| 2758 } |
| 2759 |
| 2760 if( inPhrase ){ |
| 2761 /* unmatched quote */ |
| 2762 queryClear(pQuery); |
| 2763 return SQLITE_ERROR; |
| 2764 } |
| 2765 return SQLITE_OK; |
| 2766 } |
| 2767 |
| 2768 /* Perform a full-text query using the search expression in |
| 2769 ** zInput[0..nInput-1]. Return a list of matching documents |
| 2770 ** in pResult. |
| 2771 ** |
| 2772 ** Queries must match column iColumn. Or if iColumn>=nColumn |
| 2773 ** they are allowed to match against any column. |
| 2774 */ |
| 2775 static int fulltextQuery( |
| 2776 fulltext_vtab *v, /* The full text index */ |
| 2777 int iColumn, /* Match against this column by default */ |
| 2778 const char *zInput, /* The query string */ |
| 2779 int nInput, /* Number of bytes in zInput[] */ |
| 2780 DocList **pResult, /* Write the result doclist here */ |
| 2781 Query *pQuery /* Put parsed query string here */ |
| 2782 ){ |
| 2783 int i, iNext, rc; |
| 2784 DocList *pLeft = NULL; |
| 2785 DocList *pRight, *pNew, *pOr; |
| 2786 int nNot = 0; |
| 2787 QueryTerm *aTerm; |
| 2788 |
| 2789 rc = parseQuery(v, zInput, nInput, iColumn, pQuery); |
| 2790 if( rc!=SQLITE_OK ) return rc; |
| 2791 |
| 2792 /* Merge AND terms. */ |
| 2793 aTerm = pQuery->pTerms; |
| 2794 for(i = 0; i<pQuery->nTerms; i=iNext){ |
| 2795 if( aTerm[i].isNot ){ |
| 2796 /* Handle all NOT terms in a separate pass */ |
| 2797 nNot++; |
| 2798 iNext = i + aTerm[i].nPhrase+1; |
| 2799 continue; |
| 2800 } |
| 2801 iNext = i + aTerm[i].nPhrase + 1; |
| 2802 rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &pRight); |
| 2803 if( rc ){ |
| 2804 queryClear(pQuery); |
| 2805 return rc; |
| 2806 } |
| 2807 while( iNext<pQuery->nTerms && aTerm[iNext].isOr ){ |
| 2808 rc = docListOfTerm(v, aTerm[iNext].iColumn, &aTerm[iNext], &pOr); |
| 2809 iNext += aTerm[iNext].nPhrase + 1; |
| 2810 if( rc ){ |
| 2811 queryClear(pQuery); |
| 2812 return rc; |
| 2813 } |
| 2814 pNew = docListNew(DL_DOCIDS); |
| 2815 docListOrMerge(pRight, pOr, pNew); |
| 2816 docListDelete(pRight); |
| 2817 docListDelete(pOr); |
| 2818 pRight = pNew; |
| 2819 } |
| 2820 if( pLeft==0 ){ |
| 2821 pLeft = pRight; |
| 2822 }else{ |
| 2823 pNew = docListNew(DL_DOCIDS); |
| 2824 docListAndMerge(pLeft, pRight, pNew); |
| 2825 docListDelete(pRight); |
| 2826 docListDelete(pLeft); |
| 2827 pLeft = pNew; |
| 2828 } |
| 2829 } |
| 2830 |
| 2831 if( nNot && pLeft==0 ){ |
| 2832 /* We do not yet know how to handle a query of only NOT terms */ |
| 2833 return SQLITE_ERROR; |
| 2834 } |
| 2835 |
| 2836 /* Do the EXCEPT terms */ |
| 2837 for(i=0; i<pQuery->nTerms; i += aTerm[i].nPhrase + 1){ |
| 2838 if( !aTerm[i].isNot ) continue; |
| 2839 rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &pRight); |
| 2840 if( rc ){ |
| 2841 queryClear(pQuery); |
| 2842 docListDelete(pLeft); |
| 2843 return rc; |
| 2844 } |
| 2845 pNew = docListNew(DL_DOCIDS); |
| 2846 docListExceptMerge(pLeft, pRight, pNew); |
| 2847 docListDelete(pRight); |
| 2848 docListDelete(pLeft); |
| 2849 pLeft = pNew; |
| 2850 } |
| 2851 |
| 2852 *pResult = pLeft; |
| 2853 return rc; |
| 2854 } |
| 2855 |
| 2856 /* |
| 2857 ** This is the xFilter interface for the virtual table. See |
| 2858 ** the virtual table xFilter method documentation for additional |
| 2859 ** information. |
| 2860 ** |
| 2861 ** If idxNum==QUERY_GENERIC then do a full table scan against |
| 2862 ** the %_content table. |
| 2863 ** |
| 2864 ** If idxNum==QUERY_ROWID then do a rowid lookup for a single entry |
| 2865 ** in the %_content table. |
| 2866 ** |
| 2867 ** If idxNum>=QUERY_FULLTEXT then use the full text index. The |
| 2868 ** column on the left-hand side of the MATCH operator is column |
| 2869 ** number idxNum-QUERY_FULLTEXT, 0 indexed. argv[0] is the right-hand |
| 2870 ** side of the MATCH operator. |
| 2871 */ |
| 2872 /* TODO(shess) Upgrade the cursor initialization and destruction to |
| 2873 ** account for fulltextFilter() being called multiple times on the |
| 2874 ** same cursor. The current solution is very fragile. Apply fix to |
| 2875 ** fts2 as appropriate. |
| 2876 */ |
| 2877 static int fulltextFilter( |
| 2878 sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */ |
| 2879 int idxNum, const char *idxStr, /* Which indexing scheme to use */ |
| 2880 int argc, sqlite3_value **argv /* Arguments for the indexing scheme */ |
| 2881 ){ |
| 2882 fulltext_cursor *c = (fulltext_cursor *) pCursor; |
| 2883 fulltext_vtab *v = cursor_vtab(c); |
| 2884 int rc; |
| 2885 char *zSql; |
| 2886 |
| 2887 TRACE(("FTS1 Filter %p\n",pCursor)); |
| 2888 |
| 2889 zSql = sqlite3_mprintf("select rowid, * from %%_content %s", |
| 2890 idxNum==QUERY_GENERIC ? "" : "where rowid=?"); |
| 2891 sqlite3_finalize(c->pStmt); |
| 2892 rc = sql_prepare(v->db, v->zDb, v->zName, &c->pStmt, zSql); |
| 2893 sqlite3_free(zSql); |
| 2894 if( rc!=SQLITE_OK ) return rc; |
| 2895 |
| 2896 c->iCursorType = idxNum; |
| 2897 switch( idxNum ){ |
| 2898 case QUERY_GENERIC: |
| 2899 break; |
| 2900 |
| 2901 case QUERY_ROWID: |
| 2902 rc = sqlite3_bind_int64(c->pStmt, 1, sqlite3_value_int64(argv[0])); |
| 2903 if( rc!=SQLITE_OK ) return rc; |
| 2904 break; |
| 2905 |
| 2906 default: /* full-text search */ |
| 2907 { |
| 2908 const char *zQuery = (const char *)sqlite3_value_text(argv[0]); |
| 2909 DocList *pResult; |
| 2910 assert( idxNum<=QUERY_FULLTEXT+v->nColumn); |
| 2911 assert( argc==1 ); |
| 2912 queryClear(&c->q); |
| 2913 rc = fulltextQuery(v, idxNum-QUERY_FULLTEXT, zQuery, -1, &pResult, &c->q); |
| 2914 if( rc!=SQLITE_OK ) return rc; |
| 2915 if( c->result.pDoclist!=NULL ) docListDelete(c->result.pDoclist); |
| 2916 readerInit(&c->result, pResult); |
| 2917 break; |
| 2918 } |
| 2919 } |
| 2920 |
| 2921 return fulltextNext(pCursor); |
| 2922 } |
| 2923 |
| 2924 /* This is the xEof method of the virtual table. The SQLite core |
| 2925 ** calls this routine to find out if it has reached the end of |
| 2926 ** a query's results set. |
| 2927 */ |
| 2928 static int fulltextEof(sqlite3_vtab_cursor *pCursor){ |
| 2929 fulltext_cursor *c = (fulltext_cursor *) pCursor; |
| 2930 return c->eof; |
| 2931 } |
| 2932 |
| 2933 /* This is the xColumn method of the virtual table. The SQLite |
| 2934 ** core calls this method during a query when it needs the value |
| 2935 ** of a column from the virtual table. This method needs to use |
| 2936 ** one of the sqlite3_result_*() routines to store the requested |
| 2937 ** value back in the pContext. |
| 2938 */ |
| 2939 static int fulltextColumn(sqlite3_vtab_cursor *pCursor, |
| 2940 sqlite3_context *pContext, int idxCol){ |
| 2941 fulltext_cursor *c = (fulltext_cursor *) pCursor; |
| 2942 fulltext_vtab *v = cursor_vtab(c); |
| 2943 |
| 2944 if( idxCol<v->nColumn ){ |
| 2945 sqlite3_value *pVal = sqlite3_column_value(c->pStmt, idxCol+1); |
| 2946 sqlite3_result_value(pContext, pVal); |
| 2947 }else if( idxCol==v->nColumn ){ |
| 2948 /* The extra column whose name is the same as the table. |
| 2949 ** Return a blob which is a pointer to the cursor |
| 2950 */ |
| 2951 sqlite3_result_blob(pContext, &c, sizeof(c), SQLITE_TRANSIENT); |
| 2952 } |
| 2953 return SQLITE_OK; |
| 2954 } |
| 2955 |
| 2956 /* This is the xRowid method. The SQLite core calls this routine to |
| 2957 ** retrive the rowid for the current row of the result set. The |
| 2958 ** rowid should be written to *pRowid. |
| 2959 */ |
| 2960 static int fulltextRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){ |
| 2961 fulltext_cursor *c = (fulltext_cursor *) pCursor; |
| 2962 |
| 2963 *pRowid = sqlite3_column_int64(c->pStmt, 0); |
| 2964 return SQLITE_OK; |
| 2965 } |
| 2966 |
| 2967 /* Add all terms in [zText] to the given hash table. If [iColumn] > 0, |
| 2968 * we also store positions and offsets in the hash table using the given |
| 2969 * column number. */ |
| 2970 static int buildTerms(fulltext_vtab *v, fts1Hash *terms, sqlite_int64 iDocid, |
| 2971 const char *zText, int iColumn){ |
| 2972 sqlite3_tokenizer *pTokenizer = v->pTokenizer; |
| 2973 sqlite3_tokenizer_cursor *pCursor; |
| 2974 const char *pToken; |
| 2975 int nTokenBytes; |
| 2976 int iStartOffset, iEndOffset, iPosition; |
| 2977 int rc; |
| 2978 |
| 2979 rc = pTokenizer->pModule->xOpen(pTokenizer, zText, -1, &pCursor); |
| 2980 if( rc!=SQLITE_OK ) return rc; |
| 2981 |
| 2982 pCursor->pTokenizer = pTokenizer; |
| 2983 while( SQLITE_OK==pTokenizer->pModule->xNext(pCursor, |
| 2984 &pToken, &nTokenBytes, |
| 2985 &iStartOffset, &iEndOffset, |
| 2986 &iPosition) ){ |
| 2987 DocList *p; |
| 2988 |
| 2989 /* Positions can't be negative; we use -1 as a terminator internally. */ |
| 2990 if( iPosition<0 ){ |
| 2991 pTokenizer->pModule->xClose(pCursor); |
| 2992 return SQLITE_ERROR; |
| 2993 } |
| 2994 |
| 2995 p = fts1HashFind(terms, pToken, nTokenBytes); |
| 2996 if( p==NULL ){ |
| 2997 p = docListNew(DL_DEFAULT); |
| 2998 docListAddDocid(p, iDocid); |
| 2999 fts1HashInsert(terms, pToken, nTokenBytes, p); |
| 3000 } |
| 3001 if( iColumn>=0 ){ |
| 3002 docListAddPosOffset(p, iColumn, iPosition, iStartOffset, iEndOffset); |
| 3003 } |
| 3004 } |
| 3005 |
| 3006 /* TODO(shess) Check return? Should this be able to cause errors at |
| 3007 ** this point? Actually, same question about sqlite3_finalize(), |
| 3008 ** though one could argue that failure there means that the data is |
| 3009 ** not durable. *ponder* |
| 3010 */ |
| 3011 pTokenizer->pModule->xClose(pCursor); |
| 3012 return rc; |
| 3013 } |
| 3014 |
| 3015 /* Update the %_terms table to map the term [pTerm] to the given rowid. */ |
| 3016 static int index_insert_term(fulltext_vtab *v, const char *pTerm, int nTerm, |
| 3017 DocList *d){ |
| 3018 sqlite_int64 iIndexRow; |
| 3019 DocList doclist; |
| 3020 int iSegment = 0, rc; |
| 3021 |
| 3022 rc = term_select(v, pTerm, nTerm, iSegment, &iIndexRow, &doclist); |
| 3023 if( rc==SQLITE_DONE ){ |
| 3024 docListInit(&doclist, DL_DEFAULT, 0, 0); |
| 3025 docListUpdate(&doclist, d); |
| 3026 /* TODO(shess) Consider length(doclist)>CHUNK_MAX? */ |
| 3027 rc = term_insert(v, NULL, pTerm, nTerm, iSegment, &doclist); |
| 3028 goto err; |
| 3029 } |
| 3030 if( rc!=SQLITE_ROW ) return SQLITE_ERROR; |
| 3031 |
| 3032 docListUpdate(&doclist, d); |
| 3033 if( doclist.nData<=CHUNK_MAX ){ |
| 3034 rc = term_update(v, iIndexRow, &doclist); |
| 3035 goto err; |
| 3036 } |
| 3037 |
| 3038 /* Doclist doesn't fit, delete what's there, and accumulate |
| 3039 ** forward. |
| 3040 */ |
| 3041 rc = term_delete(v, iIndexRow); |
| 3042 if( rc!=SQLITE_OK ) goto err; |
| 3043 |
| 3044 /* Try to insert the doclist into a higher segment bucket. On |
| 3045 ** failure, accumulate existing doclist with the doclist from that |
| 3046 ** bucket, and put results in the next bucket. |
| 3047 */ |
| 3048 iSegment++; |
| 3049 while( (rc=term_insert(v, &iIndexRow, pTerm, nTerm, iSegment, |
| 3050 &doclist))!=SQLITE_OK ){ |
| 3051 sqlite_int64 iSegmentRow; |
| 3052 DocList old; |
| 3053 int rc2; |
| 3054 |
| 3055 /* Retain old error in case the term_insert() error was really an |
| 3056 ** error rather than a bounced insert. |
| 3057 */ |
| 3058 rc2 = term_select(v, pTerm, nTerm, iSegment, &iSegmentRow, &old); |
| 3059 if( rc2!=SQLITE_ROW ) goto err; |
| 3060 |
| 3061 rc = term_delete(v, iSegmentRow); |
| 3062 if( rc!=SQLITE_OK ) goto err; |
| 3063 |
| 3064 /* Reusing lowest-number deleted row keeps the index smaller. */ |
| 3065 if( iSegmentRow<iIndexRow ) iIndexRow = iSegmentRow; |
| 3066 |
| 3067 /* doclist contains the newer data, so accumulate it over old. |
| 3068 ** Then steal accumulated data for doclist. |
| 3069 */ |
| 3070 docListAccumulate(&old, &doclist); |
| 3071 docListDestroy(&doclist); |
| 3072 doclist = old; |
| 3073 |
| 3074 iSegment++; |
| 3075 } |
| 3076 |
| 3077 err: |
| 3078 docListDestroy(&doclist); |
| 3079 return rc; |
| 3080 } |
| 3081 |
| 3082 /* Add doclists for all terms in [pValues] to the hash table [terms]. */ |
| 3083 static int insertTerms(fulltext_vtab *v, fts1Hash *terms, sqlite_int64 iRowid, |
| 3084 sqlite3_value **pValues){ |
| 3085 int i; |
| 3086 for(i = 0; i < v->nColumn ; ++i){ |
| 3087 char *zText = (char*)sqlite3_value_text(pValues[i]); |
| 3088 int rc = buildTerms(v, terms, iRowid, zText, i); |
| 3089 if( rc!=SQLITE_OK ) return rc; |
| 3090 } |
| 3091 return SQLITE_OK; |
| 3092 } |
| 3093 |
| 3094 /* Add empty doclists for all terms in the given row's content to the hash |
| 3095 * table [pTerms]. */ |
| 3096 static int deleteTerms(fulltext_vtab *v, fts1Hash *pTerms, sqlite_int64 iRowid){ |
| 3097 const char **pValues; |
| 3098 int i; |
| 3099 |
| 3100 int rc = content_select(v, iRowid, &pValues); |
| 3101 if( rc!=SQLITE_OK ) return rc; |
| 3102 |
| 3103 for(i = 0 ; i < v->nColumn; ++i) { |
| 3104 rc = buildTerms(v, pTerms, iRowid, pValues[i], -1); |
| 3105 if( rc!=SQLITE_OK ) break; |
| 3106 } |
| 3107 |
| 3108 freeStringArray(v->nColumn, pValues); |
| 3109 return SQLITE_OK; |
| 3110 } |
| 3111 |
| 3112 /* Insert a row into the %_content table; set *piRowid to be the ID of the |
| 3113 * new row. Fill [pTerms] with new doclists for the %_term table. */ |
| 3114 static int index_insert(fulltext_vtab *v, sqlite3_value *pRequestRowid, |
| 3115 sqlite3_value **pValues, |
| 3116 sqlite_int64 *piRowid, fts1Hash *pTerms){ |
| 3117 int rc; |
| 3118 |
| 3119 rc = content_insert(v, pRequestRowid, pValues); /* execute an SQL INSERT */ |
| 3120 if( rc!=SQLITE_OK ) return rc; |
| 3121 *piRowid = sqlite3_last_insert_rowid(v->db); |
| 3122 return insertTerms(v, pTerms, *piRowid, pValues); |
| 3123 } |
| 3124 |
| 3125 /* Delete a row from the %_content table; fill [pTerms] with empty doclists |
| 3126 * to be written to the %_term table. */ |
| 3127 static int index_delete(fulltext_vtab *v, sqlite_int64 iRow, fts1Hash *pTerms){ |
| 3128 int rc = deleteTerms(v, pTerms, iRow); |
| 3129 if( rc!=SQLITE_OK ) return rc; |
| 3130 return content_delete(v, iRow); /* execute an SQL DELETE */ |
| 3131 } |
| 3132 |
| 3133 /* Update a row in the %_content table; fill [pTerms] with new doclists for the |
| 3134 * %_term table. */ |
| 3135 static int index_update(fulltext_vtab *v, sqlite_int64 iRow, |
| 3136 sqlite3_value **pValues, fts1Hash *pTerms){ |
| 3137 /* Generate an empty doclist for each term that previously appeared in this |
| 3138 * row. */ |
| 3139 int rc = deleteTerms(v, pTerms, iRow); |
| 3140 if( rc!=SQLITE_OK ) return rc; |
| 3141 |
| 3142 rc = content_update(v, pValues, iRow); /* execute an SQL UPDATE */ |
| 3143 if( rc!=SQLITE_OK ) return rc; |
| 3144 |
| 3145 /* Now add positions for terms which appear in the updated row. */ |
| 3146 return insertTerms(v, pTerms, iRow, pValues); |
| 3147 } |
| 3148 |
| 3149 /* This function implements the xUpdate callback; it is the top-level entry |
| 3150 * point for inserting, deleting or updating a row in a full-text table. */ |
| 3151 static int fulltextUpdate(sqlite3_vtab *pVtab, int nArg, sqlite3_value **ppArg, |
| 3152 sqlite_int64 *pRowid){ |
| 3153 fulltext_vtab *v = (fulltext_vtab *) pVtab; |
| 3154 fts1Hash terms; /* maps term string -> PosList */ |
| 3155 int rc; |
| 3156 fts1HashElem *e; |
| 3157 |
| 3158 TRACE(("FTS1 Update %p\n", pVtab)); |
| 3159 |
| 3160 fts1HashInit(&terms, FTS1_HASH_STRING, 1); |
| 3161 |
| 3162 if( nArg<2 ){ |
| 3163 rc = index_delete(v, sqlite3_value_int64(ppArg[0]), &terms); |
| 3164 } else if( sqlite3_value_type(ppArg[0]) != SQLITE_NULL ){ |
| 3165 /* An update: |
| 3166 * ppArg[0] = old rowid |
| 3167 * ppArg[1] = new rowid |
| 3168 * ppArg[2..2+v->nColumn-1] = values |
| 3169 * ppArg[2+v->nColumn] = value for magic column (we ignore this) |
| 3170 */ |
| 3171 sqlite_int64 rowid = sqlite3_value_int64(ppArg[0]); |
| 3172 if( sqlite3_value_type(ppArg[1]) != SQLITE_INTEGER || |
| 3173 sqlite3_value_int64(ppArg[1]) != rowid ){ |
| 3174 rc = SQLITE_ERROR; /* we don't allow changing the rowid */ |
| 3175 } else { |
| 3176 assert( nArg==2+v->nColumn+1); |
| 3177 rc = index_update(v, rowid, &ppArg[2], &terms); |
| 3178 } |
| 3179 } else { |
| 3180 /* An insert: |
| 3181 * ppArg[1] = requested rowid |
| 3182 * ppArg[2..2+v->nColumn-1] = values |
| 3183 * ppArg[2+v->nColumn] = value for magic column (we ignore this) |
| 3184 */ |
| 3185 assert( nArg==2+v->nColumn+1); |
| 3186 rc = index_insert(v, ppArg[1], &ppArg[2], pRowid, &terms); |
| 3187 } |
| 3188 |
| 3189 if( rc==SQLITE_OK ){ |
| 3190 /* Write updated doclists to disk. */ |
| 3191 for(e=fts1HashFirst(&terms); e; e=fts1HashNext(e)){ |
| 3192 DocList *p = fts1HashData(e); |
| 3193 rc = index_insert_term(v, fts1HashKey(e), fts1HashKeysize(e), p); |
| 3194 if( rc!=SQLITE_OK ) break; |
| 3195 } |
| 3196 } |
| 3197 |
| 3198 /* clean up */ |
| 3199 for(e=fts1HashFirst(&terms); e; e=fts1HashNext(e)){ |
| 3200 DocList *p = fts1HashData(e); |
| 3201 docListDelete(p); |
| 3202 } |
| 3203 fts1HashClear(&terms); |
| 3204 |
| 3205 return rc; |
| 3206 } |
| 3207 |
| 3208 /* |
| 3209 ** Implementation of the snippet() function for FTS1 |
| 3210 */ |
| 3211 static void snippetFunc( |
| 3212 sqlite3_context *pContext, |
| 3213 int argc, |
| 3214 sqlite3_value **argv |
| 3215 ){ |
| 3216 fulltext_cursor *pCursor; |
| 3217 if( argc<1 ) return; |
| 3218 if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || |
| 3219 sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ |
| 3220 sqlite3_result_error(pContext, "illegal first argument to html_snippet",-1); |
| 3221 }else{ |
| 3222 const char *zStart = "<b>"; |
| 3223 const char *zEnd = "</b>"; |
| 3224 const char *zEllipsis = "<b>...</b>"; |
| 3225 memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); |
| 3226 if( argc>=2 ){ |
| 3227 zStart = (const char*)sqlite3_value_text(argv[1]); |
| 3228 if( argc>=3 ){ |
| 3229 zEnd = (const char*)sqlite3_value_text(argv[2]); |
| 3230 if( argc>=4 ){ |
| 3231 zEllipsis = (const char*)sqlite3_value_text(argv[3]); |
| 3232 } |
| 3233 } |
| 3234 } |
| 3235 snippetAllOffsets(pCursor); |
| 3236 snippetText(pCursor, zStart, zEnd, zEllipsis); |
| 3237 sqlite3_result_text(pContext, pCursor->snippet.zSnippet, |
| 3238 pCursor->snippet.nSnippet, SQLITE_STATIC); |
| 3239 } |
| 3240 } |
| 3241 |
| 3242 /* |
| 3243 ** Implementation of the offsets() function for FTS1 |
| 3244 */ |
| 3245 static void snippetOffsetsFunc( |
| 3246 sqlite3_context *pContext, |
| 3247 int argc, |
| 3248 sqlite3_value **argv |
| 3249 ){ |
| 3250 fulltext_cursor *pCursor; |
| 3251 if( argc<1 ) return; |
| 3252 if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || |
| 3253 sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ |
| 3254 sqlite3_result_error(pContext, "illegal first argument to offsets",-1); |
| 3255 }else{ |
| 3256 memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); |
| 3257 snippetAllOffsets(pCursor); |
| 3258 snippetOffsetText(&pCursor->snippet); |
| 3259 sqlite3_result_text(pContext, |
| 3260 pCursor->snippet.zOffset, pCursor->snippet.nOffset, |
| 3261 SQLITE_STATIC); |
| 3262 } |
| 3263 } |
| 3264 |
| 3265 /* |
| 3266 ** This routine implements the xFindFunction method for the FTS1 |
| 3267 ** virtual table. |
| 3268 */ |
| 3269 static int fulltextFindFunction( |
| 3270 sqlite3_vtab *pVtab, |
| 3271 int nArg, |
| 3272 const char *zName, |
| 3273 void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), |
| 3274 void **ppArg |
| 3275 ){ |
| 3276 if( strcmp(zName,"snippet")==0 ){ |
| 3277 *pxFunc = snippetFunc; |
| 3278 return 1; |
| 3279 }else if( strcmp(zName,"offsets")==0 ){ |
| 3280 *pxFunc = snippetOffsetsFunc; |
| 3281 return 1; |
| 3282 } |
| 3283 return 0; |
| 3284 } |
| 3285 |
| 3286 /* |
| 3287 ** Rename an fts1 table. |
| 3288 */ |
| 3289 static int fulltextRename( |
| 3290 sqlite3_vtab *pVtab, |
| 3291 const char *zName |
| 3292 ){ |
| 3293 fulltext_vtab *p = (fulltext_vtab *)pVtab; |
| 3294 int rc = SQLITE_NOMEM; |
| 3295 char *zSql = sqlite3_mprintf( |
| 3296 "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';" |
| 3297 "ALTER TABLE %Q.'%q_term' RENAME TO '%q_term';" |
| 3298 , p->zDb, p->zName, zName |
| 3299 , p->zDb, p->zName, zName |
| 3300 ); |
| 3301 if( zSql ){ |
| 3302 rc = sqlite3_exec(p->db, zSql, 0, 0, 0); |
| 3303 sqlite3_free(zSql); |
| 3304 } |
| 3305 return rc; |
| 3306 } |
| 3307 |
| 3308 static const sqlite3_module fulltextModule = { |
| 3309 /* iVersion */ 0, |
| 3310 /* xCreate */ fulltextCreate, |
| 3311 /* xConnect */ fulltextConnect, |
| 3312 /* xBestIndex */ fulltextBestIndex, |
| 3313 /* xDisconnect */ fulltextDisconnect, |
| 3314 /* xDestroy */ fulltextDestroy, |
| 3315 /* xOpen */ fulltextOpen, |
| 3316 /* xClose */ fulltextClose, |
| 3317 /* xFilter */ fulltextFilter, |
| 3318 /* xNext */ fulltextNext, |
| 3319 /* xEof */ fulltextEof, |
| 3320 /* xColumn */ fulltextColumn, |
| 3321 /* xRowid */ fulltextRowid, |
| 3322 /* xUpdate */ fulltextUpdate, |
| 3323 /* xBegin */ 0, |
| 3324 /* xSync */ 0, |
| 3325 /* xCommit */ 0, |
| 3326 /* xRollback */ 0, |
| 3327 /* xFindFunction */ fulltextFindFunction, |
| 3328 /* xRename */ fulltextRename, |
| 3329 }; |
| 3330 |
| 3331 int sqlite3Fts1Init(sqlite3 *db){ |
| 3332 sqlite3_overload_function(db, "snippet", -1); |
| 3333 sqlite3_overload_function(db, "offsets", -1); |
| 3334 return sqlite3_create_module(db, "fts1", &fulltextModule, 0); |
| 3335 } |
| 3336 |
| 3337 #if !SQLITE_CORE |
| 3338 int sqlite3_extension_init(sqlite3 *db, char **pzErrMsg, |
| 3339 const sqlite3_api_routines *pApi){ |
| 3340 SQLITE_EXTENSION_INIT2(pApi) |
| 3341 return sqlite3Fts1Init(db); |
| 3342 } |
| 3343 #endif |
| 3344 |
| 3345 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1) */ |
OLD | NEW |