| Index: Source/core/rendering/RenderGrid.cpp
|
| diff --git a/Source/core/rendering/RenderGrid.cpp b/Source/core/rendering/RenderGrid.cpp
|
| deleted file mode 100644
|
| index e7ddd3c058ae151307e396b80013081388cbcdb8..0000000000000000000000000000000000000000
|
| --- a/Source/core/rendering/RenderGrid.cpp
|
| +++ /dev/null
|
| @@ -1,1754 +0,0 @@
|
| -/*
|
| - * Copyright (C) 2011 Apple Inc. All rights reserved.
|
| - *
|
| - * Redistribution and use in source and binary forms, with or without
|
| - * modification, are permitted provided that the following conditions
|
| - * are met:
|
| - * 1. Redistributions of source code must retain the above copyright
|
| - * notice, this list of conditions and the following disclaimer.
|
| - * 2. Redistributions in binary form must reproduce the above copyright
|
| - * notice, this list of conditions and the following disclaimer in the
|
| - * documentation and/or other materials provided with the distribution.
|
| - *
|
| - * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
|
| - * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
| - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
| - * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
|
| - * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
| - * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
| - * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
| - * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
| - * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| - * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| - */
|
| -
|
| -#include "config.h"
|
| -#include "core/rendering/RenderGrid.h"
|
| -
|
| -#include "core/layout/Layer.h"
|
| -#include "core/layout/TextAutosizer.h"
|
| -#include "core/layout/style/GridCoordinate.h"
|
| -#include "core/layout/style/LayoutStyle.h"
|
| -#include "core/paint/GridPainter.h"
|
| -#include "core/rendering/RenderView.h"
|
| -#include "platform/LengthFunctions.h"
|
| -
|
| -namespace blink {
|
| -
|
| -static const int infinity = -1;
|
| -
|
| -class GridTrack {
|
| -public:
|
| - GridTrack()
|
| - : m_baseSize(0)
|
| - , m_growthLimit(0)
|
| - , m_plannedIncrease(0)
|
| - {
|
| - }
|
| -
|
| - const LayoutUnit& baseSize() const
|
| - {
|
| - ASSERT(isGrowthLimitBiggerThanBaseSize());
|
| - return m_baseSize;
|
| - }
|
| -
|
| - const LayoutUnit& growthLimit() const
|
| - {
|
| - ASSERT(isGrowthLimitBiggerThanBaseSize());
|
| - return m_growthLimit;
|
| - }
|
| -
|
| - void setBaseSize(LayoutUnit baseSize)
|
| - {
|
| - m_baseSize = baseSize;
|
| - ensureGrowthLimitIsBiggerThanBaseSize();
|
| - }
|
| -
|
| - void setGrowthLimit(LayoutUnit growthLimit)
|
| - {
|
| - m_growthLimit = growthLimit;
|
| - ensureGrowthLimitIsBiggerThanBaseSize();
|
| - }
|
| -
|
| - void growBaseSize(LayoutUnit growth)
|
| - {
|
| - ASSERT(growth >= 0);
|
| - m_baseSize += growth;
|
| - ensureGrowthLimitIsBiggerThanBaseSize();
|
| - }
|
| -
|
| - void growGrowthLimit(LayoutUnit growth)
|
| - {
|
| - ASSERT(growth >= 0);
|
| - if (m_growthLimit == infinity)
|
| - m_growthLimit = m_baseSize + growth;
|
| - else
|
| - m_growthLimit += growth;
|
| -
|
| - ASSERT(m_growthLimit >= m_baseSize);
|
| - }
|
| -
|
| - bool growthLimitIsInfinite() const
|
| - {
|
| - return m_growthLimit == infinity;
|
| - }
|
| -
|
| - const LayoutUnit& growthLimitIfNotInfinite() const
|
| - {
|
| - ASSERT(isGrowthLimitBiggerThanBaseSize());
|
| - return (m_growthLimit == infinity) ? m_baseSize : m_growthLimit;
|
| - }
|
| -
|
| - const LayoutUnit& plannedIncrease() const { return m_plannedIncrease; }
|
| -
|
| - void growPlannedIncrease(const LayoutUnit& plannedIncrease)
|
| - {
|
| - ASSERT(plannedIncrease >= 0);
|
| - m_plannedIncrease += plannedIncrease;
|
| - }
|
| -
|
| - void updateFromPlannedIncrease(RenderGrid::AccumulatorGrowFunction trackGrowthFunction)
|
| - {
|
| - if (m_plannedIncrease == 0)
|
| - return;
|
| -
|
| - (this->*trackGrowthFunction)(m_plannedIncrease);
|
| - m_plannedIncrease = 0;
|
| - }
|
| -
|
| -private:
|
| - bool isGrowthLimitBiggerThanBaseSize() const { return growthLimitIsInfinite() || m_growthLimit >= m_baseSize; }
|
| -
|
| - void ensureGrowthLimitIsBiggerThanBaseSize()
|
| - {
|
| - if (m_growthLimit != infinity && m_growthLimit < m_baseSize)
|
| - m_growthLimit = m_baseSize;
|
| - }
|
| -
|
| - LayoutUnit m_baseSize;
|
| - LayoutUnit m_growthLimit;
|
| - LayoutUnit m_plannedIncrease;
|
| -};
|
| -
|
| -struct GridTrackForNormalization {
|
| - GridTrackForNormalization(const GridTrack& track, double flex)
|
| - : m_track(&track)
|
| - , m_flex(flex)
|
| - , m_normalizedFlexValue(track.baseSize() / flex)
|
| - {
|
| - }
|
| -
|
| - // Required by std::sort.
|
| - GridTrackForNormalization& operator=(const GridTrackForNormalization& o)
|
| - {
|
| - m_track = o.m_track;
|
| - m_flex = o.m_flex;
|
| - m_normalizedFlexValue = o.m_normalizedFlexValue;
|
| - return *this;
|
| - }
|
| -
|
| - const GridTrack* m_track;
|
| - double m_flex;
|
| - LayoutUnit m_normalizedFlexValue;
|
| -};
|
| -
|
| -class RenderGrid::GridIterator {
|
| - WTF_MAKE_NONCOPYABLE(GridIterator);
|
| -public:
|
| - // |direction| is the direction that is fixed to |fixedTrackIndex| so e.g
|
| - // GridIterator(m_grid, ForColumns, 1) will walk over the rows of the 2nd column.
|
| - GridIterator(const GridRepresentation& grid, GridTrackSizingDirection direction, size_t fixedTrackIndex, size_t varyingTrackIndex = 0)
|
| - : m_grid(grid)
|
| - , m_direction(direction)
|
| - , m_rowIndex((direction == ForColumns) ? varyingTrackIndex : fixedTrackIndex)
|
| - , m_columnIndex((direction == ForColumns) ? fixedTrackIndex : varyingTrackIndex)
|
| - , m_childIndex(0)
|
| - {
|
| - ASSERT(m_rowIndex < m_grid.size());
|
| - ASSERT(m_columnIndex < m_grid[0].size());
|
| - }
|
| -
|
| - LayoutBox* nextGridItem()
|
| - {
|
| - ASSERT(!m_grid.isEmpty());
|
| -
|
| - size_t& varyingTrackIndex = (m_direction == ForColumns) ? m_rowIndex : m_columnIndex;
|
| - const size_t endOfVaryingTrackIndex = (m_direction == ForColumns) ? m_grid.size() : m_grid[0].size();
|
| - for (; varyingTrackIndex < endOfVaryingTrackIndex; ++varyingTrackIndex) {
|
| - const GridCell& children = m_grid[m_rowIndex][m_columnIndex];
|
| - if (m_childIndex < children.size())
|
| - return children[m_childIndex++];
|
| -
|
| - m_childIndex = 0;
|
| - }
|
| - return 0;
|
| - }
|
| -
|
| - bool checkEmptyCells(size_t rowSpan, size_t columnSpan) const
|
| - {
|
| - // Ignore cells outside current grid as we will grow it later if needed.
|
| - size_t maxRows = std::min(m_rowIndex + rowSpan, m_grid.size());
|
| - size_t maxColumns = std::min(m_columnIndex + columnSpan, m_grid[0].size());
|
| -
|
| - // This adds a O(N^2) behavior that shouldn't be a big deal as we expect spanning areas to be small.
|
| - for (size_t row = m_rowIndex; row < maxRows; ++row) {
|
| - for (size_t column = m_columnIndex; column < maxColumns; ++column) {
|
| - const GridCell& children = m_grid[row][column];
|
| - if (!children.isEmpty())
|
| - return false;
|
| - }
|
| - }
|
| -
|
| - return true;
|
| - }
|
| -
|
| - PassOwnPtr<GridCoordinate> nextEmptyGridArea(size_t fixedTrackSpan, size_t varyingTrackSpan)
|
| - {
|
| - ASSERT(!m_grid.isEmpty());
|
| - ASSERT(fixedTrackSpan >= 1 && varyingTrackSpan >= 1);
|
| -
|
| - size_t rowSpan = (m_direction == ForColumns) ? varyingTrackSpan : fixedTrackSpan;
|
| - size_t columnSpan = (m_direction == ForColumns) ? fixedTrackSpan : varyingTrackSpan;
|
| -
|
| - size_t& varyingTrackIndex = (m_direction == ForColumns) ? m_rowIndex : m_columnIndex;
|
| - const size_t endOfVaryingTrackIndex = (m_direction == ForColumns) ? m_grid.size() : m_grid[0].size();
|
| - for (; varyingTrackIndex < endOfVaryingTrackIndex; ++varyingTrackIndex) {
|
| - if (checkEmptyCells(rowSpan, columnSpan)) {
|
| - OwnPtr<GridCoordinate> result = adoptPtr(new GridCoordinate(GridSpan(m_rowIndex, m_rowIndex + rowSpan - 1), GridSpan(m_columnIndex, m_columnIndex + columnSpan - 1)));
|
| - // Advance the iterator to avoid an infinite loop where we would return the same grid area over and over.
|
| - ++varyingTrackIndex;
|
| - return result.release();
|
| - }
|
| - }
|
| - return nullptr;
|
| - }
|
| -
|
| -private:
|
| - const GridRepresentation& m_grid;
|
| - GridTrackSizingDirection m_direction;
|
| - size_t m_rowIndex;
|
| - size_t m_columnIndex;
|
| - size_t m_childIndex;
|
| -};
|
| -
|
| -struct RenderGrid::GridSizingData {
|
| - WTF_MAKE_NONCOPYABLE(GridSizingData);
|
| - STACK_ALLOCATED();
|
| -public:
|
| - GridSizingData(size_t gridColumnCount, size_t gridRowCount)
|
| - : columnTracks(gridColumnCount)
|
| - , rowTracks(gridRowCount)
|
| - {
|
| - }
|
| -
|
| - Vector<GridTrack> columnTracks;
|
| - Vector<GridTrack> rowTracks;
|
| - Vector<size_t> contentSizedTracksIndex;
|
| -
|
| - // Performance optimization: hold onto these Vectors until the end of Layout to avoid repeated malloc / free.
|
| - Vector<GridTrack*> filteredTracks;
|
| - Vector<GridItemWithSpan> itemsSortedByIncreasingSpan;
|
| - Vector<GridTrack*> growBeyondGrowthLimitsTracks;
|
| -};
|
| -
|
| -RenderGrid::RenderGrid(Element* element)
|
| - : RenderBlock(element)
|
| - , m_gridIsDirty(true)
|
| - , m_orderIterator(this)
|
| -{
|
| - ASSERT(!childrenInline());
|
| -}
|
| -
|
| -RenderGrid::~RenderGrid()
|
| -{
|
| -}
|
| -
|
| -void RenderGrid::addChild(LayoutObject* newChild, LayoutObject* beforeChild)
|
| -{
|
| - RenderBlock::addChild(newChild, beforeChild);
|
| -
|
| - if (gridIsDirty())
|
| - return;
|
| -
|
| - // The grid needs to be recomputed as it might contain auto-placed items that will change their position.
|
| - dirtyGrid();
|
| - return;
|
| -}
|
| -
|
| -void RenderGrid::removeChild(LayoutObject* child)
|
| -{
|
| - RenderBlock::removeChild(child);
|
| -
|
| - if (gridIsDirty())
|
| - return;
|
| -
|
| - // The grid needs to be recomputed as it might contain auto-placed items that will change their position.
|
| - dirtyGrid();
|
| - return;
|
| -}
|
| -
|
| -void RenderGrid::styleDidChange(StyleDifference diff, const LayoutStyle* oldStyle)
|
| -{
|
| - RenderBlock::styleDidChange(diff, oldStyle);
|
| - if (!oldStyle)
|
| - return;
|
| -
|
| - // FIXME: The following checks could be narrowed down if we kept track of which type of grid items we have:
|
| - // - explicit grid size changes impact negative explicitely positioned and auto-placed grid items.
|
| - // - named grid lines only impact grid items with named grid lines.
|
| - // - auto-flow changes only impacts auto-placed children.
|
| -
|
| - if (explicitGridDidResize(*oldStyle)
|
| - || namedGridLinesDefinitionDidChange(*oldStyle)
|
| - || oldStyle->gridAutoFlow() != styleRef().gridAutoFlow())
|
| - dirtyGrid();
|
| -}
|
| -
|
| -bool RenderGrid::explicitGridDidResize(const LayoutStyle& oldStyle) const
|
| -{
|
| - return oldStyle.gridTemplateColumns().size() != styleRef().gridTemplateColumns().size()
|
| - || oldStyle.gridTemplateRows().size() != styleRef().gridTemplateRows().size();
|
| -}
|
| -
|
| -bool RenderGrid::namedGridLinesDefinitionDidChange(const LayoutStyle& oldStyle) const
|
| -{
|
| - return oldStyle.namedGridRowLines() != styleRef().namedGridRowLines()
|
| - || oldStyle.namedGridColumnLines() != styleRef().namedGridColumnLines();
|
| -}
|
| -
|
| -void RenderGrid::layoutBlock(bool relayoutChildren)
|
| -{
|
| - ASSERT(needsLayout());
|
| -
|
| - if (!relayoutChildren && simplifiedLayout())
|
| - return;
|
| -
|
| - // FIXME: Much of this method is boiler plate that matches LayoutBox::layoutBlock and Render*FlexibleBox::layoutBlock.
|
| - // It would be nice to refactor some of the duplicate code.
|
| - {
|
| - // LayoutState needs this deliberate scope to pop before updating scroll information (which
|
| - // may trigger relayout).
|
| - LayoutState state(*this, locationOffset());
|
| -
|
| - LayoutSize previousSize = size();
|
| -
|
| - setLogicalHeight(0);
|
| - updateLogicalWidth();
|
| -
|
| - TextAutosizer::LayoutScope textAutosizerLayoutScope(this);
|
| -
|
| - layoutGridItems();
|
| -
|
| - LayoutUnit oldClientAfterEdge = clientLogicalBottom();
|
| - updateLogicalHeight();
|
| -
|
| - if (size() != previousSize)
|
| - relayoutChildren = true;
|
| -
|
| - layoutPositionedObjects(relayoutChildren || isDocumentElement());
|
| -
|
| - computeOverflow(oldClientAfterEdge);
|
| - }
|
| -
|
| - updateLayerTransformAfterLayout();
|
| -
|
| - // Update our scroll information if we're overflow:auto/scroll/hidden now that we know if
|
| - // we overflow or not.
|
| - if (hasOverflowClip())
|
| - layer()->scrollableArea()->updateAfterLayout();
|
| -
|
| - clearNeedsLayout();
|
| -}
|
| -
|
| -void RenderGrid::computeIntrinsicLogicalWidths(LayoutUnit& minLogicalWidth, LayoutUnit& maxLogicalWidth) const
|
| -{
|
| - const_cast<RenderGrid*>(this)->placeItemsOnGrid();
|
| -
|
| - GridSizingData sizingData(gridColumnCount(), gridRowCount());
|
| - LayoutUnit availableLogicalSpace = 0;
|
| - const_cast<RenderGrid*>(this)->computeUsedBreadthOfGridTracks(ForColumns, sizingData, availableLogicalSpace);
|
| -
|
| - for (const auto& column : sizingData.columnTracks) {
|
| - const LayoutUnit& minTrackBreadth = column.baseSize();
|
| - const LayoutUnit& maxTrackBreadth = column.growthLimit();
|
| -
|
| - minLogicalWidth += minTrackBreadth;
|
| - maxLogicalWidth += maxTrackBreadth;
|
| -
|
| - LayoutUnit scrollbarWidth = intrinsicScrollbarLogicalWidth();
|
| - maxLogicalWidth += scrollbarWidth;
|
| - minLogicalWidth += scrollbarWidth;
|
| - }
|
| -}
|
| -
|
| -void RenderGrid::computePreferredLogicalWidths()
|
| -{
|
| - ASSERT(preferredLogicalWidthsDirty());
|
| -
|
| - m_minPreferredLogicalWidth = 0;
|
| - m_maxPreferredLogicalWidth = 0;
|
| -
|
| - // FIXME: We don't take our own logical width into account. Once we do, we need to make sure
|
| - // we apply (and test the interaction with) min-width / max-width.
|
| -
|
| - computeIntrinsicLogicalWidths(m_minPreferredLogicalWidth, m_maxPreferredLogicalWidth);
|
| -
|
| - LayoutUnit borderAndPaddingInInlineDirection = borderAndPaddingLogicalWidth();
|
| - m_minPreferredLogicalWidth += borderAndPaddingInInlineDirection;
|
| - m_maxPreferredLogicalWidth += borderAndPaddingInInlineDirection;
|
| -
|
| - clearPreferredLogicalWidthsDirty();
|
| -}
|
| -
|
| -void RenderGrid::computeUsedBreadthOfGridTracks(GridTrackSizingDirection direction, GridSizingData& sizingData)
|
| -{
|
| - LayoutUnit availableLogicalSpace = (direction == ForColumns) ? availableLogicalWidth() : availableLogicalHeight(IncludeMarginBorderPadding);
|
| - computeUsedBreadthOfGridTracks(direction, sizingData, availableLogicalSpace);
|
| -}
|
| -
|
| -bool RenderGrid::gridElementIsShrinkToFit()
|
| -{
|
| - return isFloatingOrOutOfFlowPositioned();
|
| -}
|
| -
|
| -void RenderGrid::computeUsedBreadthOfGridTracks(GridTrackSizingDirection direction, GridSizingData& sizingData, LayoutUnit& freeSpace)
|
| -{
|
| - const LayoutUnit initialFreeSpace = freeSpace;
|
| - Vector<GridTrack>& tracks = (direction == ForColumns) ? sizingData.columnTracks : sizingData.rowTracks;
|
| - Vector<size_t> flexibleSizedTracksIndex;
|
| - sizingData.contentSizedTracksIndex.shrink(0);
|
| -
|
| - // 1. Initialize per Grid track variables.
|
| - for (size_t i = 0; i < tracks.size(); ++i) {
|
| - GridTrack& track = tracks[i];
|
| - GridTrackSize trackSize = gridTrackSize(direction, i);
|
| - const GridLength& minTrackBreadth = trackSize.minTrackBreadth();
|
| - const GridLength& maxTrackBreadth = trackSize.maxTrackBreadth();
|
| -
|
| - track.setBaseSize(computeUsedBreadthOfMinLength(direction, minTrackBreadth));
|
| - track.setGrowthLimit(computeUsedBreadthOfMaxLength(direction, maxTrackBreadth, track.baseSize()));
|
| -
|
| - if (trackSize.isContentSized())
|
| - sizingData.contentSizedTracksIndex.append(i);
|
| - if (trackSize.maxTrackBreadth().isFlex())
|
| - flexibleSizedTracksIndex.append(i);
|
| - }
|
| -
|
| - // 2. Resolve content-based TrackSizingFunctions.
|
| - if (!sizingData.contentSizedTracksIndex.isEmpty())
|
| - resolveContentBasedTrackSizingFunctions(direction, sizingData, freeSpace);
|
| -
|
| - for (const auto& track: tracks) {
|
| - ASSERT(!track.growthLimitIsInfinite());
|
| - freeSpace -= track.baseSize();
|
| - }
|
| -
|
| - const bool hasUndefinedRemainingSpace = (direction == ForRows) ? style()->logicalHeight().isAuto() : gridElementIsShrinkToFit();
|
| -
|
| - if (!hasUndefinedRemainingSpace && freeSpace <= 0)
|
| - return;
|
| -
|
| - // 3. Grow all Grid tracks in GridTracks from their baseSize up to their growthLimit value until freeSpace is exhausted.
|
| - const size_t tracksSize = tracks.size();
|
| - if (!hasUndefinedRemainingSpace) {
|
| - Vector<GridTrack*> tracksForDistribution(tracksSize);
|
| - for (size_t i = 0; i < tracksSize; ++i)
|
| - tracksForDistribution[i] = tracks.data() + i;
|
| -
|
| - distributeSpaceToTracks(tracksForDistribution, nullptr, &GridTrack::baseSize, &GridTrack::growBaseSize, sizingData, freeSpace);
|
| - } else {
|
| - for (auto& track : tracks)
|
| - track.setBaseSize(track.growthLimit());
|
| - }
|
| -
|
| - if (flexibleSizedTracksIndex.isEmpty())
|
| - return;
|
| -
|
| - // 4. Grow all Grid tracks having a fraction as the MaxTrackSizingFunction.
|
| - double normalizedFractionBreadth = 0;
|
| - if (!hasUndefinedRemainingSpace) {
|
| - normalizedFractionBreadth = computeNormalizedFractionBreadth(tracks, GridSpan(0, tracks.size() - 1), direction, initialFreeSpace);
|
| - } else {
|
| - for (const auto& trackIndex : flexibleSizedTracksIndex) {
|
| - GridTrackSize trackSize = gridTrackSize(direction, trackIndex);
|
| - normalizedFractionBreadth = std::max(normalizedFractionBreadth, tracks[trackIndex].baseSize() / trackSize.maxTrackBreadth().flex());
|
| - }
|
| -
|
| - for (size_t i = 0; i < flexibleSizedTracksIndex.size(); ++i) {
|
| - GridIterator iterator(m_grid, direction, flexibleSizedTracksIndex[i]);
|
| - while (LayoutBox* gridItem = iterator.nextGridItem()) {
|
| - const GridCoordinate coordinate = cachedGridCoordinate(*gridItem);
|
| - const GridSpan span = (direction == ForColumns) ? coordinate.columns : coordinate.rows;
|
| -
|
| - // Do not include already processed items.
|
| - if (i > 0 && span.resolvedInitialPosition.toInt() <= flexibleSizedTracksIndex[i - 1])
|
| - continue;
|
| -
|
| - double itemNormalizedFlexBreadth = computeNormalizedFractionBreadth(tracks, span, direction, maxContentForChild(*gridItem, direction, sizingData.columnTracks));
|
| - normalizedFractionBreadth = std::max(normalizedFractionBreadth, itemNormalizedFlexBreadth);
|
| - }
|
| - }
|
| - }
|
| -
|
| - for (const auto& trackIndex : flexibleSizedTracksIndex) {
|
| - GridTrackSize trackSize = gridTrackSize(direction, trackIndex);
|
| -
|
| - LayoutUnit baseSize = std::max<LayoutUnit>(tracks[trackIndex].baseSize(), normalizedFractionBreadth * trackSize.maxTrackBreadth().flex());
|
| - tracks[trackIndex].setBaseSize(baseSize);
|
| - freeSpace -= baseSize;
|
| - }
|
| -
|
| - // FIXME: Should ASSERT flexible tracks exhaust the freeSpace ? (see issue 739613002).
|
| -}
|
| -
|
| -LayoutUnit RenderGrid::computeUsedBreadthOfMinLength(GridTrackSizingDirection direction, const GridLength& gridLength) const
|
| -{
|
| - if (gridLength.isFlex())
|
| - return 0;
|
| -
|
| - const Length& trackLength = gridLength.length();
|
| - ASSERT(!trackLength.isAuto());
|
| - if (trackLength.isSpecified())
|
| - return computeUsedBreadthOfSpecifiedLength(direction, trackLength);
|
| -
|
| - ASSERT(trackLength.isMinContent() || trackLength.isMaxContent());
|
| - return 0;
|
| -}
|
| -
|
| -LayoutUnit RenderGrid::computeUsedBreadthOfMaxLength(GridTrackSizingDirection direction, const GridLength& gridLength, LayoutUnit usedBreadth) const
|
| -{
|
| - if (gridLength.isFlex())
|
| - return usedBreadth;
|
| -
|
| - const Length& trackLength = gridLength.length();
|
| - ASSERT(!trackLength.isAuto());
|
| - if (trackLength.isSpecified()) {
|
| - LayoutUnit computedBreadth = computeUsedBreadthOfSpecifiedLength(direction, trackLength);
|
| - ASSERT(computedBreadth != infinity);
|
| - return computedBreadth;
|
| - }
|
| -
|
| - ASSERT(trackLength.isMinContent() || trackLength.isMaxContent());
|
| - return infinity;
|
| -}
|
| -
|
| -LayoutUnit RenderGrid::computeUsedBreadthOfSpecifiedLength(GridTrackSizingDirection direction, const Length& trackLength) const
|
| -{
|
| - ASSERT(trackLength.isSpecified());
|
| - // FIXME: The -1 here should be replaced by whatever the intrinsic height of the grid is.
|
| - return valueForLength(trackLength, direction == ForColumns ? logicalWidth() : computeContentLogicalHeight(style()->logicalHeight(), -1));
|
| -}
|
| -
|
| -static bool sortByGridNormalizedFlexValue(const GridTrackForNormalization& track1, const GridTrackForNormalization& track2)
|
| -{
|
| - return track1.m_normalizedFlexValue < track2.m_normalizedFlexValue;
|
| -}
|
| -
|
| -double RenderGrid::computeNormalizedFractionBreadth(Vector<GridTrack>& tracks, const GridSpan& tracksSpan, GridTrackSizingDirection direction, LayoutUnit spaceToFill) const
|
| -{
|
| - LayoutUnit allocatedSpace;
|
| - Vector<GridTrackForNormalization> tracksForNormalization;
|
| - for (const auto& resolvedPosition : tracksSpan) {
|
| - GridTrack& track = tracks[resolvedPosition.toInt()];
|
| - allocatedSpace += track.baseSize();
|
| -
|
| - GridTrackSize trackSize = gridTrackSize(direction, resolvedPosition.toInt());
|
| - if (!trackSize.maxTrackBreadth().isFlex())
|
| - continue;
|
| -
|
| - tracksForNormalization.append(GridTrackForNormalization(track, trackSize.maxTrackBreadth().flex()));
|
| - }
|
| -
|
| - // The function is not called if we don't have <flex> grid tracks
|
| - ASSERT(!tracksForNormalization.isEmpty());
|
| -
|
| - std::sort(tracksForNormalization.begin(), tracksForNormalization.end(), sortByGridNormalizedFlexValue);
|
| -
|
| - // These values work together: as we walk over our grid tracks, we increase fractionValueBasedOnGridItemsRatio
|
| - // to match a grid track's usedBreadth to <flex> ratio until the total fractions sized grid tracks wouldn't
|
| - // fit into availableLogicalSpaceIgnoringFractionTracks.
|
| - double accumulatedFractions = 0;
|
| - LayoutUnit fractionValueBasedOnGridItemsRatio = 0;
|
| - LayoutUnit availableLogicalSpaceIgnoringFractionTracks = spaceToFill - allocatedSpace;
|
| -
|
| - for (const auto& track : tracksForNormalization) {
|
| - if (track.m_normalizedFlexValue > fractionValueBasedOnGridItemsRatio) {
|
| - // If the normalized flex value (we ordered |tracksForNormalization| by increasing normalized flex value)
|
| - // will make us overflow our container, then stop. We have the previous step's ratio is the best fit.
|
| - if (track.m_normalizedFlexValue * accumulatedFractions > availableLogicalSpaceIgnoringFractionTracks)
|
| - break;
|
| -
|
| - fractionValueBasedOnGridItemsRatio = track.m_normalizedFlexValue;
|
| - }
|
| -
|
| - accumulatedFractions += track.m_flex;
|
| - // This item was processed so we re-add its used breadth to the available space to accurately count the remaining space.
|
| - availableLogicalSpaceIgnoringFractionTracks += track.m_track->baseSize();
|
| - }
|
| -
|
| - return availableLogicalSpaceIgnoringFractionTracks / accumulatedFractions;
|
| -}
|
| -
|
| -bool RenderGrid::hasDefiniteLogicalSize(GridTrackSizingDirection direction) const
|
| -{
|
| - return (direction == ForRows) ? hasDefiniteLogicalHeight() : hasDefiniteLogicalWidth();
|
| -}
|
| -
|
| -GridTrackSize RenderGrid::gridTrackSize(GridTrackSizingDirection direction, size_t i) const
|
| -{
|
| - bool isForColumns = direction == ForColumns;
|
| - const Vector<GridTrackSize>& trackStyles = isForColumns ? style()->gridTemplateColumns() : style()->gridTemplateRows();
|
| - const GridTrackSize& trackSize = (i >= trackStyles.size()) ? (isForColumns ? style()->gridAutoColumns() : style()->gridAutoRows()) : trackStyles[i];
|
| -
|
| - // If the logical width/height of the grid container is indefinite, percentage values are treated as <auto> (or in
|
| - // the case of minmax() as min-content for the first position and max-content for the second).
|
| - if (!hasDefiniteLogicalSize(direction)) {
|
| - const GridLength& oldMinTrackBreadth = trackSize.minTrackBreadth();
|
| - const GridLength& oldMaxTrackBreadth = trackSize.maxTrackBreadth();
|
| - return GridTrackSize(oldMinTrackBreadth.isPercentage() ? Length(MinContent) : oldMinTrackBreadth, oldMaxTrackBreadth.isPercentage() ? Length(MaxContent) : oldMaxTrackBreadth);
|
| - }
|
| -
|
| - return trackSize;
|
| -}
|
| -
|
| -LayoutUnit RenderGrid::logicalHeightForChild(LayoutBox& child, Vector<GridTrack>& columnTracks)
|
| -{
|
| - SubtreeLayoutScope layoutScope(child);
|
| - LayoutUnit oldOverrideContainingBlockContentLogicalWidth = child.hasOverrideContainingBlockLogicalWidth() ? child.overrideContainingBlockContentLogicalWidth() : LayoutUnit();
|
| - LayoutUnit overrideContainingBlockContentLogicalWidth = gridAreaBreadthForChild(child, ForColumns, columnTracks);
|
| - if (child.style()->logicalHeight().isPercent() || oldOverrideContainingBlockContentLogicalWidth != overrideContainingBlockContentLogicalWidth)
|
| - layoutScope.setNeedsLayout(&child);
|
| -
|
| - child.clearOverrideLogicalContentHeight();
|
| -
|
| - child.setOverrideContainingBlockContentLogicalWidth(overrideContainingBlockContentLogicalWidth);
|
| - // If |child| has a percentage logical height, we shouldn't let it override its intrinsic height, which is
|
| - // what we are interested in here. Thus we need to set the override logical height to -1 (no possible resolution).
|
| - child.setOverrideContainingBlockContentLogicalHeight(-1);
|
| - child.layoutIfNeeded();
|
| - return child.logicalHeight() + child.marginLogicalHeight();
|
| -}
|
| -
|
| -LayoutUnit RenderGrid::minContentForChild(LayoutBox& child, GridTrackSizingDirection direction, Vector<GridTrack>& columnTracks)
|
| -{
|
| - bool hasOrthogonalWritingMode = child.isHorizontalWritingMode() != isHorizontalWritingMode();
|
| - // FIXME: Properly support orthogonal writing mode.
|
| - if (hasOrthogonalWritingMode)
|
| - return 0;
|
| -
|
| - if (direction == ForColumns) {
|
| - // FIXME: It's unclear if we should return the intrinsic width or the preferred width.
|
| - // See http://lists.w3.org/Archives/Public/www-style/2013Jan/0245.html
|
| - return child.minPreferredLogicalWidth() + marginIntrinsicLogicalWidthForChild(child);
|
| - }
|
| -
|
| - return logicalHeightForChild(child, columnTracks);
|
| -}
|
| -
|
| -LayoutUnit RenderGrid::maxContentForChild(LayoutBox& child, GridTrackSizingDirection direction, Vector<GridTrack>& columnTracks)
|
| -{
|
| - bool hasOrthogonalWritingMode = child.isHorizontalWritingMode() != isHorizontalWritingMode();
|
| - // FIXME: Properly support orthogonal writing mode.
|
| - if (hasOrthogonalWritingMode)
|
| - return LayoutUnit();
|
| -
|
| - if (direction == ForColumns) {
|
| - // FIXME: It's unclear if we should return the intrinsic width or the preferred width.
|
| - // See http://lists.w3.org/Archives/Public/www-style/2013Jan/0245.html
|
| - return child.maxPreferredLogicalWidth() + marginIntrinsicLogicalWidthForChild(child);
|
| - }
|
| -
|
| - return logicalHeightForChild(child, columnTracks);
|
| -}
|
| -
|
| -// We're basically using a class instead of a std::pair for two reasons. First of all, accessing gridItem() or
|
| -// coordinate() is much more self-explanatory that using .first or .second members in the pair. Secondly the class
|
| -// allows us to precompute the value of the span, something which is quite convenient for the sorting. Having a
|
| -// std::pair<LayoutBox*, size_t> does not work either because we still need the GridCoordinate so we'd have to add an
|
| -// extra hash lookup for each item at the beginning of RenderGrid::resolveContentBasedTrackSizingFunctionsForItems().
|
| -class GridItemWithSpan {
|
| -public:
|
| - GridItemWithSpan(LayoutBox& gridItem, const GridCoordinate& coordinate, GridTrackSizingDirection direction)
|
| - : m_gridItem(&gridItem)
|
| - , m_coordinate(coordinate)
|
| - {
|
| - const GridSpan& span = (direction == ForRows) ? coordinate.rows : coordinate.columns;
|
| - m_span = span.resolvedFinalPosition.toInt() - span.resolvedInitialPosition.toInt() + 1;
|
| - }
|
| -
|
| - LayoutBox& gridItem() const { return *m_gridItem; }
|
| - GridCoordinate coordinate() const { return m_coordinate; }
|
| -#if ENABLE(ASSERT)
|
| - size_t span() const { return m_span; }
|
| -#endif
|
| -
|
| - bool operator<(const GridItemWithSpan other) const { return m_span < other.m_span; }
|
| -
|
| -private:
|
| - LayoutBox* m_gridItem;
|
| - GridCoordinate m_coordinate;
|
| - size_t m_span;
|
| -};
|
| -
|
| -bool RenderGrid::spanningItemCrossesFlexibleSizedTracks(const GridCoordinate& coordinate, GridTrackSizingDirection direction) const
|
| -{
|
| - const GridResolvedPosition initialTrackPosition = (direction == ForColumns) ? coordinate.columns.resolvedInitialPosition : coordinate.rows.resolvedInitialPosition;
|
| - const GridResolvedPosition finalTrackPosition = (direction == ForColumns) ? coordinate.columns.resolvedFinalPosition : coordinate.rows.resolvedFinalPosition;
|
| -
|
| - for (GridResolvedPosition trackPosition = initialTrackPosition; trackPosition <= finalTrackPosition; ++trackPosition) {
|
| - const GridTrackSize& trackSize = gridTrackSize(direction, trackPosition.toInt());
|
| - if (trackSize.minTrackBreadth().isFlex() || trackSize.maxTrackBreadth().isFlex())
|
| - return true;
|
| - }
|
| -
|
| - return false;
|
| -}
|
| -
|
| -static inline size_t integerSpanForDirection(const GridCoordinate& coordinate, GridTrackSizingDirection direction)
|
| -{
|
| - return (direction == ForRows) ? coordinate.rows.integerSpan() : coordinate.columns.integerSpan();
|
| -}
|
| -
|
| -void RenderGrid::resolveContentBasedTrackSizingFunctions(GridTrackSizingDirection direction, GridSizingData& sizingData, LayoutUnit& availableLogicalSpace)
|
| -{
|
| - sizingData.itemsSortedByIncreasingSpan.shrink(0);
|
| - HashSet<LayoutBox*> itemsSet;
|
| - for (const auto& trackIndex : sizingData.contentSizedTracksIndex) {
|
| - GridIterator iterator(m_grid, direction, trackIndex);
|
| - GridTrack& track = (direction == ForColumns) ? sizingData.columnTracks[trackIndex] : sizingData.rowTracks[trackIndex];
|
| - while (LayoutBox* gridItem = iterator.nextGridItem()) {
|
| - if (itemsSet.add(gridItem).isNewEntry) {
|
| - const GridCoordinate& coordinate = cachedGridCoordinate(*gridItem);
|
| - if (integerSpanForDirection(coordinate, direction) == 1) {
|
| - resolveContentBasedTrackSizingFunctionsForNonSpanningItems(direction, coordinate, *gridItem, track, sizingData.columnTracks);
|
| - } else if (!spanningItemCrossesFlexibleSizedTracks(coordinate, direction)) {
|
| - sizingData.itemsSortedByIncreasingSpan.append(GridItemWithSpan(*gridItem, coordinate, direction));
|
| - }
|
| - }
|
| - }
|
| - }
|
| - std::sort(sizingData.itemsSortedByIncreasingSpan.begin(), sizingData.itemsSortedByIncreasingSpan.end());
|
| -
|
| - Vector<GridItemWithSpan>::iterator end = sizingData.itemsSortedByIncreasingSpan.end();
|
| - for (Vector<GridItemWithSpan>::iterator it = sizingData.itemsSortedByIncreasingSpan.begin(); it != end; ++it) {
|
| - GridItemWithSpan itemWithSpan = *it;
|
| - resolveContentBasedTrackSizingFunctionsForItems(direction, sizingData, itemWithSpan, &GridTrackSize::hasMinOrMaxContentMinTrackBreadth, &RenderGrid::minContentForChild, &GridTrack::baseSize, &GridTrack::growBaseSize, &GridTrackSize::hasMinContentMinTrackBreadthAndMinOrMaxContentMaxTrackBreadth);
|
| - resolveContentBasedTrackSizingFunctionsForItems(direction, sizingData, itemWithSpan, &GridTrackSize::hasMaxContentMinTrackBreadth, &RenderGrid::maxContentForChild, &GridTrack::baseSize, &GridTrack::growBaseSize, &GridTrackSize::hasMaxContentMinTrackBreadthAndMaxContentMaxTrackBreadth);
|
| - resolveContentBasedTrackSizingFunctionsForItems(direction, sizingData, itemWithSpan, &GridTrackSize::hasMinOrMaxContentMaxTrackBreadth, &RenderGrid::minContentForChild, &GridTrack::growthLimitIfNotInfinite, &GridTrack::growGrowthLimit);
|
| - resolveContentBasedTrackSizingFunctionsForItems(direction, sizingData, itemWithSpan, &GridTrackSize::hasMaxContentMaxTrackBreadth, &RenderGrid::maxContentForChild, &GridTrack::growthLimitIfNotInfinite, &GridTrack::growGrowthLimit);
|
| - }
|
| -
|
| - for (const auto& trackIndex : sizingData.contentSizedTracksIndex) {
|
| - GridTrack& track = (direction == ForColumns) ? sizingData.columnTracks[trackIndex] : sizingData.rowTracks[trackIndex];
|
| - if (track.growthLimitIsInfinite())
|
| - track.setGrowthLimit(track.baseSize());
|
| - }
|
| -}
|
| -
|
| -void RenderGrid::resolveContentBasedTrackSizingFunctionsForNonSpanningItems(GridTrackSizingDirection direction, const GridCoordinate& coordinate, LayoutBox& gridItem, GridTrack& track, Vector<GridTrack>& columnTracks)
|
| -{
|
| - const GridResolvedPosition trackPosition = (direction == ForColumns) ? coordinate.columns.resolvedInitialPosition : coordinate.rows.resolvedInitialPosition;
|
| - GridTrackSize trackSize = gridTrackSize(direction, trackPosition.toInt());
|
| -
|
| - if (trackSize.hasMinContentMinTrackBreadth())
|
| - track.setBaseSize(std::max(track.baseSize(), minContentForChild(gridItem, direction, columnTracks)));
|
| - else if (trackSize.hasMaxContentMinTrackBreadth())
|
| - track.setBaseSize(std::max(track.baseSize(), maxContentForChild(gridItem, direction, columnTracks)));
|
| -
|
| - if (trackSize.hasMinContentMaxTrackBreadth())
|
| - track.setGrowthLimit(std::max(track.growthLimit(), minContentForChild(gridItem, direction, columnTracks)));
|
| - else if (trackSize.hasMaxContentMaxTrackBreadth())
|
| - track.setGrowthLimit(std::max(track.growthLimit(), maxContentForChild(gridItem, direction, columnTracks)));
|
| -}
|
| -
|
| -void RenderGrid::resolveContentBasedTrackSizingFunctionsForItems(GridTrackSizingDirection direction, GridSizingData& sizingData, GridItemWithSpan& gridItemWithSpan, FilterFunction filterFunction, SizingFunction sizingFunction, AccumulatorGetter trackGetter, AccumulatorGrowFunction trackGrowthFunction, FilterFunction growAboveMaxBreadthFilterFunction)
|
| -{
|
| - ASSERT(gridItemWithSpan.span() > 1);
|
| - const GridCoordinate coordinate = gridItemWithSpan.coordinate();
|
| - const GridSpan& itemSpan = (direction == ForColumns) ? coordinate.columns : coordinate.rows;
|
| -
|
| - sizingData.growBeyondGrowthLimitsTracks.shrink(0);
|
| - sizingData.filteredTracks.shrink(0);
|
| - LayoutUnit spanningTracksSize;
|
| - for (const auto& trackPosition : itemSpan) {
|
| - GridTrackSize trackSize = gridTrackSize(direction, trackPosition.toInt());
|
| - GridTrack& track = (direction == ForColumns) ? sizingData.columnTracks[trackPosition.toInt()] : sizingData.rowTracks[trackPosition.toInt()];
|
| - spanningTracksSize += (track.*trackGetter)();
|
| - if (!(trackSize.*filterFunction)())
|
| - continue;
|
| -
|
| - sizingData.filteredTracks.append(&track);
|
| -
|
| - if (!growAboveMaxBreadthFilterFunction || (trackSize.*growAboveMaxBreadthFilterFunction)())
|
| - sizingData.growBeyondGrowthLimitsTracks.append(&track);
|
| - }
|
| -
|
| - if (sizingData.filteredTracks.isEmpty())
|
| - return;
|
| -
|
| - // Specs mandate to floor extraSpace to 0. Instead we directly avoid the function call in those cases as it will be
|
| - // a noop in terms of track sizing.
|
| - LayoutUnit extraSpace = (this->*sizingFunction)(gridItemWithSpan.gridItem(), direction, sizingData.columnTracks) - spanningTracksSize;
|
| - if (extraSpace > 0) {
|
| - Vector<GridTrack*>* tracksToGrowBeyondGrowthLimits = sizingData.growBeyondGrowthLimitsTracks.isEmpty() ? &sizingData.filteredTracks : &sizingData.growBeyondGrowthLimitsTracks;
|
| - distributeSpaceToTracks(sizingData.filteredTracks, tracksToGrowBeyondGrowthLimits, trackGetter, trackGrowthFunction, sizingData, extraSpace);
|
| - }
|
| -}
|
| -
|
| -static bool sortByGridTrackGrowthPotential(const GridTrack* track1, const GridTrack* track2)
|
| -{
|
| - // This check ensures that we respect the irreflexivity property of the strict weak ordering required by std::sort
|
| - // (forall x: NOT x < x).
|
| - if (track1->growthLimitIsInfinite() && track2->growthLimitIsInfinite())
|
| - return false;
|
| -
|
| - if (track1->growthLimitIsInfinite() || track2->growthLimitIsInfinite())
|
| - return track2->growthLimitIsInfinite();
|
| -
|
| - return (track1->growthLimit() - track1->baseSize()) < (track2->growthLimit() - track2->baseSize());
|
| -}
|
| -
|
| -void RenderGrid::distributeSpaceToTracks(Vector<GridTrack*>& tracks, const Vector<GridTrack*>* growBeyondGrowthLimitsTracks, AccumulatorGetter trackGetter, AccumulatorGrowFunction trackGrowthFunction, GridSizingData& sizingData, LayoutUnit& availableLogicalSpace)
|
| -{
|
| - ASSERT(availableLogicalSpace > 0);
|
| - std::sort(tracks.begin(), tracks.end(), sortByGridTrackGrowthPotential);
|
| -
|
| - size_t tracksSize = tracks.size();
|
| - for (size_t i = 0; i < tracksSize; ++i) {
|
| - GridTrack& track = *tracks[i];
|
| - ASSERT(track.plannedIncrease() == 0);
|
| - LayoutUnit availableLogicalSpaceShare = availableLogicalSpace / (tracksSize - i);
|
| - const LayoutUnit& trackBreadth = (track.*trackGetter)();
|
| - LayoutUnit growthShare = track.growthLimitIsInfinite() ? availableLogicalSpaceShare : std::min(availableLogicalSpaceShare, track.growthLimit() - trackBreadth);
|
| - // We should never shrink any grid track or else we can't guarantee we abide by our min-sizing function.
|
| - if (growthShare > 0) {
|
| - track.growPlannedIncrease(growthShare);
|
| - availableLogicalSpace -= growthShare;
|
| - }
|
| - }
|
| -
|
| - if (availableLogicalSpace > 0 && growBeyondGrowthLimitsTracks) {
|
| - size_t tracksGrowingAboveMaxBreadthSize = growBeyondGrowthLimitsTracks->size();
|
| - for (size_t i = 0; i < tracksGrowingAboveMaxBreadthSize; ++i) {
|
| - GridTrack* track = growBeyondGrowthLimitsTracks->at(i);
|
| - LayoutUnit growthShare = availableLogicalSpace / (tracksGrowingAboveMaxBreadthSize - i);
|
| - track->growPlannedIncrease(growthShare);
|
| - availableLogicalSpace -= growthShare;
|
| - }
|
| - }
|
| -
|
| - for (auto* track: tracks) {
|
| - track->updateFromPlannedIncrease(trackGrowthFunction);
|
| - ASSERT(track->plannedIncrease() == 0);
|
| - }
|
| -}
|
| -
|
| -#if ENABLE(ASSERT)
|
| -bool RenderGrid::tracksAreWiderThanMinTrackBreadth(GridTrackSizingDirection direction, const Vector<GridTrack>& tracks)
|
| -{
|
| - for (size_t i = 0; i < tracks.size(); ++i) {
|
| - GridTrackSize trackSize = gridTrackSize(direction, i);
|
| - const GridLength& minTrackBreadth = trackSize.minTrackBreadth();
|
| - if (computeUsedBreadthOfMinLength(direction, minTrackBreadth) > tracks[i].baseSize())
|
| - return false;
|
| - }
|
| - return true;
|
| -}
|
| -#endif
|
| -
|
| -void RenderGrid::ensureGridSize(size_t maximumRowIndex, size_t maximumColumnIndex)
|
| -{
|
| - const size_t oldRowSize = gridRowCount();
|
| - if (maximumRowIndex >= oldRowSize) {
|
| - m_grid.grow(maximumRowIndex + 1);
|
| - for (size_t row = oldRowSize; row < gridRowCount(); ++row)
|
| - m_grid[row].grow(gridColumnCount());
|
| - }
|
| -
|
| - if (maximumColumnIndex >= gridColumnCount()) {
|
| - for (size_t row = 0; row < gridRowCount(); ++row)
|
| - m_grid[row].grow(maximumColumnIndex + 1);
|
| - }
|
| -}
|
| -
|
| -void RenderGrid::insertItemIntoGrid(LayoutBox& child, const GridCoordinate& coordinate)
|
| -{
|
| - ensureGridSize(coordinate.rows.resolvedFinalPosition.toInt(), coordinate.columns.resolvedFinalPosition.toInt());
|
| -
|
| - for (GridSpan::iterator row = coordinate.rows.begin(); row != coordinate.rows.end(); ++row) {
|
| - for (GridSpan::iterator column = coordinate.columns.begin(); column != coordinate.columns.end(); ++column)
|
| - m_grid[row.toInt()][column.toInt()].append(&child);
|
| - }
|
| -
|
| - RELEASE_ASSERT(!m_gridItemCoordinate.contains(&child));
|
| - m_gridItemCoordinate.set(&child, coordinate);
|
| -}
|
| -
|
| -void RenderGrid::placeItemsOnGrid()
|
| -{
|
| - if (!gridIsDirty())
|
| - return;
|
| -
|
| - ASSERT(m_gridItemCoordinate.isEmpty());
|
| -
|
| - populateExplicitGridAndOrderIterator();
|
| -
|
| - // We clear the dirty bit here as the grid sizes have been updated, this means
|
| - // that we can safely call gridRowCount() / gridColumnCount().
|
| - m_gridIsDirty = false;
|
| -
|
| - Vector<LayoutBox*> autoMajorAxisAutoGridItems;
|
| - Vector<LayoutBox*> specifiedMajorAxisAutoGridItems;
|
| - for (LayoutBox* child = m_orderIterator.first(); child; child = m_orderIterator.next()) {
|
| - if (child->isOutOfFlowPositioned())
|
| - continue;
|
| -
|
| - OwnPtr<GridSpan> rowPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *child, ForRows);
|
| - OwnPtr<GridSpan> columnPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *child, ForColumns);
|
| - if (!rowPositions || !columnPositions) {
|
| - GridSpan* majorAxisPositions = (autoPlacementMajorAxisDirection() == ForColumns) ? columnPositions.get() : rowPositions.get();
|
| - if (!majorAxisPositions)
|
| - autoMajorAxisAutoGridItems.append(child);
|
| - else
|
| - specifiedMajorAxisAutoGridItems.append(child);
|
| - continue;
|
| - }
|
| - insertItemIntoGrid(*child, GridCoordinate(*rowPositions, *columnPositions));
|
| - }
|
| -
|
| - ASSERT(gridRowCount() >= GridResolvedPosition::explicitGridRowCount(*style()));
|
| - ASSERT(gridColumnCount() >= GridResolvedPosition::explicitGridColumnCount(*style()));
|
| -
|
| - placeSpecifiedMajorAxisItemsOnGrid(specifiedMajorAxisAutoGridItems);
|
| - placeAutoMajorAxisItemsOnGrid(autoMajorAxisAutoGridItems);
|
| -
|
| - m_grid.shrinkToFit();
|
| -}
|
| -
|
| -void RenderGrid::populateExplicitGridAndOrderIterator()
|
| -{
|
| - OrderIteratorPopulator populator(m_orderIterator);
|
| -
|
| - size_t maximumRowIndex = std::max<size_t>(1, GridResolvedPosition::explicitGridRowCount(*style()));
|
| - size_t maximumColumnIndex = std::max<size_t>(1, GridResolvedPosition::explicitGridColumnCount(*style()));
|
| -
|
| - ASSERT(m_gridItemsIndexesMap.isEmpty());
|
| - size_t childIndex = 0;
|
| - for (LayoutBox* child = firstChildBox(); child; child = child->nextInFlowSiblingBox()) {
|
| - populator.collectChild(child);
|
| - m_gridItemsIndexesMap.set(child, childIndex++);
|
| -
|
| - // This function bypasses the cache (cachedGridCoordinate()) as it is used to build it.
|
| - OwnPtr<GridSpan> rowPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *child, ForRows);
|
| - OwnPtr<GridSpan> columnPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *child, ForColumns);
|
| -
|
| - // |positions| is 0 if we need to run the auto-placement algorithm.
|
| - if (rowPositions) {
|
| - maximumRowIndex = std::max<size_t>(maximumRowIndex, rowPositions->resolvedFinalPosition.next().toInt());
|
| - } else {
|
| - // Grow the grid for items with a definite row span, getting the largest such span.
|
| - GridSpan positions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(*style(), *child, ForRows, GridResolvedPosition(0));
|
| - maximumRowIndex = std::max<size_t>(maximumRowIndex, positions.resolvedFinalPosition.next().toInt());
|
| - }
|
| -
|
| - if (columnPositions) {
|
| - maximumColumnIndex = std::max<size_t>(maximumColumnIndex, columnPositions->resolvedFinalPosition.next().toInt());
|
| - } else {
|
| - // Grow the grid for items with a definite column span, getting the largest such span.
|
| - GridSpan positions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(*style(), *child, ForColumns, GridResolvedPosition(0));
|
| - maximumColumnIndex = std::max<size_t>(maximumColumnIndex, positions.resolvedFinalPosition.next().toInt());
|
| - }
|
| - }
|
| -
|
| - m_grid.grow(maximumRowIndex);
|
| - for (auto& column : m_grid)
|
| - column.grow(maximumColumnIndex);
|
| -}
|
| -
|
| -PassOwnPtr<GridCoordinate> RenderGrid::createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(const LayoutBox& gridItem, GridTrackSizingDirection specifiedDirection, const GridSpan& specifiedPositions) const
|
| -{
|
| - GridTrackSizingDirection crossDirection = specifiedDirection == ForColumns ? ForRows : ForColumns;
|
| - const size_t endOfCrossDirection = crossDirection == ForColumns ? gridColumnCount() : gridRowCount();
|
| - GridSpan crossDirectionPositions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(*style(), gridItem, crossDirection, GridResolvedPosition(endOfCrossDirection));
|
| - return adoptPtr(new GridCoordinate(specifiedDirection == ForColumns ? crossDirectionPositions : specifiedPositions, specifiedDirection == ForColumns ? specifiedPositions : crossDirectionPositions));
|
| -}
|
| -
|
| -void RenderGrid::placeSpecifiedMajorAxisItemsOnGrid(const Vector<LayoutBox*>& autoGridItems)
|
| -{
|
| - bool isForColumns = autoPlacementMajorAxisDirection() == ForColumns;
|
| - bool isGridAutoFlowDense = style()->isGridAutoFlowAlgorithmDense();
|
| -
|
| - // Mapping between the major axis tracks (rows or columns) and the last auto-placed item's position inserted on
|
| - // that track. This is needed to implement "sparse" packing for items locked to a given track.
|
| - // See http://dev.w3.org/csswg/css-grid/#auto-placement-algo
|
| - HashMap<unsigned, unsigned, DefaultHash<unsigned>::Hash, WTF::UnsignedWithZeroKeyHashTraits<unsigned>> minorAxisCursors;
|
| -
|
| - for (const auto& autoGridItem : autoGridItems) {
|
| - OwnPtr<GridSpan> majorAxisPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *autoGridItem, autoPlacementMajorAxisDirection());
|
| - GridSpan minorAxisPositions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(*style(), *autoGridItem, autoPlacementMinorAxisDirection(), GridResolvedPosition(0));
|
| - unsigned majorAxisInitialPosition = majorAxisPositions->resolvedInitialPosition.toInt();
|
| -
|
| - GridIterator iterator(m_grid, autoPlacementMajorAxisDirection(), majorAxisPositions->resolvedInitialPosition.toInt(), isGridAutoFlowDense ? 0 : minorAxisCursors.get(majorAxisInitialPosition));
|
| - OwnPtr<GridCoordinate> emptyGridArea = iterator.nextEmptyGridArea(majorAxisPositions->integerSpan(), minorAxisPositions.integerSpan());
|
| - if (!emptyGridArea)
|
| - emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(*autoGridItem, autoPlacementMajorAxisDirection(), *majorAxisPositions);
|
| - insertItemIntoGrid(*autoGridItem, *emptyGridArea);
|
| -
|
| - if (!isGridAutoFlowDense)
|
| - minorAxisCursors.set(majorAxisInitialPosition, isForColumns ? emptyGridArea->rows.resolvedInitialPosition.toInt() : emptyGridArea->columns.resolvedInitialPosition.toInt());
|
| - }
|
| -}
|
| -
|
| -void RenderGrid::placeAutoMajorAxisItemsOnGrid(const Vector<LayoutBox*>& autoGridItems)
|
| -{
|
| - std::pair<size_t, size_t> autoPlacementCursor = std::make_pair(0, 0);
|
| - bool isGridAutoFlowDense = style()->isGridAutoFlowAlgorithmDense();
|
| -
|
| - for (const auto& autoGridItem : autoGridItems) {
|
| - placeAutoMajorAxisItemOnGrid(*autoGridItem, autoPlacementCursor);
|
| -
|
| - // If grid-auto-flow is dense, reset auto-placement cursor.
|
| - if (isGridAutoFlowDense) {
|
| - autoPlacementCursor.first = 0;
|
| - autoPlacementCursor.second = 0;
|
| - }
|
| - }
|
| -}
|
| -
|
| -void RenderGrid::placeAutoMajorAxisItemOnGrid(LayoutBox& gridItem, std::pair<size_t, size_t>& autoPlacementCursor)
|
| -{
|
| - OwnPtr<GridSpan> minorAxisPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), gridItem, autoPlacementMinorAxisDirection());
|
| - ASSERT(!GridResolvedPosition::resolveGridPositionsFromStyle(*style(), gridItem, autoPlacementMajorAxisDirection()));
|
| - GridSpan majorAxisPositions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(*style(), gridItem, autoPlacementMajorAxisDirection(), GridResolvedPosition(0));
|
| -
|
| - const size_t endOfMajorAxis = (autoPlacementMajorAxisDirection() == ForColumns) ? gridColumnCount() : gridRowCount();
|
| - size_t majorAxisAutoPlacementCursor = autoPlacementMajorAxisDirection() == ForColumns ? autoPlacementCursor.second : autoPlacementCursor.first;
|
| - size_t minorAxisAutoPlacementCursor = autoPlacementMajorAxisDirection() == ForColumns ? autoPlacementCursor.first : autoPlacementCursor.second;
|
| -
|
| - OwnPtr<GridCoordinate> emptyGridArea;
|
| - if (minorAxisPositions) {
|
| - // Move to the next track in major axis if initial position in minor axis is before auto-placement cursor.
|
| - if (minorAxisPositions->resolvedInitialPosition.toInt() < minorAxisAutoPlacementCursor)
|
| - majorAxisAutoPlacementCursor++;
|
| -
|
| - if (majorAxisAutoPlacementCursor < endOfMajorAxis) {
|
| - GridIterator iterator(m_grid, autoPlacementMinorAxisDirection(), minorAxisPositions->resolvedInitialPosition.toInt(), majorAxisAutoPlacementCursor);
|
| - emptyGridArea = iterator.nextEmptyGridArea(minorAxisPositions->integerSpan(), majorAxisPositions.integerSpan());
|
| - }
|
| -
|
| - if (!emptyGridArea)
|
| - emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(gridItem, autoPlacementMinorAxisDirection(), *minorAxisPositions);
|
| - } else {
|
| - GridSpan minorAxisPositions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(*style(), gridItem, autoPlacementMinorAxisDirection(), GridResolvedPosition(0));
|
| -
|
| - for (size_t majorAxisIndex = majorAxisAutoPlacementCursor; majorAxisIndex < endOfMajorAxis; ++majorAxisIndex) {
|
| - GridIterator iterator(m_grid, autoPlacementMajorAxisDirection(), majorAxisIndex, minorAxisAutoPlacementCursor);
|
| - emptyGridArea = iterator.nextEmptyGridArea(majorAxisPositions.integerSpan(), minorAxisPositions.integerSpan());
|
| -
|
| - if (emptyGridArea) {
|
| - // Check that it fits in the minor axis direction, as we shouldn't grow in that direction here (it was already managed in populateExplicitGridAndOrderIterator()).
|
| - GridResolvedPosition minorAxisFinalPositionIndex = autoPlacementMinorAxisDirection() == ForColumns ? emptyGridArea->columns.resolvedFinalPosition : emptyGridArea->rows.resolvedFinalPosition;
|
| - const size_t endOfMinorAxis = autoPlacementMinorAxisDirection() == ForColumns ? gridColumnCount() : gridRowCount();
|
| - if (minorAxisFinalPositionIndex.toInt() < endOfMinorAxis)
|
| - break;
|
| -
|
| - // Discard empty grid area as it does not fit in the minor axis direction.
|
| - // We don't need to create a new empty grid area yet as we might find a valid one in the next iteration.
|
| - emptyGridArea = nullptr;
|
| - }
|
| -
|
| - // As we're moving to the next track in the major axis we should reset the auto-placement cursor in the minor axis.
|
| - minorAxisAutoPlacementCursor = 0;
|
| - }
|
| -
|
| - if (!emptyGridArea)
|
| - emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(gridItem, autoPlacementMinorAxisDirection(), minorAxisPositions);
|
| - }
|
| -
|
| - insertItemIntoGrid(gridItem, *emptyGridArea);
|
| - // Move auto-placement cursor to the new position.
|
| - autoPlacementCursor.first = emptyGridArea->rows.resolvedInitialPosition.toInt();
|
| - autoPlacementCursor.second = emptyGridArea->columns.resolvedInitialPosition.toInt();
|
| -}
|
| -
|
| -GridTrackSizingDirection RenderGrid::autoPlacementMajorAxisDirection() const
|
| -{
|
| - return style()->isGridAutoFlowDirectionColumn() ? ForColumns : ForRows;
|
| -}
|
| -
|
| -GridTrackSizingDirection RenderGrid::autoPlacementMinorAxisDirection() const
|
| -{
|
| - return style()->isGridAutoFlowDirectionColumn() ? ForRows : ForColumns;
|
| -}
|
| -
|
| -void RenderGrid::dirtyGrid()
|
| -{
|
| - // Even if this could be redundant, it could be seen as a defensive strategy against
|
| - // style changes events happening during the layout phase or even while the painting process
|
| - // is still ongoing.
|
| - // Forcing a new layout for the Grid render would cancel any ongoing painting and ensure
|
| - // the grid and its children are correctly laid out according to the new style rules.
|
| - setNeedsLayout();
|
| -
|
| - m_grid.resize(0);
|
| - m_gridItemCoordinate.clear();
|
| - m_gridIsDirty = true;
|
| - m_gridItemsOverflowingGridArea.resize(0);
|
| - m_gridItemsIndexesMap.clear();
|
| -}
|
| -
|
| -void RenderGrid::layoutGridItems()
|
| -{
|
| - placeItemsOnGrid();
|
| -
|
| - LayoutUnit availableSpaceForColumns = availableLogicalWidth();
|
| - LayoutUnit availableSpaceForRows = availableLogicalHeight(IncludeMarginBorderPadding);
|
| - GridSizingData sizingData(gridColumnCount(), gridRowCount());
|
| - computeUsedBreadthOfGridTracks(ForColumns, sizingData, availableSpaceForColumns);
|
| - ASSERT(tracksAreWiderThanMinTrackBreadth(ForColumns, sizingData.columnTracks));
|
| - computeUsedBreadthOfGridTracks(ForRows, sizingData, availableSpaceForRows);
|
| - ASSERT(tracksAreWiderThanMinTrackBreadth(ForRows, sizingData.rowTracks));
|
| -
|
| - populateGridPositions(sizingData, availableSpaceForColumns, availableSpaceForRows);
|
| - m_gridItemsOverflowingGridArea.resize(0);
|
| -
|
| - LayoutUnit columnOffset = contentPositionAndDistributionColumnOffset(availableSpaceForColumns, style()->justifyContent(), style()->justifyContentDistribution(), style()->justifyContentOverflowAlignment(), m_columnPositions.size() - 1);
|
| - LayoutUnit rowOffset = contentPositionAndDistributionRowOffset(availableSpaceForRows, style()->alignContent(), style()->alignContentDistribution(), style()->alignContentOverflowAlignment(), m_rowPositions.size() - 1);
|
| - LayoutSize contentPositionOffset(columnOffset, rowOffset);
|
| -
|
| - for (LayoutBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
|
| - if (child->isOutOfFlowPositioned()) {
|
| - child->containingBlock()->insertPositionedObject(child);
|
| - continue;
|
| - }
|
| -
|
| - // Because the grid area cannot be styled, we don't need to adjust
|
| - // the grid breadth to account for 'box-sizing'.
|
| - LayoutUnit oldOverrideContainingBlockContentLogicalWidth = child->hasOverrideContainingBlockLogicalWidth() ? child->overrideContainingBlockContentLogicalWidth() : LayoutUnit();
|
| - LayoutUnit oldOverrideContainingBlockContentLogicalHeight = child->hasOverrideContainingBlockLogicalHeight() ? child->overrideContainingBlockContentLogicalHeight() : LayoutUnit();
|
| -
|
| - LayoutUnit overrideContainingBlockContentLogicalWidth = gridAreaBreadthForChild(*child, ForColumns, sizingData.columnTracks);
|
| - LayoutUnit overrideContainingBlockContentLogicalHeight = gridAreaBreadthForChild(*child, ForRows, sizingData.rowTracks);
|
| -
|
| - SubtreeLayoutScope layoutScope(*child);
|
| - if (oldOverrideContainingBlockContentLogicalWidth != overrideContainingBlockContentLogicalWidth || (oldOverrideContainingBlockContentLogicalHeight != overrideContainingBlockContentLogicalHeight && child->hasRelativeLogicalHeight()))
|
| - layoutScope.setNeedsLayout(child);
|
| -
|
| - child->setOverrideContainingBlockContentLogicalWidth(overrideContainingBlockContentLogicalWidth);
|
| - child->setOverrideContainingBlockContentLogicalHeight(overrideContainingBlockContentLogicalHeight);
|
| -
|
| - // Stretching logic might force a child layout, so we need to run it before the layoutIfNeeded
|
| - // call to avoid unnecessary relayouts. This might imply that child margins, needed to correctly
|
| - // determine the available space before stretching, are not set yet.
|
| - applyStretchAlignmentToChildIfNeeded(*child, overrideContainingBlockContentLogicalHeight);
|
| -
|
| - child->layoutIfNeeded();
|
| -
|
| -#if ENABLE(ASSERT)
|
| - const GridCoordinate& coordinate = cachedGridCoordinate(*child);
|
| - ASSERT(coordinate.columns.resolvedInitialPosition.toInt() < sizingData.columnTracks.size());
|
| - ASSERT(coordinate.rows.resolvedInitialPosition.toInt() < sizingData.rowTracks.size());
|
| -#endif
|
| - child->setLogicalLocation(findChildLogicalPosition(*child, contentPositionOffset));
|
| -
|
| - // Keep track of children overflowing their grid area as we might need to paint them even if the grid-area is
|
| - // not visible
|
| - if (child->logicalHeight() > overrideContainingBlockContentLogicalHeight
|
| - || child->logicalWidth() > overrideContainingBlockContentLogicalWidth)
|
| - m_gridItemsOverflowingGridArea.append(child);
|
| - }
|
| -
|
| - for (const auto& row : sizingData.rowTracks)
|
| - setLogicalHeight(logicalHeight() + row.baseSize());
|
| -
|
| - // Min / max logical height is handled by the call to updateLogicalHeight in layoutBlock.
|
| -
|
| - setLogicalHeight(logicalHeight() + borderAndPaddingLogicalHeight());
|
| -}
|
| -
|
| -void RenderGrid::layoutPositionedObjects(bool relayoutChildren, PositionedLayoutBehavior info)
|
| -{
|
| - TrackedRendererListHashSet* positionedDescendants = positionedObjects();
|
| - if (!positionedDescendants)
|
| - return;
|
| -
|
| - bool containerHasHorizontalWritingMode = isHorizontalWritingMode();
|
| - for (auto* child : *positionedDescendants) {
|
| - bool hasOrthogonalWritingMode = child->isHorizontalWritingMode() != containerHasHorizontalWritingMode;
|
| - if (hasOrthogonalWritingMode) {
|
| - // FIXME: Properly support orthogonal writing mode.
|
| - continue;
|
| - }
|
| -
|
| - // FIXME: Detect properly if start/end is auto for inexistent named grid lines.
|
| - bool columnStartIsAuto = child->style()->gridColumnStart().isAuto();
|
| - LayoutUnit columnOffset = LayoutUnit(0);
|
| - LayoutUnit columnBreadth = LayoutUnit(0);
|
| - offsetAndBreadthForPositionedChild(*child, ForColumns, columnStartIsAuto, child->style()->gridColumnEnd().isAuto(), columnOffset, columnBreadth);
|
| - bool rowStartIsAuto = child->style()->gridRowStart().isAuto();
|
| - LayoutUnit rowOffset = LayoutUnit(0);
|
| - LayoutUnit rowBreadth = LayoutUnit(0);
|
| - offsetAndBreadthForPositionedChild(*child, ForRows, rowStartIsAuto, child->style()->gridRowEnd().isAuto(), rowOffset, rowBreadth);
|
| -
|
| - child->setOverrideContainingBlockContentLogicalWidth(columnBreadth);
|
| - child->setOverrideContainingBlockContentLogicalHeight(rowBreadth);
|
| - child->setExtraInlineOffset(columnOffset);
|
| - child->setExtraBlockOffset(rowOffset);
|
| -
|
| - if (child->parent() == this) {
|
| - // If column/row start is not auto the padding has been already computed in offsetAndBreadthForPositionedChild().
|
| - Layer* childLayer = child->layer();
|
| - if (columnStartIsAuto)
|
| - childLayer->setStaticInlinePosition(borderAndPaddingStart());
|
| - else
|
| - childLayer->setStaticInlinePosition(borderStart() + columnOffset);
|
| - if (rowStartIsAuto)
|
| - childLayer->setStaticBlockPosition(borderAndPaddingBefore());
|
| - else
|
| - childLayer->setStaticBlockPosition(borderBefore() + rowOffset);
|
| - }
|
| - }
|
| -
|
| - RenderBlock::layoutPositionedObjects(relayoutChildren, info);
|
| -}
|
| -
|
| -void RenderGrid::offsetAndBreadthForPositionedChild(const LayoutBox& child, GridTrackSizingDirection direction, bool startIsAuto, bool endIsAuto, LayoutUnit& offset, LayoutUnit& breadth)
|
| -{
|
| - ASSERT(child.isHorizontalWritingMode() == isHorizontalWritingMode());
|
| -
|
| - OwnPtr<GridSpan> positions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), child, direction);
|
| - if (!positions) {
|
| - offset = LayoutUnit(0);
|
| - breadth = (direction == ForColumns) ? clientLogicalWidth() : clientLogicalHeight();
|
| - return;
|
| - }
|
| -
|
| - GridResolvedPosition firstPosition = GridResolvedPosition(0);
|
| - GridResolvedPosition initialPosition = startIsAuto ? firstPosition : positions->resolvedInitialPosition;
|
| - GridResolvedPosition lastPosition = GridResolvedPosition((direction == ForColumns ? gridColumnCount() : gridRowCount()) - 1);
|
| - GridResolvedPosition finalPosition = endIsAuto ? lastPosition : positions->resolvedFinalPosition;
|
| -
|
| - // Positioned children do not grow the grid, so we need to clamp the positions to avoid ending up outside of it.
|
| - initialPosition = std::min<GridResolvedPosition>(initialPosition, lastPosition);
|
| - finalPosition = std::min<GridResolvedPosition>(finalPosition, lastPosition);
|
| -
|
| - LayoutUnit start = startIsAuto ? LayoutUnit(0) : (direction == ForColumns) ? m_columnPositions[initialPosition.toInt()] : m_rowPositions[initialPosition.toInt()];
|
| - LayoutUnit end = endIsAuto ? (direction == ForColumns) ? logicalWidth() : logicalHeight() : (direction == ForColumns) ? m_columnPositions[finalPosition.next().toInt()] : m_rowPositions[finalPosition.next().toInt()];
|
| -
|
| - breadth = end - start;
|
| -
|
| - if (startIsAuto)
|
| - breadth -= (direction == ForColumns) ? borderStart() : borderBefore();
|
| - else
|
| - start -= ((direction == ForColumns) ? borderStart() : borderBefore());
|
| -
|
| - if (endIsAuto) {
|
| - breadth -= (direction == ForColumns) ? borderEnd() : borderAfter();
|
| - breadth -= scrollbarLogicalWidth();
|
| - }
|
| -
|
| - offset = start;
|
| -}
|
| -
|
| -GridCoordinate RenderGrid::cachedGridCoordinate(const LayoutBox& gridItem) const
|
| -{
|
| - ASSERT(m_gridItemCoordinate.contains(&gridItem));
|
| - return m_gridItemCoordinate.get(&gridItem);
|
| -}
|
| -
|
| -LayoutUnit RenderGrid::gridAreaBreadthForChild(const LayoutBox& child, GridTrackSizingDirection direction, const Vector<GridTrack>& tracks) const
|
| -{
|
| - const GridCoordinate& coordinate = cachedGridCoordinate(child);
|
| - const GridSpan& span = (direction == ForColumns) ? coordinate.columns : coordinate.rows;
|
| - LayoutUnit gridAreaBreadth = 0;
|
| - for (GridSpan::iterator trackPosition = span.begin(); trackPosition != span.end(); ++trackPosition)
|
| - gridAreaBreadth += tracks[trackPosition.toInt()].baseSize();
|
| - return gridAreaBreadth;
|
| -}
|
| -
|
| -void RenderGrid::populateGridPositions(const GridSizingData& sizingData, LayoutUnit availableSpaceForColumns, LayoutUnit availableSpaceForRows)
|
| -{
|
| - unsigned numberOfColumnTracks = sizingData.columnTracks.size();
|
| - unsigned numberOfRowTracks = sizingData.rowTracks.size();
|
| -
|
| - m_columnPositions.resize(numberOfColumnTracks + 1);
|
| - m_columnPositions[0] = borderAndPaddingStart();
|
| - for (unsigned i = 0; i < numberOfColumnTracks; ++i)
|
| - m_columnPositions[i + 1] = m_columnPositions[i] + sizingData.columnTracks[i].baseSize();
|
| -
|
| - m_rowPositions.resize(numberOfRowTracks + 1);
|
| - m_rowPositions[0] = borderAndPaddingBefore();
|
| - for (unsigned i = 0; i < numberOfRowTracks; ++i)
|
| - m_rowPositions[i + 1] = m_rowPositions[i] + sizingData.rowTracks[i].baseSize();
|
| -}
|
| -
|
| -static LayoutUnit computeOverflowAlignmentOffset(OverflowAlignment overflow, LayoutUnit startOfTrack, LayoutUnit endOfTrack, LayoutUnit childBreadth)
|
| -{
|
| - LayoutUnit trackBreadth = endOfTrack - startOfTrack;
|
| - LayoutUnit offset = trackBreadth - childBreadth;
|
| -
|
| - // If overflow is 'safe', we have to make sure we don't overflow the 'start'
|
| - // edge (potentially cause some data loss as the overflow is unreachable).
|
| - if (overflow == OverflowAlignmentSafe)
|
| - offset = std::max<LayoutUnit>(0, offset);
|
| -
|
| - // If we overflow our alignment container and overflow is 'true' (default), we
|
| - // ignore the overflow and just return the value regardless (which may cause data
|
| - // loss as we overflow the 'start' edge).
|
| - return offset;
|
| -}
|
| -
|
| -LayoutUnit RenderGrid::startOfColumnForChild(const LayoutBox& child) const
|
| -{
|
| - const GridCoordinate& coordinate = cachedGridCoordinate(child);
|
| - LayoutUnit startOfColumn = m_columnPositions[coordinate.columns.resolvedInitialPosition.toInt()];
|
| - // The grid items should be inside the grid container's border box, that's why they need to be shifted.
|
| - return startOfColumn + marginStartForChild(child);
|
| -}
|
| -
|
| -LayoutUnit RenderGrid::endOfColumnForChild(const LayoutBox& child) const
|
| -{
|
| - const GridCoordinate& coordinate = cachedGridCoordinate(child);
|
| - LayoutUnit startOfColumn = m_columnPositions[coordinate.columns.resolvedInitialPosition.toInt()];
|
| - // The grid items should be inside the grid container's border box, that's why they need to be shifted.
|
| - LayoutUnit columnPosition = startOfColumn + marginStartForChild(child);
|
| -
|
| - LayoutUnit endOfColumn = m_columnPositions[coordinate.columns.resolvedFinalPosition.next().toInt()];
|
| - // FIXME: This might not work as expected with orthogonal writing-modes.
|
| - LayoutUnit offsetFromColumnPosition = computeOverflowAlignmentOffset(child.style()->justifySelfOverflowAlignment(), startOfColumn, endOfColumn, child.logicalWidth() + child.marginLogicalWidth());
|
| -
|
| - return columnPosition + offsetFromColumnPosition;
|
| -}
|
| -
|
| -LayoutUnit RenderGrid::columnPositionLeft(const LayoutBox& child) const
|
| -{
|
| - if (style()->isLeftToRightDirection())
|
| - return startOfColumnForChild(child);
|
| -
|
| - return endOfColumnForChild(child);
|
| -}
|
| -
|
| -LayoutUnit RenderGrid::columnPositionRight(const LayoutBox& child) const
|
| -{
|
| - if (!style()->isLeftToRightDirection())
|
| - return startOfColumnForChild(child);
|
| -
|
| - return endOfColumnForChild(child);
|
| -}
|
| -
|
| -LayoutUnit RenderGrid::centeredColumnPositionForChild(const LayoutBox& child) const
|
| -{
|
| - const GridCoordinate& coordinate = cachedGridCoordinate(child);
|
| - LayoutUnit startOfColumn = m_columnPositions[coordinate.columns.resolvedInitialPosition.toInt()];
|
| - LayoutUnit endOfColumn = m_columnPositions[coordinate.columns.resolvedFinalPosition.next().toInt()];
|
| - LayoutUnit columnPosition = startOfColumn + marginStartForChild(child);
|
| - // FIXME: This might not work as expected with orthogonal writing-modes.
|
| - LayoutUnit offsetFromColumnPosition = computeOverflowAlignmentOffset(child.style()->justifySelfOverflowAlignment(), startOfColumn, endOfColumn, child.logicalWidth() + child.marginLogicalWidth());
|
| -
|
| - return columnPosition + offsetFromColumnPosition / 2;
|
| -}
|
| -
|
| -LayoutUnit RenderGrid::columnPositionForChild(const LayoutBox& child) const
|
| -{
|
| - bool hasOrthogonalWritingMode = child.isHorizontalWritingMode() != isHorizontalWritingMode();
|
| -
|
| - switch (LayoutStyle::resolveJustification(styleRef(), child.styleRef(), ItemPositionStretch)) {
|
| - case ItemPositionSelfStart:
|
| - // For orthogonal writing-modes, this computes to 'start'
|
| - // FIXME: grid track sizing and positioning do not support orthogonal modes yet.
|
| - if (hasOrthogonalWritingMode)
|
| - return startOfColumnForChild(child);
|
| -
|
| - // self-start is based on the child's direction. That's why we need to check against the grid container's direction.
|
| - if (child.style()->direction() != style()->direction())
|
| - return endOfColumnForChild(child);
|
| -
|
| - return startOfColumnForChild(child);
|
| - case ItemPositionSelfEnd:
|
| - // For orthogonal writing-modes, this computes to 'start'
|
| - // FIXME: grid track sizing and positioning do not support orthogonal modes yet.
|
| - if (hasOrthogonalWritingMode)
|
| - return endOfColumnForChild(child);
|
| -
|
| - // self-end is based on the child's direction. That's why we need to check against the grid container's direction.
|
| - if (child.style()->direction() != style()->direction())
|
| - return startOfColumnForChild(child);
|
| -
|
| - return endOfColumnForChild(child);
|
| - case ItemPositionFlexStart:
|
| - // Only used in flex layout, for other layout, it's equivalent to 'start'.
|
| - return startOfColumnForChild(child);
|
| - case ItemPositionFlexEnd:
|
| - // Only used in flex layout, for other layout, it's equivalent to 'end'.
|
| - return endOfColumnForChild(child);
|
| - case ItemPositionLeft:
|
| - return columnPositionLeft(child);
|
| - case ItemPositionRight:
|
| - return columnPositionRight(child);
|
| - case ItemPositionCenter:
|
| - return centeredColumnPositionForChild(child);
|
| - case ItemPositionStart:
|
| - return startOfColumnForChild(child);
|
| - case ItemPositionEnd:
|
| - return endOfColumnForChild(child);
|
| - case ItemPositionAuto:
|
| - break;
|
| - case ItemPositionStretch:
|
| - return startOfColumnForChild(child);
|
| - case ItemPositionBaseline:
|
| - case ItemPositionLastBaseline:
|
| - // FIXME: Implement the previous values. For now, we always 'start' align the child.
|
| - return startOfColumnForChild(child);
|
| - }
|
| -
|
| - ASSERT_NOT_REACHED();
|
| - return 0;
|
| -}
|
| -
|
| -LayoutUnit RenderGrid::endOfRowForChild(const LayoutBox& child) const
|
| -{
|
| - const GridCoordinate& coordinate = cachedGridCoordinate(child);
|
| -
|
| - LayoutUnit startOfRow = m_rowPositions[coordinate.rows.resolvedInitialPosition.toInt()];
|
| - // The grid items should be inside the grid container's border box, that's why they need to be shifted.
|
| - LayoutUnit rowPosition = startOfRow + marginBeforeForChild(child);
|
| -
|
| - LayoutUnit endOfRow = m_rowPositions[coordinate.rows.resolvedFinalPosition.next().toInt()];
|
| - LayoutUnit offsetFromRowPosition = computeOverflowAlignmentOffset(child.style()->alignSelfOverflowAlignment(), startOfRow, endOfRow, child.logicalHeight() + child.marginLogicalHeight());
|
| -
|
| - return rowPosition + offsetFromRowPosition;
|
| -}
|
| -
|
| -LayoutUnit RenderGrid::startOfRowForChild(const LayoutBox& child) const
|
| -{
|
| - const GridCoordinate& coordinate = cachedGridCoordinate(child);
|
| -
|
| - LayoutUnit startOfRow = m_rowPositions[coordinate.rows.resolvedInitialPosition.toInt()];
|
| - // The grid items should be inside the grid container's border box, that's why they need to be shifted.
|
| - LayoutUnit rowPosition = startOfRow + marginBeforeForChild(child);
|
| -
|
| - return rowPosition;
|
| -}
|
| -
|
| -LayoutUnit RenderGrid::centeredRowPositionForChild(const LayoutBox& child) const
|
| -{
|
| - const GridCoordinate& coordinate = cachedGridCoordinate(child);
|
| -
|
| - // The grid items should be inside the grid container's border box, that's why they need to be shifted.
|
| - LayoutUnit startOfRow = m_rowPositions[coordinate.rows.resolvedInitialPosition.toInt()];
|
| - LayoutUnit endOfRow = m_rowPositions[coordinate.rows.resolvedFinalPosition.next().toInt()];
|
| - LayoutUnit rowPosition = startOfRow + marginBeforeForChild(child);
|
| - LayoutUnit offsetFromRowPosition = computeOverflowAlignmentOffset(child.style()->alignSelfOverflowAlignment(), startOfRow, endOfRow, child.logicalHeight() + child.marginLogicalHeight());
|
| -
|
| - return rowPosition + offsetFromRowPosition / 2;
|
| -}
|
| -
|
| -static inline LayoutUnit constrainedChildIntrinsicContentLogicalHeight(const LayoutBox& child)
|
| -{
|
| - LayoutUnit childIntrinsicContentLogicalHeight = child.intrinsicContentLogicalHeight();
|
| - return child.constrainLogicalHeightByMinMax(childIntrinsicContentLogicalHeight + child.borderAndPaddingLogicalHeight(), childIntrinsicContentLogicalHeight);
|
| -}
|
| -
|
| -bool RenderGrid::allowedToStretchLogicalHeightForChild(const LayoutBox& child) const
|
| -{
|
| - return child.style()->logicalHeight().isAuto() && !child.style()->marginBeforeUsing(style()).isAuto() && !child.style()->marginAfterUsing(style()).isAuto();
|
| -}
|
| -
|
| -// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to LayoutBox.
|
| -bool RenderGrid::needToStretchChildLogicalHeight(const LayoutBox& child) const
|
| -{
|
| - if (LayoutStyle::resolveAlignment(styleRef(), child.styleRef(), ItemPositionStretch) != ItemPositionStretch)
|
| - return false;
|
| -
|
| - return isHorizontalWritingMode() && child.style()->height().isAuto();
|
| -}
|
| -
|
| -// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to LayoutBox.
|
| -LayoutUnit RenderGrid::childIntrinsicHeight(const LayoutBox& child) const
|
| -{
|
| - if (child.isHorizontalWritingMode() && needToStretchChildLogicalHeight(child))
|
| - return constrainedChildIntrinsicContentLogicalHeight(child);
|
| - return child.size().height();
|
| -}
|
| -
|
| -// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to LayoutBox.
|
| -LayoutUnit RenderGrid::childIntrinsicWidth(const LayoutBox& child) const
|
| -{
|
| - if (!child.isHorizontalWritingMode() && needToStretchChildLogicalHeight(child))
|
| - return constrainedChildIntrinsicContentLogicalHeight(child);
|
| - return child.size().width();
|
| -}
|
| -
|
| -// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to LayoutBox.
|
| -LayoutUnit RenderGrid::intrinsicLogicalHeightForChild(const LayoutBox& child) const
|
| -{
|
| - return isHorizontalWritingMode() ? childIntrinsicHeight(child) : childIntrinsicWidth(child);
|
| -}
|
| -
|
| -// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to LayoutBox.
|
| -LayoutUnit RenderGrid::marginLogicalHeightForChild(const LayoutBox& child) const
|
| -{
|
| - return isHorizontalWritingMode() ? child.marginHeight() : child.marginWidth();
|
| -}
|
| -
|
| -LayoutUnit RenderGrid::computeMarginLogicalHeightForChild(const LayoutBox& child) const
|
| -{
|
| - LayoutUnit marginBefore;
|
| - LayoutUnit marginAfter;
|
| - child.computeMarginsForDirection(BlockDirection, this, child.containingBlockLogicalWidthForContent(), child.logicalHeight(), marginBefore, marginAfter,
|
| - child.style()->marginBeforeUsing(style()),
|
| - child.style()->marginAfterUsing(style()));
|
| -
|
| - return marginBefore + marginAfter;
|
| -}
|
| -
|
| -LayoutUnit RenderGrid::availableAlignmentSpaceForChildBeforeStretching(LayoutUnit gridAreaBreadthForChild, const LayoutBox& child) const
|
| -{
|
| - LayoutUnit childMarginLogicalHeight = marginLogicalHeightForChild(child);
|
| -
|
| - // Because we want to avoid multiple layouts, stretching logic might be performed before
|
| - // children are laid out, so we can't use the child cached values. Hence, we need to
|
| - // compute margins in order to determine the available height before stretching.
|
| - if (childMarginLogicalHeight == 0)
|
| - childMarginLogicalHeight = computeMarginLogicalHeightForChild(child);
|
| -
|
| - LayoutUnit childLogicalHeight = childMarginLogicalHeight + intrinsicLogicalHeightForChild(child);
|
| - return gridAreaBreadthForChild - childLogicalHeight;
|
| -}
|
| -
|
| -// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to LayoutBox.
|
| -void RenderGrid::applyStretchAlignmentToChildIfNeeded(LayoutBox& child, LayoutUnit gridAreaBreadthForChild)
|
| -{
|
| - if (LayoutStyle::resolveAlignment(styleRef(), child.styleRef(), ItemPositionStretch) != ItemPositionStretch)
|
| - return;
|
| -
|
| - bool hasOrthogonalWritingMode = child.isHorizontalWritingMode() != isHorizontalWritingMode();
|
| - if (allowedToStretchLogicalHeightForChild(child)) {
|
| - // FIXME: If the child has orthogonal flow, then it already has an override height set, so use it.
|
| - // FIXME: grid track sizing and positioning do not support orthogonal modes yet.
|
| - if (!hasOrthogonalWritingMode) {
|
| - LayoutUnit heightBeforeStretching = needToStretchChildLogicalHeight(child) ? constrainedChildIntrinsicContentLogicalHeight(child) : child.logicalHeight();
|
| - LayoutUnit stretchedLogicalHeight = heightBeforeStretching + availableAlignmentSpaceForChildBeforeStretching(gridAreaBreadthForChild, child);
|
| - LayoutUnit desiredLogicalHeight = child.constrainLogicalHeightByMinMax(stretchedLogicalHeight, heightBeforeStretching - child.borderAndPaddingLogicalHeight());
|
| - LayoutUnit desiredLogicalContentHeight = desiredLogicalHeight - child.borderAndPaddingLogicalHeight();
|
| -
|
| - // FIXME: Can avoid laying out here in some cases. See https://webkit.org/b/87905.
|
| - if (desiredLogicalHeight != child.logicalHeight() || !child.hasOverrideHeight() || desiredLogicalContentHeight != child.overrideLogicalContentHeight()) {
|
| - child.setOverrideLogicalContentHeight(desiredLogicalContentHeight);
|
| - child.setLogicalHeight(0);
|
| - child.forceChildLayout();
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -LayoutUnit RenderGrid::rowPositionForChild(const LayoutBox& child) const
|
| -{
|
| - bool hasOrthogonalWritingMode = child.isHorizontalWritingMode() != isHorizontalWritingMode();
|
| - switch (LayoutStyle::resolveAlignment(styleRef(), child.styleRef(), ItemPositionStretch)) {
|
| - case ItemPositionSelfStart:
|
| - // If orthogonal writing-modes, this computes to 'start'.
|
| - // FIXME: grid track sizing and positioning do not support orthogonal modes yet.
|
| - if (hasOrthogonalWritingMode)
|
| - return startOfRowForChild(child);
|
| -
|
| - // self-start is based on the child's block axis direction. That's why we need to check against the grid container's block flow.
|
| - if (child.style()->writingMode() != style()->writingMode())
|
| - return endOfRowForChild(child);
|
| -
|
| - return startOfRowForChild(child);
|
| - case ItemPositionSelfEnd:
|
| - // If orthogonal writing-modes, this computes to 'end'.
|
| - // FIXME: grid track sizing and positioning do not support orthogonal modes yet.
|
| - if (hasOrthogonalWritingMode)
|
| - return endOfRowForChild(child);
|
| -
|
| - // self-end is based on the child's block axis direction. That's why we need to check against the grid container's block flow.
|
| - if (child.style()->writingMode() != style()->writingMode())
|
| - return startOfRowForChild(child);
|
| -
|
| - return endOfRowForChild(child);
|
| - case ItemPositionLeft:
|
| - // The alignment axis (column axis) and the inline axis are parallell in
|
| - // orthogonal writing mode.
|
| - // FIXME: grid track sizing and positioning do not support orthogonal modes yet.
|
| - if (hasOrthogonalWritingMode)
|
| - return startOfRowForChild(child);
|
| -
|
| - // Otherwise this this is equivalent to 'start'.
|
| - return startOfRowForChild(child);
|
| - case ItemPositionRight:
|
| - // The alignment axis (column axis) and the inline axis are parallell in
|
| - // orthogonal writing mode.
|
| - // FIXME: grid track sizing and positioning do not support orthogonal modes yet.
|
| - if (hasOrthogonalWritingMode)
|
| - return endOfRowForChild(child);
|
| -
|
| - // Otherwise this this is equivalent to 'start'.
|
| - return startOfRowForChild(child);
|
| - case ItemPositionCenter:
|
| - return centeredRowPositionForChild(child);
|
| - // Only used in flex layout, for other layout, it's equivalent to 'start'.
|
| - case ItemPositionFlexStart:
|
| - case ItemPositionStart:
|
| - return startOfRowForChild(child);
|
| - // Only used in flex layout, for other layout, it's equivalent to 'end'.
|
| - case ItemPositionFlexEnd:
|
| - case ItemPositionEnd:
|
| - return endOfRowForChild(child);
|
| - case ItemPositionStretch:
|
| - return startOfRowForChild(child);
|
| - case ItemPositionBaseline:
|
| - case ItemPositionLastBaseline:
|
| - // FIXME: Implement the ItemPositionBaseline value. For now, we always 'start' align the child.
|
| - return startOfRowForChild(child);
|
| - case ItemPositionAuto:
|
| - break;
|
| - }
|
| -
|
| - ASSERT_NOT_REACHED();
|
| - return 0;
|
| -}
|
| -
|
| -ContentPosition static resolveContentDistributionFallback(ContentDistributionType distribution)
|
| -{
|
| - switch (distribution) {
|
| - case ContentDistributionSpaceBetween:
|
| - return ContentPositionStart;
|
| - case ContentDistributionSpaceAround:
|
| - return ContentPositionCenter;
|
| - case ContentDistributionSpaceEvenly:
|
| - return ContentPositionCenter;
|
| - case ContentDistributionStretch:
|
| - return ContentPositionStart;
|
| - case ContentDistributionDefault:
|
| - return ContentPositionAuto;
|
| - }
|
| -
|
| - ASSERT_NOT_REACHED();
|
| - return ContentPositionAuto;
|
| -}
|
| -
|
| -static inline LayoutUnit offsetToStartEdge(bool isLeftToRight, LayoutUnit availableSpace)
|
| -{
|
| - return isLeftToRight ? LayoutUnit(0) : availableSpace;
|
| -}
|
| -
|
| -static inline LayoutUnit offsetToEndEdge(bool isLeftToRight, LayoutUnit availableSpace)
|
| -{
|
| - return !isLeftToRight ? LayoutUnit(0) : availableSpace;
|
| -}
|
| -
|
| -LayoutUnit RenderGrid::contentPositionAndDistributionColumnOffset(LayoutUnit availableFreeSpace, ContentPosition position, ContentDistributionType distribution, OverflowAlignment overflow, unsigned numberOfGridTracks) const
|
| -{
|
| - if (overflow == OverflowAlignmentSafe && availableFreeSpace <= 0)
|
| - return 0;
|
| -
|
| - // FIXME: for the time being, spec states that it will always fallback for Grids, but
|
| - // discussion is ongoing.
|
| - if (distribution != ContentDistributionDefault && position == ContentPositionAuto)
|
| - position = resolveContentDistributionFallback(distribution);
|
| -
|
| - switch (position) {
|
| - case ContentPositionLeft:
|
| - return 0;
|
| - case ContentPositionRight:
|
| - return availableFreeSpace;
|
| - case ContentPositionCenter:
|
| - return availableFreeSpace / 2;
|
| - case ContentPositionFlexEnd:
|
| - // Only used in flex layout, for other layout, it's equivalent to 'end'.
|
| - case ContentPositionEnd:
|
| - return offsetToEndEdge(style()->isLeftToRightDirection(), availableFreeSpace);
|
| - case ContentPositionFlexStart:
|
| - // Only used in flex layout, for other layout, it's equivalent to 'start'.
|
| - case ContentPositionStart:
|
| - return offsetToStartEdge(style()->isLeftToRightDirection(), availableFreeSpace);
|
| - case ContentPositionBaseline:
|
| - case ContentPositionLastBaseline:
|
| - // FIXME: Implement the previous values. For now, we always 'start' align.
|
| - // crbug.com/234191
|
| - return offsetToStartEdge(style()->isLeftToRightDirection(), availableFreeSpace);
|
| - case ContentPositionAuto:
|
| - break;
|
| - }
|
| -
|
| - ASSERT_NOT_REACHED();
|
| - return 0;
|
| -}
|
| -
|
| -LayoutUnit RenderGrid::contentPositionAndDistributionRowOffset(LayoutUnit availableFreeSpace, ContentPosition position, ContentDistributionType distribution, OverflowAlignment overflow, unsigned numberOfGridTracks) const
|
| -{
|
| - if (overflow == OverflowAlignmentSafe && availableFreeSpace <= 0)
|
| - return 0;
|
| -
|
| - // FIXME: for the time being, spec states that it will always fallback for Grids, but
|
| - // discussion is ongoing.
|
| - if (distribution != ContentDistributionDefault && position == ContentPositionAuto)
|
| - position = resolveContentDistributionFallback(distribution);
|
| -
|
| - switch (position) {
|
| - case ContentPositionLeft:
|
| - // The align-content's axis is always orthogonal to the inline-axis.
|
| - return 0;
|
| - case ContentPositionRight:
|
| - // The align-content's axis is always orthogonal to the inline-axis.
|
| - return 0;
|
| - case ContentPositionCenter:
|
| - return availableFreeSpace / 2;
|
| - case ContentPositionFlexEnd:
|
| - // Only used in flex layout, for other layout, it's equivalent to 'End'.
|
| - case ContentPositionEnd:
|
| - return availableFreeSpace;
|
| - case ContentPositionFlexStart:
|
| - // Only used in flex layout, for other layout, it's equivalent to 'Start'.
|
| - case ContentPositionStart:
|
| - return 0;
|
| - case ContentPositionBaseline:
|
| - case ContentPositionLastBaseline:
|
| - // FIXME: Implement the previous values. For now, we always start align.
|
| - // crbug.com/234191
|
| - return 0;
|
| - case ContentPositionAuto:
|
| - break;
|
| - }
|
| -
|
| - ASSERT_NOT_REACHED();
|
| - return 0;
|
| -}
|
| -
|
| -LayoutPoint RenderGrid::findChildLogicalPosition(const LayoutBox& child, LayoutSize contentAlignmentOffset) const
|
| -{
|
| - LayoutUnit columnPosition = columnPositionForChild(child);
|
| - // We stored m_columnPositions's data ignoring the direction, hence we might need now
|
| - // to translate positions from RTL to LTR, as it's more convenient for painting.
|
| - if (!style()->isLeftToRightDirection())
|
| - columnPosition = (m_columnPositions[m_columnPositions.size() - 1] + borderAndPaddingLogicalLeft()) - columnPosition - child.logicalWidth();
|
| -
|
| - // The Content Alignment offset accounts for the RTL to LTR flip.
|
| - LayoutPoint childLocation(columnPosition, rowPositionForChild(child));
|
| - childLocation.move(contentAlignmentOffset);
|
| -
|
| - return childLocation;
|
| -}
|
| -
|
| -void RenderGrid::paintChildren(const PaintInfo& paintInfo, const LayoutPoint& paintOffset)
|
| -{
|
| - GridPainter(*this).paintChildren(paintInfo, paintOffset);
|
| -}
|
| -
|
| -const char* RenderGrid::renderName() const
|
| -{
|
| - if (isFloating())
|
| - return "RenderGrid (floating)";
|
| - if (isOutOfFlowPositioned())
|
| - return "RenderGrid (positioned)";
|
| - if (isAnonymous())
|
| - return "RenderGrid (generated)";
|
| - if (isRelPositioned())
|
| - return "RenderGrid (relative positioned)";
|
| - return "RenderGrid";
|
| -}
|
| -
|
| -} // namespace blink
|
|
|