| Index: src/codec/SkCodec_libbmp.cpp
|
| diff --git a/src/codec/SkCodec_libbmp.cpp b/src/codec/SkCodec_libbmp.cpp
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..5b9691c087c84ae9674b29e3b6a5cb1279b9ac1b
|
| --- /dev/null
|
| +++ b/src/codec/SkCodec_libbmp.cpp
|
| @@ -0,0 +1,903 @@
|
| +/*
|
| + * Copyright 2015 Google Inc.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license that can be
|
| + * found in the LICENSE file.
|
| + */
|
| +
|
| +#include "SkCodec_libbmp.h"
|
| +#include "SkCodecPriv.h"
|
| +#include "SkColorPriv.h"
|
| +#include "SkStream.h"
|
| +
|
| +/*
|
| + *
|
| + * Checks if the conversion between the input image and the requested output
|
| + * image has been implemented
|
| + *
|
| + */
|
| +static bool conversion_possible(const SkImageInfo& dst,
|
| + const SkImageInfo& src) {
|
| + // All of the swizzles convert to kN32
|
| + // TODO: Update this when more swizzles are supported
|
| + if (kN32_SkColorType != dst.colorType()) {
|
| + return false;
|
| + }
|
| + // Support the swizzle if the requested alpha type is the same as our guess
|
| + // for the input alpha type
|
| + if (src.alphaType() == dst.alphaType()) {
|
| + return true;
|
| + }
|
| + // TODO: Support more swizzles, especially premul
|
| + return false;
|
| +}
|
| +
|
| +/*
|
| + *
|
| + * Defines the version and type of the second bitmap header
|
| + *
|
| + */
|
| +enum BitmapHeaderType {
|
| + kInfoV1_BitmapHeaderType,
|
| + kInfoV2_BitmapHeaderType,
|
| + kInfoV3_BitmapHeaderType,
|
| + kInfoV4_BitmapHeaderType,
|
| + kInfoV5_BitmapHeaderType,
|
| + kOS2V1_BitmapHeaderType,
|
| + kOS2VX_BitmapHeaderType,
|
| + kUnknown_BitmapHeaderType
|
| +};
|
| +
|
| +/*
|
| + *
|
| + * Possible bitmap compression types
|
| + *
|
| + */
|
| +enum BitmapCompressionMethod {
|
| + kNone_BitmapCompressionMethod = 0,
|
| + k8BitRLE_BitmapCompressionMethod = 1,
|
| + k4BitRLE_BitmapCompressionMethod = 2,
|
| + kBitMasks_BitmapCompressionMethod = 3,
|
| + kJpeg_BitmapCompressionMethod = 4,
|
| + kPng_BitmapCompressionMethod = 5,
|
| + kAlphaBitMasks_BitmapCompressionMethod = 6,
|
| + kCMYK_BitmapCompressionMethod = 11,
|
| + kCMYK8BitRLE_BitmapCompressionMethod = 12,
|
| + kCMYK4BitRLE_BitmapCompressionMethod = 13
|
| +};
|
| +
|
| +/*
|
| + *
|
| + * Checks the start of the stream to see if the image is a bitmap
|
| + *
|
| + */
|
| +bool SkBmpCodec::IsBmp(SkStream* stream) {
|
| + // TODO: Support "IC", "PT", "CI", "CP", "BA"
|
| + // TODO: ICO files may contain a BMP and need to use this decoder
|
| + const char bmpSig[] = { 'B', 'M' };
|
| + char buffer[sizeof(bmpSig)];
|
| + return stream->read(buffer, sizeof(bmpSig)) == sizeof(bmpSig) &&
|
| + !memcmp(buffer, bmpSig, sizeof(bmpSig));
|
| +}
|
| +
|
| +/*
|
| + *
|
| + * Assumes IsBmp was called and returned true
|
| + * Creates a bitmap decoder
|
| + * Reads enough of the stream to determine the image format
|
| + *
|
| + */
|
| +SkCodec* SkBmpCodec::NewFromStream(SkStream* stream) {
|
| + // Header size constants
|
| + static const uint32_t kBmpHeaderBytes = 14;
|
| + static const uint32_t kBmpHeaderBytesPlusFour = kBmpHeaderBytes + 4;
|
| + static const uint32_t kBmpOS2V1Bytes = 12;
|
| + static const uint32_t kBmpOS2V2Bytes = 64;
|
| + static const uint32_t kBmpInfoBaseBytes = 16;
|
| + static const uint32_t kBmpInfoV1Bytes = 40;
|
| + static const uint32_t kBmpInfoV2Bytes = 52;
|
| + static const uint32_t kBmpInfoV3Bytes = 56;
|
| + static const uint32_t kBmpInfoV4Bytes = 108;
|
| + static const uint32_t kBmpInfoV5Bytes = 124;
|
| + static const uint32_t kBmpMaskBytes = 12;
|
| +
|
| + // Read the first header and the size of the second header
|
| + SkAutoTDeleteArray<uint8_t> hBuffer(
|
| + SkNEW_ARRAY(uint8_t, kBmpHeaderBytesPlusFour));
|
| + if (stream->read(hBuffer.get(), kBmpHeaderBytesPlusFour) !=
|
| + kBmpHeaderBytesPlusFour) {
|
| + SkDebugf("Error: unable to read first bitmap header.\n");
|
| + return NULL;
|
| + }
|
| +
|
| + // The total bytes in the bmp file
|
| + // We only need to use this value for RLE decoding, so we will only check
|
| + // that it is valid in the RLE case.
|
| + const uint32_t totalBytes = get_int(hBuffer.get(), 2);
|
| +
|
| + // The offset from the start of the file where the pixel data begins
|
| + const uint32_t offset = get_int(hBuffer.get(), 10);
|
| + if (offset < kBmpHeaderBytes + kBmpOS2V1Bytes) {
|
| + SkDebugf("Error: invalid starting location for pixel data\n");
|
| + return NULL;
|
| + }
|
| +
|
| + // The size of the second (info) header in bytes
|
| + // The size is the first field of the second header, so we have already
|
| + // read the first four infoBytes.
|
| + const uint32_t infoBytes = get_int(hBuffer.get(), 14);
|
| + if (infoBytes < kBmpOS2V1Bytes) {
|
| + SkDebugf("Error: invalid second header size.\n");
|
| + return NULL;
|
| + }
|
| + const uint32_t infoBytesRemaining = infoBytes - 4;
|
| + hBuffer.free();
|
| +
|
| + // Read the second header
|
| + SkAutoTDeleteArray<uint8_t> iBuffer(
|
| + SkNEW_ARRAY(uint8_t, infoBytesRemaining));
|
| + if (stream->read(iBuffer.get(), infoBytesRemaining) != infoBytesRemaining) {
|
| + SkDebugf("Error: unable to read second bitmap header.\n");
|
| + return NULL;
|
| + }
|
| +
|
| + // The number of bits used per pixel in the pixel data
|
| + uint16_t bitsPerPixel;
|
| +
|
| + // The compression method for the pixel data
|
| + uint32_t compression = kNone_BitmapCompressionMethod;
|
| +
|
| + // Number of colors in the color table, defaults to 0 or max (see below)
|
| + uint32_t numColors = 0;
|
| +
|
| + // Bytes per color in the color table, early versions use 3, most use 4
|
| + uint32_t bytesPerColor;
|
| +
|
| + // The image width and height
|
| + int width, height;
|
| +
|
| + // Determine image information depending on second header format
|
| + BitmapHeaderType headerType;
|
| + if (infoBytes >= kBmpInfoBaseBytes) {
|
| + // Check the version of the header
|
| + switch (infoBytes) {
|
| + case kBmpInfoV1Bytes:
|
| + headerType = kInfoV1_BitmapHeaderType;
|
| + break;
|
| + case kBmpInfoV2Bytes:
|
| + headerType = kInfoV2_BitmapHeaderType;
|
| + break;
|
| + case kBmpInfoV3Bytes:
|
| + headerType = kInfoV3_BitmapHeaderType;
|
| + break;
|
| + case kBmpInfoV4Bytes:
|
| + headerType = kInfoV4_BitmapHeaderType;
|
| + break;
|
| + case kBmpInfoV5Bytes:
|
| + headerType = kInfoV5_BitmapHeaderType;
|
| + break;
|
| + case 16:
|
| + case 20:
|
| + case 24:
|
| + case 28:
|
| + case 32:
|
| + case 36:
|
| + case 42:
|
| + case 46:
|
| + case 48:
|
| + case 60:
|
| + case kBmpOS2V2Bytes:
|
| + headerType = kOS2VX_BitmapHeaderType;
|
| + break;
|
| + default:
|
| + // We do not signal an error here because there is the
|
| + // possibility of new or undocumented bmp header types. Most
|
| + // of the newer versions of bmp headers are similar to and
|
| + // build off of the older versions, so we may still be able to
|
| + // decode the bmp.
|
| + SkDebugf("Warning: unknown bmp header format.\n");
|
| + headerType = kUnknown_BitmapHeaderType;
|
| + break;
|
| + }
|
| + // We check the size of the header before entering the if statement.
|
| + // We should not reach this point unless the size is large enough for
|
| + // these required fields.
|
| + SkASSERT(infoBytesRemaining >= 12);
|
| + width = get_int(iBuffer.get(), 0);
|
| + height = get_int(iBuffer.get(), 4);
|
| + bitsPerPixel = get_short(iBuffer.get(), 10);
|
| +
|
| + // Some versions do not have these fields, so we check before
|
| + // overwriting the default value.
|
| + if (infoBytesRemaining >= 16) {
|
| + compression = get_int(iBuffer.get(), 12);
|
| + if (infoBytesRemaining >= 32) {
|
| + numColors = get_int(iBuffer.get(), 28);
|
| + }
|
| + }
|
| +
|
| + // All of the headers that reach this point, store color table entries
|
| + // using 4 bytes per pixel.
|
| + bytesPerColor = 4;
|
| + } else if (infoBytes >= kBmpOS2V1Bytes) {
|
| + // The OS2V1 is treated separately because it has a unique format
|
| + headerType = kOS2V1_BitmapHeaderType;
|
| + width = (int) get_short(iBuffer.get(), 0);
|
| + height = (int) get_short(iBuffer.get(), 2);
|
| + bitsPerPixel = get_short(iBuffer.get(), 6);
|
| + bytesPerColor = 3;
|
| + } else {
|
| + // There are no valid bmp headers
|
| + SkDebugf("Error: second bitmap header size is invalid.\n");
|
| + return NULL;
|
| + }
|
| +
|
| + // Check for valid dimensions from header
|
| + RowOrder rowOrder = kBottomUp_RowOrder;
|
| + if (height < 0) {
|
| + height = -height;
|
| + rowOrder = kTopDown_RowOrder;
|
| + }
|
| + static const int kBmpMaxDim = 1 << 16;
|
| + if (width < 0 || width >= kBmpMaxDim || height >= kBmpMaxDim) {
|
| + // TODO: Decide if we want to support really large bmps.
|
| + SkDebugf("Error: invalid bitmap dimensions.\n");
|
| + return NULL;
|
| + }
|
| +
|
| + // Create mask struct
|
| + SkMasks::InputMasks inputMasks;
|
| + memset(&inputMasks, 0, 4*sizeof(uint32_t));
|
| +
|
| + // Determine the input compression format and set bit masks if necessary
|
| + uint32_t maskBytes = 0;
|
| + BitmapInputFormat inputFormat = kUnknown_BitmapInputFormat;
|
| + switch (compression) {
|
| + case kNone_BitmapCompressionMethod:
|
| + inputFormat = kStandard_BitmapInputFormat;
|
| + break;
|
| + case k8BitRLE_BitmapCompressionMethod:
|
| + if (bitsPerPixel != 8) {
|
| + SkDebugf("Warning: correcting invalid bitmap format.\n");
|
| + bitsPerPixel = 8;
|
| + }
|
| + inputFormat = kRLE_BitmapInputFormat;
|
| + break;
|
| + case k4BitRLE_BitmapCompressionMethod:
|
| + if (bitsPerPixel != 4) {
|
| + SkDebugf("Warning: correcting invalid bitmap format.\n");
|
| + bitsPerPixel = 4;
|
| + }
|
| + inputFormat = kRLE_BitmapInputFormat;
|
| + break;
|
| + case kAlphaBitMasks_BitmapCompressionMethod:
|
| + case kBitMasks_BitmapCompressionMethod:
|
| + // Load the masks
|
| + inputFormat = kBitMask_BitmapInputFormat;
|
| + switch (headerType) {
|
| + case kInfoV1_BitmapHeaderType: {
|
| + // The V1 header stores the bit masks after the header
|
| + SkAutoTDeleteArray<uint8_t> mBuffer(
|
| + SkNEW_ARRAY(uint8_t, kBmpMaskBytes));
|
| + if (stream->read(mBuffer.get(), kBmpMaskBytes) !=
|
| + kBmpMaskBytes) {
|
| + SkDebugf("Error: unable to read bit inputMasks.\n");
|
| + return NULL;
|
| + }
|
| + maskBytes = kBmpMaskBytes;
|
| + inputMasks.red = get_int(mBuffer.get(), 0);
|
| + inputMasks.green = get_int(mBuffer.get(), 4);
|
| + inputMasks.blue = get_int(mBuffer.get(), 8);
|
| + break;
|
| + }
|
| + case kInfoV2_BitmapHeaderType:
|
| + case kInfoV3_BitmapHeaderType:
|
| + case kInfoV4_BitmapHeaderType:
|
| + case kInfoV5_BitmapHeaderType:
|
| + // Header types are matched based on size. If the header
|
| + // is V2+, we are guaranteed to be able to read at least
|
| + // this size.
|
| + SkASSERT(infoBytesRemaining >= 48);
|
| + inputMasks.red = get_int(iBuffer.get(), 36);
|
| + inputMasks.green = get_int(iBuffer.get(), 40);
|
| + inputMasks.blue = get_int(iBuffer.get(), 44);
|
| + break;
|
| + case kOS2VX_BitmapHeaderType:
|
| + // TODO: Decide if we intend to support this.
|
| + // It is unsupported in the previous version and
|
| + // in chromium. I have not come across a test case
|
| + // that uses this format.
|
| + SkDebugf("Error: huffman format unsupported.\n");
|
| + return NULL;
|
| + default:
|
| + SkDebugf("Error: invalid bmp bit masks header.\n");
|
| + return NULL;
|
| + }
|
| + break;
|
| + case kJpeg_BitmapCompressionMethod:
|
| + if (24 == bitsPerPixel) {
|
| + inputFormat = kRLE_BitmapInputFormat;
|
| + break;
|
| + }
|
| + // Fall through
|
| + case kPng_BitmapCompressionMethod:
|
| + // TODO: Decide if we intend to support this.
|
| + // It is unsupported in the previous version and
|
| + // in chromium. I think it is used mostly for printers.
|
| + SkDebugf("Error: compression format not supported.\n");
|
| + return NULL;
|
| + case kCMYK_BitmapCompressionMethod:
|
| + case kCMYK8BitRLE_BitmapCompressionMethod:
|
| + case kCMYK4BitRLE_BitmapCompressionMethod:
|
| + // TODO: Same as above.
|
| + SkDebugf("Error: CMYK not supported for bitmap decoding.\n");
|
| + return NULL;
|
| + default:
|
| + SkDebugf("Error: invalid format for bitmap decoding.\n");
|
| + return NULL;
|
| + }
|
| +
|
| + // Most versions of bmps should be rendered as opaque. Either they do
|
| + // not have an alpha channel, or they expect the alpha channel to be
|
| + // ignored. V4+ bmp files introduce an alpha mask and allow the creator
|
| + // of the image to use the alpha channels. However, many of these images
|
| + // leave the alpha channel blank and expect to be rendered as opaque. For
|
| + // this reason, we set the alpha type to kUnknown for V4+ bmps and figure
|
| + // out the alpha type during the decode.
|
| + SkAlphaType alphaType = kOpaque_SkAlphaType;
|
| + if (kInfoV4_BitmapHeaderType == headerType ||
|
| + kInfoV5_BitmapHeaderType == headerType) {
|
| + // Header types are matched based on size. If the header is
|
| + // V4+, we are guaranteed to be able to read at least this size.
|
| + SkASSERT(infoBytesRemaining > 52);
|
| + inputMasks.alpha = get_int(iBuffer.get(), 48);
|
| + if (inputMasks.alpha != 0) {
|
| + alphaType = kUnpremul_SkAlphaType;
|
| + }
|
| + }
|
| + iBuffer.free();
|
| +
|
| + // Check for valid bits per pixel input
|
| + switch (bitsPerPixel) {
|
| + // In addition to more standard pixel compression formats, bmp supports
|
| + // the use of bit masks to determine pixel components. The standard
|
| + // format for representing 16-bit colors is 555 (XRRRRRGGGGGBBBBB),
|
| + // which does not map well to any Skia color formats. For this reason,
|
| + // we will always enable mask mode with 16 bits per pixel.
|
| + case 16:
|
| + if (kBitMask_BitmapInputFormat != inputFormat) {
|
| + inputMasks.red = 0x7C00;
|
| + inputMasks.green = 0x03E0;
|
| + inputMasks.blue = 0x001F;
|
| + inputFormat = kBitMask_BitmapInputFormat;
|
| + }
|
| + break;
|
| + case 1:
|
| + case 2:
|
| + case 4:
|
| + case 8:
|
| + case 24:
|
| + case 32:
|
| + break;
|
| + default:
|
| + SkDebugf("Error: invalid input value for bits per pixel.\n");
|
| + return NULL;
|
| + }
|
| +
|
| + // Check that input bit masks are valid and create the masks object
|
| + SkAutoTDelete<SkMasks>
|
| + masks(SkMasks::CreateMasks(inputMasks, bitsPerPixel));
|
| + if (NULL == masks) {
|
| + SkDebugf("Error: invalid input masks.\n");
|
| + return NULL;
|
| + }
|
| +
|
| + // Process the color table
|
| + uint32_t colorBytes = 0;
|
| + SkPMColor* colorTable = NULL;
|
| + if (bitsPerPixel < 16) {
|
| + // Verify the number of colors for the color table
|
| + const uint32_t maxColors = 1 << bitsPerPixel;
|
| + // Zero is a default for maxColors
|
| + // Also set numColors to maxColors when input is too large
|
| + if (numColors <= 0 || numColors > maxColors) {
|
| + numColors = maxColors;
|
| + }
|
| + colorTable = SkNEW_ARRAY(SkPMColor, maxColors);
|
| +
|
| + // Construct the color table
|
| + colorBytes = numColors * bytesPerColor;
|
| + SkAutoTDeleteArray<uint8_t> cBuffer(SkNEW_ARRAY(uint8_t, colorBytes));
|
| + if (stream->read(cBuffer.get(), colorBytes) != colorBytes) {
|
| + SkDebugf("Error: unable to read color table.\n");
|
| + return NULL;
|
| + }
|
| +
|
| + // Fill in the color table (colors are stored unpremultiplied)
|
| + uint32_t i = 0;
|
| + for (; i < numColors; i++) {
|
| + uint8_t blue = get_byte(cBuffer.get(), i*bytesPerColor);
|
| + uint8_t green = get_byte(cBuffer.get(), i*bytesPerColor + 1);
|
| + uint8_t red = get_byte(cBuffer.get(), i*bytesPerColor + 2);
|
| + uint8_t alpha = 0xFF;
|
| + if (kOpaque_SkAlphaType != alphaType) {
|
| + alpha = (inputMasks.alpha >> 24) &
|
| + get_byte(cBuffer.get(), i*bytesPerColor + 3);
|
| + }
|
| + // Store the unpremultiplied color
|
| + colorTable[i] = SkPackARGB32NoCheck(alpha, red, green, blue);
|
| + }
|
| +
|
| + // To avoid segmentation faults on bad pixel data, fill the end of the
|
| + // color table with black. This is the same the behavior as the
|
| + // chromium decoder.
|
| + for (; i < maxColors; i++) {
|
| + colorTable[i] = SkPackARGB32NoCheck(0xFF, 0, 0, 0);
|
| + }
|
| + }
|
| +
|
| + // Ensure that the stream now points to the start of the pixel array
|
| + uint32_t bytesRead = kBmpHeaderBytes + infoBytes + maskBytes + colorBytes;
|
| +
|
| + // Check that we have not read past the pixel array offset
|
| + if(bytesRead > offset) {
|
| + // This may occur on OS 2.1 and other old versions where the color
|
| + // table defaults to max size, and the bmp tries to use a smaller color
|
| + // table. This is invalid, and our decision is to indicate an error,
|
| + // rather than try to guess the intended size of the color table and
|
| + // rewind the stream to display the image.
|
| + SkDebugf("Error: pixel data offset less than header size.\n");
|
| + return NULL;
|
| + }
|
| +
|
| + // Skip to the start of the pixel array
|
| + if (stream->skip(offset - bytesRead) != offset - bytesRead) {
|
| + SkDebugf("Error: unable to skip to image data.\n");
|
| + return NULL;
|
| + }
|
| +
|
| + // Remaining bytes is only used for RLE
|
| + const int remainingBytes = totalBytes - offset;
|
| + if (remainingBytes <= 0 && kRLE_BitmapInputFormat == inputFormat) {
|
| + SkDebugf("Error: RLE requires valid input size.\n");
|
| + return NULL;
|
| + }
|
| +
|
| + // Return the codec
|
| + // We will use ImageInfo to store width, height, and alpha type. We will
|
| + // choose kN32_SkColorType as the input color type because that is the
|
| + // expected choice for a destination color type. In reality, the input
|
| + // color type has many possible formats.
|
| + const SkImageInfo& imageInfo = SkImageInfo::Make(width, height,
|
| + kN32_SkColorType, alphaType);
|
| + return SkNEW_ARGS(SkBmpCodec, (imageInfo, stream, bitsPerPixel,
|
| + inputFormat, masks.detach(), colorTable,
|
| + rowOrder, remainingBytes));
|
| +}
|
| +
|
| +/*
|
| + *
|
| + * Creates an instance of the decoder
|
| + * Called only by NewFromStream
|
| + *
|
| + */
|
| +SkBmpCodec::SkBmpCodec(const SkImageInfo& info, SkStream* stream,
|
| + uint16_t bitsPerPixel, BitmapInputFormat inputFormat,
|
| + SkMasks* masks, SkPMColor* colorTable,
|
| + RowOrder rowOrder,
|
| + const uint32_t remainingBytes)
|
| + : INHERITED(info, stream)
|
| + , fBitsPerPixel(bitsPerPixel)
|
| + , fInputFormat(inputFormat)
|
| + , fMasks(masks)
|
| + , fColorTable(colorTable)
|
| + , fRowOrder(rowOrder)
|
| + , fRemainingBytes(remainingBytes)
|
| +{}
|
| +
|
| +/*
|
| + *
|
| + * Initiates the bitmap decode
|
| + *
|
| + */
|
| +SkCodec::Result SkBmpCodec::onGetPixels(const SkImageInfo& dstInfo,
|
| + void* dst, size_t dstRowBytes,
|
| + SkPMColor*, int*) {
|
| + if (!this->rewindIfNeeded()) {
|
| + return kCouldNotRewind;
|
| + }
|
| + if (dstInfo.dimensions() != this->getOriginalInfo().dimensions()) {
|
| + SkDebugf("Error: scaling not supported.\n");
|
| + return kInvalidScale;
|
| + }
|
| + if (!conversion_possible(dstInfo, this->getOriginalInfo())) {
|
| + SkDebugf("Error: cannot convert input type to output type.\n");
|
| + return kInvalidConversion;
|
| + }
|
| +
|
| + switch (fInputFormat) {
|
| + case kBitMask_BitmapInputFormat:
|
| + return decodeMask(dstInfo, dst, dstRowBytes);
|
| + case kRLE_BitmapInputFormat:
|
| + return decodeRLE(dstInfo, dst, dstRowBytes);
|
| + case kStandard_BitmapInputFormat:
|
| + return decode(dstInfo, dst, dstRowBytes);
|
| + default:
|
| + SkASSERT(false);
|
| + return kInvalidInput;
|
| + }
|
| +}
|
| +
|
| +/*
|
| + *
|
| + * Performs the bitmap decoding for bit masks input format
|
| + *
|
| + */
|
| +SkCodec::Result SkBmpCodec::decodeMask(const SkImageInfo& dstInfo,
|
| + void* dst, size_t dstRowBytes) {
|
| + // Set constant values
|
| + const int width = dstInfo.width();
|
| + const int height = dstInfo.height();
|
| + const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel));
|
| +
|
| + // Allocate space for a row buffer and a source for the swizzler
|
| + SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, rowBytes));
|
| +
|
| + // Get the destination start row and delta
|
| + SkPMColor* dstRow;
|
| + int delta;
|
| + if (kTopDown_RowOrder == fRowOrder) {
|
| + dstRow = (SkPMColor*) dst;
|
| + delta = (int) dstRowBytes;
|
| + } else {
|
| + dstRow = (SkPMColor*) SkTAddOffset<void>(dst, (height-1) * dstRowBytes);
|
| + delta = -((int) dstRowBytes);
|
| + }
|
| +
|
| + // Create the swizzler
|
| + SkMaskSwizzler* swizzler = SkMaskSwizzler::CreateMaskSwizzler(
|
| + dstInfo, fMasks, fBitsPerPixel);
|
| +
|
| + // Iterate over rows of the image
|
| + bool transparent = true;
|
| + for (int y = 0; y < height; y++) {
|
| + // Read a row of the input
|
| + if (stream()->read(srcBuffer.get(), rowBytes) != rowBytes) {
|
| + SkDebugf("Warning: incomplete input stream.\n");
|
| + return kIncompleteInput;
|
| + }
|
| +
|
| + // Decode the row in destination format
|
| + SkSwizzler::ResultAlpha r = swizzler->next(dstRow, srcBuffer.get());
|
| + transparent &= SkSwizzler::IsTransparent(r);
|
| +
|
| + // Move to the next row
|
| + dstRow = SkTAddOffset<SkPMColor>(dstRow, delta);
|
| + }
|
| +
|
| + // Some fully transparent bmp images are intended to be opaque. Here, we
|
| + // correct for this possibility.
|
| + dstRow = (SkPMColor*) dst;
|
| + if (transparent) {
|
| + for (int y = 0; y < height; y++) {
|
| + for (int x = 0; x < width; x++) {
|
| + dstRow[x] |= 0xFF000000;
|
| + }
|
| + dstRow = SkTAddOffset<SkPMColor>(dstRow, dstRowBytes);
|
| + }
|
| + }
|
| +
|
| + // Finished decoding the entire image
|
| + return kSuccess;
|
| +}
|
| +
|
| +/*
|
| + *
|
| + * Set an RLE pixel using the color table
|
| + *
|
| + */
|
| +void SkBmpCodec::setRLEPixel(SkPMColor* dst, size_t dstRowBytes, int height,
|
| + uint32_t x, uint32_t y, uint8_t index) {
|
| + if (kBottomUp_RowOrder == fRowOrder) {
|
| + y = height - y - 1;
|
| + }
|
| + SkPMColor* dstRow = SkTAddOffset<SkPMColor>(dst, y * dstRowBytes);
|
| + dstRow[x] = fColorTable.get()[index];
|
| +}
|
| +
|
| +/*
|
| + *
|
| + * Performs the bitmap decoding for RLE input format
|
| + * RLE decoding is performed all at once, rather than a one row at a time
|
| + *
|
| + */
|
| +SkCodec::Result SkBmpCodec::decodeRLE(const SkImageInfo& dstInfo,
|
| + void* dst, size_t dstRowBytes) {
|
| + // Set RLE flags
|
| + static const uint8_t RLE_ESCAPE = 0;
|
| + static const uint8_t RLE_EOL = 0;
|
| + static const uint8_t RLE_EOF = 1;
|
| + static const uint8_t RLE_DELTA = 2;
|
| +
|
| + // Set constant values
|
| + const int width = dstInfo.width();
|
| + const int height = dstInfo.height();
|
| +
|
| + // Input buffer parameters
|
| + uint32_t currByte = 0;
|
| + SkAutoTDeleteArray<uint8_t> buffer(SkNEW_ARRAY(uint8_t, fRemainingBytes));
|
| + size_t totalBytes = stream()->read(buffer.get(), fRemainingBytes);
|
| + if ((uint32_t) totalBytes < fRemainingBytes) {
|
| + SkDebugf("Warning: incomplete RLE file.\n");
|
| + } else if (totalBytes <= 0) {
|
| + SkDebugf("Error: could not read RLE image data.\n");
|
| + return kInvalidInput;
|
| + }
|
| +
|
| + // Destination parameters
|
| + int x = 0;
|
| + int y = 0;
|
| + // If the code skips pixels, remaining pixels are transparent or black
|
| + // TODO: Skip this if memory was already zeroed.
|
| + memset(dst, 0, dstRowBytes * height);
|
| + SkPMColor* dstPtr = (SkPMColor*) dst;
|
| +
|
| + while (true) {
|
| + // Every entry takes at least two bytes
|
| + if ((int) totalBytes - currByte < 2) {
|
| + SkDebugf("Warning: incomplete RLE input.\n");
|
| + return kIncompleteInput;
|
| + }
|
| +
|
| + // Read the next two bytes. These bytes have different meanings
|
| + // depending on their values. In the first interpretation, the first
|
| + // byte is an escape flag and the second byte indicates what special
|
| + // task to perform.
|
| + const uint8_t flag = buffer.get()[currByte++];
|
| + const uint8_t task = buffer.get()[currByte++];
|
| +
|
| + // If we have reached a row that is beyond the image size, and the RLE
|
| + // code does not indicate end of file, abort and signal a warning.
|
| + if (y >= height && (flag != RLE_ESCAPE || (task != RLE_EOF))) {
|
| + SkDebugf("Warning: invalid RLE input.\n");
|
| + return kIncompleteInput;
|
| + }
|
| +
|
| + // Perform decoding
|
| + if (RLE_ESCAPE == flag) {
|
| + switch (task) {
|
| + case RLE_EOL:
|
| + x = 0;
|
| + y++;
|
| + break;
|
| + case RLE_EOF:
|
| + return kSuccess;
|
| + case RLE_DELTA: {
|
| + // Two bytes are needed to specify delta
|
| + if ((int) totalBytes - currByte < 2) {
|
| + SkDebugf("Warning: incomplete RLE input\n");
|
| + return kIncompleteInput;
|
| + }
|
| + // Modify x and y
|
| + const uint8_t dx = buffer.get()[currByte++];
|
| + const uint8_t dy = buffer.get()[currByte++];
|
| + x += dx;
|
| + y += dy;
|
| + if (x > width || y > height) {
|
| + SkDebugf("Warning: invalid RLE input.\n");
|
| + return kIncompleteInput;
|
| + }
|
| + break;
|
| + }
|
| + default: {
|
| + // If task does not match any of the above signals, it
|
| + // indicates that we have a sequence of non-RLE pixels.
|
| + // Furthermore, the value of task is equal to the number
|
| + // of pixels to interpret.
|
| + uint8_t numPixels = task;
|
| + const size_t rowBytes = compute_row_bytes(numPixels,
|
| + fBitsPerPixel);
|
| + // Abort if setting numPixels moves us off the edge of the
|
| + // image. Also abort if there are not enough bytes
|
| + // remaining in the stream to set numPixels.
|
| + if (x + numPixels > width ||
|
| + (int) totalBytes - currByte < SkAlign2(rowBytes)) {
|
| + SkDebugf("Warning: invalid RLE input.\n");
|
| + return kIncompleteInput;
|
| + }
|
| + // Set numPixels number of pixels
|
| + SkPMColor* dstRow = SkTAddOffset<SkPMColor>(
|
| + dstPtr, y * dstRowBytes);
|
| + while (numPixels > 0) {
|
| + switch(fBitsPerPixel) {
|
| + case 4: {
|
| + SkASSERT(currByte < totalBytes);
|
| + uint8_t val = buffer.get()[currByte++];
|
| + setRLEPixel(dstPtr, dstRowBytes, height, x++, y,
|
| + val >> 4);
|
| + numPixels--;
|
| + if (numPixels != 0) {
|
| + setRLEPixel(dstPtr, dstRowBytes, height,
|
| + x++, y, val & 0xF);
|
| + numPixels--;
|
| + }
|
| + break;
|
| + }
|
| + case 8:
|
| + SkASSERT(currByte < totalBytes);
|
| + setRLEPixel(dstPtr, dstRowBytes, height, x++, y,
|
| + buffer.get()[currByte++]);
|
| + numPixels--;
|
| + break;
|
| + case 24: {
|
| + SkASSERT(currByte + 2 < totalBytes);
|
| + uint8_t blue = buffer.get()[currByte++];
|
| + uint8_t green = buffer.get()[currByte++];
|
| + uint8_t red = buffer.get()[currByte++];
|
| + SkPMColor color = SkPackARGB32NoCheck(
|
| + 0xFF, red, green, blue);
|
| + dstRow[x++] = color;
|
| + numPixels--;
|
| + }
|
| + default:
|
| + SkASSERT(false);
|
| + return kInvalidInput;
|
| + }
|
| + }
|
| + // Skip a byte if necessary to maintain alignment
|
| + if (!SkIsAlign2(rowBytes)) {
|
| + currByte++;
|
| + }
|
| + break;
|
| + }
|
| + }
|
| + } else {
|
| + // If the first byte read is not a flag, it indicates the number of
|
| + // pixels to set in RLE mode.
|
| + const uint8_t numPixels = flag;
|
| + const int endX = SkTMin<int>(x + numPixels, width);
|
| +
|
| + if (24 == fBitsPerPixel) {
|
| + // In RLE24, the second byte read is part of the pixel color.
|
| + // There are two more required bytes to finish encoding the
|
| + // color.
|
| + if ((int) totalBytes - currByte < 2) {
|
| + SkDebugf("Warning: incomplete RLE input\n");
|
| + return kIncompleteInput;
|
| + }
|
| +
|
| + // Fill the pixels up to endX with the specified color
|
| + uint8_t blue = task;
|
| + uint8_t green = buffer.get()[currByte++];
|
| + uint8_t red = buffer.get()[currByte++];
|
| + SkPMColor color = SkPackARGB32NoCheck(0xFF, red, green, blue);
|
| + SkPMColor* dstRow =
|
| + SkTAddOffset<SkPMColor>(dstPtr, y * dstRowBytes);
|
| + while (x < endX) {
|
| + dstRow[x++] = color;
|
| + }
|
| + } else {
|
| + // In RLE8 or RLE4, the second byte read gives the index in the
|
| + // color table to look up the pixel color.
|
| + // RLE8 has one color index that gets repeated
|
| + // RLE4 has two color indexes in the upper and lower 4 bits of
|
| + // the bytes, which are alternated
|
| + uint8_t indices[2] = { task, task };
|
| + if (4 == fBitsPerPixel) {
|
| + indices[0] >>= 4;
|
| + indices[1] &= 0xf;
|
| + }
|
| +
|
| + // Set the indicated number of pixels
|
| + for (int which = 0; x < endX; x++) {
|
| + setRLEPixel(dstPtr, dstRowBytes, height, x, y,
|
| + indices[which]);
|
| + which = !which;
|
| + }
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +/*
|
| + *
|
| + * Performs the bitmap decoding for standard input format
|
| + *
|
| + */
|
| +SkCodec::Result SkBmpCodec::decode(const SkImageInfo& dstInfo,
|
| + void* dst, size_t dstRowBytes) {
|
| + // Set constant values
|
| + const int width = dstInfo.width();
|
| + const int height = dstInfo.height();
|
| + const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel));
|
| + const uint32_t alphaMask = fMasks->getAlphaMask();
|
| +
|
| + // Get swizzler configuration
|
| + SkSwizzler::SrcConfig config;
|
| + switch (fBitsPerPixel) {
|
| + case 1:
|
| + config = SkSwizzler::kIndex1;
|
| + break;
|
| + case 2:
|
| + config = SkSwizzler::kIndex2;
|
| + break;
|
| + case 4:
|
| + config = SkSwizzler::kIndex4;
|
| + break;
|
| + case 8:
|
| + config = SkSwizzler::kIndex;
|
| + break;
|
| + case 24:
|
| + config = SkSwizzler::kBGR;
|
| + break;
|
| + case 32:
|
| + if (0 == alphaMask) {
|
| + config = SkSwizzler::kBGRX;
|
| + } else {
|
| + config = SkSwizzler::kBGRA;
|
| + }
|
| + break;
|
| + default:
|
| + SkASSERT(false);
|
| + return kInvalidInput;
|
| + }
|
| +
|
| + // Create swizzler
|
| + SkSwizzler* swizzler = SkSwizzler::CreateSwizzler(config, fColorTable.get(),
|
| + dstInfo, dst, dstRowBytes, false);
|
| +
|
| + // Allocate space for a row buffer and a source for the swizzler
|
| + SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, rowBytes));
|
| +
|
| + // Iterate over rows of the image
|
| + // FIXME: bool transparent = true;
|
| + for (int y = 0; y < height; y++) {
|
| + // Read a row of the input
|
| + if (stream()->read(srcBuffer.get(), rowBytes) != rowBytes) {
|
| + SkDebugf("Warning: incomplete input stream.\n");
|
| + return kIncompleteInput;
|
| + }
|
| +
|
| + // Decode the row in destination format
|
| + uint32_t row;
|
| + if (kTopDown_RowOrder == fRowOrder) {
|
| + row = y;
|
| + } else {
|
| + row = height - 1 - y;
|
| + }
|
| +
|
| + swizzler->next(srcBuffer.get(), row);
|
| + // FIXME: SkSwizzler::ResultAlpha r =
|
| + // swizzler->next(srcBuffer.get(), row);
|
| + // FIXME: transparent &= SkSwizzler::IsTransparent(r);
|
| + }
|
| +
|
| + // FIXME: This code exists to match the behavior in the chromium decoder
|
| + // and to follow the bmp specification as it relates to alpha masks. It is
|
| + // commented out because we have yet to discover a test image that provides
|
| + // an alpha mask and uses this decode mode.
|
| +
|
| + // Now we adjust the output image with some additional behavior that
|
| + // SkSwizzler does not support. Firstly, all bmp images that contain
|
| + // alpha are masked by the alpha mask. Secondly, many fully transparent
|
| + // bmp images are intended to be opaque. Here, we make those corrections.
|
| + // Modifying alpha is safe because colors are stored unpremultiplied.
|
| + /*
|
| + SkPMColor* dstRow = (SkPMColor*) dst;
|
| + if (SkSwizzler::kBGRA == config) {
|
| + for (int y = 0; y < height; y++) {
|
| + for (int x = 0; x < width; x++) {
|
| + if (transparent) {
|
| + dstRow[x] |= 0xFF000000;
|
| + } else {
|
| + dstRow[x] &= alphaMask;
|
| + }
|
| + dstRow = SkTAddOffset<SkPMColor>(dstRow, dstRowBytes);
|
| + }
|
| + }
|
| + }
|
| + */
|
| +
|
| + // Finished decoding the entire image
|
| + return kSuccess;
|
| +}
|
|
|