Index: src/codec/SkCodec_libbmp.cpp |
diff --git a/src/codec/SkCodec_libbmp.cpp b/src/codec/SkCodec_libbmp.cpp |
new file mode 100644 |
index 0000000000000000000000000000000000000000..5b9691c087c84ae9674b29e3b6a5cb1279b9ac1b |
--- /dev/null |
+++ b/src/codec/SkCodec_libbmp.cpp |
@@ -0,0 +1,903 @@ |
+/* |
+ * Copyright 2015 Google Inc. |
+ * |
+ * Use of this source code is governed by a BSD-style license that can be |
+ * found in the LICENSE file. |
+ */ |
+ |
+#include "SkCodec_libbmp.h" |
+#include "SkCodecPriv.h" |
+#include "SkColorPriv.h" |
+#include "SkStream.h" |
+ |
+/* |
+ * |
+ * Checks if the conversion between the input image and the requested output |
+ * image has been implemented |
+ * |
+ */ |
+static bool conversion_possible(const SkImageInfo& dst, |
+ const SkImageInfo& src) { |
+ // All of the swizzles convert to kN32 |
+ // TODO: Update this when more swizzles are supported |
+ if (kN32_SkColorType != dst.colorType()) { |
+ return false; |
+ } |
+ // Support the swizzle if the requested alpha type is the same as our guess |
+ // for the input alpha type |
+ if (src.alphaType() == dst.alphaType()) { |
+ return true; |
+ } |
+ // TODO: Support more swizzles, especially premul |
+ return false; |
+} |
+ |
+/* |
+ * |
+ * Defines the version and type of the second bitmap header |
+ * |
+ */ |
+enum BitmapHeaderType { |
+ kInfoV1_BitmapHeaderType, |
+ kInfoV2_BitmapHeaderType, |
+ kInfoV3_BitmapHeaderType, |
+ kInfoV4_BitmapHeaderType, |
+ kInfoV5_BitmapHeaderType, |
+ kOS2V1_BitmapHeaderType, |
+ kOS2VX_BitmapHeaderType, |
+ kUnknown_BitmapHeaderType |
+}; |
+ |
+/* |
+ * |
+ * Possible bitmap compression types |
+ * |
+ */ |
+enum BitmapCompressionMethod { |
+ kNone_BitmapCompressionMethod = 0, |
+ k8BitRLE_BitmapCompressionMethod = 1, |
+ k4BitRLE_BitmapCompressionMethod = 2, |
+ kBitMasks_BitmapCompressionMethod = 3, |
+ kJpeg_BitmapCompressionMethod = 4, |
+ kPng_BitmapCompressionMethod = 5, |
+ kAlphaBitMasks_BitmapCompressionMethod = 6, |
+ kCMYK_BitmapCompressionMethod = 11, |
+ kCMYK8BitRLE_BitmapCompressionMethod = 12, |
+ kCMYK4BitRLE_BitmapCompressionMethod = 13 |
+}; |
+ |
+/* |
+ * |
+ * Checks the start of the stream to see if the image is a bitmap |
+ * |
+ */ |
+bool SkBmpCodec::IsBmp(SkStream* stream) { |
+ // TODO: Support "IC", "PT", "CI", "CP", "BA" |
+ // TODO: ICO files may contain a BMP and need to use this decoder |
+ const char bmpSig[] = { 'B', 'M' }; |
+ char buffer[sizeof(bmpSig)]; |
+ return stream->read(buffer, sizeof(bmpSig)) == sizeof(bmpSig) && |
+ !memcmp(buffer, bmpSig, sizeof(bmpSig)); |
+} |
+ |
+/* |
+ * |
+ * Assumes IsBmp was called and returned true |
+ * Creates a bitmap decoder |
+ * Reads enough of the stream to determine the image format |
+ * |
+ */ |
+SkCodec* SkBmpCodec::NewFromStream(SkStream* stream) { |
+ // Header size constants |
+ static const uint32_t kBmpHeaderBytes = 14; |
+ static const uint32_t kBmpHeaderBytesPlusFour = kBmpHeaderBytes + 4; |
+ static const uint32_t kBmpOS2V1Bytes = 12; |
+ static const uint32_t kBmpOS2V2Bytes = 64; |
+ static const uint32_t kBmpInfoBaseBytes = 16; |
+ static const uint32_t kBmpInfoV1Bytes = 40; |
+ static const uint32_t kBmpInfoV2Bytes = 52; |
+ static const uint32_t kBmpInfoV3Bytes = 56; |
+ static const uint32_t kBmpInfoV4Bytes = 108; |
+ static const uint32_t kBmpInfoV5Bytes = 124; |
+ static const uint32_t kBmpMaskBytes = 12; |
+ |
+ // Read the first header and the size of the second header |
+ SkAutoTDeleteArray<uint8_t> hBuffer( |
+ SkNEW_ARRAY(uint8_t, kBmpHeaderBytesPlusFour)); |
+ if (stream->read(hBuffer.get(), kBmpHeaderBytesPlusFour) != |
+ kBmpHeaderBytesPlusFour) { |
+ SkDebugf("Error: unable to read first bitmap header.\n"); |
+ return NULL; |
+ } |
+ |
+ // The total bytes in the bmp file |
+ // We only need to use this value for RLE decoding, so we will only check |
+ // that it is valid in the RLE case. |
+ const uint32_t totalBytes = get_int(hBuffer.get(), 2); |
+ |
+ // The offset from the start of the file where the pixel data begins |
+ const uint32_t offset = get_int(hBuffer.get(), 10); |
+ if (offset < kBmpHeaderBytes + kBmpOS2V1Bytes) { |
+ SkDebugf("Error: invalid starting location for pixel data\n"); |
+ return NULL; |
+ } |
+ |
+ // The size of the second (info) header in bytes |
+ // The size is the first field of the second header, so we have already |
+ // read the first four infoBytes. |
+ const uint32_t infoBytes = get_int(hBuffer.get(), 14); |
+ if (infoBytes < kBmpOS2V1Bytes) { |
+ SkDebugf("Error: invalid second header size.\n"); |
+ return NULL; |
+ } |
+ const uint32_t infoBytesRemaining = infoBytes - 4; |
+ hBuffer.free(); |
+ |
+ // Read the second header |
+ SkAutoTDeleteArray<uint8_t> iBuffer( |
+ SkNEW_ARRAY(uint8_t, infoBytesRemaining)); |
+ if (stream->read(iBuffer.get(), infoBytesRemaining) != infoBytesRemaining) { |
+ SkDebugf("Error: unable to read second bitmap header.\n"); |
+ return NULL; |
+ } |
+ |
+ // The number of bits used per pixel in the pixel data |
+ uint16_t bitsPerPixel; |
+ |
+ // The compression method for the pixel data |
+ uint32_t compression = kNone_BitmapCompressionMethod; |
+ |
+ // Number of colors in the color table, defaults to 0 or max (see below) |
+ uint32_t numColors = 0; |
+ |
+ // Bytes per color in the color table, early versions use 3, most use 4 |
+ uint32_t bytesPerColor; |
+ |
+ // The image width and height |
+ int width, height; |
+ |
+ // Determine image information depending on second header format |
+ BitmapHeaderType headerType; |
+ if (infoBytes >= kBmpInfoBaseBytes) { |
+ // Check the version of the header |
+ switch (infoBytes) { |
+ case kBmpInfoV1Bytes: |
+ headerType = kInfoV1_BitmapHeaderType; |
+ break; |
+ case kBmpInfoV2Bytes: |
+ headerType = kInfoV2_BitmapHeaderType; |
+ break; |
+ case kBmpInfoV3Bytes: |
+ headerType = kInfoV3_BitmapHeaderType; |
+ break; |
+ case kBmpInfoV4Bytes: |
+ headerType = kInfoV4_BitmapHeaderType; |
+ break; |
+ case kBmpInfoV5Bytes: |
+ headerType = kInfoV5_BitmapHeaderType; |
+ break; |
+ case 16: |
+ case 20: |
+ case 24: |
+ case 28: |
+ case 32: |
+ case 36: |
+ case 42: |
+ case 46: |
+ case 48: |
+ case 60: |
+ case kBmpOS2V2Bytes: |
+ headerType = kOS2VX_BitmapHeaderType; |
+ break; |
+ default: |
+ // We do not signal an error here because there is the |
+ // possibility of new or undocumented bmp header types. Most |
+ // of the newer versions of bmp headers are similar to and |
+ // build off of the older versions, so we may still be able to |
+ // decode the bmp. |
+ SkDebugf("Warning: unknown bmp header format.\n"); |
+ headerType = kUnknown_BitmapHeaderType; |
+ break; |
+ } |
+ // We check the size of the header before entering the if statement. |
+ // We should not reach this point unless the size is large enough for |
+ // these required fields. |
+ SkASSERT(infoBytesRemaining >= 12); |
+ width = get_int(iBuffer.get(), 0); |
+ height = get_int(iBuffer.get(), 4); |
+ bitsPerPixel = get_short(iBuffer.get(), 10); |
+ |
+ // Some versions do not have these fields, so we check before |
+ // overwriting the default value. |
+ if (infoBytesRemaining >= 16) { |
+ compression = get_int(iBuffer.get(), 12); |
+ if (infoBytesRemaining >= 32) { |
+ numColors = get_int(iBuffer.get(), 28); |
+ } |
+ } |
+ |
+ // All of the headers that reach this point, store color table entries |
+ // using 4 bytes per pixel. |
+ bytesPerColor = 4; |
+ } else if (infoBytes >= kBmpOS2V1Bytes) { |
+ // The OS2V1 is treated separately because it has a unique format |
+ headerType = kOS2V1_BitmapHeaderType; |
+ width = (int) get_short(iBuffer.get(), 0); |
+ height = (int) get_short(iBuffer.get(), 2); |
+ bitsPerPixel = get_short(iBuffer.get(), 6); |
+ bytesPerColor = 3; |
+ } else { |
+ // There are no valid bmp headers |
+ SkDebugf("Error: second bitmap header size is invalid.\n"); |
+ return NULL; |
+ } |
+ |
+ // Check for valid dimensions from header |
+ RowOrder rowOrder = kBottomUp_RowOrder; |
+ if (height < 0) { |
+ height = -height; |
+ rowOrder = kTopDown_RowOrder; |
+ } |
+ static const int kBmpMaxDim = 1 << 16; |
+ if (width < 0 || width >= kBmpMaxDim || height >= kBmpMaxDim) { |
+ // TODO: Decide if we want to support really large bmps. |
+ SkDebugf("Error: invalid bitmap dimensions.\n"); |
+ return NULL; |
+ } |
+ |
+ // Create mask struct |
+ SkMasks::InputMasks inputMasks; |
+ memset(&inputMasks, 0, 4*sizeof(uint32_t)); |
+ |
+ // Determine the input compression format and set bit masks if necessary |
+ uint32_t maskBytes = 0; |
+ BitmapInputFormat inputFormat = kUnknown_BitmapInputFormat; |
+ switch (compression) { |
+ case kNone_BitmapCompressionMethod: |
+ inputFormat = kStandard_BitmapInputFormat; |
+ break; |
+ case k8BitRLE_BitmapCompressionMethod: |
+ if (bitsPerPixel != 8) { |
+ SkDebugf("Warning: correcting invalid bitmap format.\n"); |
+ bitsPerPixel = 8; |
+ } |
+ inputFormat = kRLE_BitmapInputFormat; |
+ break; |
+ case k4BitRLE_BitmapCompressionMethod: |
+ if (bitsPerPixel != 4) { |
+ SkDebugf("Warning: correcting invalid bitmap format.\n"); |
+ bitsPerPixel = 4; |
+ } |
+ inputFormat = kRLE_BitmapInputFormat; |
+ break; |
+ case kAlphaBitMasks_BitmapCompressionMethod: |
+ case kBitMasks_BitmapCompressionMethod: |
+ // Load the masks |
+ inputFormat = kBitMask_BitmapInputFormat; |
+ switch (headerType) { |
+ case kInfoV1_BitmapHeaderType: { |
+ // The V1 header stores the bit masks after the header |
+ SkAutoTDeleteArray<uint8_t> mBuffer( |
+ SkNEW_ARRAY(uint8_t, kBmpMaskBytes)); |
+ if (stream->read(mBuffer.get(), kBmpMaskBytes) != |
+ kBmpMaskBytes) { |
+ SkDebugf("Error: unable to read bit inputMasks.\n"); |
+ return NULL; |
+ } |
+ maskBytes = kBmpMaskBytes; |
+ inputMasks.red = get_int(mBuffer.get(), 0); |
+ inputMasks.green = get_int(mBuffer.get(), 4); |
+ inputMasks.blue = get_int(mBuffer.get(), 8); |
+ break; |
+ } |
+ case kInfoV2_BitmapHeaderType: |
+ case kInfoV3_BitmapHeaderType: |
+ case kInfoV4_BitmapHeaderType: |
+ case kInfoV5_BitmapHeaderType: |
+ // Header types are matched based on size. If the header |
+ // is V2+, we are guaranteed to be able to read at least |
+ // this size. |
+ SkASSERT(infoBytesRemaining >= 48); |
+ inputMasks.red = get_int(iBuffer.get(), 36); |
+ inputMasks.green = get_int(iBuffer.get(), 40); |
+ inputMasks.blue = get_int(iBuffer.get(), 44); |
+ break; |
+ case kOS2VX_BitmapHeaderType: |
+ // TODO: Decide if we intend to support this. |
+ // It is unsupported in the previous version and |
+ // in chromium. I have not come across a test case |
+ // that uses this format. |
+ SkDebugf("Error: huffman format unsupported.\n"); |
+ return NULL; |
+ default: |
+ SkDebugf("Error: invalid bmp bit masks header.\n"); |
+ return NULL; |
+ } |
+ break; |
+ case kJpeg_BitmapCompressionMethod: |
+ if (24 == bitsPerPixel) { |
+ inputFormat = kRLE_BitmapInputFormat; |
+ break; |
+ } |
+ // Fall through |
+ case kPng_BitmapCompressionMethod: |
+ // TODO: Decide if we intend to support this. |
+ // It is unsupported in the previous version and |
+ // in chromium. I think it is used mostly for printers. |
+ SkDebugf("Error: compression format not supported.\n"); |
+ return NULL; |
+ case kCMYK_BitmapCompressionMethod: |
+ case kCMYK8BitRLE_BitmapCompressionMethod: |
+ case kCMYK4BitRLE_BitmapCompressionMethod: |
+ // TODO: Same as above. |
+ SkDebugf("Error: CMYK not supported for bitmap decoding.\n"); |
+ return NULL; |
+ default: |
+ SkDebugf("Error: invalid format for bitmap decoding.\n"); |
+ return NULL; |
+ } |
+ |
+ // Most versions of bmps should be rendered as opaque. Either they do |
+ // not have an alpha channel, or they expect the alpha channel to be |
+ // ignored. V4+ bmp files introduce an alpha mask and allow the creator |
+ // of the image to use the alpha channels. However, many of these images |
+ // leave the alpha channel blank and expect to be rendered as opaque. For |
+ // this reason, we set the alpha type to kUnknown for V4+ bmps and figure |
+ // out the alpha type during the decode. |
+ SkAlphaType alphaType = kOpaque_SkAlphaType; |
+ if (kInfoV4_BitmapHeaderType == headerType || |
+ kInfoV5_BitmapHeaderType == headerType) { |
+ // Header types are matched based on size. If the header is |
+ // V4+, we are guaranteed to be able to read at least this size. |
+ SkASSERT(infoBytesRemaining > 52); |
+ inputMasks.alpha = get_int(iBuffer.get(), 48); |
+ if (inputMasks.alpha != 0) { |
+ alphaType = kUnpremul_SkAlphaType; |
+ } |
+ } |
+ iBuffer.free(); |
+ |
+ // Check for valid bits per pixel input |
+ switch (bitsPerPixel) { |
+ // In addition to more standard pixel compression formats, bmp supports |
+ // the use of bit masks to determine pixel components. The standard |
+ // format for representing 16-bit colors is 555 (XRRRRRGGGGGBBBBB), |
+ // which does not map well to any Skia color formats. For this reason, |
+ // we will always enable mask mode with 16 bits per pixel. |
+ case 16: |
+ if (kBitMask_BitmapInputFormat != inputFormat) { |
+ inputMasks.red = 0x7C00; |
+ inputMasks.green = 0x03E0; |
+ inputMasks.blue = 0x001F; |
+ inputFormat = kBitMask_BitmapInputFormat; |
+ } |
+ break; |
+ case 1: |
+ case 2: |
+ case 4: |
+ case 8: |
+ case 24: |
+ case 32: |
+ break; |
+ default: |
+ SkDebugf("Error: invalid input value for bits per pixel.\n"); |
+ return NULL; |
+ } |
+ |
+ // Check that input bit masks are valid and create the masks object |
+ SkAutoTDelete<SkMasks> |
+ masks(SkMasks::CreateMasks(inputMasks, bitsPerPixel)); |
+ if (NULL == masks) { |
+ SkDebugf("Error: invalid input masks.\n"); |
+ return NULL; |
+ } |
+ |
+ // Process the color table |
+ uint32_t colorBytes = 0; |
+ SkPMColor* colorTable = NULL; |
+ if (bitsPerPixel < 16) { |
+ // Verify the number of colors for the color table |
+ const uint32_t maxColors = 1 << bitsPerPixel; |
+ // Zero is a default for maxColors |
+ // Also set numColors to maxColors when input is too large |
+ if (numColors <= 0 || numColors > maxColors) { |
+ numColors = maxColors; |
+ } |
+ colorTable = SkNEW_ARRAY(SkPMColor, maxColors); |
+ |
+ // Construct the color table |
+ colorBytes = numColors * bytesPerColor; |
+ SkAutoTDeleteArray<uint8_t> cBuffer(SkNEW_ARRAY(uint8_t, colorBytes)); |
+ if (stream->read(cBuffer.get(), colorBytes) != colorBytes) { |
+ SkDebugf("Error: unable to read color table.\n"); |
+ return NULL; |
+ } |
+ |
+ // Fill in the color table (colors are stored unpremultiplied) |
+ uint32_t i = 0; |
+ for (; i < numColors; i++) { |
+ uint8_t blue = get_byte(cBuffer.get(), i*bytesPerColor); |
+ uint8_t green = get_byte(cBuffer.get(), i*bytesPerColor + 1); |
+ uint8_t red = get_byte(cBuffer.get(), i*bytesPerColor + 2); |
+ uint8_t alpha = 0xFF; |
+ if (kOpaque_SkAlphaType != alphaType) { |
+ alpha = (inputMasks.alpha >> 24) & |
+ get_byte(cBuffer.get(), i*bytesPerColor + 3); |
+ } |
+ // Store the unpremultiplied color |
+ colorTable[i] = SkPackARGB32NoCheck(alpha, red, green, blue); |
+ } |
+ |
+ // To avoid segmentation faults on bad pixel data, fill the end of the |
+ // color table with black. This is the same the behavior as the |
+ // chromium decoder. |
+ for (; i < maxColors; i++) { |
+ colorTable[i] = SkPackARGB32NoCheck(0xFF, 0, 0, 0); |
+ } |
+ } |
+ |
+ // Ensure that the stream now points to the start of the pixel array |
+ uint32_t bytesRead = kBmpHeaderBytes + infoBytes + maskBytes + colorBytes; |
+ |
+ // Check that we have not read past the pixel array offset |
+ if(bytesRead > offset) { |
+ // This may occur on OS 2.1 and other old versions where the color |
+ // table defaults to max size, and the bmp tries to use a smaller color |
+ // table. This is invalid, and our decision is to indicate an error, |
+ // rather than try to guess the intended size of the color table and |
+ // rewind the stream to display the image. |
+ SkDebugf("Error: pixel data offset less than header size.\n"); |
+ return NULL; |
+ } |
+ |
+ // Skip to the start of the pixel array |
+ if (stream->skip(offset - bytesRead) != offset - bytesRead) { |
+ SkDebugf("Error: unable to skip to image data.\n"); |
+ return NULL; |
+ } |
+ |
+ // Remaining bytes is only used for RLE |
+ const int remainingBytes = totalBytes - offset; |
+ if (remainingBytes <= 0 && kRLE_BitmapInputFormat == inputFormat) { |
+ SkDebugf("Error: RLE requires valid input size.\n"); |
+ return NULL; |
+ } |
+ |
+ // Return the codec |
+ // We will use ImageInfo to store width, height, and alpha type. We will |
+ // choose kN32_SkColorType as the input color type because that is the |
+ // expected choice for a destination color type. In reality, the input |
+ // color type has many possible formats. |
+ const SkImageInfo& imageInfo = SkImageInfo::Make(width, height, |
+ kN32_SkColorType, alphaType); |
+ return SkNEW_ARGS(SkBmpCodec, (imageInfo, stream, bitsPerPixel, |
+ inputFormat, masks.detach(), colorTable, |
+ rowOrder, remainingBytes)); |
+} |
+ |
+/* |
+ * |
+ * Creates an instance of the decoder |
+ * Called only by NewFromStream |
+ * |
+ */ |
+SkBmpCodec::SkBmpCodec(const SkImageInfo& info, SkStream* stream, |
+ uint16_t bitsPerPixel, BitmapInputFormat inputFormat, |
+ SkMasks* masks, SkPMColor* colorTable, |
+ RowOrder rowOrder, |
+ const uint32_t remainingBytes) |
+ : INHERITED(info, stream) |
+ , fBitsPerPixel(bitsPerPixel) |
+ , fInputFormat(inputFormat) |
+ , fMasks(masks) |
+ , fColorTable(colorTable) |
+ , fRowOrder(rowOrder) |
+ , fRemainingBytes(remainingBytes) |
+{} |
+ |
+/* |
+ * |
+ * Initiates the bitmap decode |
+ * |
+ */ |
+SkCodec::Result SkBmpCodec::onGetPixels(const SkImageInfo& dstInfo, |
+ void* dst, size_t dstRowBytes, |
+ SkPMColor*, int*) { |
+ if (!this->rewindIfNeeded()) { |
+ return kCouldNotRewind; |
+ } |
+ if (dstInfo.dimensions() != this->getOriginalInfo().dimensions()) { |
+ SkDebugf("Error: scaling not supported.\n"); |
+ return kInvalidScale; |
+ } |
+ if (!conversion_possible(dstInfo, this->getOriginalInfo())) { |
+ SkDebugf("Error: cannot convert input type to output type.\n"); |
+ return kInvalidConversion; |
+ } |
+ |
+ switch (fInputFormat) { |
+ case kBitMask_BitmapInputFormat: |
+ return decodeMask(dstInfo, dst, dstRowBytes); |
+ case kRLE_BitmapInputFormat: |
+ return decodeRLE(dstInfo, dst, dstRowBytes); |
+ case kStandard_BitmapInputFormat: |
+ return decode(dstInfo, dst, dstRowBytes); |
+ default: |
+ SkASSERT(false); |
+ return kInvalidInput; |
+ } |
+} |
+ |
+/* |
+ * |
+ * Performs the bitmap decoding for bit masks input format |
+ * |
+ */ |
+SkCodec::Result SkBmpCodec::decodeMask(const SkImageInfo& dstInfo, |
+ void* dst, size_t dstRowBytes) { |
+ // Set constant values |
+ const int width = dstInfo.width(); |
+ const int height = dstInfo.height(); |
+ const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel)); |
+ |
+ // Allocate space for a row buffer and a source for the swizzler |
+ SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, rowBytes)); |
+ |
+ // Get the destination start row and delta |
+ SkPMColor* dstRow; |
+ int delta; |
+ if (kTopDown_RowOrder == fRowOrder) { |
+ dstRow = (SkPMColor*) dst; |
+ delta = (int) dstRowBytes; |
+ } else { |
+ dstRow = (SkPMColor*) SkTAddOffset<void>(dst, (height-1) * dstRowBytes); |
+ delta = -((int) dstRowBytes); |
+ } |
+ |
+ // Create the swizzler |
+ SkMaskSwizzler* swizzler = SkMaskSwizzler::CreateMaskSwizzler( |
+ dstInfo, fMasks, fBitsPerPixel); |
+ |
+ // Iterate over rows of the image |
+ bool transparent = true; |
+ for (int y = 0; y < height; y++) { |
+ // Read a row of the input |
+ if (stream()->read(srcBuffer.get(), rowBytes) != rowBytes) { |
+ SkDebugf("Warning: incomplete input stream.\n"); |
+ return kIncompleteInput; |
+ } |
+ |
+ // Decode the row in destination format |
+ SkSwizzler::ResultAlpha r = swizzler->next(dstRow, srcBuffer.get()); |
+ transparent &= SkSwizzler::IsTransparent(r); |
+ |
+ // Move to the next row |
+ dstRow = SkTAddOffset<SkPMColor>(dstRow, delta); |
+ } |
+ |
+ // Some fully transparent bmp images are intended to be opaque. Here, we |
+ // correct for this possibility. |
+ dstRow = (SkPMColor*) dst; |
+ if (transparent) { |
+ for (int y = 0; y < height; y++) { |
+ for (int x = 0; x < width; x++) { |
+ dstRow[x] |= 0xFF000000; |
+ } |
+ dstRow = SkTAddOffset<SkPMColor>(dstRow, dstRowBytes); |
+ } |
+ } |
+ |
+ // Finished decoding the entire image |
+ return kSuccess; |
+} |
+ |
+/* |
+ * |
+ * Set an RLE pixel using the color table |
+ * |
+ */ |
+void SkBmpCodec::setRLEPixel(SkPMColor* dst, size_t dstRowBytes, int height, |
+ uint32_t x, uint32_t y, uint8_t index) { |
+ if (kBottomUp_RowOrder == fRowOrder) { |
+ y = height - y - 1; |
+ } |
+ SkPMColor* dstRow = SkTAddOffset<SkPMColor>(dst, y * dstRowBytes); |
+ dstRow[x] = fColorTable.get()[index]; |
+} |
+ |
+/* |
+ * |
+ * Performs the bitmap decoding for RLE input format |
+ * RLE decoding is performed all at once, rather than a one row at a time |
+ * |
+ */ |
+SkCodec::Result SkBmpCodec::decodeRLE(const SkImageInfo& dstInfo, |
+ void* dst, size_t dstRowBytes) { |
+ // Set RLE flags |
+ static const uint8_t RLE_ESCAPE = 0; |
+ static const uint8_t RLE_EOL = 0; |
+ static const uint8_t RLE_EOF = 1; |
+ static const uint8_t RLE_DELTA = 2; |
+ |
+ // Set constant values |
+ const int width = dstInfo.width(); |
+ const int height = dstInfo.height(); |
+ |
+ // Input buffer parameters |
+ uint32_t currByte = 0; |
+ SkAutoTDeleteArray<uint8_t> buffer(SkNEW_ARRAY(uint8_t, fRemainingBytes)); |
+ size_t totalBytes = stream()->read(buffer.get(), fRemainingBytes); |
+ if ((uint32_t) totalBytes < fRemainingBytes) { |
+ SkDebugf("Warning: incomplete RLE file.\n"); |
+ } else if (totalBytes <= 0) { |
+ SkDebugf("Error: could not read RLE image data.\n"); |
+ return kInvalidInput; |
+ } |
+ |
+ // Destination parameters |
+ int x = 0; |
+ int y = 0; |
+ // If the code skips pixels, remaining pixels are transparent or black |
+ // TODO: Skip this if memory was already zeroed. |
+ memset(dst, 0, dstRowBytes * height); |
+ SkPMColor* dstPtr = (SkPMColor*) dst; |
+ |
+ while (true) { |
+ // Every entry takes at least two bytes |
+ if ((int) totalBytes - currByte < 2) { |
+ SkDebugf("Warning: incomplete RLE input.\n"); |
+ return kIncompleteInput; |
+ } |
+ |
+ // Read the next two bytes. These bytes have different meanings |
+ // depending on their values. In the first interpretation, the first |
+ // byte is an escape flag and the second byte indicates what special |
+ // task to perform. |
+ const uint8_t flag = buffer.get()[currByte++]; |
+ const uint8_t task = buffer.get()[currByte++]; |
+ |
+ // If we have reached a row that is beyond the image size, and the RLE |
+ // code does not indicate end of file, abort and signal a warning. |
+ if (y >= height && (flag != RLE_ESCAPE || (task != RLE_EOF))) { |
+ SkDebugf("Warning: invalid RLE input.\n"); |
+ return kIncompleteInput; |
+ } |
+ |
+ // Perform decoding |
+ if (RLE_ESCAPE == flag) { |
+ switch (task) { |
+ case RLE_EOL: |
+ x = 0; |
+ y++; |
+ break; |
+ case RLE_EOF: |
+ return kSuccess; |
+ case RLE_DELTA: { |
+ // Two bytes are needed to specify delta |
+ if ((int) totalBytes - currByte < 2) { |
+ SkDebugf("Warning: incomplete RLE input\n"); |
+ return kIncompleteInput; |
+ } |
+ // Modify x and y |
+ const uint8_t dx = buffer.get()[currByte++]; |
+ const uint8_t dy = buffer.get()[currByte++]; |
+ x += dx; |
+ y += dy; |
+ if (x > width || y > height) { |
+ SkDebugf("Warning: invalid RLE input.\n"); |
+ return kIncompleteInput; |
+ } |
+ break; |
+ } |
+ default: { |
+ // If task does not match any of the above signals, it |
+ // indicates that we have a sequence of non-RLE pixels. |
+ // Furthermore, the value of task is equal to the number |
+ // of pixels to interpret. |
+ uint8_t numPixels = task; |
+ const size_t rowBytes = compute_row_bytes(numPixels, |
+ fBitsPerPixel); |
+ // Abort if setting numPixels moves us off the edge of the |
+ // image. Also abort if there are not enough bytes |
+ // remaining in the stream to set numPixels. |
+ if (x + numPixels > width || |
+ (int) totalBytes - currByte < SkAlign2(rowBytes)) { |
+ SkDebugf("Warning: invalid RLE input.\n"); |
+ return kIncompleteInput; |
+ } |
+ // Set numPixels number of pixels |
+ SkPMColor* dstRow = SkTAddOffset<SkPMColor>( |
+ dstPtr, y * dstRowBytes); |
+ while (numPixels > 0) { |
+ switch(fBitsPerPixel) { |
+ case 4: { |
+ SkASSERT(currByte < totalBytes); |
+ uint8_t val = buffer.get()[currByte++]; |
+ setRLEPixel(dstPtr, dstRowBytes, height, x++, y, |
+ val >> 4); |
+ numPixels--; |
+ if (numPixels != 0) { |
+ setRLEPixel(dstPtr, dstRowBytes, height, |
+ x++, y, val & 0xF); |
+ numPixels--; |
+ } |
+ break; |
+ } |
+ case 8: |
+ SkASSERT(currByte < totalBytes); |
+ setRLEPixel(dstPtr, dstRowBytes, height, x++, y, |
+ buffer.get()[currByte++]); |
+ numPixels--; |
+ break; |
+ case 24: { |
+ SkASSERT(currByte + 2 < totalBytes); |
+ uint8_t blue = buffer.get()[currByte++]; |
+ uint8_t green = buffer.get()[currByte++]; |
+ uint8_t red = buffer.get()[currByte++]; |
+ SkPMColor color = SkPackARGB32NoCheck( |
+ 0xFF, red, green, blue); |
+ dstRow[x++] = color; |
+ numPixels--; |
+ } |
+ default: |
+ SkASSERT(false); |
+ return kInvalidInput; |
+ } |
+ } |
+ // Skip a byte if necessary to maintain alignment |
+ if (!SkIsAlign2(rowBytes)) { |
+ currByte++; |
+ } |
+ break; |
+ } |
+ } |
+ } else { |
+ // If the first byte read is not a flag, it indicates the number of |
+ // pixels to set in RLE mode. |
+ const uint8_t numPixels = flag; |
+ const int endX = SkTMin<int>(x + numPixels, width); |
+ |
+ if (24 == fBitsPerPixel) { |
+ // In RLE24, the second byte read is part of the pixel color. |
+ // There are two more required bytes to finish encoding the |
+ // color. |
+ if ((int) totalBytes - currByte < 2) { |
+ SkDebugf("Warning: incomplete RLE input\n"); |
+ return kIncompleteInput; |
+ } |
+ |
+ // Fill the pixels up to endX with the specified color |
+ uint8_t blue = task; |
+ uint8_t green = buffer.get()[currByte++]; |
+ uint8_t red = buffer.get()[currByte++]; |
+ SkPMColor color = SkPackARGB32NoCheck(0xFF, red, green, blue); |
+ SkPMColor* dstRow = |
+ SkTAddOffset<SkPMColor>(dstPtr, y * dstRowBytes); |
+ while (x < endX) { |
+ dstRow[x++] = color; |
+ } |
+ } else { |
+ // In RLE8 or RLE4, the second byte read gives the index in the |
+ // color table to look up the pixel color. |
+ // RLE8 has one color index that gets repeated |
+ // RLE4 has two color indexes in the upper and lower 4 bits of |
+ // the bytes, which are alternated |
+ uint8_t indices[2] = { task, task }; |
+ if (4 == fBitsPerPixel) { |
+ indices[0] >>= 4; |
+ indices[1] &= 0xf; |
+ } |
+ |
+ // Set the indicated number of pixels |
+ for (int which = 0; x < endX; x++) { |
+ setRLEPixel(dstPtr, dstRowBytes, height, x, y, |
+ indices[which]); |
+ which = !which; |
+ } |
+ } |
+ } |
+ } |
+} |
+ |
+/* |
+ * |
+ * Performs the bitmap decoding for standard input format |
+ * |
+ */ |
+SkCodec::Result SkBmpCodec::decode(const SkImageInfo& dstInfo, |
+ void* dst, size_t dstRowBytes) { |
+ // Set constant values |
+ const int width = dstInfo.width(); |
+ const int height = dstInfo.height(); |
+ const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel)); |
+ const uint32_t alphaMask = fMasks->getAlphaMask(); |
+ |
+ // Get swizzler configuration |
+ SkSwizzler::SrcConfig config; |
+ switch (fBitsPerPixel) { |
+ case 1: |
+ config = SkSwizzler::kIndex1; |
+ break; |
+ case 2: |
+ config = SkSwizzler::kIndex2; |
+ break; |
+ case 4: |
+ config = SkSwizzler::kIndex4; |
+ break; |
+ case 8: |
+ config = SkSwizzler::kIndex; |
+ break; |
+ case 24: |
+ config = SkSwizzler::kBGR; |
+ break; |
+ case 32: |
+ if (0 == alphaMask) { |
+ config = SkSwizzler::kBGRX; |
+ } else { |
+ config = SkSwizzler::kBGRA; |
+ } |
+ break; |
+ default: |
+ SkASSERT(false); |
+ return kInvalidInput; |
+ } |
+ |
+ // Create swizzler |
+ SkSwizzler* swizzler = SkSwizzler::CreateSwizzler(config, fColorTable.get(), |
+ dstInfo, dst, dstRowBytes, false); |
+ |
+ // Allocate space for a row buffer and a source for the swizzler |
+ SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, rowBytes)); |
+ |
+ // Iterate over rows of the image |
+ // FIXME: bool transparent = true; |
+ for (int y = 0; y < height; y++) { |
+ // Read a row of the input |
+ if (stream()->read(srcBuffer.get(), rowBytes) != rowBytes) { |
+ SkDebugf("Warning: incomplete input stream.\n"); |
+ return kIncompleteInput; |
+ } |
+ |
+ // Decode the row in destination format |
+ uint32_t row; |
+ if (kTopDown_RowOrder == fRowOrder) { |
+ row = y; |
+ } else { |
+ row = height - 1 - y; |
+ } |
+ |
+ swizzler->next(srcBuffer.get(), row); |
+ // FIXME: SkSwizzler::ResultAlpha r = |
+ // swizzler->next(srcBuffer.get(), row); |
+ // FIXME: transparent &= SkSwizzler::IsTransparent(r); |
+ } |
+ |
+ // FIXME: This code exists to match the behavior in the chromium decoder |
+ // and to follow the bmp specification as it relates to alpha masks. It is |
+ // commented out because we have yet to discover a test image that provides |
+ // an alpha mask and uses this decode mode. |
+ |
+ // Now we adjust the output image with some additional behavior that |
+ // SkSwizzler does not support. Firstly, all bmp images that contain |
+ // alpha are masked by the alpha mask. Secondly, many fully transparent |
+ // bmp images are intended to be opaque. Here, we make those corrections. |
+ // Modifying alpha is safe because colors are stored unpremultiplied. |
+ /* |
+ SkPMColor* dstRow = (SkPMColor*) dst; |
+ if (SkSwizzler::kBGRA == config) { |
+ for (int y = 0; y < height; y++) { |
+ for (int x = 0; x < width; x++) { |
+ if (transparent) { |
+ dstRow[x] |= 0xFF000000; |
+ } else { |
+ dstRow[x] &= alphaMask; |
+ } |
+ dstRow = SkTAddOffset<SkPMColor>(dstRow, dstRowBytes); |
+ } |
+ } |
+ } |
+ */ |
+ |
+ // Finished decoding the entire image |
+ return kSuccess; |
+} |