Chromium Code Reviews| Index: src/codec/SkCodec_libbmp.cpp |
| diff --git a/src/codec/SkCodec_libbmp.cpp b/src/codec/SkCodec_libbmp.cpp |
| new file mode 100644 |
| index 0000000000000000000000000000000000000000..54aec0ff37c9f1fd6467ae5968f69d863467cf93 |
| --- /dev/null |
| +++ b/src/codec/SkCodec_libbmp.cpp |
| @@ -0,0 +1,1298 @@ |
| +/* |
| + * Copyright 2015 Google Inc. |
| + * |
| + * Use of this source code is governed by a BSD-style license that can be |
| + * found in the LICENSE file. |
| + */ |
| + |
| +#include "SkCodec_libbmp.h" |
| +#include "SkColor.h" |
| +#include "SkEndian.h" |
| +#include "SkStream.h" |
| + |
| +/* |
| + * |
| + * Get a byte from the buffer |
| + * |
| + */ |
| +uint8_t get_byte(uint8_t* buffer, uint32_t i) { |
| + return buffer[i]; |
| +} |
| + |
| +/* |
| + * |
| + * Get a short from the buffer |
| + * |
| + */ |
| +uint16_t get_short(uint8_t* buffer, uint32_t i) { |
| + uint16_t result; |
| + memcpy(&result, &(buffer[i]), 2); |
| +#ifdef SK_CPU_BENDIAN |
| + return SkEndianSwap16(result); |
| +#else |
| + return result; |
| +#endif |
| +} |
| + |
| +/* |
| + * |
| + * Get an int from the buffer |
| + * |
| + */ |
| +uint32_t get_int(uint8_t* buffer, uint32_t i) { |
| + uint32_t result; |
| + memcpy(&result, &(buffer[i]), 4); |
| +#ifdef SK_CPU_BENDIAN |
| + return SkEndianSwap32(result); |
| +#else |
| + return result; |
| +#endif |
| +} |
| + |
| +/* |
| + * |
| + * Used to convert 1-7 bit color components into 8-bit color components |
| + * |
| + */ |
| +const static uint8_t n_bit_to_8_bit_lookup_table[] = { |
| + // 1 bit |
| + 0, 255, |
| + // 2 bits |
| + 0, 85, 170, 255, |
| + // 3 bits |
| + 0, 36, 73, 109, 146, 182, 219, 255, |
| + // 4 bits |
| + 0, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187, 204, 221, 238, 255, |
| + // 5 bits |
| + 0, 8, 16, 25, 33, 41, 49, 58, 66, 74, 82, 90, 99, 107, 115, 123, 132, 140, |
| + 148, 156, 165, 173, 181, 189, 197, 206, 214, 222, 230, 239, 247, 255, |
| + // 6 bits |
| + 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 45, 49, 53, 57, 61, 65, 69, 73, |
| + 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 130, 134, 138, |
| + 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 186, 190, 194, 198, |
| + 202, 206, 210, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, |
| + // 7 bits |
| + 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, |
| + 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, |
| + 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, |
| + 112, 114, 116, 118, 120, 122, 124, 126, 129, 131, 133, 135, 137, 139, 141, |
| + 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, |
| + 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, |
| + 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, |
| + 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255 |
| +}; |
| + |
| +/* |
| + * |
| + * Convert an n bit component to an 8-bit component |
| + * |
| + */ |
| +static uint8_t convert_n_to_8(uint32_t component, uint32_t n) { |
| + if (0 == n) { |
| + return 0; |
| + } else if (8 > n) { |
| + return n_bit_to_8_bit_lookup_table[(1 << n) - 2 + component]; |
| + } else if (8 == n) { |
|
scroggo
2015/03/06 18:56:13
I would change this to:
} else {
SkASSERT(8 ==
|
| + return component; |
| + } else { |
| + SkASSERT(false); |
| + return 0; |
| + } |
| +} |
| + |
| +/* |
| + * |
| + * Row procedure for masked color components with 16 bits per pixel |
| + * |
| + */ |
| +static SkSwizzler::ResultAlpha swizzle_mask16_to_n32( |
| + void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width, |
| + const SkBmpCodec::BitMasks masks, |
| + const SkBmpCodec::BitMaskShifts shifts, |
| + const SkBmpCodec::BitMaskSizes sizes) { |
| + |
| + // Use the masks to decode to the destination |
| + uint16_t* srcPtr = (uint16_t*) src; |
| + SkColor* SK_RESTRICT dstPtr = (SkColor*) dstRow; |
| + for (uint32_t i = 0; i < width; i++) { |
| + uint16_t p = srcPtr[i]; |
| + uint8_t red = convert_n_to_8( |
| + (p & masks.redMask) >> shifts.redShift, sizes.redSize); |
|
scroggo
2015/03/06 18:56:13
It looks like this same code is repeated a few tim
|
| + uint8_t green = convert_n_to_8( |
| + (p & masks.greenMask) >> shifts.greenShift, sizes.greenSize); |
| + uint8_t blue = convert_n_to_8( |
| + (p & masks.blueMask) >> shifts.blueShift, sizes.blueSize); |
| + dstPtr[i] = SkColorSetARGBInline(0xFF, red, green, blue); |
|
scroggo
2015/03/06 18:56:12
This doesn't do what we want. We want either premu
|
| + } |
| + return SkSwizzler::kOpaque_ResultAlpha; |
| +} |
| + |
| +/* |
| + * |
| + * Row procedure for masked color components with 16 bits per pixel with alpha |
| + * |
| + */ |
| +static SkSwizzler::ResultAlpha swizzle_mask16_alpha_to_n32( |
| + void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width, |
| + const SkBmpCodec::BitMasks masks, |
| + const SkBmpCodec::BitMaskShifts shifts, |
| + const SkBmpCodec::BitMaskSizes sizes) { |
| + |
| + // Use the masks to decode to the destination |
| + uint16_t* srcPtr = (uint16_t*) src; |
| + SkColor* SK_RESTRICT dstPtr = (SkColor*) dstRow; |
| + uint8_t zAlpha = 0; |
|
scroggo
2015/03/06 18:56:13
What does zAlpha mean? zeroAlpha?
|
| + uint8_t mAlpha = 0xFF; |
|
scroggo
2015/03/06 18:56:13
I think this is max alpha? Refrain from using mVar
|
| + for (uint32_t i = 0; i < width; i++) { |
| + uint16_t p = srcPtr[i]; |
| + uint8_t red = convert_n_to_8( |
| + (p & masks.redMask) >> shifts.redShift, sizes.redSize); |
| + uint8_t green = convert_n_to_8( |
| + (p & masks.greenMask) >> shifts.greenShift, sizes.greenSize); |
| + uint8_t blue = convert_n_to_8( |
| + (p & masks.blueMask) >> shifts.blueShift, sizes.blueSize); |
| + uint8_t alpha = convert_n_to_8(( |
| + p & masks.alphaMask) >> shifts.alphaShift, sizes.alphaSize); |
| + zAlpha |= alpha; |
| + mAlpha &= alpha; |
| + dstPtr[i] = SkColorSetARGBInline(alpha, red, green, blue); |
| + } |
| + return (mAlpha == 0xFF) ? SkSwizzler::kOpaque_ResultAlpha : |
|
scroggo
2015/03/06 18:56:13
Can you make a helper function for this? Something
|
| + ((zAlpha == 0) ? SkSwizzler::kTransparent_ResultAlpha : |
| + SkSwizzler::kNeither_ResultAlpha); |
| +} |
| + |
| +/* |
| + * |
| + * Row procedure for masked color components with 24 bits per pixel |
| + * |
| + */ |
| +static SkSwizzler::ResultAlpha swizzle_mask24_to_n32( |
| + void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width, |
| + const SkBmpCodec::BitMasks masks, |
| + const SkBmpCodec::BitMaskShifts shifts, |
| + const SkBmpCodec::BitMaskSizes sizes) { |
| + |
| + // Use the masks to decode to the destination |
| + SkColor* SK_RESTRICT dstPtr = (SkColor*) dstRow; |
| + for (uint32_t i = 0; i < 3*width; i += 3) { |
| + uint32_t p = src[i] | (src[i + 1] << 8) | src[i + 2] << 16; |
| + uint8_t red = convert_n_to_8( |
| + (p & masks.redMask) >> shifts.redShift, sizes.redSize); |
| + uint8_t green = convert_n_to_8( |
| + (p & masks.greenMask) >> shifts.greenShift, sizes.greenSize); |
| + uint8_t blue = convert_n_to_8( |
| + (p & masks.blueMask) >> shifts.blueShift, sizes.blueSize); |
| + dstPtr[i/3] = SkColorSetARGBInline(0xFF, red, green, blue); |
| + } |
| + return SkSwizzler::kOpaque_ResultAlpha; |
| +} |
| + |
| +/* |
| + * |
| + * Row procedure for masked color components with 24 bits per pixel with alpha |
| + * |
| + */ |
| +static SkSwizzler::ResultAlpha swizzle_mask24_alpha_to_n32( |
| + void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width, |
| + const SkBmpCodec::BitMasks masks, |
| + const SkBmpCodec::BitMaskShifts shifts, |
| + const SkBmpCodec::BitMaskSizes sizes) { |
| + |
| + // Use the masks to decode to the destination |
| + SkColor* SK_RESTRICT dstPtr = (SkColor*) dstRow; |
| + uint8_t zAlpha = 0; |
| + uint8_t mAlpha = 0xFF; |
| + for (uint32_t i = 0; i < 3*width; i += 3) { |
| + uint32_t p = src[i] | (src[i + 1] << 8) | src[i + 2] << 16; |
| + uint8_t red = convert_n_to_8( |
| + (p & masks.redMask) >> shifts.redShift, sizes.redSize); |
| + uint8_t green = convert_n_to_8( |
| + (p & masks.greenMask) >> shifts.greenShift, sizes.greenSize); |
| + uint8_t blue = convert_n_to_8( |
| + (p & masks.blueMask) >> shifts.blueShift, sizes.blueSize); |
| + uint8_t alpha = convert_n_to_8(( |
| + p & masks.alphaMask) >> shifts.alphaShift, sizes.alphaSize); |
| + zAlpha |= alpha; |
| + mAlpha &= alpha; |
| + dstPtr[i/3] = SkColorSetARGBInline(alpha, red, green, blue); |
| + } |
| + return (mAlpha == 0xFF) ? SkSwizzler::kOpaque_ResultAlpha : |
| + ((zAlpha == 0) ? SkSwizzler::kTransparent_ResultAlpha : |
| + SkSwizzler::kNeither_ResultAlpha); |
| +} |
| + |
| +/* |
| + * |
| + * Row procedure for masked color components with 32 bits per pixel |
| + * |
| + */ |
| +static SkSwizzler::ResultAlpha swizzle_mask32_to_n32( |
| + void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width, |
| + const SkBmpCodec::BitMasks masks, |
| + const SkBmpCodec::BitMaskShifts shifts, |
| + const SkBmpCodec::BitMaskSizes sizes) { |
| + |
| + // Use the masks to decode to the destination |
| + uint32_t* srcPtr = (uint32_t*) src; |
| + SkColor* SK_RESTRICT dstPtr = (SkColor*) dstRow; |
| + for (uint32_t i = 0; i < width; i++) { |
| + uint32_t p = srcPtr[i]; |
| + uint8_t red = convert_n_to_8( |
| + (p & masks.redMask) >> shifts.redShift, sizes.redSize); |
| + uint8_t green = convert_n_to_8( |
| + (p & masks.greenMask) >> shifts.greenShift, sizes.greenSize); |
| + uint8_t blue = convert_n_to_8( |
| + (p & masks.blueMask) >> shifts.blueShift, sizes.blueSize); |
| + dstPtr[i] = SkColorSetARGBInline(0xFF, red, green, blue); |
| + } |
| + return SkSwizzler::kOpaque_ResultAlpha; |
| +} |
| + |
| +/* |
| + * |
| + * Row procedure for masked color components with 32 bits per pixel |
| + * |
| + */ |
| +static SkSwizzler::ResultAlpha swizzle_mask32_alpha_to_n32( |
| + void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width, |
| + const SkBmpCodec::BitMasks masks, |
| + const SkBmpCodec::BitMaskShifts shifts, |
| + const SkBmpCodec::BitMaskSizes sizes) { |
| + |
| + // Use the masks to decode to the destination |
| + uint32_t* srcPtr = (uint32_t*) src; |
| + SkColor* SK_RESTRICT dstPtr = (SkColor*) dstRow; |
| + uint8_t zAlpha = 0; |
| + uint8_t mAlpha = 0xFF; |
| + for (uint32_t i = 0; i < width; i++) { |
| + uint32_t p = srcPtr[i]; |
| + uint8_t red = convert_n_to_8( |
| + (p & masks.redMask) >> shifts.redShift, sizes.redSize); |
| + uint8_t green = convert_n_to_8( |
| + (p & masks.greenMask) >> shifts.greenShift, sizes.greenSize); |
| + uint8_t blue = convert_n_to_8( |
| + (p & masks.blueMask) >> shifts.blueShift, sizes.blueSize); |
| + uint8_t alpha = convert_n_to_8(( |
| + p & masks.alphaMask) >> shifts.alphaShift, sizes.alphaSize); |
| + zAlpha |= alpha; |
| + mAlpha &= alpha; |
| + dstPtr[i] = SkColorSetARGBInline(alpha, red, green, blue); |
| + } |
| + return (mAlpha == 0xFF) ? SkSwizzler::kOpaque_ResultAlpha : |
| + ((zAlpha == 0) ? SkSwizzler::kTransparent_ResultAlpha : |
| + SkSwizzler::kNeither_ResultAlpha); |
| +} |
| + |
| +/* |
| + * |
| + * Checks if the conversion between the input image and the requested output |
| + * image has been implemented |
| + * |
| + */ |
| +static bool conversion_possible(const SkImageInfo& dst, |
| + const SkImageInfo& src) { |
| + // TODO: Support all conversions |
|
scroggo
2015/03/06 18:56:13
nit: we won't support *all* conversions, but perha
|
| + if (kN32_SkColorType != dst.colorType()) { |
| + return false; |
| + } |
| + if (kIgnore_SkAlphaType == dst.alphaType()) { |
|
scroggo
2015/03/06 18:56:13
Can we also check for opaque vs non-opaque?
For P
|
| + SkDebugf("Error: invalid dst alpha type."); |
| + return false; |
| + } |
| + return true; |
| +} |
| + |
| +/* |
| + * |
| + * Defines the version and type of the second bitmap header |
| + * |
| + */ |
| +enum BitmapHeaderType { |
| + kInfoV1_BitmapHeaderType, |
| + kInfoV2_BitmapHeaderType, |
| + kInfoV3_BitmapHeaderType, |
| + kInfoV4_BitmapHeaderType, |
| + kInfoV5_BitmapHeaderType, |
| + kOS2V1_BitmapHeaderType, |
| + kOS2VX_BitmapHeaderType, |
| + kUnknown_BitmapHeaderType |
| +}; |
| + |
| +/* |
| + * |
| + * Possible bitmap compression types |
| + * |
| + */ |
| +enum BitmapCompressionMethod { |
| + kNone_BitmapCompressionMethod = 0, |
| + k8BitRLE_BitmapCompressionMethod = 1, |
| + k4BitRLE_BitmapCompressionMethod = 2, |
| + kBitMasks_BitmapCompressionMethod = 3, |
| + kJpeg_BitmapCompressionMethod = 4, |
| + kPng_BitmapCompressionMethod = 5, |
| + kAlphaBitMasks_BitmapCompressionMethod = 6, |
| + kCMYK_BitmapCompressionMethod = 11, |
| + kCMYK8BitRLE_BitmapCompressionMethod = 12, |
| + kCMYK4BitRLE_BitmapCompressionMethod = 13 |
| +}; |
| + |
| +/* |
| + * |
| + * Checks the start of the stream to see if the image is a bitmap |
| + * |
| + */ |
| +bool SkBmpCodec::IsBmp(SkStream* stream) { |
| + // TODO: Support "IC", "PT", "CI", "CP", "BA" |
| + // TODO: ICO files may contain a BMP and need to use this decoder |
| + const char bmpSig[] = { 'B', 'M' }; |
| + char buffer[sizeof(bmpSig)]; |
| + return stream->read(buffer, sizeof(bmpSig)) == sizeof(bmpSig) && |
| + !memcmp(buffer, bmpSig, sizeof(bmpSig)); |
| +} |
| + |
| +/* |
| + * |
| + * Assumes IsBmp was called and returned true |
| + * Creates a bitmap decoder |
| + * Reads enough of the stream to determine the image format |
| + * |
| + */ |
| +SkCodec* SkBmpCodec::NewFromStream(SkStream* stream) { |
|
msarett
2015/03/05 23:13:17
This function is very long. There is not really r
scroggo
2015/03/05 23:32:35
I'm going to look at the whole of the code more in
|
| + // Header size constants |
| + static const uint32_t kBmpHeaderBytes = 14; |
| + static const uint32_t kBmpHeaderBytesPlusFour = kBmpHeaderBytes + 4; |
| + static const uint32_t kBmpOS2V1Bytes = 12; |
| + static const uint32_t kBmpOS2V2Bytes = 64; |
| + static const uint32_t kBmpInfoBaseBytes = 16; |
| + static const uint32_t kBmpInfoV1Bytes = 40; |
| + static const uint32_t kBmpInfoV2Bytes = 52; |
| + static const uint32_t kBmpInfoV3Bytes = 56; |
| + static const uint32_t kBmpInfoV4Bytes = 108; |
| + static const uint32_t kBmpInfoV5Bytes = 124; |
| + static const uint32_t kBmpMaskBytes = 12; |
| + |
| + // Read the first header and the size of the second header |
| + SkAutoTDeleteArray<uint8_t> hBuffer( |
| + SkNEW_ARRAY(uint8_t, kBmpHeaderBytesPlusFour)); |
| + if (stream->read(hBuffer.get(), kBmpHeaderBytesPlusFour) != |
| + kBmpHeaderBytesPlusFour) { |
| + SkDebugf("Error: unable to read first bitmap header.\n"); |
| + return NULL; |
| + } |
| + |
| + // The total bytes in the bmp file |
| + // We only need to use this value for RLE decoding, so we will only check |
| + // that it is valid in the RLE case. |
| + const uint32_t totalBytes = get_int(hBuffer.get(), 2); |
| + |
| + // The offset from the start of the file where the pixel data begins |
| + const uint32_t offset = get_int(hBuffer.get(), 10); |
| + if (offset < kBmpHeaderBytes + kBmpOS2V1Bytes) { |
| + SkDebugf("Error: invalid starting location for pixel data\n"); |
| + return NULL; |
| + } |
| + |
| + // The size of the second (info) header in bytes |
| + // The size is the first field of the second header, so we have already |
| + // read the first four infoBytes. |
| + const uint32_t infoBytes = get_int(hBuffer.get(), 14); |
| + if (infoBytes < kBmpOS2V1Bytes) { |
| + SkDebugf("Error: invalid second header size.\n"); |
| + return NULL; |
| + } |
| + const uint32_t infoBytesRemaining = infoBytes - 4; |
| + hBuffer.free(); |
| + |
| + // Read the second header |
| + SkAutoTDeleteArray<uint8_t> iBuffer( |
| + SkNEW_ARRAY(uint8_t, infoBytesRemaining)); |
| + if (stream->read(iBuffer.get(), infoBytesRemaining) != infoBytesRemaining) { |
| + SkDebugf("Error: unable to read second bitmap header.\n"); |
| + return NULL; |
| + } |
| + |
| + // The number of bits used per pixel in the pixel data |
| + uint16_t bitsPerPixel; |
| + |
| + // The compression method for the pixel data |
| + uint32_t compression = kNone_BitmapCompressionMethod; |
| + |
| + // Number of colors in the color table, defaults to 0 or max (see below) |
| + uint32_t numColors = 0; |
| + |
| + // Bytes per color in the color table, early versions use 3, most use 4 |
| + uint32_t bytesPerColor; |
| + |
| + // The image width and height |
| + int width, height; |
| + |
| + // Determine image information depending on second header format |
| + BitmapHeaderType headerType; |
| + if (infoBytes >= kBmpInfoBaseBytes) { |
| + // Check the version of the header |
| + switch (infoBytes) { |
| + case kBmpInfoV1Bytes: |
| + headerType = kInfoV1_BitmapHeaderType; |
| + break; |
| + case kBmpInfoV2Bytes: |
| + headerType = kInfoV2_BitmapHeaderType; |
| + break; |
| + case kBmpInfoV3Bytes: |
| + headerType = kInfoV3_BitmapHeaderType; |
| + break; |
| + case kBmpInfoV4Bytes: |
| + headerType = kInfoV4_BitmapHeaderType; |
| + break; |
| + case kBmpInfoV5Bytes: |
| + headerType = kInfoV5_BitmapHeaderType; |
| + break; |
| + case 16: |
| + case 20: |
| + case 24: |
| + case 28: |
| + case 32: |
| + case 36: |
| + case 42: |
| + case 46: |
| + case 48: |
| + case 60: |
| + case kBmpOS2V2Bytes: |
| + headerType = kOS2VX_BitmapHeaderType; |
| + break; |
| + default: |
| + // We do not signal an error here because there is the |
| + // possibility of new or undocumented bmp header types. Most |
| + // of the newer versions of bmp headers are similar to and |
| + // build off of the older versions, so we may still be able to |
| + // decode the bmp. |
| + SkDebugf("Warning: unknown bmp header format.\n"); |
| + headerType = kUnknown_BitmapHeaderType; |
| + break; |
| + } |
| + // We check the size of the header before entering the if statement. |
| + // We should not reach this point unless the size is large enough for |
| + // these required fields. |
| + SkASSERT(infoBytesRemaining >= 12); |
| + width = get_int(iBuffer.get(), 0); |
| + height = get_int(iBuffer.get(), 4); |
| + //uint16_t planes = get_short(iBuffer, 8); |
| + bitsPerPixel = get_short(iBuffer.get(), 10); |
| + |
| + // Some versions do not have this field, so we check before |
| + // overwriting the default value. |
| + if (infoBytesRemaining >= 16) { |
| + compression = get_int(iBuffer.get(), 12); |
| + } |
| + |
| + // Some versions do not have this field, so we check before |
| + // overwriting the default value. |
| + if (infoBytesRemaining >= 32) { |
| + numColors = get_int(iBuffer.get(), 28); |
| + } |
| + |
| + bytesPerColor = 4; |
| + } else if (infoBytes >= kBmpOS2V1Bytes) { |
| + // The OS2V1 is treated separately because it has a unique format |
| + headerType = kOS2V1_BitmapHeaderType; |
| + width = (int) get_short(iBuffer.get(), 0); |
| + height = (int) get_short(iBuffer.get(), 2); |
| + bitsPerPixel = get_short(iBuffer.get(), 6); |
| + bytesPerColor = 3; |
| + } else { |
| + // There are no valid bmp headers |
| + SkDebugf("Error: second bitmap header size is invalid.\n"); |
| + return NULL; |
| + } |
| + |
| + // Check for valid dimensions from header |
| + RowOrder rowOrder = kBottomUp_RowOrder; |
| + if (height < 0) { |
| + height = -height; |
| + rowOrder = kTopDown_RowOrder; |
| + } |
| + static const uint32_t kBmpMaxDim = 1 << 16; |
| + if (width < 0 || width >= kBmpMaxDim || height >= kBmpMaxDim) { |
| + // TODO: Decide if we want to support really large bmps. |
| + SkDebugf("Error: invalid bitmap dimensions.\n"); |
| + return NULL; |
| + } |
| + |
| + // Create mask struct |
| + BitMasks masks; |
| + memset(&masks, 0, 4*sizeof(uint32_t)); |
| + |
| + // Determine the input compression format and set bit masks if necessary |
| + uint32_t maskBytes = 0; |
| + BitmapInputFormat inputFormat = kUnknown_BitmapInputFormat; |
| + switch (compression) { |
| + case kNone_BitmapCompressionMethod: |
| + inputFormat = kStandard_BitmapInputFormat; |
| + break; |
| + case k8BitRLE_BitmapCompressionMethod: |
| + if (bitsPerPixel != 8) { |
| + SkDebugf("Warning: correcting invalid bitmap format.\n"); |
| + bitsPerPixel = 8; |
| + } |
| + inputFormat = kRLE_BitmapInputFormat; |
| + break; |
| + case k4BitRLE_BitmapCompressionMethod: |
| + if (bitsPerPixel != 4) { |
| + SkDebugf("Warning: correcting invalid bitmap format.\n"); |
| + bitsPerPixel = 4; |
| + } |
| + inputFormat = kRLE_BitmapInputFormat; |
| + break; |
| + case kAlphaBitMasks_BitmapCompressionMethod: |
| + case kBitMasks_BitmapCompressionMethod: |
| + // Load the masks |
| + inputFormat = kBitMask_BitmapInputFormat; |
| + switch (headerType) { |
| + case kInfoV1_BitmapHeaderType: { |
| + // The V1 header stores the bit masks after the header |
| + SkAutoTDeleteArray<uint8_t> mBuffer( |
| + SkNEW_ARRAY(uint8_t, kBmpMaskBytes)); |
| + if (stream->read(mBuffer.get(), kBmpMaskBytes) != |
| + kBmpMaskBytes) { |
| + SkDebugf("Error: unable to read bit masks.\n"); |
| + return NULL; |
| + } |
| + maskBytes = kBmpMaskBytes; |
| + masks.redMask = get_int(mBuffer.get(), 0); |
| + masks.greenMask = get_int(mBuffer.get(), 4); |
| + masks.blueMask = get_int(mBuffer.get(), 8); |
| + break; |
| + } |
| + case kInfoV2_BitmapHeaderType: |
| + case kInfoV3_BitmapHeaderType: |
| + case kInfoV4_BitmapHeaderType: |
| + case kInfoV5_BitmapHeaderType: |
| + // Header types are matched based on size. If the header |
| + // is V2+, we are guaranteed to be able at least this size. |
| + SkASSERT(infoBytesRemaining >= 48); |
| + masks.redMask = get_int(iBuffer.get(), 36); |
| + masks.greenMask = get_int(iBuffer.get(), 40); |
| + masks.blueMask = get_int(iBuffer.get(), 44); |
| + break; |
| + case kOS2VX_BitmapHeaderType: |
| + // TODO: Decide if we intend to support this. |
| + // It is unsupported in the previous version and |
| + // in chromium. I have not come across a test case |
| + // that uses this format. |
| + SkDebugf("Error: huffman format unsupported.\n"); |
| + return NULL; |
| + default: |
| + SkDebugf("Error: invalid bmp bit masks header.\n"); |
| + return NULL; |
| + } |
| + break; |
| + case kJpeg_BitmapCompressionMethod: |
| + if (24 == bitsPerPixel) { |
| + inputFormat = kRLE_BitmapInputFormat; |
| + break; |
| + } |
| + // Fall through |
| + case kPng_BitmapCompressionMethod: |
| + // TODO: Decide if we intend to support this. |
| + // It is unsupported in the previous version and |
| + // in chromium. I think it is used mostly for printers. |
| + SkDebugf("Error: compression format not supported.\n"); |
| + return NULL; |
| + case kCMYK_BitmapCompressionMethod: |
| + case kCMYK8BitRLE_BitmapCompressionMethod: |
| + case kCMYK4BitRLE_BitmapCompressionMethod: |
| + // TODO: Same as above. |
| + SkDebugf("Error: CMYK not supported for bitmap decoding.\n"); |
| + return NULL; |
| + default: |
| + SkDebugf("Error: invalid format for bitmap decoding.\n"); |
| + return NULL; |
| + } |
| + |
| + // Most versions of bmps should to be rendered as opaque. Either they do |
|
scroggo
2015/03/06 18:56:13
should be*
|
| + // not have an alpha channel, or they expect the alpha channel to be |
| + // ignored. V4+ bmp files introduce an alpha mask and allow the creator |
| + // of the image to use the alpha channels. However, many of these images |
| + // leave the alpha channel blank and expect to be rendered as opaque. For |
| + // this reason, we set the alpha type to kUnknown for V4+ bmps and figure |
| + // out the alpha type during the decode. |
| + SkAlphaType alphaType = kOpaque_SkAlphaType; |
| + if (kInfoV4_BitmapHeaderType == headerType || |
| + kInfoV5_BitmapHeaderType == headerType) { |
| + // Header types are matched based on size. If the header is |
| + // V4+, we are guaranteed to be able at least this size. |
|
scroggo
2015/03/06 18:56:13
able... to read?
|
| + SkASSERT(infoBytesRemaining > 52); |
| + masks.alphaMask = get_int(iBuffer.get(), 48); |
| + if (masks.alphaMask != 0) { |
| + alphaType = kUnpremul_SkAlphaType; |
| + } |
| + } |
| + iBuffer.free(); |
| + |
| + // Check for valid bits per pixel input |
| + switch (bitsPerPixel) { |
| + // In addition to more standard pixel compression formats, bmp supports |
| + // the use of bit masks to determine pixel components. The standard |
| + // format for representing 16-bit colors is 555 (XRRRRRGGGGGBBBBB), |
| + // which does not map well to any Skia color formats. For this reason, |
| + // we will always enable mask mode with 16 bits per pixel. |
| + case 16: |
| + if (kBitMask_BitmapInputFormat != inputFormat) { |
| + masks.redMask = 0x7C00; |
| + masks.greenMask = 0x03E0; |
| + masks.blueMask = 0x001F; |
| + inputFormat = kBitMask_BitmapInputFormat; |
| + } |
| + break; |
| + case 1: |
| + case 2: |
| + case 4: |
| + case 8: |
| + case 24: |
| + case 32: |
| + break; |
| + default: |
| + SkDebugf("Error: invalid input value for bits per pixel.\n"); |
| + return NULL; |
| + } |
| + |
| + // Process the color table |
| + uint32_t colorBytes = 0; |
| + SkColor* colorTable = NULL; |
|
scroggo
2015/03/06 18:56:13
SkPMColor. Same down below.
|
| + if (bitsPerPixel < 16) { |
| + // Verify the number of colors for the color table |
| + const int maxColors = 1 << bitsPerPixel; |
| + // Zero is a default for maxColors |
| + // Also set numColors to maxColors when input is too large |
| + if (numColors <= 0 || numColors > maxColors) { |
| + numColors = maxColors; |
| + } |
| + colorTable = SkNEW_ARRAY(SkColor, maxColors); |
| + |
| + // Construct the color table |
| + colorBytes = numColors * bytesPerColor; |
| + SkAutoTDeleteArray<uint8_t> cBuffer(SkNEW_ARRAY(uint8_t, colorBytes)); |
| + if (stream->read(cBuffer.get(), colorBytes) != colorBytes) { |
| + SkDebugf("Error: unable to read color table.\n"); |
| + return NULL; |
| + } |
| + |
| + // Fill in the color table |
| + uint32_t i = 0; |
| + for (; i < numColors; i++) { |
| + uint8_t blue = get_byte(cBuffer.get(), i*bytesPerColor); |
| + uint8_t green = get_byte(cBuffer.get(), i*bytesPerColor + 1); |
| + uint8_t red = get_byte(cBuffer.get(), i*bytesPerColor + 2); |
| + uint8_t alpha = 0xFF; |
| + if (kOpaque_SkAlphaType != alphaType) { |
| + alpha = (masks.alphaMask >> 24) & |
| + get_byte(cBuffer.get(), i*bytesPerColor + 3); |
| + } |
| + colorTable[i] = SkColorSetARGBInline(alpha, red, green, blue); |
| + } |
| + |
| + // To avoid segmentation faults on bad pixel data, fill the end of the |
| + // color table with black. This is the same the behavior as the |
| + // chromium decoder. |
| + for (; i < maxColors; i++) { |
| + colorTable[i] = SkColorSetARGBInline(0xFF, 0, 0, 0); |
| + } |
| + } else { |
| + // We will not use the color table if bitsPerPixel >= 16, but if there |
| + // is a color table, we may need to skip the color table bytes. |
| + // We will assume that the maximum color table size is the same as when |
| + // there are 8 bits per pixel (the largest color table actually used). |
| + // Color tables for greater than 8 bits per pixel are somewhat |
| + // undocumented. It is indicated that they may exist to store a list |
| + // of colors for optimization on devices with limited color display |
| + // capacity. While we do not know for sure, we will guess that any |
| + // value of numColors greater than this maximum is invalid. |
| + if (numColors <= (1 << 8)) { |
| + colorBytes = numColors * bytesPerColor; |
| + if (stream->skip(colorBytes) != colorBytes) { |
| + SkDebugf("Error: Could not skip color table bytes.\n"); |
| + return NULL; |
| + } |
| + } |
| + } |
| + |
| + // Ensure that the stream now points to the start of the pixel array |
| + uint32_t bytesRead = kBmpHeaderBytes + infoBytes + maskBytes + colorBytes; |
| + |
| + // Check that we have not read past the pixel array offset |
| + if(bytesRead > offset) { |
| + // This may occur on OS 2.1 and other old versions where the color |
| + // table defaults to max size, and the bmp tries to use a smaller color |
| + // table. This is invalid, and our decision is to indicate an error, |
| + // rather than try to guess the intended size of the color table and |
| + // rewind the stream to display the image. |
| + SkDebugf("Error: pixel data offset less than header size.\n"); |
| + return NULL; |
| + } |
| + |
| + // Skip to the start of the pixel array |
| + if (stream->skip(offset - bytesRead) != offset - bytesRead) { |
| + SkDebugf("Error: unable to skip to image data.\n"); |
| + return NULL; |
| + } |
| + |
| + // Remaining bytes is only used for RLE |
| + const int remainingBytes = totalBytes - offset; |
| + if (remainingBytes <= 0 && kRLE_BitmapInputFormat == inputFormat) { |
| + SkDebugf("Error: RLE requires valid input size.\n"); |
| + return NULL; |
| + } |
| + |
| + // Return the codec |
| + // We will use ImageInfo to store width, height, and alpha type. The Skia |
| + // color types do not match with the many possible bmp input color types, |
| + // so we will ignore this field and depend on other parameters for input |
| + // information. |
| + const SkImageInfo& imageInfo = SkImageInfo::Make(width, height, |
| + kUnknown_SkColorType, alphaType); |
| + return SkNEW_ARGS(SkBmpCodec, (imageInfo, stream, bitsPerPixel, |
| + inputFormat, masks, colorTable, rowOrder, |
| + remainingBytes)); |
| +} |
| + |
| +/* |
| + * |
| + * Creates an instance of the decoder |
| + * Called only by NewFromStream |
| + * |
| + */ |
| +SkBmpCodec::SkBmpCodec(const SkImageInfo& info, SkStream* stream, |
| + uint16_t bitsPerPixel, BitmapInputFormat inputFormat, |
| + BitMasks masks, SkColor* colorTable, |
| + RowOrder rowOrder, |
| + const uint32_t remainingBytes) |
| + : INHERITED(info, stream) |
| + , fBitsPerPixel(bitsPerPixel) |
| + , fInputFormat(inputFormat) |
| + , fBitMasks(masks) |
| + , fMaskShifts( { 0, 0, 0, 0 } ) |
| + , fMaskSizes( { 0, 0, 0, 0 } ) |
| + , fColorTable(colorTable) |
| + , fRowOrder(rowOrder) |
| + , fRemainingBytes(remainingBytes) |
| +{} |
| + |
| +/* |
| + * |
| + * Initiates the bitmap decode |
| + * |
| + */ |
| +SkCodec::Result SkBmpCodec::onGetPixels(const SkImageInfo& dstInfo, |
| + void* dst, size_t dstRowBytes, |
| + SkColor*, int*) { |
| + if (!this->couldRewindIfNeeded()) { |
| + SkDebugf("Error: rewind should not be necessary.\n"); |
|
scroggo
2015/03/06 18:56:13
This comment isn't necessary.
couldRewindIfNeeded
|
| + return kCouldNotRewind; |
| + } |
| + if (dstInfo.dimensions() != this->getOriginalInfo().dimensions()) { |
| + SkDebugf("Error: scaling not supported.\n"); |
| + return kInvalidScale; |
| + } |
| + if (!conversion_possible(dstInfo, this->getOriginalInfo())) { |
| + SkDebugf("Error: cannot convert input type to output type.\n"); |
| + return kInvalidConversion; |
| + } |
| + |
| + switch (fInputFormat) { |
| + case kBitMask_BitmapInputFormat: |
| + return decodeMask(dstInfo, dst, dstRowBytes); |
| + case kRLE_BitmapInputFormat: |
| + return decodeRLE(dstInfo, dst, dstRowBytes); |
| + case kStandard_BitmapInputFormat: |
| + return decode(dstInfo, dst, dstRowBytes); |
| + default: |
| + SkASSERT(false); |
| + return kInvalidInput; |
| + } |
| +} |
| + |
| +/* |
| + * |
| + * For a continuous bit mask (ex: 0011100), retrieves the size of the mask and |
| + * the number of bits to shift the mask |
| + * |
| + */ |
| +void SkBmpCodec::processMasks() { |
|
msarett
2015/03/05 23:13:17
I can make this function less repetitive (but hard
scroggo
2015/03/06 18:56:13
Hard to say... My initial thought was to let timin
|
| + // Trim the masks to the allowed number of bits |
| + if (fBitsPerPixel < 32) { |
|
scroggo
2015/03/06 18:56:13
If you merged all the masks together, as suggested
|
| + fBitMasks.redMask &= (1 << fBitsPerPixel) - 1; |
| + fBitMasks.greenMask &= (1 << fBitsPerPixel) - 1; |
| + fBitMasks.blueMask &= (1 << fBitsPerPixel) - 1; |
| + fBitMasks.alphaMask &= (1 << fBitsPerPixel) - 1; |
| + } |
| + |
| + // Get temporary versions of the inputs masks |
| + uint32_t redMask = fBitMasks.redMask; |
| + uint32_t greenMask = fBitMasks.greenMask; |
| + uint32_t blueMask = fBitMasks.blueMask; |
| + uint32_t alphaMask = fBitMasks.alphaMask; |
| + |
| + // Count trailing zeros on masks and the size of masks |
| + if (redMask != 0) { |
| + for (; (redMask & 1) == 0; redMask >>= 1) { |
| + fMaskShifts.redShift++; |
| + } |
| + for (; redMask & 1; redMask >>= 1) { |
| + fMaskSizes.redSize++; |
| + } |
| + // Truncate masks greater than 8 bits |
| + if (fMaskSizes.redSize > 8) { |
| + fMaskShifts.redShift += fMaskSizes.redSize - 8; |
| + fMaskSizes.redSize = 8; |
| + } |
| + } |
| + if (greenMask != 0) { |
| + for (; (greenMask & 1) == 0; greenMask >>= 1) { |
| + fMaskShifts.greenShift++; |
| + } |
| + for (; greenMask & 1; greenMask >>= 1) { |
| + fMaskSizes.greenSize++; |
| + } |
| + // Truncate masks greater than 8 bits |
| + if (fMaskSizes.greenSize > 8) { |
| + fMaskShifts.greenShift += fMaskSizes.greenSize - 8; |
| + fMaskSizes.greenSize = 8; |
| + } |
| + } |
| + if (blueMask != 0) { |
| + for (; (blueMask & 1) == 0; blueMask >>= 1) { |
| + fMaskShifts.blueShift++; |
| + } |
| + for (; blueMask & 1; blueMask >>= 1) { |
| + fMaskSizes.blueSize++; |
| + } |
| + // Truncate masks greater than 8 bits |
| + if (fMaskSizes.blueSize > 8) { |
| + fMaskShifts.blueShift += fMaskSizes.blueSize - 8; |
| + fMaskSizes.blueSize = 8; |
| + } |
| + } |
| + if (alphaMask != 0) { |
| + for (; (alphaMask & 1) == 0; alphaMask >>= 1) { |
| + fMaskShifts.alphaShift++; |
| + } |
| + for (; alphaMask & 1; alphaMask >>= 1) { |
| + fMaskSizes.alphaSize++; |
| + } |
| + // Truncate masks greater than 8 bits |
| + if (fMaskSizes.alphaSize > 8) { |
| + fMaskShifts.alphaShift += fMaskSizes.alphaSize - 8; |
| + fMaskSizes.alphaSize = 8; |
| + } |
| + } |
| + return; |
|
scroggo
2015/03/06 18:56:13
not needed.
|
| +} |
| + |
| +/* |
| + * |
| + * Performs the bitmap decoding for bit masks input format |
| + * |
| + */ |
| +SkCodec::Result SkBmpCodec::decodeMask(const SkImageInfo& dstInfo, |
| + void* dst, uint32_t dstRowBytes) { |
| + // Set constant values |
| + const int width = dstInfo.width(); |
| + const int height = dstInfo.height(); |
| + const uint32_t pixelsPerByte = 8 / fBitsPerPixel; |
| + const uint32_t bytesPerPixel = fBitsPerPixel / 8; |
|
scroggo
2015/03/06 18:56:13
what happens if fBitsPerPixel is not an even multi
msarett
2015/03/07 00:19:50
It would an error if it happened. We should proba
|
| + const uint32_t unpaddedRowBytes = fBitsPerPixel < 16 ? |
|
scroggo
2015/03/06 18:56:13
I think all you want here is the paddedRowBytes? A
|
| + (width + pixelsPerByte - 1) / pixelsPerByte : width * bytesPerPixel; |
| + const uint32_t paddedRowBytes = SkAlign4(unpaddedRowBytes); |
| + const uint32_t alphaMask = fBitMasks.alphaMask; |
| + |
| + // Allocate space for a row buffer and a source for the swizzler |
| + SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, paddedRowBytes)); |
| + |
| + // Define the type of mask row procedures |
| + typedef SkSwizzler::ResultAlpha (*RowProc)(void* SK_RESTRICT dstRow, |
| + const uint8_t* SK_RESTRICT src, int width, |
| + BitMasks masks, BitMaskShifts shifts, |
| + BitMaskSizes sizes); |
| + |
| + // Choose the appropriate row procedure |
| + RowProc proc = NULL; |
| + switch (fBitsPerPixel) { |
| + case 16: |
| + if (alphaMask == 0) { |
| + proc = &swizzle_mask16_to_n32; |
| + } else { |
| + proc = &swizzle_mask16_alpha_to_n32; |
| + } |
| + break; |
| + case 24: |
| + if (alphaMask == 0) { |
| + proc = &swizzle_mask24_to_n32; |
| + } else { |
| + proc = &swizzle_mask24_alpha_to_n32; |
| + } |
| + break; |
| + case 32: |
| + if (alphaMask == 0) { |
| + proc = &swizzle_mask32_to_n32; |
| + } else { |
| + proc = &swizzle_mask32_alpha_to_n32; |
| + } |
| + break; |
| + default: |
| + SkASSERT(false); |
| + return kInvalidInput; |
| + } |
| + |
| + // Obtain the size and location of the input bit masks |
| + processMasks(); |
| + |
| + // Get the destination start row and delta |
| + SkColor* dstRow; |
| + int32_t delta; |
| + if (kTopDown_RowOrder == fRowOrder) { |
| + dstRow = (SkColor*) dst; |
| + delta = dstRowBytes; |
| + } else { |
| + dstRow = (SkColor*) SkTAddOffset<void>(dst, (height - 1) * dstRowBytes); |
| + delta = -dstRowBytes; |
| + } |
| + |
| + // Iterate over rows of the image |
| + bool transparent = true; |
| + for (uint32_t y = 0; y < height; y++) { |
| + // Read a row of the input |
| + if (stream()->read(srcBuffer.get(), paddedRowBytes) != paddedRowBytes) { |
| + SkDebugf("Warning: incomplete input stream.\n"); |
| + return kIncompleteInput; |
| + } |
| + |
| + // Decode the row in destination format |
| + SkSwizzler::ResultAlpha r = proc(dstRow, srcBuffer.get(), width, |
| + fBitMasks, fMaskShifts, fMaskSizes); |
| + transparent &= SkSwizzler::kTransparent_ResultAlpha == r; |
|
scroggo
2015/03/06 18:56:13
nit: parens around the == check
|
| + |
| + // Move to the next row |
| + dstRow = SkTAddOffset<SkColor>(dstRow, delta); |
| + } |
| + |
| + // Many fully transparent bmp images are intended to be opaque. Here, we |
| + // correct for this possibility. |
| + SkColor* dstPtr = (SkColor*) dst; |
| + if (transparent) { |
| + for (uint32_t y = 0; y < height; y++) { |
| + for (uint32_t x = 0; x < width; x++) { |
| + dstPtr[y * dstRowBytes + x] |= 0xFF000000; |
| + } |
| + } |
| + } |
| + |
| + // Finished decoding the entire image |
| + return kSuccess; |
| +} |
| + |
| +/* |
| + * |
| + * Set an RLE pixel using the color table |
| + * |
| + */ |
| +void SkBmpCodec::setRLEPixel(SkColor* dst, uint32_t dstRowBytes, int height, |
| + uint32_t x, uint32_t y, uint8_t index) { |
| + if (kBottomUp_RowOrder == fRowOrder) { |
| + y = height - y - 1; |
| + } |
| + SkColor* dstRow = SkTAddOffset<SkColor>(dst, y * dstRowBytes); |
| + dstRow[x] = fColorTable.get()[index]; |
| +} |
| + |
| +/* |
| + * |
| + * Performs the bitmap decoding for RLE input format |
| + * RLE decoding is performed all at once, rather than a one row at a time |
| + * |
| + */ |
| +SkCodec::Result SkBmpCodec::decodeRLE(const SkImageInfo& dstInfo, |
| + void* dst, uint32_t dstRowBytes) { |
| + // Set RLE flags |
| + static const uint8_t RLE_ESCAPE = 0; |
| + static const uint8_t RLE_EOL = 0; |
| + static const uint8_t RLE_EOF = 1; |
| + static const uint8_t RLE_DELTA = 2; |
| + |
| + // Set constant values |
| + const int width = dstInfo.width(); |
| + const int height = dstInfo.height(); |
| + const uint32_t pixelsPerByte = 8 / fBitsPerPixel; |
| + const uint32_t bytesPerPixel = fBitsPerPixel / 8; |
| + |
| + // Input buffer parameters |
| + uint32_t currByte = 0; |
| + SkAutoTDeleteArray<uint8_t> buffer(SkNEW_ARRAY(uint8_t, fRemainingBytes)); |
| + uint32_t totalBytes = stream()->read(buffer.get(), fRemainingBytes); |
| + if (totalBytes < fRemainingBytes) { |
| + SkDebugf("Warning: incomplete RLE file.\n"); |
| + } else if (totalBytes <= 0) { |
| + SkDebugf("Error: could not read RLE image data.\n"); |
| + return kInvalidInput; |
| + } |
| + |
| + // Destination parameters |
| + uint32_t x = 0; |
| + uint32_t y = 0; |
| + // If the code skips pixels, remaining pixels are transparent or black |
| + // TODO: Skip this if memory was already zeroed. |
| + memset(dst, 0, dstRowBytes * height); |
| + SkColor* dstPtr = (SkColor*) dst; |
| + |
| + while (true) { |
| + // Every entry takes at least two bytes |
| + if (totalBytes - currByte < 2) { |
| + SkDebugf("Warning: incomplete RLE input.\n"); |
| + return kIncompleteInput; |
| + } |
| + |
| + // Read the next two bytes. These bytes have different meanings |
|
scroggo
2015/03/06 18:56:13
Thanks for the comments! It makes this code a lot
|
| + // depending on their values. In the first interpretation, the first |
| + // byte is an escape flag and the second byte indicates what special |
| + // task to perform. |
| + const uint8_t flag = buffer.get()[currByte++]; |
| + const uint8_t task = buffer.get()[currByte++]; |
| + |
| + // If we have reached a row that is beyond the image size, and the RLE |
| + // code does not indicate end of file, abort and signal a warning. |
| + if (y >= height && (flag != RLE_ESCAPE || (task != RLE_EOF))) { |
| + SkDebugf("Warning: invalid RLE input.\n"); |
| + return kIncompleteInput; |
| + } |
| + |
| + // Perform decoding |
| + if (RLE_ESCAPE == flag) { |
| + switch (task) { |
| + case RLE_EOL: |
| + x = 0; |
| + y++; |
| + break; |
| + case RLE_EOF: |
| + return kSuccess; |
| + case RLE_DELTA: { |
| + // Two bytes are needed to specify delta |
| + if (totalBytes - currByte < 2) { |
| + SkDebugf("Warning: incomplete RLE input\n"); |
| + return kIncompleteInput; |
| + } |
| + // Modify x and y |
| + const uint8_t dx = buffer.get()[currByte++]; |
| + const uint8_t dy = buffer.get()[currByte++]; |
| + x += dx; |
| + y += dy; |
| + if (x > width || y > height) { |
| + SkDebugf("Warning: invalid RLE input.\n"); |
| + return kIncompleteInput; |
| + } |
| + break; |
| + } |
| + default: { |
| + // If task does not match any of the above signals, it |
| + // indicates that we have a sequence of non-RLE pixels. |
| + // Furthermore, the value of task is equal to the number |
| + // of pixels to interpret. |
| + uint8_t numPixels = task; |
| + const uint32_t unpaddedBytes = fBitsPerPixel < 16 ? |
| + (numPixels + pixelsPerByte - 1) / pixelsPerByte : |
| + numPixels * bytesPerPixel; |
| + const uint32_t paddedBytes = SkAlign2(unpaddedBytes); |
| + if (x + numPixels > width || |
| + totalBytes - currByte < paddedBytes) { |
| + SkDebugf("Warning: invalid RLE input.\n"); |
| + return kIncompleteInput; |
| + } |
| + // Set count number of pixels |
| + while (numPixels > 0) { |
| + switch(fBitsPerPixel) { |
| + case 4: { |
| + uint8_t val = buffer.get()[currByte++]; |
| + setRLEPixel(dstPtr, dstRowBytes, height, x++, y, |
| + val >> 4); |
| + numPixels--; |
| + if (numPixels != 0) { |
| + setRLEPixel(dstPtr, dstRowBytes, height, |
| + x++, y, val & 0xF); |
| + numPixels--; |
| + } |
| + break; |
| + } |
| + case 8: |
| + setRLEPixel(dstPtr, dstRowBytes, height, x++, y, |
| + buffer.get()[currByte++]); |
| + numPixels--; |
| + break; |
| + case 24: { |
| + uint8_t blue = buffer.get()[currByte++]; |
| + uint8_t green = buffer.get()[currByte++]; |
| + uint8_t red = buffer.get()[currByte++]; |
| + SkColor color = SkColorSetARGBInline( |
| + 0xFF, red, green, blue); |
| + SkColor* dstRow = SkTAddOffset<SkColor>( |
| + dstPtr, y * dstRowBytes); |
| + dstRow[x++] = color; |
| + numPixels--; |
| + } |
| + default: |
| + SkASSERT(false); |
| + return kInvalidInput; |
| + } |
| + } |
| + // Skip a byte if necessary to maintain alignment |
| + if (unpaddedBytes & 1) { |
| + currByte++; |
| + } |
| + break; |
| + } |
| + } |
| + } else { |
| + // If the first byte read is not a flag, it indicates the number of |
| + // pixels to set in RLE mode. |
| + const uint8_t numPixels = flag; |
| + const uint32_t endX = SkTMin<uint32_t>(x + numPixels, |
| + (uint32_t) width); |
| + |
| + if (24 == fBitsPerPixel) { |
| + // In RLE24, the second byte read is part of the pixel color. |
| + // There are two more required bytes to finish encoding the |
| + // color. |
| + if (totalBytes - currByte < 2) { |
| + SkDebugf("Warning: incomplete RLE input\n"); |
| + return kIncompleteInput; |
| + } |
| + |
| + // Fill the pixels up to endX with the specified color |
| + uint8_t blue = task; |
| + uint8_t green = buffer.get()[currByte++]; |
| + uint8_t red = buffer.get()[currByte++]; |
| + SkColor color = SkColorSetARGBInline(0xFF, red, green, blue); |
| + SkColor* dstRow = |
| + SkTAddOffset<SkColor>(dstPtr, y * dstRowBytes); |
| + while (x < endX) { |
| + dstRow[x++] = color; |
| + } |
| + } else { |
| + // In RLE8 or RLE4, the second byte read gives the index in the |
| + // color table to look up the pixel color. |
| + // RLE8 has one color index that gets repeated |
| + // RLE4 has two color indexes in the upper and lower 4 bits of |
| + // the bytes, which are alternated |
| + uint8_t indices[2] = { task, task }; |
| + if (4 == fBitsPerPixel) { |
| + indices[0] >>= 4; |
| + indices[1] &= 0xf; |
| + } |
| + |
| + // Set the indicated number of pixels |
| + for (int which = 0; x < endX; x++) { |
| + setRLEPixel(dstPtr, dstRowBytes, height, x, y, |
| + indices[which]); |
| + which = !which; |
| + } |
| + } |
| + } |
| + } |
| +} |
| + |
| +/* |
| + * |
| + * Performs the bitmap decoding for standard input format |
| + * |
| + */ |
| +SkCodec::Result SkBmpCodec::decode(const SkImageInfo& dstInfo, |
| + void* dst, uint32_t dstRowBytes) { |
| + // Set constant values |
| + const int width = dstInfo.width(); |
| + const int height = dstInfo.height(); |
| + const uint32_t pixelsPerByte = 8 / fBitsPerPixel; |
| + const uint32_t bytesPerPixel = fBitsPerPixel / 8; |
| + const uint32_t unpaddedRowBytes = fBitsPerPixel < 16 ? |
| + (width + pixelsPerByte - 1) / pixelsPerByte : width * bytesPerPixel; |
| + const uint32_t paddedRowBytes = SkAlign4(unpaddedRowBytes); |
| + const uint32_t alphaMask = fBitMasks.alphaMask; |
| + |
| + // Get the destination start row and delta |
| + SkColor* dstRow; |
| + int32_t delta; |
| + if (kTopDown_RowOrder == fRowOrder) { |
| + dstRow = (SkColor*) dst; |
| + delta = dstRowBytes; |
| + } else { |
| + dstRow = (SkColor*) SkTAddOffset<void>(dst, (height - 1) * dstRowBytes); |
| + delta = -dstRowBytes; |
| + } |
| + |
| + // Get swizzler configuration |
| + SkSwizzler::SrcConfig config; |
| + switch (fBitsPerPixel) { |
| + case 1: |
| + config = SkSwizzler::kIndex1; |
| + break; |
| + case 2: |
| + config = SkSwizzler::kIndex2; |
| + break; |
| + case 4: |
| + config = SkSwizzler::kIndex4; |
| + break; |
| + case 8: |
| + config = SkSwizzler::kIndex; |
| + break; |
| + case 24: |
| + config = SkSwizzler::kBGR; |
| + break; |
| + case 32: |
| + if (alphaMask == 0) { |
| + config = SkSwizzler::kBGRX; |
| + } else { |
| + config = SkSwizzler::kBGRA; |
| + } |
| + break; |
| + default: |
| + SkASSERT(false); |
| + return kInvalidInput; |
| + } |
| + |
| + // Create swizzler |
| + SkSwizzler* swizzler = SkSwizzler::CreateSwizzler(config, fColorTable.get(), |
| + dstInfo, dstRow, dstRowBytes, false); |
| + |
| + // Allocate space for a row buffer and a source for the swizzler |
| + SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, paddedRowBytes)); |
| + |
| + // Iterate over rows of the image |
| + bool transparent = true; |
| + for (uint32_t y = 0; y < height; y++) { |
| + // Read a row of the input |
| + if (stream()->read(srcBuffer.get(), paddedRowBytes) != paddedRowBytes) { |
| + SkDebugf("Warning: incomplete input stream.\n"); |
| + return kIncompleteInput; |
| + } |
| + |
| + // Decode the row in destination format |
| + SkSwizzler::ResultAlpha r = swizzler->next(srcBuffer.get(), delta); |
| + transparent &= SkSwizzler::kTransparent_ResultAlpha == r; |
| + } |
| + |
| + // Now we adjust the output image with some additional behavior that |
| + // SkSwizzler does not support. Firstly, all bmp images that contain |
| + // alpha are masked by the alpha mask. Secondly, many fully transparent |
| + // bmp images are intended to be opaque. Here, we make those corrections. |
| + SkColor* dstPtr = (SkColor*) dst; |
| + if (alphaMask != 0) { |
| + for (uint32_t y = 0; y < height; y++) { |
| + for (uint32_t x = 0; x < width; x++) { |
| + if (transparent) { |
| + dstPtr[y * dstRowBytes + x] |= 0xFF000000; |
| + } else { |
| + dstPtr[y * dstRowBytes + x] &= alphaMask; |
| + } |
| + } |
| + } |
| + } |
| + |
| + // Finished decoding the entire image |
| + return kSuccess; |
| +} |