Index: src/codec/SkCodec_libbmp.cpp |
diff --git a/src/codec/SkCodec_libbmp.cpp b/src/codec/SkCodec_libbmp.cpp |
new file mode 100644 |
index 0000000000000000000000000000000000000000..54aec0ff37c9f1fd6467ae5968f69d863467cf93 |
--- /dev/null |
+++ b/src/codec/SkCodec_libbmp.cpp |
@@ -0,0 +1,1298 @@ |
+/* |
+ * Copyright 2015 Google Inc. |
+ * |
+ * Use of this source code is governed by a BSD-style license that can be |
+ * found in the LICENSE file. |
+ */ |
+ |
+#include "SkCodec_libbmp.h" |
+#include "SkColor.h" |
+#include "SkEndian.h" |
+#include "SkStream.h" |
+ |
+/* |
+ * |
+ * Get a byte from the buffer |
+ * |
+ */ |
+uint8_t get_byte(uint8_t* buffer, uint32_t i) { |
+ return buffer[i]; |
+} |
+ |
+/* |
+ * |
+ * Get a short from the buffer |
+ * |
+ */ |
+uint16_t get_short(uint8_t* buffer, uint32_t i) { |
+ uint16_t result; |
+ memcpy(&result, &(buffer[i]), 2); |
+#ifdef SK_CPU_BENDIAN |
+ return SkEndianSwap16(result); |
+#else |
+ return result; |
+#endif |
+} |
+ |
+/* |
+ * |
+ * Get an int from the buffer |
+ * |
+ */ |
+uint32_t get_int(uint8_t* buffer, uint32_t i) { |
+ uint32_t result; |
+ memcpy(&result, &(buffer[i]), 4); |
+#ifdef SK_CPU_BENDIAN |
+ return SkEndianSwap32(result); |
+#else |
+ return result; |
+#endif |
+} |
+ |
+/* |
+ * |
+ * Used to convert 1-7 bit color components into 8-bit color components |
+ * |
+ */ |
+const static uint8_t n_bit_to_8_bit_lookup_table[] = { |
+ // 1 bit |
+ 0, 255, |
+ // 2 bits |
+ 0, 85, 170, 255, |
+ // 3 bits |
+ 0, 36, 73, 109, 146, 182, 219, 255, |
+ // 4 bits |
+ 0, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187, 204, 221, 238, 255, |
+ // 5 bits |
+ 0, 8, 16, 25, 33, 41, 49, 58, 66, 74, 82, 90, 99, 107, 115, 123, 132, 140, |
+ 148, 156, 165, 173, 181, 189, 197, 206, 214, 222, 230, 239, 247, 255, |
+ // 6 bits |
+ 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 45, 49, 53, 57, 61, 65, 69, 73, |
+ 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 130, 134, 138, |
+ 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 186, 190, 194, 198, |
+ 202, 206, 210, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, |
+ // 7 bits |
+ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, |
+ 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, |
+ 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, |
+ 112, 114, 116, 118, 120, 122, 124, 126, 129, 131, 133, 135, 137, 139, 141, |
+ 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, |
+ 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, |
+ 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, |
+ 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255 |
+}; |
+ |
+/* |
+ * |
+ * Convert an n bit component to an 8-bit component |
+ * |
+ */ |
+static uint8_t convert_n_to_8(uint32_t component, uint32_t n) { |
+ if (0 == n) { |
+ return 0; |
+ } else if (8 > n) { |
+ return n_bit_to_8_bit_lookup_table[(1 << n) - 2 + component]; |
+ } else if (8 == n) { |
scroggo
2015/03/06 18:56:13
I would change this to:
} else {
SkASSERT(8 ==
|
+ return component; |
+ } else { |
+ SkASSERT(false); |
+ return 0; |
+ } |
+} |
+ |
+/* |
+ * |
+ * Row procedure for masked color components with 16 bits per pixel |
+ * |
+ */ |
+static SkSwizzler::ResultAlpha swizzle_mask16_to_n32( |
+ void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width, |
+ const SkBmpCodec::BitMasks masks, |
+ const SkBmpCodec::BitMaskShifts shifts, |
+ const SkBmpCodec::BitMaskSizes sizes) { |
+ |
+ // Use the masks to decode to the destination |
+ uint16_t* srcPtr = (uint16_t*) src; |
+ SkColor* SK_RESTRICT dstPtr = (SkColor*) dstRow; |
+ for (uint32_t i = 0; i < width; i++) { |
+ uint16_t p = srcPtr[i]; |
+ uint8_t red = convert_n_to_8( |
+ (p & masks.redMask) >> shifts.redShift, sizes.redSize); |
scroggo
2015/03/06 18:56:13
It looks like this same code is repeated a few tim
|
+ uint8_t green = convert_n_to_8( |
+ (p & masks.greenMask) >> shifts.greenShift, sizes.greenSize); |
+ uint8_t blue = convert_n_to_8( |
+ (p & masks.blueMask) >> shifts.blueShift, sizes.blueSize); |
+ dstPtr[i] = SkColorSetARGBInline(0xFF, red, green, blue); |
scroggo
2015/03/06 18:56:12
This doesn't do what we want. We want either premu
|
+ } |
+ return SkSwizzler::kOpaque_ResultAlpha; |
+} |
+ |
+/* |
+ * |
+ * Row procedure for masked color components with 16 bits per pixel with alpha |
+ * |
+ */ |
+static SkSwizzler::ResultAlpha swizzle_mask16_alpha_to_n32( |
+ void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width, |
+ const SkBmpCodec::BitMasks masks, |
+ const SkBmpCodec::BitMaskShifts shifts, |
+ const SkBmpCodec::BitMaskSizes sizes) { |
+ |
+ // Use the masks to decode to the destination |
+ uint16_t* srcPtr = (uint16_t*) src; |
+ SkColor* SK_RESTRICT dstPtr = (SkColor*) dstRow; |
+ uint8_t zAlpha = 0; |
scroggo
2015/03/06 18:56:13
What does zAlpha mean? zeroAlpha?
|
+ uint8_t mAlpha = 0xFF; |
scroggo
2015/03/06 18:56:13
I think this is max alpha? Refrain from using mVar
|
+ for (uint32_t i = 0; i < width; i++) { |
+ uint16_t p = srcPtr[i]; |
+ uint8_t red = convert_n_to_8( |
+ (p & masks.redMask) >> shifts.redShift, sizes.redSize); |
+ uint8_t green = convert_n_to_8( |
+ (p & masks.greenMask) >> shifts.greenShift, sizes.greenSize); |
+ uint8_t blue = convert_n_to_8( |
+ (p & masks.blueMask) >> shifts.blueShift, sizes.blueSize); |
+ uint8_t alpha = convert_n_to_8(( |
+ p & masks.alphaMask) >> shifts.alphaShift, sizes.alphaSize); |
+ zAlpha |= alpha; |
+ mAlpha &= alpha; |
+ dstPtr[i] = SkColorSetARGBInline(alpha, red, green, blue); |
+ } |
+ return (mAlpha == 0xFF) ? SkSwizzler::kOpaque_ResultAlpha : |
scroggo
2015/03/06 18:56:13
Can you make a helper function for this? Something
|
+ ((zAlpha == 0) ? SkSwizzler::kTransparent_ResultAlpha : |
+ SkSwizzler::kNeither_ResultAlpha); |
+} |
+ |
+/* |
+ * |
+ * Row procedure for masked color components with 24 bits per pixel |
+ * |
+ */ |
+static SkSwizzler::ResultAlpha swizzle_mask24_to_n32( |
+ void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width, |
+ const SkBmpCodec::BitMasks masks, |
+ const SkBmpCodec::BitMaskShifts shifts, |
+ const SkBmpCodec::BitMaskSizes sizes) { |
+ |
+ // Use the masks to decode to the destination |
+ SkColor* SK_RESTRICT dstPtr = (SkColor*) dstRow; |
+ for (uint32_t i = 0; i < 3*width; i += 3) { |
+ uint32_t p = src[i] | (src[i + 1] << 8) | src[i + 2] << 16; |
+ uint8_t red = convert_n_to_8( |
+ (p & masks.redMask) >> shifts.redShift, sizes.redSize); |
+ uint8_t green = convert_n_to_8( |
+ (p & masks.greenMask) >> shifts.greenShift, sizes.greenSize); |
+ uint8_t blue = convert_n_to_8( |
+ (p & masks.blueMask) >> shifts.blueShift, sizes.blueSize); |
+ dstPtr[i/3] = SkColorSetARGBInline(0xFF, red, green, blue); |
+ } |
+ return SkSwizzler::kOpaque_ResultAlpha; |
+} |
+ |
+/* |
+ * |
+ * Row procedure for masked color components with 24 bits per pixel with alpha |
+ * |
+ */ |
+static SkSwizzler::ResultAlpha swizzle_mask24_alpha_to_n32( |
+ void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width, |
+ const SkBmpCodec::BitMasks masks, |
+ const SkBmpCodec::BitMaskShifts shifts, |
+ const SkBmpCodec::BitMaskSizes sizes) { |
+ |
+ // Use the masks to decode to the destination |
+ SkColor* SK_RESTRICT dstPtr = (SkColor*) dstRow; |
+ uint8_t zAlpha = 0; |
+ uint8_t mAlpha = 0xFF; |
+ for (uint32_t i = 0; i < 3*width; i += 3) { |
+ uint32_t p = src[i] | (src[i + 1] << 8) | src[i + 2] << 16; |
+ uint8_t red = convert_n_to_8( |
+ (p & masks.redMask) >> shifts.redShift, sizes.redSize); |
+ uint8_t green = convert_n_to_8( |
+ (p & masks.greenMask) >> shifts.greenShift, sizes.greenSize); |
+ uint8_t blue = convert_n_to_8( |
+ (p & masks.blueMask) >> shifts.blueShift, sizes.blueSize); |
+ uint8_t alpha = convert_n_to_8(( |
+ p & masks.alphaMask) >> shifts.alphaShift, sizes.alphaSize); |
+ zAlpha |= alpha; |
+ mAlpha &= alpha; |
+ dstPtr[i/3] = SkColorSetARGBInline(alpha, red, green, blue); |
+ } |
+ return (mAlpha == 0xFF) ? SkSwizzler::kOpaque_ResultAlpha : |
+ ((zAlpha == 0) ? SkSwizzler::kTransparent_ResultAlpha : |
+ SkSwizzler::kNeither_ResultAlpha); |
+} |
+ |
+/* |
+ * |
+ * Row procedure for masked color components with 32 bits per pixel |
+ * |
+ */ |
+static SkSwizzler::ResultAlpha swizzle_mask32_to_n32( |
+ void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width, |
+ const SkBmpCodec::BitMasks masks, |
+ const SkBmpCodec::BitMaskShifts shifts, |
+ const SkBmpCodec::BitMaskSizes sizes) { |
+ |
+ // Use the masks to decode to the destination |
+ uint32_t* srcPtr = (uint32_t*) src; |
+ SkColor* SK_RESTRICT dstPtr = (SkColor*) dstRow; |
+ for (uint32_t i = 0; i < width; i++) { |
+ uint32_t p = srcPtr[i]; |
+ uint8_t red = convert_n_to_8( |
+ (p & masks.redMask) >> shifts.redShift, sizes.redSize); |
+ uint8_t green = convert_n_to_8( |
+ (p & masks.greenMask) >> shifts.greenShift, sizes.greenSize); |
+ uint8_t blue = convert_n_to_8( |
+ (p & masks.blueMask) >> shifts.blueShift, sizes.blueSize); |
+ dstPtr[i] = SkColorSetARGBInline(0xFF, red, green, blue); |
+ } |
+ return SkSwizzler::kOpaque_ResultAlpha; |
+} |
+ |
+/* |
+ * |
+ * Row procedure for masked color components with 32 bits per pixel |
+ * |
+ */ |
+static SkSwizzler::ResultAlpha swizzle_mask32_alpha_to_n32( |
+ void* SK_RESTRICT dstRow, const uint8_t* SK_RESTRICT src, int width, |
+ const SkBmpCodec::BitMasks masks, |
+ const SkBmpCodec::BitMaskShifts shifts, |
+ const SkBmpCodec::BitMaskSizes sizes) { |
+ |
+ // Use the masks to decode to the destination |
+ uint32_t* srcPtr = (uint32_t*) src; |
+ SkColor* SK_RESTRICT dstPtr = (SkColor*) dstRow; |
+ uint8_t zAlpha = 0; |
+ uint8_t mAlpha = 0xFF; |
+ for (uint32_t i = 0; i < width; i++) { |
+ uint32_t p = srcPtr[i]; |
+ uint8_t red = convert_n_to_8( |
+ (p & masks.redMask) >> shifts.redShift, sizes.redSize); |
+ uint8_t green = convert_n_to_8( |
+ (p & masks.greenMask) >> shifts.greenShift, sizes.greenSize); |
+ uint8_t blue = convert_n_to_8( |
+ (p & masks.blueMask) >> shifts.blueShift, sizes.blueSize); |
+ uint8_t alpha = convert_n_to_8(( |
+ p & masks.alphaMask) >> shifts.alphaShift, sizes.alphaSize); |
+ zAlpha |= alpha; |
+ mAlpha &= alpha; |
+ dstPtr[i] = SkColorSetARGBInline(alpha, red, green, blue); |
+ } |
+ return (mAlpha == 0xFF) ? SkSwizzler::kOpaque_ResultAlpha : |
+ ((zAlpha == 0) ? SkSwizzler::kTransparent_ResultAlpha : |
+ SkSwizzler::kNeither_ResultAlpha); |
+} |
+ |
+/* |
+ * |
+ * Checks if the conversion between the input image and the requested output |
+ * image has been implemented |
+ * |
+ */ |
+static bool conversion_possible(const SkImageInfo& dst, |
+ const SkImageInfo& src) { |
+ // TODO: Support all conversions |
scroggo
2015/03/06 18:56:13
nit: we won't support *all* conversions, but perha
|
+ if (kN32_SkColorType != dst.colorType()) { |
+ return false; |
+ } |
+ if (kIgnore_SkAlphaType == dst.alphaType()) { |
scroggo
2015/03/06 18:56:13
Can we also check for opaque vs non-opaque?
For P
|
+ SkDebugf("Error: invalid dst alpha type."); |
+ return false; |
+ } |
+ return true; |
+} |
+ |
+/* |
+ * |
+ * Defines the version and type of the second bitmap header |
+ * |
+ */ |
+enum BitmapHeaderType { |
+ kInfoV1_BitmapHeaderType, |
+ kInfoV2_BitmapHeaderType, |
+ kInfoV3_BitmapHeaderType, |
+ kInfoV4_BitmapHeaderType, |
+ kInfoV5_BitmapHeaderType, |
+ kOS2V1_BitmapHeaderType, |
+ kOS2VX_BitmapHeaderType, |
+ kUnknown_BitmapHeaderType |
+}; |
+ |
+/* |
+ * |
+ * Possible bitmap compression types |
+ * |
+ */ |
+enum BitmapCompressionMethod { |
+ kNone_BitmapCompressionMethod = 0, |
+ k8BitRLE_BitmapCompressionMethod = 1, |
+ k4BitRLE_BitmapCompressionMethod = 2, |
+ kBitMasks_BitmapCompressionMethod = 3, |
+ kJpeg_BitmapCompressionMethod = 4, |
+ kPng_BitmapCompressionMethod = 5, |
+ kAlphaBitMasks_BitmapCompressionMethod = 6, |
+ kCMYK_BitmapCompressionMethod = 11, |
+ kCMYK8BitRLE_BitmapCompressionMethod = 12, |
+ kCMYK4BitRLE_BitmapCompressionMethod = 13 |
+}; |
+ |
+/* |
+ * |
+ * Checks the start of the stream to see if the image is a bitmap |
+ * |
+ */ |
+bool SkBmpCodec::IsBmp(SkStream* stream) { |
+ // TODO: Support "IC", "PT", "CI", "CP", "BA" |
+ // TODO: ICO files may contain a BMP and need to use this decoder |
+ const char bmpSig[] = { 'B', 'M' }; |
+ char buffer[sizeof(bmpSig)]; |
+ return stream->read(buffer, sizeof(bmpSig)) == sizeof(bmpSig) && |
+ !memcmp(buffer, bmpSig, sizeof(bmpSig)); |
+} |
+ |
+/* |
+ * |
+ * Assumes IsBmp was called and returned true |
+ * Creates a bitmap decoder |
+ * Reads enough of the stream to determine the image format |
+ * |
+ */ |
+SkCodec* SkBmpCodec::NewFromStream(SkStream* stream) { |
msarett
2015/03/05 23:13:17
This function is very long. There is not really r
scroggo
2015/03/05 23:32:35
I'm going to look at the whole of the code more in
|
+ // Header size constants |
+ static const uint32_t kBmpHeaderBytes = 14; |
+ static const uint32_t kBmpHeaderBytesPlusFour = kBmpHeaderBytes + 4; |
+ static const uint32_t kBmpOS2V1Bytes = 12; |
+ static const uint32_t kBmpOS2V2Bytes = 64; |
+ static const uint32_t kBmpInfoBaseBytes = 16; |
+ static const uint32_t kBmpInfoV1Bytes = 40; |
+ static const uint32_t kBmpInfoV2Bytes = 52; |
+ static const uint32_t kBmpInfoV3Bytes = 56; |
+ static const uint32_t kBmpInfoV4Bytes = 108; |
+ static const uint32_t kBmpInfoV5Bytes = 124; |
+ static const uint32_t kBmpMaskBytes = 12; |
+ |
+ // Read the first header and the size of the second header |
+ SkAutoTDeleteArray<uint8_t> hBuffer( |
+ SkNEW_ARRAY(uint8_t, kBmpHeaderBytesPlusFour)); |
+ if (stream->read(hBuffer.get(), kBmpHeaderBytesPlusFour) != |
+ kBmpHeaderBytesPlusFour) { |
+ SkDebugf("Error: unable to read first bitmap header.\n"); |
+ return NULL; |
+ } |
+ |
+ // The total bytes in the bmp file |
+ // We only need to use this value for RLE decoding, so we will only check |
+ // that it is valid in the RLE case. |
+ const uint32_t totalBytes = get_int(hBuffer.get(), 2); |
+ |
+ // The offset from the start of the file where the pixel data begins |
+ const uint32_t offset = get_int(hBuffer.get(), 10); |
+ if (offset < kBmpHeaderBytes + kBmpOS2V1Bytes) { |
+ SkDebugf("Error: invalid starting location for pixel data\n"); |
+ return NULL; |
+ } |
+ |
+ // The size of the second (info) header in bytes |
+ // The size is the first field of the second header, so we have already |
+ // read the first four infoBytes. |
+ const uint32_t infoBytes = get_int(hBuffer.get(), 14); |
+ if (infoBytes < kBmpOS2V1Bytes) { |
+ SkDebugf("Error: invalid second header size.\n"); |
+ return NULL; |
+ } |
+ const uint32_t infoBytesRemaining = infoBytes - 4; |
+ hBuffer.free(); |
+ |
+ // Read the second header |
+ SkAutoTDeleteArray<uint8_t> iBuffer( |
+ SkNEW_ARRAY(uint8_t, infoBytesRemaining)); |
+ if (stream->read(iBuffer.get(), infoBytesRemaining) != infoBytesRemaining) { |
+ SkDebugf("Error: unable to read second bitmap header.\n"); |
+ return NULL; |
+ } |
+ |
+ // The number of bits used per pixel in the pixel data |
+ uint16_t bitsPerPixel; |
+ |
+ // The compression method for the pixel data |
+ uint32_t compression = kNone_BitmapCompressionMethod; |
+ |
+ // Number of colors in the color table, defaults to 0 or max (see below) |
+ uint32_t numColors = 0; |
+ |
+ // Bytes per color in the color table, early versions use 3, most use 4 |
+ uint32_t bytesPerColor; |
+ |
+ // The image width and height |
+ int width, height; |
+ |
+ // Determine image information depending on second header format |
+ BitmapHeaderType headerType; |
+ if (infoBytes >= kBmpInfoBaseBytes) { |
+ // Check the version of the header |
+ switch (infoBytes) { |
+ case kBmpInfoV1Bytes: |
+ headerType = kInfoV1_BitmapHeaderType; |
+ break; |
+ case kBmpInfoV2Bytes: |
+ headerType = kInfoV2_BitmapHeaderType; |
+ break; |
+ case kBmpInfoV3Bytes: |
+ headerType = kInfoV3_BitmapHeaderType; |
+ break; |
+ case kBmpInfoV4Bytes: |
+ headerType = kInfoV4_BitmapHeaderType; |
+ break; |
+ case kBmpInfoV5Bytes: |
+ headerType = kInfoV5_BitmapHeaderType; |
+ break; |
+ case 16: |
+ case 20: |
+ case 24: |
+ case 28: |
+ case 32: |
+ case 36: |
+ case 42: |
+ case 46: |
+ case 48: |
+ case 60: |
+ case kBmpOS2V2Bytes: |
+ headerType = kOS2VX_BitmapHeaderType; |
+ break; |
+ default: |
+ // We do not signal an error here because there is the |
+ // possibility of new or undocumented bmp header types. Most |
+ // of the newer versions of bmp headers are similar to and |
+ // build off of the older versions, so we may still be able to |
+ // decode the bmp. |
+ SkDebugf("Warning: unknown bmp header format.\n"); |
+ headerType = kUnknown_BitmapHeaderType; |
+ break; |
+ } |
+ // We check the size of the header before entering the if statement. |
+ // We should not reach this point unless the size is large enough for |
+ // these required fields. |
+ SkASSERT(infoBytesRemaining >= 12); |
+ width = get_int(iBuffer.get(), 0); |
+ height = get_int(iBuffer.get(), 4); |
+ //uint16_t planes = get_short(iBuffer, 8); |
+ bitsPerPixel = get_short(iBuffer.get(), 10); |
+ |
+ // Some versions do not have this field, so we check before |
+ // overwriting the default value. |
+ if (infoBytesRemaining >= 16) { |
+ compression = get_int(iBuffer.get(), 12); |
+ } |
+ |
+ // Some versions do not have this field, so we check before |
+ // overwriting the default value. |
+ if (infoBytesRemaining >= 32) { |
+ numColors = get_int(iBuffer.get(), 28); |
+ } |
+ |
+ bytesPerColor = 4; |
+ } else if (infoBytes >= kBmpOS2V1Bytes) { |
+ // The OS2V1 is treated separately because it has a unique format |
+ headerType = kOS2V1_BitmapHeaderType; |
+ width = (int) get_short(iBuffer.get(), 0); |
+ height = (int) get_short(iBuffer.get(), 2); |
+ bitsPerPixel = get_short(iBuffer.get(), 6); |
+ bytesPerColor = 3; |
+ } else { |
+ // There are no valid bmp headers |
+ SkDebugf("Error: second bitmap header size is invalid.\n"); |
+ return NULL; |
+ } |
+ |
+ // Check for valid dimensions from header |
+ RowOrder rowOrder = kBottomUp_RowOrder; |
+ if (height < 0) { |
+ height = -height; |
+ rowOrder = kTopDown_RowOrder; |
+ } |
+ static const uint32_t kBmpMaxDim = 1 << 16; |
+ if (width < 0 || width >= kBmpMaxDim || height >= kBmpMaxDim) { |
+ // TODO: Decide if we want to support really large bmps. |
+ SkDebugf("Error: invalid bitmap dimensions.\n"); |
+ return NULL; |
+ } |
+ |
+ // Create mask struct |
+ BitMasks masks; |
+ memset(&masks, 0, 4*sizeof(uint32_t)); |
+ |
+ // Determine the input compression format and set bit masks if necessary |
+ uint32_t maskBytes = 0; |
+ BitmapInputFormat inputFormat = kUnknown_BitmapInputFormat; |
+ switch (compression) { |
+ case kNone_BitmapCompressionMethod: |
+ inputFormat = kStandard_BitmapInputFormat; |
+ break; |
+ case k8BitRLE_BitmapCompressionMethod: |
+ if (bitsPerPixel != 8) { |
+ SkDebugf("Warning: correcting invalid bitmap format.\n"); |
+ bitsPerPixel = 8; |
+ } |
+ inputFormat = kRLE_BitmapInputFormat; |
+ break; |
+ case k4BitRLE_BitmapCompressionMethod: |
+ if (bitsPerPixel != 4) { |
+ SkDebugf("Warning: correcting invalid bitmap format.\n"); |
+ bitsPerPixel = 4; |
+ } |
+ inputFormat = kRLE_BitmapInputFormat; |
+ break; |
+ case kAlphaBitMasks_BitmapCompressionMethod: |
+ case kBitMasks_BitmapCompressionMethod: |
+ // Load the masks |
+ inputFormat = kBitMask_BitmapInputFormat; |
+ switch (headerType) { |
+ case kInfoV1_BitmapHeaderType: { |
+ // The V1 header stores the bit masks after the header |
+ SkAutoTDeleteArray<uint8_t> mBuffer( |
+ SkNEW_ARRAY(uint8_t, kBmpMaskBytes)); |
+ if (stream->read(mBuffer.get(), kBmpMaskBytes) != |
+ kBmpMaskBytes) { |
+ SkDebugf("Error: unable to read bit masks.\n"); |
+ return NULL; |
+ } |
+ maskBytes = kBmpMaskBytes; |
+ masks.redMask = get_int(mBuffer.get(), 0); |
+ masks.greenMask = get_int(mBuffer.get(), 4); |
+ masks.blueMask = get_int(mBuffer.get(), 8); |
+ break; |
+ } |
+ case kInfoV2_BitmapHeaderType: |
+ case kInfoV3_BitmapHeaderType: |
+ case kInfoV4_BitmapHeaderType: |
+ case kInfoV5_BitmapHeaderType: |
+ // Header types are matched based on size. If the header |
+ // is V2+, we are guaranteed to be able at least this size. |
+ SkASSERT(infoBytesRemaining >= 48); |
+ masks.redMask = get_int(iBuffer.get(), 36); |
+ masks.greenMask = get_int(iBuffer.get(), 40); |
+ masks.blueMask = get_int(iBuffer.get(), 44); |
+ break; |
+ case kOS2VX_BitmapHeaderType: |
+ // TODO: Decide if we intend to support this. |
+ // It is unsupported in the previous version and |
+ // in chromium. I have not come across a test case |
+ // that uses this format. |
+ SkDebugf("Error: huffman format unsupported.\n"); |
+ return NULL; |
+ default: |
+ SkDebugf("Error: invalid bmp bit masks header.\n"); |
+ return NULL; |
+ } |
+ break; |
+ case kJpeg_BitmapCompressionMethod: |
+ if (24 == bitsPerPixel) { |
+ inputFormat = kRLE_BitmapInputFormat; |
+ break; |
+ } |
+ // Fall through |
+ case kPng_BitmapCompressionMethod: |
+ // TODO: Decide if we intend to support this. |
+ // It is unsupported in the previous version and |
+ // in chromium. I think it is used mostly for printers. |
+ SkDebugf("Error: compression format not supported.\n"); |
+ return NULL; |
+ case kCMYK_BitmapCompressionMethod: |
+ case kCMYK8BitRLE_BitmapCompressionMethod: |
+ case kCMYK4BitRLE_BitmapCompressionMethod: |
+ // TODO: Same as above. |
+ SkDebugf("Error: CMYK not supported for bitmap decoding.\n"); |
+ return NULL; |
+ default: |
+ SkDebugf("Error: invalid format for bitmap decoding.\n"); |
+ return NULL; |
+ } |
+ |
+ // Most versions of bmps should to be rendered as opaque. Either they do |
scroggo
2015/03/06 18:56:13
should be*
|
+ // not have an alpha channel, or they expect the alpha channel to be |
+ // ignored. V4+ bmp files introduce an alpha mask and allow the creator |
+ // of the image to use the alpha channels. However, many of these images |
+ // leave the alpha channel blank and expect to be rendered as opaque. For |
+ // this reason, we set the alpha type to kUnknown for V4+ bmps and figure |
+ // out the alpha type during the decode. |
+ SkAlphaType alphaType = kOpaque_SkAlphaType; |
+ if (kInfoV4_BitmapHeaderType == headerType || |
+ kInfoV5_BitmapHeaderType == headerType) { |
+ // Header types are matched based on size. If the header is |
+ // V4+, we are guaranteed to be able at least this size. |
scroggo
2015/03/06 18:56:13
able... to read?
|
+ SkASSERT(infoBytesRemaining > 52); |
+ masks.alphaMask = get_int(iBuffer.get(), 48); |
+ if (masks.alphaMask != 0) { |
+ alphaType = kUnpremul_SkAlphaType; |
+ } |
+ } |
+ iBuffer.free(); |
+ |
+ // Check for valid bits per pixel input |
+ switch (bitsPerPixel) { |
+ // In addition to more standard pixel compression formats, bmp supports |
+ // the use of bit masks to determine pixel components. The standard |
+ // format for representing 16-bit colors is 555 (XRRRRRGGGGGBBBBB), |
+ // which does not map well to any Skia color formats. For this reason, |
+ // we will always enable mask mode with 16 bits per pixel. |
+ case 16: |
+ if (kBitMask_BitmapInputFormat != inputFormat) { |
+ masks.redMask = 0x7C00; |
+ masks.greenMask = 0x03E0; |
+ masks.blueMask = 0x001F; |
+ inputFormat = kBitMask_BitmapInputFormat; |
+ } |
+ break; |
+ case 1: |
+ case 2: |
+ case 4: |
+ case 8: |
+ case 24: |
+ case 32: |
+ break; |
+ default: |
+ SkDebugf("Error: invalid input value for bits per pixel.\n"); |
+ return NULL; |
+ } |
+ |
+ // Process the color table |
+ uint32_t colorBytes = 0; |
+ SkColor* colorTable = NULL; |
scroggo
2015/03/06 18:56:13
SkPMColor. Same down below.
|
+ if (bitsPerPixel < 16) { |
+ // Verify the number of colors for the color table |
+ const int maxColors = 1 << bitsPerPixel; |
+ // Zero is a default for maxColors |
+ // Also set numColors to maxColors when input is too large |
+ if (numColors <= 0 || numColors > maxColors) { |
+ numColors = maxColors; |
+ } |
+ colorTable = SkNEW_ARRAY(SkColor, maxColors); |
+ |
+ // Construct the color table |
+ colorBytes = numColors * bytesPerColor; |
+ SkAutoTDeleteArray<uint8_t> cBuffer(SkNEW_ARRAY(uint8_t, colorBytes)); |
+ if (stream->read(cBuffer.get(), colorBytes) != colorBytes) { |
+ SkDebugf("Error: unable to read color table.\n"); |
+ return NULL; |
+ } |
+ |
+ // Fill in the color table |
+ uint32_t i = 0; |
+ for (; i < numColors; i++) { |
+ uint8_t blue = get_byte(cBuffer.get(), i*bytesPerColor); |
+ uint8_t green = get_byte(cBuffer.get(), i*bytesPerColor + 1); |
+ uint8_t red = get_byte(cBuffer.get(), i*bytesPerColor + 2); |
+ uint8_t alpha = 0xFF; |
+ if (kOpaque_SkAlphaType != alphaType) { |
+ alpha = (masks.alphaMask >> 24) & |
+ get_byte(cBuffer.get(), i*bytesPerColor + 3); |
+ } |
+ colorTable[i] = SkColorSetARGBInline(alpha, red, green, blue); |
+ } |
+ |
+ // To avoid segmentation faults on bad pixel data, fill the end of the |
+ // color table with black. This is the same the behavior as the |
+ // chromium decoder. |
+ for (; i < maxColors; i++) { |
+ colorTable[i] = SkColorSetARGBInline(0xFF, 0, 0, 0); |
+ } |
+ } else { |
+ // We will not use the color table if bitsPerPixel >= 16, but if there |
+ // is a color table, we may need to skip the color table bytes. |
+ // We will assume that the maximum color table size is the same as when |
+ // there are 8 bits per pixel (the largest color table actually used). |
+ // Color tables for greater than 8 bits per pixel are somewhat |
+ // undocumented. It is indicated that they may exist to store a list |
+ // of colors for optimization on devices with limited color display |
+ // capacity. While we do not know for sure, we will guess that any |
+ // value of numColors greater than this maximum is invalid. |
+ if (numColors <= (1 << 8)) { |
+ colorBytes = numColors * bytesPerColor; |
+ if (stream->skip(colorBytes) != colorBytes) { |
+ SkDebugf("Error: Could not skip color table bytes.\n"); |
+ return NULL; |
+ } |
+ } |
+ } |
+ |
+ // Ensure that the stream now points to the start of the pixel array |
+ uint32_t bytesRead = kBmpHeaderBytes + infoBytes + maskBytes + colorBytes; |
+ |
+ // Check that we have not read past the pixel array offset |
+ if(bytesRead > offset) { |
+ // This may occur on OS 2.1 and other old versions where the color |
+ // table defaults to max size, and the bmp tries to use a smaller color |
+ // table. This is invalid, and our decision is to indicate an error, |
+ // rather than try to guess the intended size of the color table and |
+ // rewind the stream to display the image. |
+ SkDebugf("Error: pixel data offset less than header size.\n"); |
+ return NULL; |
+ } |
+ |
+ // Skip to the start of the pixel array |
+ if (stream->skip(offset - bytesRead) != offset - bytesRead) { |
+ SkDebugf("Error: unable to skip to image data.\n"); |
+ return NULL; |
+ } |
+ |
+ // Remaining bytes is only used for RLE |
+ const int remainingBytes = totalBytes - offset; |
+ if (remainingBytes <= 0 && kRLE_BitmapInputFormat == inputFormat) { |
+ SkDebugf("Error: RLE requires valid input size.\n"); |
+ return NULL; |
+ } |
+ |
+ // Return the codec |
+ // We will use ImageInfo to store width, height, and alpha type. The Skia |
+ // color types do not match with the many possible bmp input color types, |
+ // so we will ignore this field and depend on other parameters for input |
+ // information. |
+ const SkImageInfo& imageInfo = SkImageInfo::Make(width, height, |
+ kUnknown_SkColorType, alphaType); |
+ return SkNEW_ARGS(SkBmpCodec, (imageInfo, stream, bitsPerPixel, |
+ inputFormat, masks, colorTable, rowOrder, |
+ remainingBytes)); |
+} |
+ |
+/* |
+ * |
+ * Creates an instance of the decoder |
+ * Called only by NewFromStream |
+ * |
+ */ |
+SkBmpCodec::SkBmpCodec(const SkImageInfo& info, SkStream* stream, |
+ uint16_t bitsPerPixel, BitmapInputFormat inputFormat, |
+ BitMasks masks, SkColor* colorTable, |
+ RowOrder rowOrder, |
+ const uint32_t remainingBytes) |
+ : INHERITED(info, stream) |
+ , fBitsPerPixel(bitsPerPixel) |
+ , fInputFormat(inputFormat) |
+ , fBitMasks(masks) |
+ , fMaskShifts( { 0, 0, 0, 0 } ) |
+ , fMaskSizes( { 0, 0, 0, 0 } ) |
+ , fColorTable(colorTable) |
+ , fRowOrder(rowOrder) |
+ , fRemainingBytes(remainingBytes) |
+{} |
+ |
+/* |
+ * |
+ * Initiates the bitmap decode |
+ * |
+ */ |
+SkCodec::Result SkBmpCodec::onGetPixels(const SkImageInfo& dstInfo, |
+ void* dst, size_t dstRowBytes, |
+ SkColor*, int*) { |
+ if (!this->couldRewindIfNeeded()) { |
+ SkDebugf("Error: rewind should not be necessary.\n"); |
scroggo
2015/03/06 18:56:13
This comment isn't necessary.
couldRewindIfNeeded
|
+ return kCouldNotRewind; |
+ } |
+ if (dstInfo.dimensions() != this->getOriginalInfo().dimensions()) { |
+ SkDebugf("Error: scaling not supported.\n"); |
+ return kInvalidScale; |
+ } |
+ if (!conversion_possible(dstInfo, this->getOriginalInfo())) { |
+ SkDebugf("Error: cannot convert input type to output type.\n"); |
+ return kInvalidConversion; |
+ } |
+ |
+ switch (fInputFormat) { |
+ case kBitMask_BitmapInputFormat: |
+ return decodeMask(dstInfo, dst, dstRowBytes); |
+ case kRLE_BitmapInputFormat: |
+ return decodeRLE(dstInfo, dst, dstRowBytes); |
+ case kStandard_BitmapInputFormat: |
+ return decode(dstInfo, dst, dstRowBytes); |
+ default: |
+ SkASSERT(false); |
+ return kInvalidInput; |
+ } |
+} |
+ |
+/* |
+ * |
+ * For a continuous bit mask (ex: 0011100), retrieves the size of the mask and |
+ * the number of bits to shift the mask |
+ * |
+ */ |
+void SkBmpCodec::processMasks() { |
msarett
2015/03/05 23:13:17
I can make this function less repetitive (but hard
scroggo
2015/03/06 18:56:13
Hard to say... My initial thought was to let timin
|
+ // Trim the masks to the allowed number of bits |
+ if (fBitsPerPixel < 32) { |
scroggo
2015/03/06 18:56:13
If you merged all the masks together, as suggested
|
+ fBitMasks.redMask &= (1 << fBitsPerPixel) - 1; |
+ fBitMasks.greenMask &= (1 << fBitsPerPixel) - 1; |
+ fBitMasks.blueMask &= (1 << fBitsPerPixel) - 1; |
+ fBitMasks.alphaMask &= (1 << fBitsPerPixel) - 1; |
+ } |
+ |
+ // Get temporary versions of the inputs masks |
+ uint32_t redMask = fBitMasks.redMask; |
+ uint32_t greenMask = fBitMasks.greenMask; |
+ uint32_t blueMask = fBitMasks.blueMask; |
+ uint32_t alphaMask = fBitMasks.alphaMask; |
+ |
+ // Count trailing zeros on masks and the size of masks |
+ if (redMask != 0) { |
+ for (; (redMask & 1) == 0; redMask >>= 1) { |
+ fMaskShifts.redShift++; |
+ } |
+ for (; redMask & 1; redMask >>= 1) { |
+ fMaskSizes.redSize++; |
+ } |
+ // Truncate masks greater than 8 bits |
+ if (fMaskSizes.redSize > 8) { |
+ fMaskShifts.redShift += fMaskSizes.redSize - 8; |
+ fMaskSizes.redSize = 8; |
+ } |
+ } |
+ if (greenMask != 0) { |
+ for (; (greenMask & 1) == 0; greenMask >>= 1) { |
+ fMaskShifts.greenShift++; |
+ } |
+ for (; greenMask & 1; greenMask >>= 1) { |
+ fMaskSizes.greenSize++; |
+ } |
+ // Truncate masks greater than 8 bits |
+ if (fMaskSizes.greenSize > 8) { |
+ fMaskShifts.greenShift += fMaskSizes.greenSize - 8; |
+ fMaskSizes.greenSize = 8; |
+ } |
+ } |
+ if (blueMask != 0) { |
+ for (; (blueMask & 1) == 0; blueMask >>= 1) { |
+ fMaskShifts.blueShift++; |
+ } |
+ for (; blueMask & 1; blueMask >>= 1) { |
+ fMaskSizes.blueSize++; |
+ } |
+ // Truncate masks greater than 8 bits |
+ if (fMaskSizes.blueSize > 8) { |
+ fMaskShifts.blueShift += fMaskSizes.blueSize - 8; |
+ fMaskSizes.blueSize = 8; |
+ } |
+ } |
+ if (alphaMask != 0) { |
+ for (; (alphaMask & 1) == 0; alphaMask >>= 1) { |
+ fMaskShifts.alphaShift++; |
+ } |
+ for (; alphaMask & 1; alphaMask >>= 1) { |
+ fMaskSizes.alphaSize++; |
+ } |
+ // Truncate masks greater than 8 bits |
+ if (fMaskSizes.alphaSize > 8) { |
+ fMaskShifts.alphaShift += fMaskSizes.alphaSize - 8; |
+ fMaskSizes.alphaSize = 8; |
+ } |
+ } |
+ return; |
scroggo
2015/03/06 18:56:13
not needed.
|
+} |
+ |
+/* |
+ * |
+ * Performs the bitmap decoding for bit masks input format |
+ * |
+ */ |
+SkCodec::Result SkBmpCodec::decodeMask(const SkImageInfo& dstInfo, |
+ void* dst, uint32_t dstRowBytes) { |
+ // Set constant values |
+ const int width = dstInfo.width(); |
+ const int height = dstInfo.height(); |
+ const uint32_t pixelsPerByte = 8 / fBitsPerPixel; |
+ const uint32_t bytesPerPixel = fBitsPerPixel / 8; |
scroggo
2015/03/06 18:56:13
what happens if fBitsPerPixel is not an even multi
msarett
2015/03/07 00:19:50
It would an error if it happened. We should proba
|
+ const uint32_t unpaddedRowBytes = fBitsPerPixel < 16 ? |
scroggo
2015/03/06 18:56:13
I think all you want here is the paddedRowBytes? A
|
+ (width + pixelsPerByte - 1) / pixelsPerByte : width * bytesPerPixel; |
+ const uint32_t paddedRowBytes = SkAlign4(unpaddedRowBytes); |
+ const uint32_t alphaMask = fBitMasks.alphaMask; |
+ |
+ // Allocate space for a row buffer and a source for the swizzler |
+ SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, paddedRowBytes)); |
+ |
+ // Define the type of mask row procedures |
+ typedef SkSwizzler::ResultAlpha (*RowProc)(void* SK_RESTRICT dstRow, |
+ const uint8_t* SK_RESTRICT src, int width, |
+ BitMasks masks, BitMaskShifts shifts, |
+ BitMaskSizes sizes); |
+ |
+ // Choose the appropriate row procedure |
+ RowProc proc = NULL; |
+ switch (fBitsPerPixel) { |
+ case 16: |
+ if (alphaMask == 0) { |
+ proc = &swizzle_mask16_to_n32; |
+ } else { |
+ proc = &swizzle_mask16_alpha_to_n32; |
+ } |
+ break; |
+ case 24: |
+ if (alphaMask == 0) { |
+ proc = &swizzle_mask24_to_n32; |
+ } else { |
+ proc = &swizzle_mask24_alpha_to_n32; |
+ } |
+ break; |
+ case 32: |
+ if (alphaMask == 0) { |
+ proc = &swizzle_mask32_to_n32; |
+ } else { |
+ proc = &swizzle_mask32_alpha_to_n32; |
+ } |
+ break; |
+ default: |
+ SkASSERT(false); |
+ return kInvalidInput; |
+ } |
+ |
+ // Obtain the size and location of the input bit masks |
+ processMasks(); |
+ |
+ // Get the destination start row and delta |
+ SkColor* dstRow; |
+ int32_t delta; |
+ if (kTopDown_RowOrder == fRowOrder) { |
+ dstRow = (SkColor*) dst; |
+ delta = dstRowBytes; |
+ } else { |
+ dstRow = (SkColor*) SkTAddOffset<void>(dst, (height - 1) * dstRowBytes); |
+ delta = -dstRowBytes; |
+ } |
+ |
+ // Iterate over rows of the image |
+ bool transparent = true; |
+ for (uint32_t y = 0; y < height; y++) { |
+ // Read a row of the input |
+ if (stream()->read(srcBuffer.get(), paddedRowBytes) != paddedRowBytes) { |
+ SkDebugf("Warning: incomplete input stream.\n"); |
+ return kIncompleteInput; |
+ } |
+ |
+ // Decode the row in destination format |
+ SkSwizzler::ResultAlpha r = proc(dstRow, srcBuffer.get(), width, |
+ fBitMasks, fMaskShifts, fMaskSizes); |
+ transparent &= SkSwizzler::kTransparent_ResultAlpha == r; |
scroggo
2015/03/06 18:56:13
nit: parens around the == check
|
+ |
+ // Move to the next row |
+ dstRow = SkTAddOffset<SkColor>(dstRow, delta); |
+ } |
+ |
+ // Many fully transparent bmp images are intended to be opaque. Here, we |
+ // correct for this possibility. |
+ SkColor* dstPtr = (SkColor*) dst; |
+ if (transparent) { |
+ for (uint32_t y = 0; y < height; y++) { |
+ for (uint32_t x = 0; x < width; x++) { |
+ dstPtr[y * dstRowBytes + x] |= 0xFF000000; |
+ } |
+ } |
+ } |
+ |
+ // Finished decoding the entire image |
+ return kSuccess; |
+} |
+ |
+/* |
+ * |
+ * Set an RLE pixel using the color table |
+ * |
+ */ |
+void SkBmpCodec::setRLEPixel(SkColor* dst, uint32_t dstRowBytes, int height, |
+ uint32_t x, uint32_t y, uint8_t index) { |
+ if (kBottomUp_RowOrder == fRowOrder) { |
+ y = height - y - 1; |
+ } |
+ SkColor* dstRow = SkTAddOffset<SkColor>(dst, y * dstRowBytes); |
+ dstRow[x] = fColorTable.get()[index]; |
+} |
+ |
+/* |
+ * |
+ * Performs the bitmap decoding for RLE input format |
+ * RLE decoding is performed all at once, rather than a one row at a time |
+ * |
+ */ |
+SkCodec::Result SkBmpCodec::decodeRLE(const SkImageInfo& dstInfo, |
+ void* dst, uint32_t dstRowBytes) { |
+ // Set RLE flags |
+ static const uint8_t RLE_ESCAPE = 0; |
+ static const uint8_t RLE_EOL = 0; |
+ static const uint8_t RLE_EOF = 1; |
+ static const uint8_t RLE_DELTA = 2; |
+ |
+ // Set constant values |
+ const int width = dstInfo.width(); |
+ const int height = dstInfo.height(); |
+ const uint32_t pixelsPerByte = 8 / fBitsPerPixel; |
+ const uint32_t bytesPerPixel = fBitsPerPixel / 8; |
+ |
+ // Input buffer parameters |
+ uint32_t currByte = 0; |
+ SkAutoTDeleteArray<uint8_t> buffer(SkNEW_ARRAY(uint8_t, fRemainingBytes)); |
+ uint32_t totalBytes = stream()->read(buffer.get(), fRemainingBytes); |
+ if (totalBytes < fRemainingBytes) { |
+ SkDebugf("Warning: incomplete RLE file.\n"); |
+ } else if (totalBytes <= 0) { |
+ SkDebugf("Error: could not read RLE image data.\n"); |
+ return kInvalidInput; |
+ } |
+ |
+ // Destination parameters |
+ uint32_t x = 0; |
+ uint32_t y = 0; |
+ // If the code skips pixels, remaining pixels are transparent or black |
+ // TODO: Skip this if memory was already zeroed. |
+ memset(dst, 0, dstRowBytes * height); |
+ SkColor* dstPtr = (SkColor*) dst; |
+ |
+ while (true) { |
+ // Every entry takes at least two bytes |
+ if (totalBytes - currByte < 2) { |
+ SkDebugf("Warning: incomplete RLE input.\n"); |
+ return kIncompleteInput; |
+ } |
+ |
+ // Read the next two bytes. These bytes have different meanings |
scroggo
2015/03/06 18:56:13
Thanks for the comments! It makes this code a lot
|
+ // depending on their values. In the first interpretation, the first |
+ // byte is an escape flag and the second byte indicates what special |
+ // task to perform. |
+ const uint8_t flag = buffer.get()[currByte++]; |
+ const uint8_t task = buffer.get()[currByte++]; |
+ |
+ // If we have reached a row that is beyond the image size, and the RLE |
+ // code does not indicate end of file, abort and signal a warning. |
+ if (y >= height && (flag != RLE_ESCAPE || (task != RLE_EOF))) { |
+ SkDebugf("Warning: invalid RLE input.\n"); |
+ return kIncompleteInput; |
+ } |
+ |
+ // Perform decoding |
+ if (RLE_ESCAPE == flag) { |
+ switch (task) { |
+ case RLE_EOL: |
+ x = 0; |
+ y++; |
+ break; |
+ case RLE_EOF: |
+ return kSuccess; |
+ case RLE_DELTA: { |
+ // Two bytes are needed to specify delta |
+ if (totalBytes - currByte < 2) { |
+ SkDebugf("Warning: incomplete RLE input\n"); |
+ return kIncompleteInput; |
+ } |
+ // Modify x and y |
+ const uint8_t dx = buffer.get()[currByte++]; |
+ const uint8_t dy = buffer.get()[currByte++]; |
+ x += dx; |
+ y += dy; |
+ if (x > width || y > height) { |
+ SkDebugf("Warning: invalid RLE input.\n"); |
+ return kIncompleteInput; |
+ } |
+ break; |
+ } |
+ default: { |
+ // If task does not match any of the above signals, it |
+ // indicates that we have a sequence of non-RLE pixels. |
+ // Furthermore, the value of task is equal to the number |
+ // of pixels to interpret. |
+ uint8_t numPixels = task; |
+ const uint32_t unpaddedBytes = fBitsPerPixel < 16 ? |
+ (numPixels + pixelsPerByte - 1) / pixelsPerByte : |
+ numPixels * bytesPerPixel; |
+ const uint32_t paddedBytes = SkAlign2(unpaddedBytes); |
+ if (x + numPixels > width || |
+ totalBytes - currByte < paddedBytes) { |
+ SkDebugf("Warning: invalid RLE input.\n"); |
+ return kIncompleteInput; |
+ } |
+ // Set count number of pixels |
+ while (numPixels > 0) { |
+ switch(fBitsPerPixel) { |
+ case 4: { |
+ uint8_t val = buffer.get()[currByte++]; |
+ setRLEPixel(dstPtr, dstRowBytes, height, x++, y, |
+ val >> 4); |
+ numPixels--; |
+ if (numPixels != 0) { |
+ setRLEPixel(dstPtr, dstRowBytes, height, |
+ x++, y, val & 0xF); |
+ numPixels--; |
+ } |
+ break; |
+ } |
+ case 8: |
+ setRLEPixel(dstPtr, dstRowBytes, height, x++, y, |
+ buffer.get()[currByte++]); |
+ numPixels--; |
+ break; |
+ case 24: { |
+ uint8_t blue = buffer.get()[currByte++]; |
+ uint8_t green = buffer.get()[currByte++]; |
+ uint8_t red = buffer.get()[currByte++]; |
+ SkColor color = SkColorSetARGBInline( |
+ 0xFF, red, green, blue); |
+ SkColor* dstRow = SkTAddOffset<SkColor>( |
+ dstPtr, y * dstRowBytes); |
+ dstRow[x++] = color; |
+ numPixels--; |
+ } |
+ default: |
+ SkASSERT(false); |
+ return kInvalidInput; |
+ } |
+ } |
+ // Skip a byte if necessary to maintain alignment |
+ if (unpaddedBytes & 1) { |
+ currByte++; |
+ } |
+ break; |
+ } |
+ } |
+ } else { |
+ // If the first byte read is not a flag, it indicates the number of |
+ // pixels to set in RLE mode. |
+ const uint8_t numPixels = flag; |
+ const uint32_t endX = SkTMin<uint32_t>(x + numPixels, |
+ (uint32_t) width); |
+ |
+ if (24 == fBitsPerPixel) { |
+ // In RLE24, the second byte read is part of the pixel color. |
+ // There are two more required bytes to finish encoding the |
+ // color. |
+ if (totalBytes - currByte < 2) { |
+ SkDebugf("Warning: incomplete RLE input\n"); |
+ return kIncompleteInput; |
+ } |
+ |
+ // Fill the pixels up to endX with the specified color |
+ uint8_t blue = task; |
+ uint8_t green = buffer.get()[currByte++]; |
+ uint8_t red = buffer.get()[currByte++]; |
+ SkColor color = SkColorSetARGBInline(0xFF, red, green, blue); |
+ SkColor* dstRow = |
+ SkTAddOffset<SkColor>(dstPtr, y * dstRowBytes); |
+ while (x < endX) { |
+ dstRow[x++] = color; |
+ } |
+ } else { |
+ // In RLE8 or RLE4, the second byte read gives the index in the |
+ // color table to look up the pixel color. |
+ // RLE8 has one color index that gets repeated |
+ // RLE4 has two color indexes in the upper and lower 4 bits of |
+ // the bytes, which are alternated |
+ uint8_t indices[2] = { task, task }; |
+ if (4 == fBitsPerPixel) { |
+ indices[0] >>= 4; |
+ indices[1] &= 0xf; |
+ } |
+ |
+ // Set the indicated number of pixels |
+ for (int which = 0; x < endX; x++) { |
+ setRLEPixel(dstPtr, dstRowBytes, height, x, y, |
+ indices[which]); |
+ which = !which; |
+ } |
+ } |
+ } |
+ } |
+} |
+ |
+/* |
+ * |
+ * Performs the bitmap decoding for standard input format |
+ * |
+ */ |
+SkCodec::Result SkBmpCodec::decode(const SkImageInfo& dstInfo, |
+ void* dst, uint32_t dstRowBytes) { |
+ // Set constant values |
+ const int width = dstInfo.width(); |
+ const int height = dstInfo.height(); |
+ const uint32_t pixelsPerByte = 8 / fBitsPerPixel; |
+ const uint32_t bytesPerPixel = fBitsPerPixel / 8; |
+ const uint32_t unpaddedRowBytes = fBitsPerPixel < 16 ? |
+ (width + pixelsPerByte - 1) / pixelsPerByte : width * bytesPerPixel; |
+ const uint32_t paddedRowBytes = SkAlign4(unpaddedRowBytes); |
+ const uint32_t alphaMask = fBitMasks.alphaMask; |
+ |
+ // Get the destination start row and delta |
+ SkColor* dstRow; |
+ int32_t delta; |
+ if (kTopDown_RowOrder == fRowOrder) { |
+ dstRow = (SkColor*) dst; |
+ delta = dstRowBytes; |
+ } else { |
+ dstRow = (SkColor*) SkTAddOffset<void>(dst, (height - 1) * dstRowBytes); |
+ delta = -dstRowBytes; |
+ } |
+ |
+ // Get swizzler configuration |
+ SkSwizzler::SrcConfig config; |
+ switch (fBitsPerPixel) { |
+ case 1: |
+ config = SkSwizzler::kIndex1; |
+ break; |
+ case 2: |
+ config = SkSwizzler::kIndex2; |
+ break; |
+ case 4: |
+ config = SkSwizzler::kIndex4; |
+ break; |
+ case 8: |
+ config = SkSwizzler::kIndex; |
+ break; |
+ case 24: |
+ config = SkSwizzler::kBGR; |
+ break; |
+ case 32: |
+ if (alphaMask == 0) { |
+ config = SkSwizzler::kBGRX; |
+ } else { |
+ config = SkSwizzler::kBGRA; |
+ } |
+ break; |
+ default: |
+ SkASSERT(false); |
+ return kInvalidInput; |
+ } |
+ |
+ // Create swizzler |
+ SkSwizzler* swizzler = SkSwizzler::CreateSwizzler(config, fColorTable.get(), |
+ dstInfo, dstRow, dstRowBytes, false); |
+ |
+ // Allocate space for a row buffer and a source for the swizzler |
+ SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, paddedRowBytes)); |
+ |
+ // Iterate over rows of the image |
+ bool transparent = true; |
+ for (uint32_t y = 0; y < height; y++) { |
+ // Read a row of the input |
+ if (stream()->read(srcBuffer.get(), paddedRowBytes) != paddedRowBytes) { |
+ SkDebugf("Warning: incomplete input stream.\n"); |
+ return kIncompleteInput; |
+ } |
+ |
+ // Decode the row in destination format |
+ SkSwizzler::ResultAlpha r = swizzler->next(srcBuffer.get(), delta); |
+ transparent &= SkSwizzler::kTransparent_ResultAlpha == r; |
+ } |
+ |
+ // Now we adjust the output image with some additional behavior that |
+ // SkSwizzler does not support. Firstly, all bmp images that contain |
+ // alpha are masked by the alpha mask. Secondly, many fully transparent |
+ // bmp images are intended to be opaque. Here, we make those corrections. |
+ SkColor* dstPtr = (SkColor*) dst; |
+ if (alphaMask != 0) { |
+ for (uint32_t y = 0; y < height; y++) { |
+ for (uint32_t x = 0; x < width; x++) { |
+ if (transparent) { |
+ dstPtr[y * dstRowBytes + x] |= 0xFF000000; |
+ } else { |
+ dstPtr[y * dstRowBytes + x] &= alphaMask; |
+ } |
+ } |
+ } |
+ } |
+ |
+ // Finished decoding the entire image |
+ return kSuccess; |
+} |