OLD | NEW |
---|---|
(Empty) | |
1 /* | |
2 * Copyright 2015 Google Inc. | |
3 * | |
4 * Use of this source code is governed by a BSD-style license that can be | |
5 * found in the LICENSE file. | |
6 */ | |
7 | |
8 #include "SkCodec_libbmp.h" | |
9 #include "SkColorTable.h" | |
10 #include "SkEndian.h" | |
11 #include "SkStream.h" | |
12 | |
13 #include <algorithm> | |
14 | |
15 /* | |
16 * | |
17 * Get a byte from the buffer | |
18 * | |
19 */ | |
20 uint8_t get_byte(uint8_t* buffer, uint32_t i) { | |
21 return buffer[i]; | |
22 } | |
23 | |
24 /* | |
25 * | |
26 * Get a short from the buffer | |
27 * | |
28 */ | |
29 uint16_t get_short(uint8_t* buffer, uint32_t i) { | |
30 uint16_t result; | |
31 memcpy(&result, &(buffer[i]), 2); | |
32 #ifdef SK_CPU_BENDIAN | |
33 return SkEndianSwap16(result); | |
34 #else | |
35 return result; | |
36 #endif | |
37 } | |
38 | |
39 /* | |
40 * | |
41 * Get an int from the buffer | |
42 * | |
43 */ | |
44 uint32_t get_int(uint8_t* buffer, uint32_t i) { | |
45 uint32_t result; | |
46 memcpy(&result, &(buffer[i]), 4); | |
47 #ifdef SK_CPU_BENDIAN | |
48 return SkEndianSwap32(result); | |
49 #else | |
50 return result; | |
51 #endif | |
52 } | |
53 | |
54 /* | |
55 * | |
56 * Defines the version and type of the second bitmap header | |
57 * | |
58 */ | |
59 enum BitmapHeaderType { | |
60 kInfoV1_BitmapHeaderType, | |
61 kInfoV2_BitmapHeaderType, | |
62 kInfoV3_BitmapHeaderType, | |
63 kInfoV4_BitmapHeaderType, | |
64 kInfoV5_BitmapHeaderType, | |
65 kOS2V1_BitmapHeaderType, | |
66 kOS2VX_BitmapHeaderType, | |
67 kUnknown_BitmapHeaderType | |
68 }; | |
69 | |
70 /* | |
71 * | |
72 * Possible bitmap compression types | |
73 * | |
74 */ | |
75 enum BitmapCompressionMethod { | |
76 kNone_BitmapCompressionMethod = 0, | |
77 k8BitRLE_BitmapCompressionMethod = 1, | |
78 k4BitRLE_BitmapCompressionMethod = 2, | |
79 kBitMasks_BitmapCompressionMethod = 3, | |
80 kJpeg_BitmapCompressionMethod = 4, | |
81 kPng_BitmapCompressionMethod = 5, | |
82 kAlphaBitMasks_BitmapCompressionMethod = 6, | |
83 kCMYK_BitmapCompressionMethod = 11, | |
84 kCMYK8BitRLE_BitmapCompressionMethod = 12, | |
85 kCMYK4BitRLE_BitmapCompressionMethod = 13 | |
86 }; | |
87 | |
88 /* | |
89 * | |
90 * Checks the start of the stream to see if the image is a bitmap | |
91 * | |
92 */ | |
93 bool SkBmpCodec::IsBmp(SkStream* stream) { | |
94 // TODO: Support "IC", "PT", "CI", "CP", "BA" | |
95 // TODO: ICO files may contain a BMP and need to use this decoder | |
96 const char bmpSig[] = { 'B', 'M' }; | |
97 char buffer[sizeof(bmpSig)]; | |
98 return stream->read(buffer, sizeof(bmpSig)) == sizeof(bmpSig) && | |
99 !memcmp(buffer, bmpSig, sizeof(bmpSig)); | |
100 } | |
101 | |
102 /* | |
103 * | |
104 * Assumes IsBmp was called and returned true | |
105 * Creates a bitmap decoder | |
106 * Reads enough of the stream to determine the image format | |
107 * | |
108 */ | |
109 SkCodec* SkBmpCodec::NewFromStream(SkStream* stream) { | |
110 // Header size constants | |
111 static const uint32_t kBmpHeaderBytes = 14; | |
112 static const uint32_t kBmpHeaderBytesPlusFour = kBmpHeaderBytes + 4; | |
113 static const uint32_t kBmpOS2V1Bytes = 12; | |
114 static const uint32_t kBmpOS2V2Bytes = 64; | |
115 static const uint32_t kBmpInfoBaseBytes = 16; | |
116 static const uint32_t kBmpInfoV1Bytes = 40; | |
117 static const uint32_t kBmpInfoV2Bytes = 52; | |
118 static const uint32_t kBmpInfoV3Bytes = 56; | |
119 static const uint32_t kBmpInfoV4Bytes = 108; | |
120 static const uint32_t kBmpInfoV5Bytes = 124; | |
121 static const uint32_t kBmpMaskBytes = 12; | |
122 | |
123 // Read the first header and the size of the second header | |
124 SkAutoTDeleteArray<uint8_t> hBuffer( | |
125 SkNEW_ARRAY(uint8_t, kBmpHeaderBytesPlusFour)); | |
126 if (stream->read(hBuffer.get(), kBmpHeaderBytesPlusFour) != | |
127 kBmpHeaderBytesPlusFour) { | |
128 SkDebugf("Error: unable to read first bitmap header.\n"); | |
129 return NULL; | |
130 } | |
131 //uint16_t signature = get_short(hBuffer, 0); | |
132 | |
133 // The total bytes in the bmp file | |
134 const uint32_t totalBytes = get_int(hBuffer.get(), 2); | |
135 SkASSERT(totalBytes > kBmpHeaderBytes + kBmpOS2V1Bytes); | |
136 | |
137 //uint32_t reserved = get_int(hBuffer, 6); | |
138 | |
139 // The offset from the start of the file where the pixel data begins | |
140 const uint32_t offset = get_int(hBuffer.get(), 10); | |
141 SkASSERT(offset >= kBmpHeaderBytes + kBmpOS2V1Bytes); | |
142 | |
143 // The size of the second (info) header in bytes | |
144 // The size is the first field of the second header, so we have already | |
145 // read the first four infoBytes. | |
146 const uint32_t infoBytes = get_int(hBuffer.get(), 14); | |
147 const uint32_t infoBytesRemaining = infoBytes - 4; | |
148 hBuffer.free(); | |
149 | |
150 // Read the second header | |
151 SkAutoTDeleteArray<uint8_t> iBuffer( | |
152 SkNEW_ARRAY(uint8_t, infoBytesRemaining)); | |
153 if (stream->read(iBuffer.get(), infoBytesRemaining) != | |
154 infoBytesRemaining) { | |
155 SkDebugf("Error: unable to read second bitmap header.\n"); | |
156 return NULL; | |
157 } | |
158 | |
159 // The number of bits used per pixel in the pixel data | |
160 uint16_t bitsPerPixel; | |
161 | |
162 // The compression method for the pixel data | |
163 uint32_t compression = kNone_BitmapCompressionMethod; | |
164 | |
165 // Number of colors in the color table, defaults to 0 or max (see below) | |
166 uint32_t numColors = 0; | |
167 | |
168 // Bytes per color in the color table, early versions use 3, most use 4 | |
169 uint32_t bytesPerColor; | |
170 | |
171 // The image width and height | |
172 int width, height; | |
173 | |
174 // Determine image information depending on second header format | |
175 BitmapHeaderType headerType; | |
176 if (infoBytes >= kBmpInfoBaseBytes) { | |
177 // Check for the many partial versions of the OS 2 header | |
178 if ((infoBytes <= kBmpOS2V2Bytes && !(infoBytes & 3)) | |
179 || 42 == infoBytes || 46 == infoBytes) { | |
180 headerType = kOS2VX_BitmapHeaderType; | |
181 } | |
182 // Check for versions of the Windows headers | |
183 switch (infoBytes) { | |
184 case kBmpInfoV1Bytes: | |
185 headerType = kInfoV1_BitmapHeaderType; | |
186 break; | |
187 case kBmpInfoV2Bytes: | |
188 headerType = kInfoV2_BitmapHeaderType; | |
189 break; | |
190 case kBmpInfoV3Bytes: | |
191 headerType = kInfoV3_BitmapHeaderType; | |
192 break; | |
193 case kBmpInfoV4Bytes: | |
194 headerType = kInfoV4_BitmapHeaderType; | |
195 break; | |
196 case kBmpInfoV5Bytes: | |
197 headerType = kInfoV5_BitmapHeaderType; | |
198 break; | |
199 default: | |
200 // We do not signal an error here because there is the | |
201 // possibility of new or undocumented bmp header types. Most | |
202 // of the newer versions of bmp headers are similar to and | |
203 // build off of the older versions, so we may still be able to | |
204 // decode the bmp. | |
205 SkDebugf("Warning: unknown bmp header format.\n"); | |
206 headerType = kUnknown_BitmapHeaderType; | |
207 break; | |
208 } | |
209 SkASSERT(infoBytesRemaining >= 12); | |
210 width = get_int(iBuffer.get(), 0); | |
211 height = get_int(iBuffer.get(), 4); | |
212 //uint16_t planes = get_short(iBuffer, 8); | |
213 bitsPerPixel = get_short(iBuffer.get(), 10); | |
214 | |
215 // Some versions do not have this field, so we check before | |
216 // overwriting the default value. | |
217 if (infoBytesRemaining >= 16) { | |
218 compression = get_int(iBuffer.get(), 12); | |
219 } | |
220 //uint32_t imageBytes = get_int(iBuffer, 16); | |
221 //uint32_t horizontalResolution = get_int(iBuffer, 20); | |
222 //uint32_t verticalResolution = get_int(iBuffer, 24); | |
223 | |
224 // Some versions do not have this field, so we check before | |
225 // overwriting the default value. | |
226 if (infoBytesRemaining >= 32) { | |
227 numColors = get_int(iBuffer.get(), 28); | |
228 } | |
229 //uint32_t importantColors = get_int(iBuffer, infoBytes - 4, 32); | |
230 bytesPerColor = 4; | |
231 } else if (infoBytes >= kBmpOS2V1Bytes) { | |
232 // The OS2V1 is treated separately because it has a unique format | |
233 headerType = kOS2V1_BitmapHeaderType; | |
234 width = (int) get_short(iBuffer.get(), 0); | |
235 height = (int) get_short(iBuffer.get(), 2); | |
236 //uint16_t planes = get_short(iBuffer.get(), 4); | |
237 bitsPerPixel = get_short(iBuffer.get(), 6); | |
238 bytesPerColor = 3; | |
239 } else { | |
240 // There are no valid bmp headers | |
241 SkDebugf("Error: second bitmap header size is invalid.\n"); | |
242 return NULL; | |
243 } | |
244 | |
245 // Check for valid dimensions from header | |
246 static const uint32_t kBmpMaxDim = 1 << 16; | |
247 bool inverted = true; | |
248 if (height < 0) { | |
249 height = -height; | |
250 inverted = false; | |
251 } | |
252 if (width <= 0 || width > kBmpMaxDim || !height || height > kBmpMaxDim) { | |
253 // TODO: Decide if we want to support really large bmps. | |
254 SkDebugf("Error: invalid bitmap dimensions.\n"); | |
255 return NULL; | |
256 } | |
257 | |
258 // Determine the input compression format and set bit masks if necessary | |
259 uint32_t redMask = 0, greenMask = 0, blueMask = 0, alphaMask = 0; | |
260 uint32_t maskBytes = 0; | |
261 BitmapInputFormat inputFormat = kUnknown_BitmapInputFormat; | |
262 switch (compression) { | |
263 case kNone_BitmapCompressionMethod: | |
264 inputFormat = kStandard_BitmapInputFormat; | |
265 // Always respect alpha mask in V4+ | |
266 if (kInfoV4_BitmapHeaderType == headerType || | |
267 kInfoV5_BitmapHeaderType == headerType) { | |
268 SkASSERT(infoBytesRemaining > 52); | |
269 alphaMask = get_int(iBuffer.get(), 48); | |
270 } | |
271 break; | |
272 case k8BitRLE_BitmapCompressionMethod: | |
273 if (bitsPerPixel != 8) { | |
274 SkDebugf("Warning: correcting invalid bitmap format.\n"); | |
275 bitsPerPixel = 8; | |
276 } | |
277 inputFormat = k8BitRLE_BitmapInputFormat; | |
278 break; | |
279 case k4BitRLE_BitmapCompressionMethod: | |
280 if (bitsPerPixel != 4) { | |
281 SkDebugf("Warning: correcting invalid bitmap format.\n"); | |
282 bitsPerPixel = 4; | |
283 } | |
284 inputFormat = k4BitRLE_BitmapInputFormat; | |
285 break; | |
286 case kAlphaBitMasks_BitmapCompressionMethod: | |
287 case kBitMasks_BitmapCompressionMethod: | |
288 // Load the masks | |
289 inputFormat = kBitMask_BitmapInputFormat; | |
290 switch (headerType) { | |
291 case kInfoV1_BitmapHeaderType: { | |
292 // The V1 header stores the bit masks after the header | |
293 SkAutoTDeleteArray<uint8_t> mBuffer( | |
294 SkNEW_ARRAY(uint8_t, kBmpMaskBytes)); | |
295 if (stream->read(mBuffer.get(), kBmpMaskBytes) != | |
296 kBmpMaskBytes) { | |
297 SkDebugf("Error: unable to read bit masks.\n"); | |
298 return NULL; | |
299 } | |
300 maskBytes = kBmpMaskBytes; | |
301 redMask = get_int(mBuffer.get(), 0); | |
302 greenMask = get_int(mBuffer.get(), 4); | |
303 blueMask = get_int(mBuffer.get(), 8); | |
304 break; | |
305 } | |
306 case kInfoV4_BitmapHeaderType: | |
307 case kInfoV5_BitmapHeaderType: | |
308 SkASSERT(infoBytesRemaining >= 52); | |
309 alphaMask = get_int(iBuffer.get(), 48); | |
310 case kInfoV2_BitmapHeaderType: | |
311 case kInfoV3_BitmapHeaderType: | |
312 SkASSERT(infoBytesRemaining >= 48); | |
313 redMask = get_int(iBuffer.get(), 36); | |
314 greenMask = get_int(iBuffer.get(), 40); | |
315 blueMask = get_int(iBuffer.get(), 44); | |
316 break; | |
317 case kOS2VX_BitmapHeaderType: | |
318 // TODO: Decide if we intend to support this. | |
319 // It is unsupported in the previous version and | |
320 // in chromium. I have not come across a test case | |
321 // that uses this format. | |
322 SkDebugf("Error: huffman format unsupported.\n"); | |
323 return NULL; | |
324 default: | |
325 SkDebugf("Error: invalid bmp bit masks header.\n"); | |
326 return NULL; | |
327 } | |
328 break; | |
329 case kJpeg_BitmapCompressionMethod: | |
330 if (24 == bitsPerPixel) { | |
331 inputFormat = k24BitRLE_BitmapInputFormat; | |
332 break; | |
333 } | |
334 case kPng_BitmapCompressionMethod: | |
335 // TODO: Decide if we intend to support this. | |
336 // It is unsupported in the previous version and | |
337 // in chromium. I think it is used mostly for printers. | |
338 SkDebugf("Error: compression format not supported.\n"); | |
339 return NULL; | |
340 case kCMYK_BitmapCompressionMethod: | |
341 case kCMYK8BitRLE_BitmapCompressionMethod: | |
342 case kCMYK4BitRLE_BitmapCompressionMethod: | |
343 // TODO: Same as above. | |
344 SkDebugf("Error: CMYK not supported for bitmap decoding.\n"); | |
345 return NULL; | |
346 default: | |
347 SkDebugf("Error: invalid format for bitmap decoding.\n"); | |
348 return NULL; | |
349 } | |
350 iBuffer.free(); | |
351 | |
352 // Check for valid bits per pixel input | |
353 switch (bitsPerPixel) { | |
354 // In addition to more standard pixel compression formats, bmp supports | |
355 // the use of bit masks to determine pixel components. The bmp standard | |
356 // format for representing 16-bit colors is 555 (XRRRRRGGGGGBBBBB), | |
357 // which does not map well to any Skia color formats. For this reason, | |
358 // we will always enable mask mode with 16 bits per pixel. | |
359 case 16: | |
360 if (kBitMask_BitmapInputFormat != inputFormat) { | |
361 redMask = 0x7C00; | |
362 greenMask = 0x03E0; | |
363 blueMask = 0x001F; | |
364 } | |
365 case 1: | |
366 case 2: | |
367 case 4: | |
368 case 8: | |
369 case 24: | |
370 case 32: | |
371 break; | |
372 default: | |
373 SkDebugf("Error: invalid input value for bits per pixel.\n"); | |
374 return NULL; | |
375 } | |
376 | |
377 // Create mask struct | |
378 SkSwizzler::ColorMasks* masks = SkNEW(SkSwizzler::ColorMasks); | |
379 masks->redMask = redMask; | |
380 masks->greenMask = greenMask; | |
381 masks->blueMask = blueMask; | |
382 masks->alphaMask = alphaMask; | |
383 | |
384 // Process the color table | |
385 uint32_t colorBytes; | |
386 SkPMColor* colorTable = NULL; | |
387 if (bitsPerPixel < 16) { | |
388 // Verify the number of colors for the color table | |
389 const int maxColors = 1 << bitsPerPixel; | |
390 // Zero is a default for maxColors | |
391 // Also set numColors to maxColors when input is too large | |
392 if (numColors <= 0 || numColors > maxColors) { | |
393 numColors = maxColors; | |
394 } | |
395 colorTable = SkNEW_ARRAY(SkPMColor, maxColors); | |
396 | |
397 // Construct the color table | |
398 colorBytes = numColors * bytesPerColor; | |
399 SkAutoTDeleteArray<uint8_t> cBuffer( | |
400 SkNEW_ARRAY(uint8_t, colorBytes)); | |
401 if (stream->read(cBuffer.get(), colorBytes) != colorBytes) { | |
402 SkDebugf("Error: unable to read color table.\n"); | |
403 return NULL; | |
404 } | |
405 // We must respect the alpha channel for V4 and V5. However, if it is | |
406 // all zeros, we will display the image as opaque rather than | |
407 // transparent. This may require redoing some of the processing. | |
408 bool seenNonZeroAlpha = false; | |
409 uint32_t i = 0; | |
410 for (; i < numColors; i++) { | |
411 uint8_t blue = get_byte(cBuffer.get(), i*bytesPerColor); | |
412 uint8_t green = get_byte(cBuffer.get(), i*bytesPerColor + 1); | |
413 uint8_t red = get_byte(cBuffer.get(), i*bytesPerColor + 2); | |
414 uint8_t alpha = 0xFF; | |
415 if (kInfoV4_BitmapHeaderType == headerType || | |
416 kInfoV5_BitmapHeaderType == headerType) { | |
417 alpha = (alphaMask >> 24) & | |
418 get_byte(cBuffer.get(), i*bytesPerColor + 3); | |
419 if (!alpha && !seenNonZeroAlpha) { | |
420 alpha = 0xFF; | |
421 } else { | |
422 // If we see a non-zero alpha, we restart the loop | |
423 seenNonZeroAlpha = true; | |
424 i = -1; | |
425 } | |
426 } | |
427 colorTable[i] = SkPreMultiplyColor(SkColorSetARGBInline(alpha, | |
428 red, green, blue)); | |
429 } | |
430 // To avoid segmentation faults on bad pixel data, fill the end of the | |
431 // color table with black. | |
scroggo
2015/02/27 17:04:04
How did you decide on black? Maybe it's correct, b
| |
432 for (; i < maxColors; i++) { | |
433 colorTable[i] = SkPreMultiplyColor(SkColorSetARGBInline(0xFF, | |
scroggo
2015/02/27 17:04:04
FWIW, SkColorSetARGBInline(0xFF,0,0,0) can be repl
| |
434 0, 0, 0)); | |
435 } | |
436 } else { | |
437 // We will not use the color table if bitsPerPixel >= 16, but if there | |
438 // is a color table, we may need to skip the color table bytes. | |
439 colorBytes = numColors * bytesPerColor; | |
scroggo
2015/02/27 17:04:04
If bitsPerPixel >= 16, we don't do a safety check
| |
440 if (stream->skip(colorBytes) != colorBytes) { | |
441 SkDebugf("Error: Could not skip color table bytes.\n"); | |
442 return NULL; | |
443 } | |
444 } | |
445 | |
446 // Ensure that the stream now points to the start of the pixel array | |
447 uint32_t bytesRead = kBmpHeaderBytes + infoBytes + maskBytes + colorBytes; | |
448 if (stream->skip(offset - bytesRead) != offset - bytesRead) { | |
449 SkDebugf("Error: unable to skip to image data.\n"); | |
450 return NULL; | |
451 } | |
452 const uint32_t remainingBytes = totalBytes - offset; | |
453 | |
454 // Return the codec | |
455 // Use of image info for input format does not make sense given | |
456 // that the possible bitmap input formats do not match up with | |
457 // Skia color types. Instead we use ImageInfo for width and height, | |
458 // and other fields for input format information. | |
459 const SkImageInfo& imageInfo = SkImageInfo::Make(width, height, | |
460 kN32_SkColorType, kPremul_SkAlphaType); | |
461 return SkNEW_ARGS(SkBmpCodec, (imageInfo, stream, bitsPerPixel, | |
462 inputFormat, masks, colorTable, inverted, | |
463 remainingBytes)); | |
464 } | |
465 | |
466 /* | |
467 * | |
468 * Creates an instance of the decoder | |
469 * Called only by NewFromStream | |
470 * | |
471 */ | |
472 SkBmpCodec::SkBmpCodec(const SkImageInfo& info, SkStream* stream, | |
473 uint16_t bitsPerPixel, BitmapInputFormat inputFormat, | |
474 SkSwizzler::ColorMasks* masks, SkPMColor* colorTable, | |
475 bool inverted, const uint32_t remainingBytes) | |
476 : INHERITED(info, stream) | |
477 , fBitsPerPixel(bitsPerPixel) | |
478 , fInputFormat(inputFormat) | |
479 , fBitMasks(masks) | |
480 , fColorTable(colorTable) | |
481 , fInverted(inverted) | |
482 , fRemainingBytes(remainingBytes) | |
483 {} | |
484 | |
485 /* | |
486 * | |
487 * Initiates the bitmap decode | |
488 * | |
489 */ | |
490 SkCodec::Result SkBmpCodec::onGetPixels(const SkImageInfo& dstInfo, | |
491 void* dst, size_t dstRowBytes, | |
492 SkPMColor*, int*) { | |
493 // This version of the decoder does not support scaling | |
494 if (dstInfo.dimensions() != getOriginalInfo().dimensions()) { | |
495 SkDebugf("Error: scaling not supported.\n"); | |
496 return kInvalidScale; | |
497 } | |
498 | |
499 switch (fInputFormat) { | |
500 case k4BitRLE_BitmapInputFormat: | |
501 case k8BitRLE_BitmapInputFormat: | |
502 case k24BitRLE_BitmapInputFormat: | |
503 return decodeRLE(dstInfo, dst, dstRowBytes); | |
504 case kBitMask_BitmapInputFormat: | |
505 case kStandard_BitmapInputFormat: { | |
scroggo
2015/02/27 17:04:04
Why are the braces necessary here?
| |
506 return decode(dstInfo, dst, dstRowBytes); | |
507 } | |
508 default: | |
509 SkDebugf("Error: unknown bitmap input format.\n"); | |
510 return kInvalidInput; | |
511 } | |
512 } | |
513 | |
514 /* | |
515 * | |
516 * Performs the bitmap decoding for standard and bit masks input format | |
517 * | |
518 */ | |
519 SkCodec::Result SkBmpCodec::decode(const SkImageInfo& dstInfo, | |
520 void* dst, uint32_t dstRowBytes) { | |
521 // Set constant values | |
522 const int width = dstInfo.width(); | |
523 const int height = dstInfo.height(); | |
524 const uint32_t pixelsPerByte = 8 / fBitsPerPixel; | |
525 const uint32_t bytesPerPixel = fBitsPerPixel / 8; | |
526 const uint32_t unpaddedRowBytes = fBitsPerPixel < 16 ? | |
527 (width + pixelsPerByte - 1) / pixelsPerByte : width * bytesPerPixel; | |
528 const uint32_t paddedRowBytes = (unpaddedRowBytes + 3) & (~3); | |
529 const uint32_t alphaMask = fBitMasks.get()->alphaMask; | |
530 | |
531 // Get swizzler configuration | |
532 SkSwizzler::SrcConfig config; | |
533 switch (fBitsPerPixel) { | |
534 case 1: | |
535 config = SkSwizzler::kIndex1; | |
536 break; | |
537 case 2: | |
538 config = SkSwizzler::kIndex2; | |
539 break; | |
540 case 4: | |
541 config = SkSwizzler::kIndex4; | |
542 break; | |
543 case 8: | |
544 config = SkSwizzler::kIndex; | |
545 break; | |
546 case 16: | |
547 config = SkSwizzler::kMask16; | |
548 break; | |
549 case 24: | |
550 if (kBitMask_BitmapInputFormat == fInputFormat) { | |
551 config = SkSwizzler::kMask24; | |
552 } else { | |
553 config = SkSwizzler::kBGR; | |
554 } | |
555 break; | |
556 case 32: | |
557 if (kBitMask_BitmapInputFormat == fInputFormat) { | |
558 config = SkSwizzler::kMask32; | |
559 } else if (!alphaMask) { | |
560 config = SkSwizzler::kBGRX; | |
561 } else { | |
562 config = SkSwizzler::kBGRA; | |
563 } | |
564 break; | |
565 default: | |
566 SkDebugf("Error: default case should be unreachable.\n"); | |
567 return kInvalidInput; | |
568 } | |
569 | |
570 // If zeroAlpha is kNormal, it indicates that the image will be | |
571 // considered as encoded. If kTransparentAsOpaque, we will respect the | |
572 // value of the alpha channel if it is nonzero for any of the pixels. | |
573 // However, if it is always zero, we will consider the image opaque instead | |
574 // of transparent. This may require redoing some of the decoding. | |
575 SkSwizzler::ZeroAlpha zeroAlpha = SkSwizzler::kNormal; | |
576 if (alphaMask) { | |
577 zeroAlpha = SkSwizzler::kTransparentAsOpaque; | |
578 } | |
579 | |
580 // Create swizzler | |
581 SkSwizzler* swizzler = SkSwizzler::CreateSwizzler(config, fColorTable.get(), | |
582 dstInfo, dst, dstRowBytes, false, fBitMasks.get(), zeroAlpha, | |
583 fInverted ? SkSwizzler::kBottomUp : SkSwizzler::kTopDown); | |
584 | |
585 // Allocate space for a row buffer and a source for the swizzler | |
586 SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, paddedRowBytes)); | |
587 | |
588 // Iterate over rows of the image | |
589 for (uint32_t y = 0; y < height; y++) { | |
590 // Read a row of the input | |
591 if (stream()->read(srcBuffer.get(), paddedRowBytes) != paddedRowBytes) { | |
592 return kIncompleteInput; | |
593 } | |
594 | |
595 // Decode the row in destination format | |
596 swizzler->next(srcBuffer.get()); | |
597 } | |
598 | |
599 // Finished decoding the entire image | |
600 return kSuccess; | |
601 } | |
602 | |
603 /* | |
604 * | |
605 * Set an RLE pixel using the color table | |
606 * | |
607 */ | |
608 void SkBmpCodec::setPixel(SkPMColor* dst, uint32_t dstRowBytes, int height, | |
609 uint32_t x, uint32_t y, uint8_t index) { | |
610 if (fInverted) { | |
611 y = height - y - 1; | |
612 } | |
613 SkPMColor* dstRow = SkTAddOffset<SkPMColor>(dst, y * dstRowBytes); | |
614 dstRow[x] = fColorTable.get()[index]; | |
615 return; | |
616 } | |
617 | |
618 /* | |
619 * | |
620 * Performs the bitmap decoding for RLE input format | |
621 * RLE decoding is performed all at once, rather than a one row at a time | |
622 * | |
623 */ | |
624 SkCodec::Result SkBmpCodec::decodeRLE(const SkImageInfo& dstInfo, | |
625 void* dst, uint32_t dstRowBytes) { | |
626 // Set RLE flags | |
627 static const uint8_t RLE_ESCAPE = 0; | |
628 static const uint8_t RLE_EOL = 0; | |
629 static const uint8_t RLE_EOF = 1; | |
630 static const uint8_t RLE_DELTA = 2; | |
631 | |
632 // Set constant values | |
633 const int width = dstInfo.width(); | |
634 const int height = dstInfo.height(); | |
635 const uint32_t pixelsPerByte = 8 / fBitsPerPixel; | |
636 const uint32_t bytesPerPixel = fBitsPerPixel / 8; | |
637 | |
638 // Input buffer parameters | |
639 uint32_t i = 0; | |
640 SkAutoTDeleteArray<uint8_t> buffer(SkNEW_ARRAY(uint8_t, fRemainingBytes)); | |
641 uint32_t totalBytes = stream()->read(buffer.get(), fRemainingBytes); | |
642 if (totalBytes < fRemainingBytes) { | |
643 SkDebugf("Warning: incomplete RLE file.\n"); | |
644 } else if (totalBytes <= 0) { | |
645 SkDebugf("Error: could not read RLE image data.\n"); | |
646 return kInvalidInput; | |
647 } | |
648 | |
649 // Destination parameters | |
650 uint32_t x = 0; | |
651 uint32_t y = 0; | |
652 // If the code hits EOL or EOF early, remaining pixels are transparent | |
653 memset(dst, 0, dstRowBytes * height); | |
654 SkPMColor* dstPtr = (SkPMColor*) dst; | |
655 | |
656 while (true) { | |
657 // Every entry takes at least two bytes | |
658 if (totalBytes - i < 2) { | |
659 SkDebugf("Error: incomplete RLE input.\n"); | |
660 return kIncompleteInput; | |
661 } | |
662 | |
663 // Read the two bytes and verify we have not reached end of image | |
664 const uint8_t count = buffer.get()[i++]; | |
665 const uint8_t code = buffer.get()[i++]; | |
666 if ((count || (code != RLE_EOF)) && y > height) { | |
667 SkDebugf("Error: invalid RLE input.\n"); | |
668 return kInvalidInput; | |
669 } | |
670 | |
671 // Perform decoding | |
672 if (RLE_ESCAPE == count) { | |
673 switch (code) { | |
674 case RLE_EOL: | |
675 x = 0; | |
676 y++; | |
677 break; | |
678 case RLE_EOF: | |
679 return kSuccess; | |
680 case RLE_DELTA: { | |
681 // Two bytes are needed to specify delta | |
682 if (totalBytes - i < 2) { | |
683 SkDebugf("Error: incomplete RLE input\n"); | |
684 return kIncompleteInput; | |
685 } | |
686 // Verify that we are not past the end of row or image | |
687 const uint8_t dx = buffer.get()[i++]; | |
688 const uint8_t dy = buffer.get()[i++]; | |
689 if (x + dx > width || y + dy > height) { | |
690 SkDebugf("Error: invalid RLE input.\n"); | |
691 return kInvalidInput; | |
692 } | |
693 // Move to new location | |
694 x += dx; | |
695 y += dy; | |
696 break; | |
697 } | |
698 default: { // Absolute mode | |
699 // Check that we have enough bytes and that there are | |
700 // enough pixels remaining in the row | |
701 const uint32_t unpaddedBytes = fBitsPerPixel < 16 ? | |
702 (code + pixelsPerByte - 1) / pixelsPerByte : | |
703 code * bytesPerPixel; | |
704 const uint32_t paddedBytes = | |
705 (unpaddedBytes + 1) & (~1); | |
706 if (x + code > width || totalBytes - i < paddedBytes) { | |
707 SkDebugf("Error: invalid RLE input.\n"); | |
708 return kInvalidInput; | |
709 } | |
710 // Use the color table to set the coded number of pixels | |
711 uint8_t num = code; | |
712 while (num > 0) { | |
713 switch(fBitsPerPixel) { | |
714 case 4: { | |
715 uint8_t val = buffer.get()[i++]; | |
716 setPixel(dstPtr, dstRowBytes, height, x++, y, | |
717 val >> 4); | |
718 num--; | |
719 if (num) { | |
720 setPixel(dstPtr, dstRowBytes, height, | |
721 x++, y, val & 0xF); | |
722 num--; | |
723 } | |
724 break; | |
725 } | |
726 case 8: | |
727 setPixel(dstPtr, dstRowBytes, height, x++, y, | |
728 buffer.get()[i++]); | |
729 num--; | |
730 break; | |
731 case 24: { | |
732 uint8_t blue = buffer.get()[i++]; | |
733 uint8_t green = buffer.get()[i++]; | |
734 uint8_t red = buffer.get()[i++]; | |
735 SkPMColor color = SkPreMultiplyColor( | |
736 SkColorSetARGBInline(0xFF, red, green, | |
737 blue)); | |
738 SkPMColor* dstRow = SkTAddOffset<SkPMColor>( | |
739 dstPtr, y * dstRowBytes); | |
740 dstRow[x++] = color; | |
741 num--; | |
742 } | |
743 default: | |
744 SkDebugf("Error: invalid RLE bpp.\n"); | |
745 return kInvalidInput; | |
746 } | |
747 } | |
748 // Skip a byte if necessary to maintain alignment | |
749 if (unpaddedBytes & 1) { | |
750 i++; | |
751 } | |
752 break; | |
753 } | |
754 } | |
755 } else { // Encoded mode | |
756 // Ensure we do not move past the end of the row | |
757 const int endX = std::min(x + count, (uint32_t) width); | |
758 | |
759 if (k24BitRLE_BitmapInputFormat == fInputFormat) { | |
760 // Check that there is enough data | |
761 if (totalBytes - i < 2) { | |
762 SkDebugf("Error: incomplete RLE input\n"); | |
763 return kIncompleteInput; | |
764 } | |
765 | |
766 // Fill the pixels up to endX with the specified color | |
767 uint8_t blue = code; | |
768 uint8_t green = buffer.get()[i++]; | |
769 uint8_t red = buffer.get()[i++]; | |
770 SkPMColor color = SkPreMultiplyColor( | |
771 SkColorSetARGBInline(0xFF, red, green, blue)); | |
scroggo
2015/02/27 17:04:04
No need to use SkColorSet + SkPremultiply. This ca
| |
772 SkPMColor* dstRow = | |
773 SkTAddOffset<SkPMColor>(dstPtr, y * dstRowBytes); | |
774 while (x < endX) { | |
775 dstRow[x++] = color; | |
776 } | |
777 } else { | |
778 // RLE8 has one color index that gets repeated | |
779 // RLE4 has two color indexes in the upper and lower 4 bits of | |
780 // the bytes, which are alternated | |
781 uint8_t indexes[2] = { code, code }; | |
782 if (4 == fBitsPerPixel) { | |
783 indexes[0] >>= 4; | |
784 indexes[1] &= 0xf; | |
785 } | |
786 | |
787 // Set the indicated number of pixels | |
788 for (int which = 0; x < endX; x++) { | |
789 setPixel(dstPtr, dstRowBytes, height, x, y, indexes[which]); | |
790 which = !which; | |
791 } | |
792 } | |
793 } | |
794 } | |
795 } | |
OLD | NEW |