OLD | NEW |
---|---|
(Empty) | |
1 /* | |
2 * Copyright 2015 Google Inc. | |
3 * | |
4 * Use of this source code is governed by a BSD-style license that can be | |
5 * found in the LICENSE file. | |
6 */ | |
7 | |
8 #include "SkCodec_libbmp.h" | |
9 #include "SkCodecPriv.h" | |
10 #include "SkColorPriv.h" | |
11 #include "SkStream.h" | |
12 | |
13 /* | |
14 * | |
15 * Checks if the conversion between the input image and the requested output | |
16 * image has been implemented | |
17 * | |
18 */ | |
19 static bool conversion_possible(const SkImageInfo& dst, | |
20 const SkImageInfo& src) { | |
21 // All of the swizzles convert to kN32 | |
22 // TODO: Update this when more swizzles are supported | |
23 if (kN32_SkColorType != dst.colorType()) { | |
24 return false; | |
25 } | |
26 // Support the swizzle if the requested alpha type is the same as our guess | |
27 // for the input alpha type | |
28 if (src.alphaType() == dst.alphaType()) { | |
29 return true; | |
30 } | |
31 // Also support requests for premul in the unpremul case, despite the fact | |
32 // that all of the swizzles currently create an unpremul image | |
33 // TODO: Update the swizzles so this makes more sense | |
34 return premul_and_unpremul(dst.alphaType(), src.alphaType()) | |
35 || premul_and_unpremul(dst.alphaType(), src.alphaType()); | |
36 } | |
37 | |
38 /* | |
39 * | |
40 * Defines the version and type of the second bitmap header | |
41 * | |
42 */ | |
43 enum BitmapHeaderType { | |
44 kInfoV1_BitmapHeaderType, | |
45 kInfoV2_BitmapHeaderType, | |
46 kInfoV3_BitmapHeaderType, | |
47 kInfoV4_BitmapHeaderType, | |
48 kInfoV5_BitmapHeaderType, | |
49 kOS2V1_BitmapHeaderType, | |
50 kOS2VX_BitmapHeaderType, | |
51 kUnknown_BitmapHeaderType | |
52 }; | |
53 | |
54 /* | |
55 * | |
56 * Possible bitmap compression types | |
57 * | |
58 */ | |
59 enum BitmapCompressionMethod { | |
60 kNone_BitmapCompressionMethod = 0, | |
61 k8BitRLE_BitmapCompressionMethod = 1, | |
62 k4BitRLE_BitmapCompressionMethod = 2, | |
63 kBitMasks_BitmapCompressionMethod = 3, | |
64 kJpeg_BitmapCompressionMethod = 4, | |
65 kPng_BitmapCompressionMethod = 5, | |
66 kAlphaBitMasks_BitmapCompressionMethod = 6, | |
67 kCMYK_BitmapCompressionMethod = 11, | |
68 kCMYK8BitRLE_BitmapCompressionMethod = 12, | |
69 kCMYK4BitRLE_BitmapCompressionMethod = 13 | |
70 }; | |
71 | |
72 /* | |
73 * | |
74 * Checks the start of the stream to see if the image is a bitmap | |
75 * | |
76 */ | |
77 bool SkBmpCodec::IsBmp(SkStream* stream) { | |
78 // TODO: Support "IC", "PT", "CI", "CP", "BA" | |
79 // TODO: ICO files may contain a BMP and need to use this decoder | |
80 const char bmpSig[] = { 'B', 'M' }; | |
81 char buffer[sizeof(bmpSig)]; | |
82 return stream->read(buffer, sizeof(bmpSig)) == sizeof(bmpSig) && | |
83 !memcmp(buffer, bmpSig, sizeof(bmpSig)); | |
84 } | |
85 | |
86 /* | |
87 * | |
88 * Assumes IsBmp was called and returned true | |
89 * Creates a bitmap decoder | |
90 * Reads enough of the stream to determine the image format | |
91 * | |
92 */ | |
93 SkCodec* SkBmpCodec::NewFromStream(SkStream* stream) { | |
94 // Header size constants | |
95 static const uint32_t kBmpHeaderBytes = 14; | |
96 static const uint32_t kBmpHeaderBytesPlusFour = kBmpHeaderBytes + 4; | |
97 static const uint32_t kBmpOS2V1Bytes = 12; | |
98 static const uint32_t kBmpOS2V2Bytes = 64; | |
99 static const uint32_t kBmpInfoBaseBytes = 16; | |
100 static const uint32_t kBmpInfoV1Bytes = 40; | |
101 static const uint32_t kBmpInfoV2Bytes = 52; | |
102 static const uint32_t kBmpInfoV3Bytes = 56; | |
103 static const uint32_t kBmpInfoV4Bytes = 108; | |
104 static const uint32_t kBmpInfoV5Bytes = 124; | |
105 static const uint32_t kBmpMaskBytes = 12; | |
106 | |
107 // Read the first header and the size of the second header | |
108 SkAutoTDeleteArray<uint8_t> hBuffer( | |
109 SkNEW_ARRAY(uint8_t, kBmpHeaderBytesPlusFour)); | |
110 if (stream->read(hBuffer.get(), kBmpHeaderBytesPlusFour) != | |
111 kBmpHeaderBytesPlusFour) { | |
112 SkDebugf("Error: unable to read first bitmap header.\n"); | |
113 return NULL; | |
114 } | |
115 | |
116 // The total bytes in the bmp file | |
117 // We only need to use this value for RLE decoding, so we will only check | |
118 // that it is valid in the RLE case. | |
119 const uint32_t totalBytes = get_int(hBuffer.get(), 2); | |
120 | |
121 // The offset from the start of the file where the pixel data begins | |
122 const uint32_t offset = get_int(hBuffer.get(), 10); | |
123 if (offset < kBmpHeaderBytes + kBmpOS2V1Bytes) { | |
124 SkDebugf("Error: invalid starting location for pixel data\n"); | |
125 return NULL; | |
126 } | |
127 | |
128 // The size of the second (info) header in bytes | |
129 // The size is the first field of the second header, so we have already | |
130 // read the first four infoBytes. | |
131 const uint32_t infoBytes = get_int(hBuffer.get(), 14); | |
132 if (infoBytes < kBmpOS2V1Bytes) { | |
133 SkDebugf("Error: invalid second header size.\n"); | |
134 return NULL; | |
135 } | |
136 const uint32_t infoBytesRemaining = infoBytes - 4; | |
137 hBuffer.free(); | |
138 | |
139 // Read the second header | |
140 SkAutoTDeleteArray<uint8_t> iBuffer( | |
141 SkNEW_ARRAY(uint8_t, infoBytesRemaining)); | |
142 if (stream->read(iBuffer.get(), infoBytesRemaining) != infoBytesRemaining) { | |
143 SkDebugf("Error: unable to read second bitmap header.\n"); | |
144 return NULL; | |
145 } | |
146 | |
147 // The number of bits used per pixel in the pixel data | |
148 uint16_t bitsPerPixel; | |
149 | |
150 // The compression method for the pixel data | |
151 uint32_t compression = kNone_BitmapCompressionMethod; | |
152 | |
153 // Number of colors in the color table, defaults to 0 or max (see below) | |
154 uint32_t numColors = 0; | |
155 | |
156 // Bytes per color in the color table, early versions use 3, most use 4 | |
157 uint32_t bytesPerColor; | |
158 | |
159 // The image width and height | |
160 int width, height; | |
161 | |
162 // Determine image information depending on second header format | |
163 BitmapHeaderType headerType; | |
164 if (infoBytes >= kBmpInfoBaseBytes) { | |
165 // Check the version of the header | |
166 switch (infoBytes) { | |
167 case kBmpInfoV1Bytes: | |
168 headerType = kInfoV1_BitmapHeaderType; | |
169 break; | |
170 case kBmpInfoV2Bytes: | |
171 headerType = kInfoV2_BitmapHeaderType; | |
172 break; | |
173 case kBmpInfoV3Bytes: | |
174 headerType = kInfoV3_BitmapHeaderType; | |
175 break; | |
176 case kBmpInfoV4Bytes: | |
177 headerType = kInfoV4_BitmapHeaderType; | |
178 break; | |
179 case kBmpInfoV5Bytes: | |
180 headerType = kInfoV5_BitmapHeaderType; | |
181 break; | |
182 case 16: | |
183 case 20: | |
184 case 24: | |
185 case 28: | |
186 case 32: | |
187 case 36: | |
188 case 42: | |
189 case 46: | |
190 case 48: | |
191 case 60: | |
192 case kBmpOS2V2Bytes: | |
193 headerType = kOS2VX_BitmapHeaderType; | |
194 break; | |
195 default: | |
196 // We do not signal an error here because there is the | |
197 // possibility of new or undocumented bmp header types. Most | |
198 // of the newer versions of bmp headers are similar to and | |
199 // build off of the older versions, so we may still be able to | |
200 // decode the bmp. | |
201 SkDebugf("Warning: unknown bmp header format.\n"); | |
202 headerType = kUnknown_BitmapHeaderType; | |
203 break; | |
204 } | |
205 // We check the size of the header before entering the if statement. | |
206 // We should not reach this point unless the size is large enough for | |
207 // these required fields. | |
208 SkASSERT(infoBytesRemaining >= 12); | |
209 width = get_int(iBuffer.get(), 0); | |
210 height = get_int(iBuffer.get(), 4); | |
211 bitsPerPixel = get_short(iBuffer.get(), 10); | |
212 | |
213 // Some versions do not have these fields, so we check before | |
214 // overwriting the default value. | |
215 if (infoBytesRemaining >= 16) { | |
216 compression = get_int(iBuffer.get(), 12); | |
217 if (infoBytesRemaining >= 32) { | |
218 numColors = get_int(iBuffer.get(), 28); | |
219 } | |
220 } | |
221 | |
222 // All of the headers that reach this point, store color table entries | |
223 // using 4 bytes per pixel. | |
224 bytesPerColor = 4; | |
225 } else if (infoBytes >= kBmpOS2V1Bytes) { | |
226 // The OS2V1 is treated separately because it has a unique format | |
227 headerType = kOS2V1_BitmapHeaderType; | |
228 width = (int) get_short(iBuffer.get(), 0); | |
229 height = (int) get_short(iBuffer.get(), 2); | |
230 bitsPerPixel = get_short(iBuffer.get(), 6); | |
231 bytesPerColor = 3; | |
232 } else { | |
233 // There are no valid bmp headers | |
234 SkDebugf("Error: second bitmap header size is invalid.\n"); | |
235 return NULL; | |
236 } | |
237 | |
238 // Check for valid dimensions from header | |
239 RowOrder rowOrder = kBottomUp_RowOrder; | |
240 if (height < 0) { | |
241 height = -height; | |
242 rowOrder = kTopDown_RowOrder; | |
243 } | |
244 static const int kBmpMaxDim = 1 << 16; | |
245 if (width < 0 || width >= kBmpMaxDim || height >= kBmpMaxDim) { | |
246 // TODO: Decide if we want to support really large bmps. | |
247 SkDebugf("Error: invalid bitmap dimensions.\n"); | |
248 return NULL; | |
249 } | |
250 | |
251 // Create mask struct | |
252 SkMasks::InputMasks inputMasks; | |
253 memset(&inputMasks, 0, 4*sizeof(uint32_t)); | |
254 | |
255 // Determine the input compression format and set bit masks if necessary | |
256 uint32_t maskBytes = 0; | |
257 BitmapInputFormat inputFormat = kUnknown_BitmapInputFormat; | |
258 switch (compression) { | |
259 case kNone_BitmapCompressionMethod: | |
260 inputFormat = kStandard_BitmapInputFormat; | |
261 break; | |
262 case k8BitRLE_BitmapCompressionMethod: | |
263 if (bitsPerPixel != 8) { | |
264 SkDebugf("Warning: correcting invalid bitmap format.\n"); | |
265 bitsPerPixel = 8; | |
266 } | |
267 inputFormat = kRLE_BitmapInputFormat; | |
268 break; | |
269 case k4BitRLE_BitmapCompressionMethod: | |
270 if (bitsPerPixel != 4) { | |
271 SkDebugf("Warning: correcting invalid bitmap format.\n"); | |
272 bitsPerPixel = 4; | |
273 } | |
274 inputFormat = kRLE_BitmapInputFormat; | |
275 break; | |
276 case kAlphaBitMasks_BitmapCompressionMethod: | |
277 case kBitMasks_BitmapCompressionMethod: | |
278 // Load the masks | |
279 inputFormat = kBitMask_BitmapInputFormat; | |
280 switch (headerType) { | |
281 case kInfoV1_BitmapHeaderType: { | |
282 // The V1 header stores the bit masks after the header | |
283 SkAutoTDeleteArray<uint8_t> mBuffer( | |
284 SkNEW_ARRAY(uint8_t, kBmpMaskBytes)); | |
285 if (stream->read(mBuffer.get(), kBmpMaskBytes) != | |
286 kBmpMaskBytes) { | |
287 SkDebugf("Error: unable to read bit inputMasks.\n"); | |
288 return NULL; | |
289 } | |
290 maskBytes = kBmpMaskBytes; | |
291 inputMasks.red = get_int(mBuffer.get(), 0); | |
292 inputMasks.green = get_int(mBuffer.get(), 4); | |
293 inputMasks.blue = get_int(mBuffer.get(), 8); | |
294 break; | |
295 } | |
296 case kInfoV2_BitmapHeaderType: | |
297 case kInfoV3_BitmapHeaderType: | |
298 case kInfoV4_BitmapHeaderType: | |
299 case kInfoV5_BitmapHeaderType: | |
300 // Header types are matched based on size. If the header | |
301 // is V2+, we are guaranteed to be able to read at least | |
302 // this size. | |
303 SkASSERT(infoBytesRemaining >= 48); | |
304 inputMasks.red = get_int(iBuffer.get(), 36); | |
305 inputMasks.green = get_int(iBuffer.get(), 40); | |
306 inputMasks.blue = get_int(iBuffer.get(), 44); | |
307 break; | |
308 case kOS2VX_BitmapHeaderType: | |
309 // TODO: Decide if we intend to support this. | |
310 // It is unsupported in the previous version and | |
311 // in chromium. I have not come across a test case | |
312 // that uses this format. | |
313 SkDebugf("Error: huffman format unsupported.\n"); | |
314 return NULL; | |
315 default: | |
316 SkDebugf("Error: invalid bmp bit masks header.\n"); | |
317 return NULL; | |
318 } | |
319 break; | |
320 case kJpeg_BitmapCompressionMethod: | |
321 if (24 == bitsPerPixel) { | |
322 inputFormat = kRLE_BitmapInputFormat; | |
323 break; | |
324 } | |
325 // Fall through | |
326 case kPng_BitmapCompressionMethod: | |
327 // TODO: Decide if we intend to support this. | |
328 // It is unsupported in the previous version and | |
329 // in chromium. I think it is used mostly for printers. | |
330 SkDebugf("Error: compression format not supported.\n"); | |
331 return NULL; | |
332 case kCMYK_BitmapCompressionMethod: | |
333 case kCMYK8BitRLE_BitmapCompressionMethod: | |
334 case kCMYK4BitRLE_BitmapCompressionMethod: | |
335 // TODO: Same as above. | |
336 SkDebugf("Error: CMYK not supported for bitmap decoding.\n"); | |
337 return NULL; | |
338 default: | |
339 SkDebugf("Error: invalid format for bitmap decoding.\n"); | |
340 return NULL; | |
341 } | |
342 | |
343 // Most versions of bmps should be rendered as opaque. Either they do | |
344 // not have an alpha channel, or they expect the alpha channel to be | |
345 // ignored. V4+ bmp files introduce an alpha mask and allow the creator | |
346 // of the image to use the alpha channels. However, many of these images | |
347 // leave the alpha channel blank and expect to be rendered as opaque. For | |
348 // this reason, we set the alpha type to kUnknown for V4+ bmps and figure | |
349 // out the alpha type during the decode. | |
350 SkAlphaType alphaType = kOpaque_SkAlphaType; | |
351 if (kInfoV4_BitmapHeaderType == headerType || | |
352 kInfoV5_BitmapHeaderType == headerType) { | |
353 // Header types are matched based on size. If the header is | |
354 // V4+, we are guaranteed to be able to read at least this size. | |
355 SkASSERT(infoBytesRemaining > 52); | |
356 inputMasks.alpha = get_int(iBuffer.get(), 48); | |
357 if (inputMasks.alpha != 0) { | |
358 alphaType = kUnpremul_SkAlphaType; | |
359 } | |
360 } | |
361 iBuffer.free(); | |
362 | |
363 // Check for valid bits per pixel input | |
364 switch (bitsPerPixel) { | |
365 // In addition to more standard pixel compression formats, bmp supports | |
366 // the use of bit masks to determine pixel components. The standard | |
367 // format for representing 16-bit colors is 555 (XRRRRRGGGGGBBBBB), | |
368 // which does not map well to any Skia color formats. For this reason, | |
369 // we will always enable mask mode with 16 bits per pixel. | |
370 case 16: | |
371 if (kBitMask_BitmapInputFormat != inputFormat) { | |
372 inputMasks.red = 0x7C00; | |
373 inputMasks.green = 0x03E0; | |
374 inputMasks.blue = 0x001F; | |
375 inputFormat = kBitMask_BitmapInputFormat; | |
376 } | |
377 break; | |
378 case 1: | |
379 case 2: | |
380 case 4: | |
381 case 8: | |
382 case 24: | |
383 case 32: | |
384 break; | |
385 default: | |
386 SkDebugf("Error: invalid input value for bits per pixel.\n"); | |
387 return NULL; | |
388 } | |
389 | |
390 // Check that input bit masks are valid and create the masks object | |
391 SkAutoTDelete<SkMasks> | |
392 masks(SkMasks::CreateMasks(inputMasks, bitsPerPixel)); | |
393 if (NULL == masks) { | |
394 SkDebugf("Error: invalid input masks.\n"); | |
395 return NULL; | |
396 } | |
397 | |
398 // Process the color table | |
399 uint32_t colorBytes = 0; | |
400 SkPMColor* colorTable = NULL; | |
401 if (bitsPerPixel < 16) { | |
402 // Verify the number of colors for the color table | |
403 const uint32_t maxColors = 1 << bitsPerPixel; | |
404 // Zero is a default for maxColors | |
405 // Also set numColors to maxColors when input is too large | |
406 if (numColors <= 0 || numColors > maxColors) { | |
407 numColors = maxColors; | |
408 } | |
409 colorTable = SkNEW_ARRAY(SkPMColor, maxColors); | |
410 | |
411 // Construct the color table | |
412 colorBytes = numColors * bytesPerColor; | |
413 SkAutoTDeleteArray<uint8_t> cBuffer(SkNEW_ARRAY(uint8_t, colorBytes)); | |
414 if (stream->read(cBuffer.get(), colorBytes) != colorBytes) { | |
415 SkDebugf("Error: unable to read color table.\n"); | |
416 return NULL; | |
417 } | |
418 | |
419 // Fill in the color table (colors are stored unpremultiplied) | |
420 uint32_t i = 0; | |
421 for (; i < numColors; i++) { | |
422 uint8_t blue = get_byte(cBuffer.get(), i*bytesPerColor); | |
423 uint8_t green = get_byte(cBuffer.get(), i*bytesPerColor + 1); | |
424 uint8_t red = get_byte(cBuffer.get(), i*bytesPerColor + 2); | |
425 uint8_t alpha = 0xFF; | |
426 if (kOpaque_SkAlphaType != alphaType) { | |
427 alpha = (inputMasks.alpha >> 24) & | |
428 get_byte(cBuffer.get(), i*bytesPerColor + 3); | |
429 } | |
430 // Store the unpremultiplied color | |
431 colorTable[i] = SkPackARGB32NoCheck(alpha, red, green, blue); | |
432 } | |
433 | |
434 // To avoid segmentation faults on bad pixel data, fill the end of the | |
435 // color table with black. This is the same the behavior as the | |
436 // chromium decoder. | |
437 for (; i < maxColors; i++) { | |
438 colorTable[i] = SkPackARGB32NoCheck(0xFF, 0, 0, 0); | |
439 } | |
440 } | |
441 | |
442 // Ensure that the stream now points to the start of the pixel array | |
443 uint32_t bytesRead = kBmpHeaderBytes + infoBytes + maskBytes + colorBytes; | |
444 | |
445 // Check that we have not read past the pixel array offset | |
446 if(bytesRead > offset) { | |
447 // This may occur on OS 2.1 and other old versions where the color | |
448 // table defaults to max size, and the bmp tries to use a smaller color | |
449 // table. This is invalid, and our decision is to indicate an error, | |
450 // rather than try to guess the intended size of the color table and | |
451 // rewind the stream to display the image. | |
452 SkDebugf("Error: pixel data offset less than header size.\n"); | |
453 return NULL; | |
454 } | |
455 | |
456 // Skip to the start of the pixel array | |
457 if (stream->skip(offset - bytesRead) != offset - bytesRead) { | |
458 SkDebugf("Error: unable to skip to image data.\n"); | |
459 return NULL; | |
460 } | |
461 | |
462 // Remaining bytes is only used for RLE | |
463 const int remainingBytes = totalBytes - offset; | |
464 if (remainingBytes <= 0 && kRLE_BitmapInputFormat == inputFormat) { | |
465 SkDebugf("Error: RLE requires valid input size.\n"); | |
466 return NULL; | |
467 } | |
468 | |
469 // Return the codec | |
470 // We will use ImageInfo to store width, height, and alpha type. We will | |
471 // choose kN32_SkColorType as the input color type because that is the | |
472 // expected choice for a destination color type. In reality, the input | |
473 // color type has many possible formats. | |
474 const SkImageInfo& imageInfo = SkImageInfo::Make(width, height, | |
475 kN32_SkColorType, alphaType); | |
476 return SkNEW_ARGS(SkBmpCodec, (imageInfo, stream, bitsPerPixel, | |
477 inputFormat, masks.detach(), colorTable, | |
478 rowOrder, remainingBytes)); | |
479 } | |
480 | |
481 /* | |
482 * | |
483 * Creates an instance of the decoder | |
484 * Called only by NewFromStream | |
485 * | |
486 */ | |
487 SkBmpCodec::SkBmpCodec(const SkImageInfo& info, SkStream* stream, | |
488 uint16_t bitsPerPixel, BitmapInputFormat inputFormat, | |
489 SkMasks* masks, SkPMColor* colorTable, | |
490 RowOrder rowOrder, | |
491 const uint32_t remainingBytes) | |
492 : INHERITED(info, stream) | |
493 , fBitsPerPixel(bitsPerPixel) | |
494 , fInputFormat(inputFormat) | |
495 , fMasks(masks) | |
496 , fColorTable(colorTable) | |
497 , fRowOrder(rowOrder) | |
498 , fRemainingBytes(remainingBytes) | |
499 {} | |
500 | |
501 /* | |
502 * | |
503 * Initiates the bitmap decode | |
504 * | |
505 */ | |
506 SkCodec::Result SkBmpCodec::onGetPixels(const SkImageInfo& dstInfo, | |
507 void* dst, size_t dstRowBytes, | |
508 SkPMColor*, int*) { | |
509 if (!this->rewindIfNeeded()) { | |
510 return kCouldNotRewind; | |
511 } | |
512 if (dstInfo.dimensions() != this->getOriginalInfo().dimensions()) { | |
513 SkDebugf("Error: scaling not supported.\n"); | |
514 return kInvalidScale; | |
515 } | |
516 if (!conversion_possible(dstInfo, this->getOriginalInfo())) { | |
517 SkDebugf("Error: cannot convert input type to output type.\n"); | |
518 return kInvalidConversion; | |
519 } | |
520 | |
521 switch (fInputFormat) { | |
522 case kBitMask_BitmapInputFormat: | |
523 return decodeMask(dstInfo, dst, dstRowBytes); | |
524 case kRLE_BitmapInputFormat: | |
525 return decodeRLE(dstInfo, dst, dstRowBytes); | |
526 case kStandard_BitmapInputFormat: | |
527 return decode(dstInfo, dst, dstRowBytes); | |
528 default: | |
529 SkASSERT(false); | |
530 return kInvalidInput; | |
531 } | |
532 } | |
533 | |
534 /* | |
535 * | |
536 * Performs the bitmap decoding for bit masks input format | |
537 * | |
538 */ | |
539 SkCodec::Result SkBmpCodec::decodeMask(const SkImageInfo& dstInfo, | |
540 void* dst, uint32_t dstRowBytes) { | |
541 // Set constant values | |
542 const int width = dstInfo.width(); | |
543 const int height = dstInfo.height(); | |
544 const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel)); | |
545 | |
546 // Allocate space for a row buffer and a source for the swizzler | |
547 SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, rowBytes)); | |
548 | |
549 // Get the destination start row and delta | |
550 SkPMColor* dstRow; | |
551 int32_t delta; | |
552 if (kTopDown_RowOrder == fRowOrder) { | |
553 dstRow = (SkPMColor*) dst; | |
554 delta = dstRowBytes; | |
555 } else { | |
556 dstRow = (SkPMColor*) SkTAddOffset<void>(dst, (height-1) * dstRowBytes); | |
557 delta = -dstRowBytes; | |
558 } | |
559 | |
560 // Create the swizzler | |
561 SkMaskSwizzler* swizzler = SkMaskSwizzler::CreateMaskSwizzler( | |
562 dstInfo, fMasks, fBitsPerPixel); | |
563 | |
564 // Iterate over rows of the image | |
565 // FIXME: bool transparent = true; | |
566 for (int y = 0; y < height; y++) { | |
567 // Read a row of the input | |
568 if (stream()->read(srcBuffer.get(), rowBytes) != rowBytes) { | |
569 SkDebugf("Warning: incomplete input stream.\n"); | |
570 return kIncompleteInput; | |
571 } | |
572 | |
573 // Decode the row in destination format | |
574 swizzler->next(dstRow, srcBuffer.get()); | |
575 // FIXME: SkSwizzler::ResultAlpha r = | |
576 // swizzler->next(dstRow, srcBuffer.get()); | |
577 // FIXME: transparent &= SkSwizzler::IsTransparent(r); | |
scroggo
2015/03/13 15:04:46
Are we still using IsTransparent anywhere?
msarett
2015/03/13 15:21:15
It works and it's necessary for one of the test im
| |
578 | |
579 // Move to the next row | |
580 dstRow = SkTAddOffset<SkPMColor>(dstRow, delta); | |
581 } | |
582 | |
583 // FIXME: This code exists to match the behavior in the chromium decoder | |
584 // and to correct for images with questionable formats. We have one test | |
585 // image that will wrongly be displayed fully transparent without this | |
586 // code. | |
587 // The image is called "32 bit 888 bitfield version 4" and is located at | |
588 // http://pxd.me/dompdf/www/test/image_bmp.html. | |
scroggo
2015/03/13 15:04:46
nit: I'm wary of posting links to the websites we'
msarett
2015/03/13 15:21:16
Good to know in the future. Since we are in fact
| |
589 | |
590 // Some fully transparent bmp images are intended to be opaque. Here, we | |
591 // correct for this possibility. | |
592 /* | |
593 dstRow = (SkPMColor*) dst; | |
594 if (transparent) { | |
595 for (int y = 0; y < height; y++) { | |
596 for (int x = 0; x < width; x++) { | |
597 dstRow[x] |= 0xFF000000; | |
598 } | |
599 dstRow = SkTAddOffset<SkPMColor>(dstRow, dstRowBytes); | |
600 } | |
601 } | |
602 */ | |
603 | |
604 // Finished decoding the entire image | |
605 return kSuccess; | |
606 } | |
607 | |
608 /* | |
609 * | |
610 * Set an RLE pixel using the color table | |
611 * | |
612 */ | |
613 void SkBmpCodec::setRLEPixel(SkPMColor* dst, uint32_t dstRowBytes, int height, | |
614 uint32_t x, uint32_t y, uint8_t index) { | |
615 if (kBottomUp_RowOrder == fRowOrder) { | |
616 y = height - y - 1; | |
617 } | |
618 SkPMColor* dstRow = SkTAddOffset<SkPMColor>(dst, y * dstRowBytes); | |
619 dstRow[x] = fColorTable.get()[index]; | |
620 } | |
621 | |
622 /* | |
623 * | |
624 * Performs the bitmap decoding for RLE input format | |
625 * RLE decoding is performed all at once, rather than a one row at a time | |
626 * | |
627 */ | |
628 SkCodec::Result SkBmpCodec::decodeRLE(const SkImageInfo& dstInfo, | |
629 void* dst, uint32_t dstRowBytes) { | |
630 // Set RLE flags | |
631 static const uint8_t RLE_ESCAPE = 0; | |
632 static const uint8_t RLE_EOL = 0; | |
633 static const uint8_t RLE_EOF = 1; | |
634 static const uint8_t RLE_DELTA = 2; | |
635 | |
636 // Set constant values | |
637 const int width = dstInfo.width(); | |
638 const int height = dstInfo.height(); | |
639 | |
640 // Input buffer parameters | |
641 uint32_t currByte = 0; | |
642 SkAutoTDeleteArray<uint8_t> buffer(SkNEW_ARRAY(uint8_t, fRemainingBytes)); | |
643 uint32_t totalBytes = stream()->read(buffer.get(), fRemainingBytes); | |
644 if (totalBytes < fRemainingBytes) { | |
645 SkDebugf("Warning: incomplete RLE file.\n"); | |
646 } else if (totalBytes <= 0) { | |
647 SkDebugf("Error: could not read RLE image data.\n"); | |
648 return kInvalidInput; | |
649 } | |
650 | |
651 // Destination parameters | |
652 int x = 0; | |
653 int y = 0; | |
654 // If the code skips pixels, remaining pixels are transparent or black | |
655 // TODO: Skip this if memory was already zeroed. | |
656 memset(dst, 0, dstRowBytes * height); | |
657 SkPMColor* dstPtr = (SkPMColor*) dst; | |
658 | |
659 while (true) { | |
660 // Every entry takes at least two bytes | |
661 if (totalBytes - currByte < 2) { | |
662 SkDebugf("Warning: incomplete RLE input.\n"); | |
663 return kIncompleteInput; | |
664 } | |
665 | |
666 // Read the next two bytes. These bytes have different meanings | |
667 // depending on their values. In the first interpretation, the first | |
668 // byte is an escape flag and the second byte indicates what special | |
669 // task to perform. | |
670 const uint8_t flag = buffer.get()[currByte++]; | |
671 const uint8_t task = buffer.get()[currByte++]; | |
672 | |
673 // If we have reached a row that is beyond the image size, and the RLE | |
674 // code does not indicate end of file, abort and signal a warning. | |
675 if (y >= height && (flag != RLE_ESCAPE || (task != RLE_EOF))) { | |
676 SkDebugf("Warning: invalid RLE input.\n"); | |
677 return kIncompleteInput; | |
678 } | |
679 | |
680 // Perform decoding | |
681 if (RLE_ESCAPE == flag) { | |
682 switch (task) { | |
683 case RLE_EOL: | |
684 x = 0; | |
685 y++; | |
686 break; | |
687 case RLE_EOF: | |
688 return kSuccess; | |
689 case RLE_DELTA: { | |
690 // Two bytes are needed to specify delta | |
691 if (totalBytes - currByte < 2) { | |
692 SkDebugf("Warning: incomplete RLE input\n"); | |
693 return kIncompleteInput; | |
694 } | |
695 // Modify x and y | |
696 const uint8_t dx = buffer.get()[currByte++]; | |
697 const uint8_t dy = buffer.get()[currByte++]; | |
698 x += dx; | |
699 y += dy; | |
700 if (x > width || y > height) { | |
701 SkDebugf("Warning: invalid RLE input.\n"); | |
702 return kIncompleteInput; | |
703 } | |
704 break; | |
705 } | |
706 default: { | |
707 // If task does not match any of the above signals, it | |
708 // indicates that we have a sequence of non-RLE pixels. | |
709 // Furthermore, the value of task is equal to the number | |
710 // of pixels to interpret. | |
711 uint8_t numPixels = task; | |
712 const size_t rowBytes = compute_row_bytes(numPixels, | |
713 fBitsPerPixel); | |
714 // Abort if setting numPixels moves us off the edge of the | |
715 // image. Also abort if there are not enough bytes | |
716 // remaining in the stream to set numPixels. | |
717 if (x + numPixels > width || | |
718 totalBytes - currByte < SkAlign2(rowBytes)) { | |
719 SkDebugf("Warning: invalid RLE input.\n"); | |
720 return kIncompleteInput; | |
721 } | |
722 // Set numPixels number of pixels | |
723 SkPMColor* dstRow = SkTAddOffset<SkPMColor>( | |
724 dstPtr, y * dstRowBytes); | |
725 while (numPixels > 0) { | |
726 switch(fBitsPerPixel) { | |
727 case 4: { | |
728 SkASSERT(currByte < totalBytes); | |
729 uint8_t val = buffer.get()[currByte++]; | |
730 setRLEPixel(dstPtr, dstRowBytes, height, x++, y, | |
731 val >> 4); | |
732 numPixels--; | |
733 if (numPixels != 0) { | |
734 setRLEPixel(dstPtr, dstRowBytes, height, | |
735 x++, y, val & 0xF); | |
736 numPixels--; | |
737 } | |
738 break; | |
739 } | |
740 case 8: | |
741 SkASSERT(currByte < totalBytes); | |
742 setRLEPixel(dstPtr, dstRowBytes, height, x++, y, | |
743 buffer.get()[currByte++]); | |
744 numPixels--; | |
745 break; | |
746 case 24: { | |
747 SkASSERT(currByte + 2 < totalBytes); | |
748 uint8_t blue = buffer.get()[currByte++]; | |
749 uint8_t green = buffer.get()[currByte++]; | |
750 uint8_t red = buffer.get()[currByte++]; | |
751 SkPMColor color = SkPackARGB32NoCheck( | |
752 0xFF, red, green, blue); | |
753 dstRow[x++] = color; | |
754 numPixels--; | |
755 } | |
756 default: | |
757 SkASSERT(false); | |
758 return kInvalidInput; | |
759 } | |
760 } | |
761 // Skip a byte if necessary to maintain alignment | |
762 if (!SkIsAlign2(rowBytes)) { | |
763 currByte++; | |
764 } | |
765 break; | |
766 } | |
767 } | |
768 } else { | |
769 // If the first byte read is not a flag, it indicates the number of | |
770 // pixels to set in RLE mode. | |
771 const uint8_t numPixels = flag; | |
772 const int endX = SkTMin<int>(x + numPixels, width); | |
773 | |
774 if (24 == fBitsPerPixel) { | |
775 // In RLE24, the second byte read is part of the pixel color. | |
776 // There are two more required bytes to finish encoding the | |
777 // color. | |
778 if (totalBytes - currByte < 2) { | |
779 SkDebugf("Warning: incomplete RLE input\n"); | |
780 return kIncompleteInput; | |
781 } | |
782 | |
783 // Fill the pixels up to endX with the specified color | |
784 uint8_t blue = task; | |
785 uint8_t green = buffer.get()[currByte++]; | |
786 uint8_t red = buffer.get()[currByte++]; | |
787 SkPMColor color = SkPackARGB32NoCheck(0xFF, red, green, blue); | |
788 SkPMColor* dstRow = | |
789 SkTAddOffset<SkPMColor>(dstPtr, y * dstRowBytes); | |
790 while (x < endX) { | |
791 dstRow[x++] = color; | |
792 } | |
793 } else { | |
794 // In RLE8 or RLE4, the second byte read gives the index in the | |
795 // color table to look up the pixel color. | |
796 // RLE8 has one color index that gets repeated | |
797 // RLE4 has two color indexes in the upper and lower 4 bits of | |
798 // the bytes, which are alternated | |
799 uint8_t indices[2] = { task, task }; | |
800 if (4 == fBitsPerPixel) { | |
801 indices[0] >>= 4; | |
802 indices[1] &= 0xf; | |
803 } | |
804 | |
805 // Set the indicated number of pixels | |
806 for (int which = 0; x < endX; x++) { | |
807 setRLEPixel(dstPtr, dstRowBytes, height, x, y, | |
808 indices[which]); | |
809 which = !which; | |
810 } | |
811 } | |
812 } | |
813 } | |
814 } | |
815 | |
816 /* | |
817 * | |
818 * Performs the bitmap decoding for standard input format | |
819 * | |
820 */ | |
821 SkCodec::Result SkBmpCodec::decode(const SkImageInfo& dstInfo, | |
822 void* dst, uint32_t dstRowBytes) { | |
823 // Set constant values | |
824 const int width = dstInfo.width(); | |
825 const int height = dstInfo.height(); | |
826 const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel)); | |
827 const uint32_t alphaMask = fMasks->getAlphaMask(); | |
828 | |
829 // Get swizzler configuration | |
830 SkSwizzler::SrcConfig config; | |
831 switch (fBitsPerPixel) { | |
832 case 1: | |
833 config = SkSwizzler::kIndex1; | |
834 break; | |
835 case 2: | |
836 config = SkSwizzler::kIndex2; | |
837 break; | |
838 case 4: | |
839 config = SkSwizzler::kIndex4; | |
840 break; | |
841 case 8: | |
842 config = SkSwizzler::kIndex; | |
843 break; | |
844 case 24: | |
845 config = SkSwizzler::kBGR; | |
846 break; | |
847 case 32: | |
848 if (0 == alphaMask) { | |
849 config = SkSwizzler::kBGRX; | |
850 } else { | |
851 config = SkSwizzler::kBGRA; | |
852 } | |
853 break; | |
854 default: | |
855 SkASSERT(false); | |
856 return kInvalidInput; | |
857 } | |
858 | |
859 // Create swizzler | |
860 SkSwizzler* swizzler = SkSwizzler::CreateSwizzler(config, fColorTable.get(), | |
861 dstInfo, dst, dstRowBytes, false); | |
862 | |
863 // Allocate space for a row buffer and a source for the swizzler | |
864 SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, rowBytes)); | |
865 | |
866 // Iterate over rows of the image | |
867 // FIXME: bool transparent = true; | |
868 for (int y = 0; y < height; y++) { | |
869 // Read a row of the input | |
870 if (stream()->read(srcBuffer.get(), rowBytes) != rowBytes) { | |
871 SkDebugf("Warning: incomplete input stream.\n"); | |
872 return kIncompleteInput; | |
873 } | |
874 | |
875 // Decode the row in destination format | |
876 uint32_t row; | |
877 if (kTopDown_RowOrder == fRowOrder) { | |
878 row = y; | |
879 } else { | |
880 row = height - 1 - y; | |
881 } | |
882 | |
883 swizzler->next(srcBuffer.get(), row); | |
884 // FIXME: SkSwizzler::ResultAlpha r = | |
885 // swizzler->next(srcBuffer.get(), row); | |
886 // FIXME: transparent &= SkSwizzler::IsTransparent(r); | |
887 } | |
888 | |
889 // FIXME: This code exists to match the behavior in the chromium decoder | |
890 // and to follow the bmp specification as it relates to alpha masks. It is | |
891 // commented out because we have yet to discover a test image that provides | |
892 // an alpha mask and uses this decode mode. | |
893 | |
894 // Now we adjust the output image with some additional behavior that | |
895 // SkSwizzler does not support. Firstly, all bmp images that contain | |
896 // alpha are masked by the alpha mask. Secondly, many fully transparent | |
897 // bmp images are intended to be opaque. Here, we make those corrections. | |
898 // Modifying alpha is safe because colors are stored unpremultiplied. | |
899 /* | |
900 SkPMColor* dstRow = (SkPMColor*) dst; | |
901 if (SkSwizzler::kBGRA == config) { | |
902 for (int y = 0; y < height; y++) { | |
903 for (int x = 0; x < width; x++) { | |
904 if (transparent) { | |
905 dstRow[x] |= 0xFF000000; | |
906 } else { | |
907 dstRow[x] &= alphaMask; | |
908 } | |
909 dstRow = SkTAddOffset<SkPMColor>(dstRow, dstRowBytes); | |
910 } | |
911 } | |
912 } | |
913 */ | |
914 | |
915 // Finished decoding the entire image | |
916 return kSuccess; | |
917 } | |
OLD | NEW |