OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * Copyright 2015 Google Inc. |
| 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. |
| 6 */ |
| 7 |
| 8 #include "SkCodec_libbmp.h" |
| 9 #include "SkColorPriv.h" |
| 10 #include "SkStream.h" |
| 11 |
| 12 /* |
| 13 * |
| 14 * Checks if the conversion between the input image and the requested output |
| 15 * image has been implemented |
| 16 * |
| 17 */ |
| 18 static bool conversion_possible(const SkImageInfo& dst, |
| 19 const SkImageInfo& src) { |
| 20 // All of the swizzles convert to kN32 |
| 21 // TODO: Update this when more swizzles are supported |
| 22 if (kN32_SkColorType != dst.colorType()) { |
| 23 return false; |
| 24 } |
| 25 // Support the swizzle if the requested alpha type is the same as our guess |
| 26 // for the input alpha type |
| 27 if (src.alphaType() == dst.alphaType()) { |
| 28 return true; |
| 29 } |
| 30 // Also support requests for premul in the unpremul case, despite the fact |
| 31 // that all of the swizzles currently create an unpremul image |
| 32 // TODO: Update the swizzles so this makes more sense |
| 33 return premul_and_unpremul(dst.alphaType(), src.alphaType()) |
| 34 || premul_and_unpremul(dst.alphaType(), src.alphaType()); |
| 35 } |
| 36 |
| 37 /* |
| 38 * |
| 39 * Defines the version and type of the second bitmap header |
| 40 * |
| 41 */ |
| 42 enum BitmapHeaderType { |
| 43 kInfoV1_BitmapHeaderType, |
| 44 kInfoV2_BitmapHeaderType, |
| 45 kInfoV3_BitmapHeaderType, |
| 46 kInfoV4_BitmapHeaderType, |
| 47 kInfoV5_BitmapHeaderType, |
| 48 kOS2V1_BitmapHeaderType, |
| 49 kOS2VX_BitmapHeaderType, |
| 50 kUnknown_BitmapHeaderType |
| 51 }; |
| 52 |
| 53 /* |
| 54 * |
| 55 * Possible bitmap compression types |
| 56 * |
| 57 */ |
| 58 enum BitmapCompressionMethod { |
| 59 kNone_BitmapCompressionMethod = 0, |
| 60 k8BitRLE_BitmapCompressionMethod = 1, |
| 61 k4BitRLE_BitmapCompressionMethod = 2, |
| 62 kBitMasks_BitmapCompressionMethod = 3, |
| 63 kJpeg_BitmapCompressionMethod = 4, |
| 64 kPng_BitmapCompressionMethod = 5, |
| 65 kAlphaBitMasks_BitmapCompressionMethod = 6, |
| 66 kCMYK_BitmapCompressionMethod = 11, |
| 67 kCMYK8BitRLE_BitmapCompressionMethod = 12, |
| 68 kCMYK4BitRLE_BitmapCompressionMethod = 13 |
| 69 }; |
| 70 |
| 71 /* |
| 72 * |
| 73 * Checks the start of the stream to see if the image is a bitmap |
| 74 * |
| 75 */ |
| 76 bool SkBmpCodec::IsBmp(SkStream* stream) { |
| 77 // TODO: Support "IC", "PT", "CI", "CP", "BA" |
| 78 // TODO: ICO files may contain a BMP and need to use this decoder |
| 79 const char bmpSig[] = { 'B', 'M' }; |
| 80 char buffer[sizeof(bmpSig)]; |
| 81 return stream->read(buffer, sizeof(bmpSig)) == sizeof(bmpSig) && |
| 82 !memcmp(buffer, bmpSig, sizeof(bmpSig)); |
| 83 } |
| 84 |
| 85 /* |
| 86 * |
| 87 * Assumes IsBmp was called and returned true |
| 88 * Creates a bitmap decoder |
| 89 * Reads enough of the stream to determine the image format |
| 90 * |
| 91 */ |
| 92 SkCodec* SkBmpCodec::NewFromStream(SkStream* stream) { |
| 93 // Header size constants |
| 94 static const uint32_t kBmpHeaderBytes = 14; |
| 95 static const uint32_t kBmpHeaderBytesPlusFour = kBmpHeaderBytes + 4; |
| 96 static const uint32_t kBmpOS2V1Bytes = 12; |
| 97 static const uint32_t kBmpOS2V2Bytes = 64; |
| 98 static const uint32_t kBmpInfoBaseBytes = 16; |
| 99 static const uint32_t kBmpInfoV1Bytes = 40; |
| 100 static const uint32_t kBmpInfoV2Bytes = 52; |
| 101 static const uint32_t kBmpInfoV3Bytes = 56; |
| 102 static const uint32_t kBmpInfoV4Bytes = 108; |
| 103 static const uint32_t kBmpInfoV5Bytes = 124; |
| 104 static const uint32_t kBmpMaskBytes = 12; |
| 105 |
| 106 // Read the first header and the size of the second header |
| 107 SkAutoTDeleteArray<uint8_t> hBuffer( |
| 108 SkNEW_ARRAY(uint8_t, kBmpHeaderBytesPlusFour)); |
| 109 if (stream->read(hBuffer.get(), kBmpHeaderBytesPlusFour) != |
| 110 kBmpHeaderBytesPlusFour) { |
| 111 SkDebugf("Error: unable to read first bitmap header.\n"); |
| 112 return NULL; |
| 113 } |
| 114 |
| 115 // The total bytes in the bmp file |
| 116 // We only need to use this value for RLE decoding, so we will only check |
| 117 // that it is valid in the RLE case. |
| 118 const uint32_t totalBytes = get_int(hBuffer.get(), 2); |
| 119 |
| 120 // The offset from the start of the file where the pixel data begins |
| 121 const uint32_t offset = get_int(hBuffer.get(), 10); |
| 122 if (offset < kBmpHeaderBytes + kBmpOS2V1Bytes) { |
| 123 SkDebugf("Error: invalid starting location for pixel data\n"); |
| 124 return NULL; |
| 125 } |
| 126 |
| 127 // The size of the second (info) header in bytes |
| 128 // The size is the first field of the second header, so we have already |
| 129 // read the first four infoBytes. |
| 130 const uint32_t infoBytes = get_int(hBuffer.get(), 14); |
| 131 if (infoBytes < kBmpOS2V1Bytes) { |
| 132 SkDebugf("Error: invalid second header size.\n"); |
| 133 return NULL; |
| 134 } |
| 135 const uint32_t infoBytesRemaining = infoBytes - 4; |
| 136 hBuffer.free(); |
| 137 |
| 138 // Read the second header |
| 139 SkAutoTDeleteArray<uint8_t> iBuffer( |
| 140 SkNEW_ARRAY(uint8_t, infoBytesRemaining)); |
| 141 if (stream->read(iBuffer.get(), infoBytesRemaining) != infoBytesRemaining) { |
| 142 SkDebugf("Error: unable to read second bitmap header.\n"); |
| 143 return NULL; |
| 144 } |
| 145 |
| 146 // The number of bits used per pixel in the pixel data |
| 147 uint16_t bitsPerPixel; |
| 148 |
| 149 // The compression method for the pixel data |
| 150 uint32_t compression = kNone_BitmapCompressionMethod; |
| 151 |
| 152 // Number of colors in the color table, defaults to 0 or max (see below) |
| 153 uint32_t numColors = 0; |
| 154 |
| 155 // Bytes per color in the color table, early versions use 3, most use 4 |
| 156 uint32_t bytesPerColor; |
| 157 |
| 158 // The image width and height |
| 159 int width, height; |
| 160 |
| 161 // Determine image information depending on second header format |
| 162 BitmapHeaderType headerType; |
| 163 if (infoBytes >= kBmpInfoBaseBytes) { |
| 164 // Check the version of the header |
| 165 switch (infoBytes) { |
| 166 case kBmpInfoV1Bytes: |
| 167 headerType = kInfoV1_BitmapHeaderType; |
| 168 break; |
| 169 case kBmpInfoV2Bytes: |
| 170 headerType = kInfoV2_BitmapHeaderType; |
| 171 break; |
| 172 case kBmpInfoV3Bytes: |
| 173 headerType = kInfoV3_BitmapHeaderType; |
| 174 break; |
| 175 case kBmpInfoV4Bytes: |
| 176 headerType = kInfoV4_BitmapHeaderType; |
| 177 break; |
| 178 case kBmpInfoV5Bytes: |
| 179 headerType = kInfoV5_BitmapHeaderType; |
| 180 break; |
| 181 case 16: |
| 182 case 20: |
| 183 case 24: |
| 184 case 28: |
| 185 case 32: |
| 186 case 36: |
| 187 case 42: |
| 188 case 46: |
| 189 case 48: |
| 190 case 60: |
| 191 case kBmpOS2V2Bytes: |
| 192 headerType = kOS2VX_BitmapHeaderType; |
| 193 break; |
| 194 default: |
| 195 // We do not signal an error here because there is the |
| 196 // possibility of new or undocumented bmp header types. Most |
| 197 // of the newer versions of bmp headers are similar to and |
| 198 // build off of the older versions, so we may still be able to |
| 199 // decode the bmp. |
| 200 SkDebugf("Warning: unknown bmp header format.\n"); |
| 201 headerType = kUnknown_BitmapHeaderType; |
| 202 break; |
| 203 } |
| 204 // We check the size of the header before entering the if statement. |
| 205 // We should not reach this point unless the size is large enough for |
| 206 // these required fields. |
| 207 SkASSERT(infoBytesRemaining >= 12); |
| 208 width = get_int(iBuffer.get(), 0); |
| 209 height = get_int(iBuffer.get(), 4); |
| 210 bitsPerPixel = get_short(iBuffer.get(), 10); |
| 211 |
| 212 // Some versions do not have these fields, so we check before |
| 213 // overwriting the default value. |
| 214 if (infoBytesRemaining >= 16) { |
| 215 compression = get_int(iBuffer.get(), 12); |
| 216 if (infoBytesRemaining >= 32) { |
| 217 numColors = get_int(iBuffer.get(), 28); |
| 218 } |
| 219 } |
| 220 |
| 221 // All of the headers that reach this point, store color table entries |
| 222 // using 4 bytes per pixel. |
| 223 bytesPerColor = 4; |
| 224 } else if (infoBytes >= kBmpOS2V1Bytes) { |
| 225 // The OS2V1 is treated separately because it has a unique format |
| 226 headerType = kOS2V1_BitmapHeaderType; |
| 227 width = (int) get_short(iBuffer.get(), 0); |
| 228 height = (int) get_short(iBuffer.get(), 2); |
| 229 bitsPerPixel = get_short(iBuffer.get(), 6); |
| 230 bytesPerColor = 3; |
| 231 } else { |
| 232 // There are no valid bmp headers |
| 233 SkDebugf("Error: second bitmap header size is invalid.\n"); |
| 234 return NULL; |
| 235 } |
| 236 |
| 237 // Check for valid dimensions from header |
| 238 RowOrder rowOrder = kBottomUp_RowOrder; |
| 239 if (height < 0) { |
| 240 height = -height; |
| 241 rowOrder = kTopDown_RowOrder; |
| 242 } |
| 243 static const int kBmpMaxDim = 1 << 16; |
| 244 if (width < 0 || width >= kBmpMaxDim || height >= kBmpMaxDim) { |
| 245 // TODO: Decide if we want to support really large bmps. |
| 246 SkDebugf("Error: invalid bitmap dimensions.\n"); |
| 247 return NULL; |
| 248 } |
| 249 |
| 250 // Create mask struct |
| 251 SkMasks::InputMasks inputMasks; |
| 252 memset(&inputMasks, 0, 4*sizeof(uint32_t)); |
| 253 |
| 254 // Determine the input compression format and set bit masks if necessary |
| 255 uint32_t maskBytes = 0; |
| 256 BitmapInputFormat inputFormat = kUnknown_BitmapInputFormat; |
| 257 switch (compression) { |
| 258 case kNone_BitmapCompressionMethod: |
| 259 inputFormat = kStandard_BitmapInputFormat; |
| 260 break; |
| 261 case k8BitRLE_BitmapCompressionMethod: |
| 262 if (bitsPerPixel != 8) { |
| 263 SkDebugf("Warning: correcting invalid bitmap format.\n"); |
| 264 bitsPerPixel = 8; |
| 265 } |
| 266 inputFormat = kRLE_BitmapInputFormat; |
| 267 break; |
| 268 case k4BitRLE_BitmapCompressionMethod: |
| 269 if (bitsPerPixel != 4) { |
| 270 SkDebugf("Warning: correcting invalid bitmap format.\n"); |
| 271 bitsPerPixel = 4; |
| 272 } |
| 273 inputFormat = kRLE_BitmapInputFormat; |
| 274 break; |
| 275 case kAlphaBitMasks_BitmapCompressionMethod: |
| 276 case kBitMasks_BitmapCompressionMethod: |
| 277 // Load the masks |
| 278 inputFormat = kBitMask_BitmapInputFormat; |
| 279 switch (headerType) { |
| 280 case kInfoV1_BitmapHeaderType: { |
| 281 // The V1 header stores the bit masks after the header |
| 282 SkAutoTDeleteArray<uint8_t> mBuffer( |
| 283 SkNEW_ARRAY(uint8_t, kBmpMaskBytes)); |
| 284 if (stream->read(mBuffer.get(), kBmpMaskBytes) != |
| 285 kBmpMaskBytes) { |
| 286 SkDebugf("Error: unable to read bit inputMasks.\n"); |
| 287 return NULL; |
| 288 } |
| 289 maskBytes = kBmpMaskBytes; |
| 290 inputMasks.red = get_int(mBuffer.get(), 0); |
| 291 inputMasks.green = get_int(mBuffer.get(), 4); |
| 292 inputMasks.blue = get_int(mBuffer.get(), 8); |
| 293 break; |
| 294 } |
| 295 case kInfoV2_BitmapHeaderType: |
| 296 case kInfoV3_BitmapHeaderType: |
| 297 case kInfoV4_BitmapHeaderType: |
| 298 case kInfoV5_BitmapHeaderType: |
| 299 // Header types are matched based on size. If the header |
| 300 // is V2+, we are guaranteed to be able to read at least |
| 301 // this size. |
| 302 SkASSERT(infoBytesRemaining >= 48); |
| 303 inputMasks.red = get_int(iBuffer.get(), 36); |
| 304 inputMasks.green = get_int(iBuffer.get(), 40); |
| 305 inputMasks.blue = get_int(iBuffer.get(), 44); |
| 306 break; |
| 307 case kOS2VX_BitmapHeaderType: |
| 308 // TODO: Decide if we intend to support this. |
| 309 // It is unsupported in the previous version and |
| 310 // in chromium. I have not come across a test case |
| 311 // that uses this format. |
| 312 SkDebugf("Error: huffman format unsupported.\n"); |
| 313 return NULL; |
| 314 default: |
| 315 SkDebugf("Error: invalid bmp bit masks header.\n"); |
| 316 return NULL; |
| 317 } |
| 318 break; |
| 319 case kJpeg_BitmapCompressionMethod: |
| 320 if (24 == bitsPerPixel) { |
| 321 inputFormat = kRLE_BitmapInputFormat; |
| 322 break; |
| 323 } |
| 324 // Fall through |
| 325 case kPng_BitmapCompressionMethod: |
| 326 // TODO: Decide if we intend to support this. |
| 327 // It is unsupported in the previous version and |
| 328 // in chromium. I think it is used mostly for printers. |
| 329 SkDebugf("Error: compression format not supported.\n"); |
| 330 return NULL; |
| 331 case kCMYK_BitmapCompressionMethod: |
| 332 case kCMYK8BitRLE_BitmapCompressionMethod: |
| 333 case kCMYK4BitRLE_BitmapCompressionMethod: |
| 334 // TODO: Same as above. |
| 335 SkDebugf("Error: CMYK not supported for bitmap decoding.\n"); |
| 336 return NULL; |
| 337 default: |
| 338 SkDebugf("Error: invalid format for bitmap decoding.\n"); |
| 339 return NULL; |
| 340 } |
| 341 |
| 342 // Most versions of bmps should be rendered as opaque. Either they do |
| 343 // not have an alpha channel, or they expect the alpha channel to be |
| 344 // ignored. V4+ bmp files introduce an alpha mask and allow the creator |
| 345 // of the image to use the alpha channels. However, many of these images |
| 346 // leave the alpha channel blank and expect to be rendered as opaque. For |
| 347 // this reason, we set the alpha type to kUnknown for V4+ bmps and figure |
| 348 // out the alpha type during the decode. |
| 349 SkAlphaType alphaType = kOpaque_SkAlphaType; |
| 350 if (kInfoV4_BitmapHeaderType == headerType || |
| 351 kInfoV5_BitmapHeaderType == headerType) { |
| 352 // Header types are matched based on size. If the header is |
| 353 // V4+, we are guaranteed to be able to read at least this size. |
| 354 SkASSERT(infoBytesRemaining > 52); |
| 355 inputMasks.alpha = get_int(iBuffer.get(), 48); |
| 356 if (inputMasks.alpha != 0) { |
| 357 alphaType = kUnpremul_SkAlphaType; |
| 358 } |
| 359 } |
| 360 iBuffer.free(); |
| 361 |
| 362 // Check for valid bits per pixel input |
| 363 switch (bitsPerPixel) { |
| 364 // In addition to more standard pixel compression formats, bmp supports |
| 365 // the use of bit masks to determine pixel components. The standard |
| 366 // format for representing 16-bit colors is 555 (XRRRRRGGGGGBBBBB), |
| 367 // which does not map well to any Skia color formats. For this reason, |
| 368 // we will always enable mask mode with 16 bits per pixel. |
| 369 case 16: |
| 370 if (kBitMask_BitmapInputFormat != inputFormat) { |
| 371 inputMasks.red = 0x7C00; |
| 372 inputMasks.green = 0x03E0; |
| 373 inputMasks.blue = 0x001F; |
| 374 inputFormat = kBitMask_BitmapInputFormat; |
| 375 } |
| 376 break; |
| 377 case 1: |
| 378 case 2: |
| 379 case 4: |
| 380 case 8: |
| 381 case 24: |
| 382 case 32: |
| 383 break; |
| 384 default: |
| 385 SkDebugf("Error: invalid input value for bits per pixel.\n"); |
| 386 return NULL; |
| 387 } |
| 388 |
| 389 // Check that input bit masks are valid and create the masks object |
| 390 SkAutoTDelete<SkMasks> |
| 391 masks(SkMasks::CreateMasks(inputMasks, bitsPerPixel)); |
| 392 if (NULL == masks) { |
| 393 SkDebugf("Error: invalid input masks.\n"); |
| 394 return NULL; |
| 395 } |
| 396 |
| 397 // Process the color table |
| 398 uint32_t colorBytes = 0; |
| 399 SkPMColor* colorTable = NULL; |
| 400 if (bitsPerPixel < 16) { |
| 401 // Verify the number of colors for the color table |
| 402 const uint32_t maxColors = 1 << bitsPerPixel; |
| 403 // Zero is a default for maxColors |
| 404 // Also set numColors to maxColors when input is too large |
| 405 if (numColors <= 0 || numColors > maxColors) { |
| 406 numColors = maxColors; |
| 407 } |
| 408 colorTable = SkNEW_ARRAY(SkPMColor, maxColors); |
| 409 |
| 410 // Construct the color table |
| 411 colorBytes = numColors * bytesPerColor; |
| 412 SkAutoTDeleteArray<uint8_t> cBuffer(SkNEW_ARRAY(uint8_t, colorBytes)); |
| 413 if (stream->read(cBuffer.get(), colorBytes) != colorBytes) { |
| 414 SkDebugf("Error: unable to read color table.\n"); |
| 415 return NULL; |
| 416 } |
| 417 |
| 418 // Fill in the color table (colors are stored unpremultiplied) |
| 419 uint32_t i = 0; |
| 420 for (; i < numColors; i++) { |
| 421 uint8_t blue = get_byte(cBuffer.get(), i*bytesPerColor); |
| 422 uint8_t green = get_byte(cBuffer.get(), i*bytesPerColor + 1); |
| 423 uint8_t red = get_byte(cBuffer.get(), i*bytesPerColor + 2); |
| 424 uint8_t alpha = 0xFF; |
| 425 if (kOpaque_SkAlphaType != alphaType) { |
| 426 alpha = (inputMasks.alpha >> 24) & |
| 427 get_byte(cBuffer.get(), i*bytesPerColor + 3); |
| 428 } |
| 429 // Store the unpremultiplied color |
| 430 colorTable[i] = SkPackARGB32NoCheck(alpha, red, green, blue); |
| 431 } |
| 432 |
| 433 // To avoid segmentation faults on bad pixel data, fill the end of the |
| 434 // color table with black. This is the same the behavior as the |
| 435 // chromium decoder. |
| 436 for (; i < maxColors; i++) { |
| 437 colorTable[i] = SkPackARGB32NoCheck(0xFF, 0, 0, 0); |
| 438 } |
| 439 } else { |
| 440 // We will not use the color table if bitsPerPixel >= 16, but if there |
| 441 // is a color table, we may need to skip the color table bytes. |
| 442 // We will assume that the maximum color table size is the same as when |
| 443 // there are 8 bits per pixel (the largest color table actually used). |
| 444 // Color tables for greater than 8 bits per pixel are somewhat |
| 445 // undocumented. It is indicated that they may exist to store a list |
| 446 // of colors for optimization on devices with limited color display |
| 447 // capacity. While we do not know for sure, we will guess that any |
| 448 // value of numColors greater than this maximum is invalid. |
| 449 if (numColors <= (1 << 8)) { |
| 450 colorBytes = numColors * bytesPerColor; |
| 451 if (stream->skip(colorBytes) != colorBytes) { |
| 452 SkDebugf("Error: Could not skip color table bytes.\n"); |
| 453 return NULL; |
| 454 } |
| 455 } |
| 456 } |
| 457 |
| 458 // Ensure that the stream now points to the start of the pixel array |
| 459 uint32_t bytesRead = kBmpHeaderBytes + infoBytes + maskBytes + colorBytes; |
| 460 |
| 461 // Check that we have not read past the pixel array offset |
| 462 if(bytesRead > offset) { |
| 463 // This may occur on OS 2.1 and other old versions where the color |
| 464 // table defaults to max size, and the bmp tries to use a smaller color |
| 465 // table. This is invalid, and our decision is to indicate an error, |
| 466 // rather than try to guess the intended size of the color table and |
| 467 // rewind the stream to display the image. |
| 468 SkDebugf("Error: pixel data offset less than header size.\n"); |
| 469 return NULL; |
| 470 } |
| 471 |
| 472 // Skip to the start of the pixel array |
| 473 if (stream->skip(offset - bytesRead) != offset - bytesRead) { |
| 474 SkDebugf("Error: unable to skip to image data.\n"); |
| 475 return NULL; |
| 476 } |
| 477 |
| 478 // Remaining bytes is only used for RLE |
| 479 const int remainingBytes = totalBytes - offset; |
| 480 if (remainingBytes <= 0 && kRLE_BitmapInputFormat == inputFormat) { |
| 481 SkDebugf("Error: RLE requires valid input size.\n"); |
| 482 return NULL; |
| 483 } |
| 484 |
| 485 // Return the codec |
| 486 // We will use ImageInfo to store width, height, and alpha type. We will |
| 487 // choose kN32_SkColorType as the input color type because that is the |
| 488 // expected choice for a destination color type. In reality, the input |
| 489 // color type has many possible formats. |
| 490 const SkImageInfo& imageInfo = SkImageInfo::Make(width, height, |
| 491 kN32_SkColorType, alphaType); |
| 492 return SkNEW_ARGS(SkBmpCodec, (imageInfo, stream, bitsPerPixel, |
| 493 inputFormat, masks.detach(), colorTable, |
| 494 rowOrder, remainingBytes)); |
| 495 } |
| 496 |
| 497 /* |
| 498 * |
| 499 * Creates an instance of the decoder |
| 500 * Called only by NewFromStream |
| 501 * |
| 502 */ |
| 503 SkBmpCodec::SkBmpCodec(const SkImageInfo& info, SkStream* stream, |
| 504 uint16_t bitsPerPixel, BitmapInputFormat inputFormat, |
| 505 SkMasks* masks, SkPMColor* colorTable, |
| 506 RowOrder rowOrder, |
| 507 const uint32_t remainingBytes) |
| 508 : INHERITED(info, stream) |
| 509 , fBitsPerPixel(bitsPerPixel) |
| 510 , fInputFormat(inputFormat) |
| 511 , fMasks(masks) |
| 512 , fColorTable(colorTable) |
| 513 , fRowOrder(rowOrder) |
| 514 , fRemainingBytes(remainingBytes) |
| 515 {} |
| 516 |
| 517 /* |
| 518 * |
| 519 * Initiates the bitmap decode |
| 520 * |
| 521 */ |
| 522 SkCodec::Result SkBmpCodec::onGetPixels(const SkImageInfo& dstInfo, |
| 523 void* dst, size_t dstRowBytes, |
| 524 SkPMColor*, int*) { |
| 525 if (!this->rewindIfNeeded()) { |
| 526 return kCouldNotRewind; |
| 527 } |
| 528 if (dstInfo.dimensions() != this->getOriginalInfo().dimensions()) { |
| 529 SkDebugf("Error: scaling not supported.\n"); |
| 530 return kInvalidScale; |
| 531 } |
| 532 if (!conversion_possible(dstInfo, this->getOriginalInfo())) { |
| 533 SkDebugf("Error: cannot convert input type to output type.\n"); |
| 534 return kInvalidConversion; |
| 535 } |
| 536 |
| 537 switch (fInputFormat) { |
| 538 case kBitMask_BitmapInputFormat: |
| 539 return decodeMask(dstInfo, dst, dstRowBytes); |
| 540 case kRLE_BitmapInputFormat: |
| 541 return decodeRLE(dstInfo, dst, dstRowBytes); |
| 542 case kStandard_BitmapInputFormat: |
| 543 return decode(dstInfo, dst, dstRowBytes); |
| 544 default: |
| 545 SkASSERT(false); |
| 546 return kInvalidInput; |
| 547 } |
| 548 } |
| 549 |
| 550 /* |
| 551 * |
| 552 * Performs the bitmap decoding for bit masks input format |
| 553 * |
| 554 */ |
| 555 SkCodec::Result SkBmpCodec::decodeMask(const SkImageInfo& dstInfo, |
| 556 void* dst, uint32_t dstRowBytes) { |
| 557 // Set constant values |
| 558 const int width = dstInfo.width(); |
| 559 const int height = dstInfo.height(); |
| 560 const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel)); |
| 561 |
| 562 // Allocate space for a row buffer and a source for the swizzler |
| 563 SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, rowBytes)); |
| 564 |
| 565 // Get the destination start row and delta |
| 566 SkPMColor* dstRow; |
| 567 int32_t delta; |
| 568 if (kTopDown_RowOrder == fRowOrder) { |
| 569 dstRow = (SkPMColor*) dst; |
| 570 delta = dstRowBytes; |
| 571 } else { |
| 572 dstRow = (SkPMColor*) SkTAddOffset<void>(dst, (height-1) * dstRowBytes); |
| 573 delta = -dstRowBytes; |
| 574 } |
| 575 |
| 576 // Create the swizzler |
| 577 SkMaskSwizzler* swizzler = SkMaskSwizzler::CreateMaskSwizzler( |
| 578 dstInfo, fMasks, fBitsPerPixel); |
| 579 |
| 580 // Iterate over rows of the image |
| 581 bool transparent = true; |
| 582 for (int y = 0; y < height; y++) { |
| 583 // Read a row of the input |
| 584 if (stream()->read(srcBuffer.get(), rowBytes) != rowBytes) { |
| 585 SkDebugf("Warning: incomplete input stream.\n"); |
| 586 return kIncompleteInput; |
| 587 } |
| 588 |
| 589 // Decode the row in destination format |
| 590 SkSwizzler::ResultAlpha r = swizzler->next(dstRow, srcBuffer.get()); |
| 591 transparent &= SkSwizzler::IsTransparent(r); |
| 592 |
| 593 // Move to the next row |
| 594 dstRow = SkTAddOffset<SkPMColor>(dstRow, delta); |
| 595 } |
| 596 |
| 597 // Many fully transparent bmp images are intended to be opaque. Here, we |
| 598 // correct for this possibility. |
| 599 dstRow = (SkPMColor*) dst; |
| 600 if (transparent) { |
| 601 for (int y = 0; y < height; y++) { |
| 602 for (int x = 0; x < width; x++) { |
| 603 dstRow[x] |= 0xFF000000; |
| 604 } |
| 605 dstRow = SkTAddOffset<SkPMColor>(dstRow, dstRowBytes); |
| 606 } |
| 607 } |
| 608 |
| 609 // Finished decoding the entire image |
| 610 return kSuccess; |
| 611 } |
| 612 |
| 613 /* |
| 614 * |
| 615 * Set an RLE pixel using the color table |
| 616 * |
| 617 */ |
| 618 void SkBmpCodec::setRLEPixel(SkPMColor* dst, uint32_t dstRowBytes, int height, |
| 619 uint32_t x, uint32_t y, uint8_t index) { |
| 620 if (kBottomUp_RowOrder == fRowOrder) { |
| 621 y = height - y - 1; |
| 622 } |
| 623 SkPMColor* dstRow = SkTAddOffset<SkPMColor>(dst, y * dstRowBytes); |
| 624 dstRow[x] = fColorTable.get()[index]; |
| 625 } |
| 626 |
| 627 /* |
| 628 * |
| 629 * Performs the bitmap decoding for RLE input format |
| 630 * RLE decoding is performed all at once, rather than a one row at a time |
| 631 * |
| 632 */ |
| 633 SkCodec::Result SkBmpCodec::decodeRLE(const SkImageInfo& dstInfo, |
| 634 void* dst, uint32_t dstRowBytes) { |
| 635 // Set RLE flags |
| 636 static const uint8_t RLE_ESCAPE = 0; |
| 637 static const uint8_t RLE_EOL = 0; |
| 638 static const uint8_t RLE_EOF = 1; |
| 639 static const uint8_t RLE_DELTA = 2; |
| 640 |
| 641 // Set constant values |
| 642 const int width = dstInfo.width(); |
| 643 const int height = dstInfo.height(); |
| 644 |
| 645 // Input buffer parameters |
| 646 uint32_t currByte = 0; |
| 647 SkAutoTDeleteArray<uint8_t> buffer(SkNEW_ARRAY(uint8_t, fRemainingBytes)); |
| 648 uint32_t totalBytes = stream()->read(buffer.get(), fRemainingBytes); |
| 649 if (totalBytes < fRemainingBytes) { |
| 650 SkDebugf("Warning: incomplete RLE file.\n"); |
| 651 } else if (totalBytes <= 0) { |
| 652 SkDebugf("Error: could not read RLE image data.\n"); |
| 653 return kInvalidInput; |
| 654 } |
| 655 |
| 656 // Destination parameters |
| 657 int x = 0; |
| 658 int y = 0; |
| 659 // If the code skips pixels, remaining pixels are transparent or black |
| 660 // TODO: Skip this if memory was already zeroed. |
| 661 memset(dst, 0, dstRowBytes * height); |
| 662 SkPMColor* dstPtr = (SkPMColor*) dst; |
| 663 |
| 664 while (true) { |
| 665 // Every entry takes at least two bytes |
| 666 if (totalBytes - currByte < 2) { |
| 667 SkDebugf("Warning: incomplete RLE input.\n"); |
| 668 return kIncompleteInput; |
| 669 } |
| 670 |
| 671 // Read the next two bytes. These bytes have different meanings |
| 672 // depending on their values. In the first interpretation, the first |
| 673 // byte is an escape flag and the second byte indicates what special |
| 674 // task to perform. |
| 675 const uint8_t flag = buffer.get()[currByte++]; |
| 676 const uint8_t task = buffer.get()[currByte++]; |
| 677 |
| 678 // If we have reached a row that is beyond the image size, and the RLE |
| 679 // code does not indicate end of file, abort and signal a warning. |
| 680 if (y >= height && (flag != RLE_ESCAPE || (task != RLE_EOF))) { |
| 681 SkDebugf("Warning: invalid RLE input.\n"); |
| 682 return kIncompleteInput; |
| 683 } |
| 684 |
| 685 // Perform decoding |
| 686 if (RLE_ESCAPE == flag) { |
| 687 switch (task) { |
| 688 case RLE_EOL: |
| 689 x = 0; |
| 690 y++; |
| 691 break; |
| 692 case RLE_EOF: |
| 693 return kSuccess; |
| 694 case RLE_DELTA: { |
| 695 // Two bytes are needed to specify delta |
| 696 if (totalBytes - currByte < 2) { |
| 697 SkDebugf("Warning: incomplete RLE input\n"); |
| 698 return kIncompleteInput; |
| 699 } |
| 700 // Modify x and y |
| 701 const uint8_t dx = buffer.get()[currByte++]; |
| 702 const uint8_t dy = buffer.get()[currByte++]; |
| 703 x += dx; |
| 704 y += dy; |
| 705 if (x > width || y > height) { |
| 706 SkDebugf("Warning: invalid RLE input.\n"); |
| 707 return kIncompleteInput; |
| 708 } |
| 709 break; |
| 710 } |
| 711 default: { |
| 712 // If task does not match any of the above signals, it |
| 713 // indicates that we have a sequence of non-RLE pixels. |
| 714 // Furthermore, the value of task is equal to the number |
| 715 // of pixels to interpret. |
| 716 uint8_t numPixels = task; |
| 717 const size_t rowBytes = compute_row_bytes(numPixels, |
| 718 fBitsPerPixel); |
| 719 // Abort if setting numPixels moves us off the edge of the |
| 720 // image. Also abort if there are not enough bytes |
| 721 // remaining in the stream to set numPixels. |
| 722 if (x + numPixels > width || |
| 723 totalBytes - currByte < SkAlign2(rowBytes)) { |
| 724 SkDebugf("Warning: invalid RLE input.\n"); |
| 725 return kIncompleteInput; |
| 726 } |
| 727 // Set numPixels number of pixels |
| 728 SkPMColor* dstRow = SkTAddOffset<SkPMColor>( |
| 729 dstPtr, y * dstRowBytes); |
| 730 while (numPixels > 0) { |
| 731 switch(fBitsPerPixel) { |
| 732 case 4: { |
| 733 SkASSERT(currByte < totalBytes); |
| 734 uint8_t val = buffer.get()[currByte++]; |
| 735 setRLEPixel(dstPtr, dstRowBytes, height, x++, y, |
| 736 val >> 4); |
| 737 numPixels--; |
| 738 if (numPixels != 0) { |
| 739 setRLEPixel(dstPtr, dstRowBytes, height, |
| 740 x++, y, val & 0xF); |
| 741 numPixels--; |
| 742 } |
| 743 break; |
| 744 } |
| 745 case 8: |
| 746 SkASSERT(currByte < totalBytes); |
| 747 setRLEPixel(dstPtr, dstRowBytes, height, x++, y, |
| 748 buffer.get()[currByte++]); |
| 749 numPixels--; |
| 750 break; |
| 751 case 24: { |
| 752 SkASSERT(currByte + 2 < totalBytes); |
| 753 uint8_t blue = buffer.get()[currByte++]; |
| 754 uint8_t green = buffer.get()[currByte++]; |
| 755 uint8_t red = buffer.get()[currByte++]; |
| 756 SkPMColor color = SkPackARGB32NoCheck( |
| 757 0xFF, red, green, blue); |
| 758 dstRow[x++] = color; |
| 759 numPixels--; |
| 760 } |
| 761 default: |
| 762 SkASSERT(false); |
| 763 return kInvalidInput; |
| 764 } |
| 765 } |
| 766 // Skip a byte if necessary to maintain alignment |
| 767 if (!SkIsAlign2(rowBytes)) { |
| 768 currByte++; |
| 769 } |
| 770 break; |
| 771 } |
| 772 } |
| 773 } else { |
| 774 // If the first byte read is not a flag, it indicates the number of |
| 775 // pixels to set in RLE mode. |
| 776 const uint8_t numPixels = flag; |
| 777 const int endX = SkTMin<int>(x + numPixels, width); |
| 778 |
| 779 if (24 == fBitsPerPixel) { |
| 780 // In RLE24, the second byte read is part of the pixel color. |
| 781 // There are two more required bytes to finish encoding the |
| 782 // color. |
| 783 if (totalBytes - currByte < 2) { |
| 784 SkDebugf("Warning: incomplete RLE input\n"); |
| 785 return kIncompleteInput; |
| 786 } |
| 787 |
| 788 // Fill the pixels up to endX with the specified color |
| 789 uint8_t blue = task; |
| 790 uint8_t green = buffer.get()[currByte++]; |
| 791 uint8_t red = buffer.get()[currByte++]; |
| 792 SkPMColor color = SkPackARGB32NoCheck(0xFF, red, green, blue); |
| 793 SkPMColor* dstRow = |
| 794 SkTAddOffset<SkPMColor>(dstPtr, y * dstRowBytes); |
| 795 while (x < endX) { |
| 796 dstRow[x++] = color; |
| 797 } |
| 798 } else { |
| 799 // In RLE8 or RLE4, the second byte read gives the index in the |
| 800 // color table to look up the pixel color. |
| 801 // RLE8 has one color index that gets repeated |
| 802 // RLE4 has two color indexes in the upper and lower 4 bits of |
| 803 // the bytes, which are alternated |
| 804 uint8_t indices[2] = { task, task }; |
| 805 if (4 == fBitsPerPixel) { |
| 806 indices[0] >>= 4; |
| 807 indices[1] &= 0xf; |
| 808 } |
| 809 |
| 810 // Set the indicated number of pixels |
| 811 for (int which = 0; x < endX; x++) { |
| 812 setRLEPixel(dstPtr, dstRowBytes, height, x, y, |
| 813 indices[which]); |
| 814 which = !which; |
| 815 } |
| 816 } |
| 817 } |
| 818 } |
| 819 } |
| 820 |
| 821 /* |
| 822 * |
| 823 * Performs the bitmap decoding for standard input format |
| 824 * |
| 825 */ |
| 826 SkCodec::Result SkBmpCodec::decode(const SkImageInfo& dstInfo, |
| 827 void* dst, uint32_t dstRowBytes) { |
| 828 // Set constant values |
| 829 const int width = dstInfo.width(); |
| 830 const int height = dstInfo.height(); |
| 831 const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel)); |
| 832 const uint32_t alphaMask = fMasks->getAlphaMask(); |
| 833 |
| 834 // Get swizzler configuration |
| 835 SkSwizzler::SrcConfig config; |
| 836 switch (fBitsPerPixel) { |
| 837 case 1: |
| 838 config = SkSwizzler::kIndex1; |
| 839 break; |
| 840 case 2: |
| 841 config = SkSwizzler::kIndex2; |
| 842 break; |
| 843 case 4: |
| 844 config = SkSwizzler::kIndex4; |
| 845 break; |
| 846 case 8: |
| 847 config = SkSwizzler::kIndex; |
| 848 break; |
| 849 case 24: |
| 850 config = SkSwizzler::kBGR; |
| 851 break; |
| 852 case 32: |
| 853 if (alphaMask == 0) { |
| 854 config = SkSwizzler::kBGRX; |
| 855 } else { |
| 856 config = SkSwizzler::kBGRA; |
| 857 } |
| 858 break; |
| 859 default: |
| 860 SkASSERT(false); |
| 861 return kInvalidInput; |
| 862 } |
| 863 |
| 864 // Create swizzler |
| 865 SkSwizzler* swizzler = SkSwizzler::CreateSwizzler(config, fColorTable.get(), |
| 866 dstInfo, dst, dstRowBytes, false); |
| 867 |
| 868 // Allocate space for a row buffer and a source for the swizzler |
| 869 SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, rowBytes)); |
| 870 |
| 871 // Iterate over rows of the image |
| 872 bool transparent = true; |
| 873 for (int y = 0; y < height; y++) { |
| 874 // Read a row of the input |
| 875 if (stream()->read(srcBuffer.get(), rowBytes) != rowBytes) { |
| 876 SkDebugf("Warning: incomplete input stream.\n"); |
| 877 return kIncompleteInput; |
| 878 } |
| 879 |
| 880 // Decode the row in destination format |
| 881 uint32_t row; |
| 882 if (kTopDown_RowOrder == fRowOrder) { |
| 883 row = y; |
| 884 } else { |
| 885 row = height - 1 - y; |
| 886 } |
| 887 SkSwizzler::ResultAlpha r = swizzler->next(srcBuffer.get(), row); |
| 888 transparent &= SkSwizzler::IsTransparent(r); |
| 889 } |
| 890 |
| 891 // Now we adjust the output image with some additional behavior that |
| 892 // SkSwizzler does not support. Firstly, all bmp images that contain |
| 893 // alpha are masked by the alpha mask. Secondly, many fully transparent |
| 894 // bmp images are intended to be opaque. Here, we make those corrections. |
| 895 // Modifying alpha is safe because colors are stored unpremultiplied. |
| 896 SkPMColor* dstRow = (SkPMColor*) dst; |
| 897 if (alphaMask != 0) { |
| 898 for (int y = 0; y < height; y++) { |
| 899 for (int x = 0; x < width; x++) { |
| 900 if (transparent) { |
| 901 dstRow[x] |= 0xFF000000; |
| 902 } else { |
| 903 dstRow[x] &= alphaMask; |
| 904 } |
| 905 dstRow = SkTAddOffset<SkPMColor>(dstRow, dstRowBytes); |
| 906 } |
| 907 } |
| 908 } |
| 909 |
| 910 // Finished decoding the entire image |
| 911 return kSuccess; |
| 912 } |
OLD | NEW |