OLD | NEW |
---|---|
(Empty) | |
1 /* | |
2 * Copyright 2015 Google Inc. | |
3 * | |
4 * Use of this source code is governed by a BSD-style license that can be | |
5 * found in the LICENSE file. | |
6 */ | |
7 | |
8 #include "SkCodec_libbmp.h" | |
9 #include "SkColorPriv.h" | |
10 #include "SkStream.h" | |
11 | |
12 /* | |
13 * | |
14 * Checks if the conversion between the input image and the requested output | |
15 * image has been implemented | |
16 * | |
17 */ | |
18 static bool conversion_possible(const SkImageInfo& dst, | |
19 const SkImageInfo& src) { | |
20 // All of the swizzles convert to kN32 | |
21 // TODO: Update this when more swizzles are supported | |
22 if (kN32_SkColorType != dst.colorType()) { | |
23 return false; | |
24 } | |
25 // Support the swizzle if the requested alpha type is the same as our guess | |
26 // for the input alpha type | |
27 if (src.alphaType() == dst.alphaType()) { | |
28 return true; | |
29 } | |
30 // Also support requests for premul in the unpremul case, despite the fact | |
31 // that all of the swizzles currently create an unpremul image | |
32 // TODO: Update the swizzles so this makes more sense | |
33 return SkCodec::premul_and_unpremul(dst.alphaType(), src.alphaType()) | |
34 || SkCodec::premul_and_unpremul(dst.alphaType(), src.alphaType()); | |
35 } | |
36 | |
37 /* | |
38 * | |
39 * Compute row bytes for an image | |
40 * | |
41 */ | |
42 size_t compute_row_bytes(int width, uint32_t bitsPerPixel) { | |
43 if (bitsPerPixel < 16) { | |
44 SkASSERT(0 == 8 % bitsPerPixel); | |
45 const uint32_t pixelsPerByte = 8 / bitsPerPixel; | |
46 return (width + pixelsPerByte - 1) / pixelsPerByte; | |
47 } else { | |
48 SkASSERT(0 == bitsPerPixel % 8); | |
49 const uint32_t bytesPerPixel = bitsPerPixel / 8; | |
50 return width * bytesPerPixel; | |
51 } | |
52 } | |
53 | |
54 /* | |
55 * | |
56 * Defines the version and type of the second bitmap header | |
57 * | |
58 */ | |
59 enum BitmapHeaderType { | |
60 kInfoV1_BitmapHeaderType, | |
61 kInfoV2_BitmapHeaderType, | |
62 kInfoV3_BitmapHeaderType, | |
63 kInfoV4_BitmapHeaderType, | |
64 kInfoV5_BitmapHeaderType, | |
65 kOS2V1_BitmapHeaderType, | |
66 kOS2VX_BitmapHeaderType, | |
67 kUnknown_BitmapHeaderType | |
68 }; | |
69 | |
70 /* | |
71 * | |
72 * Possible bitmap compression types | |
73 * | |
74 */ | |
75 enum BitmapCompressionMethod { | |
76 kNone_BitmapCompressionMethod = 0, | |
77 k8BitRLE_BitmapCompressionMethod = 1, | |
78 k4BitRLE_BitmapCompressionMethod = 2, | |
79 kBitMasks_BitmapCompressionMethod = 3, | |
80 kJpeg_BitmapCompressionMethod = 4, | |
81 kPng_BitmapCompressionMethod = 5, | |
82 kAlphaBitMasks_BitmapCompressionMethod = 6, | |
83 kCMYK_BitmapCompressionMethod = 11, | |
84 kCMYK8BitRLE_BitmapCompressionMethod = 12, | |
85 kCMYK4BitRLE_BitmapCompressionMethod = 13 | |
86 }; | |
87 | |
88 /* | |
89 * | |
90 * Checks the start of the stream to see if the image is a bitmap | |
91 * | |
92 */ | |
93 bool SkBmpCodec::IsBmp(SkStream* stream) { | |
94 // TODO: Support "IC", "PT", "CI", "CP", "BA" | |
95 // TODO: ICO files may contain a BMP and need to use this decoder | |
96 const char bmpSig[] = { 'B', 'M' }; | |
97 char buffer[sizeof(bmpSig)]; | |
98 return stream->read(buffer, sizeof(bmpSig)) == sizeof(bmpSig) && | |
99 !memcmp(buffer, bmpSig, sizeof(bmpSig)); | |
100 } | |
101 | |
102 /* | |
103 * | |
104 * Assumes IsBmp was called and returned true | |
105 * Creates a bitmap decoder | |
106 * Reads enough of the stream to determine the image format | |
107 * | |
108 */ | |
109 SkCodec* SkBmpCodec::NewFromStream(SkStream* stream) { | |
110 // Header size constants | |
111 static const uint32_t kBmpHeaderBytes = 14; | |
112 static const uint32_t kBmpHeaderBytesPlusFour = kBmpHeaderBytes + 4; | |
113 static const uint32_t kBmpOS2V1Bytes = 12; | |
114 static const uint32_t kBmpOS2V2Bytes = 64; | |
115 static const uint32_t kBmpInfoBaseBytes = 16; | |
116 static const uint32_t kBmpInfoV1Bytes = 40; | |
117 static const uint32_t kBmpInfoV2Bytes = 52; | |
118 static const uint32_t kBmpInfoV3Bytes = 56; | |
119 static const uint32_t kBmpInfoV4Bytes = 108; | |
120 static const uint32_t kBmpInfoV5Bytes = 124; | |
121 static const uint32_t kBmpMaskBytes = 12; | |
122 | |
123 // Read the first header and the size of the second header | |
124 SkAutoTDeleteArray<uint8_t> hBuffer( | |
125 SkNEW_ARRAY(uint8_t, kBmpHeaderBytesPlusFour)); | |
126 if (stream->read(hBuffer.get(), kBmpHeaderBytesPlusFour) != | |
127 kBmpHeaderBytesPlusFour) { | |
128 SkDebugf("Error: unable to read first bitmap header.\n"); | |
129 return NULL; | |
130 } | |
131 | |
132 // The total bytes in the bmp file | |
133 // We only need to use this value for RLE decoding, so we will only check | |
134 // that it is valid in the RLE case. | |
135 const uint32_t totalBytes = get_int(hBuffer.get(), 2); | |
136 | |
137 // The offset from the start of the file where the pixel data begins | |
138 const uint32_t offset = get_int(hBuffer.get(), 10); | |
139 if (offset < kBmpHeaderBytes + kBmpOS2V1Bytes) { | |
140 SkDebugf("Error: invalid starting location for pixel data\n"); | |
141 return NULL; | |
142 } | |
143 | |
144 // The size of the second (info) header in bytes | |
145 // The size is the first field of the second header, so we have already | |
146 // read the first four infoBytes. | |
147 const uint32_t infoBytes = get_int(hBuffer.get(), 14); | |
148 if (infoBytes < kBmpOS2V1Bytes) { | |
149 SkDebugf("Error: invalid second header size.\n"); | |
150 return NULL; | |
151 } | |
152 const uint32_t infoBytesRemaining = infoBytes - 4; | |
153 hBuffer.free(); | |
154 | |
155 // Read the second header | |
156 SkAutoTDeleteArray<uint8_t> iBuffer( | |
157 SkNEW_ARRAY(uint8_t, infoBytesRemaining)); | |
158 if (stream->read(iBuffer.get(), infoBytesRemaining) != infoBytesRemaining) { | |
159 SkDebugf("Error: unable to read second bitmap header.\n"); | |
160 return NULL; | |
161 } | |
162 | |
163 // The number of bits used per pixel in the pixel data | |
164 uint16_t bitsPerPixel; | |
165 | |
166 // The compression method for the pixel data | |
167 uint32_t compression = kNone_BitmapCompressionMethod; | |
168 | |
169 // Number of colors in the color table, defaults to 0 or max (see below) | |
170 uint32_t numColors = 0; | |
171 | |
172 // Bytes per color in the color table, early versions use 3, most use 4 | |
173 uint32_t bytesPerColor; | |
174 | |
175 // The image width and height | |
176 int width, height; | |
177 | |
178 // Determine image information depending on second header format | |
179 BitmapHeaderType headerType; | |
180 if (infoBytes >= kBmpInfoBaseBytes) { | |
181 // Check the version of the header | |
182 switch (infoBytes) { | |
183 case kBmpInfoV1Bytes: | |
184 headerType = kInfoV1_BitmapHeaderType; | |
185 break; | |
186 case kBmpInfoV2Bytes: | |
187 headerType = kInfoV2_BitmapHeaderType; | |
188 break; | |
189 case kBmpInfoV3Bytes: | |
190 headerType = kInfoV3_BitmapHeaderType; | |
191 break; | |
192 case kBmpInfoV4Bytes: | |
193 headerType = kInfoV4_BitmapHeaderType; | |
194 break; | |
195 case kBmpInfoV5Bytes: | |
196 headerType = kInfoV5_BitmapHeaderType; | |
197 break; | |
198 case 16: | |
199 case 20: | |
200 case 24: | |
201 case 28: | |
202 case 32: | |
203 case 36: | |
204 case 42: | |
205 case 46: | |
206 case 48: | |
207 case 60: | |
208 case kBmpOS2V2Bytes: | |
209 headerType = kOS2VX_BitmapHeaderType; | |
210 break; | |
211 default: | |
212 // We do not signal an error here because there is the | |
213 // possibility of new or undocumented bmp header types. Most | |
214 // of the newer versions of bmp headers are similar to and | |
215 // build off of the older versions, so we may still be able to | |
216 // decode the bmp. | |
217 SkDebugf("Warning: unknown bmp header format.\n"); | |
218 headerType = kUnknown_BitmapHeaderType; | |
219 break; | |
220 } | |
221 // We check the size of the header before entering the if statement. | |
222 // We should not reach this point unless the size is large enough for | |
223 // these required fields. | |
224 SkASSERT(infoBytesRemaining >= 12); | |
225 width = get_int(iBuffer.get(), 0); | |
226 height = get_int(iBuffer.get(), 4); | |
227 bitsPerPixel = get_short(iBuffer.get(), 10); | |
228 | |
229 // Some versions do not have these fields, so we check before | |
230 // overwriting the default value. | |
231 if (infoBytesRemaining >= 16) { | |
232 compression = get_int(iBuffer.get(), 12); | |
233 if (infoBytesRemaining >= 32) { | |
234 numColors = get_int(iBuffer.get(), 28); | |
235 } | |
236 } | |
237 | |
238 // All of the headers that reach this point, store color table entries | |
239 // using 4 bytes per pixel. | |
240 bytesPerColor = 4; | |
241 } else if (infoBytes >= kBmpOS2V1Bytes) { | |
242 // The OS2V1 is treated separately because it has a unique format | |
243 headerType = kOS2V1_BitmapHeaderType; | |
244 width = (int) get_short(iBuffer.get(), 0); | |
245 height = (int) get_short(iBuffer.get(), 2); | |
246 bitsPerPixel = get_short(iBuffer.get(), 6); | |
247 bytesPerColor = 3; | |
248 } else { | |
249 // There are no valid bmp headers | |
250 SkDebugf("Error: second bitmap header size is invalid.\n"); | |
251 return NULL; | |
252 } | |
253 | |
254 // Check for valid dimensions from header | |
255 RowOrder rowOrder = kBottomUp_RowOrder; | |
256 if (height < 0) { | |
257 height = -height; | |
258 rowOrder = kTopDown_RowOrder; | |
259 } | |
260 static const int kBmpMaxDim = 1 << 16; | |
261 if (width < 0 || width >= kBmpMaxDim || height >= kBmpMaxDim) { | |
262 // TODO: Decide if we want to support really large bmps. | |
263 SkDebugf("Error: invalid bitmap dimensions.\n"); | |
264 return NULL; | |
265 } | |
266 | |
267 // Create mask struct | |
268 SkMasks::InputMasks inputMasks; | |
269 memset(&inputMasks, 0, 4*sizeof(uint32_t)); | |
270 | |
271 // Determine the input compression format and set bit masks if necessary | |
272 uint32_t maskBytes = 0; | |
273 BitmapInputFormat inputFormat = kUnknown_BitmapInputFormat; | |
274 switch (compression) { | |
275 case kNone_BitmapCompressionMethod: | |
276 inputFormat = kStandard_BitmapInputFormat; | |
277 break; | |
278 case k8BitRLE_BitmapCompressionMethod: | |
279 if (bitsPerPixel != 8) { | |
280 SkDebugf("Warning: correcting invalid bitmap format.\n"); | |
281 bitsPerPixel = 8; | |
282 } | |
283 inputFormat = kRLE_BitmapInputFormat; | |
284 break; | |
285 case k4BitRLE_BitmapCompressionMethod: | |
286 if (bitsPerPixel != 4) { | |
287 SkDebugf("Warning: correcting invalid bitmap format.\n"); | |
288 bitsPerPixel = 4; | |
289 } | |
290 inputFormat = kRLE_BitmapInputFormat; | |
291 break; | |
292 case kAlphaBitMasks_BitmapCompressionMethod: | |
293 case kBitMasks_BitmapCompressionMethod: | |
294 // Load the masks | |
295 inputFormat = kBitMask_BitmapInputFormat; | |
296 switch (headerType) { | |
297 case kInfoV1_BitmapHeaderType: { | |
298 // The V1 header stores the bit masks after the header | |
299 SkAutoTDeleteArray<uint8_t> mBuffer( | |
300 SkNEW_ARRAY(uint8_t, kBmpMaskBytes)); | |
301 if (stream->read(mBuffer.get(), kBmpMaskBytes) != | |
302 kBmpMaskBytes) { | |
303 SkDebugf("Error: unable to read bit inputMasks.\n"); | |
304 return NULL; | |
305 } | |
306 maskBytes = kBmpMaskBytes; | |
307 inputMasks.red = get_int(mBuffer.get(), 0); | |
308 inputMasks.green = get_int(mBuffer.get(), 4); | |
309 inputMasks.blue = get_int(mBuffer.get(), 8); | |
310 break; | |
311 } | |
312 case kInfoV2_BitmapHeaderType: | |
313 case kInfoV3_BitmapHeaderType: | |
314 case kInfoV4_BitmapHeaderType: | |
315 case kInfoV5_BitmapHeaderType: | |
316 // Header types are matched based on size. If the header | |
317 // is V2+, we are guaranteed to be able to read at least | |
318 // this size. | |
319 SkASSERT(infoBytesRemaining >= 48); | |
320 inputMasks.red = get_int(iBuffer.get(), 36); | |
321 inputMasks.green = get_int(iBuffer.get(), 40); | |
322 inputMasks.blue = get_int(iBuffer.get(), 44); | |
323 break; | |
324 case kOS2VX_BitmapHeaderType: | |
325 // TODO: Decide if we intend to support this. | |
326 // It is unsupported in the previous version and | |
327 // in chromium. I have not come across a test case | |
328 // that uses this format. | |
329 SkDebugf("Error: huffman format unsupported.\n"); | |
330 return NULL; | |
331 default: | |
332 SkDebugf("Error: invalid bmp bit masks header.\n"); | |
333 return NULL; | |
334 } | |
335 break; | |
336 case kJpeg_BitmapCompressionMethod: | |
337 if (24 == bitsPerPixel) { | |
338 inputFormat = kRLE_BitmapInputFormat; | |
339 break; | |
340 } | |
341 // Fall through | |
342 case kPng_BitmapCompressionMethod: | |
343 // TODO: Decide if we intend to support this. | |
344 // It is unsupported in the previous version and | |
345 // in chromium. I think it is used mostly for printers. | |
346 SkDebugf("Error: compression format not supported.\n"); | |
347 return NULL; | |
348 case kCMYK_BitmapCompressionMethod: | |
349 case kCMYK8BitRLE_BitmapCompressionMethod: | |
350 case kCMYK4BitRLE_BitmapCompressionMethod: | |
351 // TODO: Same as above. | |
352 SkDebugf("Error: CMYK not supported for bitmap decoding.\n"); | |
353 return NULL; | |
354 default: | |
355 SkDebugf("Error: invalid format for bitmap decoding.\n"); | |
356 return NULL; | |
357 } | |
358 | |
359 // Most versions of bmps should be rendered as opaque. Either they do | |
360 // not have an alpha channel, or they expect the alpha channel to be | |
361 // ignored. V4+ bmp files introduce an alpha mask and allow the creator | |
362 // of the image to use the alpha channels. However, many of these images | |
363 // leave the alpha channel blank and expect to be rendered as opaque. For | |
364 // this reason, we set the alpha type to kUnknown for V4+ bmps and figure | |
365 // out the alpha type during the decode. | |
366 SkAlphaType alphaType = kOpaque_SkAlphaType; | |
367 if (kInfoV4_BitmapHeaderType == headerType || | |
368 kInfoV5_BitmapHeaderType == headerType) { | |
369 // Header types are matched based on size. If the header is | |
370 // V4+, we are guaranteed to be able to read at least this size. | |
371 SkASSERT(infoBytesRemaining > 52); | |
372 inputMasks.alpha = get_int(iBuffer.get(), 48); | |
373 if (inputMasks.alpha != 0) { | |
374 alphaType = kUnpremul_SkAlphaType; | |
375 } | |
376 } | |
377 iBuffer.free(); | |
378 | |
379 // Check for valid bits per pixel input | |
380 switch (bitsPerPixel) { | |
381 // In addition to more standard pixel compression formats, bmp supports | |
382 // the use of bit masks to determine pixel components. The standard | |
383 // format for representing 16-bit colors is 555 (XRRRRRGGGGGBBBBB), | |
384 // which does not map well to any Skia color formats. For this reason, | |
385 // we will always enable mask mode with 16 bits per pixel. | |
386 case 16: | |
387 if (kBitMask_BitmapInputFormat != inputFormat) { | |
388 inputMasks.red = 0x7C00; | |
389 inputMasks.green = 0x03E0; | |
390 inputMasks.blue = 0x001F; | |
391 inputFormat = kBitMask_BitmapInputFormat; | |
392 } | |
393 break; | |
394 case 1: | |
395 case 2: | |
396 case 4: | |
397 case 8: | |
398 case 24: | |
399 case 32: | |
400 break; | |
401 default: | |
402 SkDebugf("Error: invalid input value for bits per pixel.\n"); | |
403 return NULL; | |
404 } | |
405 | |
406 // Check that input bit masks are valid and create the masks object | |
407 SkAutoTDelete<SkMasks> | |
408 masks(SkMasks::CreateMasks(inputMasks, bitsPerPixel)); | |
409 if (NULL == masks) { | |
410 SkDebugf("Error: invalid input masks.\n"); | |
411 return NULL; | |
412 } | |
413 | |
414 // Process the color table | |
415 uint32_t colorBytes = 0; | |
416 SkPMColor* colorTable = NULL; | |
417 if (bitsPerPixel < 16) { | |
418 // Verify the number of colors for the color table | |
419 const uint32_t maxColors = 1 << bitsPerPixel; | |
420 // Zero is a default for maxColors | |
421 // Also set numColors to maxColors when input is too large | |
422 if (numColors <= 0 || numColors > maxColors) { | |
423 numColors = maxColors; | |
424 } | |
425 colorTable = SkNEW_ARRAY(SkPMColor, maxColors); | |
426 | |
427 // Construct the color table | |
428 colorBytes = numColors * bytesPerColor; | |
429 SkAutoTDeleteArray<uint8_t> cBuffer(SkNEW_ARRAY(uint8_t, colorBytes)); | |
430 if (stream->read(cBuffer.get(), colorBytes) != colorBytes) { | |
431 SkDebugf("Error: unable to read color table.\n"); | |
432 return NULL; | |
433 } | |
434 | |
435 // Fill in the color table (colors are stored unpremultiplied) | |
scroggo
2015/03/12 15:19:57
We should also have this comment in the header fil
msarett
2015/03/12 18:37:46
Of course. Will do.
| |
436 uint32_t i = 0; | |
437 for (; i < numColors; i++) { | |
438 uint8_t blue = get_byte(cBuffer.get(), i*bytesPerColor); | |
439 uint8_t green = get_byte(cBuffer.get(), i*bytesPerColor + 1); | |
440 uint8_t red = get_byte(cBuffer.get(), i*bytesPerColor + 2); | |
441 uint8_t alpha = 0xFF; | |
442 if (kOpaque_SkAlphaType != alphaType) { | |
443 alpha = (inputMasks.alpha >> 24) & | |
444 get_byte(cBuffer.get(), i*bytesPerColor + 3); | |
445 } | |
446 // Store the unpremultiplied color | |
447 colorTable[i] = SkPackARGB32NoCheck(alpha, red, green, blue); | |
448 } | |
449 | |
450 // To avoid segmentation faults on bad pixel data, fill the end of the | |
451 // color table with black. This is the same the behavior as the | |
452 // chromium decoder. | |
453 for (; i < maxColors; i++) { | |
454 colorTable[i] = SkPackARGB32NoCheck(0xFF, 0, 0, 0); | |
455 } | |
456 } else { | |
457 // We will not use the color table if bitsPerPixel >= 16, but if there | |
458 // is a color table, we may need to skip the color table bytes. | |
459 // We will assume that the maximum color table size is the same as when | |
460 // there are 8 bits per pixel (the largest color table actually used). | |
461 // Color tables for greater than 8 bits per pixel are somewhat | |
462 // undocumented. It is indicated that they may exist to store a list | |
463 // of colors for optimization on devices with limited color display | |
464 // capacity. While we do not know for sure, we will guess that any | |
465 // value of numColors greater than this maximum is invalid. | |
466 if (numColors <= (1 << 8)) { | |
467 colorBytes = numColors * bytesPerColor; | |
468 if (stream->skip(colorBytes) != colorBytes) { | |
469 SkDebugf("Error: Could not skip color table bytes.\n"); | |
470 return NULL; | |
471 } | |
472 } | |
473 } | |
474 | |
475 // Ensure that the stream now points to the start of the pixel array | |
476 uint32_t bytesRead = kBmpHeaderBytes + infoBytes + maskBytes + colorBytes; | |
477 | |
478 // Check that we have not read past the pixel array offset | |
479 if(bytesRead > offset) { | |
480 // This may occur on OS 2.1 and other old versions where the color | |
481 // table defaults to max size, and the bmp tries to use a smaller color | |
482 // table. This is invalid, and our decision is to indicate an error, | |
483 // rather than try to guess the intended size of the color table and | |
484 // rewind the stream to display the image. | |
485 SkDebugf("Error: pixel data offset less than header size.\n"); | |
486 return NULL; | |
487 } | |
488 | |
489 // Skip to the start of the pixel array | |
490 if (stream->skip(offset - bytesRead) != offset - bytesRead) { | |
491 SkDebugf("Error: unable to skip to image data.\n"); | |
492 return NULL; | |
493 } | |
494 | |
495 // Remaining bytes is only used for RLE | |
496 const int remainingBytes = totalBytes - offset; | |
497 if (remainingBytes <= 0 && kRLE_BitmapInputFormat == inputFormat) { | |
498 SkDebugf("Error: RLE requires valid input size.\n"); | |
499 return NULL; | |
500 } | |
501 | |
502 // Return the codec | |
503 // We will use ImageInfo to store width, height, and alpha type. We will | |
504 // choose kN32_SkColorType as the input color type because that is the | |
505 // expected choice for a destination color type. In reality, the input | |
506 // color type has many possible formats. | |
507 const SkImageInfo& imageInfo = SkImageInfo::Make(width, height, | |
508 kN32_SkColorType, alphaType); | |
509 return SkNEW_ARGS(SkBmpCodec, (imageInfo, stream, bitsPerPixel, | |
510 inputFormat, masks.detach(), colorTable, | |
511 rowOrder, remainingBytes)); | |
512 } | |
513 | |
514 /* | |
515 * | |
516 * Creates an instance of the decoder | |
517 * Called only by NewFromStream | |
518 * | |
519 */ | |
520 SkBmpCodec::SkBmpCodec(const SkImageInfo& info, SkStream* stream, | |
521 uint16_t bitsPerPixel, BitmapInputFormat inputFormat, | |
522 SkMasks* masks, SkPMColor* colorTable, | |
523 RowOrder rowOrder, | |
524 const uint32_t remainingBytes) | |
525 : INHERITED(info, stream) | |
526 , fBitsPerPixel(bitsPerPixel) | |
527 , fInputFormat(inputFormat) | |
528 , fMasks(masks) | |
529 , fColorTable(colorTable) | |
530 , fRowOrder(rowOrder) | |
531 , fRemainingBytes(remainingBytes) | |
532 {} | |
533 | |
534 /* | |
535 * | |
536 * Initiates the bitmap decode | |
537 * | |
538 */ | |
539 SkCodec::Result SkBmpCodec::onGetPixels(const SkImageInfo& dstInfo, | |
540 void* dst, size_t dstRowBytes, | |
541 SkPMColor*, int*) { | |
542 if (!this->rewindIfNeeded()) { | |
543 return kCouldNotRewind; | |
544 } | |
545 if (dstInfo.dimensions() != this->getOriginalInfo().dimensions()) { | |
546 SkDebugf("Error: scaling not supported.\n"); | |
547 return kInvalidScale; | |
548 } | |
549 if (!conversion_possible(dstInfo, this->getOriginalInfo())) { | |
550 SkDebugf("Error: cannot convert input type to output type.\n"); | |
551 return kInvalidConversion; | |
552 } | |
553 | |
554 switch (fInputFormat) { | |
555 case kBitMask_BitmapInputFormat: | |
556 return decodeMask(dstInfo, dst, dstRowBytes); | |
557 case kRLE_BitmapInputFormat: | |
558 return decodeRLE(dstInfo, dst, dstRowBytes); | |
559 case kStandard_BitmapInputFormat: | |
560 return decode(dstInfo, dst, dstRowBytes); | |
561 default: | |
562 SkASSERT(false); | |
563 return kInvalidInput; | |
564 } | |
565 } | |
566 | |
567 /* | |
568 * | |
569 * Performs the bitmap decoding for bit masks input format | |
570 * | |
571 */ | |
572 SkCodec::Result SkBmpCodec::decodeMask(const SkImageInfo& dstInfo, | |
573 void* dst, uint32_t dstRowBytes) { | |
574 // Set constant values | |
575 const int width = dstInfo.width(); | |
576 const int height = dstInfo.height(); | |
577 const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel)); | |
578 | |
579 // Allocate space for a row buffer and a source for the swizzler | |
580 SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, rowBytes)); | |
581 | |
582 // Get the destination start row and delta | |
583 SkPMColor* dstRow; | |
584 int32_t delta; | |
585 if (kTopDown_RowOrder == fRowOrder) { | |
586 dstRow = (SkPMColor*) dst; | |
587 delta = dstRowBytes; | |
588 } else { | |
589 dstRow = (SkPMColor*) SkTAddOffset<void>(dst, (height-1) * dstRowBytes); | |
590 delta = -dstRowBytes; | |
591 } | |
592 | |
593 // Create the swizzler | |
594 SkMaskSwizzler* swizzler = SkMaskSwizzler::CreateMaskSwizzler( | |
595 dstInfo, fMasks, fBitsPerPixel); | |
596 | |
597 // Iterate over rows of the image | |
598 bool transparent = true; | |
599 for (int y = 0; y < height; y++) { | |
600 // Read a row of the input | |
601 if (stream()->read(srcBuffer.get(), rowBytes) != rowBytes) { | |
602 SkDebugf("Warning: incomplete input stream.\n"); | |
603 return kIncompleteInput; | |
604 } | |
605 | |
606 // Decode the row in destination format | |
607 SkSwizzler::ResultAlpha r = swizzler->next(dstRow, srcBuffer.get()); | |
608 transparent &= SkSwizzler::IsTransparent(r); | |
609 | |
610 // Move to the next row | |
611 dstRow = SkTAddOffset<SkPMColor>(dstRow, delta); | |
612 } | |
613 | |
614 // Many fully transparent bmp images are intended to be opaque. Here, we | |
615 // correct for this possibility. | |
616 dstRow = (SkPMColor*) dst; | |
617 if (transparent) { | |
618 for (int y = 0; y < height; y++) { | |
619 for (int x = 0; x < width; x++) { | |
620 dstRow[x] |= 0xFF000000; | |
621 } | |
622 dstRow = SkTAddOffset<SkPMColor>(dstRow, dstRowBytes); | |
623 } | |
624 } | |
625 | |
626 // Finished decoding the entire image | |
627 return kSuccess; | |
628 } | |
629 | |
630 /* | |
631 * | |
632 * Set an RLE pixel using the color table | |
633 * | |
634 */ | |
635 void SkBmpCodec::setRLEPixel(SkPMColor* dst, uint32_t dstRowBytes, int height, | |
636 uint32_t x, uint32_t y, uint8_t index) { | |
637 if (kBottomUp_RowOrder == fRowOrder) { | |
638 y = height - y - 1; | |
639 } | |
640 SkPMColor* dstRow = SkTAddOffset<SkPMColor>(dst, y * dstRowBytes); | |
641 dstRow[x] = fColorTable.get()[index]; | |
642 } | |
643 | |
644 /* | |
645 * | |
646 * Performs the bitmap decoding for RLE input format | |
647 * RLE decoding is performed all at once, rather than a one row at a time | |
648 * | |
649 */ | |
650 SkCodec::Result SkBmpCodec::decodeRLE(const SkImageInfo& dstInfo, | |
651 void* dst, uint32_t dstRowBytes) { | |
652 // Set RLE flags | |
653 static const uint8_t RLE_ESCAPE = 0; | |
654 static const uint8_t RLE_EOL = 0; | |
655 static const uint8_t RLE_EOF = 1; | |
656 static const uint8_t RLE_DELTA = 2; | |
657 | |
658 // Set constant values | |
659 const int width = dstInfo.width(); | |
660 const int height = dstInfo.height(); | |
661 | |
662 // Input buffer parameters | |
663 uint32_t currByte = 0; | |
664 SkAutoTDeleteArray<uint8_t> buffer(SkNEW_ARRAY(uint8_t, fRemainingBytes)); | |
665 uint32_t totalBytes = stream()->read(buffer.get(), fRemainingBytes); | |
666 if (totalBytes < fRemainingBytes) { | |
667 SkDebugf("Warning: incomplete RLE file.\n"); | |
668 } else if (totalBytes <= 0) { | |
669 SkDebugf("Error: could not read RLE image data.\n"); | |
670 return kInvalidInput; | |
671 } | |
672 | |
673 // Destination parameters | |
674 int x = 0; | |
675 int y = 0; | |
676 // If the code skips pixels, remaining pixels are transparent or black | |
677 // TODO: Skip this if memory was already zeroed. | |
678 memset(dst, 0, dstRowBytes * height); | |
679 SkPMColor* dstPtr = (SkPMColor*) dst; | |
680 | |
681 while (true) { | |
682 // Every entry takes at least two bytes | |
683 if (totalBytes - currByte < 2) { | |
684 SkDebugf("Warning: incomplete RLE input.\n"); | |
685 return kIncompleteInput; | |
686 } | |
687 | |
688 // Read the next two bytes. These bytes have different meanings | |
689 // depending on their values. In the first interpretation, the first | |
690 // byte is an escape flag and the second byte indicates what special | |
691 // task to perform. | |
692 const uint8_t flag = buffer.get()[currByte++]; | |
693 const uint8_t task = buffer.get()[currByte++]; | |
694 | |
695 // If we have reached a row that is beyond the image size, and the RLE | |
696 // code does not indicate end of file, abort and signal a warning. | |
697 if (y >= height && (flag != RLE_ESCAPE || (task != RLE_EOF))) { | |
698 SkDebugf("Warning: invalid RLE input.\n"); | |
699 return kIncompleteInput; | |
700 } | |
701 | |
702 // Perform decoding | |
703 if (RLE_ESCAPE == flag) { | |
704 switch (task) { | |
705 case RLE_EOL: | |
706 x = 0; | |
707 y++; | |
708 break; | |
709 case RLE_EOF: | |
710 return kSuccess; | |
711 case RLE_DELTA: { | |
712 // Two bytes are needed to specify delta | |
713 if (totalBytes - currByte < 2) { | |
714 SkDebugf("Warning: incomplete RLE input\n"); | |
715 return kIncompleteInput; | |
716 } | |
717 // Modify x and y | |
718 const uint8_t dx = buffer.get()[currByte++]; | |
719 const uint8_t dy = buffer.get()[currByte++]; | |
720 x += dx; | |
721 y += dy; | |
722 if (x > width || y > height) { | |
723 SkDebugf("Warning: invalid RLE input.\n"); | |
724 return kIncompleteInput; | |
725 } | |
726 break; | |
727 } | |
728 default: { | |
729 // If task does not match any of the above signals, it | |
730 // indicates that we have a sequence of non-RLE pixels. | |
731 // Furthermore, the value of task is equal to the number | |
732 // of pixels to interpret. | |
733 uint8_t numPixels = task; | |
734 const size_t rowBytes = compute_row_bytes(numPixels, | |
735 fBitsPerPixel); | |
736 // Abort if setting numPixels moves us off the edge of the | |
737 // image. Also abort if there are not enough bytes | |
738 // remaining in the stream to set numPixels. | |
739 if (x + numPixels > width || | |
740 totalBytes - currByte < SkAlign2(rowBytes)) { | |
741 SkDebugf("Warning: invalid RLE input.\n"); | |
742 return kIncompleteInput; | |
743 } | |
744 // Set numPixels number of pixels | |
745 SkPMColor* dstRow = SkTAddOffset<SkPMColor>( | |
746 dstPtr, y * dstRowBytes); | |
747 while (numPixels > 0) { | |
748 switch(fBitsPerPixel) { | |
749 case 4: { | |
750 SkASSERT(currByte < totalBytes); | |
751 uint8_t val = buffer.get()[currByte++]; | |
752 setRLEPixel(dstPtr, dstRowBytes, height, x++, y, | |
753 val >> 4); | |
754 numPixels--; | |
755 if (numPixels != 0) { | |
756 setRLEPixel(dstPtr, dstRowBytes, height, | |
757 x++, y, val & 0xF); | |
758 numPixels--; | |
759 } | |
760 break; | |
761 } | |
762 case 8: | |
763 SkASSERT(currByte < totalBytes); | |
764 setRLEPixel(dstPtr, dstRowBytes, height, x++, y, | |
765 buffer.get()[currByte++]); | |
766 numPixels--; | |
767 break; | |
768 case 24: { | |
769 SkASSERT(currByte + 2 < totalBytes); | |
770 uint8_t blue = buffer.get()[currByte++]; | |
771 uint8_t green = buffer.get()[currByte++]; | |
772 uint8_t red = buffer.get()[currByte++]; | |
773 SkPMColor color = SkPackARGB32NoCheck( | |
774 0xFF, red, green, blue); | |
775 dstRow[x++] = color; | |
776 numPixels--; | |
777 } | |
778 default: | |
779 SkASSERT(false); | |
780 return kInvalidInput; | |
781 } | |
782 } | |
783 // Skip a byte if necessary to maintain alignment | |
784 if (!SkIsAlign2(rowBytes)) { | |
785 currByte++; | |
786 } | |
787 break; | |
788 } | |
789 } | |
790 } else { | |
791 // If the first byte read is not a flag, it indicates the number of | |
792 // pixels to set in RLE mode. | |
793 const uint8_t numPixels = flag; | |
794 const int endX = SkTMin<int>(x + numPixels, width); | |
795 | |
796 if (24 == fBitsPerPixel) { | |
797 // In RLE24, the second byte read is part of the pixel color. | |
798 // There are two more required bytes to finish encoding the | |
799 // color. | |
800 if (totalBytes - currByte < 2) { | |
801 SkDebugf("Warning: incomplete RLE input\n"); | |
802 return kIncompleteInput; | |
803 } | |
804 | |
805 // Fill the pixels up to endX with the specified color | |
806 uint8_t blue = task; | |
807 uint8_t green = buffer.get()[currByte++]; | |
808 uint8_t red = buffer.get()[currByte++]; | |
809 SkPMColor color = SkPackARGB32NoCheck(0xFF, red, green, blue); | |
810 SkPMColor* dstRow = | |
811 SkTAddOffset<SkPMColor>(dstPtr, y * dstRowBytes); | |
812 while (x < endX) { | |
813 dstRow[x++] = color; | |
814 } | |
815 } else { | |
816 // In RLE8 or RLE4, the second byte read gives the index in the | |
817 // color table to look up the pixel color. | |
818 // RLE8 has one color index that gets repeated | |
819 // RLE4 has two color indexes in the upper and lower 4 bits of | |
820 // the bytes, which are alternated | |
821 uint8_t indices[2] = { task, task }; | |
822 if (4 == fBitsPerPixel) { | |
823 indices[0] >>= 4; | |
824 indices[1] &= 0xf; | |
825 } | |
826 | |
827 // Set the indicated number of pixels | |
828 for (int which = 0; x < endX; x++) { | |
829 setRLEPixel(dstPtr, dstRowBytes, height, x, y, | |
830 indices[which]); | |
831 which = !which; | |
832 } | |
833 } | |
834 } | |
835 } | |
836 } | |
837 | |
838 /* | |
839 * | |
840 * Performs the bitmap decoding for standard input format | |
841 * | |
842 */ | |
843 SkCodec::Result SkBmpCodec::decode(const SkImageInfo& dstInfo, | |
844 void* dst, uint32_t dstRowBytes) { | |
845 // Set constant values | |
846 const int width = dstInfo.width(); | |
847 const int height = dstInfo.height(); | |
848 const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel)); | |
849 const uint32_t alphaMask = fMasks->getAlphaMask(); | |
850 | |
851 // Get swizzler configuration | |
852 SkSwizzler::SrcConfig config; | |
853 switch (fBitsPerPixel) { | |
854 case 1: | |
855 config = SkSwizzler::kIndex1; | |
856 break; | |
857 case 2: | |
858 config = SkSwizzler::kIndex2; | |
859 break; | |
860 case 4: | |
861 config = SkSwizzler::kIndex4; | |
862 break; | |
863 case 8: | |
864 config = SkSwizzler::kIndex; | |
865 break; | |
866 case 24: | |
867 config = SkSwizzler::kBGR; | |
868 break; | |
869 case 32: | |
870 if (alphaMask == 0) { | |
871 config = SkSwizzler::kBGRX; | |
872 } else { | |
873 config = SkSwizzler::kBGRA; | |
874 } | |
875 break; | |
876 default: | |
877 SkASSERT(false); | |
878 return kInvalidInput; | |
879 } | |
880 | |
881 // Create swizzler | |
882 SkSwizzler* swizzler = SkSwizzler::CreateSwizzler(config, fColorTable.get(), | |
883 dstInfo, dst, dstRowBytes, false); | |
884 | |
885 // Allocate space for a row buffer and a source for the swizzler | |
886 SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, rowBytes)); | |
887 | |
888 // Iterate over rows of the image | |
889 bool transparent = true; | |
890 for (int y = 0; y < height; y++) { | |
891 // Read a row of the input | |
892 if (stream()->read(srcBuffer.get(), rowBytes) != rowBytes) { | |
893 SkDebugf("Warning: incomplete input stream.\n"); | |
894 return kIncompleteInput; | |
895 } | |
896 | |
897 // Decode the row in destination format | |
898 uint32_t row; | |
899 if (kTopDown_RowOrder == fRowOrder) { | |
900 row = y; | |
901 } else { | |
902 row = height - 1 - y; | |
903 } | |
904 SkSwizzler::ResultAlpha r = swizzler->next(srcBuffer.get(), row); | |
905 transparent &= SkSwizzler::IsTransparent(r); | |
906 } | |
907 | |
908 // Now we adjust the output image with some additional behavior that | |
909 // SkSwizzler does not support. Firstly, all bmp images that contain | |
910 // alpha are masked by the alpha mask. Secondly, many fully transparent | |
911 // bmp images are intended to be opaque. Here, we make those corrections. | |
912 // Modifying alpha is safe because colors are stored unpremultiplied. | |
scroggo
2015/03/12 15:19:57
Oh, interesting. How can we do this if the caller
msarett
2015/03/12 18:37:46
I think it's best to keep it out of the swizzler (
scroggo
2015/03/12 19:58:40
Agreed.
| |
913 SkPMColor* dstRow = (SkPMColor*) dst; | |
914 if (alphaMask != 0) { | |
915 for (int y = 0; y < height; y++) { | |
916 for (int x = 0; x < width; x++) { | |
917 if (transparent) { | |
918 dstRow[x] |= 0xFF000000; | |
919 } else { | |
920 dstRow[x] &= alphaMask; | |
921 } | |
922 dstRow = SkTAddOffset<SkPMColor>(dstRow, dstRowBytes); | |
923 } | |
924 } | |
925 } | |
926 | |
927 // Finished decoding the entire image | |
928 return kSuccess; | |
929 } | |
OLD | NEW |