Chromium Code Reviews| OLD | NEW |
|---|---|
| (Empty) | |
| 1 /* | |
| 2 * Copyright 2015 Google Inc. | |
| 3 * | |
| 4 * Use of this source code is governed by a BSD-style license that can be | |
| 5 * found in the LICENSE file. | |
| 6 */ | |
| 7 | |
| 8 #include "SkCodec_libbmp.h" | |
| 9 #include "SkColorPriv.h" | |
| 10 #include "SkEndian.h" | |
| 11 #include "SkStream.h" | |
| 12 | |
| 13 /* | |
| 14 * | |
| 15 * Get a byte from the buffer | |
| 16 * | |
| 17 */ | |
| 18 uint8_t get_byte(uint8_t* buffer, uint32_t i) { | |
| 19 return buffer[i]; | |
| 20 } | |
| 21 | |
| 22 /* | |
| 23 * | |
| 24 * Get a short from the buffer | |
| 25 * | |
| 26 */ | |
| 27 uint16_t get_short(uint8_t* buffer, uint32_t i) { | |
| 28 uint16_t result; | |
| 29 memcpy(&result, &(buffer[i]), 2); | |
| 30 #ifdef SK_CPU_BENDIAN | |
| 31 return SkEndianSwap16(result); | |
| 32 #else | |
| 33 return result; | |
| 34 #endif | |
| 35 } | |
| 36 | |
| 37 /* | |
| 38 * | |
| 39 * Get an int from the buffer | |
| 40 * | |
| 41 */ | |
| 42 uint32_t get_int(uint8_t* buffer, uint32_t i) { | |
| 43 uint32_t result; | |
| 44 memcpy(&result, &(buffer[i]), 4); | |
| 45 #ifdef SK_CPU_BENDIAN | |
| 46 return SkEndianSwap32(result); | |
| 47 #else | |
| 48 return result; | |
| 49 #endif | |
| 50 } | |
| 51 | |
| 52 static bool premul_and_unpremul(SkAlphaType dst, SkAlphaType src) { | |
| 53 return kPremul_SkAlphaType == dst && kUnpremul_SkAlphaType == src; | |
| 54 } | |
| 55 | |
| 56 /* | |
| 57 * | |
| 58 * Checks if the conversion between the input image and the requested output | |
| 59 * image has been implemented | |
| 60 * | |
| 61 */ | |
| 62 static bool conversion_possible(const SkImageInfo& dst, | |
| 63 const SkImageInfo& src) { | |
| 64 // TODO: Support more conversions | |
| 65 if (kN32_SkColorType != dst.colorType()) { | |
| 66 return false; | |
| 67 } | |
| 68 if (dst.alphaType() == src.alphaType()) { | |
| 69 return true; | |
| 70 } | |
| 71 return premul_and_unpremul(dst.alphaType(), src.alphaType()) | |
| 72 || premul_and_unpremul(dst.alphaType(), src.alphaType()); | |
| 73 } | |
| 74 | |
| 75 /* | |
| 76 * | |
| 77 * Compute row bytes for an image | |
| 78 * | |
| 79 */ | |
| 80 size_t compute_row_bytes(int width, uint32_t bitsPerPixel) { | |
| 81 if (bitsPerPixel < 16) { | |
| 82 SkASSERT(0 == 8 % bitsPerPixel); | |
| 83 const uint32_t pixelsPerByte = 8 / bitsPerPixel; | |
| 84 return (width + pixelsPerByte - 1) / pixelsPerByte; | |
| 85 } else { | |
| 86 SkASSERT(0 == bitsPerPixel % 8); | |
| 87 const uint32_t bytesPerPixel = bitsPerPixel / 8; | |
| 88 return width * bytesPerPixel; | |
| 89 } | |
| 90 } | |
| 91 | |
| 92 /* | |
| 93 * | |
| 94 * Defines the version and type of the second bitmap header | |
| 95 * | |
| 96 */ | |
| 97 enum BitmapHeaderType { | |
| 98 kInfoV1_BitmapHeaderType, | |
| 99 kInfoV2_BitmapHeaderType, | |
| 100 kInfoV3_BitmapHeaderType, | |
| 101 kInfoV4_BitmapHeaderType, | |
| 102 kInfoV5_BitmapHeaderType, | |
| 103 kOS2V1_BitmapHeaderType, | |
| 104 kOS2VX_BitmapHeaderType, | |
| 105 kUnknown_BitmapHeaderType | |
| 106 }; | |
| 107 | |
| 108 /* | |
| 109 * | |
| 110 * Possible bitmap compression types | |
| 111 * | |
| 112 */ | |
| 113 enum BitmapCompressionMethod { | |
| 114 kNone_BitmapCompressionMethod = 0, | |
| 115 k8BitRLE_BitmapCompressionMethod = 1, | |
| 116 k4BitRLE_BitmapCompressionMethod = 2, | |
| 117 kBitMasks_BitmapCompressionMethod = 3, | |
| 118 kJpeg_BitmapCompressionMethod = 4, | |
| 119 kPng_BitmapCompressionMethod = 5, | |
| 120 kAlphaBitMasks_BitmapCompressionMethod = 6, | |
| 121 kCMYK_BitmapCompressionMethod = 11, | |
| 122 kCMYK8BitRLE_BitmapCompressionMethod = 12, | |
| 123 kCMYK4BitRLE_BitmapCompressionMethod = 13 | |
| 124 }; | |
| 125 | |
| 126 /* | |
| 127 * | |
| 128 * Checks the start of the stream to see if the image is a bitmap | |
| 129 * | |
| 130 */ | |
| 131 bool SkBmpCodec::IsBmp(SkStream* stream) { | |
| 132 // TODO: Support "IC", "PT", "CI", "CP", "BA" | |
| 133 // TODO: ICO files may contain a BMP and need to use this decoder | |
| 134 const char bmpSig[] = { 'B', 'M' }; | |
| 135 char buffer[sizeof(bmpSig)]; | |
| 136 return stream->read(buffer, sizeof(bmpSig)) == sizeof(bmpSig) && | |
| 137 !memcmp(buffer, bmpSig, sizeof(bmpSig)); | |
| 138 } | |
| 139 | |
| 140 /* | |
| 141 * | |
| 142 * Assumes IsBmp was called and returned true | |
| 143 * Creates a bitmap decoder | |
| 144 * Reads enough of the stream to determine the image format | |
| 145 * | |
| 146 */ | |
| 147 SkCodec* SkBmpCodec::NewFromStream(SkStream* stream) { | |
| 148 // Header size constants | |
| 149 static const uint32_t kBmpHeaderBytes = 14; | |
| 150 static const uint32_t kBmpHeaderBytesPlusFour = kBmpHeaderBytes + 4; | |
| 151 static const uint32_t kBmpOS2V1Bytes = 12; | |
| 152 static const uint32_t kBmpOS2V2Bytes = 64; | |
| 153 static const uint32_t kBmpInfoBaseBytes = 16; | |
| 154 static const uint32_t kBmpInfoV1Bytes = 40; | |
| 155 static const uint32_t kBmpInfoV2Bytes = 52; | |
| 156 static const uint32_t kBmpInfoV3Bytes = 56; | |
| 157 static const uint32_t kBmpInfoV4Bytes = 108; | |
| 158 static const uint32_t kBmpInfoV5Bytes = 124; | |
| 159 static const uint32_t kBmpMaskBytes = 12; | |
| 160 | |
| 161 // Read the first header and the size of the second header | |
| 162 SkAutoTDeleteArray<uint8_t> hBuffer( | |
| 163 SkNEW_ARRAY(uint8_t, kBmpHeaderBytesPlusFour)); | |
| 164 if (stream->read(hBuffer.get(), kBmpHeaderBytesPlusFour) != | |
| 165 kBmpHeaderBytesPlusFour) { | |
| 166 SkDebugf("Error: unable to read first bitmap header.\n"); | |
| 167 return NULL; | |
| 168 } | |
| 169 | |
| 170 // The total bytes in the bmp file | |
| 171 // We only need to use this value for RLE decoding, so we will only check | |
| 172 // that it is valid in the RLE case. | |
| 173 const uint32_t totalBytes = get_int(hBuffer.get(), 2); | |
| 174 | |
| 175 // The offset from the start of the file where the pixel data begins | |
| 176 const uint32_t offset = get_int(hBuffer.get(), 10); | |
| 177 if (offset < kBmpHeaderBytes + kBmpOS2V1Bytes) { | |
| 178 SkDebugf("Error: invalid starting location for pixel data\n"); | |
| 179 return NULL; | |
| 180 } | |
| 181 | |
| 182 // The size of the second (info) header in bytes | |
| 183 // The size is the first field of the second header, so we have already | |
| 184 // read the first four infoBytes. | |
| 185 const uint32_t infoBytes = get_int(hBuffer.get(), 14); | |
| 186 if (infoBytes < kBmpOS2V1Bytes) { | |
| 187 SkDebugf("Error: invalid second header size.\n"); | |
| 188 return NULL; | |
| 189 } | |
| 190 const uint32_t infoBytesRemaining = infoBytes - 4; | |
| 191 hBuffer.free(); | |
| 192 | |
| 193 // Read the second header | |
| 194 SkAutoTDeleteArray<uint8_t> iBuffer( | |
| 195 SkNEW_ARRAY(uint8_t, infoBytesRemaining)); | |
| 196 if (stream->read(iBuffer.get(), infoBytesRemaining) != infoBytesRemaining) { | |
| 197 SkDebugf("Error: unable to read second bitmap header.\n"); | |
| 198 return NULL; | |
| 199 } | |
| 200 | |
| 201 // The number of bits used per pixel in the pixel data | |
| 202 uint16_t bitsPerPixel; | |
| 203 | |
| 204 // The compression method for the pixel data | |
| 205 uint32_t compression = kNone_BitmapCompressionMethod; | |
| 206 | |
| 207 // Number of colors in the color table, defaults to 0 or max (see below) | |
| 208 uint32_t numColors = 0; | |
| 209 | |
| 210 // Bytes per color in the color table, early versions use 3, most use 4 | |
| 211 uint32_t bytesPerColor; | |
| 212 | |
| 213 // The image width and height | |
| 214 int width, height; | |
| 215 | |
| 216 // Determine image information depending on second header format | |
| 217 BitmapHeaderType headerType; | |
| 218 if (infoBytes >= kBmpInfoBaseBytes) { | |
| 219 // Check the version of the header | |
| 220 switch (infoBytes) { | |
| 221 case kBmpInfoV1Bytes: | |
| 222 headerType = kInfoV1_BitmapHeaderType; | |
| 223 break; | |
| 224 case kBmpInfoV2Bytes: | |
| 225 headerType = kInfoV2_BitmapHeaderType; | |
| 226 break; | |
| 227 case kBmpInfoV3Bytes: | |
| 228 headerType = kInfoV3_BitmapHeaderType; | |
| 229 break; | |
| 230 case kBmpInfoV4Bytes: | |
| 231 headerType = kInfoV4_BitmapHeaderType; | |
| 232 break; | |
| 233 case kBmpInfoV5Bytes: | |
| 234 headerType = kInfoV5_BitmapHeaderType; | |
| 235 break; | |
| 236 case 16: | |
| 237 case 20: | |
| 238 case 24: | |
| 239 case 28: | |
| 240 case 32: | |
| 241 case 36: | |
| 242 case 42: | |
| 243 case 46: | |
| 244 case 48: | |
| 245 case 60: | |
| 246 case kBmpOS2V2Bytes: | |
| 247 headerType = kOS2VX_BitmapHeaderType; | |
| 248 break; | |
| 249 default: | |
| 250 // We do not signal an error here because there is the | |
| 251 // possibility of new or undocumented bmp header types. Most | |
| 252 // of the newer versions of bmp headers are similar to and | |
| 253 // build off of the older versions, so we may still be able to | |
| 254 // decode the bmp. | |
| 255 SkDebugf("Warning: unknown bmp header format.\n"); | |
| 256 headerType = kUnknown_BitmapHeaderType; | |
| 257 break; | |
| 258 } | |
| 259 // We check the size of the header before entering the if statement. | |
| 260 // We should not reach this point unless the size is large enough for | |
| 261 // these required fields. | |
| 262 SkASSERT(infoBytesRemaining >= 12); | |
| 263 width = get_int(iBuffer.get(), 0); | |
| 264 height = get_int(iBuffer.get(), 4); | |
| 265 //uint16_t planes = get_short(iBuffer, 8); | |
| 266 bitsPerPixel = get_short(iBuffer.get(), 10); | |
| 267 | |
| 268 // Some versions do not have this field, so we check before | |
| 269 // overwriting the default value. | |
| 270 if (infoBytesRemaining >= 16) { | |
| 271 compression = get_int(iBuffer.get(), 12); | |
| 272 } | |
| 273 | |
| 274 // Some versions do not have this field, so we check before | |
| 275 // overwriting the default value. | |
| 276 if (infoBytesRemaining >= 32) { | |
| 277 numColors = get_int(iBuffer.get(), 28); | |
| 278 } | |
| 279 | |
| 280 bytesPerColor = 4; | |
| 281 } else if (infoBytes >= kBmpOS2V1Bytes) { | |
| 282 // The OS2V1 is treated separately because it has a unique format | |
| 283 headerType = kOS2V1_BitmapHeaderType; | |
| 284 width = (int) get_short(iBuffer.get(), 0); | |
| 285 height = (int) get_short(iBuffer.get(), 2); | |
| 286 bitsPerPixel = get_short(iBuffer.get(), 6); | |
| 287 bytesPerColor = 3; | |
| 288 } else { | |
| 289 // There are no valid bmp headers | |
| 290 SkDebugf("Error: second bitmap header size is invalid.\n"); | |
| 291 return NULL; | |
| 292 } | |
| 293 | |
| 294 // Check for valid dimensions from header | |
| 295 RowOrder rowOrder = kBottomUp_RowOrder; | |
| 296 if (height < 0) { | |
| 297 height = -height; | |
| 298 rowOrder = kTopDown_RowOrder; | |
| 299 } | |
| 300 static const int kBmpMaxDim = 1 << 16; | |
| 301 if (width < 0 || width >= kBmpMaxDim || height >= kBmpMaxDim) { | |
| 302 // TODO: Decide if we want to support really large bmps. | |
| 303 SkDebugf("Error: invalid bitmap dimensions.\n"); | |
| 304 return NULL; | |
| 305 } | |
| 306 | |
| 307 // Create mask struct | |
| 308 SkMasks::InputMasks inputMasks; | |
| 309 memset(&inputMasks, 0, 4*sizeof(uint32_t)); | |
| 310 | |
| 311 // Determine the input compression format and set bit masks if necessary | |
| 312 uint32_t maskBytes = 0; | |
| 313 BitmapInputFormat inputFormat = kUnknown_BitmapInputFormat; | |
| 314 switch (compression) { | |
| 315 case kNone_BitmapCompressionMethod: | |
| 316 inputFormat = kStandard_BitmapInputFormat; | |
| 317 break; | |
| 318 case k8BitRLE_BitmapCompressionMethod: | |
| 319 if (bitsPerPixel != 8) { | |
| 320 SkDebugf("Warning: correcting invalid bitmap format.\n"); | |
| 321 bitsPerPixel = 8; | |
| 322 } | |
| 323 inputFormat = kRLE_BitmapInputFormat; | |
| 324 break; | |
| 325 case k4BitRLE_BitmapCompressionMethod: | |
| 326 if (bitsPerPixel != 4) { | |
| 327 SkDebugf("Warning: correcting invalid bitmap format.\n"); | |
| 328 bitsPerPixel = 4; | |
| 329 } | |
| 330 inputFormat = kRLE_BitmapInputFormat; | |
| 331 break; | |
| 332 case kAlphaBitMasks_BitmapCompressionMethod: | |
| 333 case kBitMasks_BitmapCompressionMethod: | |
| 334 // Load the masks | |
| 335 inputFormat = kBitMask_BitmapInputFormat; | |
| 336 switch (headerType) { | |
| 337 case kInfoV1_BitmapHeaderType: { | |
| 338 // The V1 header stores the bit masks after the header | |
| 339 SkAutoTDeleteArray<uint8_t> mBuffer( | |
| 340 SkNEW_ARRAY(uint8_t, kBmpMaskBytes)); | |
| 341 if (stream->read(mBuffer.get(), kBmpMaskBytes) != | |
| 342 kBmpMaskBytes) { | |
| 343 SkDebugf("Error: unable to read bit inputMasks.\n"); | |
| 344 return NULL; | |
| 345 } | |
| 346 maskBytes = kBmpMaskBytes; | |
| 347 inputMasks.red = get_int(mBuffer.get(), 0); | |
| 348 inputMasks.green = get_int(mBuffer.get(), 4); | |
| 349 inputMasks.blue = get_int(mBuffer.get(), 8); | |
| 350 break; | |
| 351 } | |
| 352 case kInfoV2_BitmapHeaderType: | |
| 353 case kInfoV3_BitmapHeaderType: | |
| 354 case kInfoV4_BitmapHeaderType: | |
| 355 case kInfoV5_BitmapHeaderType: | |
| 356 // Header types are matched based on size. If the header | |
| 357 // is V2+, we are guaranteed to be able at least this size. | |
| 358 SkASSERT(infoBytesRemaining >= 48); | |
| 359 inputMasks.red = get_int(iBuffer.get(), 36); | |
| 360 inputMasks.green = get_int(iBuffer.get(), 40); | |
| 361 inputMasks.blue = get_int(iBuffer.get(), 44); | |
| 362 break; | |
| 363 case kOS2VX_BitmapHeaderType: | |
| 364 // TODO: Decide if we intend to support this. | |
| 365 // It is unsupported in the previous version and | |
| 366 // in chromium. I have not come across a test case | |
| 367 // that uses this format. | |
| 368 SkDebugf("Error: huffman format unsupported.\n"); | |
| 369 return NULL; | |
| 370 default: | |
| 371 SkDebugf("Error: invalid bmp bit masks header.\n"); | |
| 372 return NULL; | |
| 373 } | |
| 374 break; | |
| 375 case kJpeg_BitmapCompressionMethod: | |
| 376 if (24 == bitsPerPixel) { | |
| 377 inputFormat = kRLE_BitmapInputFormat; | |
| 378 break; | |
| 379 } | |
| 380 // Fall through | |
| 381 case kPng_BitmapCompressionMethod: | |
| 382 // TODO: Decide if we intend to support this. | |
| 383 // It is unsupported in the previous version and | |
| 384 // in chromium. I think it is used mostly for printers. | |
| 385 SkDebugf("Error: compression format not supported.\n"); | |
| 386 return NULL; | |
| 387 case kCMYK_BitmapCompressionMethod: | |
| 388 case kCMYK8BitRLE_BitmapCompressionMethod: | |
| 389 case kCMYK4BitRLE_BitmapCompressionMethod: | |
| 390 // TODO: Same as above. | |
| 391 SkDebugf("Error: CMYK not supported for bitmap decoding.\n"); | |
| 392 return NULL; | |
| 393 default: | |
| 394 SkDebugf("Error: invalid format for bitmap decoding.\n"); | |
| 395 return NULL; | |
| 396 } | |
| 397 | |
| 398 // Most versions of bmps should be rendered as opaque. Either they do | |
| 399 // not have an alpha channel, or they expect the alpha channel to be | |
| 400 // ignored. V4+ bmp files introduce an alpha mask and allow the creator | |
| 401 // of the image to use the alpha channels. However, many of these images | |
| 402 // leave the alpha channel blank and expect to be rendered as opaque. For | |
| 403 // this reason, we set the alpha type to kUnknown for V4+ bmps and figure | |
| 404 // out the alpha type during the decode. | |
| 405 SkAlphaType alphaType = kOpaque_SkAlphaType; | |
| 406 if (kInfoV4_BitmapHeaderType == headerType || | |
| 407 kInfoV5_BitmapHeaderType == headerType) { | |
| 408 // Header types are matched based on size. If the header is | |
| 409 // V4+, we are guaranteed to be able to read at least this size. | |
| 410 SkASSERT(infoBytesRemaining > 52); | |
| 411 inputMasks.alpha = get_int(iBuffer.get(), 48); | |
| 412 if (inputMasks.alpha != 0) { | |
| 413 alphaType = kUnpremul_SkAlphaType; | |
| 414 } | |
| 415 } | |
| 416 iBuffer.free(); | |
| 417 | |
| 418 // Check for valid bits per pixel input | |
| 419 switch (bitsPerPixel) { | |
| 420 // In addition to more standard pixel compression formats, bmp supports | |
| 421 // the use of bit masks to determine pixel components. The standard | |
| 422 // format for representing 16-bit colors is 555 (XRRRRRGGGGGBBBBB), | |
| 423 // which does not map well to any Skia color formats. For this reason, | |
| 424 // we will always enable mask mode with 16 bits per pixel. | |
| 425 case 16: | |
| 426 if (kBitMask_BitmapInputFormat != inputFormat) { | |
| 427 inputMasks.red = 0x7C00; | |
| 428 inputMasks.green = 0x03E0; | |
| 429 inputMasks.blue = 0x001F; | |
| 430 inputFormat = kBitMask_BitmapInputFormat; | |
| 431 } | |
| 432 break; | |
| 433 case 1: | |
| 434 case 2: | |
| 435 case 4: | |
| 436 case 8: | |
| 437 case 24: | |
| 438 case 32: | |
| 439 break; | |
| 440 default: | |
| 441 SkDebugf("Error: invalid input value for bits per pixel.\n"); | |
| 442 return NULL; | |
| 443 } | |
| 444 | |
| 445 // Check that input bit masks are valid and create the masks object | |
| 446 SkMasks* masks = SkMasks::CreateMasks(inputMasks, bitsPerPixel); | |
|
scroggo
2015/03/11 19:22:45
This can be leaked from one of our debug statement
msarett
2015/03/11 20:03:11
Got it. I will try to fix this.
| |
| 447 if (NULL == masks) { | |
| 448 SkDebugf("Error: invalid input masks.\n"); | |
| 449 return NULL; | |
| 450 } | |
| 451 | |
| 452 // Process the color table | |
| 453 uint32_t colorBytes = 0; | |
| 454 SkPMColor* colorTable = NULL; | |
| 455 if (bitsPerPixel < 16) { | |
| 456 // Verify the number of colors for the color table | |
| 457 const uint32_t maxColors = 1 << bitsPerPixel; | |
| 458 // Zero is a default for maxColors | |
| 459 // Also set numColors to maxColors when input is too large | |
| 460 if (numColors <= 0 || numColors > maxColors) { | |
| 461 numColors = maxColors; | |
| 462 } | |
| 463 colorTable = SkNEW_ARRAY(SkPMColor, maxColors); | |
| 464 | |
| 465 // Construct the color table | |
| 466 colorBytes = numColors * bytesPerColor; | |
| 467 SkAutoTDeleteArray<uint8_t> cBuffer(SkNEW_ARRAY(uint8_t, colorBytes)); | |
| 468 if (stream->read(cBuffer.get(), colorBytes) != colorBytes) { | |
| 469 SkDebugf("Error: unable to read color table.\n"); | |
| 470 return NULL; | |
| 471 } | |
| 472 | |
| 473 // Fill in the color table | |
| 474 uint32_t i = 0; | |
| 475 for (; i < numColors; i++) { | |
| 476 uint8_t blue = get_byte(cBuffer.get(), i*bytesPerColor); | |
| 477 uint8_t green = get_byte(cBuffer.get(), i*bytesPerColor + 1); | |
| 478 uint8_t red = get_byte(cBuffer.get(), i*bytesPerColor + 2); | |
| 479 uint8_t alpha = 0xFF; | |
| 480 if (kOpaque_SkAlphaType != alphaType) { | |
| 481 alpha = (inputMasks.alpha >> 24) & | |
| 482 get_byte(cBuffer.get(), i*bytesPerColor + 3); | |
| 483 } | |
| 484 colorTable[i] = SkPackARGB32NoCheck(alpha, red, green, blue); | |
| 485 } | |
| 486 | |
| 487 // To avoid segmentation faults on bad pixel data, fill the end of the | |
| 488 // color table with black. This is the same the behavior as the | |
| 489 // chromium decoder. | |
| 490 for (; i < maxColors; i++) { | |
| 491 colorTable[i] = SkPackARGB32NoCheck(0xFF, 0, 0, 0); | |
| 492 } | |
| 493 } else { | |
| 494 // We will not use the color table if bitsPerPixel >= 16, but if there | |
| 495 // is a color table, we may need to skip the color table bytes. | |
| 496 // We will assume that the maximum color table size is the same as when | |
| 497 // there are 8 bits per pixel (the largest color table actually used). | |
| 498 // Color tables for greater than 8 bits per pixel are somewhat | |
| 499 // undocumented. It is indicated that they may exist to store a list | |
| 500 // of colors for optimization on devices with limited color display | |
| 501 // capacity. While we do not know for sure, we will guess that any | |
| 502 // value of numColors greater than this maximum is invalid. | |
| 503 if (numColors <= (1 << 8)) { | |
| 504 colorBytes = numColors * bytesPerColor; | |
| 505 if (stream->skip(colorBytes) != colorBytes) { | |
| 506 SkDebugf("Error: Could not skip color table bytes.\n"); | |
| 507 return NULL; | |
| 508 } | |
| 509 } | |
| 510 } | |
| 511 | |
| 512 // Ensure that the stream now points to the start of the pixel array | |
| 513 uint32_t bytesRead = kBmpHeaderBytes + infoBytes + maskBytes + colorBytes; | |
| 514 | |
| 515 // Check that we have not read past the pixel array offset | |
| 516 if(bytesRead > offset) { | |
| 517 // This may occur on OS 2.1 and other old versions where the color | |
| 518 // table defaults to max size, and the bmp tries to use a smaller color | |
| 519 // table. This is invalid, and our decision is to indicate an error, | |
| 520 // rather than try to guess the intended size of the color table and | |
| 521 // rewind the stream to display the image. | |
| 522 SkDebugf("Error: pixel data offset less than header size.\n"); | |
| 523 return NULL; | |
| 524 } | |
| 525 | |
| 526 // Skip to the start of the pixel array | |
| 527 if (stream->skip(offset - bytesRead) != offset - bytesRead) { | |
| 528 SkDebugf("Error: unable to skip to image data.\n"); | |
| 529 return NULL; | |
| 530 } | |
| 531 | |
| 532 // Remaining bytes is only used for RLE | |
| 533 const int remainingBytes = totalBytes - offset; | |
| 534 if (remainingBytes <= 0 && kRLE_BitmapInputFormat == inputFormat) { | |
| 535 SkDebugf("Error: RLE requires valid input size.\n"); | |
| 536 return NULL; | |
| 537 } | |
| 538 | |
| 539 // Return the codec | |
| 540 // We will use ImageInfo to store width, height, and alpha type. The Skia | |
| 541 // color types do not match with the many possible bmp input color types, | |
| 542 // so we will ignore this field and depend on other parameters for input | |
| 543 // information. | |
| 544 const SkImageInfo& imageInfo = SkImageInfo::Make(width, height, | |
| 545 kUnknown_SkColorType, alphaType); | |
| 546 return SkNEW_ARGS(SkBmpCodec, (imageInfo, stream, bitsPerPixel, | |
| 547 inputFormat, masks, colorTable, rowOrder, | |
| 548 remainingBytes)); | |
| 549 } | |
| 550 | |
| 551 /* | |
| 552 * | |
| 553 * Creates an instance of the decoder | |
| 554 * Called only by NewFromStream | |
| 555 * | |
| 556 */ | |
| 557 SkBmpCodec::SkBmpCodec(const SkImageInfo& info, SkStream* stream, | |
| 558 uint16_t bitsPerPixel, BitmapInputFormat inputFormat, | |
| 559 SkMasks* masks, SkPMColor* colorTable, | |
| 560 RowOrder rowOrder, | |
| 561 const uint32_t remainingBytes) | |
| 562 : INHERITED(info, stream) | |
| 563 , fBitsPerPixel(bitsPerPixel) | |
| 564 , fInputFormat(inputFormat) | |
| 565 , fMasks(masks) | |
| 566 , fColorTable(colorTable) | |
| 567 , fRowOrder(rowOrder) | |
| 568 , fRemainingBytes(remainingBytes) | |
| 569 {} | |
| 570 | |
| 571 /* | |
| 572 * | |
| 573 * Initiates the bitmap decode | |
| 574 * | |
| 575 */ | |
| 576 SkCodec::Result SkBmpCodec::onGetPixels(const SkImageInfo& dstInfo, | |
| 577 void* dst, size_t dstRowBytes, | |
| 578 SkPMColor*, int*) { | |
| 579 if (!this->rewindIfNeeded()) { | |
| 580 return kCouldNotRewind; | |
| 581 } | |
| 582 if (dstInfo.dimensions() != this->getOriginalInfo().dimensions()) { | |
| 583 SkDebugf("Error: scaling not supported.\n"); | |
| 584 return kInvalidScale; | |
| 585 } | |
| 586 if (!conversion_possible(dstInfo, this->getOriginalInfo())) { | |
| 587 SkDebugf("Error: cannot convert input type to output type.\n"); | |
| 588 return kInvalidConversion; | |
| 589 } | |
| 590 | |
| 591 switch (fInputFormat) { | |
| 592 case kBitMask_BitmapInputFormat: | |
| 593 return decodeMask(dstInfo, dst, dstRowBytes); | |
| 594 case kRLE_BitmapInputFormat: | |
| 595 return decodeRLE(dstInfo, dst, dstRowBytes); | |
| 596 case kStandard_BitmapInputFormat: | |
| 597 return decode(dstInfo, dst, dstRowBytes); | |
| 598 default: | |
| 599 SkASSERT(false); | |
| 600 return kInvalidInput; | |
| 601 } | |
| 602 } | |
| 603 | |
| 604 /* | |
| 605 * | |
| 606 * Performs the bitmap decoding for bit masks input format | |
| 607 * | |
| 608 */ | |
| 609 SkCodec::Result SkBmpCodec::decodeMask(const SkImageInfo& dstInfo, | |
| 610 void* dst, uint32_t dstRowBytes) { | |
| 611 // Set constant values | |
| 612 const int width = dstInfo.width(); | |
| 613 const int height = dstInfo.height(); | |
| 614 const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel)); | |
| 615 | |
| 616 // Allocate space for a row buffer and a source for the swizzler | |
| 617 SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, rowBytes)); | |
| 618 | |
| 619 // Get the destination start row and delta | |
| 620 SkPMColor* dstRow; | |
| 621 int32_t delta; | |
| 622 if (kTopDown_RowOrder == fRowOrder) { | |
| 623 dstRow = (SkPMColor*) dst; | |
| 624 delta = dstRowBytes; | |
| 625 } else { | |
| 626 dstRow = (SkPMColor*) SkTAddOffset<void>(dst, (height-1) * dstRowBytes); | |
| 627 delta = -dstRowBytes; | |
| 628 } | |
| 629 | |
| 630 // Create the swizzler | |
| 631 SkMaskSwizzler* swizzler = SkMaskSwizzler::CreateMaskSwizzler( | |
| 632 dstInfo, fMasks, fBitsPerPixel); | |
| 633 | |
| 634 // Iterate over rows of the image | |
| 635 bool transparent = true; | |
| 636 for (int y = 0; y < height; y++) { | |
| 637 // Read a row of the input | |
| 638 if (stream()->read(srcBuffer.get(), rowBytes) != rowBytes) { | |
| 639 SkDebugf("Warning: incomplete input stream.\n"); | |
| 640 return kIncompleteInput; | |
| 641 } | |
| 642 | |
| 643 // Decode the row in destination format | |
| 644 SkSwizzler::ResultAlpha r = swizzler->next(dstRow, srcBuffer.get()); | |
| 645 transparent &= (SkSwizzler::kTransparent_ResultAlpha == r); | |
| 646 | |
| 647 // Move to the next row | |
| 648 dstRow = SkTAddOffset<SkPMColor>(dstRow, delta); | |
| 649 } | |
| 650 | |
| 651 // Many fully transparent bmp images are intended to be opaque. Here, we | |
| 652 // correct for this possibility. | |
| 653 dstRow = (SkPMColor*) dst; | |
| 654 if (transparent) { | |
| 655 for (int y = 0; y < height; y++) { | |
| 656 for (int x = 0; x < width; x++) { | |
| 657 dstRow[x] |= 0xFF000000; | |
| 658 } | |
| 659 dstRow = SkTAddOffset<SkPMColor>(dstRow, dstRowBytes); | |
| 660 } | |
| 661 } | |
| 662 | |
| 663 // Finished decoding the entire image | |
| 664 return kSuccess; | |
| 665 } | |
| 666 | |
| 667 /* | |
| 668 * | |
| 669 * Set an RLE pixel using the color table | |
| 670 * | |
| 671 */ | |
| 672 void SkBmpCodec::setRLEPixel(SkPMColor* dst, uint32_t dstRowBytes, int height, | |
| 673 uint32_t x, uint32_t y, uint8_t index) { | |
| 674 if (kBottomUp_RowOrder == fRowOrder) { | |
| 675 y = height - y - 1; | |
| 676 } | |
| 677 SkPMColor* dstRow = SkTAddOffset<SkPMColor>(dst, y * dstRowBytes); | |
| 678 dstRow[x] = fColorTable.get()[index]; | |
| 679 } | |
| 680 | |
| 681 /* | |
| 682 * | |
| 683 * Performs the bitmap decoding for RLE input format | |
| 684 * RLE decoding is performed all at once, rather than a one row at a time | |
| 685 * | |
| 686 */ | |
| 687 SkCodec::Result SkBmpCodec::decodeRLE(const SkImageInfo& dstInfo, | |
| 688 void* dst, uint32_t dstRowBytes) { | |
| 689 // Set RLE flags | |
| 690 static const uint8_t RLE_ESCAPE = 0; | |
| 691 static const uint8_t RLE_EOL = 0; | |
| 692 static const uint8_t RLE_EOF = 1; | |
| 693 static const uint8_t RLE_DELTA = 2; | |
| 694 | |
| 695 // Set constant values | |
| 696 const int width = dstInfo.width(); | |
| 697 const int height = dstInfo.height(); | |
| 698 | |
| 699 // Input buffer parameters | |
| 700 uint32_t currByte = 0; | |
| 701 SkAutoTDeleteArray<uint8_t> buffer(SkNEW_ARRAY(uint8_t, fRemainingBytes)); | |
| 702 uint32_t totalBytes = stream()->read(buffer.get(), fRemainingBytes); | |
| 703 if (totalBytes < fRemainingBytes) { | |
| 704 SkDebugf("Warning: incomplete RLE file.\n"); | |
| 705 } else if (totalBytes <= 0) { | |
| 706 SkDebugf("Error: could not read RLE image data.\n"); | |
| 707 return kInvalidInput; | |
| 708 } | |
| 709 | |
| 710 // Destination parameters | |
| 711 int x = 0; | |
| 712 int y = 0; | |
| 713 // If the code skips pixels, remaining pixels are transparent or black | |
| 714 // TODO: Skip this if memory was already zeroed. | |
| 715 memset(dst, 0, dstRowBytes * height); | |
| 716 SkPMColor* dstPtr = (SkPMColor*) dst; | |
| 717 | |
| 718 while (true) { | |
| 719 // Every entry takes at least two bytes | |
| 720 if (totalBytes - currByte < 2) { | |
| 721 SkDebugf("Warning: incomplete RLE input.\n"); | |
| 722 return kIncompleteInput; | |
| 723 } | |
| 724 | |
| 725 // Read the next two bytes. These bytes have different meanings | |
| 726 // depending on their values. In the first interpretation, the first | |
| 727 // byte is an escape flag and the second byte indicates what special | |
| 728 // task to perform. | |
| 729 const uint8_t flag = buffer.get()[currByte++]; | |
| 730 const uint8_t task = buffer.get()[currByte++]; | |
| 731 | |
| 732 // If we have reached a row that is beyond the image size, and the RLE | |
| 733 // code does not indicate end of file, abort and signal a warning. | |
| 734 if (y >= height && (flag != RLE_ESCAPE || (task != RLE_EOF))) { | |
| 735 SkDebugf("Warning: invalid RLE input.\n"); | |
| 736 return kIncompleteInput; | |
| 737 } | |
| 738 | |
| 739 // Perform decoding | |
| 740 if (RLE_ESCAPE == flag) { | |
| 741 switch (task) { | |
| 742 case RLE_EOL: | |
| 743 x = 0; | |
| 744 y++; | |
| 745 break; | |
| 746 case RLE_EOF: | |
| 747 return kSuccess; | |
| 748 case RLE_DELTA: { | |
| 749 // Two bytes are needed to specify delta | |
| 750 if (totalBytes - currByte < 2) { | |
| 751 SkDebugf("Warning: incomplete RLE input\n"); | |
| 752 return kIncompleteInput; | |
| 753 } | |
| 754 // Modify x and y | |
| 755 const uint8_t dx = buffer.get()[currByte++]; | |
| 756 const uint8_t dy = buffer.get()[currByte++]; | |
| 757 x += dx; | |
| 758 y += dy; | |
| 759 if (x > width || y > height) { | |
| 760 SkDebugf("Warning: invalid RLE input.\n"); | |
| 761 return kIncompleteInput; | |
| 762 } | |
| 763 break; | |
| 764 } | |
| 765 default: { | |
| 766 // If task does not match any of the above signals, it | |
| 767 // indicates that we have a sequence of non-RLE pixels. | |
| 768 // Furthermore, the value of task is equal to the number | |
| 769 // of pixels to interpret. | |
| 770 uint8_t numPixels = task; | |
| 771 const size_t rowBytes = compute_row_bytes(numPixels, | |
| 772 fBitsPerPixel); | |
| 773 // Abort if setting numPixels moves us off the edge of the | |
| 774 // image. Also abort if there are not enough bytes | |
| 775 // remaining in the stream to set numPixels. | |
| 776 if (x + numPixels > width || | |
| 777 totalBytes - currByte < SkAlign2(rowBytes)) { | |
| 778 SkDebugf("Warning: invalid RLE input.\n"); | |
| 779 return kIncompleteInput; | |
| 780 } | |
| 781 // Set count number of pixels | |
| 782 while (numPixels > 0) { | |
| 783 switch(fBitsPerPixel) { | |
| 784 case 4: { | |
| 785 uint8_t val = buffer.get()[currByte++]; | |
| 786 setRLEPixel(dstPtr, dstRowBytes, height, x++, y, | |
| 787 val >> 4); | |
| 788 numPixels--; | |
| 789 if (numPixels != 0) { | |
| 790 setRLEPixel(dstPtr, dstRowBytes, height, | |
| 791 x++, y, val & 0xF); | |
| 792 numPixels--; | |
| 793 } | |
| 794 break; | |
| 795 } | |
| 796 case 8: | |
| 797 setRLEPixel(dstPtr, dstRowBytes, height, x++, y, | |
| 798 buffer.get()[currByte++]); | |
| 799 numPixels--; | |
| 800 break; | |
| 801 case 24: { | |
| 802 uint8_t blue = buffer.get()[currByte++]; | |
| 803 uint8_t green = buffer.get()[currByte++]; | |
| 804 uint8_t red = buffer.get()[currByte++]; | |
| 805 SkPMColor color = SkPackARGB32NoCheck( | |
| 806 0xFF, red, green, blue); | |
| 807 SkPMColor* dstRow = SkTAddOffset<SkPMColor>( | |
| 808 dstPtr, y * dstRowBytes); | |
| 809 dstRow[x++] = color; | |
| 810 numPixels--; | |
| 811 } | |
| 812 default: | |
| 813 SkASSERT(false); | |
| 814 return kInvalidInput; | |
| 815 } | |
| 816 } | |
| 817 // Skip a byte if necessary to maintain alignment | |
| 818 if (rowBytes & 1) { | |
|
scroggo
2015/03/11 19:22:45
SkIsAlign2?
msarett
2015/03/11 20:03:11
Yes that would be the better choice!
| |
| 819 currByte++; | |
| 820 } | |
| 821 break; | |
| 822 } | |
| 823 } | |
| 824 } else { | |
| 825 // If the first byte read is not a flag, it indicates the number of | |
| 826 // pixels to set in RLE mode. | |
| 827 const uint8_t numPixels = flag; | |
| 828 const int endX = SkTMin<int>(x + numPixels, width); | |
| 829 | |
| 830 if (24 == fBitsPerPixel) { | |
| 831 // In RLE24, the second byte read is part of the pixel color. | |
| 832 // There are two more required bytes to finish encoding the | |
| 833 // color. | |
| 834 if (totalBytes - currByte < 2) { | |
| 835 SkDebugf("Warning: incomplete RLE input\n"); | |
| 836 return kIncompleteInput; | |
| 837 } | |
| 838 | |
| 839 // Fill the pixels up to endX with the specified color | |
| 840 uint8_t blue = task; | |
| 841 uint8_t green = buffer.get()[currByte++]; | |
| 842 uint8_t red = buffer.get()[currByte++]; | |
| 843 SkPMColor color = SkPackARGB32NoCheck(0xFF, red, green, blue); | |
| 844 SkPMColor* dstRow = | |
| 845 SkTAddOffset<SkPMColor>(dstPtr, y * dstRowBytes); | |
| 846 while (x < endX) { | |
| 847 dstRow[x++] = color; | |
| 848 } | |
| 849 } else { | |
| 850 // In RLE8 or RLE4, the second byte read gives the index in the | |
| 851 // color table to look up the pixel color. | |
| 852 // RLE8 has one color index that gets repeated | |
| 853 // RLE4 has two color indexes in the upper and lower 4 bits of | |
| 854 // the bytes, which are alternated | |
| 855 uint8_t indices[2] = { task, task }; | |
| 856 if (4 == fBitsPerPixel) { | |
| 857 indices[0] >>= 4; | |
| 858 indices[1] &= 0xf; | |
| 859 } | |
| 860 | |
| 861 // Set the indicated number of pixels | |
| 862 for (int which = 0; x < endX; x++) { | |
| 863 setRLEPixel(dstPtr, dstRowBytes, height, x, y, | |
| 864 indices[which]); | |
| 865 which = !which; | |
| 866 } | |
| 867 } | |
| 868 } | |
| 869 } | |
| 870 } | |
| 871 | |
| 872 /* | |
| 873 * | |
| 874 * Performs the bitmap decoding for standard input format | |
| 875 * | |
| 876 */ | |
| 877 SkCodec::Result SkBmpCodec::decode(const SkImageInfo& dstInfo, | |
| 878 void* dst, uint32_t dstRowBytes) { | |
| 879 // Set constant values | |
| 880 const int width = dstInfo.width(); | |
| 881 const int height = dstInfo.height(); | |
| 882 const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel)); | |
| 883 const uint32_t alphaMask = fMasks->getAlphaMask(); | |
| 884 | |
| 885 // Get swizzler configuration | |
| 886 SkSwizzler::SrcConfig config; | |
| 887 switch (fBitsPerPixel) { | |
| 888 case 1: | |
| 889 config = SkSwizzler::kIndex1; | |
| 890 break; | |
| 891 case 2: | |
| 892 config = SkSwizzler::kIndex2; | |
| 893 break; | |
| 894 case 4: | |
| 895 config = SkSwizzler::kIndex4; | |
| 896 break; | |
| 897 case 8: | |
| 898 config = SkSwizzler::kIndex; | |
| 899 break; | |
| 900 case 24: | |
| 901 config = SkSwizzler::kBGR; | |
| 902 break; | |
| 903 case 32: | |
| 904 if (alphaMask == 0) { | |
| 905 config = SkSwizzler::kBGRX; | |
| 906 } else { | |
| 907 config = SkSwizzler::kBGRA; | |
| 908 } | |
| 909 break; | |
| 910 default: | |
| 911 SkASSERT(false); | |
| 912 return kInvalidInput; | |
| 913 } | |
| 914 | |
| 915 // Create swizzler | |
| 916 SkSwizzler* swizzler = SkSwizzler::CreateSwizzler(config, fColorTable.get(), | |
| 917 dstInfo, dst, dstRowBytes, false); | |
| 918 | |
| 919 // Allocate space for a row buffer and a source for the swizzler | |
| 920 SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, rowBytes)); | |
| 921 | |
| 922 // Iterate over rows of the image | |
| 923 bool transparent = true; | |
| 924 for (int y = 0; y < height; y++) { | |
| 925 // Read a row of the input | |
| 926 if (stream()->read(srcBuffer.get(), rowBytes) != rowBytes) { | |
| 927 SkDebugf("Warning: incomplete input stream.\n"); | |
| 928 return kIncompleteInput; | |
| 929 } | |
| 930 | |
| 931 // Decode the row in destination format | |
| 932 uint32_t row; | |
| 933 if (kTopDown_RowOrder == fRowOrder) { | |
| 934 row = y; | |
| 935 } else { | |
| 936 row = height - 1 - y; | |
| 937 } | |
| 938 SkSwizzler::ResultAlpha r = swizzler->next(srcBuffer.get(), row); | |
| 939 transparent &= (SkSwizzler::kTransparent_ResultAlpha == r); | |
| 940 } | |
| 941 | |
| 942 // Now we adjust the output image with some additional behavior that | |
| 943 // SkSwizzler does not support. Firstly, all bmp images that contain | |
| 944 // alpha are masked by the alpha mask. Secondly, many fully transparent | |
| 945 // bmp images are intended to be opaque. Here, we make those corrections. | |
| 946 SkPMColor* dstRow = (SkPMColor*) dst; | |
| 947 if (alphaMask != 0) { | |
| 948 for (int y = 0; y < height; y++) { | |
| 949 for (int x = 0; x < width; x++) { | |
| 950 if (transparent) { | |
| 951 dstRow[x] |= 0xFF000000; | |
| 952 } else { | |
| 953 dstRow[x] &= alphaMask; | |
| 954 } | |
| 955 dstRow = SkTAddOffset<SkPMColor>(dstRow, dstRowBytes); | |
| 956 } | |
| 957 } | |
| 958 } | |
| 959 | |
| 960 // Finished decoding the entire image | |
| 961 return kSuccess; | |
| 962 } | |
| OLD | NEW |