OLD | NEW |
---|---|
(Empty) | |
1 /* | |
2 * Copyright 2015 Google Inc. | |
3 * | |
4 * Use of this source code is governed by a BSD-style license that can be | |
5 * found in the LICENSE file. | |
6 */ | |
7 | |
8 #include "SkCodec_libbmp.h" | |
9 #include "SkColorPriv.h" | |
10 #include "SkColorTable.h" | |
11 #include "SkEndian.h" | |
12 #include "SkStream.h" | |
13 | |
14 /* | |
15 * | |
16 * Get a byte from the buffer | |
17 * | |
18 */ | |
19 uint8_t get_byte(uint8_t* buffer, uint32_t i) { | |
20 return buffer[i]; | |
21 } | |
22 | |
23 /* | |
24 * | |
25 * Get a short from the buffer | |
26 * | |
27 */ | |
28 uint16_t get_short(uint8_t* buffer, uint32_t i) { | |
29 uint16_t result; | |
30 memcpy(&result, &(buffer[i]), 2); | |
31 #ifdef SK_CPU_BENDIAN | |
32 return SkEndianSwap16(result); | |
33 #else | |
34 return result; | |
35 #endif | |
36 } | |
37 | |
38 /* | |
39 * | |
40 * Get an int from the buffer | |
41 * | |
42 */ | |
43 uint32_t get_int(uint8_t* buffer, uint32_t i) { | |
44 uint32_t result; | |
45 memcpy(&result, &(buffer[i]), 4); | |
46 #ifdef SK_CPU_BENDIAN | |
47 return SkEndianSwap32(result); | |
48 #else | |
49 return result; | |
50 #endif | |
51 } | |
52 | |
53 /* | |
54 * | |
55 * Defines the version and type of the second bitmap header | |
56 * | |
57 */ | |
58 enum BitmapHeaderType { | |
59 kInfoV1_BitmapHeaderType, | |
60 kInfoV2_BitmapHeaderType, | |
61 kInfoV3_BitmapHeaderType, | |
62 kInfoV4_BitmapHeaderType, | |
63 kInfoV5_BitmapHeaderType, | |
64 kOS2V1_BitmapHeaderType, | |
65 kOS2VX_BitmapHeaderType, | |
66 kUnknown_BitmapHeaderType | |
67 }; | |
68 | |
69 /* | |
70 * | |
71 * Possible bitmap compression types | |
72 * | |
73 */ | |
74 enum BitmapCompressionMethod { | |
75 kNone_BitmapCompressionMethod = 0, | |
76 k8BitRLE_BitmapCompressionMethod = 1, | |
77 k4BitRLE_BitmapCompressionMethod = 2, | |
78 kBitMasks_BitmapCompressionMethod = 3, | |
79 kJpeg_BitmapCompressionMethod = 4, | |
80 kPng_BitmapCompressionMethod = 5, | |
81 kAlphaBitMasks_BitmapCompressionMethod = 6, | |
82 kCMYK_BitmapCompressionMethod = 11, | |
83 kCMYK8BitRLE_BitmapCompressionMethod = 12, | |
84 kCMYK4BitRLE_BitmapCompressionMethod = 13 | |
85 }; | |
86 | |
87 /* | |
88 * | |
89 * Checks the start of the stream to see if the image is a bitmap | |
90 * | |
91 */ | |
92 bool SkBmpCodec::IsBmp(SkStream* stream) { | |
93 // TODO: Support "IC", "PT", "CI", "CP", "BA" | |
94 // TODO: ICO files may contain a BMP and need to use this decoder | |
95 const char bmpSig[] = { 'B', 'M' }; | |
96 char buffer[sizeof(bmpSig)]; | |
97 return stream->read(buffer, sizeof(bmpSig)) == sizeof(bmpSig) && | |
98 !memcmp(buffer, bmpSig, sizeof(bmpSig)); | |
99 } | |
100 | |
101 /* | |
102 * | |
103 * Assumes IsBmp was called and returned true | |
104 * Creates a bitmap decoder | |
105 * Reads enough of the stream to determine the image format | |
106 * | |
107 */ | |
108 SkCodec* SkBmpCodec::NewFromStream(SkStream* stream) { | |
109 // Header size constants | |
110 static const uint32_t kBmpHeaderBytes = 14; | |
111 static const uint32_t kBmpHeaderBytesPlusFour = kBmpHeaderBytes + 4; | |
112 static const uint32_t kBmpOS2V1Bytes = 12; | |
113 static const uint32_t kBmpOS2V2Bytes = 64; | |
114 static const uint32_t kBmpInfoBaseBytes = 16; | |
115 static const uint32_t kBmpInfoV1Bytes = 40; | |
116 static const uint32_t kBmpInfoV2Bytes = 52; | |
117 static const uint32_t kBmpInfoV3Bytes = 56; | |
118 static const uint32_t kBmpInfoV4Bytes = 108; | |
119 static const uint32_t kBmpInfoV5Bytes = 124; | |
120 static const uint32_t kBmpMaskBytes = 12; | |
121 | |
122 // Read the first header and the size of the second header | |
123 SkAutoTDeleteArray<uint8_t> hBuffer( | |
124 SkNEW_ARRAY(uint8_t, kBmpHeaderBytesPlusFour)); | |
125 if (stream->read(hBuffer.get(), kBmpHeaderBytesPlusFour) != | |
126 kBmpHeaderBytesPlusFour) { | |
127 SkDebugf("Error: unable to read first bitmap header.\n"); | |
128 return NULL; | |
129 } | |
130 //uint16_t signature = get_short(hBuffer, 0); | |
scroggo
2015/03/04 17:10:30
Can these be removed?
| |
131 | |
132 // The total bytes in the bmp file | |
133 // We only need to use this value for RLE decoding, so we will only check | |
134 // that it is valid in the RLE case. | |
135 const uint32_t totalBytes = get_int(hBuffer.get(), 2); | |
136 | |
137 //uint32_t reserved = get_int(hBuffer, 6); | |
138 | |
139 // The offset from the start of the file where the pixel data begins | |
140 const uint32_t offset = get_int(hBuffer.get(), 10); | |
141 if (offset < kBmpHeaderBytes + kBmpOS2V1Bytes) { | |
142 SkDebugf("Error: invalid starting location for pixel data\n"); | |
143 return NULL; | |
144 } | |
145 | |
146 // The size of the second (info) header in bytes | |
147 // The size is the first field of the second header, so we have already | |
148 // read the first four infoBytes. | |
149 const uint32_t infoBytes = get_int(hBuffer.get(), 14); | |
150 if (infoBytes < kBmpOS2V1Bytes) { | |
151 SkDebugf("Error: invalid second header size.\n"); | |
152 return NULL; | |
153 } | |
154 const uint32_t infoBytesRemaining = infoBytes - 4; | |
155 hBuffer.free(); | |
156 | |
157 // Read the second header | |
158 SkAutoTDeleteArray<uint8_t> iBuffer( | |
159 SkNEW_ARRAY(uint8_t, infoBytesRemaining)); | |
160 if (stream->read(iBuffer.get(), infoBytesRemaining) != infoBytesRemaining) { | |
161 SkDebugf("Error: unable to read second bitmap header.\n"); | |
162 return NULL; | |
163 } | |
164 | |
165 // The number of bits used per pixel in the pixel data | |
166 uint16_t bitsPerPixel; | |
167 | |
168 // The compression method for the pixel data | |
169 uint32_t compression = kNone_BitmapCompressionMethod; | |
170 | |
171 // Number of colors in the color table, defaults to 0 or max (see below) | |
172 uint32_t numColors = 0; | |
173 | |
174 // Bytes per color in the color table, early versions use 3, most use 4 | |
175 uint32_t bytesPerColor; | |
176 | |
177 // The image width and height | |
178 int width, height; | |
179 | |
180 // Determine image information depending on second header format | |
181 BitmapHeaderType headerType; | |
182 if (infoBytes >= kBmpInfoBaseBytes) { | |
183 // Check the version of the header | |
184 switch (infoBytes) { | |
185 case kBmpInfoV1Bytes: | |
186 headerType = kInfoV1_BitmapHeaderType; | |
187 break; | |
188 case kBmpInfoV2Bytes: | |
189 headerType = kInfoV2_BitmapHeaderType; | |
190 break; | |
191 case kBmpInfoV3Bytes: | |
192 headerType = kInfoV3_BitmapHeaderType; | |
193 break; | |
194 case kBmpInfoV4Bytes: | |
195 headerType = kInfoV4_BitmapHeaderType; | |
196 break; | |
197 case kBmpInfoV5Bytes: | |
198 headerType = kInfoV5_BitmapHeaderType; | |
199 break; | |
200 case 16: | |
201 case 20: | |
202 case 24: | |
203 case 28: | |
204 case 32: | |
205 case 36: | |
206 case 42: | |
207 case 46: | |
208 case 48: | |
209 case 60: | |
210 case kBmpOS2V2Bytes: | |
211 headerType = kOS2VX_BitmapHeaderType; | |
212 break; | |
213 default: | |
214 // We do not signal an error here because there is the | |
215 // possibility of new or undocumented bmp header types. Most | |
216 // of the newer versions of bmp headers are similar to and | |
217 // build off of the older versions, so we may still be able to | |
218 // decode the bmp. | |
219 SkDebugf("Warning: unknown bmp header format.\n"); | |
220 headerType = kUnknown_BitmapHeaderType; | |
221 break; | |
222 } | |
223 // We check the size of the header before entering the if statement. | |
224 // We should not reach this point unless the size is large enough for | |
225 // these required fields. | |
226 SkASSERT(infoBytesRemaining >= 12); | |
227 width = get_int(iBuffer.get(), 0); | |
228 height = get_int(iBuffer.get(), 4); | |
229 //uint16_t planes = get_short(iBuffer, 8); | |
230 bitsPerPixel = get_short(iBuffer.get(), 10); | |
231 | |
232 // Some versions do not have this field, so we check before | |
233 // overwriting the default value. | |
234 if (infoBytesRemaining >= 16) { | |
235 compression = get_int(iBuffer.get(), 12); | |
236 } | |
237 //uint32_t imageBytes = get_int(iBuffer, 16); | |
238 //uint32_t horizontalResolution = get_int(iBuffer, 20); | |
239 //uint32_t verticalResolution = get_int(iBuffer, 24); | |
240 | |
241 // Some versions do not have this field, so we check before | |
242 // overwriting the default value. | |
243 if (infoBytesRemaining >= 32) { | |
244 numColors = get_int(iBuffer.get(), 28); | |
245 } | |
246 //uint32_t importantColors = get_int(iBuffer, infoBytes - 4, 32); | |
247 bytesPerColor = 4; | |
248 } else if (infoBytes >= kBmpOS2V1Bytes) { | |
249 // The OS2V1 is treated separately because it has a unique format | |
250 headerType = kOS2V1_BitmapHeaderType; | |
251 width = (int) get_short(iBuffer.get(), 0); | |
252 height = (int) get_short(iBuffer.get(), 2); | |
253 //uint16_t planes = get_short(iBuffer.get(), 4); | |
254 bitsPerPixel = get_short(iBuffer.get(), 6); | |
255 bytesPerColor = 3; | |
256 } else { | |
257 // There are no valid bmp headers | |
258 SkDebugf("Error: second bitmap header size is invalid.\n"); | |
259 return NULL; | |
260 } | |
261 | |
262 // Check for valid dimensions from header | |
263 static const uint32_t kBmpMaxDim = 1 << 16; | |
scroggo
2015/03/04 17:10:30
nit: This could be after the next if statement (it
| |
264 SkSwizzler::RowOrder rowOrder = SkSwizzler::kBottomUp_RowOrder; | |
265 if (height < 0) { | |
266 height = -height; | |
267 rowOrder = SkSwizzler::kTopDown_RowOrder; | |
268 } | |
269 if (width < 0 || width >= kBmpMaxDim || height >= kBmpMaxDim) { | |
270 // TODO: Decide if we want to support really large bmps. | |
271 SkDebugf("Error: invalid bitmap dimensions.\n"); | |
272 return NULL; | |
273 } | |
274 | |
275 // Create mask struct | |
276 SkSwizzler::ColorMasks masks; | |
277 masks.redMask = 0; | |
scroggo
2015/03/04 17:10:30
Maybe ColorMasks should have a constructor? (Or we
| |
278 masks.greenMask = 0; | |
279 masks.blueMask = 0; | |
280 masks.alphaMask = 0; | |
281 | |
282 // Determine the input compression format and set bit masks if necessary | |
283 uint32_t maskBytes = 0; | |
284 BitmapInputFormat inputFormat = kUnknown_BitmapInputFormat; | |
285 switch (compression) { | |
286 case kNone_BitmapCompressionMethod: | |
287 inputFormat = kStandard_BitmapInputFormat; | |
288 // Always respect alpha mask in V4+ | |
289 if (kInfoV4_BitmapHeaderType == headerType || | |
290 kInfoV5_BitmapHeaderType == headerType) { | |
291 // Header types are matched based on size. If the header is | |
292 // V4+, we are guaranteed to be able at least this size. | |
293 SkASSERT(infoBytesRemaining > 52); | |
294 masks.alphaMask = get_int(iBuffer.get(), 48); | |
295 } | |
296 break; | |
297 case k8BitRLE_BitmapCompressionMethod: | |
298 if (bitsPerPixel != 8) { | |
299 SkDebugf("Warning: correcting invalid bitmap format.\n"); | |
300 bitsPerPixel = 8; | |
301 } | |
302 inputFormat = kRLE_BitmapInputFormat; | |
303 break; | |
304 case k4BitRLE_BitmapCompressionMethod: | |
305 if (bitsPerPixel != 4) { | |
306 SkDebugf("Warning: correcting invalid bitmap format.\n"); | |
307 bitsPerPixel = 4; | |
308 } | |
309 inputFormat = kRLE_BitmapInputFormat; | |
310 break; | |
311 case kAlphaBitMasks_BitmapCompressionMethod: | |
312 case kBitMasks_BitmapCompressionMethod: | |
313 // Load the masks | |
314 inputFormat = kBitMask_BitmapInputFormat; | |
315 switch (headerType) { | |
316 case kInfoV1_BitmapHeaderType: { | |
317 // The V1 header stores the bit masks after the header | |
318 SkAutoTDeleteArray<uint8_t> mBuffer( | |
319 SkNEW_ARRAY(uint8_t, kBmpMaskBytes)); | |
320 if (stream->read(mBuffer.get(), kBmpMaskBytes) != | |
321 kBmpMaskBytes) { | |
322 SkDebugf("Error: unable to read bit masks.\n"); | |
323 return NULL; | |
324 } | |
325 maskBytes = kBmpMaskBytes; | |
326 masks.redMask = get_int(mBuffer.get(), 0); | |
327 masks.greenMask = get_int(mBuffer.get(), 4); | |
328 masks.blueMask = get_int(mBuffer.get(), 8); | |
329 break; | |
330 } | |
331 case kInfoV4_BitmapHeaderType: | |
332 case kInfoV5_BitmapHeaderType: | |
333 // Header types are matched based on size. If the header | |
334 // is V4+, we are guaranteed to be able at least this size. | |
335 SkASSERT(infoBytesRemaining >= 52); | |
336 masks.alphaMask = get_int(iBuffer.get(), 48); | |
337 // Intentional fall through | |
338 case kInfoV2_BitmapHeaderType: | |
339 case kInfoV3_BitmapHeaderType: | |
340 // Header types are matched based on size. If the header | |
341 // is V2+, we are guaranteed to be able at least this size. | |
342 SkASSERT(infoBytesRemaining >= 48); | |
343 masks.redMask = get_int(iBuffer.get(), 36); | |
344 masks.greenMask = get_int(iBuffer.get(), 40); | |
345 masks.blueMask = get_int(iBuffer.get(), 44); | |
346 break; | |
347 case kOS2VX_BitmapHeaderType: | |
348 // TODO: Decide if we intend to support this. | |
349 // It is unsupported in the previous version and | |
350 // in chromium. I have not come across a test case | |
351 // that uses this format. | |
352 SkDebugf("Error: huffman format unsupported.\n"); | |
353 return NULL; | |
354 default: | |
355 SkDebugf("Error: invalid bmp bit masks header.\n"); | |
356 return NULL; | |
357 } | |
358 break; | |
359 case kJpeg_BitmapCompressionMethod: | |
360 if (24 == bitsPerPixel) { | |
361 inputFormat = kRLE_BitmapInputFormat; | |
362 break; | |
363 } | |
364 case kPng_BitmapCompressionMethod: | |
365 // TODO: Decide if we intend to support this. | |
366 // It is unsupported in the previous version and | |
367 // in chromium. I think it is used mostly for printers. | |
368 SkDebugf("Error: compression format not supported.\n"); | |
369 return NULL; | |
370 case kCMYK_BitmapCompressionMethod: | |
371 case kCMYK8BitRLE_BitmapCompressionMethod: | |
372 case kCMYK4BitRLE_BitmapCompressionMethod: | |
373 // TODO: Same as above. | |
374 SkDebugf("Error: CMYK not supported for bitmap decoding.\n"); | |
375 return NULL; | |
376 default: | |
377 SkDebugf("Error: invalid format for bitmap decoding.\n"); | |
378 return NULL; | |
379 } | |
380 iBuffer.free(); | |
381 | |
382 // Check for valid bits per pixel input | |
383 switch (bitsPerPixel) { | |
384 // In addition to more standard pixel compression formats, bmp supports | |
385 // the use of bit masks to determine pixel components. The bmp standard | |
386 // format for representing 16-bit colors is 555 (XRRRRRGGGGGBBBBB), | |
387 // which does not map well to any Skia color formats. For this reason, | |
388 // we will always enable mask mode with 16 bits per pixel. | |
389 case 16: | |
390 if (kBitMask_BitmapInputFormat != inputFormat) { | |
391 masks.redMask = 0x7C00; | |
392 masks.greenMask = 0x03E0; | |
393 masks.blueMask = 0x001F; | |
394 } | |
395 break; | |
396 case 1: | |
397 case 2: | |
398 case 4: | |
399 case 8: | |
400 case 24: | |
401 case 32: | |
402 break; | |
403 default: | |
404 SkDebugf("Error: invalid input value for bits per pixel.\n"); | |
405 return NULL; | |
406 } | |
407 | |
408 // Process the color table | |
409 uint32_t colorBytes = 0; | |
410 SkPMColor* colorTable = NULL; | |
411 if (bitsPerPixel < 16) { | |
412 // Verify the number of colors for the color table | |
413 const int maxColors = 1 << bitsPerPixel; | |
414 // Zero is a default for maxColors | |
415 // Also set numColors to maxColors when input is too large | |
416 if (numColors <= 0 || numColors > maxColors) { | |
417 numColors = maxColors; | |
418 } | |
419 colorTable = SkNEW_ARRAY(SkPMColor, maxColors); | |
420 | |
421 // Construct the color table | |
422 colorBytes = numColors * bytesPerColor; | |
423 SkAutoTDeleteArray<uint8_t> cBuffer(SkNEW_ARRAY(uint8_t, colorBytes)); | |
424 if (stream->read(cBuffer.get(), colorBytes) != colorBytes) { | |
425 SkDebugf("Error: unable to read color table.\n"); | |
426 return NULL; | |
427 } | |
428 // We must respect the alpha channel for V4 and V5. However, if it is | |
429 // all zeros, we will display the image as opaque rather than | |
430 // transparent. This may require redoing some of the processing. | |
431 bool seenNonZeroAlpha = false; | |
432 uint32_t i = 0; | |
433 for (; i < numColors; i++) { | |
434 uint8_t blue = get_byte(cBuffer.get(), i*bytesPerColor); | |
435 uint8_t green = get_byte(cBuffer.get(), i*bytesPerColor + 1); | |
436 uint8_t red = get_byte(cBuffer.get(), i*bytesPerColor + 2); | |
437 uint8_t alpha = 0xFF; | |
438 if (kInfoV4_BitmapHeaderType == headerType || | |
439 kInfoV5_BitmapHeaderType == headerType) { | |
440 alpha = (masks.alphaMask >> 24) & | |
441 get_byte(cBuffer.get(), i*bytesPerColor + 3); | |
442 if (!alpha && !seenNonZeroAlpha) { | |
443 alpha = 0xFF; | |
444 } else { | |
445 // If we see a non-zero alpha, we restart the loop | |
446 seenNonZeroAlpha = true; | |
447 i = -1; | |
scroggo
2015/03/04 17:10:30
don't you want a 'continue' here? Otherwise, won't
| |
448 } | |
449 } | |
450 colorTable[i] = SkPreMultiplyColor(SkColorSetARGBInline(alpha, | |
scroggo
2015/03/04 17:10:30
As stated in an earlier patch set, you don't need
msarett
2015/03/05 23:13:17
Sorry I missed this. Had the wrong code in so man
| |
451 red, green, blue)); | |
452 } | |
453 // To avoid segmentation faults on bad pixel data, fill the end of the | |
454 // color table with black. This is the same the behavior as the | |
455 // chromium decoder. | |
456 for (; i < maxColors; i++) { | |
457 colorTable[i] = SkPackARGB32(0xFF, 0, 0, 0); | |
458 } | |
459 } else { | |
460 // We will not use the color table if bitsPerPixel >= 16, but if there | |
461 // is a color table, we may need to skip the color table bytes. | |
462 // We will assume that the maximum color table size is the same as when | |
463 // there are 8 bits per pixel (the largest color table actually used). | |
464 // Color tables for greater than 8 bits per pixel are somewhat | |
465 // undocumented. It is indicated that they may exist to store a list | |
466 // of colors for optimization on devices with limited color display | |
467 // capacity. While we do not know for sure, we will guess that any | |
468 // value of numColors greater than this maximum is invalid. | |
469 if (numColors <= (1 << 8)) { | |
470 colorBytes = numColors * bytesPerColor; | |
471 if (stream->skip(colorBytes) != colorBytes) { | |
472 SkDebugf("Error: Could not skip color table bytes.\n"); | |
473 return NULL; | |
474 } | |
475 } | |
476 } | |
477 | |
478 // Ensure that the stream now points to the start of the pixel array | |
479 uint32_t bytesRead = kBmpHeaderBytes + infoBytes + maskBytes + colorBytes; | |
480 | |
481 // Check that we have not read past the pixel array offset | |
482 if(bytesRead > offset) { | |
483 // This may occur on OS 2.1 and other old versions where the color | |
484 // table defaults to max size, and the bmp tries to use a smaller color | |
485 // table. This is invalid, and our decision is to indicate an error, | |
486 // rather than try to guess the intended size of the color table and | |
487 // rewind the stream to display the image. | |
488 SkDebugf("Error: pixel data offset less than header size.\n"); | |
489 return NULL; | |
490 } | |
491 | |
492 // Skip to the start of the pixel array | |
493 if (stream->skip(offset - bytesRead) != offset - bytesRead) { | |
494 SkDebugf("Error: unable to skip to image data.\n"); | |
495 return NULL; | |
496 } | |
497 | |
498 // Remaining bytes is only used for RLE | |
499 const int remainingBytes = totalBytes - offset; | |
500 if (remainingBytes <= 0 && kRLE_BitmapInputFormat == inputFormat) { | |
501 SkDebugf("Error: RLE requires valid input size.\n"); | |
502 return NULL; | |
503 } | |
504 | |
505 // Return the codec | |
506 // Use of image info for input format does not make sense given | |
507 // that the possible bitmap input formats do not match up with | |
508 // Skia color types. Instead we use ImageInfo for width and height, | |
509 // and other fields for input format information. | |
510 const SkImageInfo& imageInfo = SkImageInfo::Make(width, height, | |
511 kN32_SkColorType, kPremul_SkAlphaType); | |
scroggo
2015/03/04 17:10:30
At this point, isn't it possible to know (at least
| |
512 return SkNEW_ARGS(SkBmpCodec, (imageInfo, stream, bitsPerPixel, | |
513 inputFormat, masks, colorTable, rowOrder, | |
514 remainingBytes)); | |
515 } | |
516 | |
517 /* | |
518 * | |
519 * Creates an instance of the decoder | |
520 * Called only by NewFromStream | |
521 * | |
522 */ | |
523 SkBmpCodec::SkBmpCodec(const SkImageInfo& info, SkStream* stream, | |
524 uint16_t bitsPerPixel, BitmapInputFormat inputFormat, | |
525 SkSwizzler::ColorMasks masks, SkPMColor* colorTable, | |
526 SkSwizzler::RowOrder rowOrder, | |
527 const uint32_t remainingBytes) | |
528 : INHERITED(info, stream) | |
529 , fBitsPerPixel(bitsPerPixel) | |
530 , fInputFormat(inputFormat) | |
531 , fBitMasks(masks) | |
532 , fColorTable(colorTable) | |
533 , fRowOrder(rowOrder) | |
534 , fRemainingBytes(remainingBytes) | |
535 {} | |
536 | |
537 /* | |
538 * | |
539 * Initiates the bitmap decode | |
540 * | |
541 */ | |
542 SkCodec::Result SkBmpCodec::onGetPixels(const SkImageInfo& dstInfo, | |
543 void* dst, size_t dstRowBytes, | |
544 SkPMColor*, int*) { | |
545 // This version of the decoder does not support scaling | |
546 if (dstInfo.dimensions() != getOriginalInfo().dimensions()) { | |
scroggo
2015/03/04 17:10:30
You'll need to do other checks, for example whethe
| |
547 SkDebugf("Error: scaling not supported.\n"); | |
548 return kInvalidScale; | |
549 } | |
550 | |
551 switch (fInputFormat) { | |
552 case kRLE_BitmapInputFormat: | |
553 return decodeRLE(dstInfo, dst, dstRowBytes); | |
554 case kBitMask_BitmapInputFormat: | |
555 case kStandard_BitmapInputFormat: | |
556 return decode(dstInfo, dst, dstRowBytes); | |
557 default: | |
558 SkDebugf("Error: unknown bitmap input format.\n"); | |
scroggo
2015/03/04 17:10:30
When does this happen? Can we skip creating an SkB
| |
559 return kInvalidInput; | |
560 } | |
561 } | |
562 | |
563 /* | |
564 * | |
565 * Performs the bitmap decoding for standard and bit masks input format | |
566 * | |
567 */ | |
568 SkCodec::Result SkBmpCodec::decode(const SkImageInfo& dstInfo, | |
569 void* dst, uint32_t dstRowBytes) { | |
570 // Set constant values | |
571 const int width = dstInfo.width(); | |
572 const int height = dstInfo.height(); | |
573 const uint32_t pixelsPerByte = 8 / fBitsPerPixel; | |
574 const uint32_t bytesPerPixel = fBitsPerPixel / 8; | |
575 const uint32_t unpaddedRowBytes = fBitsPerPixel < 16 ? | |
576 (width + pixelsPerByte - 1) / pixelsPerByte : width * bytesPerPixel; | |
577 const uint32_t paddedRowBytes = (unpaddedRowBytes + 3) & (~3); | |
scroggo
2015/03/04 17:10:30
You're probably not familiar with it, but I believ
| |
578 const uint32_t alphaMask = fBitMasks.alphaMask; | |
579 | |
580 // Get swizzler configuration | |
581 SkSwizzler::SrcConfig config; | |
582 switch (fBitsPerPixel) { | |
583 case 1: | |
584 config = SkSwizzler::kIndex1; | |
585 break; | |
586 case 2: | |
587 config = SkSwizzler::kIndex2; | |
588 break; | |
589 case 4: | |
590 config = SkSwizzler::kIndex4; | |
591 break; | |
592 case 8: | |
593 config = SkSwizzler::kIndex; | |
594 break; | |
595 case 16: | |
596 config = SkSwizzler::kMask16; | |
597 break; | |
598 case 24: | |
599 if (kBitMask_BitmapInputFormat == fInputFormat) { | |
600 config = SkSwizzler::kMask24; | |
601 } else { | |
602 config = SkSwizzler::kBGR; | |
603 } | |
604 break; | |
605 case 32: | |
606 if (kBitMask_BitmapInputFormat == fInputFormat) { | |
607 config = SkSwizzler::kMask32; | |
608 } else if (!alphaMask) { | |
609 config = SkSwizzler::kBGRX; | |
610 } else { | |
611 config = SkSwizzler::kBGRA; | |
612 } | |
613 break; | |
614 default: | |
615 SkASSERT(false); | |
616 return kInvalidInput; | |
617 } | |
618 | |
619 // If alphaOption is kNormal, it indicates that the image will be | |
620 // considered as encoded. If kTransparentAsOpaque, we will respect the | |
621 // value of the alpha channel if it is nonzero for any of the pixels. | |
622 // However, if it is always zero, we will consider the image opaque instead | |
623 // of transparent. This may require redoing some of the decoding. | |
624 SkSwizzler::AlphaOption alphaOption; | |
625 if (fBitsPerPixel < 16) { | |
626 alphaOption = SkSwizzler::kNormal_AlphaOption; | |
627 } else if (alphaMask) { | |
628 alphaOption = SkSwizzler::kTransparentAsOpaque_AlphaOption; | |
629 } else { | |
630 alphaOption = SkSwizzler::kOpaque_AlphaOption; | |
631 } | |
632 | |
633 // Create swizzler | |
634 SkSwizzler* swizzler = SkSwizzler::CreateSwizzler(config, fColorTable.get(), | |
635 dstInfo, dst, dstRowBytes, false, fBitMasks, alphaOption, | |
636 fRowOrder); | |
637 | |
638 // Allocate space for a row buffer and a source for the swizzler | |
639 SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, paddedRowBytes)); | |
640 | |
641 // Iterate over rows of the image | |
642 for (uint32_t y = 0; y < height; y++) { | |
643 // Read a row of the input | |
644 if (stream()->read(srcBuffer.get(), paddedRowBytes) != paddedRowBytes) { | |
645 return kIncompleteInput; | |
646 } | |
647 | |
648 // Decode the row in destination format | |
649 swizzler->next(srcBuffer.get()); | |
650 } | |
651 | |
652 // Finished decoding the entire image | |
653 return kSuccess; | |
654 } | |
655 | |
656 /* | |
657 * | |
658 * Set an RLE pixel using the color table | |
659 * | |
660 */ | |
661 void SkBmpCodec::setRLEPixel(SkPMColor* dst, uint32_t dstRowBytes, int height, | |
662 uint32_t x, uint32_t y, uint8_t index) { | |
663 if (SkSwizzler::kBottomUp_RowOrder == fRowOrder) { | |
664 y = height - y - 1; | |
665 } | |
666 SkPMColor* dstRow = SkTAddOffset<SkPMColor>(dst, y * dstRowBytes); | |
667 dstRow[x] = fColorTable.get()[index]; | |
668 } | |
669 | |
670 /* | |
671 * | |
672 * Performs the bitmap decoding for RLE input format | |
673 * RLE decoding is performed all at once, rather than a one row at a time | |
674 * | |
675 */ | |
676 SkCodec::Result SkBmpCodec::decodeRLE(const SkImageInfo& dstInfo, | |
677 void* dst, uint32_t dstRowBytes) { | |
678 // Set RLE flags | |
679 static const uint8_t RLE_ESCAPE = 0; | |
680 static const uint8_t RLE_EOL = 0; | |
681 static const uint8_t RLE_EOF = 1; | |
682 static const uint8_t RLE_DELTA = 2; | |
683 | |
684 // Set constant values | |
685 const int width = dstInfo.width(); | |
686 const int height = dstInfo.height(); | |
687 const uint32_t pixelsPerByte = 8 / fBitsPerPixel; | |
688 const uint32_t bytesPerPixel = fBitsPerPixel / 8; | |
689 | |
690 // Input buffer parameters | |
691 uint32_t i = 0; | |
scroggo
2015/03/04 17:10:30
It looks like in this case, "i" means "bytesRead"?
| |
692 SkAutoTDeleteArray<uint8_t> buffer(SkNEW_ARRAY(uint8_t, fRemainingBytes)); | |
693 uint32_t totalBytes = stream()->read(buffer.get(), fRemainingBytes); | |
694 if (totalBytes < fRemainingBytes) { | |
695 SkDebugf("Warning: incomplete RLE file.\n"); | |
696 } else if (totalBytes <= 0) { | |
697 SkDebugf("Error: could not read RLE image data.\n"); | |
698 return kInvalidInput; | |
699 } | |
700 | |
701 // Destination parameters | |
702 uint32_t x = 0; | |
703 uint32_t y = 0; | |
704 // If the code skips pixels, remaining pixels are transparent or black | |
705 // TODO: Skip this is memory was already zeroed. | |
scroggo
2015/03/04 17:10:30
if*
| |
706 memset(dst, 0, dstRowBytes * height); | |
707 SkPMColor* dstPtr = (SkPMColor*) dst; | |
708 | |
709 while (true) { | |
710 // Every entry takes at least two bytes | |
711 if (totalBytes - i < 2) { | |
712 SkDebugf("Warning: incomplete RLE input.\n"); | |
713 return kIncompleteInput; | |
714 } | |
715 | |
716 // Read the two bytes and verify we have not reached end of image | |
717 const uint8_t count = buffer.get()[i++]; | |
scroggo
2015/03/04 17:10:30
Can you elaborate what these variables mean? IIUC,
| |
718 const uint8_t code = buffer.get()[i++]; | |
719 if ((count || (code != RLE_EOF)) && y >= height) { | |
scroggo
2015/03/04 17:10:30
I'm having trouble following this line.
Is it bas
| |
720 SkDebugf("Warning: invalid RLE input.\n"); | |
721 return kIncompleteInput; | |
722 } | |
723 | |
724 // Perform decoding | |
725 if (RLE_ESCAPE == count) { | |
726 switch (code) { | |
727 case RLE_EOL: | |
728 x = 0; | |
729 y++; | |
730 break; | |
731 case RLE_EOF: | |
732 return kSuccess; | |
733 case RLE_DELTA: { | |
734 // Two bytes are needed to specify delta | |
735 if (totalBytes - i < 2) { | |
736 SkDebugf("Warning: incomplete RLE input\n"); | |
737 return kIncompleteInput; | |
738 } | |
739 // Modify x and y | |
740 const uint8_t dx = buffer.get()[i++]; | |
741 const uint8_t dy = buffer.get()[i++]; | |
742 x += dx; | |
743 y += dy; | |
744 if (x > width || y > height) { | |
745 SkDebugf("Warning: invalid RLE input.\n"); | |
746 return kIncompleteInput; | |
747 } | |
748 break; | |
749 } | |
750 default: { // Absolute mode | |
751 // Check that we have enough bytes and that there are | |
752 // enough pixels remaining in the row | |
753 const uint32_t unpaddedBytes = fBitsPerPixel < 16 ? | |
754 (code + pixelsPerByte - 1) / pixelsPerByte : | |
755 code * bytesPerPixel; | |
756 const uint32_t paddedBytes = | |
757 (unpaddedBytes + 1) & (~1); | |
scroggo
2015/03/04 17:10:30
I think you can use SkAlign2 here.
| |
758 if (x + code > width || totalBytes - i < paddedBytes) { | |
scroggo
2015/03/04 17:10:30
So in this case, does code mean a number of pixels
| |
759 SkDebugf("Warning: invalid RLE input.\n"); | |
760 return kIncompleteInput; | |
761 } | |
762 // Use the color table to set the coded number of pixels | |
763 uint8_t num = code; | |
764 while (num > 0) { | |
765 switch(fBitsPerPixel) { | |
766 case 4: { | |
767 uint8_t val = buffer.get()[i++]; | |
768 setRLEPixel(dstPtr, dstRowBytes, height, x++, y, | |
769 val >> 4); | |
770 num--; | |
771 if (num) { | |
772 setRLEPixel(dstPtr, dstRowBytes, height, | |
773 x++, y, val & 0xF); | |
774 num--; | |
775 } | |
776 break; | |
777 } | |
778 case 8: | |
779 setRLEPixel(dstPtr, dstRowBytes, height, x++, y, | |
780 buffer.get()[i++]); | |
781 num--; | |
782 break; | |
783 case 24: { | |
784 uint8_t blue = buffer.get()[i++]; | |
785 uint8_t green = buffer.get()[i++]; | |
786 uint8_t red = buffer.get()[i++]; | |
787 SkPMColor color = SkPreMultiplyARGB( | |
788 0xFF, red, green, blue); | |
789 SkPMColor* dstRow = SkTAddOffset<SkPMColor>( | |
790 dstPtr, y * dstRowBytes); | |
791 dstRow[x++] = color; | |
792 num--; | |
793 } | |
794 default: | |
795 SkASSERT(false); | |
796 return kInvalidInput; | |
797 } | |
798 } | |
799 // Skip a byte if necessary to maintain alignment | |
800 if (unpaddedBytes & 1) { | |
801 i++; | |
802 } | |
803 break; | |
804 } | |
805 } | |
806 } else { // Encoded mode | |
807 // Ensure we do not move past the end of the row | |
808 const uint32_t endX = SkTMin<uint32_t>(x + count, (uint32_t) width); | |
809 | |
810 if (24 == fBitsPerPixel) { | |
811 // Check that there is enough data | |
812 if (totalBytes - i < 2) { | |
813 SkDebugf("Warning: incomplete RLE input\n"); | |
814 return kIncompleteInput; | |
815 } | |
816 | |
817 // Fill the pixels up to endX with the specified color | |
818 uint8_t blue = code; | |
819 uint8_t green = buffer.get()[i++]; | |
820 uint8_t red = buffer.get()[i++]; | |
821 SkPMColor color = SkPackARGB32(0xFF, red, green, blue); | |
822 SkPMColor* dstRow = | |
823 SkTAddOffset<SkPMColor>(dstPtr, y * dstRowBytes); | |
824 while (x < endX) { | |
825 dstRow[x++] = color; | |
826 } | |
827 } else { | |
828 // RLE8 has one color index that gets repeated | |
829 // RLE4 has two color indexes in the upper and lower 4 bits of | |
830 // the bytes, which are alternated | |
831 uint8_t indices[2] = { code, code }; | |
832 if (4 == fBitsPerPixel) { | |
833 indices[0] >>= 4; | |
834 indices[1] &= 0xf; | |
835 } | |
836 | |
837 // Set the indicated number of pixels | |
838 for (int which = 0; x < endX; x++) { | |
839 setRLEPixel(dstPtr, dstRowBytes, height, x, y, | |
840 indices[which]); | |
841 which = !which; | |
842 } | |
843 } | |
844 } | |
845 } | |
846 } | |
OLD | NEW |